Section outline

  • A business wants to determine how much money it should spend on advertising to generate $40,000 in profit. If the formula is  P = 500 a a , where a is the amount spent on advertising and  P is the profit, how much does this business need to spend on advertising?  
    ::一个企业想要决定它应该花在广告上多少钱来产生40,000美元的利润。 如果公式是P=500a-a,那么广告和P是利润,这个企业需要花在广告上多少钱?

    In this section, we discuss more complicated radical equations like this one. 
    ::我们在本节讨论更复杂的激进方程式, 比如这个方程式。

    lesson content

    Solving Radical Equations
    ::解决激进等号

    In this concept, we will continue solving radical equations. Here we will address variables and radicals on both sides of the equation .
    ::在这个概念中,我们将继续解决激进方程式问题,在这里我们将处理方程式两侧的变数和激进方程式问题。

      Solving Equations with More Than One Radical Expression
    ::用多于一个的激进表达式解析等式

    Isolate only one radical expression at a time, and follow the same steps from the previous section.

    Example 1
    ::例1

    Solve 4 x + 1 x = - 1 .
    ::解决 4x+1 -x=1。

    Solution: Now we have an x that is not under the radical. Our steps do not change—that is, we still isolate the radical 1st.
    ::解决方案:现在我们有一个不处于激进下的x。我们的步骤不会改变,也就是说,我们仍然孤立了激进的1号。

    4 x + 1 x = - 1 4 x 1 = x 1

    ::4x+1-x=-14x-1=x-1

    Now, we can square both sides. Be careful when squaring x 1 ; the answer is not x 2 1 .
    ::现在, 我们可以将两边平开。 当对齐 x - 1 时要小心; 答案不是 x2 - 1 。

    ( 4 x + 1 ) 2 = ( x 1 ) 2 4 x + 1 = x 2 2 x + 1

    :sad4x+1)2=(x-1)24x+1=x2-2x+1

    This problem has a quadratic term . Combine like terms and set one side equal to 0. From there we can solve by factoring.
    ::这个问题有一个二次词。 将类似条件合并, 并设定一面等于 0。 从那里我们可以通过保理解决 。

    4 x + 1 = x 2 2 x + 1 0 = x 2 6 x 0 = x ( x 6 ) x = 0   or   x = 6

    ::4x+1=x2-2x+10=x2-6x0=x(x-6)xx=0或x=6

    Checking both solutions remains especially important.
    ::检查这两种解决办法仍然特别重要。

     

    4 ( 0 ) + 1 1 = 0 + 1 1 = 1 1 = 0 - 1 0 is an extraneous solution.

    ::4(0)+1-1=0+1-1=1-1=1-1=0-10是一种不相干的解决办法。

    4 ( 6 ) + 1 6 = 24 + 1 6 = 5 6 = - 1

    Therefore , 6 is the only solution.
    ::因此,6是唯一的解决办法。

    Example 2
    ::例2

    A business wants to determine how much money it should spend on advertising to generate $40,000 in profit. If the formula is P = 500 a a , where a  is the amount spent on advertising, and P is the profit, how much does this business need to spend on advertising?    
    ::一个企业想要决定它应该花在广告上多少钱来产生40,000美元的利润。 如果公式是P=500a-a,那么在广告上花费的数额在哪里,而P是利润,那么这个企业需要花在广告上多少钱?

    Solution:  We proceed as we did in the previous example. 
    ::解决办法:我们与前一个例子一样行事。

    40 , 000 = 500 a a 40 , 000 + a = 500 a 40 , 000 + a 500 = a ( 40 , 000 + a 500 ) 2 = ( a ) 2 ( 40 , 000 + a ) 2 500 2 = a 1 , 600 , 000 , 000 + 80 , 000 a + a 2 250 , 000 = a 6 , 400 + 0.32 a + a 2 250 , 000 = a a 2 250 , 000 0.68 a + 6 , 400 = 0

