7.5 儿科功能的频率和时期
章节大纲
-
Introduction
::导言In Chicago there is a public sculpture called Cloud Gate that looks like a giant bean. This sculpture can be modeled by a sinusoidal function as you walk around it. Similarly, the temperature standing next to it can be modeled with a sinusoidal function.
::在芝加哥,有一个叫云门的公共雕塑,看起来像一个巨型豆子。这个雕塑可以在你绕着它走动时用一个正弦函数模拟。同样,旁边的温度也可以用正弦函数模拟。A mathematical model that fits this data is
::符合此数据的数学模型是y=28sin(0.48x-1.81)+56=28sin(0.48(x-3.77)+56.A 如另一部分所述,正弦函数明显为28,垂直变化为56个单位,即最高和最低温度的平均值。从该函数的第二种形式来看,水平或阶段变化为3.77。(x-3.77)的系数如何影响图形?Sinusoidal Functions
::科性函数A sinusoid is the graph of the sine function. The general equation for the sine function provides the necessary information to graph the function: . The sign on controls the reflection across the -axis, and the value of controls the amplitude. The constant controls the vertical shift and the horizontal or phase shift. The coefficient controls the horizontal stretch .
::正弦函数的图示为正弦值。正弦函数的一般方程提供必要的信息来显示函数 : f(x)=asin(b(x-h))+k。控制 x 轴反射的符号以及控制振幅的值。恒定 k 控制垂直移动和 h 水平或相向移动。系数b 控制水平拉伸。General Form of S inusoidal Function:
::Sinusoidal 函数的一般形式 :
:xx) = asin (b(x-h)+k,
where is the amplitude, is the period, is the horizontal or phase shift, and is the vertical shift.
::在“aa”是振幅,“2b”是周期,“h”是水平或阶段转换,“k”是垂直转换。Horizontal stretch for sinusoidal functions is connected to the function's p eriod. Since t his is the basis for the periodic function family, the period is a critical characteristic. The period of a sine graph is the length of a complete cycle. For basic functions, the period is . This length can be measured in multiple ways. In applications , it may be most useful to measure from peak to peak.
::等离子函数的水平拉伸与函数的时段相关。 由于这是周期函数族的基础, 此时段是一个关键特征。 正弦图的时段是整个周期的长度。 对于基本函数, 此时段为 2++。 此时段可以用多种方式测量。 在应用中, 测量从峰值到峰值可能最为有用 。
The ability to measure the period of a function in multiple ways allows multiple equations to model the same graph. In the image above, the top red line would represent a regular cosine wave. The center red line would represent a regular sine wave with a horizontal shift. The bottom red line would represent a reflected cosine wave with a horizontal shift. Any cosine function can be written as a sine function, since This flexibility in perspective means that graphs have multiple solutions. Unless you are directed otherwise, choose the function that has a period starting at or the closest option.
::以多种方式测量函数周期的能力允许多个方程式来模拟同一图形。 在以上图像中, 上方的红线将代表一个正正弦波。 中方的红线将代表一个正正弦波, 水平变化。 下方的红线将代表一个反射的正弦波, 水平变化。 任何余弦函数都可以写成一个正弦函数, 因为 COs( x) =sin( x) = \\ (x\\\\\ 2) 。 视野中的这种灵活性意味着图形有多个解决方案。 除非您另有指示, 否则, 请选择从 x=0 或最接近的选项开始一个时期的函数 。Frequency is a different way of measuring horizontal stretch. With sinusoidal functions, frequency is the number of cycles that occur in . A shorter period means more cycles can fit in , thus requiring a higher frequency. Period and frequency are inversely related by the equation:
::频率是测量水平伸展的另一种不同方式。 使用正弦函数, 频率是 2 中的周期数。 较短的周期意味着更多的周期可以适应 2 , 从而需要更高的频率。 使用等式, 周期和频率是反向关联的 :Period
::期间The equation of a standard sine function is . In this case, , the frequency, is equal to 1, which means 1 cycle is completed in .
::标准正弦函数的方程式是 f(x)=sinx。 在这种情况下, b, 频率等于 1, 这意味着 1 周期在 2 中完成 。A fractional frequency will increase the length of the period. Note that if you have a function where , the period will be since
::分数频率会延长周期的长度。请注意,如果您在 b=12 的位置有一个函数,则该周期将为 4。
::p=2b=212=4。Examples
::实例Example 1
::例1Rank the waves from the shortest to the longest period.
