Section outline

  • Geeks-R-Us sells titanium mechanical pencils to computer algorithm designers. In an effort to attract more business, they decide to run a rather unusual promotion:
    ::Geeks-R-Us向计算机算法设计师出售钛机械铅笔。 为了吸引更多的生意,他们决定经营一个非常不寻常的促销:

    "SALE!! The more you buy, the more you save! Pencils are now $ 12 x x 3 per dozen!"
    ::你买得越多,救得越多!

    If the tri llionaire, Spug Dense, comes in and says he wants to buy as many pencils as Geeks-R-Us can turn out, what will the cost of the pencils approach as the order gets bigger and bigger?
    ::如果万亿富翁Spug Dense 进来说 他想买多少铅笔 只要Geeks-R-Us能发现, 铅笔的成本会随着订单的越来越高而增加多少?

    Infinite Limits
    ::无限限制

    Sometimes, a function may not be defined at a particular number, but as values are input closer and closer to the undefined number, a limit on the output may not exist. For example, for the function f ( x ) = 1/x (shown in the figures below), as x values are taken closer and closer to 0 from the right, the function increases indefinitely. Also, as x values are taken closer and closer to 0 from the left, the function decreases indefinitely.
    ::有时,函数可能无法在一个特定数字上定义,但由于数值是输入接近和接近未定义数字的输入,输出可能不存在限制。例如,对于函数 f(x) = 1/x(在下图中显示),当x 值从右侧接近和接近0 时,函数将无限期增加。此外,由于x 值从左侧接近和接近0,函数将无限期减少。

    We describe these limiting behaviors by writing
    ::我们用书面描述这些限制行为。

    lim x 0 + 1 x = +
    ::立方公尺x0+1x

    lim x 0 1 x =
    ::立方公尺

    Sometimes we want to know the behavior of f ( x ) as x increases or decreases without bound. In this case we are interested in the end behavior of the function, a concept you have likely explored before. For example, what is the value of f ( x ) = 1/x as x increases or decreases without bound? That is,
    ::有时我们想要知道 f( x) 作为 x 递增或递减而不受约束的行为。 在此情况下, 我们对函数的最终行为感兴趣, 您以前可能已经探索过这个概念 。 例如, f( x) = 1/x 作为 x 递增或递减而不受约束的值是多少 ? 也就是说, f( x) = 1/x 作为 x 递增或递减是多少 ?

    lim x + 1 x = ?
    ::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}为什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}为什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}为什么?

    lim x 1 x = ?
    ::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}为什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}为什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}为什么?

    As you can see from the graphs (shown below), as x decreases without bound, the values of f ( x ) = 1/x are negative and get closer and closer to 0. On the other hand, as x increases without bound, the values of f ( x ) = 1/x are positive and still get closer and closer to 0.
    ::从图表(如下表所示)可以看出,当x无约束地下降时,f(x)=1/x的值为负值,接近于0。另一方面,当x无约束地增加时,f(x)=1/x的值为正值,仍然接近于0。

    That is,
    ::也就是说,

    lim x + 1 x = 0
    ::limx1x=0

    lim x 1 x = 0
    ::limx1x=0

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked a question about buying a lot of pencils.
    ::之前有人问过你 买很多铅笔的问题

    As Spug buys more and more pencils, the cost of each dozen will drop quickly at first, and level out after a while, approaching $12 per dozen.
    ::斯普格购买的铅笔越来越多, 每12支铅笔的成本一开始会迅速下降, 过一阵子就会稳定下来, 接近每12美元12美元。

    You can see the effect on the graph here:
    ::您可以在此看到图中的效果 :

    Example 2
    ::例2

    Evaluate the limit by making a graph:  lim x 3 + x + 6 x 3 .
    ::通过绘制一个图: limx3+x+6x-3, 来评估极限值 。

    By looking at the graph:
    ::通过查看图表:

    We can see that as x gets closer and closer to 3 from the positive side, the output increases right out the top of the image, on its way to
    ::我们可以看到,当x从正面接近3时, 输出会从图像的顶部上升,

    Example 3
    ::例3

    Evaluate the limit: lim x 11 x 3 14 x 2 + 8 x + 16 9 x 3 .
    ::评估极限值: limx11x3- 14x2+8x+169x-3。

    To evaluate , a little bit of intuition helps. Let's think this one through.
    ::评估一下,直觉能帮上点忙。让我们好好想想这个。

    First, note that since we are looking at what happens as x most of the interesting stuff will happen as x gets really big.
    ::首先,请注意,既然我们是在看什么 发生作为x 大部分有趣的事情 会发生 当x变得真正大。

