Python 机器学习
引言
在处理机器学习项目时,我们通常会忽略两个最重要的部分,即数学和数据。这是因为,我们知道机器学习是一种数据驱动的方法,我们的机器学习模型产生的结果好坏取决于我们提供给它的数据。
在上一章中,我们讨论了如何将 CSV 数据上传到我们的机器学习项目中,但在上传之前理解数据会更好。我们可以通过两种方式理解数据:通过统计学和通过可视化。
在本章中,我们将借助以下 Python 代码来通过统计学理解机器学习数据。
查看原始数据
第一个方法是查看原始数据。查看原始数据很重要,因为在查看原始数据后获得的洞察力将提高我们更好地预处理和处理机器学习项目数据的机会。
以下是一个 Python 脚本,通过在 Pima Indians 糖尿病数据集上使用 Pandas DataFrame 的 head()
函数来查看前 50 行,以更好地理解它:
示例
from pandas import read_csv
path = r"C:\pima-indians-diabetes.csv"
headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(path, names=headernames)
print(data.head(50))
输出
preg plas pres skin test mass pedi age class
0 6 148 72 35 0 33.6 0.627 50 1
1 1 85 66 29 0 26.6 0.351 31 0
2 8 183 64 0 0 23.3 0.672 32 1
3 1 89 66 23 94 28.1 0.167 21 0
4 0 137 40 35 168 43.1 2.288 33 1
5 5 116 74 0 0 25.6 0.201 30 0
6 3 78 50 32 88 31.0 0.248 26 1
7 10 115 0 0 0 35.3 0.134 29 0
8 2 197 70 45 543 30.5 0.158 53 1
9 8 125 96 0 0 0.0 0.232 54 1
10 4 110 92 0 0 37.6 0.191 30 0
11 10 168 74 0 0 38.0 0.537 34 1
12 10 139 80 0 0 27.1 1.441 57 0
13 1 189 60 23 846 30.1 0.398 59 1
14 5 166 72 19 175 25.8 0.587 51 1
15 7 100 0 0 0 30.0 0.484 32 1
16 0 118 84 47 230 45.8 0.551 31 1
17 7 107 74 0 0 29.6 0.254 31 1
18 1 103 30 38 83 43.3 0.183 33 0
19 1 115 70 30 96 34.6 0.529 32 1
20 3 126 88 41 235 39.3 0.704 27 0
21 8 99 84 0 0 35.4 0.388 50 0
22 7 196 90 0 0 39.8 0.451 41 1
23 9 119 80 35 0 29.0 0.263 29 1
24 11 143 94 33 146 36.6 0.254 51 1
25 10 125 70 26 115 31.1 0.205 41 1
26 7 147 76 0 0 39.4 0.257 43 1
27 1 97 66 15 140 23.2 0.487 22 0
28 13 145 82 19 110 22.2 0.245 57 0
29 5 117 92 0 0 34.1 0.337 38 0
30 5 109 75 26 0 36.0 0.546 60 0
31 3 158 76 36 245 31.6 0.851 28 1
32 3 88 58 11 54 24.8 0.267 22 0
33 6 92 92 0 0 19.9 0.188 28 0
34 10 122 78 31 0 27.6 0.512 45 0
35 4 103 60 33 192 24.0 0.966 33 0
36 11 138 76 0 0 33.2 0.420 35 0
37 9 102 76 37 0 32.9 0.665 46 1
38 2 90 68 42 0 38.2 0.503 27 1
39 4 111 72 47 207 37.1 1.390 56 1
40 3 180 64 25 70 34.0 0.271 26 0
41 7 133 84 0 0 40.2 0.696 37 0
42 7 106 92 18 0 22.7 0.235 48 0
43 9 171 110 24 240 45.4 0.721 54 1
44 7 159 64 0 0 27.4 0.294 40 0
45 0 180 66 39 0 42.0 1.893 25 1
46 1 146 56 0 0 29.7 0.564 29 0
47 2 71 70 27 0 28.0 0.586 22 0
48 7 103 66 32 0 39.1 0.344 31 1
49 7 105 0 0 0 0.0 0.305 24 0
从上面的输出中,我们可以观察到第一列给出的是行号,这对于引用特定观测值非常有用。
检查数据维度
了解我们的机器学习项目有多少行和多少列的数据总是一个好习惯。原因如下:
- 假设我们有太多的行和列,那么运行算法和训练模型将花费很长时间。
- 假设我们有太少的行和列,那么我们将没有足够的数据来充分训练模型。
以下是一个通过在 Pandas DataFrame 上打印 shape
属性实现的 Python 脚本。我们将在 iris
数据集上实现它,以获取其中的总行数和列数。
示例
from pandas import read_csv
path = r"C:\iris.csv"
data = read_csv(path)
print(data.shape)
输出
(150, 4)
从输出中我们可以很容易地观察到,我们将使用的 iris 数据集有 150 行和 4 列。
获取每个属性的数据类型
了解每个属性的数据类型是另一个好习惯。原因在于,根据需要,有时我们可能需要将一种数据类型转换为另一种数据类型。例如,我们可能需要将字符串转换为浮点数或整数以表示类别或序数值。我们可以通过查看原始数据来了解属性的数据类型,但另一种方法是使用 Pandas DataFrame 的 dtypes
属性。借助 dtypes
属性,我们可以对每个属性的数据类型进行分类。可以通过以下 Python 脚本来理解:
示例
from pandas import read_csv
path = r"C:\iris.csv"
data = read_csv(path)
print(data.dtypes)
输出
sepal_length float64
sepal_width float64
petal_length float64
petal_width float64
dtype: object
从上面的输出中,我们可以轻松获得每个属性的数据类型。
数据的统计摘要
我们已经讨论了获取数据形状(即行数和列数)的 Python 方法,但在很多时候我们需要查看该数据形状的摘要。这可以通过 Pandas DataFrame 的 describe()
