7.10 摘要:单位圆圈和三角函数
章节大纲
-
Chapter Summary
::章次摘要We've learned many tools in this chapter to understand how to graph trigonometric functions .
::我们在本章中学习了许多工具 来了解如何绘制三角函数We've learned about:
::我们学到了:The Unit Circle
::联合圆圈-
The unit circle provides a basis for understanding how the sine, cosine, and tangent ratios relate.
::单位圆为了解正弦、正弦和正弦之比之间的关系提供了一个基础。 -
The unit circle is a circle with its center at the origin and with a radius of 1, whose equation is
::单位圆是一个圆形,其中心位于原点,半径为1,其方程式为 x2+y2=1。
Graphing Trigonometric Functions
::三角函数图-
Sinusoidal functions have the form
where
is the
amplitude
,
is the horizontal or
phase shift, and
is the vertical shift.
The period is
and the frequency is
.
::Sinusoidal 函数为 f( x) =asin {( b( x- h))+k, 其中 {a} {a} 是振幅, h 是水平或相位变化, k 是垂直变化。 周期为 2 {b} , 频率为 {b} 2 。 -
Since
cosecant is the reciprocal of the sine function, and secant is the reciprocal of the cosine function, t
he secant and cosecant graphs can be sketched by sketching a faint sine or cosine graph and using that graph to establish asymptotes.
::由于共生体是正弦函数的对等函数,分离是正弦函数的对等函数,分离和共生体图形可以通过绘制一个微弱正弦或正弦图形,并利用该图来建立静脉图来绘制草图。 -
To graph the tangent and cotangent functions, determine the asymptotes and zeros of the functions
using the knowledge of the ratio of sine and cosine functions.
::要绘制正切和余切函数图,请使用对正弦函数和正弦函数之比的了解来确定函数的零点和零点。
Inverse Trigonometric Functions
::反逆三角函数-
There are two conventions used to identify inverse trigonometric functions: using the prefix of arc, or the superscript of -1.
::有两项公约用来确定反三角函数:使用弧的前缀或-1的上标。 -
Even though none of the trigonometric functions pass the horizontal line test over the entire set of
real numbers
, their domains can be restricted for the purpose of studying and applying inverses.
::即使三角函数没有一个能通过横线测试,超过整个一套实际数字,但为了研究和应用反向,它们的域可以加以限制。
Review
::回顾Try the following cumulative review problems to practice the concepts in this chapter:
::尝试下列累积审查问题来实践本章中的概念: -
The unit circle provides a basis for understanding how the sine, cosine, and tangent ratios relate.