3.5 区别规则:总和和和差异
章节大纲
-
Based on your knowledge of the limit definition of the derivative of a function, and the discussed in a previous concept, can you make a prediction at this time how the derivative of a sum or difference of two functions should be determined?
::根据你对函数衍生物的限值定义的了解,以及前一个概念中的讨论,你目前能否预测如何确定两个函数的总和或差数的衍生物?Differentiation of Sums and Differences
::合计和差额的差别Here are the differentiation rules for the sum and difference of two functions:
::以下是关于两项职能之和和差的区别规则:If and are two differentiable functions at then
::如果 f 和 g 是 x x 时两个可区别的函数, 那么
::ddx[f(x)+g(x)]=ddx[f(x)]+ddx[g(x)]和ddx[f(x)-g(x)]=dddx[f(x)]-dddx[g(x)]In simpler notation
::更简便的符号
::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}(fg) {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}(fg) {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}(fg) {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}(fg)Using the limit properties of previous chapters should allow you to figure out why these differentiation rules apply.
::使用前几章的限制性能应能使你了解为什么适用这些区别规则。You often need to apply multiple rules to find the derivative of a function. To find the derivative of , you need to apply the sum of formula and the power rule:
::您通常需要应用多个规则来查找函数的衍生物。要找到 f( x) =3x2+2x的衍生物,您需要应用公式和权力规则的总和:
::ddx[3x2+2x]=ddx[3x2]+ddx[2x]=3ddx[x2]+2ddx[x2]+2ddx[x]=3[2x]+2[1]=6x+2Examples
::实例Example 1
::例1Earlier, you were asked to make a prediction for the sum and differences of derivatves.
::早些时候,有人要求你对衍生物的总和和差异作出预测。In a previous concept, you learned that if the limits exist:
::在前一个概念中,你了解到,如果存在限度:
:xxxxxxxxxxxxxxxx)= limx*5xxxxxx=xxxxxxx=ag(x)x,
Since the derivative of a function is defined by a limit, would be defined by limit applied to . Work out the details to see that the above rules make sense.
::由于函数的衍生物由限值来定义,ddx[f(x)g(x)]将根据适用于[f(x)g(x)]的限值来定义ddx[f(x)g(x)]。Example 2
::例2Given: , what is when
::给定值: t( x) =x- 1, x=0 时 dtdx 是什么By the difference rule:
::区别规则x-1)________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
..... By the power rule
::X1. . . . . . . . . . . . . . . . . . . ...... The derivative of a constant = 0
::10 .... 恒定值=0的衍生物So when we evaluate this at , we get 1, since
::所以当我们用x=0来评估这个时, 我们从1到0=1得到1Example 3
::例3Find the derivative:
::查找衍生物: f( x) =x3 - 5x2Use the difference and power rules to help:
::使用差异和权力规则帮助:
::ddx[x3-5x2]=ddx[x3]-5ddx[x2]=3x2]-5[2x]=3x2-10xExample 4
::例4Given . What is ?
::给定 a( x) x- 054+6x4。 什么是 dxa( x) ?We'll use the sum and power rules:
::我们将使用总和和权力规则:
::ddx( x- 054+6x4) =ddx( x-0. 54) +ddx( 6x4. ). 按规则总和 ddx( x-0. 54) +6ddx( x4. ). 按常数 - 常数 - 产品规则= 0.54xx- 1.54+24x3. 根据权力规则...Review
::回顾For #1-7, find the derivative using the sum/difference rule
::对于 # 1-7, 使用总和/异差规则查找衍生物-
::y=12(x3- 2x2+1) -
::y=2x3- 12x2+2x+2 -
(where
are constants)
::y=a2-b2+x2-a-b+x(a,b为常数) -
::y=x - 3+1x7 y=x - 3+1x7 -
::y=x+1x y=x+1x -
:xx) = (- 3x+4) 2
-
:xx) 0.93x10+(x3x) -512
-
What is
?
::ddx( 2x+1) 是什么 ? -
Given:
What is
?
::说明:a(x)=(-5x+3)2 -
What is
?
::v(x) 3x3+5x2-2x-3 什么是 v_(0)? -
. Find
.
::f(x) = 2x2+3x+1. 查找 f_(x) 。 -
. Find
.
::f(x) = 1x- 1x. 查找 f_(1) 。 -
. Evaluate
at
::y= (x+1) (x+2) 。 x @ 12 时评价 dydx 值 。 -
. Find
.
::f( x) = 2ax3+x2; f}( 2) = 0。 查找 a 。 -
; find
so that
.
::f(x) =a(x2-5); 找到f(5) =20。
Review (Answers)
::回顾(答复)Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。 -