6.2 特别右三角
章节大纲
-
Introduction
::导言The Pythagorean Theorem is a 1st step to start the exploration of trigonometric relationships. There are some special triangles like 45-45-90 and 30-60-90 triangles that are so common that it is useful to know the side ratios without using the Pythagorean Theorem each time. These patterns are used throughout trigonometry .
::Pytagorean Theorem 是开始探索三角关系的第一步。 有些特殊的三角形, 如 45- 45- 90 和 30- 60- 90 三角形非常常见, 不需要每次使用 Pytagorean Theorem 来了解侧比, 就能了解侧比。 这些图案在整个三角测量中都使用 。Given a 45-45-90 right triangle with sides 6 inches, 6 inches, and , what is the value of ?
::鉴于一个45-45-90右三角形,侧边6英寸,6英寸和x英寸,x值是多少?Special Triangles
::特殊三角三角45-45-90 Triangles
::45-45-90三角A 45-45-90 right triangle is an isosceles triangle with two sides having the same side length. Let these side lengths be equal to . Use the Pythagorean Theorem to determine the length of the 3rd side.
::右三角45- 45- 90 是一等分形三角形, 两边的侧长相同。 让这些侧长等于 x。 使用 Pytagoren 理论来确定第三边的长度 。
::x2+x2=c22x2=c2x2=cThus, a 45-45-90 right triangle has side ratios .
::因此,一个45-45-90右三角有侧比x、x和x2。30-60-90 Triangles
::30-60-90三角A 30-60-90 right triangle has side ratios .
::A 30-60-90右三角有侧翼比率x、x3和2。
Confirm with the Pythagorean Theorem:
::与毕达哥伦神话确认:
::x2+( x3) 2=( 2x) 2x2+3x2=4x24x2=4x2Note that the order of the side ratios— and —is important because each side ratio has a corresponding angle . In all triangles, the smallest sides correspond to the smallest angles, and the largest sides always correspond to the largest angles.
::请注意,侧比的顺序 — — x、x、x2和x、x3和2x — — 很重要,因为侧比每个侧比都有相应的角度。 在所有三角中,最小边与最小角度相对应,最大边总是与最大角度相对应。
The side ratios for the 45-45-90 right triangle and the 30-60-90 right triangle with examples are also explained in the following video:
::以下视频也解释了45-45-90右三角和30-60-90右三角的侧比,并举例说明:Pythagorean Triples
::毕达哥里亚三连Pythagorean t riples are special right triangles with integral side lengths. While the angle measures are not integers, the side ratios are very useful to know. Here are some examples of :
::Pythagorena三重三角形是特殊的右三角形,外长为半边长度。 虽然角度量度不是整数, 但侧比则非常有用。 以下是一些例子 :- 3, 4, 5
- 5, 12, 13
- 7, 24, 25
- 8, 15, 17
- 9, 40, 41
Additional Pythagorean triples can be found by scaling any other Pythagorean triple . For example,
::通过放大任何其他的毕达哥林三联,可以发现其他的毕达哥林三联。例如,(scaled by a factor of 2).
::3,4,56,8,10(乘以2)Examples
::实例Example 1
::例1A right triangle has two sides that are 3 inches in length. What is the length of the 3rd side?
::右三角形的两边长度为3英寸。 第三边的长度是多少?Solution:
::解决方案 :Since it is a right triangle with two sides of equal length, then it must be a 45-45-90 right triangle. Thus, the 3rd side is .
::由于它是右三角形,两边长度相等, 那么它必须是45 - 45 - 90 右三角形。 因此, 第三边是32 英寸 。Example 2
::例2A 30-60-90 right triangle has a hypotenuse of length 10. What are the lengths of the other two sides?
