8.4 总数和差异
章节大纲
-
Introduction
::导言Sound waves and tones can be modeled by tuning forks. One sound might be modeled by the equation and another might be modeled by It may be difficult to compare the tones without graphing. While trigonometric functions do not follow the properties of integers, they have identities that can be used to manipulate their variables.
::声波和音调调色调可以通过调制叉进行模拟。 一种声音可以用方程式 s=3sin2t 进行模拟,另一种声音可能用 s=4sin( t+3) 进行模拟, 不绘制图形就很难比较音调。 虽然三角度函数不跟随整数的属性, 它们具有可用于操纵变量的身份 。In mathematics, the difference between exact and approximate values is always an issue. At this point with trigonometry, the only trigonometric functions known exactly are summarized in the unit circle . However, knowledge of these functions provides enough information to find the of (the difference of and ) and ( the sum of and ) .
::在数学方面,精确值和近似值之间的差别总是个问题。在三角测量学方面,唯一确切知道的三角函数在单位圆中被总结。然而,对这些函数的了解提供了足够的信息,可以找到15个(45个和30个)和75个(45个和30个)和75个(45个和30个)。Using the unit circle and a new set of identities, determine and
::使用单位圆和一套新的身份,确定sin15和sin75。Sum and Difference Identities
::合计和差异There are some intuitive but incorrect formulas for sums and differences with respect to trigonometric functions. For example, is one of the most common incorrect guesses as to the sum and difference identity .
::对于三角函数的数值和差异,有一些直观但不正确的公式。例如,sin 是对于总和和和差异特性最常见的不正确的猜测之一。First, look at the derivation of the cosine difference identity:
::首先,看看余弦差异特性的衍生:
:)=coscossinsinsin
Start by drawing two arbitrary angles, and . In the image above, is the angle in red and is the angle in blue. The difference is noted in black as . The reason why there are two pictures is because the image on the right has the same angle in a rotated position. This will be useful to work with because the length of will be the same as the length of .
::以绘制两个任意角度( α 和 ) 开始。 在以上图像中, α 是红色角度, β 是蓝色角度。 以黑色表示 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =T he length of by using the distance formula:
::使用距离公式的 AB 长度 :
::AB (coscos)2+(sinsin)2The length of by using the distance formula:
::使用距离公式的 CD 长度 :
::CD {( cos% 1) 2+( sin0) 2Since ,
::自从AB'C'D',
:coscos)2+(sinsin)2=(cos1)2+(sin0)(2(coscos)2+(sinsin)2=(cos1)2+(sin0))。
Multiply through the squared terms and simplify, using algebra.
::乘以平方条件,使用代数简化。
:cos)2-2-2cos(cos)2+(sin)2-2sin(sin)2=(cos)2-2-2cos1+(sin)2
Use the Pythagorean Trigonometric Identity to further simplify.
::使用毕达哥里安三角特征来进一步简化。
::2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2The proof for the sine and tangent functions are left as an example and in the exercises. Cotangent , secant, and cosecant are excluded because it is better to use .
::用于正切和相切函数的证明留作例子和练习。 切除、 割裂和 割裂, 因为使用更好 。 @ info: whatsthisDifference Identities
::相 异 异 度
:)=coscossinsinsin
:)=sincoscoscossinsin
::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~The sum identities are nearly the same as the difference identities. However, notice the change in signs in the sum identities.
::总和身份与差异身份几乎相同,但请注意总和身份的标志变化。Sum Identities
::身份证明
:)=coscossinsinsin
:)=sincoscoscossinsin
::~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~Examples using the for sine and tangent functions can be seen in the following videos:
::使用正弦和相切函数的例子可见于以下视频:Examples
::实例Example 1
::例1Prove the sum identity for the cosine function .
::证明余弦函数的总和身份。
:)
Solution:
::解决方案 :Step 1: Start with the cosine of a difference and make a substitution. Then use the odd-even identity.
