章节大纲

  • M any properties of special quadrilaterals can be proved from the specific definitions of the quadrilaterals.
    ::从四边形的具体定义中可以证明特殊四边形的许多特性。

    Below is a summary of quadrilateral definitions and properties .
    ::以下是四边定义和属性摘要。


    Parallelogram
    ::平行图

    A quadrilateral with two pairs of parallel sides.
    ::一个四边形,两对平行面

    Parallelogram - Theorem A B C D B D D A B B C D A C C D A A B C A B C D B D A C D B A C Parallelogram - Theorem
    • Parallelogram Theorem #1 : Each diagonal of a divides the parallelogram into two congruent triangles.
      ::平行图定理# # 1: 每个对角将平行图分为两个相似的三角形。
    • Parallelogram Theorem #1 Converse: If each of the diagonals of a quadrilateral divide the quadrilateral into two congruent triangles, then the quadrilateral is a parallelogram.
      ::平行图定理# 1 反面 : 如果四边形的对角将四边形分为两个相似的三角形, 那么四边形就是一个平行图。
    • Parallelogram Theorem #2 : The opposite sides of a parallelogram are congruent.
      ::平行图定理 # 2 : 平行图的对面是相似的 。
    • Parallelogram Theorem #2 Converse: If the opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
      ::平行图定理#2 反面:如果四边形的对面是相似的,那么四边形是平行图。
    • Parallelogram Theorem #3 : The opposite angles of a parallelogram are congruent.
      ::3号平行图定理:平行图的相反角度是相同的。
    • Parallelogram Theorem #3 Converse: If the opposite angles of a quadrilateral are congruent, then the quadrilateral is a parallelogram.
      ::3 反面:如果四边形的相反角度是相似的,那么四边形是平行的。
    • Parallelogram Theorem #4 : The diagonals of a parallelogram bisect each other.
      ::平行图定理4: 平行图双形的对角。
    • Parallelogram Theorem #4 Converse: If the diagonals of a quadrilateral bisect each other, then the quadrilateral is a parallelogram.
      ::平行图定理 # 4 : 如果四边形的对角相对, 则四边形是平行图。

    Rectangle
    ::矩形

    A quadrilateral with four right angles.
    ::一个四边形,有四个右角度

    • Rectangle Theorem #1 : A rectangle is a parallelogram.
      ::矩形定理 # 1 : 矩形是平行图。
    • Rectangle Theorem #2 : A rectangle has congruent diagonals.
      ::矩形定理 #2: 矩形具有相似的对数法。
    • Rectangle Theorem #2 Converse: If a parallelogram has congruent diagonals, then it is a rectangle.
      ::矩形定理 # 2 反面 : 如果平行图具有相似的对角线, 那么它是一个矩形 。

    Rhombus
    ::滚轮

    A quadrilateral with four congruent sides.
    ::一个四边形 四个对齐面

    • Rhombus Theorem #1 : A rhombus is a parallelogram.
      ::Rhombus Theorem # 1 : 暴风车是一个平行图。
    • Rhombus Theorem #2 : The diagonals of a rhombus are perpendicular .
      ::Rhombus Theorem # 2: 伦布鲁斯的对角是垂直的。
    • Rhombus Theorem #3 : The diagonals of a rhombus bisect its angles.
      ::Rhombus Theorem # 3: 龙卷风的对角线,

    Square : A quadrilateral with four right angles and four congruent sides.
    ::方形:四边形,有四个右角和四个相近的两面。


    Kite
    ::Kite 键

    A quadrilateral with two pairs of adjacent, congruent sides.
    ::一个四边形,有两对相邻、相近的两面。

    • Kite Theorem #1 : One diagonal of a bisects the other diagonal.
      ::Kite Theorem #1:一个对角线,一个对角线,一个对角线,一个对角线,一个对角线,另一个对角线。
    • Kite Theorem #2 : The diagonals of a kite are perpendicular.
      ::Kite Theorem # 2 : 风筝的对角是垂直的 。
    • Kite Theorem #3 : One diagonal of a kite bisects its angles.
      ::Kite Theorem # 3: 风筝两角的一个对角,
    • Kite Theorem #4 : A kite has one pair of opposite angles congruent.
      ::Kite Theorem # 4: 风筝有一对相反角度的对齐。

