Section outline

  • One extremely important application of linear algebra can be seen in Markov Chains which are used in probability theory and important in algorithms such as Google's page rank algorithm for google search as well as trading algorithms for people in the financial sectors.
    ::在Markov 链条中可以看到一个极为重要的线性代数应用,在概率理论中使用,在谷歌的谷歌谷歌搜索网页级算法以及金融部门人员交易算法等算法中也很重要。


    This video presents the origins of Markov Chains:
    ::这段影片展示了Markov链条的起源:


     

    This video gives a great introduction into the basic content of the subject and definitions and facts you should know and understand when working with Markov chains.
    ::这段影片对主题、定义和事实的基本内容做了大量介绍,


     

    Start this video from minute 17 and it will show you a great demo on an application of markov chains when used from a data science perspective and in python (the programming language) which you should watch if you are familiar with the language.
    ::这段视频从第17分钟开始, 将会向您展示在使用 Markov 链的应用程序上, 从数据科学角度和 Python (编程语言) 使用时, 您应该观看, 如果您熟悉该语言的话 。


     

    This link is an extremely interesting visual interactive of markov chains changing state when given a certain set of inputs to start with:
    ::这个链接是一个非常有趣的视觉互动, 由Markov链条改变状态,


    And finally, obviously, this MIT open courseware video always gives great instruction and connects the topic very effectively with the concepts we've learned in this course in linear algebra.
    ::最后,很明显,这个MIT开放的软件视频 总是给人很好的指导 并且非常有效地把这个话题 和我们在这个课程中学习的 线性代数概念联系起来。