章节大纲

  • In this lecture we will be continuing the last lecture and discussing how to do some of the same operations on higher dimensional matrices such as 3x3 and 4x4 matrices.
    ::在这次演讲中,我们将继续最后一次讲座,并讨论如何对3x3和4x4等高维矩阵进行一些同样的操作。


    The same properties hold as to how to do matrix addition and matrix multiplication , but as the dimensions get higher it is a bit harder to do.
    ::如何增加矩阵和矩阵乘法的属性相同,但随着尺寸越高,就越难做到。

    Generalizing from the last lecture we have that each entry from each row  C i , j  where  C = A B  is the  i -th row of A dot product with the j-th column of B.
    ::从上次演讲中归纳出,每行Ci,j的每个条目,C=AB是A点产品的i行,B列为j-th。

    This means that given
    ::这意味着给

    A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] B = [ b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ] C = A B C = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] [ b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ] C 1 , 1 = [ a 11 a 12 a 13 ] [ b 11 b 21 b 31 ] = [ a 11 b 11 + a 12 b 21 + a 13 b 31 ] C = [ a 11 b 11 + a 12 b 21 + a 13 b 31 a 11 b 12 + a 12 b 22 + a 13 b 32 a 11 b 13 + a 12 b 23 + a 13 b 33 a 21 b 11 + a 22 b 21 + a 23 b 31 a 21 b 12 + a 22 b 22 + a 23 b 32 a 21 b 13 + a 22 b 23 + a 23 b 33 a 31 b 11 + a 32 b 21 + a 33 b 31 a 31 b 12 + a 32 b 22 + a 33 b 32 a 31 b 13 + a 32 b 23 + a 33 b 33 ]
    ::=C=C[a11b1121+a321+a1333]C[a11b11+a321+a33]C=ABBC=[a111212a13a13a21a22a22a23a23a23a3333]C1,1=[a11bbb12bb13bb21b22b22b23b23b32b32b3333]C1,1=[a11b21b21b31][b1121+a13b21bbb22b22bbbb23b33b33b3=a323221b3+23b33b3b

    I included the ... just because the math is relatively simple and tedious to calculate these entries and I did not want to have you read me do that for all 9 entries in this 3x3 matrix.
    ::我加入了... 仅仅因为数学比较简单 和无聊 来计算这些条目 我不想让你读我这个3x3矩阵中的所有9个条目

    Let's do some multiplication problems now.
    ::让我们现在做一些乘法问题。

    1. 

    A = [ 1 2 3 4 5 2 1 3 5 ] B = [ 1 2 3 4 1 2 5 3 7 ] A B = [ 1 2 3 4 5 2 1 3 5 ] [ 1 2 3 4 1 2 5 3 7 ] = Applying the formula we had from earlier [ 6 13 14 26 9 12 36 14 38 ]  
    ::A=[12-34-521-35]B=[-123-4253-7]AB=[12-34-521-35]__[-123-41-253-7]=适用我们早先的公式[613-14269-123614-38]

    2. Let's try another example:
    ::2. 让我们再举一个例子:

    A = [ 1 1 2 4 3 1 1 5 2 ] B = [ 4 2 3 1 2 6 2 1 3 ] A B = [ 1 1 2 4 3 1 1 5 2 ] [ 4 2 3 1 2 6 2 1 3 ] = [ 7 6 15 17 1 9 5 10 33 ]  
    ::A=[1-1243-115-2,B=[42-31-2621-33]AB=[1-1-1243-115-2][42-1243-21-2621-3]=[76-1517195-1033]

    3. Finally, let's try one more example:
    ::3. 最后,我们再举一个例子:

    A = [ 2 3 5 4 1 2 7 8 4 ] B = [ 8 4 2 3 5 1 7 36 24 ] A B = [ 2 3 5 4 1 2 7 8 4 ] [ 8 4 2 3 5 1 7 36 24 ] = [ 42 157 113 21 83 55 60 76 74 ]  
    ::A=[23-54-1278-4]B=[-842-33517376264]AB=[23-54-54-1278-44][-842-335-1773624][-42-157-113-113-218355-60-76-774]]

     


     

    Now let's look at taking the inverse of a 3x3 matrix and derive the inverse matrix formula . We will learn this in a much simpler way once we use , but let's try and apply the skills that we have now.
    ::现在让我们来看看3x3矩阵的反向, 并得出反向矩阵公式。 一旦我们使用, 我们将以简单得多的方式了解这一点, 但是让我们尝试运用我们现在拥有的技能 。

