章节大纲

  • How could you write the trigonometric function cos θ + cos θ ( tan 2 θ ) more simply?
    ::如何更简单地写入三角函数 ?

    Simplifying Trigonometric Expressions
    ::简化三角数表达式

    Now that you are more familiar with trig identities, we can use them to simplify expressions. Remember, that you can use any of the following identities.
    ::现在您更熟悉三类身份, 我们可以使用它们来简化表达式。 记住, 您可以使用以下任何一种身份 。

    : csc θ = 1 sin θ , sec θ = 1 cos θ , and cot θ = 1 tan θ
    :伤心csc1sin,sec1cos,和cot1tan)

    Tangent and Cotangent Identities: tan θ = sin θ cos θ and cot θ = cos θ sin θ
    ::相近和相切的特征:tansincos和cotcossin

    : sin 2 θ + cos 2 θ = 1 , 1 + tan 2 θ = sec 2 θ , and 1 + cot 2 θ = csc 2 θ
    ::1,1+tan2sec2和1+cot2csc2

    Cofunction Identities: sin ( π 2 θ ) = cos θ , cos ( π 2 θ ) = sin θ , and tan ( π 2 θ ) = cot θ
    ::共认人:sin(2) =cos,cos(2) =sin, 和tan(2) =cot

    Negative Angle Identities: sin ( θ ) = sin θ , cos ( θ ) = cos θ , and tan ( θ ) = tan θ
    ::负角识别度: sin彩蛋 sin, cos彩蛋 =cos, 和 tan彩蛋 tan

    Let's simplify the following expressions.
    ::让我们简化以下表达式。

    1. sec x sec x 1
      ::秒 *%xsec*x- 1

    When simplifying trigonometric expressions, one approach is to change everything into sine or cosine. First, we can change secant to cosine using the Reciprocal Identity .
    ::当简化三角表达式时,一种方法是将一切改变为正弦或正弦。 首先,我们可以用“对等身份”来改变“分弦”。

    sec x sec x 1 1 cos x 1 cos x 1

    ::秒 *%ssec*x - 11cos *x1cos*x1cos*x-1

    Now, combine the denominator into one fraction by multiplying 1 by cos x cos x .
    ::现在,将分母结合成一个分数, 乘以 1 乘以 cos xxcos x 。

    1 cos x 1 cos x 1 1 cos x 1 cos x cos x cos x 1 cos x 1 cos x cos x

    ::1cos*x1cos*x1cos*x1cos*x1cos*x1cos*xxx1cos*xx1cos*xx

    Change this problem into a division problem and simplify.
    ::将这个问题变成分裂问题和简化。

    1 cos x 1 cos x cos x 1 cos x ÷ 1 cos x cos x 1 cos x cos x 1 cos x 1 1 cos x

    ::1cos*x1 -cos*xx*x*x*x*1x*x*1 -cos*x*x*x*x1x*x*x*x*x*_cos*x*x*x*1_cos*x11_cos*x*x

    1. sin 4 x cos 4 x sin 2 x cos 2 x
      ::x-cos4xsin2x-cos2xxxx2xxxxxxxxx

    With this problem, we need to factor the numerator and denominator and see if anything cancels. The rules of factoring a quadratic and the special quadratic formulas can be used in this scenario.
    ::在此问题上, 我们需要计数数和分母, 看看是否有东西取消 。 在此情况下可以使用二次方程和特殊二次方程的计算规则 。

    sin 4 x cos 4 x sin 2 x cos 2 x ( sin 2 x cos 2 x ) ( sin 2 x + cos 2 x ) ( sin 2 x cos 2 x ) sin 2 x + cos 2 x 1

    :伤心sin2)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    In the last step, we simplified to the left hand side of the Pythagorean Identity. Therefore, this expression simplifies to 1.
    ::最后一步,我们简化为毕达哥里人身份的左手侧。因此,这一表达式简化为1。

    1. sec θ tan 2 θ + sec θ
      ::

    First, pull out the GCF.
    ::首先,拿出绿色气候基金。

    sec θ tan 2 θ + sec θ sec θ ( tan 2 θ + 1 )

    :伤心 )