    ::40,000=500a-a40,000+a=500a40,000+a500=a(40,000+a500)2=(a)(a)(40,000+a)25002=a1,600,000,000+80,000+a2250,000=a6,400,000+a(a)+0.32a+a2250,000=aa2250,000-0.68a+6,400=0

    Let's use the quadratic formula to solve this. 
    ::我们用二次方程式解决这个问题吧

    a = - ( - 0.68 ) ± ( - 0.68 ) 2 4 ( 1 250 , 000 ) ( 6 , 400 ) 2 ( 1 250 , 000 ) = 0.68 ± 0.464 0.1024 1 125 , 000 = 0.68 ± 0.60 1 125 , 000 a = 10 , 000         or       a = 160 , 000

    ::a=-(-0.68)](-0.68)/2-4(1250,000)(6,400)(2,250,000)=0.680.464-0.1024.1125,000=0.68×0.0.0.60115,000a=10,000或a=160,000)

    Let's hope that, for $40,000 in profit, you need to spend only $10,000.  
    ::让我们希望,对于4万美元的利润, 你只需要花一万块。

    40 , 000 = 500 10 , 000 10 , 000 40 , 000 = 500 100 10 , 000 40 , 000 = 50 , 000 10 , 000 40 , 000 = 40 , 000 40 , 000 = 500 160 , 000 160 , 000 40 , 000 = 500 400 160 , 000 40 , 000 = 200 , 000 160 , 000 40 , 000 = 40 , 000

    Even though $10,000 and $160,000 both check, it makes more sense to keep costs down and spend only $10,000.  
    ::虽然两张支票都核对了10 000美元和160 000美元,但降低成本和只支出10 000美元更有意义。

    by cpfaffinator demonstrates how to solve radical . 
    ::由折叠器演示如何解析激进 。

     

    Example 3
    ::例3

    Solve 8 x 11 3 x + 19 = 0 .
    ::解决 8x- 11- 3x+19=0 。

    Solution: In this example, you need to isolate one radical at a time. To do this, add the 2nd radical to both sides. Then square both sides.
    ::解决方案 : 在此示例中, 您需要一次孤立一个激进分子 。 要做到这一点, 请将第二激进分子加入到两边 。 然后将两边平开 。

    8 x 11 3 x + 19 = 0 ( 8 x 11 ) 2 = ( 3 x + 19 ) 2 8 x 11 = 3 x + 19 5 x = 30 x = 6

    ::8-11-3x+19=0(8x-11)2=(3x+19)28x-11=3x+19x=3x=195x=30x=6

    Check: 8 ( 6 ) 11 3 ( 6 ) + 19 = 48 11 18 + 19 = 37 37 = 0
    ::检查时间: 8(6)-11-3(6)+19=48-11-18+19=37-37=0

    Example 4
    ::例4

    Solve  4 x 3 24 3 = x .
    ::解决 4x3 -243=x

    Solution: The radical is isolated. Cube both sides to eliminate the cube root .
    ::解答:激进分子是孤立的。立方体两边消灭立方根。

    ( 4 x 3 24 3 ) 3 = x 3 4 x 3 24 = x 3 - 24 = - 3 x 3 8 = x 3 2 = x

    :sad4x3-2433)3=x34x3-24=x3-24=-3x38=x32=x

    Check: 4 ( 2 ) 3 24 3 = 32 24 3 = 8 3 = 2
    ::查询:4(2)3-243=32-243=83=2

    Example 5
    ::例5

    Solve ( 2 x 2 1 ) 1 4 = x .
    ::溶解 (2x2- 1) 14=x.