    I won't go through the full steps of derivation, but I will take you through it.
    ::我不会走 整个步骤的衍生, 但我会带你 通过它。

    Given a matrix  A  , it's inverse is the matrix  B   such that  A B = I  where  I  is the identity matrix .
    ::从矩阵A来看, 矩阵B是相反的, 因此AB=I代表我的身份矩阵。

    So let's say  A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] B = [ b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 ] A B = [ a 11 b 11 + a 12 b 21 + a 13 b 31 a 11 b 12 + a 12 b 22 + a 13 b 32 a 11 b 13 + a 12 b 23 + a 13 b 33 a 21 b 11 + a 22 b 21 + a 23 b 31 a 21 b 12 + a 22 b 22 + a 23 b 32 a 21 b 13 + a 22 b 23 + a 23 b 33 a 31 b 11 + a 32 b 21 + a 33 b 31 a 31 b 12 + a 32 b 22 + a 33 b 32 a 31 b 13 + a 32 b 23 + a 33 b 33 ]
    ::所以让我们说A=[a11a12a13a13a21a22a23a31a33]B=[b11b12bb21b22b2222b23b23b23b23b2323b33]A=B=[a11b11+a12b21+a12b21+a13b21b+a12bb22+a13b32a1113+a12b23b23+a13b21b21b21b21b23+a2222b22+a2323b13+a23b33b33ab31b11+a32b21+a33b31b12+a32b22+a33b3222+a33b3222+a33b32b23b23+a33]

    Now we want to find all of the numbers in B such that the entries of A*B is equal to the identity matrix and the entries of B are written in terms of A. From here, we get a system of 9 linear equations with 9 variables, which though quite tedious to solve is nevertheless solvable.
    ::现在我们想要找到 B 中的所有数字, 这样 A* B 的条目等于身份矩阵, 而 B 的条目是用 A 写成的 。 从这里, 我们得到一个有 9 个线性方程式的系统, 包含 9 个变量, 虽然解决这些变量很无聊, 但还是可以解决 。

     

    After solving this out we end up getting that 
    ::解决了这个问题之后 我们最终会得到这个

    B = A 1 = 1 a 11 a 22 a 33 a 11 a 32 a 23 a 21 a 33 a 12 + a 21 a 32 a 13 + a 31 a 23 a 12 a 31 a 22 a 13 [ a 33 a 22 a 32 a 23 a 32 a 13 a 33 a 12 a 23 a 12 a 22 a 13 a 31 a 23 a 33 a 21 a 33 a 11 a 31 a 13 a 21 a 13 a 23 a 11 a 32 a 21 a 31 a 22 a 31 a 12 a 32 a 11 a 22 a 11 a 21 a 12 ]
    ::B=A-1=1a11a22a33-a11a32a23-a21a33a12+a21a32a32a13+a31a23a12a-a31a22a13+a31a23a12a13a[a33a22a23a23a13a23a23a13a23aa13a21a11aa31aa13a13a13a13a23aaa21a21a21a21a21a21a21a31a22aa12a-a31a32a21a11a11a21a12]

    Now that we've seen this definition outright, let's do one example and I'll leave the rest for you to do yourself.
    ::既然我们直截了当地看到了这个定义, 让我们举一个例子, 我剩下的留给你自己来做。

     

    1. Calculate  ( [ 1 3 2 1 4 5 7 6 2 ] ) 1 Applying the formula from earlier, we get that the answer is [ 2 7 6 77 1 11 3 7 16 77 1 11 2 7 27 77 1 11 ]
    ::1. 计算([132-145-762])-1 应用早先的公式,我们得到的答案是[27-677-11137-1677-1111-272777-111]


     Videos:
    ::视频 :


    Problems
    ::问题、问题、问题、 问题、 问题、 问题、 问题、 问题、 问题、 问题、 问题、 问题、 问题、 问题、 问题、 问题、 问题、 问题、 问题、 问题、 问题、 问题、 问题、 问题

     

    Calculate
    ::计算计算

    1. ( [ 1 2 3 4 2 5 7 6 8 ] ) 1 2. ( [ 7 1 2 4 5 6 3 1 12 ] ) 1 3. ( [ 3 4 5 6 8 1 7 2 1 ] ) 1 4. ( [ 2 1 6 1 4 3 8 2 1 ] ) 1 5. ( [ 5 2 6 9 19 13 2 14 8 ] ) 1