章节大纲

  • The number of tagged deer reported to the game commission one Saturday is represented by the sum n = 1 6 3 n 2 . How many tagged deer were reported?
    ::星期六向游戏委员会报告的贴有标签的鹿数目为n=163n-2。 报告了多少贴有标签的鹿?

    Series and Summation Notation
    ::序列和总和符号符号

    A series is the sum of the terms in a . A series is often expresses in summation notation (also called sigma notation) which uses the capital Greek letter , sigma. Example: n = 1 5 n = 1 + 2 + 3 + 4 + 5 = 15 . Beneath the sigma is the index (in this case n ) which tells us what value to plug in first. Above the sigma is the upper limit which tells us the upper limit to plug into the rule.
    ::序列是 a 中术语的总和 。 一个序列通常以总和符号( 也称为 Sigma 符号) 表示, 该符号使用希腊大写字母 {, sigma 。 例如 : {n= 15n= 1+2+3+4+5=15。 低于 sigma 是 指数( 在本案中 n) , 它告诉我们先插入什么值 。 高于 sigma 是上限, 它告诉我们插入规则的上限 。

    Let's write the terms and find the sum of the following series. 
    ::让我们写下条款 找到以下系列的总和

    1. n = 1 6 4 n + 1
      ::=164n+1

    Begin by replacing n with the values 1 through 6 to find the terms in the series and then add them together.
    ::开始以数值 n 取代值 1 至 6, 以查找序列中的术语, 然后将它们加在一起 。

    ( 4 ( 1 ) 1 ) + ( 4 ( 2 ) 1 ) + ( 4 ( 3 ) 1 ) + ( 4 ( 4 ) 1 ) + ( 4 ( 5 ) 1 ) + ( 4 ( 6 ) 1 ) 3 + 7 + 11 + 15 + 19 + 23 = 78

    Calculator: The graphing calculator can also be used to evaluate this sum. We will use a compound function in which we will sum a sequence. Go to 2 n d STAT (to get to the List menu) and arrow over to MATH . Select option 5: sum( then return to the List menu, arrow over to OPS and select option 5: seq( to get sum(seq( on your screen. Next, enter in (expression, variable, begin, end) to list the terms in a sequence. By including the sum( command, the calculator will sum the terms in the sequence for us. For this particular problem the expression and result on the calculator are:
    ::计算器 : 图形计算器也可以用来评估此总和 。 我们将使用一个复合函数来计算一个序列 。 转到第二STAT( 转到列表菜单) 和箭头到 MATH 。 选择选项 5 : sum( 然后返回列表菜单, 箭头转到 OPS 和选择选项 5 : 后( 获得 suq( 在屏幕上 ) 。 下一步, 输入( 表达式、 变量、 开始、 结束) 来按序列列出术语 。 通过包含总和( 命令) , 计算器将计算我们序列中的术语 。 对于这个特定的问题, 计算器的表达式和结果是 :

    s u m ( s e q ( 4 x 1 , x , 1 , 6 ) ) = 78

    ::suph( 4x-1, x, 1, 6) =78

    To obtain a list of the terms, just use s e q ( 4 x 1 , x , 1 , 6 ) = { 3     7     11     15     19     23 }
    ::为了获得术语清单,请使用以下术语(4x-1,x,1,6)+3 7 11 15 19 23}

    1. n = 9 11 n ( n + 1 ) 2
      ::n=911n(n+1)2

    Replace n with the values 9, 10 and 11 and sum the resulting series.
    ::n 改为数值9、10和11,并加之所产生的序列。

    9 ( 9 1 ) 2 + 10 ( 10 1 ) 2 + 11 ( 11 1 ) 2 36 + 45 + 55 136

    Using the calculator: s u m ( s e q ( x ( x 1 ) / 2 , x , 9 , 11 ) ) = 136 .
    ::使用计算器:Sumeq(x(x-1)/2,x,9,11)=136。

    There are a few special series which are used in more advanced math classes, such as calculus. In these series, we will use the variable, i , to represent the index and n to represent the upper bound (the total number of terms) for the sum.
    ::有一些特殊系列用于较先进的数学课程,例如微积分。在这些系列中,我们将使用变量(i)来表示指数, n 来表示总和的上限(术语总数)。

