14.13 答复 -- -- 第13章:顺序和系列
Section outline
-
Section 13.2 Sequences
::第13.2节 顺序Review
::回顾- 39, 45, 51
- -324, 972, -2,916
- 35, 31, 27
- 0.01, 0.001, 0.0001
- 16, 32, 64
- 9, 36
- 5, 20
- 8, 216
- 6, 45
- 15, 35
- 3, 8
-
::an=( -2)n- 1- 14 -
::a=5+6(n- 1) -
::a=33-5(n-1) -
::an=4n-1 -
::a=21+9(n- 1) -
::an=12n2+52n-2 -
::an=nn+1 -
::an=an-1+an-2 - 9, 11, 13, 15, 17, 27
- -6, -11, -16, -251
- 1, 3, 7, 1,023
- 1, 3, 6, 10, 210
Explore More-
::a=9+29(n- 1) -
::an=4800-200(n- 1) -
15,30,60,120,240. Rule =
::15,30,60,120,240. 规则==7.5(2)n -
::an=3n-23n
Section 13.3: Arithmetic Sequences
::第13.3节:自学序列Review-
::an=n+1 =n+1 -
Not an arithmetic sequence
::不是算术序列 -
::a=5-5(n-1) -
Not an arithmetic sequence
::不是算术序列 -
::an=3(n- 1) -
::a=-n+14 =-n+14 -
Not an arithmetic sequence
::不是算术序列 -
::a=a+2(n-1) -
::a=15-8(n-1) -
::a=-10+12(n-1) -
::a=28-2(n-1) -
::a= 15+3(n- 1) -
::an=84-11(n-1) -
::a=-10+7(n-1) -
::an=2+3(n-2)
Explore More-
::a=19 500-500(n-1) -
a.
b.
Both are harmonic.
::a. a=11+3(n-1),b. a=112+16(n-1),两者均为口音。 -
No
::否 无 -
Yes,
::是, n=4
Section 13.4 Geometric Sequence
::第13.4节 几何序列Review-
Arithmetic
::测量学 -
Geometric
::几何 -
Neither
::中 无 -
Geometric
::几何 -
Arithmetic
::测量学 -
Neither
::中 无 -
32, 48, 72, 108, 162
::=32(32)n-1;32,48,72,108,162 -
-81, 27, -9 ,3, -1
::a=-81(- 13- 13n-1);- 81, 27, 9, 3, - 1 -
;7, 14, 28, 56, 112
::an=7(2)n-1; ; 7, 14, 28, 56, 112 -
::an=8125(-52)n-1;8125,-425,25,1,52 -
::=162(23)n-1 -
::an=-625( 35n- 1) -
::an=94(- 23- 23n- 1) -
::an=3(5)n-1 -
::an=5(2)n-1 -
::an=12( 4- en- 1) -
::an=54( 23n- 1) -
::an=160(- 34n- 1) -
::a= 1.732(65-1) -
::a=320(-12)n-1 -
::an=0.857(67n-1) -
::an=118(2)n-1 -
::an=24 (32)n- 1 -
::an=343216(67n-1) -
::an=2(3)n-1 -
::an=128(32)n-1 -
::an=827(32)n-1 -
::an=112 (-2- en- 1)
Explore More- $ 103,946.41
- $29,646.88
-
::an=80( 9910,000n- 1) -
::an=4e0.693n - $34,000
- $93,000
Section 13.5 Series and Summation Notation
::第13.5节 系列和总和编号Review- 2, 4, 6, 8, 10; 30
- 8, 9, 10, 11; 38
- 70, 88, 108, 130, 154, 180; 730
- 3, 6, 10, 15, 21; 55
- 4, 5, 7, 11, 19, 35; 81
- 8, 8.5, 9, 9.5, 10, 10.5; 55.5
- -25, -24, -23, -22, -21, ... , 21, 22, 23, 24, 25; 0
- 16, 8, 4, 2, 1; 31
- 27.5, 39, 52.5, 68, 85.5, 105, 126.5, 150; 654
- 0.5, 1, 1.5, 2, 2.5, ... , 49, 49.5, 50; 2,525
- 1, 2, 3, 4, 5, ... , 198, 199, 200; 20,100
-
a. 5, 7, 9, 11, 13; 45.
b. 15+[2, 4, 6, 8, 10]; 45
::a. 5、7、9、11、13;45 b. 15+[2、4、6、8、10];45 -
a. 1, 3, 6, 10, 15; 35
b. 0.5[2, 6, 12, 20, 30]; 35
::a. 1,3,6,10,15;35b.0.5[2,6,12,20,30];35 -
a. 4, 32, 108, 256, 500; 900.
