章节大纲

  • Introduction
    ::导言

    To ship a package overnight, a delivery service charges $18 for the 1st pound, and $2 for each additional pound or portion of a pound. The total cost can be represented  by  the function f ( x ) = { $ 18 0 < x 1 $ 20 1 < x 2 . . . x > 2 ,  where  x  is the number of pounds of the package . If the package weighs 5 pounds, what is the limit of the cost function ?  
    ::在夜间装运包件时, 送货服务费为1磅18美元, 每增加1磅或1磅部分为2美元。总成本可以用函数( f(x) =180 <xxx}1美元=180 <xxxx}1201 <x=2...x>2xxxxxxxxxxxxxxxx2x2xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx2x2xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

    lesson content

    One-sided Limits
    ::片面限制

    A one-sided limit can be evaluated either from the left or from the right. Since left and right are not absolute directions, a more precise way of thinking about direction is from the negative side or from the positive side. The notation for these is
    ::单向限制可以从左侧或从右侧评价。由于左右不是绝对方向,对方向的更精确的思考方法是从负面或从正面进行。

    lim x a f ( x )  and  lim x a + f ( x ) .
    The negative superscript on  a  is not an exponent, but rather it indicates  from the negative side . Likewise, the positive superscript is not an exponent, but rather it indicates from the positive side . When evaluating one-sided limits, consider only what value the function is approaching on the one side of the   x -value, regardless of  what the function is doing at the actual point or on the other side of the number.
    ::limxa- f(x) 和 limxa+f(x) 。 a 上的负上标不是引号,而是从负面表示。 同样,正上标不是引号,而是从正面表示。在评价单面限制时,只考虑函数在 x 值的一边接近的值,不管函数在实际点或数字的另一边做什么。

       One-sided Limits
    ::片面限制

    The limit of f ( x )  as  x  approaches  a  from the left side is  L 1 :
    ::左侧 x 接近 a 的 f( x) 限制为 L1:

    lim x a f ( x ) = L 1 .

    ::limxa-f(x)=L1。

      The limit of f ( x )  as  x  approaches  a  from the right side is  L 2 :  

    lim x a + f ( x ) = L 2 .

    ::从右侧接近 x 的 f( x) 限制为 L2: limxa+f( x) = L2 。

    Graphing to Find a Limit
    ::用于查找限制的图形

    One method of finding the limit of a function is by graphing. When evaluating the limit of a function from its graph, you need to distinguish between the function evaluated at the point, and the limit approaching the point.
    ::找到函数极限的方法之一是图形化。在从图形中评价函数极限时,需要区分点点上评价的函数和接近点的极限。

    lesson content

    Functions like the one above with discontinuities, asymptotes, and holes require you to have a very solid understanding of how to evaluate and interpret limits.
    ::类似上面的功能,有不连续、无症状和洞的功能,需要您对如何评估和解释限制有非常扎实的了解。

    When you evaluate limits graphically, your main goal is to determine whether the limit exists. The limit exists only when the left and right one-sided limits are equal . The f unction value at that point is irrelevant in respect to the limit at that point. A function could be defined or undefined at that point, but the limit of the function at that point exists only if the one-sided limits are equal. 
    ::当您图形化地评估限制时,您的主要目标是确定限制是否存在。限制只在左侧和右侧的单向限制相等时才存在。该点的函数值与该点的限制无关。该点的函数值可以定义或未定义,但该点的函数值只有在单向限制相等时才存在。

       Existence of a Limit
    ::存在限制

    The limit of  f ( x )  as  x  approaches  a  exists if 
    ::f(x) 作为 x 方法的 f(x) 限值存在

    lim x a f ( x ) = lim x a + f ( x ) = lim x a f ( x ) = L .

    ::立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺 立方公尺 = 立方公尺 = 立方公尺 = 立方公尺

    For instance, for the graph above, the limit of the function as x  approaches 0  from the left is -2.4, and from  the right is -2.4. E ven though the function has a discontinuity in the form of a hole at   x = 0 , the two  one-sided limits equal -2.4, so the limit of the function as    x  approaches 0  is -2.4. Note that w hen you evaluate the function at 0, the function value is the  actual y -value on the graph,  ( 0 , 1 )
    ::例如,对上图来说,左向 x 接近 0 的函数限值为 -2.4,右向函数限值为 -2.4。即使该函数以x=0的洞的形式具有不连续性,但两个单向限制等于 -2.4,因此,以x 接近 0 的函数限值为 -2.4。请注意,当您将函数值评价为 0 时,函数值是图形上的实际 y 值, (0, 1) 。

    lim x 0 f ( x ) = 2.4  and  f ( 0 ) = 1

    ::limbx0f(x)2.4 和 f(0)=1

     At x = b ,   the limit of the function from the left is 1, and  the limit of the function  from  the right is 1.8.  Since these one-sided limits are not equal, the limit does not exist . The function value at  x = b  is 1, because the closed dot at  ( b , 1 )  indicates that the function is defined at this point.
    ::在 x=b 上,左侧函数的限值为 1, 右侧函数的限值为 1. 8。 由于这些单向限制不相等, 限制并不存在。 x=b 的函数值为 1, 因为(b, 1) 上的关闭点表示此函数是在此点定义的 。

    lim x b f ( x ) = DNE  and  f ( b ) = 1

    ::limxbf(x) = DNE 和 f(b) = 1

    Similarly, the two one-sided limits at  x = c  are not equal, so the limit does not exist. T he function is defined at  x = c  with a function value of -3.
    ::同样, x=c 的两面限制并不相等,因此该限制不存在。函数在 x=c 下定义,函数值为 -3。

    lim x c f ( x ) = DNE  and  f ( c ) = 3

    :伤心x)=DNE和f(c)________________________________________________________________________________________________________________________________________

    At x = a , the function is undefined because there is a vertical asymptote.  Since the function approaches different values from the left and from the right of   x = a , the limit does not exist.
    ::At x=a, 函数没有定义, 因为有一个垂直的空点。 由于函数与左侧和 x=a 右侧的值不同, 限制不存在 。

    lim x a f ( x ) = DNE  and  f ( a ) = DNE

    ::limxaf(x) = DNE 和 f(a) = DNE

    The graph of the function appears to flatten as it moves to the left. Thus, there is a horizontal asymptote at  y = 0  as x .
    ::函数的图形在向左移动时似乎会平滑。因此,在 y=0 的 x\\\ 时,会有一个水平的同位数 。

    lim x f ( x ) = 0

    ::limxf(x)=0

    However, t he graph of the function appears to continue to increase without bound as it moves to the right. Thus, the limit of the function does not exist as   x .
    ::然而,函数图在向右移动时似乎在不受约束的情况下继续增加。因此,函数的极限并不存在 x 。

    lim x f ( x ) = DNE

    ::limxf(x) = DNE

    Another example of these ideas can be found in the following video:  
    ::这些想法的另一个例子是在以下录像中看到的:

      

    Play, Learn, and Explore One-sided Limits: 
    ::玩耍、学习和探索单向限制:

     

    Examples
    ::实例

    Example 1
    ::例1

    Evaluate the following expressions using the graph of the function f ( x ) :
    ::使用函数 f(x) 的图形评价以下表达式:

    lesson content

    a.  lim x f ( x )
    ::a. limxf(x)

    Solution: 
    ::解决方案 :

    lim x f ( x ) = 0

    ::limxf(x)=0

    b.  lim x 1 f ( x )
    ::b. limx%1f(x)

    Solution:
    ::解决方案 :

      lim x 1 f ( x ) = D N E
    ::limx1f(x) = DNE

    c.  lim x 0 f ( x )
    ::c. 立方厘米

    Solution: 
    ::解决方案 :

    lim x 0 f ( x ) = 2
    ::立方厘米#0f( x) @%%2

    d.  lim x 1 f ( x )
    ::d. 立方厘米1f(x)

    Solution: 
    ::解决方案 :

    lim x 1 f ( x ) = 0
    ::limx% 1f( x) =0

    e.  lim x 3 f ( x )
    ::e. limx%3f(x)

    Solution: 
    ::解决方案 :

    lim x 3 f ( x ) = D N E  because only the limit from the left side exists, and therefore the two one-sided limits do not exist. 
    ::limx}3f(x)=DNE,因为只有左侧的限制存在,因此不存在两个单方的限制。

    f.  f ( 1 )
    ::f. f. f(-1-1)

