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Preface

T'HIS TEXTBOOK REPRESENTS MY ATTEMPT to develop a one-semester first course in computer
graphics, which would typically be taken by a computer science student in the third or fourth
year of college. (How long it will continue to be appropriate is an open question, given the
always-rapid changes in the field of computer graphics.) I have tried to make the book suitable
for self-learning as well.

A reader of this book should have substantial experience with at least one programming
language, including some knowledge of object-oriented programming and data structures.
Everyone taking my own computer graphics course had at least two semesters of programming,
and most had additional experience beyond that. My students studied the Java programming
language, but the book should also be accessible to people with background in other languages.
Examples in the book use JavaScript, Java, and C. It is possible to do all the programming in
JavaScript, but some knowledge of C is also important for certain sections of the book. The
essential features of the three programming languages are covered in an appendix. (If you need
to learn programming from the beginning, try my free introductory Java textbook, which is
available at http://math.hws.edu/javanotes.)

I used Version 1.0 of this book for a course in Fall 2015. Version 1.1 corrected some errors and
typos and added some material. It was used in the Fall 2017 version of my course. Version 1.3,
which I used in Fall 2021, added some material on WebGL 2.0 and GLSL ES 3.00, updated most
of the JavaScript code to use ES6, and updated Chapter 5 to use Release 129 of the three.js
library.

Although T have retired from teaching, I decided to work on Version 1.4 in Summer 2023.
I added a new chapter on WebGPU and moved to Release 154 for three.js. Because WebGPU
uses JavaScript promises, I added a new section to Appendix A to cover promises and async
functions. Because three.js will soon remove the non-modular version of the library, I added
a short section on JavaScript modules at the start of Chapter 5, and I modified the three.js
examples to use modules. Except for the move to modular three.js, the material in Chapter 5
has not changed. Many typos and small errors have been fixed throughout the book. (Thanks
to a reader, Danny Hurlburt, for fixing many of those.)

The home web site for this book is https://math.hws.edu/graphicsbook. The page at that
address contains links for downloading a copy of the web site and for downloading PDF versions
of the book.

This is a free textbook. You are welcome to redistribute it, as long as you do not charge
for it. You can post an unmodified copy on your own web site. You can make and distribute
modified versions (including translations), as long as your version makes the original source
clear and is distributed free of charge and under the same license. (Officially, the book is
licensed under a “Creative Commons Non-Commercial Attribution Share-Alike License.”)

* kX

Many of the sample programs for this book are actually Web pages meant to be viewed

viii


http://math.hws.edu/javanotes
https://math.hws.edu/graphicsbook

PREFACE ix

in a Web browser. The Web version of this book includes interactive demo programs that are
integrated into the Web pages that make up the book.

Most sample programs and all demos use HTML canvas graphics (in Chapter 2), WebGPU
(in Chapter 9), or WebGL (in other chapters). Canvas graphics and WebGL should work well
in almost any modern browser. WebGPU is a new technology and is more problematic. In July
2023, it is available by default in only a few Web browsers (Chrome and Edge on Windows and
MacOS), and even on those it might not work on all hardware. In some other browsers, it can
be enabled as an experimental feature. However, WebGPU is very likely to be the future of 3D
graphics on the Web, so it is important to start learning it.

The sample programs and demos can all be found in the download of the web site version
of this book, which is available from the main page of its web site. Look for them in the folders
named source and demo. Note that most Web browsers are not willing to use certain resources
from the local file system, such as 3D models and modular JavaScript scripts. Those browsers
will have errors when they try to run some of the samples locally instead of over the Web. This
issue affects only some of the examples. For those examples, you can use an on-line version
of the book. Another solution is to run a web server on your own computer and view the
textbook through that web server. It might be possible to configure your Web browser to use
resources from local files, although it might not be a good idea to browse the Web with that
configuration.

x* kX

I taught computer graphics every couple of years or so over a period of almost 35 years.
As the field developed, I had to make major changes almost every time I taught the course,
but for much of that time, I was able to structure the course primarily around OpenGL 1.1,
a graphics API that was in common use for an extended period. OpenGL 1.1 implements
fundamental graphics concepts—vertices, normal vectors, coordinate transformations, lighting,
and material—in a way that is transparent and fairly easy to use. Newer graphics APIs are
more flexible and more powerful, but they have a much steeper learning curve. I believe that
any introductory computer science course benefits from starting with a simpler framework or
library, and OpenGL 1.1 serves that purpose well.

