章节大纲

  • You have learned that a graph and its inverse are reflections of each other across the line y = x .  You have also learned that in order to find an inverse algebraically, you can switch the x  and  y  variables and solve for  y .   actually make finding inverses easier because both the  x  and  y  variables are based on a third variable  t .  All you need to do to find the inverse of a set of parametric equations and switch the functions for  x  and   y .  

    Is the inverse of a function always a function?
    ::函数的反向总是函数吗 ?

    Inverses of Parametric Equations
    ::参数等量的逆数

    To find the inverse of a parametric equation you must switch the function of x with the function of y . This will switch all the points from ( x , y ) to ( y , x ) and also has the effect of visually reflecting the graph over the line y = x .
    ::要找到参数方程的反向, 您必须用 y 函数切换 x 的函数。 这将将所有点从 (x,y) 切换到 (y, x) , 并具有在 y =x 线上直观反映图形的效果 。

    Similar to the inverses regular functions, the inverses of parametric equations are often restricted so that they are also functions. Take the following parametric equations:
    ::与正常函数的反向相似,参数方程的反向往往受到限制,因此它们也是函数。

    x = 2 t y = t 2 4

    ::x=2ty=t2-4

    To find and graph the inverse of the parametric function on the domain 2 < t < 2 , first switch the  x  and  y  functions and graph. 
    ::要查找和绘制域-2<t<2, 域上的参数函数的反向, 请先切换 x 和 y 函数和图形 。

    x = t 2 4 y = 2 t

    ::x=t2 - 4y=2t

    The original function is shown in blue and the inverse is shown in red.
    ::原函数以蓝色显示,反面以红色显示。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked if the inverse of a function is always a function. The inverse of a function is not always a function.  In order to see whether the inverse of a function will be a function, you must perform the horizontal line test on the original function.  If the function passes the horizontal line test then the inverse will be a function.  If the function does not pass the horizontal line test then the inverse produces a relation rather than a function.
    ::早些时候,有人询问函数的反向是否总是函数。函数的反向并不总是函数。为了查看函数的反向是否是一个函数,您必须在原始函数上进行水平线测试。如果函数通过水平线测试,则反向将是一个函数。如果函数没有通过水平线测试,则反向产生关系而不是函数。

    Example 2
    ::例2

    Is the point (4, 8) in the following function or its inverse?
    ::以下函数中的点(4,8)是反数还是反数?

    x = 2 t 2 2 y = t 2 1

    ::x=2t2--2y=t2-2-1

    Try to solve for a matching  t in the original function.
    ::尝试为原始函数中的匹配 t 解析 。

    x = 2 t 2 2
    ::x=2t2-2 -2

    4 = 2 t 2 2
    ::4=2吨2-2-2

    6 = 2 t 2
    ::6=2吨2

    3 = t 2
    ::3=t2 3=t2

    ± 3 = t
    ::3=t

    y = t 2 1
    ::y=t2-1

    8 = t 2 1
    ::8=t2-1

    9 = t 2
    ::9=吨2

    ± 3 = t
    ::3=t

    The point does not satisfy the original function.  Check to see if it satisfies the inverse.
    ::点不能满足原始函数。检查是否满足反向功能。

    x = t 2 1
    ::x=t2-2-1

    4 = t 2 1
    ::4=t2-1

    ± 5 = t
    ::5=t

    y = 2 t 2 2
    ::y= y2t2-2-2

    8 = 2 t 2 2
    ::8=2吨2-2-2

    10 = 2 t 2
    ::10=2吨2

    ± 5 = t
    ::5=t

    The point does satisfy the inverse of the function.
    ::点能满足函数的反向。

    Example 3
    ::例3

    Parameterize the following function and then graph the function and its inverse.
    ::参数化以下函数,然后图形化函数及其反向。

    f ( x ) = x 2 + x 4
    :伤心xx)=x2+x-4)

    For the original function, the parameterization is:
    ::对于原始函数,参数化是:

    x = t y = t 2 + t 4

    ::x=ty=t2+t-4xxy=t2+t-4

    The inverse is:
    ::反之:

    x = t 2 + t 4 y = t

    ::x=t2+t-4y=t

    lesson content

    Example 4
    ::例4

    An intersection for two sets of parametric equations happens when the points exist at the same  x , y  and  t .  Find the points of intersection of the function and its inverse from Example 2.
    ::两组参数方程式的交叉路段发生于点位于相同的 x、y 和 t。 从例2中查找函数的交叉点及其反向。

    The parameterized function is:
    ::参数化函数为:

    x 1 = t y 1 = t 2 + t 4

    ::x1=ty1=t2+t-4

    The inverse is:
    ::反之:

    x 2 = t 2 + t 4 y 2 = t

    ::x2=t2+t-4y2=t

    To find where these intersect, set  x 1 = x 2  and  y 1 = y 2  and solve.
    ::要找到这些交叉点, 请设置 x1=x2 和 y1=y2 并解析 。

    t = t 2 + t 4 t 2 = 4 t = ± 2

    ::t = t2+t- 4t2=4t2

    You still need to actually calculate the points of intersection on the graph.  You can tell from the graph in Example C that there seem to be four points of intersection.  Since t can mean time, the question of intersection is more complicated than simply overlapping.  It means that the points are at the same x and y coordinate at the same time.  Note what the graphs look like when 1.8 < t < 1.8.
    ::您仍需要实际计算图形上的交叉点。 您可以从例C中的图表中看到, 似乎有四个交叉点。 由于 t 代表时间, 交叉点的问题比简单的重叠复杂。 这意味着点在相同的 x 和 y 坐标的同时。 注意当 - 1. 8 < 1. 8 时这些图形的外观 。

