10.6 解决双方具有变量的极端等式
Section outline
-
A business wants to determine how much money it should spend on advertising to generate $40,000 in profit. If the formula is , where a is the amount spent on advertising and P is the profit, how much does this business need to spend on advertising?
::一个企业想要决定它应该花在广告上多少钱来产生40,000美元的利润。 如果公式是P=500a-a,那么广告和P是利润,这个企业需要花在广告上多少钱?In this section, we discuss more complicated radical equations like this one.
::我们在本节讨论更复杂的激进方程式, 比如这个方程式。Solving Radical Equations
::解决激进等号In this concept, we will continue solving radical equations. Here we will address variables and radicals on both sides of the equation .
::在这个概念中,我们将继续解决激进方程式问题,在这里我们将处理方程式两侧的变数和激进方程式问题。Solving Equations with More Than One Radical Expression
::用多于一个的激进表达式解析等式Isolate only one radical expression at a time, and follow the same steps from the previous section.Example 1
::例1Solve .
::解决 4x+1 -x=1。Solution: Now we have an that is not under the radical. Our steps do not change—that is, we still isolate the radical 1st.
::解决方案:现在我们有一个不处于激进下的x。我们的步骤不会改变,也就是说,我们仍然孤立了激进的1号。
::4x+1-x=-14x-1=x-1Now, we can square both sides. Be careful when squaring ; the answer is not .
::现在, 我们可以将两边平开。 当对齐 x - 1 时要小心; 答案不是 x2 - 1 。
:4x+1)2=(x-1)24x+1=x2-2x+1
This problem has a quadratic term . Combine like terms and set one side equal to 0. From there we can solve by factoring.
::这个问题有一个二次词。 将类似条件合并, 并设定一面等于 0。 从那里我们可以通过保理解决 。
::4x+1=x2-2x+10=x2-6x0=x(x-6)xx=0或x=6Checking both solutions remains especially important.
::检查这两种解决办法仍然特别重要。
::4(0)+1-1=0+1-1=1-1=1-1=0-10是一种不相干的解决办法。Therefore , 6 is the only solution.
::因此,6是唯一的解决办法。Example 2
::例2A business wants to determine how much money it should spend on advertising to generate $40,000 in profit. If the formula is , where is the amount spent on advertising, and P is the profit, how much does this business need to spend on advertising?
::一个企业想要决定它应该花在广告上多少钱来产生40,000美元的利润。 如果公式是P=500a-a,那么在广告上花费的数额在哪里,而P是利润,那么这个企业需要花在广告上多少钱?Solution: We proceed as we did in the previous example.
::解决办法:我们与前一个例子一样行事。
::40,000=500a-a40,000+a=500a40,000+a500=a(40,000+a500)2=(a)(a)(40,000+a)25002=a1,600,000,000+80,000+a2250,000=a6,400,000+a(a)+0.32a+a2250,000=aa2250,000-0.68a+6,400=0Let's use the quadratic formula to solve this.
::我们用二次方程式解决这个问题吧
::a=-(-0.68)](-0.68)/2-4(1250,000)(6,400)(2,250,000)=0.680.464-0.1024.1125,000=0.68×0.0.0.60115,000a=10,000或a=160,000)Let's hope that, for $40,000 in profit, you need to spend only $10,000.
::让我们希望,对于4万美元的利润, 你只需要花一万块。Even though $10,000 and $160,000 both check, it makes more sense to keep costs down and spend only $10,000.
::虽然两张支票都核对了10 000美元和160 000美元,但降低成本和只支出10 000美元更有意义。by cpfaffinator demonstrates how to solve radical .
::由折叠器演示如何解析激进 。Example 3
::例3Solve .
::解决 8x- 11- 3x+19=0 。Solution: In this example, you need to isolate one radical at a time. To do this, add the 2nd radical to both sides. Then square both sides.
::解决方案 : 在此示例中, 您需要一次孤立一个激进分子 。 要做到这一点, 请将第二激进分子加入到两边 。 然后将两边平开 。
::8-11-3x+19=0(8x-11)2=(3x+19)28x-11=3x+19x=3x=195x=30x=6Check:
::检查时间: 8(6)-11-3(6)+19=48-11-18+19=37-37=0Example 4
::例4Solve .
::解决 4x3 -243=xSolution: The radical is isolated. Cube both sides to eliminate the cube root .
::解答:激进分子是孤立的。立方体两边消灭立方根。
:4x3-2433)3=x34x3-24=x3-24=-3x38=x32=x
Check:
::查询:4(2)3-243=32-243=83=2Example 5
::例5Solve .
::溶解 (2x2- 1) 14=x.Solution: The radical is isolated. To eliminate it, we must raise both sides to the 4th power.
::解决方案:激进分子是孤立的。为了消灭它,我们必须将双方提升到第四势力。
:( 2x2 - 1) 14) 4=x42x2 - 1=x40=x40=x4=- 2x2+10=( x2 - 1) (x2 - 1) (x2 - 1) 0=( x-1) (x1) (x1) (x1) (x+1) (x+1) (x+1)x=1 或 -1
Check:
::检查: 2(1)2 - 14=2 - 14=14=14=12( - 1) - 2 - 14=2 - 14=14=1Example 6
::例6Solve .