    On the top part of the fraction, as x gets truly massive, the 11x 3 part will get bigger much faster than either of the other terms. In fact, it increases so much faster than the other terms completely cease to matter at all once x gets really monstrous. That means that the important part of the top of the fraction is just the 11x 3 .
    ::在分数的顶端, 当 x 变得真正巨大时, 11x3 部分会比其他两个条件中的任何一个大得多。 事实上, 它的增加比其他条件都快得多。 一旦 x 变得非常可怕, 它就会完全停止重要。 这意味着该分数顶部的重要部分只是 11x3 。

    On the bottom, a similar situation develops. As x gets really, really big, the -3 matters less and less. So the bottom may as well be just 9x .
    ::在底部, 类似的情况也会发展。 当 x 变大时, - 3 的值越来越小。 所以底部的值可能只有 9x 。

    That gives us 11 x 3 9 x which reduces to 11 x 2 9
    ::这让我们11x39x 减到11x29

    Now we can more easily see what happens at the "ends." As x gets bigger and bigger, the numerator continues to get bigger faster than the denominator, so the overall output also increases.
    ::现在,我们可以更容易地看到“端”会发生什么。随着 x 越来越大, 分子继续变得更快于分母, 所以总输出也会增加。

    lim x + 11 x 3 14 x 2 + 8 x + 16 9 x 3  is  +
    ::============================================================================================================================================== ================================================================================================================================================================

    Example 4
    ::例4

    Evaluate lim x 0 x + 2 x + 3 .
    ::评估 limx=0x+2x+3。

    This one is easier than it looks! As x --> 0, it disappears, leaving just the fraction: 2/3
    ::这个比看起来容易得多。 作为 x - > 0, 它会消失, 只留下分数: 2/3

    Example 5
    ::例5

    Make a graph to evaluate the limit lim x 1 x  and  lim x 0 + 1 x .
    ::绘制一个图表以评价 limx1x 和 limx0+1x 的限值 。

    By looking at the image, we see that as x gets huge, so does x which means that 1 is being divided by an ever-larger number, and the result is getting smaller and smaller.
    ::通过观察图像,我们可以看到,当x变大时,x值也变大,x值也变大,这意味着1值被一个越来越大的数字除以,结果越来越小。

      lim x 1 x  = 0
    ::1x=0

    On the same image, we can see that as x gets closer and closer to zero, so does x which means that 1 is being divided by an ever smaller number, and the result gets bigger and bigger.
    ::在同一图像上,我们可以看到,当x接近零时,x接近零时,“x”也接近零时,“x”也接近零时,这意味着1除以一个越来越小的数字,结果越来越大。

      lim x 0 + 1 x  is  +
    ::立方公尺======================================================================================================================================================================================================================

    Example 6
    ::例6

    Graph and evaluate the limit:  lim x 2 + 1 x 2 .
    ::图表和评估极限: limx%2+1x-2。

    By looking at the image, we can see that as x gets closer and closer to 2 from the positive direction, 1 gets divided by smaller and smaller numbers, so the result gets larger and larger.
    ::通过观察图像,我们可以看到,当x从正向接近2时,1时除以较小数目,结果就会越来越大。


    lim x 2 + 1 x 2  is  +
    ::limx% 2+1x-2 是 @ @ label

    Review
    ::回顾

    Evaluate the limits:
    ::评估限度:

    1. lim x 3 1 x 3
      ::立方厘米 3 - 1x - 3
    2. lim x 4 + 1 x + 4
      ::limx4+1x+4
    3. lim x ( 8 3 ) + 1 3 x + 8
      ::limx(83)+13x+8
    4. lim x 5 + ( x 2 + 11 x + 30 ) x + 5
      ::limx5+(x2+11x+30x+30x+5)
    5. lim x ( x 2 + 11 x + 30 ) x + 5
      ::limx(x2+11x+30x+30x+5)
    6. lim x 11 x 3 + 20 x 2 + 15 x 17 9 x 3 + 5 x 2 x 17
      ::立方公尺xxx3+20x2+15x-7-9x3+5x2-x-17
    7. lim x 13
      ::立方公尺13
    8. lim x 2 x + 18 17 x 3
      ::limx% 2x+1817x- 3
    9. lim x 15
      ::limx% 15
    10. lim x 5 x 2 + 5 x + 14
      ::limx=%5x2+5x+14
    11. lim x 7 x + 12
      ::limx=% 7x+12
    12. lim x 3 x + 13
      ::limx=%3x+13
    13. lim x 13 x 8 19 x 3 11 x 2 + x + 4
      ::立方公尺13x-819x3-11x2+x+4
    14. lim x 17 x + 14
      ::limx17x+14
    15. lim x 7 x 2 2 x 13
      ::立方 7x2 - 2x - 13

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。