12.9 复杂数字的权力和根源
章节大纲
-
Introduction
::导言Manually calculating (or simplifying) a statement such as: ( 14 − 17 i ) 5 or 4 √ ( 3 − 2 i ) in its present rectangular form would be a very intensive process at best.
::人工计算(或简化)一种说明,例如14-17i)5 或4(3-2i),以其目前的矩形形式,充其量是一个非常密集的过程。
Fortunately , in this lesson you will find there is an alternative: De Moivre's Theorem . De Moivre's Theorem is really the only practical method for finding the powers or roots of a complex number , but there is a catch.
::幸运的是,在这个教训中,你会发现有另一种选择:德莫伊夫雷的神话。德莫伊夫雷的神话其实是找到复杂数字的力量或根源的唯一实用方法,但有一个陷阱。What must be done to a complex number before De Moivre's Theorem can be utilized?
::在利用德莫伊夫雷的理论之前,必须对一个复杂数字做些什么?Powers of Complex Numbers
::复杂数字的功率How do we raise a complex number to a power? Let's start with an example:
::我们如何将一个复杂的数字提升到一个力量?我们首先举一个例子:( − 4 − 4 i ) 3 = ( − 4 − 4 i ) ⋅ ( − 4 − 4 i ) ⋅ ( − 4 − 4 i ) .
:-4-4i)3=(-4-4i)__(-4-4i)__(-4-4-4i)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4—(-4-4)__(-4-4)__(-4-4)__(-4-4-4)__(-4—(-4-4)__(-4—(-4-4)__(-4-4)__(-4-4)__(-4-4)__(-4—(-(-4-4)__)。
In rectangular form, this can get very complex. What about in r c i s θ form?
::在矩形形式中,这可能会变得非常复杂。如果以 rcis 的形式呢?( − 4 − 4 i ) 3 = ( 4 √ 2 ) 3 c i s 15 π 4
:-4-4i)3=(-42)3 cis 15.4
The problem becomes
::问题变成4 √ 2 c i s 5 π 4 ⋅ 4 √ 2 c i s 5 π 4 ⋅ 4 √ 2 c i s 5 π 4 ,
::42 544 2 54 4 4 2 54 4 54 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4and using our multiplication rule from the previous section,
::并使用上一节中的乘法规则,( − 4 − 4 i ) 3 = ( 4 √ 2 ) 3 c i s 15 π 4 .
:-4-4i)3=(-42)3 cis 15.4。
Notice, ( a + b i ) 3 = r 3 c i s 3 θ .
::注意, (a+bi) 3=r3 cis 3. 。In other words, raise r to the same degree that the complex number is raised, and then multiply that by cis of the angle multiplied by the number of the degree.
::换句话说,将r提高到与复杂数目提高的相同程度,然后以角的精度乘以度数。Reflecting on the example above, we can identify De Moivre's Theorem :
::从上述例子来看,我们可以确定德莫伊夫雷的理论:De Moivre's Theorem
::迪夫雷的定理Let z = r ( cos θ + i sin θ ) be a complex number in trigonometric form . If n is a positive integer, then z n = r n ( cos n θ + i sin n θ ) .
::Let 'r( cosisin) 是一个复杂的三角数。 如果 n 是正整数, 那么zn'rn( cosnisin}) 。The following video demonstrates how to use De Moivre's Theorem to raise in trigonometric form to any power:
::以下影片展示了如何使用德莫伊夫雷的定理, 以三角法形式向任何强国升起:Roots of Complex Numbers
::复杂数字的根根W hen a new operation is presented in mathematics, the inverse operation often follows. That is generally because the inverse operation is often quite useful in applying the operation and using the new mathematics to solve equations or find new results. This is no exception: The inverse operation of finding a power for a number is to find a root of the same number.
::当数学显示新操作时, 反向操作往往随之而来。 一般来说, 反向操作在应用操作和使用新数学解析方程式或找到新结果时非常有用。 这绝非例外: 为数字找到一个功率的反向操作就是找到相同数字的根。a) Recall from algebra that any root can be written as x 1/ n .
:a) 从代数中回顾,任何根可以写成 x1/n 。
b) Given that the formula for De Moivre’s Theorem also works for fractional powers, the same formula can be used for finding roots:
:b) 鉴于德莫伊夫雷定理的公式也适用于分数权,同一公式可用于寻找根源:
z 1 / n = ( a + b i ) 1 / n = r 1 / n c i s ( θ n ) .
::z1/n=(a+bi)1/n=r1/ncis。
The following video demonstrates how to determine the n th root of a complex number:
::以下视频展示如何确定复数的 nth 根 :Examples
::实例Example 1
::例1Find the value of ( 1 + √ 3 i ) 4 .
::查找值(13i) 4。Solution: r = √ ( 1 ) 2 + ( √ 3 ) 2 = 2 tan θ ref = | √ 3 1 | → θ = π 3
::解答:r(1)2+(3)2=2tanref313Since a , b > 0 , θ is in the 1st quadrant.
