8.5 合理函数限制
章节大纲
-
Finding the limit of a rational function is actually much less complex than it may seem, in fact many of the limits you have already evaluated have been rational functions.
::找到理性功能的极限实际上比看起来要复杂得多,事实上,你已经评估的许多界限是理性功能。In this lesson, you will gain more experience working with rational function limits, and will use another theorem which simplifies the process of finding the limit of some rational functions.
::在这个教训中,你将获得更多关于合理功能限制的经验,并将使用另一个理论来简化寻找某种合理功能限制的过程。Rational Function Limits
::逻辑函数限制Sometimes finding the limit of a rational function at a point a is difficult because evaluating the function at the point a leads to a denominator equal to zero. The box below describes finding the limit of a rational function.
::有时很难在某个点上找到合理函数的极限,因为对点上的函数进行评价会导致分母等于零。下面的框说明找到合理函数的极限。Theorem: The Limit of a Rational Function -
For the rational function
and any real number
a
,
- .
- However, if then the function may or may not have any outputs that exist.
Examples
::实例Example 1
::例1Find .
::寻找 limx32 -xx-2 。Using the theorem above, we simply substitute x = 3:
::使用上面的定理, 我们只需替换 x = 3: limx- 32-xx-2= 2- 33-21Example 2
::例2Find .
::查找 limx%3x+1x- 3 。Notice that the domain of the function is continuous (defined) at all real numbers except at x = 3. If we check the we see that and . Because the one-sided limits are not equal, the limit does not exist .
::请注意,函数的域除x = 3. 外,所有实际数字都是连续的(定义的),如果我们检查我们是否看到 limx3+x+1x-3 和 limx3-x+1x-3 和 limx3-x+1x-3 。由于单向限制不相等,因此该限制并不存在。Example 3
::例3Find .
::查找 limx% 2x2 - 4x- 2 。Notice that the function here is discontinuous at x = 2, that is, the denominator is zero at x = 2. However, it is possible to remove this discontinuity by canceling the factor x - 2 from both the numerator and the denominator and then taking the limit:
::注意此函数在 x = 2 时不连续, 也就是说, 分母在 x = 2 时为 0 = 2. 但是, 可以通过从分子和分母中取消乘数 x - 2 来消除这种不连续性, 然后选择限制 :This is a common technique used to find the limits of rational functions that are discontinuous at some points. When finding the limit of a rational function, always check to see if the function can be simplified.
::这是一种常见的方法,用来找到理性功能的极限,而理性功能在某些时点是不连续的。 当找到理性功能的极限时,总是要检查是否可以简化功能。Example 4
::例4Find .
::查找 limx% 32x- 6x2+x- 12 。The numerator and the denominator are both equal to zero at x = 3, but there is a common factor x - 3 that can be removed (that is, we can simplify the rational function):
::分子和分母在 x = 3 时均等于零,但有一个共同系数 x - 3 可以删除(即我们可以简化理性功能):Example 5
::例5Find .
::查找 limx% 1 - 5x2+x+4x- 1 。..... Start by factoring the numerator
:-5x-4) (x-1) (x- 1) (x- 1) ....。从乘数开始
Since we have (x - 1) in both numerator and denominator, we know that the original function is equal to just except where it is undefined (1).
::由于我们在分子和分母两方面都有(x-1),我们知道原始功能等于仅仅-5x-4,除非未定义(1)。Therefore the closer we get to inputing 1, the closer we get to the same value, whether from the + or - side.
::因此,我们越接近输入1, 我们就越接近相同的价值, 无论是从+或-侧。To find the value, just solve for .
::要找到值, 只需解析 x=1 的 5x- 4 。
::*%x%1 - 5x2+x+4x - 1*5*1 - 4*9Example 6
::例6Find .
::查找limx% 2 - x2+2x+8x+2。..... Start by factoring the numerator
:- x+4) (x+2) (x+2) (x+2) ....。从乘数开始
Since we have (x + 2) in both numerator and denominator, we know that the original function is equal to just except where it is undefined (-2).
::由于我们在分子和分母两方面都有(x+2),我们知道原始函数等于只-x+4,除非未定义(-2)。Therefore the closer we get to substituting -2, the closer we get to the same output value, whether from the + or - side.
::因此,我们越接近于取代 -2, 我们就越接近于相同的产出值, 无论是从+ 或- 侧。To find the value, just solve for .
::要找到值, 只需解析 x% 2 的 ~ x+4 。
::2 -x2+2x+8x+2(-2)+46Review
::回顾Solve the following rational function limits.
::解决以下合理功能限制。-
::limx=1 - 12x2+124x- 4 -
::立方厘米23x+3-1192x-4 -
::5756-55x-32x+3-136-56x-57 -
::limx% 22x2 - 5x+2 - x+2 -
::立方厘米x344x2+5x-64x-3 -
::立方厘米4 - 3 - 2x+3 - 356x-24 -
::32 - 4x - 3 - 2x+2 - 52 - 2x - 3 -
::limx=4x2-8x+16x-4 -
::10393x+3-3-3x+4-7639x-10 -
::43x2+7x-20-x-4 -
::limx44x2+14x-8x+4 -
::1813-4x+1-3x+5-5-57-57-13x-18 -
::立方 23x+4-32-3x-6 -
::立方公尺xxxxx34x+3-112-4x-3 -
::立方公尺x14-8x2-2x+1-4x+1 -
::立方厘米1416x2 - 16x+3 - 4x+1 -
::limx=0x2+3xxx
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。Resources
::资源 -
For the rational function
and any real number
a
,