Section outline

  • Velocity due to gravity can be easily calculated by the formula: v = gt , where g is the acceleration due to gravity (9.8m/s 2 ) and t is time in seconds. In fact, a decent approximation can be calculated in your head easily by rounding 9.8 to 10 so you can just add a decimal place to the time.
    ::由于重力造成的速率很容易用公式来计算: v = gt, g 是重力加速度(9.8m/s2), t 是秒以内的时间。事实上,通过四舍五入9.8到10,可以很容易地在你的头上计算出一个像样的近似值,这样您就可以在时间上加上小数位数。

    Using this function for velocity, how could you find a function that represented the position of the object after a given time? What about a function that represented the instantaneous acceleration of the object at a given time?
    ::3⁄4 ̄ ̧漯B

    Fundamental Theorem of Calculus
    ::微积分的基本理论

    Antiderivatives
    ::抗抗药剂

    If you think that evaluating areas under curves is a tedious process you are probably right. Fortunately, there is an easier method. In this section, we shall give a general method of evaluating definite integrals (area under the curve) by using antiderivatives.
    ::如果您认为在曲线下评价区域是一个乏味的过程, 您可能是对的。 幸运的是, 有一个比较容易的方法。 在本节中, 我们将给出一种一般的方法, 通过使用抗降解剂来评价确定的整体性( 曲线下的区域 ) 。

    Definition: The Antiderivative
    If F ' ( x ) = f ( x ), then F '( x ) is said to be the antiderivative of f ( x ).

    There are rules for finding the antiderivatives of simple power functions such as f ( x ) = x 2 . As you read through them, try to think about why they make sense, keeping in mind that differentiation reverses integration .
    ::找到f(x) = x2. 等简单功率函数的抗衍生物有规则。 正如您从这些函数中读到的, 试着思考它们为什么有意义, 同时铭记区别会逆转整合。

    Rules of Finding the Antiderivatives of Power Functions
    • The Power Rule
      ::权力规则
    x n d x = 1 n + 1 x n + 1 + C
    where C is constant of integration and n is a rational number not equal to -1.
    • A Constant Multiple of a Function Rule
      ::函数常数多次规则
    k x n d x = k x n d x = k 1 n + 1 x n + 1 + C
    where k is a constant.
    • Sum and Difference Rule
      ::总和和差额和差额
    [ f ( x ) ± g ( x ) ] d x = f ( x ) d x ± g ( x ) d x
    • The Constant Rule
      ::常数规则
    k d x = k x + C
    where k is a constant. (Notice that this rule comes as a result of the power rule above.)

    The Fundamental Theorem of Calculus
    ::微积分的基本理论

    The Fundamental Theorem of Calculus makes the relationship between and integrals clear. Integration performed on a function can be reversed by differentiation.
    ::微积分的基本理论使整体体与整体体之间的关系变得清晰明了,对功能的整合可以通过区别对待而逆转。

    The Fundamental Theorem of Calculus
    If a function f ( x ) is defined over the interval [ a , b ] and if F ( x ) is the antidervative of f on [ a, b ], then
    a b f ( x ) d x = F ( x ) | a b
    = F ( b ) F ( a )

    We can use the relationship between differentiation and integration outlined in the Fundamental Theorem of Calculus to compute definite integrals more quickly.
    ::我们可以利用《微积分基本理论》中概述的差别和融合之间的关系,更快地计算确定的整体体。

    Examples
    ::实例

    Example 1
    ::例1

    Evaluate 1 2 x 2 d x .
    ::评估12x2dx。

    This integral tells us to evaluate the f ( x ) = x 2 , which is a parabola over the interval [1, 2], as shown in the figure below.
    ::如下图所示,本元件要求我们评估 f(x) = x2,这是间隔[1, 2] 的抛物线。

    To compute the integral according to the Fundamental Theorem of Calculus, we need to find the of f ( x ) = x 2 . It turns out to be F ( x ) = (1/3) x 3 + C , where C is a constant of integration . How can we get this? Think about the functions that will have derivatives of x 2 . Take the derivative of F ( x ) to check that we have found such a function. (For more specific rules, see the box after this example). Substituting into the Fundamental Theorem,
    ::要根据微积分的基本理论计算集成, 我们需要找到 f( x) = x2 的 f( x) = x2 。 它被证明是 F( x) = ( 1) x3 + C, C 是常态集成的 C。 我们如何得到这个 ? 想想具有 x2 衍生物的函数 。 使用 F( x) 的衍生物来检查我们找到的函数 。 (关于更具体的规则, 请参见此示例后的框 ) 。 替换为基本理论 ,

      a b f ( x ) d x = F ( x ) | a b
      1 2 x 2 d x = [ 1 3 x 3 + C ] 1 2
        = [ 1 3 ( 2 ) 3 + C ] [ 1 3 ( 1 ) 3 + C ]
        = [ 8 3 + C ] [ 1 3 + C ]
        = 7 3 + C C
        = 7 3

    So the area under the curve is (7/3) units 2 .
    ::因此曲线下的区域是(7/3)单位2。

    Example 2
    ::例2

    Evaluate x 3 d x .
    ::评估 x3dx。

    Since x n d x = 1 n + 1 x n + 1 + C , we have
    ::*xndx=1n+1xn+1+C以来,我们已经有了

      x 3 d x = 1 3 + 1 x 3 + 1 + C
        = 1 4 x 4 + C

    To check our answer we can take the derivative of 1 4 x 4 + C and verify that it is x 3 , the original function in our integral.
    ::为了检查我们的答案, 我们可以使用14x4+C的衍生物 来验证它是否是x3, 也就是我们整体中的原始函数。

    Example 3
    ::例3

    Evaluate 5 x 2 d x .
    ::评估5x2dx。

    Using the constant multiple of a power rule, the coefficient 5 can be removed outside the integral:
    ::使用权力规则的常数倍数,系数5可在整体体之外删除:

    5 x 2 d x = 5 x 2 d x
    ::=5x2dx=5x2dx

    Then we can integrate:
    ::然后我们可以整合:

      = 5 1 2 + 1 x 2 + 1 + C
      = 5 3 x 3 + C

    Again, if we wanted to check our work we could take the derivative of 5 3 x 3 + C and verify that we get 5 x 2 .
    ::再说一次,如果我们想检查一下我们的工作 我们可以拿53x3+C的衍生物 来证实我们得到了5x2

    Example 4
    ::例4

    Evaluate ( 3 x 3 4 x 2 + 2 ) d x .
    :sad3x3-4x2+2)dx。

    Using the sum and difference rule we can separate our integral into three integrals:
    ::使用总和和差异规则,我们可以将我们不可分割的组成部分分为三个组成部分:

    ( 3 x 3 4 x 2 + 2 ) d x =
    :sad3x3 - 4x2+2)dx=

    3 ( x 3 d x ) 4 ( x 2 d x ) + ( 2 d x )
    ::3dx)-4(x2dx)+(2dx)

    3 1 4 x 4 4 1 3 x 3 + 2 x + C 3 4 x 4 4 3 x 3 + 2 x + C
    ::314x4-413x3+2x+C34x4-43x3+2xC

    Example 5
    ::例5

    Evaluate 2 5 x d x .
    ::评估25xxx。

    The evaluation of this integral represents calculating the area under the curve y = x from x = -2 to x = 3, shown in the figure below.
    ::该积分的评价表示下图所示曲线y=x下从 x = -2 = x = = 3 的面积的计算。

      2 5 x d x = 2 5 x 1 / 2 d x
      = [ 1 1 2 + 1 x 1 / 2 + 1 ] 2 5
      = [ 1 3 / 2 x 3 / 2 ] 2 5
      = 2 3 [ x 3 / 2 ] 2 5
      = 2 3 [ 5 3 / 2 2 3 / 2 ]
      = 5.57

    So the area under the curve is 5.57.
    ::因此曲线下的区域是5.57。

    Example 6
    ::例6

    Use the Fundamental Theorem of Calculus to solve: 4 6 d x x .
    ::使用微积分的基本理论解析 : 46dxxx。

    Given what we know, that if F(x) = ln x, then F'(x) = 1 x
    ::根据我们所知 如果F(x) = 内x, F'(x) = 1x

    Thus, we apply the Fundamental Theorem of Calculus:
    ::因此,我们适用微积分的基本理论:

    4 6 d x x = l n x | 4 6
    ::46dxxx=lnxx*46

    = F(6) - F(4) = [ln(6)] - [ln(4)] = 0.4055
    ::= F(6) - F(4) = [ln(6)] - [ln(4)] = 0.4055

    Example 7
    ::例7

    Use the Fundamental Theorem of Calculus to solve:  2 p 2 p 3 c o s ( x ) d x .
    ::使用微积分的基本理论解析 : @% 2p2p3cos( x) dx 。

    Given what we know, that if F(x) = 3sin(x), then F'(x) = 3cos(x)
    ::根据我们所知,如果F(x) = 3sin(x),那么F'(x) = 3cos(x)

    So we apply the Fundamental Theorem of Calculus:
    ::因此,我们应用微积分的基本理论:

    2 p 2 p 3 c o s d x = 3 s i n ( x ) | 2 p 2 p
    ::=2p2p3costx=3sin(x) =2p2p2p

    = F(8) - F(0) = [3sin(2p)] - [3sin(-2p)] = 1 - 0 = 0
    ::F(8) - F(0) = [3sin(2p)] - [3sin(-2p)] = 1 - 0 = 0

    Review
    ::回顾

    Evaluate the integral:
    ::评估整体:

    1. Evaluate the integral 0 3 5 x d x
      ::评估 =%035xdx
    2. Evaluate the integral 0 1 x 4 d x
      ::评估积分 #%01x4dx
    3. Evaluate the integral 1 4 ( x 3 ) d x
      ::评估#14(x-3)dx

    Find the integral:
    ::查找积分 :

    1. Find the integral of ( x + 1)(2 x - 3) from -1 to 2.
      ::查找 -1 到 2 的( x + 1)( 2x - 3) 的内装件。
    2. Find the integral of x from 0 to 9.
      ::查找 x 从 0 到 9 的积分。
    3. Find 1 0 3 d x
      ::查找 #% 10 - 3dx
    4. Find 1 3 d x
      ::查找 #%13dx
    5. Find p p 2 4 c o s ( x ) d x
      ::查找\\ pp2- 4cos( x) dx
    6. Find 0 2 d x
      ::查找 #% 02- dx
    7. Find 2 7 d x x
      ::查找 # 27dxxx
    8. Find 2 0 x + 5 d x
      ::查找 20x+5dx
    9. Find p 3 p 2 6 s i n ( x ) d x
      ::查找\\ p3p26sin( x) dx
    10. Find 6 7 d x x
      ::查找 67dxxx

    Challenge yourself:
    ::挑战你自己:

    1. Sketch y = x 3 and y = x on the same coordinate system and then find the area of the region enclosed between them (a) in the first quadrant and (b) in the first and third quadrants.
      ::在同一坐标系统上,在(a)第一个象限和(b)第一个和第三个象限之间找到区域内的面积,然后在(a)第一个象限和(b)第一个和第三个象限之间找到。
    2. Evaluate the integral R R ( π R 2 π x 2 ) d x where R is a constant.
      ::评估 R 是常数的 {RR( R2 x2) dx 。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。