OpenGL is still widely supported, but, for various reasons, the parts of it that were easy
to use have been officially dropped from the latest versions (although they are in practice
supported on most desktop computers). Furthermore, OpenGL is largely being superceded by
newer graphics APIs such as Direct3D, Metal, and Vulkan. WebGL is based on OpenGL, and
it will continue to be widely supported for some time. WebGPU is inspired by the newer APIs,
and may at some point replace WebGL for new applications.

My approach in this book is to use a subset of OpenGL 1.1 as the framework for introducing
the fundamental concepts of three-dimensional graphics. I then go on to cover WebGL, the
version of OpenGL that runs in a web browser. In the last chapter, I introduce WebGPU. While
OpenGL makes up the major foundation for the course, the real emphasis is on fundamental
concepts such as geometric modeling and transformations; hierarchical modeling and scene
graphs; color, lighting, and textures; and animation. I continue to believe that OpenGL 1.1
makes a good introduction to this material.

Chapter 1 is a short overview of computer graphics. It introduces many concepts that will
be covered in much more detail in the rest of the book.

Chapter 2 covers two-dimensional graphics in Java, JavaScript, and SVG, with an emphasis
on ideas such as transformations and scene graphs that carry over to three dimensions.

Chapter 8 and Chapter 4 cover OpengGL 1.1. While OpenGL 1.1 is fairly primitive by



PREFACE X

today’s standard, it includes many basic features that are still fundamental to three-dimensional
computer graphics. Only part of the API is covered.

Chapter 5 covers three.js, a higher-level object-oriented 3D graphics API for Web graphics
using JavaScript. This chapter shows how fundamental concepts can be used in a higher-level
interface.

Chapter 6 and Chapter 7 cover WebGL, a modern version of OpenGL for graphics on the
Web. WebGL is very low-level, and it requires the programmer to write “shader programs” to
implement many features that are built into OpenGL 1.1. Looking at the implementation is an
opportunity to understand more deeply how computers actually make 3D images.

Chapter 8 looks very briefly at some advanced techniques that are not possible in OpenGL.

And Chapter 9 is an introduction to WebGPU, the newest API for graphics on the Web.

Appendixz A contains brief introductions to three programming languages that are used in the
book: Java, C, and JavaScript. Appendiz B is meant to get readers started with the most basic
uses of Blender, a sophisticated 3D modeling program. I have found that introducing students
to Blender is a good way to help them develop their three-dimensional intuition. Appendiz C
contains even briefer introductions to two 2D graphics programs, Gimp and Inkscape.
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Older versions are still available:

e Version 1.0: https://math.hws.edu/eck/cs424/graphicsbook-1.0/
e Version 1.1: https://math.hws.edu/eck/cs424/graphicsbook-1.1/
e Version 1.2: https://math.hws.edu/eck/cs424 /graphicsbook-1.2/
e Version 1.3: https://math.hws.edu/eck/cs424/graphicsbook-1.3/

Downloads for all versions are available in

e https://math.hws.edu/eck/cs424 /downloads/
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The PDF and Web site versions of this book are built from a set of common sources. The

sources can be obtained by cloning the following git repository on GitHub:
https://github.com/davidjeck/graphicsbook

The sources were not originally meant for publication and are provided with no guarantee and

very limited support for people who might be interested in working on them.

The sources include images, HTML files, Java and C source code, XML files, XSLT
transformations, bash shell scripts, and LaTeX macros. Using the sources requires additional
software (LaTeX, Xalan-J, Java, and the bash shell). For more information, see the
README file.
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Chapter 1

Introduction

THE TERM “COMPUTER GRAPHICS” REFERS to anything involved in the creation or
manipulation of images on a computer, including animated images. It is a very broad field,
and one in which changes and advances seem to come at a dizzying pace. It can be difficult
for a beginner to know where to start. However, there is a core of fundamental ideas that are
part of the foundation of most applications of computer graphics. This book attempts to cover
those foundational ideas, or at least as many of them as will fit into a one-semester college-level
course. While it is not possible to cover the entire field in a first course—or even a large part
of it—this should be a good place to start.