函数来完成,该函数进一步提供了每个数据属性的以下 8 个统计属性:
- 计数(Count)
- 均值(Mean)
- 标准差(Standard Deviation)
- 最小值(Minimum Value)
- 最大值(Maximum value)
- 25% 分位数(25%)
- 中位数(即 50% 分位数)(Median i.e. 50%)
- 75% 分位数(75%)
示例
from pandas import read_csv
from pandas import set_option
path = r"C:\pima-indians-diabetes.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(path, names=names)
set_option('display.width', 100)
set_option('precision', 2)
print(data.shape)
print(data.describe())
输出
(768, 9)
preg plas pres skin test mass pedi age class
count 768.00 768.00 768.00 768.00 768.00 768.00 768.00 768.00 768.00
mean 3.85 120.89 69.11 20.54 79.80 31.99 0.47 33.24 0.35
std 3.37 31.97 19.36 15.95 115.24 7.88 0.33 11.76 0.48
min 0.00 0.00 0.00 0.00 0.00 0.00 0.08 21.00 0.00
25% 1.00 99.00 62.00 0.00 0.00 27.30 0.24 24.00 0.00
50% 3.00 117.00 72.00 23.00 30.50 32.00 0.37 29.00 0.00
75% 6.00 140.25 80.00 32.00 127.25 36.60 0.63 41.00 1.00
max 17.00 199.00 122.00 99.00 846.00 67.10 2.42 81.00 1.00
从上面的输出中,我们可以观察到 Pima Indians 糖尿病数据集的数据统计摘要以及数据的形状。
审查类分布
类分布统计在分类问题中很有用,我们需要了解类值的平衡性。了解类值分布很重要,因为如果我们的类分布高度不平衡(即一个类别的观测值比另一个类别多得多),那么在机器学习项目的数据准备阶段可能需要特殊处理。我们可以借助 Pandas DataFrame 轻松获取 Python 中的类分布。
示例
from pandas import read_csv
path = r"C:\pima-indians-diabetes.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(path, names=names)
count_class = data.groupby('class').size()
print(count_class)
输出:
class
0 500
1 268
dtype: int64
从上面的输出中可以清楚地看到,类别 0 的观测值数量几乎是类别 1 的两倍。
审查属性间的相关性
两个变量之间的关系称为相关性。在统计学中,计算相关性最常用的方法是 Pearson 相关系数。它可以有三个值,如下所示:
- 系数值为 1: 表示变量之间完全正相关。
- 系数值为 -1: 表示变量之间完全负相关。
- 系数值为 0: 表示变量之间完全没有相关性。
在将数据集用于机器学习项目之前,审查数据集中属性的成对相关性总是好的,因为如果我们有高度相关的属性,一些机器学习算法(如线性回归和逻辑回归)将表现不佳。在 Python 中,我们可以借助 Pandas DataFrame 的 corr()
函数轻松计算数据集属性的相关矩阵。
示例
from pandas import read_csv
from pandas import set_option
path = r"C:\pima-indians-diabetes.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(path, names=names)
set_option('display.width', 100)
set_option('precision', 2)
correlations = data.corr(method='pearson')
print(correlations)
输出
preg plas pres skin test mass pedi age class
preg 1.00 0.13 0.14 -0.08 -0.07 0.02 -0.03 0.54 0.22
plas 0.13 1.00 0.15 0.06 0.33 0.22 0.14 0.26 0.47
pres 0.14 0.15 1.00 0.21 0.09 0.28 0.04 0.24 0.07
skin -0.08 0.06 0.21 1.00 0.44 0.39 0.18 -0.11 0.07
test -0.07 0.33 0.09 0.44 1.00 0.20 0.19 -0.04 0.13
mass 0.02 0.22 0.28 0.39 0.20 1.00 0.14 0.04 0.29
pedi -0.03 0.14 0.04 0.18 0.19 0.14 1.00 0.03 0.17
age 0.54 0.26 0.24 -0.11 -0.04 0.04 0.03 1.00 0.24
class 0.22 0.47 0.07 0.07 0.13 0.29 0.17 0.24 1.00
上面输出中的矩阵给出了数据集中所有属性对之间的相关性。
审查属性分布的偏度
偏度可以定义为假设为高斯分布但向一个方向或另一个方向(向左或向右)出现扭曲或偏移的分布。审查属性的偏度是重要的任务之一,原因如下:
- 数据中存在偏度需要在数据准备阶段进行校正,以便我们可以从模型中获得更高的准确性。
- 大多数机器学习算法假设数据具有高斯分布,即正态或钟形曲线数据。
在 Python 中,我们可以通过在 Pandas DataFrame 上使用 skew()
函数轻松计算每个属性的偏度。
示例
from pandas import read_csv
path = r"C:\pima-indians-diabetes.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
data = read_csv(path, names=names)
print(data.skew())
输出
preg 0.90
plas 0.17
pres -1.84
skin 0.11
test 2.27
mass -0.43
pedi 1.92
age 1.13
class 0.64
dtype: float64
从上面的输出中,可以观察到正偏度或负偏度。如果值接近零,则表示偏度较小。
5.Machine Learning with Python – Understanding
Machine Learning with Python
Data with