    Solution: The radical is isolated. To eliminate it, we must raise both sides to the 4th power.
    ::解决方案:激进分子是孤立的。为了消灭它,我们必须将双方提升到第四势力。

    ( ( 2 x 2 1 ) 1 4 ) 4 = x 4 2 x 2 1 = x 4 0 = x 4 2 x 2 + 1 0 = ( x 2 1 ) ( x 2 1 ) 0 = ( x 1 ) ( x + 1 ) ( x 1 ) ( x + 1 ) x = 1   or   - 1

    :sad( 2x2 - 1) 14) 4=x42x2 - 1=x40=x40=x4=- 2x2+10=( x2 - 1) (x2 - 1) (x2 - 1) 0=( x-1) (x1) (x1) (x1) (x+1) (x+1) (x+1)x=1 或 -1

    Check:

    2 ( 1 ) 2 1 4 = 2 1 4 = 1 4 = 1 2 ( 1 ) 2 1 4 = 2 1 4 = 1 4 = 1

    ::检查: 2(1)2 - 14=2 - 14=14=14=12( - 1) - 2 - 14=2 - 14=14=1

    Example 6
    ::例6

    Solve - 2 ( x 5 ) 3 4 + 48 = - 202 .
    ::解决 - (2x-5) 34+48=-202。

    Solution: Isolate ( x 5 ) 3 4 by subtracting 48 and dividing by - 2 .
    ::解决办法:孤立(x-5-5)34,减去48,除以-2。

    - 2 ( x 5 ) 3 4 + 48 = - 202 - 2 ( x 5 ) 3 4 = - 250 ( x 5 ) 3 4 = 125

    :sad2x-5534+48=-202-2(x-55)34=-250(x-55)34=125

    To undo the 3/4 power, raise everything to the 4/3 power.
    ::推翻3/4权力 将一切提升到4/3权力

    [ ( x 5 ) 3 4 ] 4 3 = 125 4 3 x 5 = 625 x = 630

    ::[(x--534)]43=12543x-5=625x=630

    Check: - 2 ( 630 5 ) 3 4 + 48 = - 2 625 3 4 + 48 = - 2 125 + 48 = - 250 + 48 = - 202
    ::检查: -2( 630- 55) 3434+48=-262534+48=-2125+48=- 250+48=- 202

    by HCCMathHelp demonstrates how to solve and rational exponents. 
    ::HCCMathHelp展示了如何解决和理性的推手。

     

    Summary
    ::摘要

    • To solve rational equations with variables on both sides, isolate one radical expression at a time and follow the steps as in the previous section.
      ::解决双方有变量的合理方程式,一次孤立一个激进表达式,并遵循前一节中的步骤。

    Review
    ::回顾

    Solve the radical equations below. Be sure to check for extraneous solutions.
    ::解决下面的激进方程式。 请务必检查不相干的解决办法 。

    1.  x 3 = x 5
    ::1. x-3=x-5

    2.  x + 3 + 15 = x 12
    ::2. x+3+15=x-12

    3.  3 x 2 + 54 4 = x
    ::3. 3x2+544=x

    4.  x 2 + 60 = 4 x
    ::4. x2+60=4x

    5.  x 4 + 5 x 3 = 2 2 x + 10
    ::5. x4+5x3=22x+10

    6.  x = 5 x 6
    ::6. x=5x-6

    7.  3 x + 4 = x 2
    ::7. 3x+4=x-2

    8.  x 3 + 8 x 9 x 2 60 = 0
    ::8. x3+8x-9x2-60=0

    9.  x = 4 x + 4 x 2 3
    ::9. x=4x+4-x23

    10.  x 3 + 3 4 = 2 x + 3 4
    ::10. 3+34=2x+34

    11.  x 2 42 x 2 + 343 = 0
    ::11. x2 - 42x2+343=0

    12.  x x 2 21 = 2 x 3 25 x + 25
    ::12.xx2-21=2x3-25x+25

    13.  3 x 1 3 + 5 = 17
    ::13. 3x13+5=17

    14.  ( 7 x 3 ) 2 5 = 4
    ::14. (7x-3-3)25=4

    15.  ( 4 x + 5 ) 1 2 = x 4
    ::15. (4x+5)12=x-4

    16.  ( 7 x 8 ) 2 3 = 4 ( x 5 ) 2 3
    ::16. (7x-8)23=4(x-5)23

    17.  4997 = 5 x 3 2 3
    ::17.4997=5x32-3

    For questions 18-20, you will need to use the method illustrated in the example below.
    ::对于问题18-20,你将需要使用下面示例中说明的方法。

    x 15 = x 3 ( x 15 ) 2 = ( x 3 ) 2 x 15 = x 6 x + 9 - 24 = - 6 x ( 4 ) 2 = ( x ) 2 16 = x