    Now, tan 2 θ + 1 = sec 2 θ from the Pythagorean Identities, so simplify further.
    ::现在,来自毕达哥利人身份的Tan2=1=sec2=2, 进一步简化。

    sec θ ( tan 2 θ + 1 ) sec θ sec 2 θ sec 3 θ

    ::seecsec2sec3

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to simplify the trigonometric function  cos θ + cos θ ( tan 2 θ ) .
    ::先前曾要求您简化三角函数 cosççççççç(tan2) 。

    Notice that the terms in the expression cos θ + cos θ ( tan 2 θ ) have a common factor of cos θ , so start by factoring this common term out.
    ::请注意,Coscos(tan2)表达式中的术语有一个共同的 Cos系数,因此首先考虑这一共同术语。

    cos θ + cos θ ( tan 2 θ ) cos θ ( 1 + t a n 2 θ )

    ::coscos(tan2)cos(1+tan2)

    Now, use the trigonometric identity 1 + tan 2 θ = sec 2 θ , substitute, and simplify.
    ::现在,使用三角特征 1+tan2sec2, 替代, 简化。

    cos θ ( 1 + t a n 2 θ ) = cos θ ( s e c 2 θ ) = cos θ ( 1 c o s 2 θ ) = 1 c o s θ = sec θ

    ::cos( 1+tan2) =cos( sec2) =cos( 1cos2) =1cossec

    Simplify the following trigonometric expressions.
    ::简化以下三角表达式。

    Example 2
    ::例2

    cos ( π 2 x ) cot x
    ::COs(%2-x)cotx

    Use the Cotangent Identity and the Cofunction Identity cos ( π 2 θ ) = sin θ .
    ::使用余切身份和共控身份cos(2)=sin。

    cos ( π 2 x ) cot x sin x cos x sin x cos x
    ::coms(%2-x) cotxsinxcosxsinxxxcosxxxxxxxx

    Example 3
    ::例3

    sin ( x ) cos x tan x
    :伤心-x)cosxtanxxx

    Use the Negative Angle Identity and the Tangent Identity.
    ::使用负角身份和切换身份。

    sin ( x ) cos x tan x sin x cos x sin x cos x sin x cos x cos x sin x cos 2 x
    ::xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxs2xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

    Example 4
    ::例4

    cot x cos x tan ( x ) sin ( π 2 x )
    ::xxcosxtan(- x)sin( 2- x)

    In this problem, you will use several identities.
    ::在这个问题上,你将使用几个身份。

    cot x cos x tan ( x ) sin ( π 2 x ) cos x sin x cos x sin x cos x cos x cos 2 x sin x sin x cos 2 x sin x 1 sin x cos 2 x sin 2 x cot 2 x
    ::xcosxtan(xxxxxinxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

    Review
    ::回顾

    Simplify the following expressions.
    ::简化下列表达式。

    1. cot x sin x
      ::comtxsinxxxx
    2. cos 2 x tan ( x )
      ::COs2xtan(- x)
    3. cos ( x ) sin ( x )
      ::COs(- x) sin(- x)
    4. sec x cos ( x ) sin 2 x
      ::sin2 xxxxxxxxx
    5. sin x ( 1 + cot 2 x )
      ::exinx( 1+cot2+x)
    6. 1 sin 2 ( π 2 x )
      ::1- 辛2( 2- x)
    7. 1 cos 2 ( π 2 x )
      ::1 - COs2(%2-x)
    8. tan ( π 2 x ) sec x 1 csc 2 x
      ::~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    9. cos 2 x tan 2 x 1 cos 2 x
      ::CO2 xtan2x- 1cos2x
    10. cot 2 x + sin 2 x + cos 2 ( x )
      ::comt2%x+sin2x+cos2(-x)
    11. sec x sin x + cos ( π 2 x ) 1 + cos x
      ::=============================================================================================================================================================================================================
    12. cos ( x ) 1 + sin ( x )
      ::COs(- x)1+sin(- x)
    13. sin 2 ( x ) tan 2 x
      :伤心- x)tan2 x
    14. tan ( π 2 x ) cot x csc 2 x
      ::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
    15. csc x ( 1 cos 2 x ) sin x cos x
      ::cscx( 1) - cos2x) sin *xcos*xxx

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。