::右三角形30-60-90的长度为10,其他两边的长度是多少?Solution:
::解决方案 :The hypotenuse is the side opposite the 90°. Sometimes it is helpful to draw a picture or make a table:
::下限是90度对面的一面。 有时绘制图片或制作表格会有所帮助:30°
60°
90°
::x x
::x3x3
::2x 2x10
From the table, solve the subsequent equations for the missing sides:
::从表格中解开失踪方程式的后方程式:
::18=x3183=xx=183=183=1883=1833=1833=632x=221963=123Example 3
::例3A 30-60-90 right triangle has a side length of 18 inches corresponding to 60 degrees. What are the lengths of the other two sides?
::右三角形30-60-90的侧长为18英寸,相当于60度。其他两边的长度是多少?Solution:
::解决方案 :Make a table with the side ratios and the information given, then write equations and solve for the missing side lengths:
::绘制带有侧比和所提供信息的表格, 然后写入方程式并解析缺失的侧边长度 :30
60
90
::x x
::x3x3
::2x 2x18
::18=x3183=xx=183=183=1883=1833=1833=632x=221963=123Note that the denominator is rationalized so that there is no a square root in the denominator.
::请注意,分母是合理化的,以便分母中没有平方根。Example 4
::例4Return to the question in the Introduction. Given a 45-45-90 right triangle with sides 6 inches, 6 inches, and inches, what is the value of ?
::回到导言中的问题。考虑到一个45-45-90右三角形,侧边有6英寸、6英寸和x英寸,x值是多少?Solution:
::解决方案 :Using the pattern for , a right triangle with legs 6 inches and 6 inches has a hypotenuse that is inches, so .
::使用此图案, 右三角形有6英寸和6英寸的腿, 下限为62英寸, 所以 x=62 。Summary
::摘要-
Corresponding angles and sides
are angles and sides that are on opposite sides of each other in a triangle. Capital letters like
are often used for the angles in a triangle, and the lowercase letters
are used for their corresponding sides (angle
corresponds to side
a,
etc.).
::对应角度和侧面是三角形中对立面的角和侧面。 A、B和C等大写字母通常用于三角形中的角,而小写字母a、b和c则用于对应面(角A对面a等)。 -
A 30-60-90 right triangle has side ratios
.
::A 30-60-90右三角有侧翼比率x、x3和2。 -
A 45-45-90 right triangle has side ratios
.
::A 45-45-90右三角形有侧比x、x和x2。 -
Pythagorean triples
are special right triangles with integer sides.
::毕达哥林三重三角形是特殊的右三角形,有整边。
Review
::回顾For 1-4, find the missing sides of the 45-45-90 triangle based on the information given in each row:
::1-4,根据每行提供的信息,找到45-45-90三角形的缺失侧:Problem Number
::问题编号Side Opposite
::侧面45号对面____________________________________________________________Side Opposite
::侧面45号对面____________________________________________________________Side Opposite
::90号对面1.
3
2.
7.2
3.
16
4.
For 5-8, find the missing sides of the 30-60-90 triangle based on the information given in each row:
::对于 5-8, 根据每行提供的信息, 找到 30- 60- 90 三角形的缺失边 :Problem Number
::问题编号Side Opposite
::侧面对面30+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++Side Opposite
::侧面对面60Side Opposite
::90号对面5.
6.
4
7.
15
8.
Use the picture below for 9-11.
::9-11时请使用下图。9. Which angle corresponds to the side that is 12 units?
::9. 哪个角度与12个单位的侧面对应?10. Which side corresponds to the right angle?
::10. 哪一边与正确角度相对应?11. Which angle corresponds to the side that is 5 units?
::11. 哪个角度与5个单位的侧面对应?For 12-17, verify the Pythagorean triple using the Pythagorean Theorem:
::使用毕达哥伦神话来验证毕达哥伦三联赛:12. 3, 4, 5
13. 5, 12, 13
14. 7, 24, 25
15. 8, 15, 17
16. 9, 40, 41
17. 6, 8, 10
18. Find another Pythagorean triple by using the scaling method for 11, 60, 61.
::18. 通过使用11,60,61的缩放法,再找一个毕达哥林三联赛。Review ( Answers)
::回顾(答复)Please see the Appendix.
::请参看附录。