Section outline

  • Introduction
    ::导言

    A small town was established in 1950, and the population is given by 

    P ( t ) = 2 , 000 ( 1.05 ) t ,
    where  t  is the number of years since 1950. The mayor would like to know when the population reached 20,000. In other words, a solution to the following equation is needed:
    ::1950年建立了一个小城镇,人口由P(t)=2,000(1.05)t给予,那里的人口是1950年以来的年数。市长想知道人口何时达到20,000。

    20 , 000 = 2 , 000 ( 1.05 ) t .
    The difficulty is that the variable is in the exponent . We will explore algebraic techniques to handle that issue.
    ::20,000=2,000(1.05)t. 困难在于变量在指数中。 我们将探索代数技术来解决这个问题 。

    lesson content

    Exponential Equation Solution Techniques
    ::指数赤道溶解技术

     To solve an exponential equation:
    ::要解析指数方程式 :

    1. Isolate the exponential part of the equation. If there are two exponential parts, then rewrite so there is  a single exponent on each side of the equation. 
      ::分离方程式的指数部分。 如果有两个指数部分, 请重写, 这样方程式的每侧都有一个符号 。
    2. Take the logarithm of each side of the equation.
      ::以方程每侧的对数取出方程的对数 。
    3. Solve for the variable. 
      ::解决变量。
    4. Check your solution. 
      ::检查你的解决方案。

    A common technique for solving equations with variables in exponents is to take the log of both sides of the equation. The p roperties of logs can be used to simplify and solve the equation.  
    ::用指数变量解析方程式的一个常见技术是采用方程式两侧的日志。日志的属性可用于简化和解析方程式。

       Properties of Using Logarithms
    ::使用对数属性

    log a x = x log a ln e x = x log 10 x = x
     

     

     

     

     

    Examples
    ::实例

    Example 1
    ::例1

    Th amount of time it will take to have $9,000 in a savings account, paying  6% annual compound interest,  if $300 is deposited at the end of each year,  satisfies the equation
    ::如果每年年底交存300美元,则储蓄账户需要9 000美元,支付6%的年度复利(如果每年年底交存300美元,则需要多少时间才能满足等式要求)

    9 , 000 = 300 ( 1.06 ) t 1 0.06 .

    ::9,000=300(1.06)t-10.06。

    This type of investment is called an annuity . Solve the preceding equation for t .  
    ::这种类型的投资被称为年金。 t 解决前一个等式 。

    Solution:
    ::解决方案 :

    30 = ( 1.06 ) t 1 0.06 1.8 = ( 1.06 ) t 1 2.8 = 1.06 t ln 2.8 = ln ( 1.06 t ) = t ln ( 1.06 ) t = ln 2.8 ln 1.06 17.67   y e a r s

    ::30=(1.06)t-1.006.8=(1.06t-12.8=1.06tln_2.8=ln(1.06t)=t ln(1.06t) (1.06t) =ln(2.06t) (2.8n) (1.06t) = (2.8n) (1.06) (1.06) (1.06) (17.67) 年

    Example 2
    ::例2

    Solve the following equation for x : 16 x = 25 .
    ::解析 x 的下列方程式: 16x=25 。

    Solution:
    ::解决方案 :

    Take  the log of both sides.  U se log properties and a calculator to approximate the solution:
    ::使用两边的日志。 使用日志属性和计算器来接近解决方案 :

    16 x = 25 log 16 x = log 25 x log 16 = log 25 x = log 25 log 16 x 1.16

    ::16x=25log_16x=log_25xlog_16=log_25x=log_25x=log_25g_16x_16x_1.16

    Example 3
    ::例3

    Solve the following equation for all possible values of x : ( log 2 x ) 2 log 2 ( x 7 ) = 12 .
    ::为 x 的所有可能值( log2x) 2- log2( x7) *12 ) 解决下列方程式 。

    Solution:
    ::解决方案 :

    Step 1: Identify that t his is a quadratic log  problem, because the logarithmic term is squared in the 1st term.   Use a substitution to  examine each layer of the problem.  
    ::步骤 1: 确定这是一个二次对数问题, 因为对数术语在第一个术语中方形。 使用替代来检查问题的每一层 。