    Solution: 
    ::解决方案 :

    f ( 1 ) = 0
    ::f( - 1) =0

    g.  f ( 0 )
    ::g. f( 0) 数

    Solution: 
    ::解决方案 :

    f ( 0 ) = 2
    :伤心f0)%2

    h.  f ( 1 )
    ::h. f(1)

    Solution: 
    ::解决方案 :

    f ( 1 ) = 2
    ::f(1)=2

    i.  f ( 3 )
    ::i. f. (3)

    Solution: 
    ::解决方案 :

    f ( 3 ) = 0

    ::f(3)=0


    Example 2

    ::例2

    Sketch a graph that has a limit at x = 2  where the limit value does not match the function value at that point .
    ::绘制一个在 x=2 上有限制的图形, 当限制值与此点的函数值不符时 。

    Solution:
    ::解决方案 :

    While there are an infinite number of graphs that fit this criteria, you should make sure your graph has a removable discontinuity at x = 2 .
    ::虽然有无数符合此标准的图表,但您应该确保您的图表在 x=2 时具有可移动的不连续性。

    lesson content

    Example 3
    ::例3

    Sketch a graph that is defined at  x = 1 , but  lim x 1 f ( x ) does not exist.
    ::绘制一个在 x1 上定义的图形, 但是 limx1f(x) 不存在 。

    Solution:
    ::解决方案 :

    The graph must have either a jump or an infinite discontinuity at  x = 1 , and also have a closed  hole filled in somewhere on that vertical line.
    ::图形必须在 x1 上有一个跳跃或无限的不连续性, 并在垂直线上某个地方有一个封闭的洞。

    lesson content

    Example 4
    ::例4

    Recall the problem from the Introduction: Determine the limit of the cost function of shipping a 5-pound package overnight. The total cost is represented by   f ( x ) = { $ 18 0 < x 1 $ 20 1 < x 2 , . . . x > 2  where  x  is the number of pounds of the package. 
    ::回顾导言中的问题:确定夜间装运5磅包件的成本功能限度。总成本为f(x)$180 <xx}1$1$201 <x}2,...x>2,其中x是包件的磅数。

    Solution:
    ::解决方案 :

    The graph of the cost function is shown below. T he limit to the left of  x = 5  is 26, and the limit  to the right of x = 5  is 28. Since these two one-sided limits are not equal, the limit of the function as the package weighs 5 pounds does not exist. 
    ::成本函数图如下。 x=5 左侧的限值为 26, x=5 右侧的限值为 28。 由于这两个单方的限值不相等, 包件重量为 5 磅的函数限值不存在 。

    Example 5
    ::例5

    Identify where t he limit exists and where the limit does not exist for the following function:
    ::确定存在限制的地点和不存在限制的下列职能:

    lesson content

    Solution:
    ::解决方案 :

    The limit does not exist at x = 3 , 1 , 2 , + ,  and  . The limit exists at every other point on the graph, including x = 1 .
    ::限制不存在于 x%3, 3, -1, 2, , 。 该限制存在于图中的其他每个点, 包括 x=1 。

    Example 6
    ::例6

    Evaluate and explain how to find the limits as  x approaches 0 and 1 in the previous question.

    ::评估并解释在前一个问题中如何找到x 接近0和1的界限。

    Solution:
    ::解决方案 :

    Both of these limits exist because the two one-sided limits at these points are equal. As  x approaches 0 from the left and from the right, the function value approaches 2. The function value at x = 0  is also defined at 2.  As  x  approaches 1 from the left and from the right, the function value approaches 1. Even though the function value is defined elsewhere for  x = 1 , the limit value is still 1.  
    ::这两个限制都存在,因为这两个点的两个单向限制是相等的。作为左侧和右侧的xoproaches 0,函数值方针2。x=0的函数值也定义为 2. x=0的函数值也定义为 2. 作为左侧和右侧的x oice 1,函数值方针1。即使 x=1的函数值在别处被定义,但极限值仍然是 1 。