b. 4[1, 8, 27, 64, 125]; 900
::a. 4、32、108、256、500;900b. 4[1、8、27、64、125];900;
Explore More-
140 oranges
::140 橙色 -
64 hexagons
::64 六边形 - $13,335
-
4,200 tourists
::4 200名游客 -
3,150 pairs of shoes
::3 150双鞋子 -
51 deer
::51鹿
Section 13.6 Finding the Sum of a Finite Arithmetic Series
::第13.6节 确定一个有限自算系列的总和Review- 1,469
- -84
- 2,499
- 13
- 875
- 861
- 240
- 9,900
- 91
- -84
- 361
- 180
- 1,207
- -483
- 63
Explore More- 648
- $1,378
- $50,400
- $14,400
- $12,500
Section 13.7 Finding the Sum of Finite Geometric Series
::第13.7节 查找有限几何系列总和Review- 99
- 5
-
::an= 3 (- 2- 个n- 1) -
::an= 216(56)n- 1 -
::an= (2)- (-)n- 1 -
::an=96(-12)n- 1
Explore More- $23,518.36
- $1,488.78
- $918.21
- 2,782
-
94 billion
::940亿 -
2,136.8 kg
::2,136.8公斤 -
36,172 views
::36 172 意见 - $2,768.42
Section 13.8 Partial Sums and Finding the Sum of an Infinite Geometric Series
::第13.8节 部分总和和和无限几何系列的计算总和Review-
5, 7.5, 8.75, 9.375, 9.6875; converges
::5、7.5、8.75、9.375、9.6875;交汇 -
2, 3.5, 4.625, 5.46875, 6.1015625; converges
::2, 3.5, 4.625, 5.46875, 6.1015625; 交汇 -
10, 19, 27.1, 34.39, 40.951; converges
::10、19、27.1、34.39、40.951;交汇 -
8, 16.24, 24.7272, 33.469016, 42.47308648; diverges
::8、16.24、24.772、33.469016、42.47308648;差异 -
0.5, 1.5, 3, 5, 7.5; diverges
::0.5、1.5、3、5、7.5;差异 -
10, 15, 18.3333, 20.8333, 22.8333; diverges
::10、15、18.3333、20.83333、22.833;差异 -
0.5, 0.875, 1.15625, 1.3671875, 1.525390625; converges
::0.5、0.875、1.15625、1.3671875、1.5255390625;交汇点 -
converges
::1 54 4936 205144 5 2693 600;汇合 -
60, 66, 66.6, 66.66, 66.666; converges
::60、66、66、66.6、6666、66.666;交汇 -
5.01, 10.03, 15.06, 20.1, 25.15; diverges
::5.01、10.03、15.06、20.1、25.15;差异 -
2, 3.75, 5.28125, 6.62109375, 7.793457031; converges
::2,3.75,5.28125,6.62109375,7.79457031;交汇 - 15
-
Not possible
::办 办 办 办 办 办 办 办 办 办 办 办 办 办 - 1.5
-
Not possible
::办 办 办 办 办 办 办 办 办 办 办 办 办 办 - 10
- 2
-
Not possible
::办 办 办 办 办 办 办 办 办 办 办 办 办 办 - 4
- 180
-
Not possible
::办 办 办 办 办 办 办 办 办 办 办 办 办 办 - 125
-
Not possible
::办 办 办 办 办 办 办 办 办 办 办 办 办 办 -
::-487或-667-6.85714
Explore More-
a. Numbers 5 and 10 are arithmetic. None have a finite sum as they are divergent. b. All but Numbers 5 and 10 are geometric. Convergent series have finite sums. c. A convergent series has a limit that exists, whereas a divergent series does not. d. Answers will vary.
::a. 数字5和10是算术。没有一个数字因差异而有一定的数值。b. 除数字5和10外,所有数字5和10均为几何数。趋同序列有一定的数值。c. 集合序列有一个存在的限制,而不同序列则没有。d. 答复将有所不同。 -
the series is convergent.
::1,13,16,11,110,115;该系列是聚合的。 -
the series is convergent.
::1,14,19,116,125; 该序列是集合的 。
Section 13.9 Pascal's Triangle and Coefficients in the Expansion of Binomials
::第13.9节 帕斯卡尔的三角和二民族扩张中的系数Review- 1 6 15 20 15 6 1
- 1 12 66 220 495 792 924 792 495 220 66 12 1
- 3
- 7
- 15
- 1
- 84
- 84
- 35
- 2,380
- 54,627,300
- 1
Explore More-
The 2nd diagonal is the row number minus 1.
::第二个对角线是行号减1。 -
The sum of each row of Pascal's Triangle is equal to the powers of 2. Therefore,
::帕斯卡尔三角形每行的总和等于 2 的功率, 因此, sum=2n 。 -
The 1st 10 triangular numbers are 1, 3, 6, 10, 15, 21, 28, 36, 45, and 55.
::第10个三角形数字为1、3、6、10、15、21、28、36、45和55。 -
The sum of the 1st n rows of Pascal's Triangle is equal to the n
th
Mersenne number, M
n
. So when
which is the sum of the numbers in rows 1 to 5. The same is true when
is the sum of the 1st 6 rows in Pascal's Triangle.
::Pascal三角区第一 n 行的总和等于 nth Mersenne 编号Mn。 当 n= 5, M5= 25-1=31时, 这是第 1 至 5. 行数字的总和。 当 n= 6. M6= 26 - 1= 63 是 Pascal三角区第 1 6 行的总和时, 情况也是如此 。
Section 13.10 The Binomial Theorem
::第13.10节Review-
::-7+7a6x-21a5x2+35a4x3-35a3x4+21a2x5-7a6+7x7 -
::16a4+96a3+216a2+216a+81a+81 -
::- 3,920x2 -
::40,824x5 -
::1 312 500a3 -
::4,320x3y3 -
::20,412x5 -
::700y6 -
::-960a3b7 -960a3b7 -
::3 240x4 - 1,215
- 700
Section 13.11 Connections: The Fibonacci Sequence
::第13.11节连接:Fibonacci序列- 21, 34, 55, 89, 144
-
The Fibonacci Sequence is an arithmetic series.
::Fibonacci序列是一个计算序列。 -
::Xn=Xn-1+Xn-2 - 143
-
No. The Fibonacci Sequence diverges to infinity.
::否。 Fibonacci 序列与无穷相区别。 -
::F7=[60]+[51]+[42]+[33]=13
Section 13.12 Connections: Zeno's Paradoxes
::第13.12节连接:Zeno的悖论-
::an=64( 12)n- 1 - 128
-
Answers will vary.
::答案将各有不同。