章节大纲

  • Section 12.2: Polar Coordinate System
    ::第12.2节:极地坐标系统

    1. Because a given point may have multiple descriptions
      ::因为给定点可能有多个描述
    2. If  r < 0 , you extend to the left to measure the distance. If  θ > 360 , you circle around and continue.
      ::如果 r < 0, 则向左延伸以测量距离。 如果 + 360, 则围绕并继续 。
    3. See point A below.
      ::见下文A点。
    4. See point B above.
      ::见上文B点。
    5. See point C above.
      ::见上文C点。
    6. See point D above.
      ::见上文D点。
    7. See point E above.
      ::见上文E点。
    8. (-1.5, -190°) and (1.5, 0.945π)
      :伤心-1.5,-190°)和(1.5, 0.9450°)
    9. ( 5 , 5 π 3 )  and  ( - 5 , - 60 )  
      :伤心5,53)和(5,60)
    10. ( - 3 , - 55 )   and  ( 3 , 1.7 π )  
      :伤心3-3-55)和(3,1,7)
    11. (4, -150°) and (-4,  5 π 6 )
      :伤心4,-150°)和(4,5°6)
    12.  (500, 105°)

    13. lesson content
    14. a.  4.189   x   10 7  
      b.  3.837   x   10 7  
      c.  3.004   x   10 7  
      ::a. 4.189 x 107 b. 3.837 x 107 c. 3.004 x 107
    15. a.  ( 4.189   x   10 7 , 30 )  
      b.  ( 3.837   x   10 7 , - 60 )  
      c.  ( 3.004   x   10 7 , 135 )  
      ::a. (4.189x107,30)b.(3.837x107,-60)c.(3.004x107,135)

    16. lesson content

    Section 12.3: Polar Equations
    ::第12.3节:极赤道


    1. lesson content

    2. lesson content

    3. lesson content

    4. lesson content

    5. lesson content

    6. lesson content

    7. lesson content

    8. lesson content

    9. lesson content

    10. lesson content

    11. lesson content

    12. lesson content

    13. lesson content

    14. lesson content

    15. lesson content

    16. lesson content

     

    Section 12.4: Polar and Cartesian Transformation
    ::第12.4节:极地和笛卡尔转变

    1. (-5, 0)
    2. (1.5, 2.6) Point plotted below.

      :伤心1.5、2.6) 点图如下。
    3. (-5, -8.66) Point plotted above.
      :伤心5至8.66)以上点图。
    4. (-15, 0) Point noted above.
      :伤心15,0)上述点。
    5. ( 50 , - π 4 )  or (7.07, -0.79)
      ( 50 , 7 π 4 )  or (7.07, 5.50)
      ::或(7.07,-0.79)或(7.07,5.50)或(7.07,5.50)
    6. ( 10 , π 2 )  or (10, 1.57)
      ( 10 , - 3 π 2 )  or (10, -4.71)
      :伤心10,%2)或(10,1.57) (10,3,%2)或(10,4.71)
    7. (10, 2.50)
      (10, -3.79)
    8. Approximate equation is  y = .33 x .  This is a line with domain x 0 . It starts at the origin and has a slope of about 0.325.
      lesson content

      ::近似方程式为 Y= 33x。 这是域的直线 x_0。 它从原点开始, 斜度约为 0. 325 。
    9. x 2 + y 2 = 64.  This is a circle centered at the origin with radius 8.
      lesson content

      ::x2+y2=64。 这是一个圆, 以原点为中心, 半径为 8 。
    10. y = 7.  This is a horizontal line through (0, 7).
      lesson content

      ::y=7. 这是一条通过 0, 7 的水平线 。
    11. x = - 3.  This is a vertical line through (-3, 0).
      lesson content

      ::x=-3. 这是一条直径( 3, 0) 的垂直线 。
    12. r = 2 cos θ .   This is a circle with center at (1, 0) and radius 1.
      lesson content

      ::r=2cos。 这是一个圆形, 中心在 1, 0 和 半径 1 。
    13. sin θ = 3 cos θ .  This is a line with slope equal to the square root of 3.
        lesson content

      ::这是一条斜坡等于3平方根的直线。
    14.   r sin θ = - 5.  This is a horizontal line through (0, -5).
      lesson content

      ::rsin% - 5。 这是一条通过 0, - 5 的水平线 。
    15. r cos θ  ×  r sin θ = 15  or  r 2 cos θ sin θ = 15.  This is a rational function centered at the origin.
      lesson content

