章节大纲

  • Given any matrix  A , the matrix  A i ( b )  is the matrix constructed by matrix  A  and replacing  i  with  b  so if  A = [ a 1 a i a n ] A i ( b ) = [ a 1 b a n ] .
    ::就任何矩阵A而言,矩阵Ai(b____)是由矩阵A构建的矩阵,如果A=[a1][a1]-ai-an] i(b__)=[a1]-bban__],则以 b__取代 i。


     

    Now, let's go to a rule you've probably  seen in high school, Cramer's rule. This rule states that given a system of linear equations represented by the matrix-vector product  A x = b  we get that the solution vector  x  has the form  x = A 1 b  the vector  x  has the representation 
    ::现在,让我们来谈谈你可能在高中时看到的一条规则, Cramer 的规则。 该规则指出, 给以矩阵- 矢量产品Ax\\\ {b} 代表的线性方程系统, 我们得到的答案矢量 x_ 具有 xA- 1b} 矢量 x_ 具有代表的窗体

    x = [ x 1 x n ] x i = det ( A i ( b ) ) det ( A )
    ::x[x1]xn]xI=det(Ai(b))det(A)

    Let's look at the proof for this theorem :
    ::让我们看看这个理论的证明:

    I = [ e 1 e i e n ]  where  I  is the identity matrix and the column vectors  e i  are the standard basis vectors for  R n
    ::I=[e1]=[e1]=身份矩阵和矢量列为Rn标准基矢量的I=[e1]=身份矩阵和矢量列为Rn标准基矢量的I=Rn

    Now, by definition we can have that  I i ( x ) = [ e 1 e i 1 x e n ]  and  A I i ( x ) = A [ e 1 x e n ] A I i ( x ) = [ A e 1 A x A e n ] A I i ( x ) = [ a 1 A x a n ] A I i ( x ) = [ a 1 b a n ] A I i ( x ) = A i ( b ) det ( A I i ( x ) ) = det ( A i ( b ) ) det ( A ) det ( I i ( x ) ) = det ( A i ( b ) ) det ( I i ( x ) ) = det ( [ e 1 x e n ] ) det ( I i ( x ) ) = x i det ( A ) x i = det ( A i ( b ) ) x i = det ( A i ( b ) ) det ( A )     
    ::现在,根据定义,我们可以有I(x) = [e1-1-xen] 和 AI(x) = A[e1x = A) AI(x) = AI(x) = [a1-Ax ] AIi(x) = [a1_B an} AI(x) = AI(b) diet (AI(b) ) =det(A) diet(A) = deit(Ai(b) ) diet(A) id(A) = dett([e1x )) deti(I(x) ) ) det(i(i(x) ) =x(A) xx(A) =det(A) exi=de(A)) ex=de(A)) (A)))) dede(A) (A))))))))

    Let's try an example of this
    ::让我们试一试这个例子

    3 x 1 2 x 2 = 4 x 1 + 5 x 2 = 7 A = [ 3 2 1 5 ] x = [ x 1 x 2 ] b = [ 4 7 ] A x = b [ 3 2 1 5 ] [ x 1 x 2 ] = [ 4 7 ] det ( A ) = det ( [ 3 2 1 5 ] ) det ( A ) = 3 ( 5 ) ( 1 ) ( 2 ) det ( A ) = 15 2 = 13 A 1 ( b ) = [ 4 2 7 5 ] det ( A 1 ( b ) ) = 4 ( 5 ) ( 2 ) ( 7 ) det ( A 1 ( b ) ) = 34 x 1 = 34 13 A 2 ( b ) = [ 3 4 1 7 ] det ( A 2 b ) = 3 ( 7 ) ( 4 ) ( 1 ) det ( A 2 ( b ) ) = 25 x 2 = 25 13 x = [ x 1 x 2 ] = [ 34 13 25 13 ]
    ::3x1-2x2=4-x1+5x2=7A=[3-2-15]x[x1x2]{[47]Ax{{{{{{{{{{{{{}}{[3-2--2-15}}{[x1x2]=[47]det([3-2-2--2-15])det([3-A)=3-(1)(1)(1)(1)(1)(2)(2)(2)(2)(2)det(A)=152=13A1(1)(2-275})d(A1(b)())))=4(5)-(2(7)(7(7)(A1)(2(b))=34x1(3-13(A2)(17)det(A2(2)(2-))=25x2=2513x*[x2][x1x2]=[34132-5133]

