章节大纲

  • In the Gilbert and Sullivan comic opera, The Pirates of Penzance , Major General Stanley sings about how educated he is, including this part about math: 
    ::在吉尔伯特和苏利文的漫画《彭赞斯海盗》中,斯坦利少将歌唱他受教育程度,包括数学部分:

    "I'm very well acquainted, too, with matters mathematical,
    ::"我也非常熟悉数学上的问题

    I understand equations, both the simple and quadratical,
    ::我理解方程式, 简单和二次方程式,

    About binomial theorem I'm teeming with a lot o' news, 
    ::关于二元论的理论... ...我充满了很多新闻,

    With many cheerful facts about the square of the hypotenuse." 1
    ::有许多关于下层平方的令人愉快的事实。"1

    In this book, we have covered many of these same topics, except for the Binomial Theorem. We study this  below.
    ::在这本书中,除了Binomial定理之外,我们讨论了许多同样的题目,下文将对此进行研究。

    lesson content

    by English National Opera shows a performance of the Major General's Song. 
    ::英国国家歌剧院展示了少将之歌的表演。

     

     

    T he Binomial Theorem 
    ::二元论论

    The Binomial Theorem can be used to raise binomials to powers. 
    ::Binomial定理可用来将二元论提升至权力。

       The Binomial Theorem
    ::二元论论

    ( a + b ) n = ( n 0 ) a n b 0 + ( n 1 ) a n 1 b 1 + ( n 2 ) a n 2 b 2 + + ( n n 1 ) a 1 b n 1 + ( n n ) a 0 b n

    It can be seen in this rule that the powers of a and b decrease and increase, respectively. The notation ( n r ) refers to the calculation of the number of combinations of r elements selected from a set of n elements, and that ( n r ) = n C r = n ! r ! ( n r ) ! . We can also use the rows from Pascal's Triangle to find the coefficients.
    ::从这一规则可以看出, a 和 b 的功率分别下降和增加。 符号( nr) 是指从一组 n 元素中选择的 r 元素的组合数的计算, (nr) = nCr=n!r!! 否 ! 我们也可以使用 Pascal 三角形的行来找到系数 。

    Example 1
    ::例1

    Use the Binomial Theorem to expand ( x + 2 y ) 6 .
    ::使用 Binomial 定理扩展 (x+2y) 6。

    Solution: First, in this problem, a = x , b = 2 y , and n = 6 . Now we can substitute into the rule.
    ::解决办法:首先,在这个问题上,a=x,b=2y和n=6。 现在我们可以替代规则。

    ( x + 2 y ) 6 = ( 6 0 ) x 6 ( 2 y ) 0 + ( 6 1 ) x 5 ( 2 y ) 1 + ( 6 2 ) x 4 ( 2 y ) 2 + ( 6 3 ) x 3 ( 2 y ) 3 + ( 6 4 ) x 2 ( 2 y ) 4 + ( 6 5 ) = x 1 ( 2 y ) 5 + ( 6 6 ) x 0 ( 2 y ) 6

    :伤心x+2y)6=(60x6(2y)0+(61x5(2y)1+(62x4(2y)2+(62x4(2y)2+(63x3(2y)3+(64x2(2y)3+(64x2(2y)4+(65)=x1(2y)5+(66x0(2y)6)6

    Now we can simplify:
    ::现在我们可以简化:

    = ( 1 ) x 6 ( 1 ) + ( 6 ) x 5 ( 2 y ) + ( 15 ) x 4 ( 4 y 2 ) + ( 20 ) x 3 ( 8 y 3 ) + ( 15 ) x 2 ( 16 y 4 ) + ( 6 ) x ( 32 y 5 ) + ( 1 ) ( 1 ) ( 64 y 6 ) = x 6 + 12 x 5 y + 30 x 4 y 2 + 160 x 3 y 3 + 240 x 2 y 4 + 192 x y 5 + 64 y 6

    ::=(1)x6(1)+(6)x5x5(2y)+(15x4)(4y2)+(20x3(8y3)+(15x2(16y4)+(6)x(32y5)+(1)(1)(64y6)+(1)(1)(64y6)=x6+12x5y+30x4y2+160x3y3+240x2y4+192xy5+64y6

    by Mathispower4u shows how to use the Binomial Theorem with combinations. 
    ::Mathispower4u 展示了如何用组合来使用二进制定理。

     

     

    Example 2
    ::例2

    E xpand ( a b ) 6 .
    ::扩展(a-b) 6.