    Step 2: Let u = log 2 x  .
    ::步骤2:让u=log2x。

    ( log 2 x ) 2 7 log 2 x + 12 = 0 u 2 7 u + 12 = 0 ( u 3 ) ( u 4 ) = 0 u = 3 , 4

    :sadlog2x)2--7log2x+12=0u2-7u+12=0(u-3)(u-4)=0u=3,4)

    Step 3: Now, substitute back and solve for  x in each case.
    ::步骤3:现在,在每种情况下以 x 替换并解决。

    log 2 x = 3 x = 2 3 = 8 log 2 x = 4 x = 2 4 = 16

    ::对数 2x=3x=23=8log2x=4x=24=16

    Example 4
    ::例4

    Return to the mayor's question from the Introduction. W hen will the small town reach a population of 20,000, as modeled by the equation  20 , 000 = 2 , 000 ( 1.05 ) t ?
    ::回到市长在导言中提出的问题,小城镇何时才能达到以20,000=2,000(1.05)t等式为模型的20,000人口?

     

    20 , 000 = 2 , 000 ( 1.05 ) t 10 = ( 1.05 ) t log 10 = log ( 1.05 ) t log ( 10 ) = t log 1.05 t = log ( 10 ) log ( 1.05 ) t 47.19  years

    ::20,000=2,000(1.05)t10=(1.05)tlog@10=(1.05)tlog@(10)=(1.05)tlog@1.05t=(10)g}(10) log}(1.05)t47.19年

    The population will reach 20,000 in 1997, because 1997 is 47 years after 1950.
    ::1997年人口将达到20,000人,因为1997年是在1950年以后47年。

    Example 5
    ::例5

    List all possible values  of x  for the  following equation : ( x + 1 ) x 4 1 = 0.
    ::列出下列方程式的所有可能的 x 值 (x+1) x- 4- 1=0 。

    Solution:
    ::解决方案 :

    ( x + 1 ) x 4 1 = 0 ( x + 1 ) x 4 = 1  Add 1. log ( x + 1 ) x 4 = log 1 Take the log of both sides. ( x 4 ) log ( x + 1 ) = 0  Use properties of logs. x 4 = 0  or  log ( x + 1 ) = 0 x 4 = 0  or  10 0 = x + 1 x 4 = 0  or  1 1 = x x = 4 , 0

    :sadx+1) x-4- 1=0=0(x+1) x-4=1 添加 1.log(x+1) x-4=log*1 使用两侧的日志。(x- 4) log}(x+1) (x+1)=0 使用日志的属性。x- 4=0 或log (x+1)=0=0 或 100=x+1x-4=0 或 1- 1=xx=4,0 使用日志的属性。

    Recall that you can only take the log of a positive argument. What if  x + 1  is negative 1 but raised to an even power? 
    ::回顾您只能接受正参数的日志。 如果 x+1 是负 1, 但却被提升到一个偶数, 那么会怎样 ?

    Notice that when x = 2

    ( 2 + 1 ) 2 4 1 = ( 1 ) 6 1 = 1 ( 1 ) 6 1 = 0 ,
    so it is also a solution. However,  log ( 2 + 1 ) = log ( 1 )  is not possible.
    ::当 x2, (-2+1) -2 - 4 - 1=(-1) - 6 - 1=1 (-1) - 1=0, 也是一种解决办法。 但是, log *(-2+1) =log (-1) 是不可能的 。

    Note that you shouldn't fall into the habit of assuming you can take the log of both sides and get all the solutions . This is only true when the argument is strictly positive.
    ::请注意, 您不应该习惯于假设您可以使用 双方的日志并获得所有解决方案。 只有当争论是绝对肯定时, 才会出现这种情况 。

    Example 6
    ::例6

    Light intensity as it travels at specific depths of water in a swimming pool can be described by the relationship between i  for intensity, and d  for depth in feet. What is the intensity of light at 10 feet? 
    ::光强度在游泳池中特定水深中行走时的光强度可以用i与d与d与脚的深度之间的关系来描述。 10英尺的光强度是多少?

    log ( i 12 ) = 0.0145 d
    :sadi12) 0.0145d

    Solution:
    ::解决方案 :