::解决 - (2x-5) 34+48=-202。Solution: Isolate by subtracting 48 and dividing by .
::解决办法:孤立(x-5-5)34,减去48,除以-2。
:2x-5534+48=-202-2(x-55)34=-250(x-55)34=125
To undo the 3/4 power, raise everything to the 4/3 power.
::推翻3/4权力 将一切提升到4/3权力
::[(x--534)]43=12543x-5=625x=630Check:
::检查: -2( 630- 55) 3434+48=-262534+48=-2125+48=- 250+48=- 202by HCCMathHelp demonstrates how to solve and rational exponents.
::HCCMathHelp展示了如何解决和理性的推手。Summary
::摘要-
To solve rational equations with variables on both sides, isolate one radical expression at a time and follow the steps as in the previous section.
::解决双方有变量的合理方程式,一次孤立一个激进表达式,并遵循前一节中的步骤。
Review
::回顾Solve the radical equations below. Be sure to check for extraneous solutions.
::解决下面的激进方程式。 请务必检查不相干的解决办法 。1.
::1. x-3=x-52.
::2. x+3+15=x-123.
::3. 3x2+544=x4.
::4. x2+60=4x5.
::5. x4+5x3=22x+106.
::6. x=5x-67.
::7. 3x+4=x-28.
::8. x3+8x-9x2-60=09.
::9. x=4x+4-x2310.
::10. 3+34=2x+3411.
::11. x2 - 42x2+343=012.
::12.xx2-21=2x3-25x+2513.
::13. 3x13+5=1714.
::14. (7x-3-3)25=415.
::15. (4x+5)12=x-416.
::16. (7x-8)23=4(x-5)2317.
::17.4997=5x32-3For questions 18-20, you will need to use the method illustrated in the example below.
::对于问题18-20,你将需要使用下面示例中说明的方法。
::x- 15=x-3(x- 15) 2=(x-3) 2x- 15=x-6x+9-24=6-24=6x(4)2=(x) 216=x-
Square both sides
::两边广场 -
Combine like terms to isolate the remaining radical.
::结合一些术语来隔离剩下的激进分子 -
Square both sides again to solve.
::双方重开广场解决
Check: Do not forget to check your answers for extraneous solutions.
::选中 : 不要忘记检查您对不相干解决方案的答案 。by CK-12 demonstrates how to solve special cases of radical equations.
::CK-12展示了如何解决激进方程式的特殊情况。18.
::18. x+11-2=x-2119.
::19. x-6=7x-2220.
::20. 2+x+5=4x-7Explore More
::探索更多1. The legs of a right triangle measure 12 and . The hypotenuse measures . What are the lengths of the sides with the unknown values?
::1. 右三角的双腿测量12和x+1。 下限测量7x+1。 具有未知值的两边长度是多少?2. The period (in seconds) of a pendulum with a length of L (in meters) is given by the formula 1 . If the period of a pendulum is what is the length of the pendulum?
::2. 长度为L(米)的钟摆的时段(秒)由公式1 P=2(L9.8)12给出。如果钟摆的时段为10,钟摆的时段长度是多少?3. The hull speed, , in nautical miles per hour of a sailboat can be modeled by the formula , where is the length in feet of the sailboat's waterline 2 . Find the speed of a boat whose hull length is 10 feet. Round your answer to the nearest tenth of a nautical mile per hour.
::3. 帆船每小时的船体速度,S,每海里的船体速度,可按公式S=1.34l模拟,其中我为帆船水系足长2。 找到船体长度为10英尺的船只的速度。 请将回答回至每小时10海里的最接近10海里的速度。4. The number of bacteria in a swimming pool after disinfection can be modeled by the equation , where is the number of minutes past. How many minutes later are there 3,000 bacteria left in the swimming pool?
::4. 消毒后游泳池中的细菌数量可以通过y=5 5500.025x+0.1等式进行模拟,后者是过去分钟的x。5. The average amount of sewage discharged by a manufacturing plant (in tons per month) from 2001 to 2010 can be modeled by the equation , where is the number of years since 2000. In what year was 610 tons of sewage discharged per month?
::5. 以y=2352x+0.75的公式为模型模拟了2001年至2010年制造厂平均排污量(每月吨),2000年以来的年数是xx,2000年是610吨每月排污量?Answers for Review and Explore More Problems
::回顾和探讨更多问题的答复Please see the Appendix.
::请参看附录。PLIX
::PLIXTry this interactive that reinforces the concepts explored in this section:
::尝试这一互动,强化本节所探讨的概念:References
::参考参考资料1. "Pendulum," last edited May 30, 2017,
::1. 2017年5月30日 上一次编辑的“Pendulum”,2. "Crunching Numbers: Hull Speed & Boat Length," by Charles Doane, posted March 26, 2010,
::2. Charles Doane于2010年3月26日上传“清理数字:超速和船长”, -
To solve rational equations with variables on both sides, isolate one radical expression at a time and follow the steps as in the previous section.