    1. i = 1 n 1 = n
      ::*i=1n1=n

    Let n = 5 , now we have the series i = 1 5 1 = 1 + 1 + 1 + 1 + 1 = 5 . Basically, in the series we are adding 1 to itself n times (or calculating n × 1 ) so the resulting sum will always be n .
    ::Let n=5, 现在我们有序列“ i=151=1+1+1+1+1+1=5 ” 。 基本上, 在序列中, 我们给自己增加一个 n 次( 或计算 nx1) 数, 所以结果总和总是 n 。

    1. i = 1 n i = n ( n + 1 ) 2
      ::i=1ni=n(n+1)2

    If we let n = 5 again we get i = 1 n i = 1 + 2 + 3 + 4 + 5 = 15 = 5 ( 5 + 1 ) 2 . This one is a little harder to derive but can be illustrated using different values of n . This rule is closely related to the rule for the sum of an arithmetic series and will be used to prove the sum formula later  on.
    ::如果我们再次让 n= 5, 我们就会得到“ i= 1ni= 1+2+3+4+5=15=5( 5+1) 2 。 这个比较难取出, 但可以用 n 的不同值来说明。 此规则与计算序列总和的规则密切相关, 以后将用来证明总和公式 。

    1. i = 1 n i = n ( n + 1 ) ( 2 n + 1 ) 6
      ::i=1ni=n(n+1)(2n+1)6

    Let n = 5 once more. Using the rule, the sum is 5 ( 5 + 1 ) ( 2 ( 5 ) + 1 ) 6 = 5 ( 6 ) ( 11 ) 6 = 55
    ::n=5 一次。使用此规则,总和为 5(5+1)(2(5)+1)6=5(6)(11)6=55。

    If we write the terms in the series and find their sum we get 1 2 + 2 2 + 3 2 + 4 2 + 5 2 = 1 + 4 + 9 + 16 + 25 = 55 .
    ::如果我们在系列中写下术语并找到它们的总和, 我们就会得到12+22+32+42+52=1+4+9+16+25=55。

    The derivation of this rule is beyond the scope of this course.
    ::这一规则的推理超出了本程序的范围。

    Now, let's use one of the rules above to evaluate i = 1 15 i 2 .
    ::现在,让我们用上面的规则之一 来评估"i=1152"。

    Using the rule i = 1 n i 2 = n ( n + 1 ) ( 2 n + 1 ) 6 , we get 15 ( 15 + 1 ) ( 2 ( 15 ) + 1 ) 6 = 15 ( 16 ) ( 31 ) 6 = 1240
    ::使用细则“i=1n2=n(n+1)(2n+1)6,我们得到15(15+1)(2(2(2(15)+1)6=15(16)(31)6=1240)

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find the number of tagged deer that were reported. 
    ::早些时候,有人要求你找到报告的贴有标签的鹿数目。

    Begin by replacing n with the values 1 through 6 to find the terms in the series and then add them together.
    ::开始以数值 n 取代值 1 至 6, 以查找序列中的术语, 然后将它们加在一起 。

    ( 3 ( 1 ) 2 ) + ( 3 ( 2 ) 2 ) + ( 3 ( 3 ) 2 ) + ( 3 ( 4 ) 2 ) + ( 3 ( 5 ) 2 ) + ( 3 ( 6 ) 2 ) 1 + 4 + 7 + 10 + 13 + 16 = 51

    Therefore, 51 deer were reported.
    ::因此,报告有51头鹿。

    Evaluate the following. First without a calculator, then use the calculator to check your result.
    ::评估以下内容。 首先没有计算器, 然后使用计算器检查您的计算结果 。

    Example 2
    ::例2

    Find the sum:  n = 3 7 2 ( n 3 ) .
    ::查找总和:n=372(n-3)。


    n = 3 7 2 ( n 3 ) = 2 ( 3 3 ) + 2 ( 4 3 ) + 2 ( 5 3 ) + 2 ( 6 3 ) + 2 ( 7 3 ) = 2 ( 0 ) + 2 ( 1 ) + 2 ( 2 ) + 2 ( 3 ) + 2 ( 4 ) = 0 + 2 + 4 + 6 + 8 = 20