::a, b>0, 位于第1象限内。Use De Moivre's Theorem: ( √ 3 + i ) 7 = r 7 c i s 7 θ = 2 7 c i s ( 7 ⋅ π 3 ) = 128 ( cos 7 π 3 + i sin 7 π 3 ) = 128 ( − √ 3 2 + − 1 2 i ) = − 64 √ 3 − 64 i .
::使用 Moivre 的理论 : (3+i) 7=r7 cis 727 cis (73) =128 (cos73+isin73) =128 (3212i) 643 - 64i 。Example 2
::例2Find √ 1 + i .
::查找% 1+i 。Solution:
::解决方案 :In polar form : √ 1 + i = ( 1 + i ) ½ = ( √ 2 c i s π 4 ) ½
::极形:% 1+i=(1+i)1⁄2=(% 2cis =4)1⁄2In trigonometric form:
::三角形:√ 1 + i = ( √ 2 ( cos π 4 + i sin π 4 ) ) ½
::1+1=(2=2(cos4+isin4))1⁄2Use De Moivre's Theorem: √ 1 + i = ( 2 1 / 2 ) 1 / 2 ( cos ( 1 2 ⋅ π 4 ) + i sin ( 1 2 ⋅ π 4 ) ) = 2 1 / 4 ( cos π 8 + i sin π 8 ) ≈ 1.189 ( 0.924 + 0.383 i ) ≈ 1.099 + 0.455 i
::使用 DMoivre 的定理 :% 1+i=( 21/2)1/2( cos( 12) 4+isin( 12) 4) =21/4( cos_ 8+isin(8)) *1.1.89( 0. 924+0. 383i) *1.099+0. 455iExample 3
::例3Find the value of x for the equation x 3 = ( 1 − √ 3 i ) .
::查找方程式 x3 = (13i) 的 x 值 。Solution:
::解决方案 :For a = 1 and b = − √ 3 , r = 2 and θ = 5 π 3 .
::a=1和b3、r=2和53。If z = 1 − √ 3 i , then z = 2 c i s 5 π 3 .
::如果z=13i,则z=2 cis 53。x = ( 1 − √ 3 i ) 1 3 = ( 2 c i s 5 π 3 ) 1 3
::x=( 13i) 13=( 2 cis 53) 13Use De Moivre's Theorem to find the first solution:
::使用德莫伊夫雷的理论来找到第一个解决方案:x 1 = 2 1 3 c i s ( 5 π / 3 3 ) = 2 1 3 c i s ( 5 π 9 ) .
::x1 = 213cis( 5/ 33) = 213cis( 59) 。n = 3, which means that the three solutions are 2 π 3 radians apart, so
::n=3 = 3,这意味着三个溶液是2×3 弧度分开的,所以x 2 = 2 1 3 c i s ( 5 π 9 + 2 π 3 )
::x2 = 213cis( 5- 19+2- 3) 和 x3 = 213cis( 5- 9+2- 3+2- 3) 。Note : It is not necessary to add 2 π 3 again. Adding 2 π 3 three times equals 2 π . That would result in rotating around a full circle and starting where it all began—that is, the 1st solution.
::注:无需再增加2×3。添加2×3等于2×3等于2×3。这将导致整个圆圈旋转,从所有开始的地方开始,即第一种解决办法。The three solutions are:
::三种解决办法是:x 1 = 2 1 3 c i s ( 5 π 9 )
::x1 = 213cis( 5% 9)x 2 = 2 1 3 c i s ( 11 π 9 )
::x2 = 213cis( 11_ 9)x 3 = 2 1 3 c i s ( 17 π 9 )
::x3=213cis(17_9)Each of these solutions, when graphed, will be 2 π 3 apart.
::以图表显示的每一种解决办法将分别是2+3。Example 4
::例4Recall the question from the Introduction: What must be done to a complex number before De Moivre's Theorem can be utilized?
::回顾导言中的问题:在利用德莫伊夫雷的理论之前,必须对一个复杂数字做些什么?Solution:
::解决方案 :A complex number operation written in rectangular form, such as ( 13 − 4 i ) 3 , must be converted to polar form to utilize De Moivre's Theorem.
::以矩形形式写成的复合数操作,如(13-4i)3, 必须转换成极形, 以便使用 De Moivre 的理论 。Example 5
::例5What are the two square roots of i ?
::我的两个平方根是什么?Solution:
::解决方案 :z = √ 0 + i → r = 1 and θ = π 2
::z0+ir=1和2z = [ 1 ⋅ c i s π 2 ] 1 / 2
::z = [1-Cis =2]1/2Using De Moivre's Theorem:
::使用德莫伊夫尔的理论:z 1 = [ 1 ⋅ c i s π 4 ] and z 2 = [ 1 ⋅ c i s 5 π 4 ] z 1 = cos π 4 + i sin π 4 and z 2 = cos 5 π 4 + i sin 5 π 4
::z2=[1-Cis5-4]和z2=[1-Cis5-4]z1=cos4+isin%4和z2=cos5-4+isin4]4Example 6
::例6Calculate 4 √ ( 1 + 0 i ) . What are the four 4th roots of 1?