    Investigate Kites and Rhombi
    ::调查Kites和Rhombi


    Finding the Perimeter
    ::寻找周边

    Find the perimeter of the quadrilateral below. 
    ::在下面找到四边形的周界

    The markings indicate that the quadrilateral has four congruent sides . This means that the quadrilateral is a rhombus. One property of a rhombus is that its diagonals are perpendicular . This means that the four inner triangles are actually right triangles . You can use to find the hypotenuse of one of these triangles, which will be the length of each side of the rhombus.
    ::标记显示,四边形有四个相近面。 这意味着四边形是圆柱形。 圆柱形的一个属性是其对角形是垂直的。 这意味着四个内三角形实际上是右三角形。 您可以找到这些三角形中的一个, 也就是圆柱形两侧的长度。

    3 2 + 4 2 = c 2 9 + 16 = c 2 5 = c
    ::32+42=c29+16=c25=c

    Since each side of the rhombus is 5 units long, the perimeter of the rhombus is P = 5 4 = 20 units.
    ::由于暴风车的两侧各有5个长,因此暴风车的周边是P=54=20个。


    Making and Proving Conjectures
    ::预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测 预测

    The midpoints of each of the sides of parallelogram A B C D have been connected, as shown below. Make a conjecture about the inner quadrilateral that has been formed. Then, prove the conjecture.
    ::平行图形 ABCD 的两侧的中点已经连接, 如下文所示。 对已经形成的内四边进行猜测。 然后, 证明这一猜测 。

    The inner quadrilateral looks to be a parallelogram. To prove it is a parallelogram, prove that its opposite sides are congruent. (Parallelogram Theorem #2 Converse states that if the opposite sides of a quadrilateral are congruent, then the quadrilateral is a parallelogram.)
    ::内四边形看起来是一个平行图。 要证明它是一个平行图, 请证明它的对面是相似的 。 ( Parallelect Theorem # 2 相形之下说, 如果四边形的对面是相似的, 那么四边形是平行图 。 )

    Given: Parallelogram A B C D with midpoints E , F , H , G .
    ::中点为E、F、H、G的平行ABCD

    Prove: E F H G is a parallelogram
    ::证明:EFHG是一个平行图

    Here is paragraph proof:
    ::此处为防排段落 :

    Because A B C D is a parallelogram , its opposite sides and angles are congruent. This means that C A , B D , A B ¯ D C ¯ , and A D ¯ B C ¯ . E , F , G and H are midpoints , so they divide each segment into two congruent segments. Because opposite sides of A B C D are congruent, it must be true that A E ¯ C H ¯ , A F ¯ G C ¯ , F B ¯ G D ¯ , and E D ¯ B H ¯ . Therefore, A E F C H G and B F H D G E by S A S . This means that corresponding parts of these triangles are congruent and therefore E F ¯ G H ¯ and F H ¯ E G ¯ . Because opposite sides of E F H G are congruent, E F H G is a parallelogram .
    ::因为ABCD是一个平行图, 其对面和角度是相近的。 这意味着 C A, B D, AB DC, 和 AD B B 。 E, F, G 和 H 是中点 。 因此, 它们将每个段分为两个相近的段。 由于ABCD 的对面是相近的, AE CH , 和 ED B 。 因此, AEFCHG 和 BH DG 由 SAS 组成。 这意味着这些三角的对应部分是相近的, 因此 EFG 和 FH G。 因为 EFHG 的对面是相近的, EFHG 是一个平行的图表 。


    Naming Shapes
    ::命名形状

    Name the shape below based on its markings as precisely as you can. Don't assume that the shape is drawn to scale.
    ::尽可能精确地根据形状的标记命名下面的形状。 不要假设形状是被画成比例的 。

    Quadrilateral with four congruent sides, identified as a rhombus based on the markings.

    All that is marked is that the shape has four congruent sides. This is the definition of a rhombus so it must be a rhombus. Note that even though it might look like a square , if you don't know for sure that the shape has right angles, you cannot be sure it is a square.
    ::标记的只是形状有四个相容的面。 这是一个 rhombus 的定义, 所以它必须是一个 rhombus 。 请注意, 即使它看起来像一个正方形, 如果您不确定形状有正确的角度, 您也不能确定它是一个正方形 。


    Examples
    ::实例实例实例实例

    Example 1
    ::例1

    Consider parallelogram A B C D below. F is the midpoint of A B ¯ and G is the midpoint of D C ¯ . Make at least one conjecture about how F G ¯ is related to A D ¯ .
    ::F是AB的中点,G是DC的中点。至少猜测一下FG与AD的关系。

    Parallelogram with points A, B, C, D, F, G; showing midpoints and segment FG.

