11.4 系列和总和编号
章节大纲
-
The number of tagged deer reported to the game commission one Saturday is represented by the sum . How many tagged deer were reported?
::星期六向游戏委员会报告的贴有标签的鹿数目为n=163n-2。 报告了多少贴有标签的鹿?Series and Summation Notation
::序列和总和符号符号A series is the sum of the terms in a . A series is often expresses in summation notation (also called sigma notation) which uses the capital Greek letter , sigma. Example: . Beneath the sigma is the index (in this case ) which tells us what value to plug in first. Above the sigma is the upper limit which tells us the upper limit to plug into the rule.
::序列是 a 中术语的总和 。 一个序列通常以总和符号( 也称为 Sigma 符号) 表示, 该符号使用希腊大写字母 {, sigma 。 例如 : {n= 15n= 1+2+3+4+5=15。 低于 sigma 是 指数( 在本案中 n) , 它告诉我们先插入什么值 。 高于 sigma 是上限, 它告诉我们插入规则的上限 。Let's write the terms and find the sum of the following series.
::让我们写下条款 找到以下系列的总和-
::=164n+1
Begin by replacing n with the values 1 through 6 to find the terms in the series and then add them together.
::开始以数值 n 取代值 1 至 6, 以查找序列中的术语, 然后将它们加在一起 。Calculator: The graphing calculator can also be used to evaluate this sum. We will use a compound function in which we will sum a sequence. Go to STAT (to get to the List menu) and arrow over to MATH . Select option 5: sum( then return to the List menu, arrow over to OPS and select option 5: seq( to get sum(seq( on your screen. Next, enter in (expression, variable, begin, end) to list the terms in a sequence. By including the sum( command, the calculator will sum the terms in the sequence for us. For this particular problem the expression and result on the calculator are:
::计算器 : 图形计算器也可以用来评估此总和 。 我们将使用一个复合函数来计算一个序列 。 转到第二STAT( 转到列表菜单) 和箭头到 MATH 。 选择选项 5 : sum( 然后返回列表菜单, 箭头转到 OPS 和选择选项 5 : 后( 获得 suq( 在屏幕上 ) 。 下一步, 输入( 表达式、 变量、 开始、 结束) 来按序列列出术语 。 通过包含总和( 命令) , 计算器将计算我们序列中的术语 。 对于这个特定的问题, 计算器的表达式和结果是 :
::suph( 4x-1, x, 1, 6) =78To obtain a list of the terms, just use
::为了获得术语清单,请使用以下术语(4x-1,x,1,6)+3 7 11 15 19 23}-
::n=911n(n+1)2
Replace with the values 9, 10 and 11 and sum the resulting series.
::n 改为数值9、10和11,并加之所产生的序列。Using the calculator: .
::使用计算器:Sumeq(x(x-1)/2,x,9,11)=136。There are a few special series which are used in more advanced math classes, such as calculus. In these series, we will use the variable, , to represent the index and to represent the upper bound (the total number of terms) for the sum.
::有一些特殊系列用于较先进的数学课程,例如微积分。在这些系列中,我们将使用变量(i)来表示指数, n 来表示总和的上限(术语总数)。-
::*i=1n1=n
Let , now we have the series . Basically, in the series we are adding 1 to itself times (or calculating ) so the resulting sum will always be .
::Let n=5, 现在我们有序列“ i=151=1+1+1+1+1+1=5 ” 。 基本上, 在序列中, 我们给自己增加一个 n 次( 或计算 nx1) 数, 所以结果总和总是 n 。-
::i=1ni=n(n+1)2
If we let again we get . This one is a little harder to derive but can be illustrated using different values of . This rule is closely related to the rule for the sum of an arithmetic series and will be used to prove the sum formula later on.
