章节大纲

  • Introduction
    ::导言

    The Pythagorean Theorem is a 1st step to start the exploration of trigonometric relationships. There are some special triangles like 45-45-90 and 30-60-90 triangles that are so common that it is useful to know the side ratios without using the Pythagorean Theorem each time. These patterns  are used throughout trigonometry .
    ::Pytagorean Theorem 是开始探索三角关系的第一步。 有些特殊的三角形, 如 45- 45- 90 和 30- 60- 90 三角形非常常见, 不需要每次使用 Pytagorean Theorem 来了解侧比, 就能了解侧比。 这些图案在整个三角测量中都使用 。

    lesson content

    Given a 45-45-90 right triangle with sides 6 inches, 6 inches, and  x   inches what is the value of   x
    ::鉴于一个45-45-90右三角形,侧边6英寸,6英寸和x英寸,x值是多少?

    Special Triangles
    ::特殊三角三角

    45-45-90 Triangles
    ::45-45-90三角

    A 45-45-90 right triangle is an isosceles triangle with two sides having the same side length. Let these side lengths be equal to x . Use the Pythagorean Theorem to determine the length of the 3rd side. 
    ::右三角45- 45- 90 是一等分形三角形, 两边的侧长相同。 让这些侧长等于 x。 使用 Pytagoren 理论来确定第三边的长度 。

    x 2 + x 2 = c 2 2 x 2 = c 2 x 2 = c

    ::x2+x2=c22x2=c2x2=c

    Thus, a 45-45-90 right triangle has side ratios  x , x ,  and  x 2
    ::因此,一个45-45-90右三角有侧比x、x和x2。

    lesson content

    30-60-90 Triangles
    ::30-60-90三角

     

    A  30-60-90 right triangle has side ratios x , x 3 ,  and  2 x
    ::A 30-60-90右三角有侧翼比率x、x3和2。

    lesson content


    Confirm with the Pythagorean Theorem:
    ::与毕达哥伦神话确认:

    x 2 + ( x 3 ) 2 = ( 2 x ) 2 x 2 + 3 x 2 = 4 x 2 4 x 2 = 4 x 2

    ::x2+( x3) 2=( 2x) 2x2+3x2=4x24x2=4x2

    Note that the order of the side ratios— x , x ,  and  x 2  and  x , x 3 ,  and  2 x —is important because each side ratio has a corresponding angle . In all triangles, the smallest sides correspond to the smallest angles, and the largest sides always correspond to the largest angles.
    ::请注意,侧比的顺序 — — x、x、x2和x、x3和2x — — 很重要,因为侧比每个侧比都有相应的角度。 在所有三角中,最小边与最小角度相对应,最大边总是与最大角度相对应。

    lesson content


    The side ratios  for the 45-45-90 right triangle and the  30-60-90 right triangle with examples are also explained in the following video:   
    ::以下视频也解释了45-45-90右三角和30-60-90右三角的侧比,并举例说明:

    Pythagorean Triples
    ::毕达哥里亚三连

    Pythagorean t riples are special right triangles with integral side lengths. While the angle measures are not integers, the side ratios are very useful to know. Here are some examples of :
    ::Pythagorena三重三角形是特殊的右三角形,外长为半边长度。 虽然角度量度不是整数, 但侧比则非常有用。 以下是一些例子 :

    • 3, 4, 5
    • 5, 12, 13
    • 7, 24, 25
    • 8, 15, 17
    • 9, 40, 41

    Additional Pythagorean triples can be found by scaling any other Pythagorean triple . For example,
    ::通过放大任何其他的毕达哥林三联,可以发现其他的毕达哥林三联。例如,

    3 , 4 , 5 6 , 8 , 10 (scaled by a factor of 2).
    ::3,4,56,8,10(乘以2)

      

    Examples  
    ::实例

    Example 1
    ::例1

    A right triangle has two sides that are 3 inches in length. What is the length of the 3rd side? 
    ::右三角形的两边长度为3英寸。 第三边的长度是多少?

    Solution:
    ::解决方案 :

    Since it is a right triangle with  two sides of equal length, then it must be a 45-45-90 right triangle. Thus, the 3rd side is 3 2   inches .
    ::由于它是右三角形,两边长度相等, 那么它必须是45 - 45 - 90 右三角形。 因此, 第三边是32 英寸 。

    Example 2
    ::例2

    A 30-60-90 right triangle has a hypotenuse of length 10. What are the lengths of the other two sides? 
    ::右三角形30-60-90的长度为10,其他两边的长度是多少?

