章节大纲

  • Introduction
    ::导言

    The general equation of a conic is A x 2 + B x y + C y 2 + D x + E y + F = 0 . This form is so general that it encompasses all regular lines and curves, singular points, and degenerate that look like an X. T here are a few special cases of how a plane can intersect a cone. How are these degenerate shapes formed?
    ::二次曲线的一般方程式是 Ax2+Bxy+Cy2+Dx+Ey+F=0 。 这种形式过于笼统, 包括了所有常规线条和曲线、 单点, 以及像 X 一样的堕落。 在平面如何交叉锥形方面, 有一些特殊的例子。 这些退化形状是如何形成的 ?

    lesson content

    Degenerate Conics
    ::断离二次二次曲线

    A degenerate conic   is generated when a plane intersects the vertex of the cone . There are three types of degenerate conics:
    ::当平面交叉锥体的顶部时,就会产生退化的二次曲线。有三种类型的退化的二次曲线:

    1. The degenerate form of a circle or an ellipse is a  singular point . At the vertex of the cone, the radius is 0,  r = 0 . Thus, t he standard equation is    ( x h ) 2 a + ( y k ) 2 b = 0 .  
      ::圆或椭圆的退化形式是一个单点。在锥体的顶端,半径为 0, r=0。 因此, 标准方程式是 (x-h) 2a+(y-k) 2b=0 。
    2. The degenerate form of a parabola  is a   line  or two parallel lines . For this conic section, the coefficients  A = B = C = 0 in the general equation. Thus, the r esulting  general equation is D x + E y + F = 0 .
      ::抛物线的退化形式是一条线或两条平行线。对于此二次曲线部分,一般方程中的系数A=B=C=0。因此,由此产生的一般方程式是Dx+Ey+F=0。
    3. The degenerate form of a hyperbola  is two intersecting lines .  A t the vertex of the cone,  r = 0 , so the standard equation is   ( x h ) 2 a ( y k ) 2 b = 0 . Thus, the slopes of the intersecting lines are m = ± b a ,  because  b   corresponds to the   y portion of the equation, and   a   corresponds to the  x portion of the equation.
      ::双倍波拉的退化形式是两个交叉线。在锥体的顶端, r=0, 所以标准方程是 (x-h) 2a- (y-k) 2b=0。 因此, 交叉线的斜度是 mba, 因为 b 对应于方程的 y 部分, 和 a 对应方程的 x 部分 。

    The following video  reviews the four : circle, ellipse, parabola, and hyperbola: 
    ::以下视频回顾这四个方面:圆圈、椭圆、抛物线和双曲线:

    Examples
    ::实例

    Example 1
    ::例1

    Transform the conic equation into standard form and sketch.
    ::将二次方程转换成标准形式和草图

    0 x 2 + 0 x y + 0 y 2 + 2 x + 4 y 6 = 0

    ::0x2+0xy+0y2+2x+4y-6=0

    Solution:
    ::解决方案 :

    This is the line y = 1 2 x + 3 2 .
    ::这是y12x+32的线条。

    lesson content

    Example 2
    ::例2

    Transform the conic equation into standard form and sketch.
    ::将二次方程转换成标准形式和草图

    3 x 2 12 x + 4 y 2 8 y + 16 = 0

    ::3x2 - 12x+4y2 - 8y+16=0

    Solution:  
    ::解决方案 :

    3 x 2 12 x + 4 y 2 8 y + 16 = 0

    ::3x2 - 12x+4y2 - 8y+16=0

    3 ( x 2 4 x ) + 4 ( y 2 2 y ) = 16 3 ( x 2 4 x + 4 ) + 4 ( y 2 2 y + 1 ) = 16 + 12 + 4 3 ( x 2 ) 2 + 4 ( y 1 ) 2 = 0 ( x 2 ) 2 4 + ( y 1 ) 2 3 = 0

    ::3(x2-4x)+4(y2-2y)163(x2-4x+4)+4(y2-2y+1)+4(y2-2y+1) __16+12+43(x-2)2+4(y-1)2=0(x-2)24+(y-1)23=0

    The point (2, 1) is the result of this degenerate conic.
    ::点(2,1)是这个堕落的二次曲线的结果。

    lesson content

    Example 3
    ::例3

    Transform the conic equation into standard form and sketch.
    ::将二次方程转换成标准形式和草图

    16 x 2 96 x 9 y 2 + 18 y + 135 = 0

    ::16x2-96x-9y2+18y+135=0

    Solution:    
    ::解决方案 :

    16 x 2 96 x 9 y 2 + 18 y + 135 = 0

    ::16x2-96x-9y2+18y+135=0

    16 ( x 2 6 x ) 9 ( y 2 2 y ) = 135 16 ( x 2 6 x + 9 ) 9 ( y 2 2 y + 1 ) = 135 + 144 9 16 ( x 3 ) 2 9 ( y 1 ) 2 = 0 ( x 3 ) 2 9 ( y 1 ) 2 16 = 0

    ::16(x2-6x)-9(y2-2-2y)13516(x2-6x+9)-9(y2-2y+1)=135+144-916(x-33)2-9(y-1)2=0(x-3)29-(y-1)216=0

    This is a degenerate hyperbola .
    ::这是一个堕落的双曲线。

    lesson content

    Example 4
    ::例4

    Recall the question from the Introduction: H ow are these degenerate shapes formed?
    ::回顾导言中的问题:这些退化的形状是如何形成的?

