Section outline

  • Section 13.2 Sequences
    ::第13.2节 顺序

    Review
    ::回顾

    1. 39, 45, 51
    2. -324, 972, -2,916
    3. 35, 31, 27
    4. 0.01, 0.001, 0.0001
    5. 16, 32, 64
    6. - 1 6 , - 3 7 , - 5 8  
    7. 9, 36
    8. 4 5 , 6 7  
    9. 5, 20
    10. 8, 216
    11. 6, 45
    12. 15, 35
    13. 3, 8
    14. a n = ( - 2 ) n 1 1 4
      ::an=( -2)n- 1- 14
    15. a n = 5 + 6 ( n 1 )  
      ::a=5+6(n- 1)
    16. a n = 33 5 ( n 1 )  
      ::a=33-5(n-1)
    17. a n = 4 n 1  
      ::an=4n-1
    18. a n = 21 + 9 ( n 1 )  
      ::a=21+9(n- 1)
    19. a n = 1 2 n 2 + 5 2 n 2  
      ::an=12n2+52n-2
    20. a n = n n + 1  
      ::an=nn+1
    21. a n = a n 1 + a n 2  
      ::an=an-1+an-2
    22. 9, 11, 13, 15, 17, 27
    23. -6, -11, -16, -251
    24. 1, 3, 7, 1,023
    25. 1 2 , 1 4 , 1 8 , 1 256  
    26. 1, 3, 6, 10, 210
    Explore More
    1. a n = 9 + 29 ( n 1 )  
      ::a=9+29(n- 1)
    2. a n = 4800 200 ( n 1 )  
      ::an=4800-200(n- 1)
    3. 15,30,60,120,240. Rule = a n = 7.5 ( 2 ) n  
      ::15,30,60,120,240. 规则==7.5(2)n
    4. a n = 3 n 2 3 n  
      ::an=3n-23n

    Section 13.3: Arithmetic Sequences
    ::第13.3节:自学序列

    Review
    1. a n = n + 1  
      ::an=n+1 =n+1
    2. Not an arithmetic sequence
      ::不是算术序列
    3. a n = 5 5 ( n 1 )  
      ::a=5-5(n-1)
    4. Not an arithmetic sequence
      ::不是算术序列
    5. a n = 3 ( n 1 )  
      ::an=3(n- 1)
    6. a n = - n + 14  
      ::a=-n+14 =-n+14
    7. Not an arithmetic sequence
      ::不是算术序列
    8. a n = a + 2 ( n 1 )  
      ::a=a+2(n-1)
    9. a n = 15 8 ( n 1 )  
      ::a=15-8(n-1)
    10. a n = - 10 + 1 2 ( n 1 )  
      ::a=-10+12(n-1)
    11. a n = 28 2 ( n 1 )  
      ::a=28-2(n-1)
    12. a n = - 15 + 3 ( n 1 )  
      ::a= 15+3(n- 1)
    13. a n = 84 11 ( n 1 )  
      ::an=84-11(n-1)
    14. a n = - 10 + 7 ( n 1 )  
      ::a=-10+7(n-1)
    15. a n = 2 + 3 ( n 2 )  
      ::an=2+3(n-2)
    Explore More
    1. a n = 19 , 500 500 ( n 1 )  
      ::a=19 500-500(n-1)
    2. a. a n = 1 1 + 3 ( n 1 ) .   b. a n = 1 1 2 + 1 6 ( n 1 ) .   Both are harmonic.
      ::a. a=11+3(n-1),b. a=112+16(n-1),两者均为口音。
    3. 1 , 5 4 , 3 2  
    4. No
      ::否 无
    5. Yes, n = 4  
      ::是, n=4