    Now, that we've seen an example using a 2x2 matrix, let's look at some higher dimensional examples and the we can use Cramer's rule to again derive the formula for the inverse of a matrix A.
    ::现在,我们已经看到一个使用 2x2 矩阵的例子, 让我们看看一些更高维的示例, 我们可以使用 Cramer 的规则再次得出矩阵 A 的反向公式。

    3 x 1 2 x 2 + 4 x 3 = 7 1 x 1 + 4 x 2 x 3 = 2 2 x 1 + 5 x 2 3 x 3 = 1 A = [ 3 2 4 1 4 1 2 5 3 ] x = [ x 1 x 2 x 3 ] b = [ 7 2 1 ] A x = b [ 3 2 4 1 4 1 2 5 3 ] [ x 1 x 2 x 3 ] = [ 7 2 1 ] det ( A ) = det ( [ 3 2 4 1 4 1 2 5 3 ] ) det ( A ) = 3 det ( [ 4 1 5 3 ] ) + 2 det ( [ 1 1 2 3 ] ) + 4 det ( [ 1 4 2 5 ] ) det ( A ) = 3 ( 4 ( 3 ) 5 ( 1 ) ) + 2 ( 3 ( 1 ) ( 1 ( 2 ) ) ) + 4 ( ( 1 ) ( 5 ) ( 4 ) ( 2 ) ) det ( A ) = 3 ( 7 ) + 2 ( 5 ) + 4 ( 13 ) det ( A ) = 21 + 10 52 det ( A ) = 63 A 1 ( b ) = [ 7 2 4 2 4 1 1 5 3 ] det ( A 1 ( b ) ) = det ( [ 7 2 4 2 4 1 1 5 3 ] ) det ( A 1 ( b ) ) = 7 ( 4 ( 3 ) 5 ( 1 ) ) ( 2 ) ( 2 ( 3 ) ( 1 ) ( 1 ) ) + 4 ( 2 ( 5 ) 4 ( 1 ) ) det ( A 1 ( b ) ) = 7 A 2 ( b ) = [ 3 7 4 1 2 1 2 1 3 ] det ( A 2 ( b ) ) = det ( [ 3 7 4 1 2 1 2 1 3 ] ) det ( A 2 ( b ) ) = 3 ( 2 ( 3 ) ( 1 ) ( 1 ) ) 7 ( 1 ( 3 ) ( 1 ) ( 2 ) ) + 4 ( ( 1 ) ( 3 ) ( 1 ) ( 2 ) ) det ( A 2 ( b ) ) = 68 A 3 ( b ) = [ 3 2 7 1 4 2 2 5 1 ] det ( A 3 ( b ) ) = det ( [ 3 2 7 1 4 2 2 5 1 ] ) det ( A 3 ( b ) ) = 3 ( 4 ( 1 ) ( 2 ) ( 5 ) ) ( 2 ) ( 1 ( 1 ) ( 2 ) ( 2 ) ) + 7 ( ( 1 ) ( 5 ) ( 4 ) ( 2 ) ) det ( A 3 ( b ) ) = 139 x 1 = 7 63 x 2 = 68 63 x 3 = 139 63 x = [ x 1 x 2 x 3 ] = [ 7 63 68 63 139 63 ]
    ::3x1-2x2-2x2+4-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-1x3-3-3-3-3-2-3-2-3xx1A=[3-24-14-125-3,3xx3,3x[7-2-1,1x2x3,b[3-24—4—4][[4-14-14—4][[A)=(3-24-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2--2-2-2-2--2-2-2-2-2-2--2-2-2-2--2-2-2-2-2--2--2-2--2-2--2-2--2-2--2--2--2--2--2--2--2--2--2--2--2--2--2--2---2--2---2------2-----------2-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------