::计算 4( 1+0i) 。 1 的四根根是什么 ?Solution:
::解决方案 :4 √ ( 1 + 0 i ) → r = 1 , θ = 0 , and z 1 / 4 = ( 1 ⋅ c i s 0 ) 1 / 4
::4(1+0i)r=1,0,z1/4=(1Cis0)1/4Using De Moivre's Theorem:
::使用德莫伊夫尔的理论:z 1 = 1 1 / 4 ( cos 0 4 + i sin 0 4 ) = 1 z 2 = 1 1 / 4 ( cos ( 0 + π 2 ) + i sin ( 0 + π 2 ) )
::z1=11/4(cos04+i sin04)=1z2=11/4(cos(02)+isin(02))Since there are four roots, dividing 2 π by 4 yields: z 3 = 1 1 / 4 ( cos ( 0 + 2 π 2 ) + i sin ( 0 + 2 π 2 ) ) = − 1.
::由于有4根根,2除以4产量:z3=11/4(cos(0+22)+isin(0+22))\\\1.最后,z4=11/4(cos(0+32)+isin(0+32))i。The four 4th roots of 1 are 1, i , -1, and - i.
::1的4根根是1,i,-1和i。Example 7
::例7Calculate ( √ 3 + i ) 7 .
::计算 (% 3+i) 7。Solution: ( √ 3 + i ) 7 → r = 2 , θ = π 6 , and z = ( 2 ⋅ c i s π 6 ) ½
::解答: (% 3+i) 7r= 2, 6, z= (% 3+i) 1⁄2( √ 3 + i ) 7 = 2 7 ( cos ( 7 ⋅ π 3 ) + i sin ( 7 ⋅ π 3 ) ) = 128 ( cos 7 π 3 + i sin ( 7 π 3 ) ) = 128 ( − √ 3 2 + − 1 2 i ) = − 64 √ 3 − 64 i
:3+i)7=27(cos(73)+isin(73))=128(cos73+isin(73)))=128(3212i)=643-64i
Summary
::摘要-
De Moivre's Theorem
:
z
n
=
r
n
(
cos
(
n
θ
)
+
i
sin
(
n
θ
)
)
::Deivre 的定理: zn=rn( cos+isin
)
-
De Moivre's Theorem for finding roots:
z
1
/
n
=
(
a
+
b
i
)
1
/
n
=
r
1
/
n
c
i
s
(
θ
n
)
::Deivre 寻找根的理论: z1/n=( a+bi)1/n=r1/ncis( n)
Review
::回顾Perform the indicated operation on these complex numbers:
::以这些复杂数字执行指定的操作 :1. Divide 2 + 3 i 1 − i .
::1. 除以 2+3i1-i。2. Multiply ( − 6 − i ) ( − 6 + i ) .
::2. 乘数(-6-i)(-6+i)。3. Multiply ( √ 3 2 − 1 2 i ) 2 .
::3. 乘以(32-12i)2。4. Find the product using polar form: ( 2 + 2 i ) ( √ 3 − i ) .
::4. 使用极表(2+2i)(3-i)寻找产品。5. Multiply 2 ( cos 40 ∘ + i sin 40 ∘ ) ⋅ 4 ( cos 20 ∘ + i sin 20 ∘ ) .
::5. 乘以2(cos40isin40) 4 (cos20isin20)。6. Multiply 2 ( cos π 8 + i sin π 8 ) ⋅ 2 ( cos π 10 + i sin π 10 ) .
::6. 乘以2(乘以2(cos +8+i sin 8) (8) (cos 10+i sin 10)。7. Divide 2 ( cos 80 ∘ + i sin 80 ∘ ) ÷ 6 ( cos 200 ∘ + i sin 200 ∘ ) .
::7. 除以2(cos 80i sin 80) 6 (cos 200i sin 200)。8. Divide 3 cis ( 130 ∘ ) ÷ 4 cis ( 270 ∘ ) .
::8. 除以 3 CIS( 130 ) 4 CIS( 270 ) 。Use De Moivre's Theorem.
::使用德莫伊夫尔的定理。9. [ 3 ( cos 80 ∘ + i sin 80 ∘ ) ] 3
::9. [(cos 80i sin 80]310. [ √ 2 ( cos 5 π 16 + i sin 5 π 16 ) ] 4
::10. [2(cos 5x16+i sin 5x16)]411. ( √ 3 − i ) 6
::11. (%3-i)612. Identify the three complex cube roots of 1 + i
::12. 确定1+i的三个复合立方根13. Identify the four complex 4th roots of − 16 i
::13. 确定-16i的四个复杂的第四根根14. Identify the five complex 5th roots of i .
::14. 查明5个复杂的五根根I。Review (Answers)
::回顾(答复)Please see the Appendix.
::请参看附录。 -
De Moivre's Theorem
:
z
n
=
r
n
(
cos
(
n
θ
)
+
i
sin
(
n
θ
)
)