    Solution: The degree of this expansion is 6, so the powers of a will begin with 6 and decrease by 1 for each term until the powers reach 0, while the powers of - b will begin with 0 and increase by one each term until  6. We can write the variables in the expansion (leaving space for the coefficients) as follows:
    ::解决办法:扩大的程度是6,因此,一个的权力从6开始,在每个任期中减少1,直到权力达到0,而-b的权力从0开始,每个任期增加1,直到6。 我们可以将扩大中的变量(系数的留置空间)写如下:

    _ a 6   + _ a 5 ( - b )   + _ a 4 ( - b ) 2   + _ a 3 ( - b ) 3   + _ a 2 ( - b ) 4   + _ a ( - b ) 5   + _ ( - b ) 6

    ::=====================================-b)=======================b)=================

    Let's use Pascal's Triangle for  the coefficients. Here we have a 6 t h -degree binomial, so the coefficients will be found in the 6 t h row of Pascal's Triangle. Now we can fill in the blanks with the correct coefficients.
    ::让我们用帕斯卡尔三角形来计算系数。 我们这里有一个六度二进制的系数, 因此系数将出现在帕斯卡尔三角形的第六行。 现在我们可以用正确的系数填充空白 。

    a 6 6 a 5 b + 15 a 4 b 2 20 a 3 b 3 + 15 a 2 b 4 6 a b 5 + b 6

    ::a6-6a5b+15a4b2-20a3b3+15a2b4-6ab5+b6

    by Mathispower4u shows how to use the Binomial Theorem with the coefficients found in Pascal's Triangle.
    ::Mathispower4u 展示了如何使用Binomial定理, 使用帕斯卡尔三角发现的系数。

     

    If we just want to find a single term in the expansion, we can use the following rule to represent the r t h term in the expansion:
    ::如果我们只想在扩大中找到一个单一的术语,我们可以使用以下规则在扩大中代表第1个术语:

       The rth term in the Expansion
    ::扩大任期中的第1个任期

    The rth term in the expansion of  ( a + b ) n  is 
    :伤心a+b)n 扩展的第rth 术语是

    ( n r 1 ) a n ( r 1 ) b r 1 .

    :伤心nr-1)an-(r-1)br-1。

    Example 3
    ::例3

    Find the 4 t h term in the expansion of ( 3 x 5 ) 8 .
    ::将第四学期作为(3x-5)8的扩展部分。

    Solution: Since we want the 4 t h term, r = 4 . Now we can set up the formula with a = 3 x , b = - 5 , n = 8 , and r = 4 , and evaluate:
    ::解答:既然我们想要第四个学期, r=4。 现在我们可以用 a=3x, b=5, n=8, r=4来设置公式, 并评估:

    ( 8 4 1 ) ( 3 x ) 8 ( 4 1 ) ( - 5 ) 4 1 = ( 56 ) ( 243 x 5 ) ( - 125 ) 3 = - 1 , 701 , 000 x 5

    :伤心84-1)(3x)8-(4-1)(5)4-1=(56)(243x5)(-125)3=-1,701,000x5)

    Example 4
    ::例4

    F ind  the 5th term when you expand  ( 2 x + 1 ) 7 .
    ::当扩展(2x+1) 时查找第五学期 。

    Solution: Since we want the 5 t h term, r = 5 . Now we can set up the formula with a = 2 x , b = 1 , n = 7 , and r = 5 , and evaluate:
    ::解答:既然我们想要第五学期, r=5。 现在我们可以用 a=2x, b=1, n=7, r=5来设置公式, 并评估:

    ( 7 5 1 ) ( 2 x ) 7 ( 5 1 ) ( 1 ) 5 1 = ( 35 ) ( 8 x 3 ) ( 1 ) 4 = 280 x 3

    :伤心75-1)(2x)7-(5-1)(1)(1)(5)-1=(35)(8)x3)(1)(4)=280x3

    Example 5
    ::例5

    Find the constant term in the expansion of ( 4 x 3 + 1 x ) 4 .
    ::在( 4x3+1x) 4 的扩展中查找常数值 。