      ::rcos × rsin 15 或 r2cossin 15。 这是一个以源代码为中心的合理函数 。
    16. 4 , 380 π = 132 cos ( 5 θ )  
      ::4,380132cos(5__)
    17. l = 7 , 542 π cos 5 θ  
      ::7,542cos5
    18. y = 6 17 x cos 25 sin 25  or  y - 2.14 x + 0.835  
      ::y=617-xcos25sin25或y-2.14x+0.835

     

    Section 12.5: Systems of Polar Equations
    ::第12.5节:极赤道系统

    1. They intersect twice. 
      ::它们交叉了两次
    2. Once in the 1st and once in the 4th quadrant 
      ::一次在第一 一次在第四象限
    3. They intersect at  ( 1 , π 3 )  and  ( 1 , 5 π 3 ) .  
      ::相交于(1,3,3)和(1,5,3)之间。
    4. 3 points of intersection
      ::3个交叉点
    5. Points of intersection are  ( 0 , 0 ) , ( 1 2 , π 2 ) ,  and  ( 1 2 , 5 π 3 ) .  
      ::交叉点是(0,0,(12,)2)和(12,513)。
    6. ( 2 , 0 )  
    7. ( 0 , 0 )  
    8. ( 2 + 2 , 3 π 4 )   and   ( 2 2 , 7 π 4 )    
      :伤心2,34)和(2,2,74)
    9. ( 3 2 , π 3 ) , ( 3 2 , 5 π 3 )  
    10. ( 2 , π 4 ) , ( 2 , 3 π 4 )                                  
    11. ( 0 , 0 ) , ( 1 , 0 )                                        
    12. ( 0 , 0 ) , ( 3 2 , 2 π 3 ) , ( 3 2 , π 3 )                     
    13. ( 0 , 0 ) , ( 2 2 , 5 π 4 )                             
    14. (1, 276°), (2.44, 313°)                           
    15. (0, 0), (1.08, 95°), (1,77, 142°), (1.77, 218°), (1.08, 265°) 

    Section 12.6: Polar Equations of Conics
    ::第12.6节:二次曲线极赤道

    1. 8 x 2 10 x + 9 y 2 25 = 0 ;  ellipse
      ::8x2- 10x+9y2- 25=0; 椭圆
    2. 3 x 2 8 x + 4 y 2 16 = 0 ;  ellipse
      ::3x2-8x+4y2 - 16=0; 椭圆
    3. 3 x 2 4 x + 4 y 2 4 = 0 ;  ellipse
      ::3x2 - 4x+4y2 - 4=0; 椭圆
    4. 12 x 2 24 x + 4 y 2 9 = 0 ;  hyperbola
      ::- 12x2 - 24x+4y2 - 9=0;双波
    5. x 2 5 x + y 2 = 0 ;  circle
      ::x2 - 5x+y2=0; 圆

    6.       

    7.              

    8.        

    9. r = 3 2 cos θ  

      ::r=32-cos____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
    10. r = 10 cos θ 24 sin θ  

      ::r=10cos24sin
    11. r = - 2 sin θ  
      ::r=-2sin
    12. r = 2 cos θ  
      ::r=2cos
    13. r = 1 1 2 cos θ  
      ::r=11-2cos_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
    14. e = 1 , parabola
      ::e=1, 抛物线
    15. e = 1 2 ,  ellipse 
      ::e=12, 椭圆
    16. e = 1 , parabola 
      ::e=1, 抛物线
    17. e = 2 , hyperbola 
      ::e=2,双波
    18. Answers will vary. One example: On the rectangular grid, you graph points based on  x  and  y  values (how far something is right/left or above/below the origin). On the polar grid, you graph points based on angles and the length of a radius.
      ::答案会有所不同。例如:在矩形网格中,根据 x 和 y 值(东西的右/ 左或上/ 上/ 下) 绘制的图形点。在极地网格中,根据角度和半径长度绘制的图形点。

     

    Section 12.7: Polar Form of Complex Numbers
    ::第12.7节:复杂数字的极表形式

    lesson content

    1. See graph above.  ( 2 , 45 )
      ::见上文图表。 (第2,45__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
    2. See graph above.  ( 2 , 135 )  
      ::见上文图表。 (第2,135__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
    3. See graph above.  ( 6 , 270 )  
      ::见上文图表(6,270)
    4. See graph above.  ( 2 , 45 )  
      ::见上文图表。 (第2,45__________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
    5. See graph above.  ( 2 , - 45 )  
      ::见上文图。 (%2,-45_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
    6. See graph above.  ( 2 , 0 )