    Solution:
    ::解决方案 :

    When you intersect a plane with a cone at the vertex where the two cones touch, the intersection is a single point. When you intersect a plane with the edge of one cone, passing through the vertex point, and continuing to touch the edge of the other conic, this produces a line or two parallel lines. When you intersect a plane with a cone so that the plane passes vertically through the vertex , it produces two intersecting lines. 
    ::当您在两个锥体接触的顶端交叉一个平面和锥体的锥形交叉时,该十字路口是一个点。当您在一个锥体边缘交叉一个平面,穿过顶端点,继续接触另一锥体的边缘时,它会产生一条线或两条平行线。当您用锥体交叉一个平面,使平面垂直通过顶端时,它产生两条交叉线。

    Example 5
    ::例5

    Create a conic that describes just the point (4, 7).
    ::创建一个描述点的二次曲线( 4, 7) 。

    Solution:
    ::解决方案 :

    ( x 4 ) 2 + ( y 7 ) 2 = 0

    :伤心x-4)2+(y-7)2=0

    Example 6
    ::例6

    Transform the conic equation into standard form and sketch.
    ::将二次方程转换成标准形式和草图

    4 x 2 + 8 x + y 2 + 4 y = 0

    ::− 4x2+8x+y2+4y=0

    Solution:

    4 x 2 + 8 x + y 2 + 4 y = 0 4 ( x 2 2 x ) + ( y 2 + 4 y ) = 0 4 ( x 2 2 x + 1 ) + ( y 2 + 4 y + 4 ) = 4 + 4 4 ( x 1 ) 2 + ( y + 2 ) 2 = 0 ( x 1 ) 2 1 ( y + 2 ) 2 4 = 0

    ::溶解度:-4x2+8x+8x+y2+4y=0-4(x2-2x)+(y2+4y)=0-4(x2-2x+1)+(y2+4+4)+4+4-4(y2+4)+4-4(x-1)2+(y+2)2=0(x-1)21-21-(y+2)24=0

    lesson content

     

    Example 7
    ::例7

    How can you tell just by looking at a conic in general form if it is a degenerate conic?
    ::如果它是堕落的二次曲线,你怎么能仅仅看一般的二次曲线来判断呢?

    Solution:
    ::解决方案 :

    In general, you cannot tell if a conic is degenerate from the general form of the equation. You can tell that the degenerate conic is a line if there are no  x 2 or y 2  terms. However, you should  always try to put the conic equation into graphing form to see whether it equals zero, because that is the best way to identify degenerate conics.
    ::一般来说, 您无法辨别二次曲线是否从方程式的一般形式中退化。 您可以辨别, 如果没有 x2 或 y2 条件, 则二次曲线是一条线 。 但是, 您应该总是尝试将二次曲线的方程式放入图形形式, 以确定它是否等于零, 因为这是识别二次曲线的最好方法 。

    Summary
    ::摘要

    • degenerate conic   is generated when a plane intersects the vertex of the cone .
      ::当平面交叉锥体的顶部时,就会产生退化的二次曲线。
    • There are three types of degenerate conics: a single point, a line or two parallel lines, or two intersecting lines.
      ::有三种退化的二次曲线:一点、一线或两条平行线,或两条交叉线。

    Review
    ::回顾

    1. What are the three degenerate conics?
    ::1. 三种堕落的二次曲线是什么?

     

    Change each equation into graphing form and state what type of conic or degenerate conic it is:
    ::将每个方程式修改为图形化形式, 并声明它是哪种二次曲线或退化二次曲线 :

    2. x 2 6 x 9 y 2 54 y 72 = 0
    ::2. x2-6x-9y2-54y-72=0

    3. 4 x 2 + 16 x 9 y 2 + 18 y 29 = 0
    ::3. 4x2+16x-9y2+18y-29=0

    4. 9 x 2 + 36 x + 4 y 2 24 y + 72 = 0
    ::4. 9x2+36x+4y2-24y+72=0

    5. 9 x 2 + 36 x + 4 y 2 24 y + 36 = 0
    ::5. 9x2+36x+4y2-24y+36=0

    6. 0 x 2 + 5 x + 0 y 2 2 y + 1 = 0
    ::6. 0x2+5x+0y2-2y+1=0

    7. x 2 + 4 x y + 8 = 0
    ::7. x2+4x-y+8=0

    8. x 2 2 x + y 2 6 y + 6 = 0
    ::8. x2-2x+y2-6y+6=0

    9. x 2 2 x 4 y 2 + 24 y 35 = 0
    ::9. x2-2x-4y2+24y-35=0

    10. x 2 2 x + 4 y 2 24 y + 33 = 0
    ::10. x2-2x+4y2-24y+33=0

     

    Sketch each conic or degenerate conic:
    ::每个二次曲线或退化的二次曲线:

    11. ( x + 2 ) 2 4 + ( y 3 ) 2 9 = 0
    ::11. (x+2)24+(y-3)29=0

    12. ( x 3 ) 2 9 + ( y + 3 ) 2 16 = 1
    ::12. (x-3)29+(y+3)216=1

    13. ( x + 2 ) 2 9 ( y 1 ) 2 4 = 1
    ::13. (x+2)29-(y-1)24=1

    14. ( x 3 ) 2 9 ( y + 3 ) 2 4 = 0
    ::14. (x-3)29-(y+3)24=0

    15. 3 x + 4 y = 12
    ::15. 3x+4y=12

     

    Review (Answers )
    ::回顾(答复)

    Please see the Appendix.
    ::请参看附录。