::从最短到最长的波浪顺序。
Solution:
::解决方案 :The red wave has the shortest period.
::红波时间最短The green and black waves have equal periods. The difference between these two graphs is in their amplitude.
::绿色和黑色的海浪有相同的时间段。这两个图表的差别在于它们的振幅。The blue wave has the longest period.
::蓝色波浪的周期最长。Example 2
::例2Identify the amplitude, vertical shift, period, and frequency of the function below. Then graph the function:
::标明以下函数的振幅、 垂直移动、 周期和频率。 然后绘制函数图 : f( x) = 2sin( x3)+1 。Solution:
::解决方案 :Step 1: Identify the key information from the general equation: .
::第1步:从一般方程中确定关键信息:A=2,b=13,k=1。Step 2: Calculate the period: Since , then the period is .
::第2步:计算周期:自b=13起,期间为6。Step 3: Since the period is , the graph can be divided into f our parts so that the five guiding points (four sections and the 1st point on the y-axis) of the sine graph can be plotted with the amplitude.
::第3步:由于这一时期是6__年,因此该图可以分为四个部分,以便用振幅绘制正弦图的五个指导点(四个部分和Y轴的第1点)。Identify key points: (0,1) is the first point and ( , 1) is the last point to plot of our five. The midpoint of the points will be found at ( , 1). The midpoint between the 1st and 3rd points will be the maximum, found at ( , 3). The midpoint between the 3rd and last points will be found at ( , -1).
::确定关键点 : (0, 1) 是第一个点, (6, 1) 是五个点的最后一个点 。 点的中点将在 3 和 1 中点 。 第 1 点与 第 3 点之间的中点将是 最大点 , 最高点为 (3 12, 3 ) 。 第 3 点与 最后点之间的中点将在 9 12, - 1 中点 。Step 4: Graph the five key points and sketch the curve:
::第4步:绘制五个关键点图,绘制曲线图:
Example 3
::例3A measuring stick on a dock measures high tide to be 18 feet and low tide to be 6 feet. It takes about 6 hours for the tide to switch between low and high tides. Determine a graphical and algebraic model for the tides, knowing that at there is a high tide.
::码头上的测量杆测量高潮为 18 英尺,低潮为 6 英尺。 低潮需要大约 6 小时才能在低潮和高潮之间转换。 确定潮的图形和代数模型, 知道在 t= 0 时有高潮。 NAME OF TRANSLATORS NAME OF TRANSLATORSSolution:
::解决方案 :Step 1: From the given information, the points below can be found. Notice how the sinusoidal axis can be assumed to be the average of the high and low tides.
::第1步:从给定的信息中,可以找到以下各点。请注意正弦轴如何被假定为高潮和低潮的平均值。Time (hours) Water level (feet) 0 18 6 6 12 18 Step 2: By plotting those points and filling in the sinusoidal axis, we can observe a cosine graph.
::步骤2:通过绘制这些点和填充正弦轴,我们可以观察一个余弦图。
Step 3: The amplitude is 6, so . There is no vertical reflection.
::第3步:振幅是6,所以A=6,没有垂直反射。Step 4: Since the period is 12, is found:
::第4步:由于报告期为12,b 如下:
::12=2bb6Step 5: The vertical shift is 12, so .
::第5步:垂直转变是12,所以k=12。Step 6: Enter the gathered information into the general equation:
::步骤6:将收集的信息输入总方程:
::f(x) = 6cos(x6x)+12。Example 4
::例4Return to the Introduction problem: How does the coefficient 0.48 on affect the graph of ?
::回到引入问题:0.48(x-3.77)上系数0.48(x-3.77)如何影响y=28sin(0.48(x-3.77)+56的图形?Solution:
::解决方案 :The period of the graph is
::图形的周期为 =20.48\\\\\\13.1, 即图形整个循环和返回到起始温度的时间长度 。Example 5
::例5A fish is caught in a water wheel by the side of a river. Initially, the fish is at the bottom of the water wheel, which is 2 feet below the surface of the water. Twenty seconds later the fish is 14 feet in the air at the top of the water wheel. Model the fish’s height with a graph and an equation.
::鱼在河边的水轮中捕获。 最初,鱼在水轮底部,水轮下方2英尺。 20秒后,鱼在水轮顶部的空气中为14英尺。 用图表和方程式来模拟鱼的高度。Solution:
::解决方案 :Step 1: Use logic to identify five key points. Use those key points to come up with a sketch.
