Given any matrix
, the matrix
is the matrix constructed by matrix
and replacing
with
so if
.
::就任何矩阵A而言,矩阵Ai(b____)是由矩阵A构建的矩阵,如果A=[a1][a1]-ai-an] i(b__)=[a1]-bban__],则以 b__取代 i。
Now, let's go to a rule you've probably seen in high school, Cramer's rule. This rule states that given a system of linear equations represented by the matrix-vector product
we get that the solution vector
has the form
the vector
has the representation
::现在,让我们来谈谈你可能在高中时看到的一条规则, Cramer 的规则。 该规则指出, 给以矩阵- 矢量产品Ax\\\ {b} 代表的线性方程系统, 我们得到的答案矢量 x_ 具有 xA- 1b} 矢量 x_ 具有代表的窗体
::x[x1]xn]xI=det(Ai(b))det(A)
Let's look at the proof for this
theorem
:
::让我们看看这个理论的证明:
where
is the
identity matrix
and the column vectors
are the standard basis vectors for
::I=[e1]=[e1]=身份矩阵和矢量列为Rn标准基矢量的I=[e1]=身份矩阵和矢量列为Rn标准基矢量的I=Rn
Now, by definition we can have that
and
::现在,根据定义,我们可以有I(x) = [e1-1-xen] 和 AI(x) = A[e1x = A) AI(x) = AI(x) = [a1-Ax ] AIi(x) = [a1_B an} AI(x) = AI(b) diet (AI(b) ) =det(A) diet(A) = deit(Ai(b) ) diet(A) id(A) = dett([e1x )) deti(I(x) ) ) det(i(i(x) ) =x(A) xx(A) =det(A) exi=de(A)) ex=de(A)) (A)))) dede(A) (A))))))))
Now, that we've seen an example using a 2x2 matrix, let's look at some higher dimensional examples and the we can use Cramer's rule to again derive the
formula
for the
inverse
of a matrix A.
::现在,我们已经看到一个使用 2x2 矩阵的例子, 让我们看看一些更高维的示例, 我们可以使用 Cramer 的规则再次得出矩阵 A 的反向公式。