13.10 二元论理论
章节大纲
-
In the Gilbert and Sullivan comic opera, The Pirates of Penzance , Major General Stanley sings about how educated he is, including this part about math:
::在吉尔伯特和苏利文的漫画《彭赞斯海盗》中,斯坦利少将歌唱他受教育程度,包括数学部分:"I'm very well acquainted, too, with matters mathematical,
::"我也非常熟悉数学上的问题I understand equations, both the simple and quadratical,
::我理解方程式, 简单和二次方程式,About binomial theorem I'm teeming with a lot o' news,
::关于二元论的理论... ...我充满了很多新闻,With many cheerful facts about the square of the hypotenuse." 1
::有许多关于下层平方的令人愉快的事实。"1In this book, we have covered many of these same topics, except for the Binomial Theorem. We study this below.
::在这本书中,除了Binomial定理之外,我们讨论了许多同样的题目,下文将对此进行研究。by English National Opera shows a performance of the Major General's Song.
::英国国家歌剧院展示了少将之歌的表演。T he Binomial Theorem
::二元论论The Binomial Theorem can be used to raise binomials to powers.
::Binomial定理可用来将二元论提升至权力。The Binomial Theorem
::二元论论It can be seen in this rule that the powers of and decrease and increase, respectively. The notation refers to the calculation of the number of combinations of elements selected from a set of elements, and that . We can also use the rows from Pascal's Triangle to find the coefficients.
::从这一规则可以看出, a 和 b 的功率分别下降和增加。 符号( nr) 是指从一组 n 元素中选择的 r 元素的组合数的计算, (nr) = nCr=n!r!!! 我们也可以使用 Pascal 三角形的行来找到系数 。
Example 1
::例1Use the Binomial Theorem to expand .
::使用 Binomial 定理扩展 (x+2y) 6。Solution: First, in this problem, , and . Now we can substitute into the rule.
::解决办法:首先,在这个问题上,a=x,b=2y和n=6。 现在我们可以替代规则。
:x+2y)6=(60x6(2y)0+(61x5(2y)1+(62x4(2y)2+(62x4(2y)2+(63x3(2y)3+(64x2(2y)3+(64x2(2y)4+(65)=x1(2y)5+(66x0(2y)6)6
Now we can simplify:
::现在我们可以简化:
::=(1)x6(1)+(6)x5x5(2y)+(15x4)(4y2)+(20x3(8y3)+(15x2(16y4)+(6)x(32y5)+(1)(1)(64y6)+(1)(1)(64y6)=x6+12x5y+30x4y2+160x3y3+240x2y4+192xy5+64y6by Mathispower4u shows how to use the Binomial Theorem with combinations.
::Mathispower4u 展示了如何用组合来使用二进制定理。Example 2
::例2E xpand .
::扩展(a-b) 6.Solution: The degree of this expansion is 6, so the powers of will begin with 6 and decrease by 1 for each term until the powers reach 0, while the powers of will begin with 0 and increase by one each term until 6. We can write the variables in the expansion (leaving space for the coefficients) as follows:
::解决办法:扩大的程度是6,因此,一个的权力从6开始,在每个任期中减少1,直到权力达到0,而-b的权力从0开始,每个任期增加1,直到6。 我们可以将扩大中的变量(系数的留置空间)写如下:
::=====================================-b)=======================b)=================Let's use Pascal's Triangle for the coefficients. Here we have a -degree binomial, so the coefficients will be found in the row of Pascal's Triangle. Now we can fill in the blanks with the correct coefficients.
::让我们用帕斯卡尔三角形来计算系数。 我们这里有一个六度二进制的系数, 因此系数将出现在帕斯卡尔三角形的第六行。 现在我们可以用正确的系数填充空白 。
::a6-6a5b+15a4b2-20a3b3+15a2b4-6ab5+b6by Mathispower4u shows how to use the Binomial Theorem with the coefficients found in Pascal's Triangle.
