Section outline

  • Introduction
    ::导言

    can be graphed on a polar graph in a few different ways. This section discusses how to write a complex number in standard form, polar form , and trigonometric form . Then, based on these forms, it covers how to graph a complex number on the rectangular and polar coordinate systems.
    ::可以用几种不同的方式在极图中绘制图表。 本节讨论如何以标准形式、极形式和三角形式写出一个复数。 然后, 以这些形式为基础, 它涵盖了如何用矩形和极坐标系统绘制一个复数。

    Polar Form of Complex Numbers
    ::复数极表

    There are three common forms of complex numbers you will see when graphing:
    ::有三种常见的复杂数字形式, 图形化时您可以看到 :

    1) The standard form of a complex number,  z = a + b i , can be graphed using rectangular coordinates ( a , b ) ,  where a  represents the x -coordinate and b  represents the y -coordinate.
    ::1) 复数标准格式z=a+bi,可以用矩形坐标(a,b)绘制图表,其中表示x坐标,b表示Y坐标。

    2) The polar form,  ( r , θ ) , can also be used to graph a complex number. Recall that you can convert between rectangular and polar forms with 

    r = x 2 + y 2
    and
    tan   θ r e f = | y x | .
    Unfortunately, there is a problem with using a conversion from rectangular form to polar form:
    a + b i ( r , θ )
     or 
    1 i 3 ( 2 , 4 π 3 ) .
      Notice that we no longer see the in this form.

    3) The trigonometric form, which is often abbreviated as  r   c i s   θ , comes from the substitutions x = r cos θ   and y = r sin θ . Suppose  z = 1 i 3 . Note that in polar form, this complex number is ( 2 , 4 π 3 ) .  
    z = 2 cos 4 π 3 + 2 i sin 4 π 3 = 2 ( cos 4 π 3 + i sin 4 π 3 )

    The complex number  z = 1 3 i  can be written as a rectangular point ( 1 , 3 ) , a polar point  ( 2 , 4 π 3 ) , or in trigonometric form  2 ( cos   4 π 3 + i   sin   4 π 3 ) or 2   cis   ( 4 π 3 ) .
    ::2)极形,(r, ) 也可以用来绘制一个复杂的数字。 提醒注意, 您可以用 r=x2+y2 和 tan ärefyx 来转换矩形和极形, r=x2+y2 和 tan ärefyx 。 不幸地, 使用从矩形转换成极形有问题: a+bi(r, }) 或-1- i3-i3-i3 (cos443+is%43) 。 3 注意, 复数 z1-3i 可以写成矩形点(-1-3), 极点(2, 43) 和 y rsin 。 假设z1-i3 。 注意, 在极形中, z=2,43 + sin3 =2( 43) 或三角形 (43) 。

    Conversion 
    ::改划

    To convert from r ectangular to polar form, the distance that the point (2, 2) is from the origin can be found by
    ::要从矩形向极形转换成极形,点(2,2)与源的距离可以由下列方式找到:

    r = x 2 + y 2
    or
    r = 2 2 + 2 2 = 8 = 2 2 .

    ::r= rx2+y2或r=22+22=8=22。

    The reference angle (i.e. the corresponding angle in the 1st quadrant) that the line segment between the point and the origin can be found by using
    ::参考角(即第1象方图中相应的角),即点与源之间的线段通过使用

    tan   θ r e f = | y x | .

    ::{\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}我... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}我... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}我... {\fn黑体\fs22\bord1\shad0\3aHBE\4aH00\fscx67\fscy66\2cHFFFFFF\3cH808080}我...

    For z = 2 + 2 i ,

    tan θ ref = 2 2 = 1.

    ::z=2+2i, tanref=22=1。

    Since this point is in the 1st quadrant (both the x-  and y- coordinates are positive), the angle must be 45° or π 4 radians.
    ::由于此点位于第1象限( X 和 Y 坐标均为正),角必须是 45 ° 或 4 弧度。

    It is also possible that when tan θ = 1 , the angle can be in the 3rd quadrant or 5 π 4 radians. However, this angle will not satisfy the conditions of the problem, since a 3rd-quadrant angle must have both x and y as negatives.
    ::当 tan1 1 时, 角也有可能在 3 象限或 5 4 弧度中。 但是, 这个角无法满足问题的条件, 因为 3 象限角度必须同时有 x 和 y 的负值 。

    Note: When using tan   θ = y x , you should consider the quotient | y x | and find the 1st-quadrant angle that satisfies this condition. This angle will be called the reference angle, denoted θ r e f . Find the actual angle by analyzing which quadrant the angle must be in, given the signs of  x and y .
    ::注意: 使用 tan yx 时, 您应该考虑 yx 的商数, 并找到符合此条件的 1- quamont 角度。 这个角度将被称为参考角度 , 表示 ref 。 如果 x 和 y 的标记, 则通过分析角必须进入的方位数来查找实际角度 。