Statistics
Introduction
While working with machine learning projects, usually we ignore two most important parts
called mathematics and data. It is because, we know that ML is a data driven approach
and our ML model will produce only as good or as bad results as the data we provided to
it.
In the previous chapter, we discussed how we can upload CSV data into our ML project,
but it would be good to understand the data before uploading it. We can understand the
data by two ways, with statistics and with visualization.
In this chapter, with the help of following Python recipes, we are going to understand ML
data with statistics.
Looking at Raw Data
The very first recipe is for looking at your raw data. It is important to look at raw data
because the insight we will get after looking at raw data will boost our chances to better
pre-processing as well as handling of data for ML projects.
Following is a Python script implemented by using head() function of Pandas DataFrame
on Pima Indians diabetes dataset to look at the first 50 rows to get better understanding
of it:
Example
from pandas import read_csv
path = r"C:\pima-indians-diabetes.csv"
headernames = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',
'class']
data = read_csv(path, names=headernames)
print(data.head(50))
Output
preg
plas
pres
skin
test
mass
pedi
age
class
0
6
148
72
35
0
33.6
0.627
50
1
1
1
85
66
29
0
26.6
0.351
31
0
2
8
183
64
0
0
23.3
0.672
32
1
3
1
89
66
23
94
28.1
0.167
21
0
4
0
137
40
35
168
43.1
2.288
33
1
27
Machine Learning5
5
116
74
0
0
25.6
0.201
30
0
6
3
78
50
32
88
31.0
0.248
26
1
7
10
115
0
0
0
35.3
0.134
29
0
8
2
197
70
45
543
30.5
0.158
53
1
9
8
125
96
0
0
0.0
0.232
54
1
10
4
110
92
0
0
37.6
0.191
30
0
11
10
168
74
0
0
38.0
0.537
34
1
12
10
139
80
0
0
27.1
1.441
57
0
13
1
189
60
23
846
30.1
0.398
59
1
14
5
166
72
19
175
25.8
0.587
51
1
15
7
100
0
0
0
30.0
0.484
32
1
16
0
118
84
47
230
45.8
0.551
31
1
17
7
107
74
0
0
29.6
0.254
31
1
18
1
103
30
38
83
43.3
0.183
33
0
19
1
115
70
30
96
34.6
0.529
32
1
20
3
126
88
41
235
39.3
0.704
27
0
21
8
99
84
0
0
35.4
0.388
50
0
22
7
196
90
0
0
39.8
0.451
41
1
23
9
119
80
35
0
29.0
0.263
29
1
24
11
143
94
33
146
36.6
0.254
51
1
25
10
125
70
26
115
31.1
0.205
41
1
26
7
147
76
0
0
39.4
0.257
43
1
27
1
97
66
15
140
23.2
0.487
22
0
28
13
145
82
19
110
22.2
0.245
57
0
29
5
117
92
0
0
34.1
0.337
38
0
30
5
109
75
26
0
36.0
0.546
60
0
31
3
158
76
36
245
31.6
0.851
28
1
32
3
88
58
11
54
24.8
0.267
22
0
33
6
92
92
0
0
19.9
0.188
28
0
34
10
122
78
31
0
27.6
0.512
45
0
35
4
103
60
33
192
24.0
0.966
33
0
36
11
138
76
0
0
33.2
0.420
35
0
37
9
102
76
37
0
32.9
0.665
46
1
38
2
90
68
42
0
38.2
0.503
27
1
39
4
111
72
47
207
37.1
1.390
56
1
40
3
180
64
25
70
34.0
0.271
26
0
41
7
133
84
0
0
40.2
0.696
37
0
withPython
28
Machine Learning with Python
42
7
106
92
18
0
22.7
0.235
48
0
43
9
171
110
24
240
45.4
0.721
54
1
44
7
159
64
0
0
27.4
0.294
40
0
45
0
180
66
39
0
42.0
1.893
25
1
46
1
146
56
0
0
29.7
0.564
29
0
47
2
71
70
27
0
28.0
0.586
22
0
48
7
103
66
32
0
39.1
0.344
31
1
49
7
105
0
0
0
0.0
0.305
24
0
We can observe from the above output that first column gives the row number which can
be very useful for referencing a specific observation.
Checking Dimensions of Data
It is always a good practice to know how much data, in terms of rows and columns, we
are having for our ML project. The reasons behind are:
Suppose if we have too many rows and columns then it would take long time to
run the algorithm and train the model.
Suppose if we have too less rows and columns then it we would not have enough
data to well train the model.
Following is a Python script implemented by printing the shape property on Pandas Data
Frame. We are going to implement it on iris data set for getting the total number of rows
and columns in it.
Example
from pandas import read_csv
path = r"C:\iris.csv"
data = read_csv(path)
print(data.shape)
Output
(150, 4)
We can easily observe from the output that iris data set, we are going to use, is having
150 rows and 4 columns.
Getting Each Attribute’s Data Type
It is another good practice to know data type of each attribute. The reason behind is that,
as per to the requirement, sometimes we may need to convert one data type to another.
For example, we may need to convert string into floating point or int for representing
categorial or ordinal values. We can have an idea about the attribute’s data type by looking
at the raw data, but another way is to use dtypes property of Pandas DataFrame. With
29
Machine Learning with Python
the help of dtypes property we can categorize each attributes data type. It can be
understood with the help of following Python script:
Example
from pandas import read_csv
path = r"C:\iris.csv"
data = read_csv(path)
print(data.dtypes)
Output
sepal_length
float64
sepal_width
float64
petal_length
float64
petal_width
float64
dtype: object
From the above output, we can easily get the datatypes of each attribute.
Statistical Summary of Data
We have discussed Python recipe to get the shape i.e. number of rows and columns, of
data but many times we need to review the summaries out of that shape of data. It can
be done with the help of describe() function of Pandas DataFrame that further provide
the following 8 statistical properties of each & every data attribute:
Count
Mean
Standard Deviation
Minimum Value
Maximum value
25%
Median i.e. 50%
75%
Example
from pandas import read_csv
from pandas import set_option
path = r"C:\pima-indians-diabetes.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',
'class']
data = read_csv(path, names=names)
30
Machine Learning with Python
set_option('display.width', 100)
set_option('precision', 2)
print(data.shape)
print(data.describe())
Output
(768, 9)
preg
plas
pres
skin
test
mass
pedi
age
class
count
768.00
768.00
768.00
768.00
768.00
768.00
768.00
768.00
768.00
mean
3.85
120.89
69.11
20.54
79.80
31.99
0.47
33.24
0.35
std
3.37
31.97
19.36
15.95
115.24
7.88
0.33
11.76
0.48
min
0.00
0.00
0.00
0.00
0.00
0.00
0.08
21.00
0.00
25%
1.00
99.00
62.00
0.00
0.00
27.30
0.24
24.00
0.00
50%
3.00
117.00
72.00
23.00
30.50
32.00
0.37
29.00
0.00
75%
6.00
140.25
80.00
32.00
127.25
36.60
0.63
41.00
1.00
max
17.00
199.00
122.00
99.00
846.00
67.10
2.42
81.00
1.00
From the above output, we can observe the statistical summary of the data of Pima Indian
Diabetes dataset along with shape of data.