    Two possible conjectures are:
    ::两种可能的假设是:

    1. F G ¯     A D ¯
      ::FG 自动
    2. F G ¯ A D ¯
      ::FG 发声

    Example 2
    ::例2

    In parallelogram A B C D , F is the midpoint of A B ¯ and G is the midpoint of D C ¯ . Prove that F G ¯ A D ¯ .
    ::F是AB的中点,G是DC的中点。

    A parallelogram with midpoints labeled, illustrating a geometric congruence proof.

    Draw in A G ¯ . Prove that the two triangles formed are congruent, and therefore corresponding parts (the desired sides) are congruent.
    ::绘制在 AG 中。 证明形成的两个三角形是相近的, 因此相应的部分( 期望的侧面) 是相匹配的 。

    Statements Reasons
    Parallelogram A B C D with midpoints F and G Given
    A B ¯ D C ¯ , A B ¯     D C ¯ Opposite sides of a parallelogram are congruent and parallel
    A F ¯ F B ¯ , D G ¯ G C ¯ Definition of midpoint
    A F ¯ D G ¯ Half of congruent segments are congruent
    A G ¯ A G ¯ Reflexive Property
    G F A A D G If lines are parallel then are congruent
    G F A A D G S A S
    F G ¯ D A ¯

    Example 3
    ::例3

    Name the shape below based on its markings as precisely as you can. Don't assume that the shape is drawn to scale.
    ::尽可能精确地根据形状的标记命名下面的形状。 不要假设形状是被画成比例的 。

    A quadrilateral showing perpendicular diagonals, illustrating properties of shapes in geometry.

    It is marked that the diagonals are perpendicular. Shapes with perpendicular diagonals are rhombuses, , and squares. Without additional information, you cannot say whether this is a rhombus, a kite, or a square. Therefore, all you can say for certain is that this shape is a quadrilateral.
    ::标记二角形是垂直的。 具有垂直对角形的形状是正方形, 和正方形。 没有其他信息, 您不能说它是圆柱形、 风筝还是正方形。 因此, 您只能说这个形状是四边形 。

    Example 4
    ::例4

    Use the markings on the shape to name the shape. Then, solve for x .
    ::使用形状上的标记来命名形状。 然后, 解析 x 。

    A square with one right angle marked, illustrating quadrilateral properties for geometry.

    The shape has four congruent sides which makes it a rhombus. It also has one right angle . Opposite sides of a rhombus are parallel, so are supplementary. This means that x = 90 . Because opposite angles of a rhombus are congruent, all four angles must be right angles. Therefore, a more precise name for this shape is a square.
    ::形状有四个相容的边, 使它成为圆柱形。 它也有一个右角。 圆柱形的对面面是平行的, 也是补充的。 这意味着 x=90。 因为圆柱形的对角是相近的, 所有四个角度必须是正角。 因此, 这个形状的更精确的名称是正方形 。


    CK-12 PLIX Interactive
    ::CK-12 PLIX 交互式互动

      Summary
    • A parallelogram is a quadrilateral with two pairs of parallel sides.
      • Each diagonal of a parallelogram divides the parallelogram into two congruent triangles.
        ::每个平行方形的对角将平行方形分为两个相似的三角形。
      • The opposite sides of a parallelogram are congruent.
        ::平行图的对面是相同的。
      • The opposite angles of a parallelogram are congruent.
        ::平行图的相反角度是相同的。
      • The diagonals of a parallelogram bisect each other.
        ::平行相形对齐的对角线

      ::平行图是一个四边形, 有两对平行边。 平行图的对角将平行图分为两个相似的三角形。 平行图的对角是相似的。 平行图的对角是相似的。 平行图的对角是相似的。 平行图的对角是相似的。 平行图的对角是双形的对角。
    • A rectangle is a quadrilateral with four right angles.
      • A rectangle is a parallelogram.
        ::矩形是一个平行图。
      • A rectangle has congruent diagonals.
        ::矩形具有相容的对角学。