    The complex number 2 + 2 i  or (2, 2) in rectangular form has ( 2 2 , π 4 ) .
    ::2+2i或(2,2)的矩形复合体有(22,%4)。

     

    The following video demonstrates how to write complex numbers in trigonometric  form:
    ::以下视频展示如何以三角形式写出复杂的数字:


    Examples
    ::实例

    Example 1
    ::例1

    Convert  into polar form: z = 1 i 3 .
    ::转换成极形: z1- i3。

    Here is what it looks like in the rectangular coordinate system:
    ::以下是矩形坐标系统中它的样子:

    Solution:
    ::解决方案 :

    To convert   z = 1 i 3   to polar , first determine   r  and  θ .
    ::将z1-i3转换为极地,首先确定 R和 。

    r = a 2 + b 2 = ( 1 ) 2 + ( 3 ) 2 = 1 + 3 = 4 = 2

    ::r=a2+b2=(-1)2+(-3)2=1+3=3=4=2

    tan θ ref = | 3 1 | = 3 θ ref = tan 1 3 = π 3

    ::3133333333413333

    Since this angle is in the 3rd quadrant, θ = 4 π 3 .
    ::由于这个角度位于第3象限, 43。

    Example 2
    ::例2

    Find the polar coordinates that represent the complex number z = 3 3 3 i .
    ::查找代表复数z=3-333i的极坐标。

    Solution:
    ::解决方案 :

    a = 3 and b = 3 3 , so the rectangular coordinates of the point are ( 3 , 3 3 ) .
    ::a = 3和b =-33,因此点的矩形坐标为(3,-33)。

    Now, draw a right triangle in standard form. Find the distance the point is from the origin, and the angle the line segment that represents this distance makes with the +x axis:
    ::现在, 以标准格式绘制一个右三角形。 查找点与源的距离, 以及代表此距离的线段与 +x 轴的角 :

    We know a = 3, b = 3 3 .

    r = 3 2 + ( 3 3 ) 2 = 9 + 27 = 36 = 6

    ::我们知道a=3,b33.r=32+(-33)2=9+27=36=6


    tan θ ref = | 3 3 3 | = 3 θ ref = tan 1 3 = π 3

    ::$$333$3$3$3$3$3$3$3$3$3$3$3$3$3$3$

    Since it is a 4th-quadrant angle,  θ = 5 π 3 .
    ::因为它是第四赤道角 53

    The rectangular point ( 3 , 3 3 i ) is equivalent to the polar point ( 6 , 5 π 3 ) .
    ::矩形点(3,-33i)相当于极点(6,53)。

    In trigonometric form, ( 3 , 3 3 i )  is   6 ( cos   5 π 3 + i   sin   5 π 3 ) .
    ::在三角形式中,(3,-33i)为6(5°3+i sin 53)。

    Example 3
    ::例3

    Plot the complex number z = 12 + 9 i .
    ::绘制复合号z=12+9i。

    Solution:
    ::解决方案 :

    To plot z = 12 + 9 i on a polar graph, first determine   r and θ .
    ::要在极图上绘制 z=12+9i,首先确定 r 和 。

    r = 12 2 + 9 2 = 144 + 81 = 225 = 15

    ::r=122+92=144+81=225=15

    tan θ ref = | 9 12 | θ ref = tan 1 9 12 36.9 °

    ::912 -1 912 36.9°

    z = 12 + 9 i looks like the image below when plotted on a polar plane.
    ::z=12+9i 绘制在极平面上时看起来像下面的图像 。

    Example 4
    ::例4

    In what quadrant does z = 3 + 2 i occur when graphed?
    ::当图表显示时, z3+2i 在什么象限中发生 ?

    Solution:
    ::解决方案 :

    The point z = 3 + 2 i occurs 3 units to the left and 2 units up, placing it in quadrant 2.
    ::点 z3+2i 向左3个单位,向上2个单位,放在象限2中。

    Example 5
    ::例5

    What are the coordinates of  z = 3 + 2 i  in polar form and trigonometric form?
    ::z3+2i 以极形和三角形表示的坐标是多少?

    Solution:
    ::解决方案 :

    To convert  z = 3 + 2 i , first determine   r  and  θ .  
    ::要转换 z3+2i,首先确定 R和 。

    r = ( 3 ) 2 + 2 2 = 13

    ::r=(-3)2+22=13

    tan θ ref = | 2 3 | = 2 3 θ ref = tan 1 2 3 33.7

    ::2323771237

    Therefore,  ( 13 , 33.7 )  is the coordinate in polar form, and  13   c i s   ( 33.7 )  is the coordinate in trigonometric form.
    ::因此,(13,33.7)是极形的坐标,13cis(33.7)是三角形的坐标。

    Example 6
    ::例6

    What would be the polar coordinates of the point graphed below?
    ::下图显示的点的极地坐标是多少?