    Section 13.4 Geometric Sequence
    ::第13.4节 几何序列

    Review
    1. Arithmetic
      ::测量学
    2. Geometric
      ::几何
    3. Neither
      ::中 无
    4. Geometric
      ::几何
    5. Arithmetic
      ::测量学
    6. Neither
      ::中 无
    7. a n = 32 ( 3 2 ) n 1 ;  32, 48, 72, 108, 162
      ::=32(32)n-1;32,48,72,108,162
    8. a n = - 81 ( - 1 3 ) n 1 ;   -81, 27, -9 ,3, -1
      ::a=-81(- 13- 13n-1);- 81, 27, 9, 3, - 1
    9. a n = 7 ( 2 ) n 1 ;  ;7, 14, 28, 56, 112
      ::an=7(2)n-1; ; 7, 14, 28, 56, 112
    10. a n = 8 125 ( - 5 2 ) n 1 ;    8 125 , - 4 25 , 2 5 , 1 , 5 2  
      ::an=8125(-52)n-1;8125,-425,25,1,52
    11. a n = 162 ( 2 3 ) n 1  
      ::=162(23)n-1
    12. a n = - 625 ( 3 5 ) n 1  
      ::an=-625( 35n- 1)
    13. a n = 9 4 ( - 2 3 ) n 1  
      ::an=94(- 23- 23n- 1)
    14. a n = 3 ( 5 ) n 1  
      ::an=3(5)n-1
    15. a n = 5 ( 2 ) n 1  
      ::an=5(2)n-1
    16. a n = 1 2 ( - 4 ) n 1  
      ::an=12( 4- en- 1)
    17. a n = 54 ( 2 3 ) n 1  
      ::an=54( 23n- 1)
    18. a n = 160 ( - 3 4 ) n 1  
      ::an=160(- 34n- 1)
    19. a n = 1.732 ( 6 5 ) n 1  
      ::a= 1.732(65-1)
    20. a n = 320 ( - 1 2 ) n 1  
      ::a=320(-12)n-1
    21. a n = 0.857 ( 6 7 ) n 1  
      ::an=0.857(67n-1)
    22. a n = 11 8 ( 2 ) n 1  
      ::an=118(2)n-1
    23. a n = 24 ( 3 2 ) n 1  
      ::an=24 (32)n- 1
    24. a n = 343 216 ( 6 7 ) n 1  
      ::an=343216(67n-1)
    25. a n = 2 ( 3 ) n 1  
      ::an=2(3)n-1
    26. a n = 128 ( 3 2 ) n 1  
      ::an=128(32)n-1
    27. a n = 8 27 ( 3 2 ) n 1  
      ::an=827(32)n-1
    28. a n = 1 12 ( - 2 ) n 1  
      ::an=112 (-2- en- 1)
    Explore More
    1. $ 103,946.41
    2. $29,646.88
    3. a n = 80 ( 9 10 ) n 1  
      ::an=80( 9910,000n- 1)
    4. a n = 4 e 0.693 n  
      ::an=4e0.693n
    5. $34,000
    6. $93,000

    Section 13.5 Series and Summation Notation
    ::第13.5节 系列和总和编号

    Review
    1. 2, 4, 6, 8, 10; 30
    2. 8, 9, 10, 11; 38
    3. 70, 88, 108, 130, 154, 180; 730
    4. 3, 6, 10, 15, 21; 55
    5. 4, 5, 7, 11, 19, 35; 81
    6. 8, 8.5, 9, 9.5, 10, 10.5; 55.5
    7. -25, -24, -23, -22, -21, ... , 21, 22, 23, 24, 25; 0
    8. 16, 8, 4, 2, 1; 31
    9. 27.5, 39, 52.5, 68, 85.5, 105, 126.5, 150; 654
    10. 0.5, 1, 1.5, 2, 2.5, ... , 49, 49.5, 50; 2,525
    11. 1, 2, 3, 4, 5, ... , 198, 199, 200; 20,100
    12. a. 5, 7, 9, 11, 13; 45.
      b. 15+[2, 4, 6, 8, 10]; 45
      ::a. 5、7、9、11、13;45 b. 15+[2、4、6、8、10];45
    13. a. 1, 3, 6, 10, 15; 35
      b. 0.5[2, 6, 12, 20, 30]; 35
      ::a. 1,3,6,10,15;35b.0.5[2,6,12,20,30];35
    14. a. 4, 32, 108, 256, 500; 900.
      b. 4[1, 8, 27, 64, 125]; 900
      ::a. 4、32、108、256、500;900b. 4[1、8、27、64、125];900;
    Explore More
    1. 140 oranges
      ::140 橙色
    2. 64 hexagons
      ::64 六边形
    3. $13,335
    4. 4,200 tourists
      ::4 200名游客
    5. 3,150 pairs of shoes
      ::3 150双鞋子
    6. 51 deer
      ::51鹿

    Section 13.6 Finding the Sum of a Finite Arithmetic Series
    ::第13.6节 确定一个有限自算系列的总和