::Mathispower4u 展示了如何使用Binomial定理, 使用帕斯卡尔三角发现的系数。If we just want to find a single term in the expansion, we can use the following rule to represent the term in the expansion:
::如果我们只想在扩大中找到一个单一的术语,我们可以使用以下规则在扩大中代表第1个术语:The rth term in the Expansion
::扩大任期中的第1个任期The rth term in the expansion of is
:a+b)n 扩展的第rth 术语是
:nr-1)an-(r-1)br-1。
Example 3
::例3Find the term in the expansion of .
::将第四学期作为(3x-5)8的扩展部分。Solution: Since we want the term, . Now we can set up the formula with , , and and evaluate:
::解答:既然我们想要第四个学期, r=4。 现在我们可以用 a=3x, b=5, n=8, r=4来设置公式, 并评估:
:84-1)(3x)8-(4-1)(5)4-1=(56)(243x5)(-125)3=-1,701,000x5)
Example 4
::例4F ind the 5th term when you expand
::当扩展(2x+1) 时查找第五学期 。Solution: Since we want the term, . Now we can set up the formula with , , and and evaluate:
::解答:既然我们想要第五学期, r=5。 现在我们可以用 a=2x, b=1, n=7, r=5来设置公式, 并评估:
:75-1)(2x)7-(5-1)(1)(1)(5)-1=(35)(8)x3)(1)(4)=280x3
Example 5
::例5Find the constant term in the expansion of .
::在( 4x3+1x) 4 的扩展中查找常数值 。Solution: The constant term occurs when the power of is 0. Let remain unknown for the time being: . Now, isolate the variables to determine when the power of will be 0 as shown.
::解析度: 当 x 的功率为 0 时, 恒定值会发生 。 让 r 暂时不为人知 : (4r-1)( 4x3)4- (r-1)( 1x)r-1。 现在, 分离变量以确定 x 的功率何时为 0 。We can set the variable portion of the expanded term rule equal to .
::我们可以设定扩展术语规则的可变部分等于 x0 。Then, simplify using the rules of exponents on the left-hand side of the equation until we have like bases, , on both sides, and can drop the bases to set the exponents equal to each other and solve for .
::然后,简化使用方程式左侧的推手规则, 直到我们有相似的基座, x, 在两侧, 并且可以放下基座, 使推手对等, 并解决r。
:x3)4-(r-1)(x-1r-1-1=x0x15-3rxxx-r+1=x0x15-3r-r+1=x0x15-3r-r+1=x0x16-4r=x016-4r=016=4rr=4)
Now, plug the value of into the rule to get the constant term in the expansion.
::现在, 在规则中插入 r 的值, 以获得扩展的常值 。 (43) (4x3) 4- 3( 1x) 3= 4( 4x3) (1x) 3=16Summary
::摘要-
The Binomial Theorem is
::Binomial定理是 (a+b)n=(n0)anb0+(n1)an-1b1+(n2)an-2b2+...+(nn-1)a1bn-1+(nn)a0bn。 -
The rth term in an expansion is
.
::扩展中的“Rth”一词是(nr-1)an-(r-1)br-1。
Review
::回顾Expand the following binomials using the Binomial Theorem:
::使用二进制定理展开以下二进制:1.
::1. (x-a)72.
::2.(2a+3)4Find the term in the expansions of the following binomials:
::在以下二进制扩展中查找 nth 术语 :3.
::3. (7x-2)5;n=44.
::4. (6x+12)7;n=35.
::5. (5-a)9;n=76.
::6. (23x+9y)6; n=47. Find the term with in the expansion of .
::7. 在(3x-2)7的扩展中找到X5这一术语。8. Find the term with in the expansion of .
::8. 在扩大(5-y)8时,将Y6改为Y6。9. Find the term with in the expansion of .
::9. 在扩大(2a-b)10后,将 " a3 " 改为 " a3 " 。10. Find the term with in the expansion of .
::10. 在扩大(8-3x)5时用x4来查找该术语。11. Find the constant term in the expansion of .
::11. 在(x2+3x) 6 的扩展中查找常数。12. Find the constant term in the expansion of .
::12. 在(5x3-x)8的扩展中查找常数。Answers for Review Problems
::回顾问题的答复Please see the Appendix.
::请参看附录。References
::参考参考资料1. "Major-General's Song," last edited May 8, 2017,
::1. 2017年5月8日编辑的《主将之歌》, -
The Binomial Theorem is