This short chapter provides an overview and introduction to the material that will be covered
in the rest of the book, without going into a lot of detail.

1.1 Painting and Drawing

THE MAIN FOCUS OF THIS book is three-dimensional (3D) graphics, where most of the work
goes into producing a 3D model of a scene. But ultimately, in almost all cases, the end result of
a computer graphics project is a two-dimensional image. And of course, the direct production
and manipulation of 2D images is an important topic in its own right. Furthermore, a lot of
ideas carry over from two dimensions to three. So, it makes sense to start with graphics in 2D.

An image that is presented on the computer screen is made up of pixels. The screen consists
of a rectangular grid of pixels, arranged in rows and columns. The pixels are small enough that
they are not easy to see individually. In fact, for many very high-resolution displays, they
become essentially invisible. At a given time, each pixel can show only one color. Most screens
these days use 24-bit color, where a color can be specified by three 8-bit numbers, giving the
levels of red, green, and blue in the color. Any color that can be shown on the screen is made
up of some combination of these three “primary” colors. Other formats are possible, such as
grayscale, where each pixel is some shade of gray and the pixel color is given by one number
that specifies the level of gray on a black-to-white scale. Typically, 256 shades of gray are used.
Early computer screens used indexed color, where only a small set of colors, usually 16 or
256, could be displayed. For an indexed color display, there is a numbered list of possible colors,
and the color of a pixel is specified by an integer giving the position of the color in the list.

In any case, the color values for all the pixels on the screen are stored in a large block of
memory known as a frame buffer. Changing the image on the screen requires changing color
values that are stored in the frame buffer. The screen is redrawn many times per second, so
that almost immediately after the color values are changed in the frame buffer, the colors of
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the pixels on the screen will be changed to match, and the displayed image will change.

A computer screen used in this way is the basic model of raster graphics. The term
“raster” technically refers to the mechanism used on older vacuum tube computer monitors:
An electron beam would move along the rows of pixels, making them glow. The beam was
moved across the screen by powerful magnets that would deflect the path of the electrons. The
stronger the beam, the brighter the glow of the pixel, so the brightness of the pixels could be
controlled by modulating the intensity of the electron beam. The color values stored in the
frame buffer were used to determine the intensity of the electron beam. (For a color screen,
each pixel had a red dot, a green dot, and a blue dot, which were separately illuminated by the
beam.)

A modern flat-screen computer monitor is not a raster in the same sense. There is no
moving electron beam. The mechanism that controls the colors of the pixels is different for
different types of screen. But the screen is still made up of pixels, and the color values for all
the pixels are still stored in a frame buffer. The idea of an image consisting of a grid of pixels,
with numerical color values for each pixel, defines raster graphics.

X kX

Although images on the computer screen are represented using pixels, specifying individual
pixel colors is not always the best way to create an image. Another way is to specify the basic
geometric objects that it contains, shapes such as lines, circles, triangles, and rectangles. This
is the idea that defines vector graphics: Represent an image as a list of the geometric shapes
that it contains. To make things more interesting, the shapes can have attributes, such as
the thickness of a line or the color that fills a rectangle. Of course, not every image can be
composed from simple geometric shapes. This approach certainly wouldn’t work for a picture
of a beautiful sunset (or for most any other photographic image). However, it works well for
many types of images, such as architectural blueprints and scientific illustrations.

In fact, early in the history of computing, vector graphics was even used directly on computer
screens. When the first graphical computer displays were developed, raster displays were too
slow and expensive to be practical. Fortunately, it was possible to use vacuum tube technology
in another way: The electron beam could be made to directly draw a line on the screen, simply
by sweeping the beam along that line. A vector graphics display would store a display list
of lines that should appear on the screen. Since a point on the screen would glow only very
briefly after being illuminated by the electron beam, the graphics display would go through the
display list over and over, continually redrawing all the lines on the list. To change the image,
it would only be necessary to change the contents of the display list. Of course, if the display
list became too long, the image would start to flicker because a line would have a chance to
visibly fade before its next turn to be redrawn.