    lesson content

    Note what the graphs look like t > 2.2  or t < 2.2
    ::注意图表看起来像 t>2.2 或 t2.2 。

    lesson content

    Notice how when these partial graphs are examined there is no intersection at anything besides t = ± 2 and the points (2, 2) and (-2, -2) While the paths of the graphs intersect in four places, they intersect at the same time only twice.
    ::注意检查这些部分图表时,除了 t2 和点(2, 2) 和点(2, 2) 和点(2, 2) 外,没有任何地方没有交叉点。 虽然这些图形的路径在四个地方交叉,但同时交叉只两次。

    Example 5
    ::例5

    Identify where the following parametric function intersects with its inverse.
    ::确定下列参数函数与其反向相交之处。

    x = 4 t
    ::x=4tx=4吨

    y = t 2 16
    ::y=t2-16

    x 1 = 4 t ;   y 1 = t 2 16 The inverse is:
    ::x1=4t; y1=t2- 16 逆数为:

    x 2 = t 2 16 y 2 = 4 t

    ::x2=t2 - 16y2=4t

    Solve for t  when  x 1 = x 2  and  y 1 = y 2 .
    ::当 x1=x2 和 y1=y2 时解决 t 。

    4 t = t 2 16 0 = t 2 4 t 16 t = 4 ± 16 4 1 ( 16 ) 2 = 4 ± 4 5 2 = 2 ± 2 5

    ::4t=t2-160=t2-4t-16t=416-41(-16)2=4452=225

    The points that correspond to these two times are:
    ::与这两次相对应的要点是:

    x = 4 ( 2 + 2 5 ) ,   y = ( 2 + 2 5 ) 2 16 x = 4 ( 2 2 5 ) ,   y = ( 2 2 5 ) 2 16

    ::x=4(2+25)、y=(2+25)、y=(2+25)、y=16x=4(2 - 25)、y=(2 - 25)、y=16

      Summary
    • To find the inverse of a parametric equation, simply switch the functions for x  and y .  
      ::要找到参数方程的反向,只需切换 x 和 y 的函数。
    • Inverses of parametric equations are often restricted so that they are also functions.
      ::参数方程式的逆向往往受到限制,因此它们也是功能。

    Review
    ::回顾

    Use the function x = t 4 ;   y = t 2 + 2  for #1 - #3.
    ::在 # 1 - # 3 中使用函数 x=t- 4; y=t2+2。

    1. Find the inverse of the function.
    ::1. 查找函数的反向。

    2. Does the point (-2, 6) live on the function or its inverse?
    ::2. 点(-2, 6)是否活在函数上或其反向上?

    3. Does the point (0, 1) live on the function or its inverse?
    ::3. 点(0,1)是否在函数上存在或反向存在?

    Use the relation x = t 2 ;   y = 4 t  for #4 - #6.
    ::使用关系 x=t2; y=4 - t 用于 # 4 - # 6 。

    4. Find the inverse of the relation.
    ::4. 找出这种关系的反面。

    5. Does the point (4, 0) live on the relation or its inverse?
    ::5. 点(4,0)是否以相关关系或相反关系为依据?

    6. Does the point (0, 4) live on the relation or its inverse?
    ::6. 点(0, 4)是否维持在关系或反向关系上?

    Use the function x = 2 t + 1 ;   y = t 2 3  for #7 - #9.
    ::使用函数 x=2t+1; y=t2- 3为 # 7 - # 9 使用函数 x=2t+1; y=t2- 3 为 # 7 - # 9 使用函数 x=2t+1; y=t2- 3 for # 7 - # 9 。

    7. Find the inverse of the function.
    ::7. 查找函数的反向。

    8. Does the point (1, 5) live on the function or its inverse?
    ::8. 点(1,5)是否在函数上存在,或其反向存在?

    9. Does the point (9, 13) live on the function or its inverse?
    ::9. 点(9,13)是否在函数上存在,还是反之?

    Use the function x = 3 t + 14 ;   y = t 2 2 t for #10 - #11.
    ::为 # 10 - # 11 使用函数 x=3t+14; y=t2- 2t。

    10. Find the inverse of the function.
    ::10. 查找函数的反向。

    11. Identify where the parametric function intersects with its inverse.
    ::11. 查明参数函数与其反相交错之处。

    Use the relation  x = t 2 ;   y = 4 t 4  for #12 - #13.
    ::使用关系 x=t2; y=4- 4用于 # 12 - # 13 。

    12. Find the inverse of the relation.
    ::12. 找出相互关系的反面。

    13. Identify where the relation intersects with its inverse. 
    ::13. 查明关系与其反向交错之处。

    14. Parameterize f ( x ) = x 2 + x 6  and then graph the function and its inverse.
    ::14. 参数f(x)=x2+x-6,然后绘制函数及其反向图。

    15. Parameterize  f ( x ) = x 2 + 3 x + 2  and then graph the function and its inverse.
    ::15. f(x)=x2+3x+2的参数,然后绘制函数及其反向图。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。