    lim x 0 f ( x ) = 2  and  lim x 1 f ( x ) = 1

    ::limx% 0f( x) = 2 和 limx% 1f( x) = 1

    Example 7
    ::例7

    Evaluate the limits of the following piecewise function at -2, 0, and 1:
    ::以 -2, 0 和 1 来评价以下片段函数的极限值: 2- 2, 0 和 1 :

    f ( x ) = { 2 x < 2 1 x = 2 x 2 2 < x 0 x 2 0 < x < 1 2 x = 1 x 2 1 < x

    :伤心xx) 2x% 2x% 2- 1x% 2- 2- 2- 2 < x=0x20 < x=1-2x=1x21 <x

    Solution:
    ::解决方案 :

    lim x 2 f ( x ) = 2 lim x 2 + f ( x ) = 0 lim x 2 f ( x ) = D N E

    ::limx% 2 - f( x) = 2limx @ 2+f( x) = 0limx% 2f( x) = DNE

    lim x 0 f ( x ) = 2 lim x 0 + f ( x ) = 0 lim x 0 f ( x ) = D N E

    ::limx_0- f( x) =2limx_0+f( x) = 0limx_0f( x) = DNE

    lim x 1 f ( x ) = 1

    ::limx% 1f( x)=1

    Summary
    ::摘要

    • The limit of  f ( x )  as  x  approaches  a  from the left side is denoted  lim x a f ( x ) = L 1 .
      ::左侧 x 接近 a 的 f(x) 限制值为limxa- f(x) = L1 。


      ::左侧 x 接近 a 的 f(x) 限制值为limxa- f(x) = L1 。
    •   The limit of  f ( x )  as  x  approaches  a  from the right side is denoted  lim x a + f ( x ) = L 2
      ::右侧 x 接近 a 的 f(x) 限制值表示 limxa+f(x) = L2 。


      ::右侧 x 接近 a 的 f(x) 限制值表示 limxa+f(x) = L2 。
    • The limit only exists when the left and right one-sided limits  are equal
      lim x a f ( x ) = lim x a + f ( x ) = lim x a f ( x ) = L
       

      ::只有在左和右的单向限制相等时才存在限制。 limxa- f( x) =limxa+f( x) =limxaf( x) =L
    • If the left and right one-sided limits are not equal, then the limit does not exist, or DNE. 
      ::如果左侧和右侧的界限不相等,则该界限不存在,或 DNE。

    Review
    ::回顾

    Use the graph of f ( x )  below to evaluate the expressions in 1-6.
    ::使用下面f(x)的图形来评价 1-6 中的表达式。

    lesson content

    1.  lim x f ( x )
    ::1. limxf(x)

    2.  lim x f ( x )
    ::2. limxf(x)

    3.  lim x 2 f ( x )
    ::3. limx%2f(x)

    4.  lim x 0 f ( x )
    ::4. limx%0f(x)

    5.  f ( 0 )
    ::5.f(0)

    6.  f ( 2 )
    ::6.f(2) 6 f(2)

    Use the graph of  g ( x ) below to evaluate the expressions in 7-13.
    ::使用下方 g(x) 的图形来评价 7- 13 中的表达式 。

    lesson content

     

    7. lim x g ( x )
    ::7. limxg(x)

    8. lim x g ( x )
    ::8. limxg(x)

    9. lim x 2 g ( x )
    ::9. limx%2g(x)

    10. lim x 0 g ( x )
    ::10. limx0g(x)

    11. lim x 4 g ( x )
    ::11. 立方4g(x)

    12. g ( 0 )
    ::12. g(0)

    13. g ( 2 )
    ::13.g(2)

    14. Sketch a function  h ( x ) such that h ( 2 ) = 4 ,  but lim x 2 h ( x ) = D N E .
    ::14. 将函数 h(x) 折叠成 h(2)=4, 但 limx%2h(x) = DNE 。

    15. Sketch a function  j ( x ) such that j ( 2 ) = 4 ,  but lim x 2 j ( x ) = 3 .
    ::15. 绘制函数j(x),使 j(2) = 4, 但 limx%2j(x) = 3。

    Review (Answers )
    ::回顾(答复)

    Please see the Appendix.
    ::请参看附录。