6.5 不形态主义
Section outline
-
Let's introduce a new vector space that we haven't really studied before, the polynomial space.
::让我们介绍一个新的矢量空间, 我们以前没有真正研究过, 多元空间。
We say that
::我们说,Pn(x) anxna0a0a00,,anR}So, let's take a function from
::所以,让我们从
::f:P2-R3f( 轴2+bx+c) = [ abc]Here's a property of this function:
::以下是此函数的属性 :The function is one-to-one, so if then
::函数 f 是一对一, 所以如果 f( p1 (x)) = f( p2(x) , 那么 p1 (x) = p2(x)To prove this we see that if
::要证明这一点, 我们可以看到, 如果 p1( x) =a1x2+b1x+c1&p2( x) =a2x2+b2x+c2, 则 p1( x) =a2x2+b2x+c2if
::如果 f( p1 (x)) = [a1b1c1f( p2(x) ) = [a2b2c2][a1b1c1] =[a2b2c22] =[a2b2c2] a1=a2,b1=b2,c1=c2p1 (x) =a1x2+b1x+c1=a2x2+b2x+c2=p2(x)Similarly, it is true that for every triplet
::同样,对于每个三胞胎来说,的确都是[abc]R3p(x)P2(x)P2(x)s.t.f(p(x))=[abc]。This property is called being onto.
::此属性被命名为“ 正在连接 ” 。
The function f is both one-to-one and onto and we say that that means that it is a bijection or an isomorphism and that both the domain and codomain are isomorphic.
::函数 f 既一对一,又一对一,我们说,这意味着它是一个双向或无形态,域和共域都是无形态的。
Another example of an isomorphism is the change of coordinates transformation.
::地貌变异的另一个例子是坐标变异的变化。Let's say we have a vector space and we have the standard basis vectors, and then we have another basis
::假设我们有一个矢量空间V=R3,我们有标准基矢量,{[100],[010],[001],[001],然后我们有另一个基点B[20-1],[4-21],[10-2]The function or mapping
::函数或绘图is an isomorphism
::x[x]B是一个无形态Let's look at what this mapping does:
::让我们看看这幅地图会做什么:Let's for example take the vector in the standard basis to equal
::例如,让我们在标准基中以矢量为等
::{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{>{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{>{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{>{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{Let's now prove that this is an isomorphism
::现在让我们证明这是一个无形态主义First we can prove that this transformation is onto
::我们首先可以证明,这种转变已经进入了We see that because the basis vectors of the basis B are linearly independent we can gather that every element of can be written as a linear combination of all of the vectors in B. To prove this, let's show that the matrix of the bases of B is invertible which is true, because the determinant is non-zero.
::我们可以看到,因为B基基的基矢量是线性独立的,所以我们可以收集到,R3的每一个元素都可以被写成B中所有矢量的线性组合。为了证明这一点,让我们证明B基的矩阵是不可逆的,这是真的,因为决定因素是非零。Next, we check for the transformation being one-to-one.
::接下来,我们检查一对一的变换情况We must show that
::我们必须表明,
::[x1}B=[x2}Bx1}x2}x2}[x1}B=BB=BB=BB=Sx1}[x2}]B=BB=Sx2}B=BB=Sx2}[x2}B=B=BB=Sx2}[x2}[x2}]B=B=PB=Sx2}[x2}]B=Sx1}[x1]B=B=B=BB=PB=BB*Sx1}Sx1}[x2}}]B=B=PB*Sx2}[x1]Sx1}[x2}}[x1]B}B=B=PB=PB=S_Sx2}[Sx2}[x2}B=S_BD*Sx1}[Sx1}[x1}B=S_B=S_BHence we see that this is an isomorphism.
::因此,我们看到这是一种无形态主义。