章节大纲

  • The general equation of a conic is A x 2 + B x y + C y 2 + D x + E y + F = 0 .  This form is so general that it encompasses all regular lines, singular points and degenerate that look like an X.  This is because there are a few special cases of how a plane can intersect a two sided cone.  How are these degenerate shapes formed?
    ::二次曲线的一般方程式是Ax2+Bxy+Cy2+Dx+Ey+F=0。 这种形式非常笼统, 包括所有常规线条、 单点和像 X 一样的退化。 这是因为有几处特殊的例子说明平面如何交叉两个侧锥体。 这些退化形状是如何形成的 ?

    Graphing Degenerate Conics
    ::绘制断层二次曲线图

    A degenerate conic is a conic that does not have the usual properties of a conic. Degenerate conic equations simply cannot be written in graphing form.  There are three types of degenerate conics:
    ::退化的二次曲线是一种没有二次曲线通常特性的二次曲线。 退化的二次曲线方程式不能以图形形式写成。 退化的二次曲线有三种类型:

    1. A singular point , which is of the form: ( x h ) 2 a + ( y k ) 2 b = 0 . You can think of a singular point as a circle or an ellipse with an infinitely small radius. 
      ::单点, 即窗体的单点 伤心 x- h) 2a+(y- k) 2b=0。 您可以将单点视为圆或半径极小的椭圆或椭圆。
    2. A line , which has coefficients  A = B = C = 0 in the general equation of a conic.  The remaining portion of the equation is D x + E y + F = 0 , which is a line.
      ::A 线,在二次曲线的一般方程式中含有系数A=B=C=0。方程式的剩余部分是Dx+Ey+F=0,这是一个直线。
    3. A degenerate hyperbola , which is of the form:  ( x h ) 2 a 2 ( y k ) 2 b 2 = 0 .  The result is two intersecting lines that make an “X” shape.  The slopes of the intersecting lines forming the X are ± b a . This is because  b goes with the  y portion of the equation and is the rise, while  a goes with the  x portion of the equation and is the run.
      ::退化的双曲线, 其形状为 (x- h) 2a2- (y- k) 2b2=0。 结果是两条交叉线, 形成“ X” 形状。 构成 X 的交叉线的斜度为 ba。 这是因为 b 与方程的 y 部分相移, 是 上升, 而 a 则与 等式的 x 部分相移, 是运行 。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked how degenerate conics are formed. When you intersect a plane with a two sided cone where the two cones touch, the intersection is a single point.  When you intersect a plane with a two sided cone so that the plane touches the edge of one cone, passes through the central point and continues touching the edge of the other conic, this produces a line.  When you intersect a plane with a two sided cone so that the plane passes vertically through the central point of the two cones, it produces a degenerate hyperbola. 
    ::早些时候,有人问您如何形成腐蚀的二次曲线。当您用两侧锥体接触的双侧锥体交叉一架飞机时, 十字路口就是一个单一点。 当您用两侧锥体接触的双侧锥体交叉一架飞机, 以便让飞机接触一个锥体的边缘, 穿过中心点, 并继续接触另一个锥体的边缘时, 这会产生一条线。 当您用两侧锥体交叉一架飞机, 使飞机垂直通过两个锥体的中心点时, 它会产生一个退化的超大波。

    Example 2
    ::例2

    Transform the conic equation into standard form and sketch.
    ::将二次方程转换成标准形式和草图

    0 x 2 + 0 x y + 0 y 2 + 2 x + 4 y 6 = 0
    ::0x2+0xy+0y2+2x+4y-6=0

    This is the line y = 1 2 x + 3 2 .
    ::这是y12x+32的线条。

    lesson content

    Example 3
    ::例3

    Transform the conic equation into standard form and sketch.
    ::将二次方程转换成标准形式和草图

    3 x 2 12 x + 4 y 2 8 y + 16 = 0
    ::3x2 - 12x+4y2 - 8y+16=0

    3 x 2 12 x + 4 y 2 8 y + 16 = 0
    ::3x2 - 12x+4y2 - 8y+16=0

    3 ( x 2 4 x ) + 4 ( y 2 2 y ) = 16 3 ( x 2 4 x + 4 ) + 4 ( y 2 2 y + 1 ) = 16 + 12 + 4 3 ( x 2 ) 2 + 4 ( y 1 ) 2 = 0 ( x 2 ) 2 4 + ( y 1 ) 2 3 = 0

    ::3(x2-4x)+4(y2-2y)163(x2-4x+4)+4(y2-2y+1)+4(y2-2y+1) __16+12+43(x-2)2+4(y-1)2=0(x-2)24+(y-1)23=0

