4.5 使用日志解决指数等同
Section outline
-
Introduction
::导言A small town was established in 1950, and the population is given by
::1950年建立了一个小城镇,人口由P(t)=2,000(1.05)t给予,那里的人口是1950年以来的年数。市长想知道人口何时达到20,000。
::20,000=2,000(1.05)t. 困难在于变量在指数中。 我们将探索代数技术来解决这个问题 。Exponential Equation Solution Techniques
::指数赤道溶解技术To solve an exponential equation:
::要解析指数方程式 :-
Isolate the exponential part of the equation. If there are two exponential parts, then
rewrite so there is
a single exponent on each side of the equation.
::分离方程式的指数部分。 如果有两个指数部分, 请重写, 这样方程式的每侧都有一个符号 。 -
Take the logarithm of each side of the equation.
::以方程每侧的对数取出方程的对数 。 -
Solve for the variable.
::解决变量。 -
Check your solution.
::检查你的解决方案。
A common technique for solving equations with variables in exponents is to take the log of both sides of the equation. The p roperties of logs can be used to simplify and solve the equation.
::用指数变量解析方程式的一个常见技术是采用方程式两侧的日志。日志的属性可用于简化和解析方程式。Properties of Using Logarithms
::使用对数属性Examples
::实例Example 1
::例1Th e amount of time it will take to have $9,000 in a savings account, paying 6% annual compound interest, if $300 is deposited at the end of each year, satisfies the equation
::如果每年年底交存300美元,则储蓄账户需要9 000美元,支付6%的年度复利(如果每年年底交存300美元,则需要多少时间才能满足等式要求)
::9,000=300(1.06)t-10.06。This type of investment is called an annuity . Solve the preceding equation for .
::这种类型的投资被称为年金。 t 解决前一个等式 。Solution:
::解决方案 :
::30=(1.06)t-1.006.8=(1.06t-12.8=1.06tln_2.8=ln(1.06t)=t ln(1.06t) (1.06t) =ln(2.06t) (2.8n) (1.06t) = (2.8n) (1.06) (1.06) (1.06) (17.67) 年Example 2
::例2Solve the following equation for : .
::解析 x 的下列方程式: 16x=25 。Solution:
::解决方案 :Take the log of both sides. U se log properties and a calculator to approximate the solution:
::使用两边的日志。 使用日志属性和计算器来接近解决方案 :
::16x=25log_16x=log_25xlog_16=log_25x=log_25x=log_25g_16x_16x_1.16Example 3
::例3Solve the following equation for all possible values of : .
::为 x 的所有可能值( log2x) 2- log2( x7) *12 ) 解决下列方程式 。Solution:
::解决方案 :Step 1: Identify that t his is a quadratic log problem, because the logarithmic term is squared in the 1st term. Use a substitution to examine each layer of the problem.
::步骤 1: 确定这是一个二次对数问题, 因为对数术语在第一个术语中方形。 使用替代来检查问题的每一层 。Step 2: Let .
::步骤2:让u=log2x。
:log2x)2--7log2x+12=0u2-7u+12=0(u-3)(u-4)=0u=3,4)
Step 3: Now, substitute back and solve for in each case.
::步骤3:现在,在每种情况下以 x 替换并解决。
::对数 2x=3x=23=8log2x=4x=24=16Example 4
::例4Return to the mayor's question from the Introduction. W hen will the small town reach a population of 20,000, as modeled by the equation ?
::回到市长在导言中提出的问题,小城镇何时才能达到以20,000=2,000(1.05)t等式为模型的20,000人口?
::20,000=2,000(1.05)t10=(1.05)tlog@10=(1.05)tlog@(10)=(1.05)tlog@1.05t=(10)g}(10) log}(1.05)t47.19年The population will reach 20,000 in 1997, because 1997 is 47 years after 1950.
::1997年人口将达到20,000人,因为1997年是在1950年以后47年。Example 5
::例5List all possible values of for the following equation :
::列出下列方程式的所有可能的 x 值 (x+1) x- 4- 1=0 。Solution:
::解决方案 :
:x+1) x-4- 1=0=0(x+1) x-4=1 添加 1.log(x+1) x-4=log*1 使用两侧的日志。(x- 4) log}(x+1) (x+1)=0 使用日志的属性。x- 4=0 或log (x+1)=0=0 或 100=x+1x-4=0 或 1- 1=xx=4,0 使用日志的属性。
Recall that you can only take the log of a positive argument. What if is negative 1 but raised to an even power?
::回顾您只能接受正参数的日志。 如果 x+1 是负 1, 但却被提升到一个偶数, 那么会怎样 ?Notice that when ,
::当 x2, (-2+1) -2 - 4 - 1=(-1) - 6 - 1=1 (-1) - 1=0, 也是一种解决办法。 但是, log *(-2+1) =log (-1) 是不可能的 。Note that you shouldn't fall into the habit of assuming you can take the log of both sides and get all the solutions . This is only true when the argument is strictly positive.
::请注意, 您不应该习惯于假设您可以使用 双方的日志并获得所有解决方案。 只有当争论是绝对肯定时, 才会出现这种情况 。Example 6
::例6Light intensity as it travels at specific depths of water in a swimming pool can be described by the relationship between for intensity, and for depth in feet. What is the intensity of light at 10 feet?
::光强度在游泳池中特定水深中行走时的光强度可以用i与d与d与脚的深度之间的关系来描述。 10英尺的光强度是多少?
:i12) 0.0145d
Solution:
::解决方案 :Given , solve for measured in lumens.
::根据 d=10, 解答我用月光测量的答案 。
:i12)0.0145(i12)0.014510log(i12)0.145(i12)=10-0.145i=1210-0.1458.594
Example 7
::例7Solve the following equation for all possible values of :
::为 x 的所有可能值解决下列方程式:
::- exe- x3=14Solution:
::解决方案 :First solve for :
::ex 的第一个解答 :
::-e-x3=14ex-e-x=42ex__(ex-e-x)=(42__ex-e-x)=(42―ex2x-1=42ex(ex)2-42ex-1=0)Let .
::让u=ex。
::u2-42u-1=0u(-42(-42-2)-(-42)-41(-1)-21=421768242.023796,-0.0237960Since the range of the exponential function is greater than 0, , then does not exist. Thus, is extraneous, so there is only one result.
::由于指数函数的范围大于 0, ex>0, 那么 ex 0.0 237960 不存在。 因此, 0.0 237960 是外部的, 所以只有一个结果 。
::-42.023796x 42.0237963.738Summary
::摘要-
To solve an exponential equation:
-
Isolate the exponential part of the equation. If there are two exponential parts, then rewrite so there is a single exponent on each side of the equation.
::分离方程式的指数部分。 如果有两个指数部分, 请重写, 这样方程式的每侧都有一个符号 。 -
Take the logarithm of each side of the equation.
::以方程每侧的对数取出方程的对数 。 -
Solve for the variable.
::解决变量。 -
Check your solution.
::检查你的解决方案。
::要解析指数方程式 : 分离方程式的指数部分 。 如果有两个指数部分, 请重写, 这样方程式的每侧都有一个符号。 选择方程式每一侧的对数 。 解决变量 。 请检查您的解答 。 -
Isolate the exponential part of the equation. If there are two exponential parts, then rewrite so there is a single exponent on each side of the equation.
Review
::回顾Solve each equation for . If necessary, round each answer to three decimal places.
::x 的每个方程式都解答。如果需要,将每个方程式的回答按小数点后三位数进行。1.
::1. 4x=62.
::2. 5x=23.
::3. 124x=1,0204.
::4. 73x=2 4005.
::5. 2x+1-5=226.
::6. 5x+12x=5x+77.
::7. 2x+1=22x+38.
::8. 3x+3=9x+19.
::9. 2x+4=5x10.
::10.80.2x=54611.
::11. bx=c+a12.
::12. 32x=0.94-12Solve each log equation by using log properties and rewriting as an exponential equation:
::使用日志属性并重写成指数方程式来解决每个日志方程式:13.
::13.3x+log3=2 对数 3x+log3=5=214.
::14. 2log_x=log_8+log_5_log_1015.
::15. log9x=32Review (Answers)
::回顾(答复)Please see the Appendix.
::请参看附录。 -
Isolate the exponential part of the equation. If there are two exponential parts, then
rewrite so there is
a single exponent on each side of the equation.