6.3 总数和差异
章节大纲
-
With your knowledge of special angles like the of and , you can find the sine and cosine of , the difference of and , and , the sum of and . Using what you know about the unit circle and the sum and difference identities, how do you determine and ?
::以你对30和45等特殊角度的知识, 你能找到15的正弦和正弦, 45和30之间的差数, 和75的差数, 和45和30之间的差数。使用你对单位圆的了解, 和总和和和差异的身份, 您如何确定 15 和sin 75 ?Sum and Difference Identities
::合计和差异First look at the derivation of the cosine difference identity :
::首先看余弦差异特性的衍生:
:)=coscossinsinsin
Start by drawing two arbitrary angles and . In the image above is the angle in red and is the angle in blue. The difference is noted in black as . The reason why there are two pictures is because the image on the right has the same angle in a rotated position. This will be useful to work with because the length of will be the same as the length of .
::开始绘制两个任意角度 α 和 。 在 α 上方的图像中, 以红色为角度, β 以蓝色为角度。 区别 \\\\ 以黑色表示为 \ 。 原因是右侧的图像在旋转位置上有着相同的角度 \ 。 这将有用, 因为 AB 的长度将与 CD 的长度相同 。
::AB2+(cos)2+(sinsin)2=(cos1)2+(sin0)(2(coscos)2+(sinsin)2=(cos1)2+(sin0)2
:cos)2 -2cos(cos)2+(sin)2-2-2sin(sin)2=(cos1)2+(sin)2
::2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2You can use this identity to prove the cosine of a sum identity . First, start with the cosine of a difference and make a substitution. Then use the odd-even identity.
::您可以使用此身份来证明一个相加身份的余弦。 首先, 从一个差异的余弦开始, 然后进行替换。 然后使用奇数身份 。
:)
Let
::让我们... ... Let let ___________________________________________________________________________________________________________________________________________
::The proofs for sine and tangent are left to the videos and examples. They are listed here for your reference. Cotangent , secant and cosecant are excluded because you can use to get those once you have sine, cosine and tangent.
::用于正切和正切的证明留待视频和示例中。 它们在此列出供您参考。 共切、 分离和余切被排除, 因为您可以使用来获取那些有正弦、 顺弦和正切的证明 。Summary
::摘要-
:)=coscossinsinsin
-
:)=sincoscoscossinsin
-
::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
The order of the plus or minus signs is important because for cosine of a sum, the negative sign is used on the other side of the identity. This is the opposite of sine of a sum, where a positive sign is used on the other side of the identity.
::增加或减号的顺序很重要, 因为对于一个相余的数, 负号在身份的另一方使用。 这是一个正数的正数的反面, 在身份的另一方使用正数的正数 。Examples
::实例Example 1
::例1Earlier, you were asked to evaluate and exactly without a calculator. To do this you need to use the sine of a difference and sine of a sum.
::早些时候,有人要求你完全在没有计算器的情况下评估 sin 15 和 sin 75 。 要做到这一点,你需要使用差异的正弦和正弦。
::\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Example 2
::例2Find the exact value of without using a calculator.
::在不使用计算器的情况下查找 tan% 15 的准确值 。
::~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~A final solution will not have a radical in the denominator. In this case multiplying through by the conjugate of the denominator will eliminate the radical.
::最终解决方案在分母上不会有激进的分母。 在这种情况下,通过分母的组合而倍增的分母将消除激进。Example 3
::例3Evaluate the expression exactly without using a calculator.
::准确评价表达式而不使用计算器 。
::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}什么?Once you know the general form of the sum and difference identities then you will recognize this as cosine of a difference.
::一旦知道总和和差异身份的一般形式 你就会承认这是差异的余弦
::====================================================================================================================================== ================================================================================================================================Example 4
::例4Use a sum or difference identity to find an exact value of .
::使用一个总和或差异身份来查找 cot( 512) 的准确值 。Start with the definition of cotangent as the inverse of tangent.
::以正切值定义为反正切值开始 。
:512) = 1tan(512) = 1tan(912-412) = 1tan(13560) = 1+tan(13560) (1) (6) (61) +(-1) 3(1) - 3=(1-3) (1-3) (2)(1-3) (1-3) □(3) □(3) □(1-3) =(1-3) 2-(1-3) =(1-3) =(1-3) 3) 22
Example 5
::例5Prove the following identity:
::证明以下身份:
:x-y)sin(x+y)=tanx-tanytanx+tany
Here are the steps:
::以下是步骤:
:x+Y) = tanxxx x x x x x x x x x y= x x x x x xx xxx }+ xxxx x xx (1cosxxxx x x x x s y) = (cosxx sinx x x x x }}) + (cosxx xxx x x x }= (cusxxxxxxxxx }=
Summary -
For arbitrary angles
and
the sum and difference identities are:
-
:)=coscossinsinsin
-
:)=sincoscoscossinsin
-
::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
::对于任意角度的α和β,其总和和区别身份是:cos()=coscoscossinsinsinsinsin()=sincoscoscossin tan()=tan()1}()sinsinsin}tan()=sin()sin}()=sin(){cos){()()=tan{tan}1}}}()=sincosççosinsin}sinsin tan(){}}=sin()=sin{()sin}()=sin(){(){()(()()(()()()()()()()())(()(()(}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}*}}}}}}}}}************************************** -
Review
::回顾Find the exact value for each expression by using a sum or difference identity.
::使用总和或差异身份来查找每个表达式的准确值。1.
::1. 承担第75-75-______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.
::2. COS105_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________3.
::3,cos1654.
::4 sin 105______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________5.
::5 秒 1056.
::6. 锡 75_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________7. Prove the sine of a sum identity.
::7. 证明真实身份的必要条件。8. Prove the tangent of a sum identity.
::8. 证明一个总特征的相切性。9. Prove the tangent of a difference identity.
::9. 证明差异认同的相切性。10. Evaluate without a calculator: .
::10. 无计算器的评价:cos50cos10sin50sin10。11. Evaluate without a calculator: .
::11. 评估没有计算器:sin_35cos_5cos_35sin_55。12. Evaluate without a calculator: .
::12. 评估没有计算法:sin55cos55cos55sin555。13. If , then what does equal?
::13. 如果cosççosísinsin,那么cos()等于什么?14. Prove that .
::14. 证明Tan(x4)=1+tanx1-tanx。15. Prove that .
::15. 证明这一罪行。Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -