章节大纲

  • If f ( x ) = x + 2 , and g ( x ) = 2 x + 4 , what is  f ( g ( x ) ) ?
    ::如果f(x)=x+2, g(x)=2x+4, 什么是f(g(x))?

    A function can be conceptualized as a ‘black box’. The input, or  x value is placed into the box, and the box performs a specific set of operations on x . Once the operations are complete, the output (the “ f ( x ) ” or “ y ” value) is provided. Once the output is provided, the box is ready to work on the next input.
    ::函数可以被概念化为`黑盒 ' 。输入或 x 值被放入框中,框在 x 上执行一套特定的操作。操作完成后,即提供输出(“f(x)”或“y”值)。一旦输出提供,框将准备对下一个输入工作。

    Using this idea, function composition can be seen as a box inside of a box. The input  x value goes into the inner box, and then the output of the inner box is used as the input of the outer box.
    ::使用这个概念, 函数构成可以被视为框内的一个框。 输入 x 值会进入内框, 然后内框的输出会用作外框的输入 。

    Function Composition
    ::职能构成构成

    Functions are often described in terms of “input” and “output”. For example, consider the function f ( x ) = 2 x + 3 . When we input an  x value, we output a  y value, or a function value. We find the output by taking the input x , multiplying by 2, and adding 3. We can do this for any value of x . Now consider a second function g ( x ) = 5 x . For this function too, we can take an  x value, input the  x into g ( x ) , and obtain an output. What happens if we take the output of  g and use it as the input of f ?
    ::函数通常用“投入”和“产出”来描述。例如,考虑函数 f(x)=2x+3。当我们输入一个 x 值时,我们输出一个 y 值或函数值。我们通过输入 x 来发现输出,乘以2 和增加 3 。我们可以为任何 x 值这样做。现在考虑第二个 函数 g(x)=5x。对于这个函数,我们可以将一个 x 值输入 g(x),然后获得输出。如果我们将 g 的输出作为 f 的输入,会发生什么?

    Given the function definition above, g ( x ) = 5 x . Therefore if x = 4 , then we have g ( 4 ) = 5 ( 4 ) = 20 . What happens if we then take the output of 20 and use it as the input of f ?
    ::根据上文 g(x) = 5x 的函数定义, g(x) = 5x。 因此, 如果 x= 4, 那么我们就有 g(4) = 5(4) = 20。 如果我们以 20 的输出作为 f 的输入, 那么结果会如何 ?

    Substituting 20 in for  x in  f ( x ) = 2 x + 3 gives: f ( 20 ) = 2 ( 20 ) + 3 = 43 .
    ::在 f(x) = 2x+3 中, x x 的替代值为 20 英寸 。 f( 20) = 2( 20)+3= 43 。

    The table below shows several examples of this same process:
    ::下表列出了同一过程的几个例子:

    x
    ::x x

    Output from g
    ::g 输出输出

    Output from f
    ::f 产出产出 f

    2

    10

    23

    3

    15

    33

    4

    20

    43

    5

    25

    53

    Examining the values in the table, we can see a pattern : all of the final output values from  f are 3 more than 10 times the initial input. We have created a new function called  h ( x ) out of  f ( x ) = 2 x + 3 in which  g ( x ) = 5 x is the input:
    ::检查表格中的值, 我们可以看到一个模式: f 的全部最终输出值是初始输入的10倍以上。 我们从 f( x) = 2x+3 中创建了名为 h( x) 的新函数, 其中 g( x) = 5x 是输入 :

    h ( x ) = f ( 5 x ) = 2 ( 5 x ) + 3 = 10 x + 3

    ::h(x)=f(5x)=2(5x)+3=10x+3

    When we input one function into another, we call this the composition of the two functions. Formally, we write the composed function as  f ( g ( x ) ) = 10 x + 3 or write it as ( f g ) x = 10 x + 3 .
    ::当我们将一个函数输入到另一个函数时, 我们将此称为两个函数的构成。 正式地, 我们将组成函数写成 f( g( x)) = 10x+3 , 或者把它写成 f( fg) x= 10x+3 。

    Take the two functions:   f ( x ) = 2 x + 4 and g ( x ) = ( 1 2 ) x 2 . Find  f ( g ( x ) ) and g ( f ( x ) ) .
    ::采取两个函数 : f( x) = 2x+4andg( x) = ( 12) x-2 查找 f( g( x) ) 和 g( f( x) ) 。

    f ( x ) = 2 x + 4 and g ( x ) = ( 1 2 ) x 2
    :伤心xx) = 2x+4 和 g(x) = (12) x-2

    f ( g ( x ) ) = 2 ( ( 1 2 ) x 2 ) + 4 = ( 2 2 ) x 4 + 4 = ( 2 2 ) x = x g ( f ( x ) ) = g ( 2 x + 4 ) = ( 1 2 ) ( 2 x + 4 ) 2 = x + 2 2 = x .

    ::f(g(xx))=2((12x-2)+4=(22x)x-4+4=(22x)xxx(f(x)x))=g(2x+4)=(12)(2x+4)-2=x+2-2=x。

    In this case, the composites are equal to each other, and they both equal x , the original input into the function. This means that there is a special relationship between these two functions. We will examine this relationship in later concepts. It is important to note, however, that  f ( g ( x ) ) is not necessarily equal to g ( f ( x ) ) .
    ::在这种情况下,复合物彼此平等,它们都等于函数的原始输入x。这意味着这两个函数之间存在特殊关系。我们将在以后的概念中研究这种关系。但必须指出,f(g(x)不一定等于g(f(x))。

    When we compose functions, we are combining two (or more) functions by inputting the output of one function into another. We can also decompose a function. Consider the function f ( x ) = ( 2 x + 1 ) 2 . We can decompose this function into an “inside” and an “outside” function. For example, we can construct  f ( x ) = ( 2 x + 1 ) 2 with a linear function and a quadratic function . If  g ( x ) = x 2 and h ( x ) = ( 2 x + 1 ) , then f ( x ) = g ( h ( x ) ) . The linear function  h ( x ) = ( 2 x + 1 ) is the inside function, and the quadratic function  g ( x ) = x 2 is the outside function.
    ::当我们组成函数时, 我们通过将一个函数的输出输入到另一个函数中, 将两个( 或更多) 函数合并。 我们还可以分解一个函数。 将函数 f( x) = (2x+1) 2 。 我们可以将此函数分解成“ 内侧” 和“ 外侧” 函数。 例如, 我们可以构造 f( x) = (2x+1) 2, 带有线性函数和四方函数。 如果 g( x) =x2 和 h( x) = (2x+1) , 那么 f( x) = g( h) x) 。 线性函数 h( x) = (2x+1) 是内部函数, 而四方函数 g( x) =x2 是外部函数 。

    The decomposition of a function is not necessarily unique. For example, there are many ways that we could express a linear function as the composition of other .
    ::函数的分解不一定是独一无二的。 例如,我们可以以多种方式将线性函数表达为其他函数的构成。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to find  f ( g ( x ) )  if  f ( x ) = x + 2 , and g ( x ) = 2 x + 4 .
    ::早些时候,如果f(x)=x+2和g(x)=2x+4,您被要求找到 f(g(x)x) 。

    f ( g ( x ) ) = f ( 2 x + 4 ) = ( 2 x + 4 ) + 2 = 2 x + 6
    ::f( g( x)) = f( 2x+4) = ( 2x+4) +2= 2x+6

    Once you get the idea, composite functions aren’t as difficult as they look!
    ::综合功能不会像看起来那么困难!

    Example 2
    ::例2

    Given:   f ( x ) = 5 x + 3  and  g ( x ) = 3 x 2
    ::给定值: f( x) =5x+3 和 g( x) = 3x2

    Find: f ( g ( 4 ) )
    ::查找:f(g(4))

    To find f ( g ( 4 ) ) , we need to know what  g ( 4 ) is, so we know what to substitute into f ( x ) :
    ::要找到f(g(4)),我们需要知道g(4)是什么, 所以我们知道什么可以替代 f(x) :

    Substitute 4 for  x for the function g ( x ) , giving: 3 4 2
    ::函数 g(x) 的 x 替代 4 , 给: 342

    Simplify: 3 16 = 48
    ::简化: 316=48

    g ( 4 ) = 48
    ::*g(4)=48

    Substitute 48 for the  x in the function f ( x ) giving: 5 ( 48 ) + 3
    ::函数 f( x) 给付: 5( 48)+3 中 x x 的替代值为 48

    Simplify: 240 + 3 = 243
    ::简化: 240+3=243

    f ( g ( 4 ) ) = 243
    ::f(g(4))=243

    Example 3
    ::例3

    Given :  %3D7n%2B1%2B4(g否)"> h ( n ) = 7 n + 1 + 4 ( g ( n ) ) g ( t ) = t , and  f ( x ) = 2 x + g ( x )
    ::给定 : h( n) = 7n+1+4( g( n) ) g( t) t 和 f( x) 2x+g( x)

    Find: f ( h ( 5 ) )
    ::查找:f(h(-5))

    First, let’s solve for the value of the inner function, h ( 5 ) . Then we'll know what to plug into the outer function.
    ::首先,让我们解决内部函数, h(-5) 的价值问题, 然后我们就会知道外部函数中要插入什么。

    h ( 5 ) = ( 7 ) ( 5 ) + 1 + 4 ( g ( 5 ) )
    ::h(-5)=(7)(-5)+1+4(g(-5))

    To solve for the value of h , we need to solve g ( 5 )
    ::要解决 h 值, 我们需要解决 g( - 5) 。

    g ( 5 ) = ( 5 ) g ( 5 ) = 5

    ::g(-5)________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    Now we have: h ( 5 ) = ( 7 ) ( 5 ) + 1 + ( 4 ) ( 5 )
    ::现在我们有:h(-5)=(7)(-5)+1+(4)(5)

    Simplify to get: h ( 5 ) = 14
    ::简化以获得: h(- 5) @% 14

    Now we know that h ( 5 ) = 14 . That tells us that f ( h ( 5 ) ) is f ( 14 )
    ::也就是说f(h(-5))是f(-14)

    Find f ( 14 ) = ( 2 ) ( 14 ) + g ( 14 )
    ::查找 f( - 14) = (-2)( - 14)+g( - 14)

    So to solve for the value of f ( 14 ) , we need to solve for the value of g ( 14 )
    ::因此,要解决f(-14)的值,我们需要解决g(-14)的值

    g ( 14 ) = ( 14 ) g ( 14 ) = 14

    ::g( - 14) ( - 14) ( - 14) g( - 14) =14

     Now we can finish up!
    ::现在我们可以完成!

    f ( 14 ) = ( 2 ) ( 14 ) + 14 f ( 14 ) = 42

    ::f( - 14) = (-2) (-14) +14f(-14) = 42

    Example 4
    ::例4

    Given:  g ( x ) = 5 x 2  and   h ( x ) = 5 x 2 2 x 4 ( g ( x ) )
    ::g(x)=5x2和h(x)=5x2-2-2x-4(g(x))

    Find:   h ( g ( 1 ) )
    ::查找: h( g( - 1))

    First, solve for the value of the inner function  g ( 1 ) to find what to plug into the outer function h ( g ( 1 ) )
    ::首先,解决内部函数 g(-1) 的值, 以找到在外部函数 h( g( 1) ) 中插入什么

    g ( 1 ) = 5 ( 1 ) 2 g ( 1 ) = 5 1 g ( 1 ) = 5

    ::g( - 1) =5( - 1) 2g( - 1) = 5- 1) \\\ \\ \ g( 1) =5

    Next, solve for  h ( g ( 1 ) ) which we now know is: h ( 5 )
    ::下一步, h( g( - 1)) 的解决方案, 我们现在知道是: h(5) 。

    h ( 5 ) = 5 ( 5 2 ) + ( 2 ) ( 5 ) 4 ( g ( 5 ) )
    ::h(5)=5(52)+(-2)(5)-4(g(5))

    To solve for the value of h , we need to solve for the value of g ( 5 ) .
    ::要解决 h 的值, 我们需要解决 g(5) 的值 。

    g ( 5 ) = 5 ( 5 2 ) g ( 5 ) = 125 h ( 5 ) = 5 ( 5 2 ) + ( 2 ) ( 5 ) + ( 4 ) ( 125 )

    ::g(5)=5(52)g(5)=125h(5)=5(52)+(-2)(5)+(-4)(125)

    Finally: h ( 5 ) = 385
    ::最后:h(5)____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    Review 
    ::回顾

    For #1-4, given  f ( x ) = 2 x 1 and  g ( x ) = 3 x and h ( x ) = x 2 + 1 , find the indicated function. 
    ::对于 # 1-4, 给定 f( x) = 2x- 1 和 g( x) = 3x 和 h( x) = x2+ 1, 找到指定的函数 。

    1. f ( g ( 3 ) )
      :伤心g( 3) )
    2. f ( h ( 7 ) )
      ::f(h(7))
    3. h ( g ( 4 ) )
      :伤心g(- 4))
    4. f ( g ( h ( 2 ) ) )
      :伤心fg(h(2)))
    1. Given: f ( x ) = 5 x + 2 and g ( x ) = 1 2 x + 4 Find f ( g ( 12 ) )
      ::给定 : f( x) =% 5x+2 和 g( x) = 12x+4 查找 f( g( 12) )
    2. Given: g ( x ) = 3 x + 6 and h ( x ) = 9 x + 3 Find g ( h ( 1 3 ) )
      ::给定 : g( x) @%%%3x+6 和 h( x)= 9x+3 查找 g( h) (13)
    3. Given:  f ( x ) = 1 5 x + 4 and  g ( x ) = 4 x 2 Find f ( g ( 10 ) )
      ::给定 : f( x) 15x+4 和 g( x) = 4x2 查找 f( g(10))
    4. Given:  g ( x ) = 3 | x 4 | + 6 and  h ( x ) = x 3 Find h ( g ( 4 ) )
      ::g( x) = 3 x- 46 和 h( x) x3 查找 h( g(4))
    5. Given:  f ( x ) = x + 2 and  g ( x ) = | 2 x | Find g ( f ( 7 ) )
      ::给定 : f( x) =x+2 和 g( x) =% 2x = 查找 g( f( - 7) )
    6. Given  f ( x ) = 3 x + 2 and given  g ( x ) = 2 x 2 and given  h ( x ) = 4 | 7 x | + 6 Find f ( g ( h ( 1 ) ) )
      ::给定 f( x)\\\\%3x+2 和给定 g( x)= 2x2 和给定 h( x)= 4\\\\\\\\ x#6 查找 f( g( h(1)))
    7. Given  f ( x ) = ( 3 ) and given  g ( x ) = 2 x and given  h ( x ) = | 4 x | 12 Find f ( h ( g ( 18 ) ) )
      ::给定 f(x) = (-3) 和给定 g(x) = 2x 和给定 h(x) = 4x = 12 Find f红心 g(18) )
    8. Are compositions commutative? In other words, does f ( g ( x ) ) = g ( f ( x ) ) ?
      ::构成是否具有通融性?换句话说,f(g(x))=g(f(x))?
    9. Given: f ( x ) = 2 2 5 x and h ( x ) = 3 x + 2 .  Find f ( h ( x ) )
      ::给出的 f( x)\\\\\\\\\\\\5x和 h( x)=3x+2. 查找 f( h( x))
    10. Two functions are inverses of each other if  f ( g ( x ) ) = x and g ( f ( x ) ) = x . If f ( x ) = x + 3 , find its inverse: g ( x ) .
      ::如果 f( g( x)) =x 和 g( f( f( x) ) =x, 如果 f( x) =x+3 发现其反义: g( x) , 则两个函数是反义 。
    11. A toy manufacturer has a new product to sell. The number of units to be sold, n , is a function of the price  p such that:  n ( p ) = 30 25 p . The revenue  r earned from the sales is a function of the number of units sold  n such that:  %3D1000%20-%20%5Cfrac%7B1%7D%7B4%7Dx%5E2"> r ( n ) = 1000 1 4 x 2 Find the function for revenue in terms of price, p .
      ::玩具制造商有一个新的产品要出售。要出售的单位数目 n 取决于价格p, 即:n(p)=30-25p。销售所得的收入是售出的单位数目的函数,即:r否=1000-14x2,从价格上找出收入的函数,p。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。