    ::x- 15=x-3(x- 15) 2=(x-3) 2x- 15=x-6x+9-24=6-24=6x(4)2=(x) 216=x

    1. Square both sides
      ::两边广场
    2. Combine like terms to isolate the remaining radical.
      ::结合一些术语来隔离剩下的激进分子
    3. Square both sides again to solve.
      ::双方重开广场解决

    Check: Do not forget to check your answers for extraneous solutions.
    ::选中 : 不要忘记检查您对不相干解决方案的答案 。

    16 15 = 16 3 1 = 4 3 1 = 1

    by CK-12 demonstrates how to solve special cases of radical equations.
    ::CK-12展示了如何解决激进方程式的特殊情况。

     

    18.  x + 11 2 = x 21
    ::18. x+11-2=x-21

    19.  x 6 = 7 x 22
    ::19. x-6=7x-22

    20.  2 + x + 5 = 4 x 7
    ::20. 2+x+5=4x-7

    Explore More
    ::探索更多

    1.  The legs of a right triangle measure 12 and x + 1 . The hypotenuse measures 7 x + 1 . What are the lengths of the sides with the unknown values?
    ::1. 右三角的双腿测量12和x+1。 下限测量7x+1。 具有未知值的两边长度是多少?

    2.  The period (in seconds) of a pendulum with a length of L (in meters) is given by the formula 1 P = 2 π ( L 9.8 ) 1 2 . If the period of a pendulum is   10 π ,  what is  the length of the pendulum?
    ::2. 长度为L(米)的钟摆的时段(秒)由公式1 P=2(L9.8)12给出。如果钟摆的时段为10,钟摆的时段长度是多少?

    3.  The hull speed, s , in nautical miles per hour of a sailboat can be modeled by the formula  s = 1.34 l , where l  is the length in feet of the sailboat's waterline 2 . Find the speed of a boat whose hull length is 10 feet. Round your answer to the nearest tenth of a nautical mile per hour.
    ::3. 帆船每小时的船体速度,S,每海里的船体速度,可按公式S=1.34l模拟,其中我为帆船水系足长2。 找到船体长度为10英尺的船只的速度。 请将回答回至每小时10海里的最接近10海里的速度。

    4.  The number of bacteria in a swimming pool after disinfection can be modeled by the equation y = 5 , 550 0.025 x + 0.1 , where x  is the number of minutes past. How many minutes later are there 3,000 bacteria left in the swimming pool?
    ::4. 消毒后游泳池中的细菌数量可以通过y=5 5500.025x+0.1等式进行模拟,后者是过去分钟的x。

    5.  The average amount of sewage discharged by a manufacturing plant (in tons per month) from 2001 to 2010 can be modeled by the equation y = 235 2 x + 0.75 , where x  is the number of years since 2000. In what year was 610 tons of sewage discharged per month?
    ::5. 以y=2352x+0.75的公式为模型模拟了2001年至2010年制造厂平均排污量(每月吨),2000年以来的年数是xx,2000年是610吨每月排污量?

    Answers for Review and Explore More Problems
    ::回顾和探讨更多问题的答复

    Please see the Appendix. 
    ::请参看附录。

    PLIX
    ::PLIX

    Try this interactive that reinforces the concepts explored in this section:
    ::尝试这一互动,强化本节所探讨的概念:

    References
    ::参考参考资料

    1. "Pendulum," last edited May 30, 2017,
    ::1. 2017年5月30日 上一次编辑的“Pendulum”,

    2. "Crunching Numbers: Hull Speed & Boat Length," by Charles Doane, posted March 26, 2010,
    ::2. Charles Doane于2010年3月26日上传“清理数字:超速和船长”,