    The point (2, 1) is the result of this degenerate conic.
    ::点(2,1)是这个堕落的二次曲线的结果。

    lesson content

    Example 4
    ::例4

    Transform the conic equation into standard form and sketch.
    ::将二次方程转换成标准形式和草图

    16 x 2 96 x 9 y 2 + 18 y + 135 = 0
    ::16x2-96x-9y2+18y+135=0

    16 x 2 96 x 9 y 2 + 18 y + 135 = 0
    ::16x2-96x-9y2+18y+135=0

    16 ( x 2 6 x ) 9 ( y 2 2 y ) = 135 16 ( x 2 6 x + 9 ) 9 ( y 2 2 y + 1 ) = 135 + 144 9 16 ( x 3 ) 2 9 ( y 1 ) 2 = 0 ( x 3 ) 2 9 ( y 1 ) 2 16 = 0

    ::16(x2-6x)-9(y2-2-2y)13516(x2-6x+9)-9(y2-2y+1)=135+144-916(x-33)2-9(y-1)2=0(x-3)29-(y-1)216=0

    This is a degenerate hyperbola.
    ::这是一个堕落的双曲线。

    lesson content

    Example 5
    ::例5

    1. Create a conic that describes just the point (4, 7).
    ::1. 创建一个仅描述点的二次曲线(4,7)。

    ( x 4 ) 2 + ( y 7 ) 2 = 0
    :伤心x-4)2+(y-7)2=0

      Summary
    • Degenerate conics are conics that do not have the usual properties and cannot be written in graphing form. There are three types:
      ::降解性二次曲线是没有通常特性的二次曲线,不能以图形形式写成。
    • A singular point is a degenerate conic of the form ( x h ) 2 a ( y k ) 2 b = 0  
      ::单点是窗体( x-h) 2a-(y-k) 2b=0 的退化二次曲线
    • A line when the coefficients A = B = C = 0  in the general equation, resulting in the equation D x + E y + F = 0.  
      ::当一般方程中的系数A=B=C=0导致公式Dx+Ey+F=0时的直线。
    • A degenerate hyperbola is a degenerate conic of the form ( x h ) 2 a 2 ( y k ) 2 b 2 = 0.  This looks like two lines in an “X”.
      ::退化的双曲线是形态(x-h)2a2-(y-k)2b2=0的退化二次曲线。 这看起来像“X”中的两行。

    Review
    ::回顾

    1. What are the three degenerate conics?
    ::1. 三种堕落的二次曲线是什么?

    Change each equation into graphing form and state what type of conic or degenerate conic it is.
    ::将每个方程式改变为图形形式, 并显示它是哪种二次曲线或退化的二次曲线 。

    2. x 2 6 x 9 y 2 54 y 72 = 0
    ::2. x2-6x-9y2-54y-72=0

    3. 4 x 2 + 16 x 9 y 2 + 18 y 29 = 0
    ::3. 4x2+16x-9y2+18y-29=0

    4. 9 x 2 + 36 x + 4 y 2 24 y + 72 = 0
    ::4. 9x2+36x+4y2-24y+72=0

    5. 9 x 2 + 36 x + 4 y 2 24 y + 36 = 0
    ::5. 9x2+36x+4y2-24y+36=0

    6. 0 x 2 + 5 x + 0 y 2 2 y + 1 = 0
    ::6. 0x2+5x+0y2-2y+1=0

    7. x 2 + 4 x y + 8 = 0
    ::7. x2+4x-y+8=0

    8. x 2 2 x + y 2 6 y + 6 = 0
    ::8. x2-2x+y2-6y+6=0

    9. x 2 2 x 4 y 2 + 24 y 35 = 0
    ::9. x2-2x-4y2+24y-35=0

    10. x 2 2 x + 4 y 2 24 y + 33 = 0
    ::10. x2-2x+4y2-24y+33=0

    Sketch each conic or degenerate conic.
    ::每一个曲线或腐烂的曲线

    11. ( x + 2 ) 2 4 + ( y 3 ) 2 9 = 0
    ::11. (x+2)24+(y-3)29=0

    12. ( x 3 ) 2 9 + ( y + 3 ) 2 16 = 1
    ::12. (x-3)29+(y+3)216=1

    13. ( x + 2 ) 2 9 ( y 1 ) 2 4 = 1
    ::13. (x+2)29-(y-1)24=1

    14. ( x 3 ) 2 9 ( y + 3 ) 2 4 = 0
    ::14. (x-3)29-(y+3)24=0

    15. 3 x + 4 y = 12
    ::15. 3x+4y=12

    Review (Answers)
    ::回顾(答复)

    To see the answer key for this book, go to the and click on the Answer Key under the ' ' option.