::第一步 : 使用逻辑来识别五个关键点。 使用这些关键点来绘制草图 。Time (seconds) Fish height (feet) 0 -2 20 14 40 -2 6 Step 2: Use the sketch to identify information for the equation.
::第2步:利用草图确定方程式的信息。Step 3: Identify the amplitude. The amplitude is 8, so .
::第3步:确定振幅。振幅是8,所以A=8。Step 4: Identify the function. The function looks like a reflected cosine graph, adding a negative to our final equation.
::第4步 : 识别函数。 函数看起来像一个反正余弦图, 给我们的最终方程式添加负值 。Step 5: The vertical shift is .
::第5步:垂直转换为k=6。Step 6: The period is 40.
::第6步:期间为40年。
::40=2bb20Step 7: Insert the gathered information into the general equation:
::步骤7:在一般等式中插入所收集的信息:
::f(x)_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________Labeling on the graph can be helpful to identifying the graph . On both the - and -axes, only the most important intervals are labeled. This keeps the sketch accurate, evenly spaced, and easy to read.
::在图形上贴标签可有助于识别图形。在 X 轴和 y 轴上,只有最重要的间隔标记。这样可以保持草图的准确性、均匀的空格和易读。Example 6
::例6Graph the following function: .
::如下的函数图解 : g( x) ( 8x) +2 。Solution:
::解决方案 :Step 1: Identify the amplitude. The amplitude is 1.
::第1步:标明振幅。振幅为 1 。Step 2: The shape is a negative cosine.
::步骤2:形状为负余弦。Step 3: Identify the vertical shift. The vertical shift is up 2.
::步骤3:确定垂直转变。垂直转变是向上移动2。Step 4: Calculate the period. The period is .
::第4步:计算周期。 周期为 284 。Step 5: Identify five key points and graph:
::第5步:确定五个关键点和图表:Example 7
::例7Given the following graph, identify the and create an algebraic model:
::根据下图,确定并创建代数模型:Solution:
::解决方案 :Step 1: Identify the amplitude. The amplitude is 3.
::第1步:确定振幅。振幅为3。Step 2: Identify the function. The shape is a reflected cosine graph.
::第2步 : 识别函数。 形状是一个反射的余弦图 。Step 3: Calculate the period: The period is which implies that since:
::第3步:计算期间:期间为512/2,这意味着b=45,因为:
::52=25222b=45b=45。第4步:确定垂直变化。垂直变化为 1。Step 5: Insert the gathered information into the general equation:
::第5步:在一般等式中插入所收集的信息:
::f(x)3cos(45x)+1..Summary
::摘要-
Sinusoidal functions have the form
::Sinusoidal 函数具有 f(x) =asin {(b(x-c)+d) 的表单 f(x) = asin} (b(x-c)+d 。 -
The sine graph has an amplitude
,
period
, frequency
,
phase shift
, and vertical shift
.
::正弦图有一个振幅 a, 周期 2b, 频率 b2, 阶段转换 h 和垂直移动 k 。
Review
::回顾Find the frequency and period of each function below.
::查找以下每个函数的频率和时间段。1.
::1. f(x) =sin(4x)+12.
::2. g(x)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\3.
::3. h(x) =cos( 12x+4)+24.
::4. k(x) @ @ @%2sin @( 34x)+15.
::5. j(x)=4cos(3x+6)-1Graph each of the following functions:
::绘制下列函数的每个函数图 :6.
::6. f(x) = 3sin( 2x)+17.
::7. g(x)=2.5cos(xx)-48.
::8. h(x) sin(4x+8)- 39.
::9. k( x) = 12cos @ ( 2x+6)10.
::10. j(x)_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________Create an algebraic model for each of the following graphs:
::为下列每个图表创建代数模型:
11.12.
13.
14. At time 0 it is high tide, and the water at a certain location is 10 feet high. At low tide 6 hours later, the water is 2 feet high. Given that tides can be modeled by sinusoidal functions, find a graph that models this scenario.
::14. 那时是高潮,某个地方的水位是10英尺高,6小时后是低潮,水位是2英尺高,鉴于潮位可以用正弦形功能模拟,请用图表来模拟这一情景。15. Find the equation that models the scenario in the previous problem.
::15. 找出在前一个问题中模拟设想情景的方程式。Review (Answers)
::回顾(答复)Please see the Appendix.
::请参看附录。 -
Sinusoidal functions have the form