    Solution:
    ::解决方案 :

    The hypotenuse is the side opposite the 90°. Sometimes it is helpful to draw a picture or make a table: 
    ::下限是90度对面的一面。 有时绘制图片或制作表格会有所帮助:

    30°

    60°

    90°

    x
    ::x x

    x 3
    ::x3x3

    2 x
    ::2x 2x

     

     

    10

    From the table, solve the  subsequent equations for the missing sides: 
    ::从表格中解开失踪方程式的后方程式:

    18 = x 3 18 3 = x x = 18 3 = 18 3 3 3 = 18 3 3 = 6 3 2 x = 2 6 3 = 12 3

    ::18=x3183=xx=183=183=1883=1833=1833=632x=221963=123

    Example 3
    ::例3

    A 30-60-90 right triangle has a side length of 18 inches corresponding to 60 degrees. What are the lengths of the other two sides? 
    ::右三角形30-60-90的侧长为18英寸,相当于60度。其他两边的长度是多少?

    Solution:
    ::解决方案 :

    Make a table with the side ratios and the information given, then write equations and solve for the missing side lengths: 
    ::绘制带有侧比和所提供信息的表格, 然后写入方程式并解析缺失的侧边长度 :

    30

    60

    90

    x
    ::x x

    x 3
    ::x3x3

    2 x
    ::2x 2x

     

    18

     

    18 = x 3 18 3 = x x = 18 3 = 18 3 3 3 = 18 3 3 = 6 3 2 x = 2 6 3 = 12 3

    ::18=x3183=xx=183=183=1883=1833=1833=632x=221963=123

    Note that the denominator is  rationalized so that there is no a square root in the denominator.
    ::请注意,分母是合理化的,以便分母中没有平方根。

    Example 4
    ::例4

    Return to the question in the Introduction. Given a 45-45-90 right triangle with sides 6 inches, 6 inches, and x  inches, what is the value of x
    ::回到导言中的问题。考虑到一个45-45-90右三角形,侧边有6英寸、6英寸和x英寸,x值是多少?

    Solution:
    ::解决方案 :

    Using  the pattern for , a right triangle with legs 6 inches and 6 inches has a hypotenuse that is 6 2  inches, so  x = 6 2 .
    ::使用此图案, 右三角形有6英寸和6英寸的腿, 下限为62英寸, 所以 x=62 。

    Summary
    ::摘要

    • Corresponding angles and sides are angles and sides that are on opposite sides of each other in a triangle. Capital letters like  A , B ,  and  C are often used for the angles in a triangle, and the lowercase letters  a , b ,  and  c   are used for their corresponding sides (angle  A corresponds to side a, etc.). 
      ::对应角度和侧面是三角形中对立面的角和侧面。 A、B和C等大写字母通常用于三角形中的角,而小写字母a、b和c则用于对应面(角A对面a等)。
    • A 30-60-90 right triangle has side ratios x , x 3 ,  and  2 x
      ::A 30-60-90右三角有侧翼比率x、x3和2。
    • A 45-45-90 right triangle has side ratios x , x ,  and  x 2
      ::A 45-45-90右三角形有侧比x、x和x2。
    • Pythagorean triples are special right triangles with integer sides.  
      ::毕达哥林三重三角形是特殊的右三角形,有整边。

    Review
    ::回顾

    For 1-4, find the missing sides of the 45-45-90 triangle based on the information given in each row:
    ::1-4,根据每行提供的信息,找到45-45-90三角形的缺失侧:

    Problem Number
    ::问题编号

    Side Opposite 45
    ::侧面45号对面____________________________________________________________

    Side Opposite 45
    ::侧面45号对面____________________________________________________________

    Side Opposite 90
    ::90号对面

    1.

    3

     

     

    2.

     

    7.2

     

    3.

     

     

    16

    4.

    5 2

     

     

    For 5-8, find the missing sides of the 30-60-90 triangle based on the information given in each row:
    ::对于 5-8, 根据每行提供的信息, 找到 30- 60- 90 三角形的缺失边 :

    Problem Number
    ::问题编号

    Side Opposite 30
    ::侧面对面30+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

    Side Opposite 60
    ::侧面对面60

    Side Opposite 90
    ::90号对面

    5.

    3 2

     

     

    6.

     

    4

     

    7.

     

     

    15

    8.

     

     

    12 3

     

    Use the picture below for 9-11.
    ::9-11时请使用下图。

    lesson content

    9. Which angle corresponds to the side that is 12 units?
    ::9. 哪个角度与12个单位的侧面对应?

    10. Which side corresponds to the right angle?
    ::10. 哪一边与正确角度相对应?

    11. Which angle corresponds to the side that is 5 units?
    ::11. 哪个角度与5个单位的侧面对应?

     

    For 12-17, verify the Pythagorean triple using the Pythagorean Theorem:
    ::使用毕达哥伦神话来验证毕达哥伦三联赛:

    12. 3, 4, 5

    13. 5, 12, 13

    14. 7, 24, 25

    15. 8, 15, 17

    16. 9, 40, 41

    17. 6, 8, 10

     

    18. Find another Pythagorean triple by using the scaling method for 11, 60, 61.
    ::18. 通过使用11,60,61的缩放法,再找一个毕达哥林三联赛。

    Review ( Answers)
    ::回顾(答复)

    Please see the Appendix.
    ::请参看附录。