    Review
    1. 1,469
    2. -84
    3. 2,499
    4. 13
    5. 875
    6. 861
    7. 240
    8. 9,900
    9. 91
    10. -84
    11. 361
    12. 180
    13. 1,207
    14. -483
    15. 63
    Explore More
    1. 648
    2. $1,378
    3. $50,400
    4. $14,400
    5. $12,500

    Section 13.7 Finding the Sum of  Finite Geometric Series
    ::第13.7节 查找有限几何系列总和

    Review
    1. 844 9  
    2. 99
    3. 5
    4. 1 , 031 5  
    5. 181 384  
    6. - 15 8  
    7. 5 , 461 128  
    8. 11 , 529 2 , 000  
    9. 43 2  
    10. a n = 3 ( - 2 ) n 1  
      ::an= 3 (- 2- 个n- 1)
    11. a n = 216 ( 5 6 ) n 1  
      ::an= 216(56)n- 1
    12. a n = 2 ( - 3 ) n 1  
      ::an= (2)- (-)n- 1
    13. a n = 96 ( - 1 2 ) n 1  
      ::an=96(-12)n- 1
    Explore More
    1. $23,518.36
    2. $1,488.78
    3. $918.21
    4. 2,782
    5. 94 billion
      ::940亿
    6. 2,136.8 kg
      ::2,136.8公斤
    7. 36,172 views
      ::36 172 意见
    8. $2,768.42

    Section 13.8 Partial Sums and Finding the Sum of an Infinite Geometric Series
    ::第13.8节 部分总和和和无限几何系列的计算总和

    Review
    1. 5, 7.5, 8.75, 9.375, 9.6875; converges
      ::5、7.5、8.75、9.375、9.6875;交汇
    2. 2, 3.5, 4.625, 5.46875, 6.1015625; converges
      ::2, 3.5, 4.625, 5.46875, 6.1015625; 交汇
    3. 10, 19, 27.1, 34.39, 40.951; converges
      ::10、19、27.1、34.39、40.951;交汇
    4. 8, 16.24, 24.7272, 33.469016, 42.47308648; diverges
      ::8、16.24、24.772、33.469016、42.47308648;差异
    5. 0.5, 1.5, 3, 5, 7.5; diverges
      ::0.5、1.5、3、5、7.5;差异
    6. 10, 15, 18.3333, 20.8333, 22.8333; diverges
      ::10、15、18.3333、20.83333、22.833;差异
    7. 0.5, 0.875, 1.15625, 1.3671875, 1.525390625; converges
      ::0.5、0.875、1.15625、1.3671875、1.5255390625;交汇点
    8. 1 , 5 4 , 49 36 , 205 144 , 5 , 269 3 , 600 ;  converges
      ::1 54 4936 205144 5 2693 600;汇合
    9. 60, 66, 66.6, 66.66, 66.666; converges
      ::60、66、66、66.6、6666、66.666;交汇
    10. 5.01, 10.03, 15.06, 20.1, 25.15;  diverges
      ::5.01、10.03、15.06、20.1、25.15;差异
    11. 2, 3.75, 5.28125, 6.62109375, 7.793457031; converges
      ::2,3.75,5.28125,6.62109375,7.79457031;交汇
    12. 15
    13. Not possible
      ::办 办 办 办 办 办 办 办 办 办 办 办 办 办
    14. 1.5
    15. Not possible
      ::办 办 办 办 办 办 办 办 办 办 办 办 办 办
    16. 10
    17. 7 8  
    18. 2
    19. Not possible
      ::办 办 办 办 办 办 办 办 办 办 办 办 办 办
    20. 4
    21. 180
    22. Not possible
      ::办 办 办 办 办 办 办 办 办 办 办 办 办 办
    23. 125
    24. Not possible
      ::办 办 办 办 办 办 办 办 办 办 办 办 办 办
    25. 16 2 3 16.6667
    26. - 48 7   or   - 6 6 7 - 6.85714
      ::-487或-667-6.85714
    Explore More
    1. a. Numbers 5 and 10 are arithmetic. None have a finite sum as they are divergent. b. All but Numbers 5 and 10 are geometric. Convergent series have finite sums. c. A convergent series has a limit that exists, whereas a divergent series does not. d. Answers will vary.
      ::a. 数字5和10是算术。没有一个数字因差异而有一定的数值。b. 除数字5和10外,所有数字5和10均为几何数。趋同序列有一定的数值。c. 集合序列有一个存在的限制,而不同序列则没有。d. 答复将有所不同。
    2. 1 , 1 3 , 1 6 , 1 10 , 1 15 ;  the series is convergent.
      ::1,13,16,11,110,115;该系列是聚合的。
    3. 1 , 1 4 , 1 9 , 1 16 , 1 25 ;  the series is convergent.
      ::1,14,19,116,125; 该序列是集合的 。