::如果我们再次让 n= 5, 我们就会得到“ i= 1ni= 1+2+3+4+5=15=5( 5+1) 2 。 这个比较难取出, 但可以用 n 的不同值来说明。 此规则与计算序列总和的规则密切相关, 以后将用来证明总和公式 。-
::i=1ni=n(n+1)(2n+1)6
Let once more. Using the rule, the sum is
::n=5 一次。使用此规则,总和为 5(5+1)(2(5)+1)6=5(6)(11)6=55。If we write the terms in the series and find their sum we get .
::如果我们在系列中写下术语并找到它们的总和, 我们就会得到12+22+32+42+52=1+4+9+16+25=55。The derivation of this rule is beyond the scope of this course.
::这一规则的推理超出了本程序的范围。Now, let's use one of the rules above to evaluate .
::现在,让我们用上面的规则之一 来评估"i=1152"。Using the rule , we get
::使用细则“i=1n2=n(n+1)(2n+1)6,我们得到15(15+1)(2(2(2(15)+1)6=15(16)(31)6=1240)Examples
::实例Example 1
::例1Earlier, you were asked to find the number of tagged deer that were reported.
::早些时候,有人要求你找到报告的贴有标签的鹿数目。Begin by replacing n with the values 1 through 6 to find the terms in the series and then add them together.
::开始以数值 n 取代值 1 至 6, 以查找序列中的术语, 然后将它们加在一起 。Therefore, 51 deer were reported.
::因此,报告有51头鹿。Evaluate the following. First without a calculator, then use the calculator to check your result.
::评估以下内容。 首先没有计算器, 然后使用计算器检查您的计算结果 。Example 2
::例2Find the sum: .
::查找总和:n=372(n-3)。
::=372=372
-3=2(3-3)+3(3-3)+2(4-3)+2(5-3)+2(3)+2(5-3)+2(6-3)+2(3)+2(3)+2(2)(2)(7-3)=2(0)+2(2(2)+2(2)+2(3)+2(4)=0+2+4+6+8=20
::苏姆(2x-3,x,3,7)=20Example 3
::例3Find the sum: .
::查找总和: 'n=1712n+1。
::nn=1712n+1+1=12(1)+1+12(2)+1+12(3)+1+12(4)+1+12(4)+1+12(4)+12(5)+1+12(6)+1+12(7)+1=12+1+1+1+1+1+1+1+1+1+32+1+1+1+1+1+1+52+1+3+1+1+1+1+1+1+1+1+721=162+13=8+13=21
::等值(1/2x+1,x,1,7)=21Example 4
::例4Find the sum: .
::查找总和:%n=143n2-5。%n=143n2-5=3(1)2-5+3(2)2-5+3(3)-2-5+3(3)-2-5+3(4)-2-5=3-5+12-5+27-5+48-5=90-20=70
::和( 3x2 - 5, x, 1, 4) =70Review
::回顾Write out the terms and find the sum of the following series.
::写出术语并找到以下系列的总和。-
::=152n -
::=58n+3=58n+3 -
::n=1015n(n-3) -
::n=37n(n-1)2 -
::=162n-1+3 = 162n-1+3
Use your calculator to find the following sums.
::使用您的计算器查找以下金额 。-
::=101512n+3 -
::=050n-25 = 050n-25 -
::Nn=15( 12) - 5 -
::n=512n(2n+1)2 -
:n-10012n)n-110012n
-
::=1200n =1200n
In problems 12-14, write out the terms in each of the series and find the sums.
::在问题12-14中,在每个系列中写出术语并找出金额。-
.
-
::=152n+3 =152n+3 -
::3(5)n=152n
::=152n+3 3(5)n=152n -
-
.
-
::n=15n(n+1)2 -
::12n=15n(n+1)
::.n=15n(n+1)2 12n=15n(n+1) -
-
.
-
::=154x3 = 154x3 -
::4n=15x3
::.n=154x3 4=15x3 -
-
Explain why each pair in questions 12-14 has the same sum.
::解释为什么问题12-14中的每对配对都有相同数额。 -
What is another way to explain the series in #11?
::解释11号系列的另一种方式是什么?
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -