Section outline

  • With your knowledge of special angles like the of 30  and 45 , you can find the sine and cosine of 15 , the difference of 45  and 30 , and 75 , the sum of 45  and 30 .  Using what you know about the unit circle and the sum and difference identities, how do you determine sin 15  and sin 75 ?
    ::以你对30和45等特殊角度的知识, 你能找到15的正弦和正弦, 45和30之间的差数, 和75的差数, 和45和30之间的差数。使用你对单位圆的了解, 和总和和和差异的身份, 您如何确定 15 和sin 75 ?

    Sum and Difference Identities
    ::合计和差异

    First look at the derivation of the cosine difference identity :
    ::首先看余弦差异特性的衍生:

    cos ( α β ) = cos α cos β + sin α sin β
    :sad)=coscossinsinsin

    lesson content

    Start by drawing two arbitrary angles α  and β .  In the image above α  is the angle in red and β  is the angle in blue.  The difference α β  is noted in black as θ .  The reason why there are two pictures is because the image on the right has the same angle θ  in a rotated position.  This will be useful to work with because the length of A B ¯  will be the same as the length of C D ¯ .
    ::开始绘制两个任意角度 α 和 。 在 α 上方的图像中, 以红色为角度, β 以蓝色为角度。 区别 \\\\ 以黑色表示为 \ 。 原因是右侧的图像在旋转位置上有着相同的角度 \ 。 这将有用, 因为 AB 的长度将与 CD 的长度相同 。

    A B ¯ = C D ¯ ( cos α cos β ) 2 + ( sin α sin β ) 2 = ( cos θ 1 ) 2 + ( sin θ 0 ) 2 ( cos α cos β ) 2 + ( sin α sin β ) 2 = ( cos θ 1 ) 2 + ( sin θ 0 ) 2

    ::AB2+(cos)2+(sinsin)2=(cos1)2+(sin0)(2(coscos)2+(sinsin)2=(cos1)2+(sin0)2

    ( cos α ) 2 2 cos α cos β + ( cos β ) 2 + ( sin α ) 2 2 sin α sin β + ( sin β ) 2 = ( cos θ 1 ) 2 + ( sin θ ) 2

    :sadcos)2 -2cos(cos)2+(sin)2-2-2sin(sin)2=(cos1)2+(sin)2

    2 2 cos α cos β 2 sin α sin β = ( cos θ ) 2 2 cos θ + 1 + ( sin θ ) 2 2 2 cos α cos β 2 sin α sin β = 1 2 cos θ + 1 2 cos α cos β 2 sin α sin β = 2 cos θ cos α cos β + sin α sin β = cos θ = cos ( α β )

    ::2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2

    You can use this identity to prove the cosine of a sum identity . First, start with the cosine of a difference and make a substitution.  Then use the odd-even identity.
    ::您可以使用此身份来证明一个相加身份的余弦。 首先, 从一个差异的余弦开始, 然后进行替换。 然后使用奇数身份 。

    cos α cos β + sin α sin β = cos ( α β )
    :sad )

    Let γ = β
    ::让我们... ... Let let ___________________________________________________________________________________________________________________________________________

    cos α cos ( γ ) + sin α sin ( γ ) = cos ( α + γ ) cos α cos γ sin α sin γ = cos ( α + γ )

    ::

    The proofs for sine and tangent are left to the videos and examples.  They are listed here for your reference.  Cotangent , secant and cosecant are excluded because you can use to get those once you have sine, cosine and tangent. 
    ::用于正切和正切的证明留待视频和示例中。 它们在此列出供您参考。 共切、 分离和余切被排除, 因为您可以使用来获取那些有正弦、 顺弦和正切的证明 。

    Summary
    ::摘要

    • cos ( α ± β ) = cos α cos β sin α sin β
      :sad)=coscossinsinsin
    • sin ( α ± β ) = sin α cos β ± cos α sin β
      :sad)=sincoscoscossinsin
    • tan ( α ± β ) = sin ( α ± β ) cos ( α ± β ) = tan α ± tan β 1 tan α tan β
      ::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

    The order of the plus or minus signs is important because for cosine of a sum, the negative sign is used on the other side of the identity.  This is the opposite of sine of a sum, where a positive sign is used on the other side of the identity. 
    ::增加或减号的顺序很重要, 因为对于一个相余的数, 负号在身份的另一方使用。 这是一个正数的正数的反面, 在身份的另一方使用正数的正数 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to evaluate sin 15  and sin 75  exactly without a calculator. To do this you need to use the sine of a difference and sine of a sum.
    ::早些时候,有人要求你完全在没有计算器的情况下评估 sin 15 和 sin 75 。 要做到这一点,你需要使用差异的正弦和正弦。

    sin ( 45 30 ) = sin 45 cos 30 cos 45 sin 30 = 2 2 3 2 2 2 1 2 = 6 2 4 sin ( 45 + 30 ) = sin 45 cos 30 + cos 45 sin 30 = 2 2 3 2 + 2 2 1 2 = 6 + 2 4

    ::\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

    Example 2
    ::例2

    Find the exact value of tan 15  without using a calculator.
    ::在不使用计算器的情况下查找 tan% 15 的准确值 。

      tan 15 = tan ( 45 30 ) = tan 45 tan 30 1 + tan 45 tan 30 = 1 3 3 1 + 1 3 3 = 3 3 3 + 3

    ::~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    A final solution will not have a radical in the denominator.  In this case multiplying through by the conjugate of the denominator will eliminate the radical.
    ::最终解决方案在分母上不会有激进的分母。 在这种情况下,通过分母的组合而倍增的分母将消除激进。

    = ( 3 3 ) ( 3 3 ) ( 3 + 3 ) ( 3 3 ) = ( 3 3 ) 2 9 3 = ( 3 3 ) 2 6

    Example 3
    ::例3

    Evaluate the expression exactly without using a calculator.
    ::准确评价表达式而不使用计算器 。

    cos 50 cos 5 + sin 50 sin 5
    ::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}什么?

    Once you know the general form of the sum and difference identities then you will recognize this as cosine of a difference.
    ::一旦知道总和和差异身份的一般形式 你就会承认这是差异的余弦

    cos 50 cos 5 + sin 50 sin 5 = cos ( 50 5 ) = cos 45 = 2 2
    ::====================================================================================================================================== ================================================================================================================================

    Example 4  
    ::例4

    Use a sum or difference identity to find an exact value of cot ( 5 π 12 ) .
    ::使用一个总和或差异身份来查找 cot( 512) 的准确值 。

    Start with the definition of cotangent as the inverse of tangent. 
    ::以正切值定义为反正切值开始 。

    cot ( 5 π 12 ) = 1 tan ( 5 π 12 ) = 1 tan ( 9 π 12 4 π 12 ) = 1 tan ( 135 60 ) = 1 + tan 135 tan 60 tan 135 tan 60 = 1 + ( 1 ) 3 ( 1 ) 3 = ( 1 3 ) ( 1 3 ) = ( 1 3 ) 2 ( 1 + 3 ) ( 1 3 ) = ( 1 3 ) 2 ( 1 3 ) = ( 1 3 ) 2 2

    :sad512) = 1tan(512) = 1tan(912-412) = 1tan(13560) = 1+tan(13560) (1) (6) (61) +(-1) 3(1) - 3=(1-3) (1-3) (2)(1-3) (1-3) □(3) □(3) □(1-3) =(1-3) 2-(1-3) =(1-3) =(1-3) 3) 22

    Example 5
    ::例5

    Prove the following identity:
    ::证明以下身份:

    sin ( x y ) sin ( x + y ) = tan x tan y tan x + tan y
    :sadx-y)sin(x+y)=tanx-tanytanx+tany

    Here are the steps:
    ::以下是步骤:

    sin ( x y ) sin ( x + y ) = tan x tan y tan x + tan y sin x cos y cos x sin y sin x cos y + cos x sin y = sin x cos y cos x sin y sin x cos y + cos x sin y ( 1 cos x cos y ) ( 1 cos x cos y ) = ( sin x   cos y cos x cos y ) ( cos x   sin y cos x cos y ) ( sin x   cos y cos x cos y ) + ( cos x   sin y cos x cos y ) = tan x tan y tan x + tan y =

    :sadx+Y) = tanxxx x x x x x x x x x y= x x x x x xx xxx }+ xxxx x xx (1cosxxxx x x x x s y) = (cosxx sinx x x x x }}) + (cosxx xxx x x x }= (cusxxxxxxxxx }=

      Summary
    • For arbitrary angles α  and β ,  the sum and difference identities are:
      • cos ( α ± β ) = cos α cos β sin α sin β  
        :sad)=coscossinsinsin
      • sin ( α ± β ) = sin α cos β ± cos α sin β  
        :sad)=sincoscoscossinsin
      • tan ( α ± β ) = sin ( α ± β ) cos ( α ± β ) = tan α ± tan β 1 tan α tan β  
        ::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

      ::对于任意角度的α和β,其总和和区别身份是:cos()=coscoscossinsinsinsinsin()=sincoscoscossin tan()=tan()1}()sinsinsin}tan()=sin()sin}()=sin(){cos){()()=tan{tan}1}}}()=sincosççosinsin}sinsin tan(){}}=sin()=sin{()sin}()=sin(){(){()(()()(()()()()()()()())(()(()(}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}*}}}}}}}}}**************************************

    Review
    ::回顾

    Find the exact value for each expression by using a sum or difference identity.
    ::使用总和或差异身份来查找每个表达式的准确值。

    1. cos 75
    ::1. 承担第75-75-______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    2.  cos 105
    ::2. COS105_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    3.  cos 165
    ::3,cos165

    4.  sin 105
    ::4 sin 105______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    5.  sec 105
    ::5 秒 105

    6.  tan 75
    ::6. 锡 75_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    7. Prove the sine of a sum identity.
    ::7. 证明真实身份的必要条件。

    8. Prove the tangent of a sum identity.
    ::8. 证明一个总特征的相切性。

    9. Prove the tangent of a difference identity.
    ::9. 证明差异认同的相切性。

    10. Evaluate without a calculator: cos 50 cos 10 sin 50 sin 10 .
    ::10. 无计算器的评价:cos50cos10sin50sin10。

    11. Evaluate without a calculator: sin 35 cos 5 cos 35 sin 5 .
    ::11. 评估没有计算器:sin_35cos_5cos_35sin_55。

    12. Evaluate without a calculator: sin 55 cos 5 + cos 55 sin 5 .
    ::12. 评估没有计算法:sin55cos55cos55sin555。

    13. If cos α cos β = sin α sin β , then what does cos ( α + β )  equal?
    ::13. 如果cosççosísinsin,那么cos()等于什么?

    14. Prove that tan ( x + π 4 ) = 1 + tan x 1 tan x .
    ::14. 证明Tan(x4)=1+tanx1-tanx。

    15. Prove that sin ( x + π ) = sin x .
    ::15. 证明这一罪行。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。