    Given d = 10 , solve for i  measured in lumens.
    ::根据 d=10, 解答我用月光测量的答案 。

    log ( i 12 ) = 0.0145 d log ( i 12 ) = 0.0145 10 log ( i 12 ) = 0.145 ( i 12 ) = 10 0.145 i = 12 10 0.145 8.594  lumens

    :sadi12)0.0145(i12)0.014510log(i12)0.145(i12)=10-0.145i=1210-0.1458.594

    Example 7
    ::例7

    Solve the following equation for all possible values of x :
    ::为 x 的所有可能值解决下列方程式:

    e x e x 3 = 14

    ::- exe- x3=14

    Solution:
    ::解决方案 :

    First solve for e x :
    ::ex 的第一个解答 :

     

    e x e x 3 = 14 e x e x = 42 e x ( e x e x ) = ( 42 ) e x e 2 x 1 = 42 e x ( e x ) 2 42 e x 1 = 0

    ::-e-x3=14ex-e-x=42ex__(ex-e-x)=(42__ex-e-x)=(42―ex2x-1=42ex(ex)2-42ex-1=0)

    Let u = e x .
    ::让u=ex。

    u 2 42 u 1 = 0 u = ( 42 ) ± ( 42 ) 2 4 1 ( 1 ) 2 1 = 42 ± 1768 2 42.023796 , 0.0237960

    ::u2-42u-1=0u(-42(-42-2)-(-42)-41(-1)-21=421768242.023796,-0.0237960

    Since the range of the exponential function is greater than 0, e x > 0 , then  e x 0.0237960  does not exist.  Thus,  0.0237960   is extraneous, so there is only  one result.
    ::由于指数函数的范围大于 0, ex>0, 那么 ex 0.0 237960 不存在。 因此, 0.0 237960 是外部的, 所以只有一个结果 。

    e x 42.023796 x ln 42.023796 3.738

    ::-42.023796x 42.0237963.738

    Summary
    ::摘要

    • To solve an exponential equation:
      • Isolate the exponential part of the equation. If there are two exponential parts, then rewrite so there is a single exponent on each side of the equation. 
        ::分离方程式的指数部分。 如果有两个指数部分, 请重写, 这样方程式的每侧都有一个符号 。
      • Take the logarithm of each side of the equation.
        ::以方程每侧的对数取出方程的对数 。
      • Solve for the variable. 
        ::解决变量。
      • Check your solution. 
        ::检查你的解决方案。

      ::要解析指数方程式 : 分离方程式的指数部分 。 如果有两个指数部分, 请重写, 这样方程式的每侧都有一个符号。 选择方程式每一侧的对数 。 解决变量 。 请检查您的解答 。

    Review
    ::回顾

    Solve each equation for x . If necessary, round each answer to three decimal places.
    ::x 的每个方程式都解答。如果需要,将每个方程式的回答按小数点后三位数进行。

    1.  4 x = 6
    ::1. 4x=6

    2.  5 x = 2
    ::2. 5x=2

    3.  12 4 x = 1 , 020
    ::3. 124x=1,020

    4.  7 3 x = 2 , 400
    ::4. 73x=2 400

    5.  2 x + 1 5 = 22
    ::5. 2x+1-5=22

    6.  5 x + 12 x = 5 x + 7
    ::6. 5x+12x=5x+7

    7.  2 x + 1 = 2 2 x + 3
    ::7. 2x+1=22x+3

    8.  3 x + 3 = 9 x + 1
    ::8. 3x+3=9x+1

    9. 2 x + 4 = 5 x
    ::9. 2x+4=5x

    10.  13 8 0.2 x = 546
    ::10.80.2x=546

    11.  b x = c + a
    ::11. bx=c+a

    12. 32 x = 0.94 .12
    ::12. 32x=0.94-12

    Solve each log equation by using log properties and rewriting as an exponential equation:
    ::使用日志属性并重写成指数方程式来解决每个日志方程式:

    13.  log 3 x + log 3 5 = 2
    ::13.3x+log3=2 对数 3x+log3=5=2

    14.  2 log x = log 8 + log 5 log 10
    ::14. 2log_x=log_8+log_5_log_10

    15. log 9 x = 3 2
    ::15. log9x=32

    Review (Answers)
    ::回顾(答复)

    Please see the Appendix.
    ::请参看附录。