    ::=372否=372否-3=2(3-3)+3(3-3)+2(4-3)+2(5-3)+2(3)+2(5-3)+2(6-3)+2(3)+2(3)+2(2)(2)(7-3)=2(0)+2(2(2)+2(2)+2(3)+2(4)=0+2+4+6+8=20

    s u m ( s e q ( 2 ( x 3 ) , x , 3 , 7 ) = 20
    ::苏姆(2x-3,x,3,7)=20

    Example 3
    ::例3

    Find the sum:  n = 1 7 1 2 n + 1 .
    ::查找总和: 'n=1712n+1。


    n = 1 7 1 2 n + 1 = 1 2 ( 1 ) + 1 + 1 2 ( 2 ) + 1 + 1 2 ( 3 ) + 1 + 1 2 ( 4 ) + 1 + 1 2 ( 5 ) + 1 + 1 2 ( 6 ) + 1 + 1 2 ( 7 ) + 1 = 1 2 + 1 + 1 + 1 + 3 2 + 1 + 2 + 1 + 5 2 + 1 + 3 + 1 + 7 2 + 1 = 16 2 + 13 = 8 + 13 = 21

    ::nn=1712n+1+1=12(1)+1+12(2)+1+12(3)+1+12(4)+1+12(4)+1+12(4)+12(5)+1+12(6)+1+12(7)+1=12+1+1+1+1+1+1+1+1+1+32+1+1+1+1+1+1+52+1+3+1+1+1+1+1+1+1+1+721=162+13=8+13=21

    s u m ( s e q ( 1 / 2 x + 1 , x , 1 , 7 ) = 21
    ::等值(1/2x+1,x,1,7)=21

    Example 4
    ::例4

    Find the sum:  n = 1 4 3 n 2 5 .

    n = 1 4 3 n 2 5 = 3 ( 1 ) 2 5 + 3 ( 2 ) 2 5 + 3 ( 3 ) 2 5 + 3 ( 4 ) 2 5 = 3 5 + 12 5 + 27 5 + 48 5 = 90 20 = 70

    ::查找总和:%n=143n2-5。%n=143n2-5=3(1)2-5+3(2)2-5+3(3)-2-5+3(3)-2-5+3(4)-2-5=3-5+12-5+27-5+48-5=90-20=70

    s u m ( s e q ( 3 x 2 5 , x , 1 , 4 ) = 70
    ::和( 3x2 - 5, x, 1, 4) =70

    Review
    ::回顾

    Write out the terms and find the sum of the following series.
    ::写出术语并找到以下系列的总和。

    1. n = 1 5 2 n
      ::=152n
    2. n = 5 8 n + 3
      ::=58n+3=58n+3
    3. n = 10 15 n ( n 3 )
      ::n=1015n(n-3)
    4. n = 3 7 n ( n 1 ) 2
      ::n=37n(n-1)2
    5. n = 1 6 2 n 1 + 3
      ::=162n-1+3 = 162n-1+3

    Use your calculator to find the following sums.
    ::使用您的计算器查找以下金额 。

    1. n = 10 15 1 2 n + 3
      ::=101512n+3
    2. n = 0 50 n 25
      ::=050n-25 = 050n-25
    3. n = 1 5 ( 1 2 ) n 5
      ::Nn=15( 12) - 5
    4. n = 5 12 n ( 2 n + 1 ) 2
      ::n=512n(2n+1)2
    5. n 1 100 1 2 n
      :伤心n-10012n)n-110012n
    6. n = 1 200 n
      ::=1200n =1200n

    In problems 12-14, write out the terms in each of the series and find the sums.
    ::在问题12-14中,在每个系列中写出术语并找出金额。

    1. .
      1. n = 1 5 2 n + 3
        ::=152n+3 =152n+3
      2. 3 ( 5 ) + n = 1 5 2 n
        ::3(5)n=152n

      ::=152n+3 3(5)n=152n
    2. .
      1. n = 1 5 n ( n + 1 ) 2
        ::n=15n(n+1)2
      2. 1 2 n = 1 5 n ( n + 1 )
        ::12n=15n(n+1)

      ::.n=15n(n+1)2 12n=15n(n+1)
    3. .
      1. n = 1 5 4 x 3
        ::=154x3 = 154x3
      2. 4 n = 1 5 x 3
        ::4n=15x3

      ::.n=154x3 4=15x3
    4. Explain why each pair in questions 12-14 has the same sum.
      ::解释为什么问题12-14中的每对配对都有相同数额。
    5. What is another way to explain the series in #11?
      ::解释11号系列的另一种方式是什么?

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。