    Solution:
    ::解决方案 :

    The rectangular coordinates are (4.5, 3), so the complex number is   z = 4.5 + 3 i .

    r = 4.5 2 + 3 2 5.4

    ::矩形坐标是(4.5, 3), 所以复数是z=4.5+3i. r=4.52+325. 4。

    tan θ ref = | 3 4.5 | θ ref = tan 1 3 4.5 33.7

    ::34.555477

    Therefore,  ( 5.4 , 33.7 )  is the coordinate in polar form, and  5.4   c i s   ( 33.7 )  is the coordinate in trigonometric form.
    ::因此,(54.33.7)是极形的坐标,5.4cis(33.7)是三角形的坐标。

    Summary
    ::摘要

    • In the standard form of  z = a + b i ,  a complex number z can be graphed using rectangular coordinates ( a , b ) , where a  represents the x -coordinate, while b  represents the y -coordinate.
      ::在z=a+bi的标准格式中,可使用矩形坐标(a,b)绘制复数z的图表,其中代表 x 坐标,而b 代表 Y 坐标。
    • Use x and y to convert between rectangular and polar forms with  r = x 2 + y 2 and tan   θ r e f = | y x | .
      ::使用 x 和 y 在 r= x2+y2 和 tan refyx 之间转换矩形和极形。

    Review
    ::回顾

    Plot each complex number below in the complex plane. Convert its polar form  ( r , θ ) ,   where   θ is in degrees.
    ::在复杂的平面下绘制每个复数。 转换它的极形( r, ) , 其中 ° 以度表示 。

    1. 1 + i
      ::1个+一
    2. ( 1 + i ) i
      :sad1+一)i
    3. ( 2 ) ( 3 i )
      :sad-2)(3)(一)
    4. 1 + i
      ::1个+一
    5. 1 i
      ::1-一
    6. ( 1 + i ) ( 1 i )
      :sad1+一)(1)-(一)
    7. 1 + i 3
      ::1+i3 1+i3
    8. 3 i
      ::3- i 3- i
    9. ( 1 + i 3 ) ( 3 i )
      :sad1+i3)(3-i)
    10. What are the rectangular coordinates for the point graphed below?
      ::下图点的矩形坐标是多少?

    C onvert to rectangular form:
    ::转换为矩形形式 :

    1. 15 ( c o s 120 o + i s i n 120 o )
      ::15(cos120o+isin120o)
    2. 12 ( c o s π 3 + i s i n π 3 )
      ::12(cos%3+isin%3) 3
    3. For the complex number in standard form x + i y , find: a) polar form, and b) trigonometric form. (Hint: Recall that x = r c o s θ and y = r s i n θ . )
      ::对于标准表x+iy的复数,请找到:a)极形,和b)三角形。 (提示:提醒注意 x=rcos- 和 y=rsin- 。 )
    4. Find the zeros of  f ( x ) = x 2 4 x + 8.  Graph them on the complex plane.
      ::查找 f( x) =x2-4x+8. 的零 。 在复合平面上绘制图。

    Convert to trigonometric form:
    ::转换为三角形 :

    1. 1 + i 6
      ::1+i6 1+i6
    2. 3 2 + 1 2 i 10
      ::32+12i10
    3. 3 2 i
      ::- 3-2i
    4. 2 3 2 i
      ::23-2i 23-2ii

    Review (Answers)
    ::回顾(答复)

    Please see the Appendix.
    ::请参看附录。

    Resource: Graphing Calculator Instructions
    ::资源: 图形计算器指令

     Convert the following complex numbers into polar form, us ing technology:
    a) 3 i
    b) 9 3 + 9 i

    ::使用技术将下列复杂数字转换成极形sada) 3-i(b) 93+9i

    Solution
    ::解决方案

    On the TI-84, go to [ANGLE] (or [2nd] function) [APPS] . Scroll down to 5 or "R-Pr(" and press [Enter] . Next, enter the rectangular coordinates and close the parentheses. Press [Enter];  the "r" value appears. Scroll down to 6R-Pθ, and the polar angle appears in decimal radian form.
    ::在 TI-84 上, 转到 [ANGLE] (或 [第 2 函数) [APPS] 。 向下滚动到 5 或“ R- Pr () ” , 按 [Enter] 。 下一步, 输入矩形坐标并关闭括号 。 按 [Enter] ; 显示“ r” 值。 向下滚动到 6R- P , 极角以小数弧形显示 。

    Note: Also under the [ANGLE] menu, commands 7 and 8 allow transformation from polar form to rectangular form.  
    ::注:在[ANGLE]菜单下,指令7和8允许从极形转换成矩形。