Reviewing Class Distribution
Class distribution statistics is useful in classification problems where we need to know the
balance of class values. It is important to know class value distribution because if we have
highly imbalanced class distribution i.e. one class is having lots more observations than
other class, then it may need special handling at data preparation stage of our ML project.
We can easily get class distribution in Python with the help of Pandas DataFrame.
Example
from pandas import read_csv
path = r"C:\pima-indians-diabetes.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',
'class']
data = read_csv(path, names=names)
count_class = data.groupby('class').size()
print(count_class)
Output:
Class
0
500
31
Machine Learning with Python
1
268
dtype: int64
From the above output, it can be clearly seen that the number of observations with class
0 are almost double than number of observations with class 1.
Reviewing Correlation between Attributes
The relationship between two variables is called correlation. In statistics, the most common
method for calculating correlation is Pearson’s Correlation Coefficient. It can have three
values as follows:
Coefficient value = 1: It represents full positive correlation between variables.
Coefficient value = -1: It represents full negative correlation between variables.
Coefficient value = 0: It represents no correlation at all between variables.
It is always good for us to review the pairwise correlations of the attributes in our dataset
before using it into ML project because some machine learning algorithms such as linear
regression and logistic regression will perform poorly if we have highly correlated
attributes. In Python, we can easily calculate a correlation matrix of dataset attributes with
the help of corr() function on Pandas DataFrame.
Example
from pandas import read_csv
from pandas import set_option
path = r"C:\pima-indians-diabetes.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',
'class']
data = read_csv(path, names=names)
set_option('display.width', 100)
set_option('precision', 2)
correlations = data.corr(method='pearson')
print(correlations)
Output
preg
plas
pres
skin
test
mass
pedi
age
class
preg
1.00
0.13
0.14 -0.08 -0.07
0.02 -0.03
0.54
0.22
plas
0.13
1.00
0.15
0.06
0.33
0.22
0.14
0.26
0.47
pres
0.14
0.15
1.00
0.21
0.09
0.28
0.04
0.24
0.07
skin
-0.08
0.06
0.21
1.00
0.44
0.39
0.18 -0.11
0.07
test
-0.07
0.33
0.09
0.44
1.00
0.20
0.19 -0.04
0.13
mass
0.02
0.22
0.28
0.39
0.20
1.00
0.14
0.04
0.29
32
Machine Learning with Python
pedi
-0.03
0.14
0.04
0.18
0.19
0.14
1.00
0.03
0.17
age
0.54
0.26
0.24 -0.11 -0.04
0.04
0.03
1.00
0.24
class
0.22
0.47
0.07
0.07
0.13
0.29
0.17
0.24
1.00
The matrix in above output gives the correlation between all the pairs of the attribute in
dataset.
Reviewing Skew of Attribute Distribution
Skewness may be defined as the distribution that is assumed to be Gaussian but appears
distorted or shifted in one direction or another, or either to the left or right. Reviewing the
skewness of attributes is one of the important tasks due to following reasons:
Presence of skewness in data requires the correction at data preparation stage so
that we can get more accuracy from our model.
Most of the ML algorithms assumes that data has a Gaussian distribution i.e. either
normal of bell curved data.
In Python, we can easily calculate the skew of each attribute by using skew() function on
Pandas DataFrame.
Example
from pandas import read_csv
path = r"C:\pima-indians-diabetes.csv"
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age',
'class']
data = read_csv(path, names=names)
print(data.skew())
Output
preg
0.90
plas
0.17
pres
-1.84
skin
0.11
test
2.27
mass
-0.43
pedi
1.92
age
1.13
class
0.64
dtype: float64
From the above output, positive or negative skew can be observed. If the value is closer
to zero, then it shows less skew.