      ::矩形是四个右角度的四边形。矩形是平行图。矩形具有相同的对角形。
    • A rhombus is a quadrilateral with four congruent sides.
      • A rhombus is a parallelogram.
        ::暴风车是平行图。
      • The diagonals of a rhombus are perpendicular.
        ::暴龙的对角是垂直的。
      • The diagonals of a rhombus bisect its angles.
        ::龙卷风的对角线 将它的角度分成两部分

      ::圆柱是一个四边形的四边形。 圆柱形是一个平行图。 圆柱形的对角是垂直的。 圆柱形的对角是两面的对角。 圆柱形的对角是其角度的对角。
    • A kite is a quadrilateral with two pairs of adjacent, congruent sides.
      • One diagonal of a kite bisects the other diagonal.
        ::一只风筝的对角线 另一只对角线的对角线
      • The diagonals of a kite are perpendicular.
        ::风筝的对角是垂直的。
      • One diagonal of a kite bisects its angles.
        ::风筝两面的对角 将它的角度分解成两面
      • A kite has one pair of opposite angles congruent.
        ::风筝有一对相反角度的对立面

      ::风筝是一种四边形, 配有两对相邻、 相近的两面。 一对风筝的对角分解了另一对对角。 一对风筝的对角是垂直的。 一对风筝的对角是垂直的。 一对风筝的对角是其角度的对角。 一对风筝的对角是相近的对角。

    Review
    ::审查审查审查审查

    1. True or false: A rectangle is always a square.
    ::1. 真实或虚假:矩形始终是方形。

    2. True or false: A rhombus is always a parallelogram.
    ::2. 真实或虚假:暴风雪总是平行图。

    3. True or false: A square is always a rectangle.
    ::3. 真实或虚假:方形总是矩形。

    4. True or false: A kite is always a quadrilateral.
    ::4. 真实的或虚假的:风筝始终是四边形。

    Name each shape below based on its markings as precisely as you can. Don't assume that the shape is drawn to scale.
    ::根据每个形状的标记, 请尽可能精确地在下面命名每个形状。 不要假设形状是被拉到比例的 。

    5.

    A rhombus with intersecting diagonals forming right angles and marked angles in green.

    6.

    A quadrilateral showing intersecting diagonals marked with equal length symbols.

    7.

    Quadrilateral with diagonals drawn, featuring inscribed arcs at corners.

    8.

    A rhombus is shown with diagonals intersecting and marking equal lengths at each diagonal.

    For each quadrilateral below, name the shape. Then, solve for x .
    ::对于以下的每个四边形, 命名形状。 然后, 解答 x 。

    9.

    A quadrilateral with labeled sides 4 and x, featuring intersecting diagonals.

    10.

    A quadrilateral with angles labeled as x° and 30°, showing sides marked for congruence.

    11.

    A diagram featuring a quadrilateral with marked sides and angles labeled 4 and x.

    12.

    A parallelogram with angle measurements 130° and x°, illustrating properties of quadrilaterals.

    13. Earlier you proved that if points F  and G  are midpoints on the edges of parallelogram A B C D then A G F G A D .  Given this, prove that F G ¯     A D ¯ .
    ::13. 早些时候,你证明如果F点和G点是ABCD平面边缘的中点,那么“AGF+GAD”。 有鉴于此,你证明FG'AD'。

    A Rectangle With Midpoints Connected, Forming A Quadrilateral Inside.

    14. The midpoints of each of the sides of rectangle A B C D have been connected, as shown below. Make a conjecture about the inner quadrilateral that has been formed.
    ::14. 如下文所示,矩形ABCD两侧的中点相互连接,对所形成的内四边作出推测。

    Midpoints of a rectangle connected to form a quadrilateral, labeled points shown.

    15. Prove your conjecture from #14.
    ::15. 从14号证明你的猜想。

    16. Given: A H ¯ G C ; D G ¯ H B ¯ ; D G ¯ H B ¯
    ::16. 鉴于:AH ZGC;DG HB;DG HB

    Prove: A B C D  is a parallelogram
    ::证明: ABCD 是平行图

    A parallelogram with points labeled G and H, indicating sides are congruent.

    17. Given: A B C D  is a parallelogram; A G ¯ C H ¯
    ::17. 参考:ABCD是一个平行图;AG CH

    Prove: D G B H  is a parallelogram
    ::证明: DGBH 是一个平行图示

    A diagram of a parallelogram with labeled points and parallel lines.

    Review (Answers)
    ::审查(答复)

    Click to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。