::第1步:从差异的余弦开始进行替换。然后使用奇数身份 。
:)
Step 2: Let
::第2步:让我们____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
::Example 2
::例2Find the exact value of without using a calculator.
::在不使用计算器的情况下查找 tan% 15 的准确值 。Solution:
::解决方案 :Step1:
::步骤1:
::~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Step 2: A final solution is rationalized . In this case, multiplying through by the conjugate of the denominator will eliminate the radical.
::步骤2:最终解决方案的合理化。 在这种情况下,乘以分母的组合,将消除激进主义。Example 3
::例3Evaluate the expression exactly without using a calculator.
::准确评价表达式而不使用计算器 。
::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}什么? {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}什么?Solution:
::解决方案 :Apply c osine of a difference.
::应用差异的余弦 。
::====================================================================================================================================== ================================================================================================================================Example 4
::例4Return to the problem in the Introduction, u sing the unit circle and a new set of identities to determine and .
::回到导言中的问题,利用单位圈和一套新的身份来确定sin15和sin75。Solution:
::解决方案 :In order to evaluate and exactly without a calculator, use the sine of a difference and the sine of a sum.
::为了评估 sin\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Example 5
::例5Prove the sine of a difference identity.
::证明差异认同的必要条件。
:)=sincoscoscossinsin
Solution:
::解决方案 :Start with the cofunction identity , and then distribute and work out the cosine of a sum and cofunction identities.
::以共用身份开始, 然后分配和解决余弦 和共用身份。
:) =cos() =cos() () () () () () () () () () () () () () () () () () () () () () () () () () () () () ) () () () () () () () () () () () () () () () () () ) (() () () (() () () () () (() ) ) () (() ) (() ) () ((() ) ) (() () ) ) ) () () ) ) ((() ) )
Example 6
::例6Use a sum or difference identity to find an exact value of .
::使用一个总和或差异身份来查找 cot( 512) 的准确值 。Solution :
::解决方案 :Start with the definition of cotangent as the inverse of tangent.
::以正切值定义为反正切值开始 。
:5)12=1tan(512)=1tan(912-412)=1tan(343) =1+tan(344333334 - tan3=1+(11)3=1+(13)3=1-1-1-3-1-3__1+3-1+3+31+23-31-3__4+23-2=2-3)
Example 7
::例7Prove the following identity:
::证明以下身份:sin(x-y)sin(x+y)=tanx-tanytanx+tany。Solution:
::解决方案 :
:x+Y) = (sin) xxxxxxxxxxxxxxxxxxxxxxxxxin}}}{Y}}(x+Y) = (sinxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx}}}) = (cusxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxn_}}}{}}}
Summary
::摘要-
Difference Identities
::相 异 异 度
::-
Sum Identities
::身份证明
:) () () () () () () () () () () () () () () () () () 1-() () () () () () () () ()
Review
::回顾Find the exact value for each expression by using a sum or difference identity:
::使用总和或差异特性查找每个表达式的准确值 :1.
::1. 承担第75-75-______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.
::2. COS105_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________3.
::3,cos1654.
::4 sin 105______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________5.
::5 秒 1056.
::6. 锡 75_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________7. Prove the sine of a sum identity.
::7. 证明真实身份的必要条件。8. Prove the tangent of a sum identity.
::8. 证明一个总特征的相切性。9. Prove the tangent of a difference identity.
::9. 证明差异认同的相切性。10. Evaluate without a calculator: .
::10. 无计算器的评价:cos50cos10sin50sin10。11. Evaluate without a calculator: .
::11. 评估没有计算器:sin_35cos_5cos_35sin_55。12. Evaluate without a calculator: .
::12. 评估没有计算法:sin55cos55cos55sin555。13. If , then what does equal?
::13. 如果cosççosísinsin,那么cos()等于什么?14. Prove that .
::14. 证明Tan(x4)=1+tanx1-tanx。15. Prove that
::15. 证明这一罪行。Review (Answers)
::回顾(答复)Please see the Appendix.
::请参看附录。 -
Difference Identities