Q 学习算法会收敛到等于真实 Q 函数的 Q 值吗?

是的,在特定条件下,Q 学习算法会收敛。这些条件包括:

  1. 假设系统是一个确定性马尔可夫决策过程(MDP)
  2. 假设即时奖励值是有界的;也就是说,存在一个正数常数 c,使得对于所有状态 s 和动作 a,都有
  3. 假设智能体选择动作的方式,使其能够无限次地访问每一个可能的状态-动作对



Will the Q Learning Algorithm converge toward a Q equal to the true Q function?
Yes, under certain conditions.
1. Assume the system is a deterministic MDP.
2. Assume the immediate reward values are bounded; that is, there exists some positive constant c such
that for all states s and actions a, | r(s, a)| < c
3. Assume the agent selects actions in such a fashion that it visits every possible state-action pair
infinitely often

最后修改: 2025年06月20日 星期五 10:45