章节大纲

  • Based on your knowledge of the limit definition of the derivative of a function, and the discussed in a previous concept, can you make a prediction at this time how the derivative of a sum or difference of two functions should be determined?
    ::根据你对函数衍生物的限值定义的了解,以及前一个概念中的讨论,你目前能否预测如何确定两个函数的总和或差数的衍生物?

    Differentiation of Sums and Differences
    ::合计和差额的差别

    Here are the differentiation rules for the sum and difference of two functions:
    ::以下是关于两项职能之和和差的区别规则:

    If  f and  g are two differentiable functions at x  then
    ::如果 f 和 g 是 x x 时两个可区别的函数, 那么

    d d x [ f ( x ) + g ( x ) ] = d d x [ f ( x ) ] + d d x [ g ( x ) ] and d d x [ f ( x ) g ( x ) ] = d d x [ f ( x ) ] d d x [ g ( x ) ]

    ::ddx[f(x)+g(x)]=ddx[f(x)]+ddx[g(x)]和ddx[f(x)-g(x)]=dddx[f(x)]-dddx[g(x)]

    In simpler notation
    ::更简便的符号

    ( f ± g ) = f ± g .

    ::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}(fg) {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}(fg) {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}(fg) {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}(fg)

    Using the limit properties of previous chapters should allow you to figure out why these differentiation rules apply.
    ::使用前几章的限制性能应能使你了解为什么适用这些区别规则。

    You often need to apply multiple rules to find the derivative of a function. To find the derivative of  f ( x ) = 3 x 2 + 2 x , you need to apply the sum of formula and the power rule:
    ::您通常需要应用多个规则来查找函数的衍生物。要找到 f( x) =3x2+2x的衍生物,您需要应用公式和权力规则的总和:

    d d x [ 3 x 2 + 2 x ] = d d x [ 3 x 2 ] + d d x [ 2 x ] = 3 d d x [ x 2 ] + 2 d d x [ x ] = 3 [ 2 x ] + 2 [ 1 ] = 6 x + 2

    ::ddx[3x2+2x]=ddx[3x2]+ddx[2x]=3ddx[x2]+2ddx[x2]+2ddx[x]=3[2x]+2[1]=6x+2

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were asked to make a prediction for the sum and differences of derivatves. 
    ::早些时候,有人要求你对衍生物的总和和差异作出预测。

    In a previous concept, you learned that if the limits exist:
    ::在前一个概念中,你了解到,如果存在限度:

    lim x a [ f ( x ) ± g ( x ) ] = lim x a f ( x ) ± lim x a g ( x ) ,

    :伤心xxxxxxxxxxxxxxxx)= limx*5xxxxxx=xxxxxxx=ag(x)x,

    Since the derivative of a function is defined by a limit, d d x [ f ( x ) ± g ( x ) ]  would be defined by limit applied to [ f ( x ) ± g ( x ) ] . Work out the details to see that the above rules make sense.
    ::由于函数的衍生物由限值来定义,ddx[f(x)g(x)]将根据适用于[f(x)g(x)]的限值来定义ddx[f(x)g(x)]。

    Example 2
    ::例2

    Given: t ( x ) = x 1 , what is d t d x  when x = 0
    ::给定值: t( x) =x- 1, x=0 时 dtdx 是什么

    By the difference rule: ( x 1 ) = ( x ) ( 1 ) = 0
    ::区别规则伤心x-1)________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

    x = 1  ..... By the power rule
    ::X1. . . . . . . . . . . . . . . . . . . .

    1 = 0  ..... The derivative of a constant = 0
    ::10 .... 恒定值=0的衍生物

    So when we evaluate this at x = 0 , we get 1, since 1 0 = 1
    ::所以当我们用x=0来评估这个时, 我们从1到0=1得到1

    Example 3
    ::例3

    Find the derivative: f ( x ) = x 3 5 x 2
    ::查找衍生物: f( x) =x3 - 5x2

    Use the difference and power rules to help:
    ::使用差异和权力规则帮助:

    d d x [ x 3 5 x 2 ] = d d x [ x 3 ] 5 d d x [ x 2 ] = 3 x 2 5 [ 2 x ] = 3 x 2 10 x

    ::ddx[x3-5x2]=ddx[x3]-5ddx[x2]=3x2]-5[2x]=3x2-10x

    Example 4
    ::例4

    Given a ( x ) = π x 0.54 + 6 x 4 . What is d d x a ( x ) ?
    ::给定 a( x) x- 054+6x4。 什么是 dxa( x) ?

    We'll use the sum and power rules:
    ::我们将使用总和和权力规则:

    d d x ( π x 0.54 + 6 x 4 ) = d d x ( π x 0.54 ) + d d x ( 6 x 4 ) By the sum rule = π d d x ( x 0.54 ) + 6 d d x ( x 4 ) By the Constant - function Product rule = 0.54 π x 1.54 + 24 x 3 By the power rule

    ::ddx( x- 054+6x4) =ddx( x-0. 54) +ddx( 6x4. ). 按规则总和 ddx( x-0. 54) +6ddx( x4. ). 按常数 - 常数 - 产品规则= 0.54xx- 1.54+24x3. 根据权力规则...

    Review
    ::回顾

    For #1-7, find the derivative using the sum/difference rule
    ::对于 # 1-7, 使用总和/异差规则查找衍生物

    1. y = 1 2 ( x 3 2 x 2 + 1 )
      ::y=12(x3- 2x2+1)
    2. y = 2 x 3 1 2 x 2 + 2 x + 2
      ::y=2x3- 12x2+2x+2
    3. y = a 2 b 2 + x 2 a b + x  (where  a , b are constants)
      ::y=a2-b2+x2-a-b+x(a,b为常数)
    4. y = x 3 + 1 x 7
      ::y=x - 3+1x7 y=x - 3+1x7
    5. y = x + 1 x
      ::y=x+1x y=x+1x
    6. f ( x ) = ( 3 x + 4 ) 2
      :伤心xx) = (- 3x+4) 2
    7. f ( x ) = 0.93 x 10 + ( π 3 x ) 5 12
      :伤心xx) 0.93x10+(x3x) -512
    8. What is d d x ( 2 x + 1 ) 2 ?
      ::ddx( 2x+1) 是什么 ?
    9. Given:  a ( x ) = ( 5 x + 3 ) 2 What is d y d x ?
      ::说明:a(x)=(-5x+3)2
    10. v ( x ) = 3 x 3 + 5 x 2 2 x 3  What is v ( 0 ) ?
      ::v(x) 3x3+5x2-2x-3 什么是 v_(0)?
    11. f ( x ) = 2 x 2 + 3 x + 1 . Find f ( x ) .
      ::f(x) = 2x2+3x+1. 查找 f_(x) 。
    12. f ( x ) = 1 x 1 x . Find f ( 1 ) .
      ::f(x) = 1x- 1x. 查找 f_(1) 。
    13. y = ( x + 1 ) ( x + 2 ) . Evaluate  d y d x at x = 1 2
      ::y= (x+1) (x+2) 。 x @ 12 时评价 dydx 值 。
    14. f ( x ) = 2 a x 3 + x 2 ; f ( 2 ) = 0 . Find a .
      ::f( x) = 2ax3+x2; f}( 2) = 0。 查找 a 。
    15. f ( x ) = a ( x 2 5 ) ; find  a so that f ( 5 ) = 20 .
      ::f(x) =a(x2-5); 找到f(5) =20。

    Review (Answers)
    ::回顾(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。