    Section 13.9 Pascal's Triangle and Coefficients in the Expansion of Binomials
    ::第13.9节 帕斯卡尔的三角和二民族扩张中的系数

    Review
    1. 1      6      15     20     15     6     1
    2. 1     12     66     220     495     792      924     792     495     220     66     12      1
    3. 3
    4. 7
    5. 15
    6. 1
    7. 84
    8. 84
    9. 35
    10. 2,380
    11. 54,627,300
    12. 1
    Explore More
    1. The 2nd diagonal is the row number minus 1.
      ::第二个对角线是行号减1。
    2. The sum of each row of Pascal's Triangle is equal to the powers of 2. Therefore,  s u m = 2 n .
      ::帕斯卡尔三角形每行的总和等于 2 的功率, 因此, sum=2n 。
    3. The 1st 10 triangular numbers are 1, 3, 6, 10, 15, 21, 28, 36, 45, and 55.
      ::第10个三角形数字为1、3、6、10、15、21、28、36、45和55。
    4. The sum of the 1st n rows of Pascal's Triangle is equal to the n th Mersenne number,  M n . So when n = 5 ,    M 5 = 2 5 1 = 31 ,  which is the sum of the numbers in rows 1 to 5. The same is true when n = 6.    M 6 = 2 6 1 = 63  is the sum of the 1st 6 rows in Pascal's Triangle.
      ::Pascal三角区第一 n 行的总和等于 nth Mersenne 编号Mn。 当 n= 5, M5= 25-1=31时, 这是第 1 至 5. 行数字的总和。 当 n= 6. M6= 26 - 1= 63 是 Pascal三角区第 1 6 行的总和时, 情况也是如此 。

    Section 13.10 The Binomial Theorem
    ::第13.10节

    Review
    1. - a 7 + 7 a 6 x 21 a 5 x 2 + 35 a 4 x 3 35 a 3 x 4 + 21 a 2 x 5 7 a x 6 + x 7  
      ::-7+7a6x-21a5x2+35a4x3-35a3x4+21a2x5-7a6+7x7
    2. 16 a 4 + 96 a 3 + 216 a 2 + 216 a + 81  
      ::16a4+96a3+216a2+216a+81a+81
    3. - 3 , 920 x 2  
      ::- 3,920x2
    4. 40 , 824 x 5  
      ::40,824x5
    5. 1 , 312 , 500 a 3  
      ::1 312 500a3
    6. 4 , 320 x 3 y 3  
      ::4,320x3y3
    7. 20 , 412 x 5   
      ::20,412x5
    8. 700 y 6  
      ::700y6
    9. - 960 a 3 b 7  
      ::-960a3b7 -960a3b7
    10. 3 , 240 x 4  
      ::3 240x4
    11. 1,215
    12. 700

    Section 13.11 Connections: The Fibonacci Sequence
    ::第13.11节连接:Fibonacci序列

    1. 21, 34, 55, 89, 144
    2. The Fibonacci Sequence is an arithmetic series.
      ::Fibonacci序列是一个计算序列。
    3. X n = X n 1 + X n 2  
      ::Xn=Xn-1+Xn-2
    4. 143
    5. No. The Fibonacci Sequence diverges to infinity.
      ::否。 Fibonacci 序列与无穷相区别。
    6. F 7 = [ 6 0 ] + [ 5 1 ] + [ 4 2 ] + [ 3 3 ] = 13  
      ::F7=[60]+[51]+[42]+[33]=13

    Section 13.12 Connections: Zeno's Paradoxes
    ::第13.12节连接:Zeno的悖论

    1. 64 , 32 , 16 , 8 , 4 , 2 , 1 , 1 2 , 1 4 , 1 8  
    2. a n = 64 ( 1 2 ) n 1  
      ::an=64( 12)n- 1
    3. 64 , 96 , 112 , 120 , 124  
    4. 128
    5. Answers will vary.
      ::答案将各有不同。