      ::见上文图表(2,0)
    7. See graph above.  ( 2 , 60 )       
      ::见上文图表(2,60)
    8. See graph above.  ( 2 , - 30 )

      ::见上文图表(2,30)
    9. See graph above.  ( 4 , 30 )  
      ::见上文图表(4,30)
    10. 4.25 + 4.25 i  
      ::4.25+4.25i
    11. - 7.5 + 13 i  
      ::-7.5+13i
    12. 6 + 10.4 i  
      ::6+10.4i 6+10.4i
    13. ( x 2 + y 2 , 1 s i n ( y 2 r 2 ) )    
      ( cos θ + i sin θ )  using θ  from above
      :伤心x2+y2,1sin(y2r2))(cosisin) 使用上面的
    14. Zeros: 2 + 2i, 2 – 2i
      lesson content
       
      ::零:2+2i,2-2i
    15. (0, 0°)
    16. ( 3 1 2 , 0 )  
    17. ( 13 , 213.69 )  
    18. (4, -30°)

       

    Section 12.8: Product and Quotient Theorems
    ::第12.8节:产品和引号理论

    1. 4 2 ( cos 15 + i sin 15 )
      ::42(cos15isin15)
    2. 8 c i s ( 60 °)
      ::8cis( 60°)
    3. 1 3 c i s ( - 120 )
      ::13CIS(-120)
    4. 60°
    5. 33.81 + 9.06 i  
      ::33.81+9.06i
    6. .36 + 1.35 i  
      ::36+1.35i
    7. 3 16  
    8. 0 + 40 i  
      ::0+40i
    9. 1.4 + 4 5 i  
      ::1.4+45i
    10. 1 2 + 5 16 i  
      ::12+516i
    11. - 32 + 32 i 3  
      ::-32+32i%3
    12. 0 + 125 i  
      ::0+125i
    13.   2 3 + 2 + ( 2 3 2 ) i   
      ::3+2+2+(2+3-2)i
    14. 4 + 4 3 i  
      ::4+43i
    15. 3 + 2.6 i  
      ::3+2.6i 3+2.6i
    16. - 1 6 2 7 i  
      ::-16-27i
    17. - 23 40 27 56 i    
      ::-2340-22756i
    18. ( 32 7 , 30 )  
    19. ( 84 , 37 )  

     

    Section 12.9: Powers and Roots of Complex Numbers
    ::第12.9节:复杂数字的权力和根源

    1. - 1 2 + 5 2 i  

      ::-12+52i
    2. 37  
    3. ( 1 2 i 3 2 )  

      :伤心12-i32)
    4. 4 2 ( cos 15 + i sin 15 )

      ::42(cos15isin15)
    5. 8 c i s ( 60 )

      ::8CIS( 60)
    6. 4 c i s ( 9 π 40 )  
      ::4Cisc(940)
    7. 1 3 c i s ( - 120 )  

      ::13CIS(-120)
    8. 3 4 c i s ( - 140 )  

      ::34Cis(-140)
    9. - 27 2 27 3 2 i  

      ::- 272-2732i
    10. - 2 2 2 2 i  

      ::-2-2-22i
    11. - 64  
    12. ( 6 2 ) c i s 15 °,  6 2 c i s 135 °,   6 2 c i s 255 ° 

      :伤心6_________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________
    13. 2 c i s 67.5 °,  2 c i s 157.5 °,   2 c i s 247.5 °, 2 c i s 337.5 °
      ::2C67.5°, 2C157.5°, 2C247.5°, 2C337.5°
    14. c i s 18 °, c i s 90 °,  c i s 162 °,  c i s 234 °, c i s 306 °        

      ::cis18°, cis90°, cis162°, cis234°, cis306°

    Section 12.10: Parameters and Parameter Elimination
    ::第12.10节:参数和参数去除

    1. y = 4 9 x 2 + 2 9 x 2 9  
      ::y=49x2+29x-29
    2. x = 3 4 y 2 + 9 2 y + 15 4  
      ::x=34y2+92y+154
    3. y = x 2  
      ::y=x2 y=x2
    4. y = x 3 + 15 x 2 + 75 x + 126  
      ::y=x3+15x2+75x+126
    5. y = x 2 8 x + 11  
      ::y=x2 - 8x+11 y=x2 - 8x+11





