章节大纲

  • Chapter Summary
    ::章次摘要

    In this chapter, we learned about:
    ::在本章中,我们了解到:

    • Trigonometric Identities
      • Reciprocal Identities  
        sin θ = 1 csc θ cos θ = 1 sec θ tan θ = 1 cot θ csc θ = 1 sin θ sec θ = 1 cos θ cot θ = 1 tan θ
         
        ::= 1 csc = 1 sec = 1 sec = 1 sec = 1 sec = 1 csc = 1 sec = 1 sec = 1 sec = 1 sec = 1 sec = 1 sec = 1 sec = 1 sec = 1 sec = 1 sec = 1 sec = 1 sec = oc = 1 sec = = 1 sec = = 1 sec = = 1 = 1 sec = 1 = 1 sec = = 1 = 1 sec = = 1 = 1 sic = 1 = 1 sic = = 1 sec = = 1 = 1 si = 1 sic = * = = 1 sic = = = 1 si si si = * = = 1 = 1 = 1 seccc = = * = = = = 1 = 1 = 1 = 1 = 1 = 1 succc = = = = 1 = 1 = 1 = * = 1 = * = * = * = * = * = * = * = 1 = 1 = * = = = = = 1 = 1 = 1 = 1 = 1 = * = = = = * = = = = = 1 = * cccccccccccccccccc = * = * = = = = = = = = = = = = = = = = = * = = = = = = = = = = = = = = * = * = *
      • Quotient Identities 
        tan θ = sin θ cos θ cot θ = cos θ sin θ

        ::引言名人 日 日 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪 罪
      • Cofunction Identities 
        cos ( π 2 θ ) = sin θ sin ( π 2 θ ) = cos θ cot ( π 2 θ ) = tan θ sec ( π 2 θ ) = csc θ csc ( π 2 θ ) = sec θ tan ( π 2 θ ) = cot θ

        ::身份 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪 =罪
      • Even-Odd Trigonometric Identities 
        cos ( θ ) = cos θ       sec ( θ ) = sec θ sin ( θ ) = sin θ csc ( θ ) = csc θ tan ( θ ) = tan θ cot ( θ ) = cot θ

        ::even-Od Trigologities cos = csc
      • Pythagorean Trigonometric Identities  
        sin 2 x + cos 2 x = 1 1 + cot 2 x = csc 2 x tan 2 x + 1 = sec 2 x
         
        ::Pythagoren Trigonorian 三一特征 原罪 2 x + cos 2 x = 1 1 + Cot 2 x = csc 2 x tan 2 x + 1 = 秒 2 × x x x = 秒 2 x
      • Difference Identities 
        cos ( α β ) = cos α cos β + sin α sin β sin ( α β ) = sin α cos β cos α sin β tan ( α β ) = sin ( α β ) cos ( α β ) = tan α tan β 1 + tan α tan β

        ::= 罪 1
      • Sum Identities 
        cos ( α + β ) = cos α cos β sin α sin β sin ( α + β ) = sin α cos β + cos α sin β tan ( α + β ) = sin ( α + β ) cos ( α + β ) = tan α + tan β 1 tan α tan β
         
        ::=罪 =罪 =罪 =罪 =罪 =罪 =罪 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
      • Double Angle Identities  
        sin 2 x = 2 sin x cos x cos 2 x = cos 2 x sin 2 x tan 2 x = 2 tan x 1 tan 2 x
         
        ::2 x = 2 sin * * x = 2 sin * * x cos * = 2 x cos * 2 x = cos 2 x = cos 2 * x x - 罪 2 x tan * 2 x = 2 tan * x 1 - tan 2 * * * * * = 2 = 2 tan * x 1 - tan * * * * * * = 2 x tan * * * = 2 x tan * * * * * * = 2 x tan * * * * * * * * = = 2 x tan * * * * * * * = = 2 x tan * * * * * * x = = 2 x than = 2 x tan * * * * * * x x x x x x x x x x x * * * * * * = = 2 x y = 2 x tan * * * x = = tan * * * * * * * * * * = * * * * * * * = * * * = = * = = = = = = = = = * = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
      • Half Angle Identities  
        sin x 2 = ± 1 cos x 2 cos x 2 = ± 1 + cos x 2 tan x 2 = ± 1 cos x 1 + cos x
         
        ::半角度辨别罪 x 2 = 1 = 1 = 2 2 x 2 = 1 + 2 + x 2 tan x 2 = 1 - x 1 + x x x x x x x x x x x x x x x x x
      • Power Reducing Identities 
        sin 2 x = 1 cos 2 x 2 cos 2 x = 1 + cos 2 x 2 tan 2 x = 1 cos 2 x 1 + cos 2 x

        ::减量功率 减少功率 2 = 1 = 1 = 2 x 2 = 2 2 = 2 x 2 = 2 x 2 x = 1 + CO = 2 x 2 x 2 tan 2 × x = 1 - 2 x 1 = = 2 x 1 = 1 = = 2 x 1 + CO = 2 x 2 x x = 2 x = = 1 = 2 = = = 2 x 1 = = = 2 x 1 = = = = 2 x 1 = = = 2 x 1 = = 2 x 1 = = = 2 x 1 = = 2 x 1 + + = 2 x 2 x x x x = 2 x = = 1 = 1 = = = = 2 x 2 x = 2 x = 2 x = 2 = = 2 = = 2 = 2 = 2 = = 2 = 2 = = = = = 1 = = = = = = 1 = 1 = = = = = = 1 = = = = = = = = = = 1 = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =

      ::* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
    • How to Solve   a Trigonometric Equation
      • Solve for the variable as you would a linear equation. 
        ::以线性方程的方式解决变量 。
      • Use inverse trigonometric functions to isolate the variable.
        ::使用逆三角函数分隔变量。
      • Use Pythagorean Trigonometric, sum and difference, and other trigonometric identities to get a single trigonometric function.
        ::使用毕达哥里安三角测量、总和和差异 以及其他三角特征 来获得单一三角函数
      • Use sum and difference, double angle, and half angle identities to get a single angle.
        ::使用和差异, 双角度, 和半角度身份来获得一个角度 。
      • Use algebraic techniques, such as factoring or squaring, to further simplify the expressions.
        ::使用代数技术,如乘数或方位法,进一步简化表达式。
      • Use the unit circle to find the initial solution or to determine values within the specified interval. There may be more than one value.
        ::使用单位圆查找初始解决方案或确定指定间隔内的值。可能有一个以上的值。
      • Provide an appropriate set of solutions. 
        ::提供一套适当的解决办法。

      ::如何解析变量的三角方程式, 和线性方程式一样。 使用反三角方程式函数来孤立变量。 使用 Pytagoren Trigonorian Trigonology、 sum 和 difference 和其他三角方程式特性来获得单三角方程式函数。 使用和差异、 双角度 和半角度特性来获得单一角度 。 使用代数法技术, 如乘数或方程, 来进一步简化表达式 。 使用单位圆来找到初始解决方案或在指定间隔内确定值 。 可能有不止一个值 。 提供一套合适的解决方案 。

    Review
    ::回顾

    Try the following cumulative review problems to practice the concepts in this chapter:
    ::尝试下列累积审查问题来实践本章中的概念: