Section outline

  • lesson content

    Jacob’s mother has put him in charge of planning a surprise party for his little brother, Kyle. Jacob plans to serve cake and ice-cream cups. He does not know how much each ice-cream cup will cost. He has invited 24 of Kyle’s friends and 6 other family members. Jacob needs to figure out how much the ice-cream cups will cost so he can get the money from his mother. How can he formulate a single  variable expression  to determine the total costs of the ice-cream cups?
    ::Jacob的母亲让他负责为他弟弟Kyle策划一个惊喜派对。Jacob打算提供蛋糕和冰淇淋杯。他不知道每个冰淇淋杯要花多少钱。他邀请了24位Kyle的朋友和6位其他家庭成员。Jacob需要弄清楚冰淇淋杯要花多少钱才能从他母亲那里拿到钱。他如何用一个变量表达来决定冰淇淋杯的总成本?

    In this concept, you will learn to simplify single- variable  expressions that include sums and differences.
    ::在此概念中,您将学会简化包含数字和差异的单一变量表达式。

    Simplifying Expressions Involving Sums and Differences
    ::涉及总和和差异的简化表达式

    In mathematics, simplifying does not mean solving something.  Simplifying  means making something smaller.
    ::在数学中,简化并不意味着解决什么问题。简化意味着制造更小的东西。

    Sometimes, you will be given an  expression  using variables where there is more than one  term . A term is a number with a variable. Here is an example of a term.
    ::有时,您会使用多个术语的变量获得一个表达式。一个术语是带有变量的数字。这里是术语示例。

    4 x
    ::4 x 4 x

    You have not been given a value for  x , so this term cannot be simplified. If you had been given a value for  x , then you could  evaluate  the expression.
    ::您没有给 x 给定值, 因此此术语无法简化。 如果您给定了 x 的值, 那么您可以对表达式进行评价 。

    When there is more than one  like term  in an expression, you can simplify the expression. A  like term  means that the  terms  in question use the same variable.
    ::当表达式中有多个类似术语时,您可以简化表达式。类似术语意味着相关术语使用相同的变量。

    4 x _  and  5 x _  are  like terms . They both have  x _  as the variable. They are alike.
    ::4 x _ 和 5 x _ 类似术语。它们都有 x _ 作为变量。它们相似 。

    6 x _  and  2 y _  are not like terms. One has an  x _  and one has a  y _ . They are not alike.
    ::6 x _ 和 2 y y 和 6 x _ 和 6 x 和 6 y 和 6 的术语不同。 一个人有一个 x _ , 一个人有一个 y 。 它们不相似 。

    Expressions with like terms can be simplified.
    ::类似术语的表达式可以简化。

    You can also simplify the sums and differences of expressions with like terms. Let’s start with sums.
    ::您也可以用类似术语简化表达方式的大小和差别。让我们从数字开始。

    Here is an expression.
    ::这是一种表达方式。

    5 x + 7 x

    First, look to see if these terms are alike. Both of them have an  x , so they are alike.
    ::首先,看看这两个词是否相似。两个词都有一个x,所以它们都一样。

    Next, simplify them by adding the numerical part of the terms together. The  x  stays the same.
    ::接下来,通过将术语的数值部分加在一起来简化它们。 x 保持不变。

    5 x + 7 x 5 + 7 = 12 So  , 5 x + 7 x = 12 x

    You can think of the  x  as a label that lets you know that the terms are alike.
    ::您可以将 x 视为一个标签, 让你知道这些术语是相似的 。

    Here is another expression.
    ::下面是另一种表达方式。

    7 x + 2 x + 5 y

    First, look to see if the terms are alike.
    ::首先,看看这些条件是否相似。

    Two of the terms have  x ‘s and one has a  y . The two with the  x ‘s are alike. The one with the  y  is not alike. You can simplify the ones with the  x ‘s by adding the numerical part of the terms.
    ::其中两个词有x ' s, 一个词有一个 y 。 带有 x ' s 的这两个词是相同的。 有 y 的则不一样。 您可以通过添加术语的数值部分来简化有 x ' s 的词。

    Next, simplify the like terms.
    ::接下来,简化类似术语。

    7 x + 2 x = 9 x

    Then, because  5 y  can’t be simplified, it stays the same.
    ::因为5人无法简化,

    The answer is  9 x + 5 y .
    ::答案是 9 x + 5 y 。

    You can also simplify expressions with differences and like terms.
    ::您也可以简化带有差异和类似术语的表达式。

    Here is an expression.
    ::这是一种表达方式。

    9 y 2 y

    First, you can see that these terms are alike because they both have  y ’s. Simplify the expression by subtracting the numerical part of the terms.
    ::首先,你可以看到,这些术语是相似的,因为它们都有y。通过减去术语的数值部分来简化表达式。

    9 2 = 7 So ,   9 y 2 y = 7 y

    The answer is  7 y .
    ::答案是 7 y 。

    Sometimes you can combine like terms that have both sums and differences in the same problem.
    ::有时,你可以将类似术语结合起来,在同一个问题中,这些术语既有数字也有差异。

    Here is another expression. 
    ::下面是另一种表达方式。

    8 x 3 x + 2 y + 4 y

    First, group and simplify the like terms.
    ::首先,组和简化类似术语。

    8 x 3 x = 5 x 2 y + 4 y = 6 y

    Next, put it all together.

    The answer is  5 x + 6 y .
    ::接下去,把全部放在一起。 答案是 5 x + 6 y 。

    Remember that you can only combine terms that are alike.
    ::记住,你只能将相似的术语结合起来。

    Examples
    ::实例

    Example 1
    ::例1

    Earlier, you were given a problem about Kyle’s surprise birthday party.
    ::更早之前, 凯尔的惊喜生日派对给您带来了一个问题。

    Jacob needs to know the cost of 24 ice-cream cups for Kyle’s friends and 6 ice-cream cups for the invited family members.
    ::Jacob需要知道24个冰淇淋杯给Kyle的朋友和6个冰淇淋杯给受邀家庭成员的费用。

    First, identify the numbers.
    ::首先,确定数字。

    24 and 6
    ::24和6

    Next, make  x  represent the cost of each ice-cream cup.
    ::接下来,做x代表每个冰淇淋杯的成本。

    x
    ::x x

    Then, identify the key word “and” which means  addition
    ::然后,确定关键词“和”,这意味着添加。

    +

    Now, write an expression representing the situation. 
    ::现在,写一个表达式 代表情况。

    24 x + 6 x

    Finally, simplify the expression by adding the numerical value of like terms.
    ::最后,通过添加类似术语的数值来简化表达式。

    24 + 6 = 25 So , 24 x + 6 x = 30 x

    The answer is  30 x .
    ::答案是30x。

    Jacob will need to multiply the price of an ice-cream cup by 30 to determine the total cost.
    ::Jacob需要把冰淇淋杯的价格乘以30 才能确定总成本

    Example 2
    ::例2

    Simplify the following expression. 
    ::简化以下表达式 。

    5 x + 2 x 1 x + 6 y 4 y

    First, combine the like terms.
    ::首先,将类似条件结合起来。

    5 x + 2 x 1 x 6 y 4 y
     

    Next, simplify the like terms.
    ::接下来,简化类似术语。

    5 x + 2 x 1 x = 6 x 6 y 4 y = 2 y

    Then, put those simplified terms together.
    ::然后,把这些简化的术语放在一起。

    6 x + 2 y

    The answer is  6 x + 2 y .
    ::答案是 6 x + 2 y 。

    Example 3
    ::例3

    Simplify the following expression.
    ::简化以下表达式 。

    7 z + 2 z + 4 z

    First, look to see if these terms are alike. They all have an  z , so they are alike. 
    ::首先,看看这些条件是否相似。它们都有一个z,所以它们都一样。

    Next, simplify them by adding the numerical part of the terms together. The  z  stays the same.
    ::接下来,通过将术语的数值部分加在一起来简化它们。 z 保持不变 。

    7 + 2 + 4 = 13

    Then, replace the  z .
    ::然后,替换z。

    So,  7 z + 2 z + 4 z = 13 z
    ::7z + 2z + 4z = 13z

    The answer is  13 z .
    ::答案是13兹

    Example 4
    ::例4

    Simplify the following expression.
    ::简化以下表达式 。

    25 y 13 y

    First, look to see if these terms are alike. Both have a  y , so they are alike.
    ::首先,看看这些条件是否相同。两个条件都有一个y,所以它们都一样。

    Next, simplify them by adding the numerical part of the terms together. The  y  stays the same.
    ::接下来,通过将术语的数值部分加在一起来简化它们。y 保持不变。

    25 13 = 12

    Then, replace the  y
    ::然后,替换Y。

    12 y

    The answer is  12 y .
    ::答案是12岁

    Example 5
    ::例5

    Simplify the following expression.
    ::简化以下表达式 。

    7 x + 2 x + 4 a

    First, combine the like terms.
    ::首先,将类似条件结合起来。

    7 x + 2 x 4 a

    Next, simplify the like terms by adding the numerical coefficients.
    ::接下来,简化类似术语,添加数字系数。

    7 + 2 = 9

    Then, replace the  x .
    ::然后,替换 x 。

    9 x 4 a

    The answer is  9 x + 4 a .
    ::答案是 9 x + 4 a 。

    Review
    ::回顾

    Simplify the following expressions by combining like terms. If the expression is already in simplest form, write “already in simplest form.”
    ::将类似术语合并来简化以下表达式。 如果表达式已经以最简单的形式出现, 请写“ 已经以最简单的形式出现 ” 。

    1. 4 x + 6 x
      ::4 x + 6 x 4 x + 6 x
    2. 8 y + 5 y
      ::8 y + 5 y + 5 y
    3. 9 z + 2 z
      ::9 z + 2 z 9 z + 2 z
    4. 8 x + 2 y
      ::8 x + 2 yy 8 x + 2 y
    5. 7 y + 3 y + 2 x
      ::7y + 3y + 2x
    6. 9 x x
      ::9 x - xx 9 x - x
    7. 12 y 3 y  
      ::12 y - 3 y 12 y - 3 y
    8. 22 x 2 y
      ::22x-2yy 22x-2y
    9. 78 x 10 x
      ::78x-10x
    10. 22 y 4 y
      ::22 y - 4 y
    11. 16 x 5 x + 1 x 12 y + 2 y
      ::16 x - 5 x + 1 x - 12 y + 2 y
    12. 26 x 15 x + 12 x 14 y + 2 y
      ::26 x - 15 x + 12 x - 14 y + 2 y
    13. 36 x 5 x + 11 x 1 x + 2 y
      ::36 x - 5 x + 11 x - 1 x + 2 y
    14. 26 x 25 x + 12 x 13 y + 2 y
      ::26 x - 25 x + 12 x - 13 y + 2 y
    15. 29 x 25 x + 18 x 12 x + 12 y + 3 y  
      ::29 x - 25 x + 18 x - 12 x + 12 + 12 y + 3 y

    Review (Answers) 
    ::回顾(答复)

    Click   to see the answer key or go to the Table of Contents and click on the Answer Key under the 'Other Versions' option.
    ::单击可查看答题键, 或转到目录中, 单击“ 其他版本” 选项下的答题键 。

    Resources
    ::资源