    6. x 2 + ( y + 4 3 ) 2 = 1  
      lesson content

      ::x2+(y+43)2=1
    7. ( x 1 ) 2 + ( y 1 ) 2 = 4  
      lesson content

      :伤心x-1)2+(y-1)2=4
    8. x = 2 + 3 cos t ;   y = 4 + 3 sin t  
      ::x=2+3cost;y=4+3sint
    9. x = 2 cos t ;   y = 5 sin t  
      ::x=2 成本; y=5sint
    10. x = 3 cos t + 4 ;   y = 6 sin t 1  
      ::x=3cost+4;y=6sint-1

     

    Section 12.11: Parametric Inverses
    ::第12.11节:参数反数

    1. x = t 2 + 2 ;   y = t 4  
      ::x=t2+2; y=t- 4
    2. Function
      ::函数职能职能职能职能职能职能职能职能
    3. Neither
      ::中 无
    4. x = 4 t ;   y = t 2  
      ::x=4 - t; y=t2 x=4 - t; y=t2
    5. Inverse
      ::反逆
    6. Relation
      ::关系关系
    7. x = t 2 3 ;   y = 2 t 1  
      ::x=t2 - 3; y=2t - 1
    8. Inverse
      ::反逆
    9. Function
      ::函数职能职能职能职能职能职能职能职能
    10. x = t 2 2 t ;   y = 3 t + 14  
      ::x=t2- 2t; y=3t+14
    11. When  t = - 2  at  ( 8 , 8 )  and when  t = 7  at  ( 35 , 35 )
      ::当 t = 2 时( 8, 8) , 当 t = 7 时( 35, 35)
    12. x = 4 t 4 ;   y = t 2  
      ::x=4t- 4; y=t2
    13. When t = 2  at  ( 4 , 4 )
      ::当 t=2 时( 4, 4)
    14. x = t ;   y = t 2 + t 6  
      lesson content

      ::x=t; y=t2+t- 6 x=t; y=t2+t- 6
    15. x = t ;   y = t 2 + 3 t + 2  
      lesson content

      ::x=t; y=t2+3t+2

     

     Section 12.12: Applications of Parametric Equations
    ::第12.12节:参数等量的应用

    1.   x = - 50 sin 2 π 5 t ;   y = - 50 cos ( 2 π 5 t ) + 53  
      ::x=- 50sin2°5t; y=- 50cos(2°5t)+53
    2. ( - 29.4 , 93.1 )  
    3. ( 47.55 , 37.55 )  
    4. x = - 40 sin ( π 3 ( t + 1 ) ) ;   y = - 40 cos ( π 3 ( t + 1 ) ) + 43  
      ::x=- 40sin( 3( t+1); y=- 40cos( 3 ( t+1))+43
    5. ( 0 , 83 )  
    6. ( 34.6 , 23 )  
    7. x = t 73.33 cos π 4 ;   y = 1 2 ( - 32 ) t 2 + t 73.33 sin ( π 4 ) + 5  
      ::x=t73.33cos4;y=12(- 32)\t2+t73.33sin(- 4)+5
    8. ( 103.7 , 44.7 )  
    9. 172.7  feet in about  3.33  seconds
      ::大约3.33秒内172.7英尺
    10. x = t 102.67 cos ( π 3 ) + 8.8 t ;   y = 1 2 ( - 32 ) t 2 + t 102.67 sin ( π 3 ) + 7  
      ::x=t102.67cos(3)+8.8t;y=12(-32)t2+t102.67sin(3)+7
    11. ( 120.27 , 120.83 )  
    12. 338.56  feet in about  5.63  seconds
      ::338.56英尺,约5.63秒
    13. x - t 105.6 cos ( π 3 ) + 250 + 8.8 t ;     y 1 2 ( - 32 ) t 2 + t 105.6 sin ( π 3 )  
      ::x1 = - t105.6.6cos彩蛋 3+250+8. 8t; y1 = 12( 32) t2+t105. 6.6sin彩蛋 3)
    14. x 2 t 95.33 cos ( π 4 ) + 8.8 t ;   y 1 2 ( - 32 ) t 2 + t 95.33 sin ( π 4 )  
      ::x2 = t95.33cos( 4) + 8.8t; y2 = 12( 32) t2+ t95.33sin( 4)
    15. While the graphs intersect, each ball passes through the point of intersection at a different time.


      ::当图形交叉时,每个球会在不同的时间穿过交叉点。