    Solution: The constant term occurs when the power of x is 0. Let r remain unknown for the time being: ( 4 r 1 ) ( 4 x 3 ) 4 ( r 1 ) ( 1 x ) r 1 . Now, isolate the variables to determine when the power of x will be 0 as shown.
    ::解析度: 当 x 的功率为 0 时, 恒定值会发生 。 让 r 暂时不为人知 : (4r-1)( 4x3)4- (r-1)( 1x)r-1。 现在, 分离变量以确定 x 的功率何时为 0 。

    We can set the variable portion of the expanded term rule equal to x 0 .
    ::我们可以设定扩展术语规则的可变部分等于 x0 。

    Then, simplify using the rules of exponents on the left-hand side of the equation until we have like bases, x , on both sides, and can drop the bases to set the exponents equal to each other and solve for r .
    ::然后,简化使用方程式左侧的推手规则, 直到我们有相似的基座, x, 在两侧, 并且可以放下基座, 使推手对等, 并解决r。

    ( x 3 ) 4 ( r - 1 ) ( x - 1 ) r 1 = x 0 x 15 3 r x - r + 1 = x 0 x 15 3 r r + 1 = x 0 x 16 4 r = x 0 16 4 r = 0 16 = 4 r r = 4

    :伤心x3)4-(r-1)(x-1r-1-1=x0x15-3rxxx-r+1=x0x15-3r-r+1=x0x15-3r-r+1=x0x16-4r=x016-4r=016=4rr=4)

    Now, plug the value of r into the rule to get the constant term in the expansion.

    ( 4 3 ) ( 4 x 3 ) 4 3 ( 1 x ) 3 = 4 ( 4 x 3 ) ( 1 x ) 3 = 16

    ::现在, 在规则中插入 r 的值, 以获得扩展的常值 。 (43) (4x3) 4- 3( 1x) 3= 4( 4x3) (1x) 3=16

    Summary
    ::摘要

    • The Binomial Theorem is  ( a + b ) n = ( n 0 ) a n b 0 + ( n 1 ) a n 1 b 1 + ( n 2 ) a n 2 b 2 + + ( n n 1 ) a 1 b n 1 + ( n n ) a 0 b n .  
      ::Binomial定理是 (a+b)n=(n0)anb0+(n1)an-1b1+(n2)an-2b2+...+(nn-1)a1bn-1+(nn)a0bn。
    • The rth term in an expansion is  ( n r 1 ) a n ( r 1 ) b r 1 .  
      ::扩展中的“Rth”一词是(nr-1)an-(r-1)br-1。

    Review
    ::回顾

    Expand the following binomials using the Binomial Theorem:
    ::使用二进制定理展开以下二进制:

    1.  ( x a ) 7
    ::1. (x-a)7

    2.  ( 2 a + 3 ) 4
    ::2.(2a+3)4

    Find the n t h term in the expansions of the following binomials:
    ::在以下二进制扩展中查找 nth 术语 :

    3.  ( 7 x 2 ) 5 ;   n = 4
    ::3. (7x-2)5;n=4

    4.  ( 6 x + 1 2 ) 7 ;   n = 3
    ::4. (6x+12)7;n=3

    5.  ( 5 a ) 9 ;   n = 7
    ::5. (5-a)9;n=7

    6.  ( 2 3 x + 9 y ) 6 ;   n = 4
    ::6. (23x+9y)6; n=4

    7. Find the term with   x 5 in the expansion of ( 3 x 2 ) 7 .
    ::7. 在(3x-2)7的扩展中找到X5这一术语。

    8. Find the term with   y 6 in the expansion of ( 5 y ) 8 .
    ::8. 在扩大(5-y)8时,将Y6改为Y6。

    9. Find the term with   a 3 in the expansion of ( 2 a b ) 10 .
    ::9. 在扩大(2a-b)10后,将 " a3 " 改为 " a3 " 。

    10. Find the term with   x 4 in the expansion of ( 8 3 x ) 5 .
    ::10. 在扩大(8-3x)5时用x4来查找该术语。

    11. Find the constant term in the expansion of ( x 2 + 3 x ) 6 .
    ::11. 在(x2+3x) 6 的扩展中查找常数。

    12. Find the constant term in the expansion of ( 5 x 3 x ) 8 .
    ::12. 在(5x3-x)8的扩展中查找常数。

    Answers for Review  Problems
    ::回顾问题的答复

    Please see the Appendix.   
    ::请参看附录。

    References
    ::参考参考资料

    1. "Major-General's Song," last edited May 8, 2017, 
    ::1. 2017年5月8日编辑的《主将之歌》,