But here is the point: For an image that can be specified as a reasonably small number of
geometric shapes, the amount of information needed to represent the image is much smaller
using a vector representation than using a raster representation. Consider an image made up
of one thousand line segments. For a vector representation of the image, you only need to store
the coordinates of two thousand points, the endpoints of the lines. This would take up only a
few kilobytes of memory. To store the image in a frame buffer for a raster display would require
much more memory. Similarly, a vector display could draw the lines on the screen more quickly
than a raster display could copy the same image from the frame buffer to the screen. (As soon
as raster displays became fast and inexpensive, however, they quickly displaced vector displays
because of their ability to display all types of images reasonably well.)

N
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The divide between raster graphics and vector graphics persists in several areas of computer
graphics. For example, it can be seen in a division between two categories of programs that
can be used to create images: painting programs and drawing programs. In a painting
program, the image is represented as a grid of pixels, and the user creates an image by assigning
colors to pixels. This might be done by using a “drawing tool” that acts like a painter’s brush,
or even by tools that draw geometric shapes such as lines or rectangles. But the point in a
painting program is to color the individual pixels, and it is only the pixel colors that are saved.
To make this clearer, suppose that you use a painting program to draw a house, then draw a
tree in front of the house. If you then erase the tree, you’ll only reveal a blank background, not
a house. In fact, the image never really contained a “house” at all—only individually colored
pixels that the viewer might perceive as making up a picture of a house.

In a drawing program, the user creates an image by adding geometric shapes, and the image
is represented as a list of those shapes. If you place a house shape (or collection of shapes making
up a house) in the image, and you then place a tree shape on top of the house, the house is
still there, since it is stored in the list of shapes that the image contains. If you delete the tree,
the house will still be in the image, just as it was before you added the tree. Furthermore, you
should be able to select one of the shapes in the image and move it or change its size, so drawing
programs offer a rich set of editing operations that are not possible in painting programs. (The
reverse, however, is also true.)

A practical program for image creation and editing might combine elements of painting and
drawing, although one or the other is usually dominant. For example, a drawing program might
allow the user to include a raster-type image, treating it as one shape. A painting program
might let the user create “layers,” which are separate images that can be layered one on top of
another to create the final image. The layers can then be manipulated much like the shapes in
a drawing program (so that you could keep both your house and your tree in separate layers,
even if in the image of the house is in back of the tree).

Two well-known graphics programs are Adobe Photoshop and Adobe Illustrator. Photoshop
is in the category of painting programs, while [llustrator is more of a drawing program. In
the world of free software, the GNU image-processing program, Gimp, is a good alternative to
Photoshop, while Inkscape is a reasonably capable free drawing program. Short introductions
to Gimp and Inkscape can be found in Appendix C.
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The divide between raster and vector graphics also appears in the field of graphics file
formats. There are many ways to represent an image as data stored in a file. If the original
image is to be recovered from the bits stored in the file, the representation must follow some
exact, known specification. Such a specification is called a graphics file format. Some popular
graphics file formats include GIF, PNG, JPEG, WebP, and SVG. Most images used on the
Web are GIF, PNG, or JPEG, but most browsers also have support for SVG images and for
the newer WebP format.

GIF, PNG, JPEG, and WebP are basically raster graphics formats; an image is specified
by storing a color value for each pixel. GIF is an older file format, which has largely been
superseded by PNG, but you can still find GIF images on the web. (The GIF format supports
animated images, so GIFs are often used for simple animations on Web pages.) GIF uses an
indexed color model with a maximum of 256 colors. PNG can use either indexed or full 24-bit
color, while JPEG is meant for full color images.

The amount of data necessary to represent a raster image can be quite large. However,
the data usually contains a lot of redundancy, and the data can be “compressed” to reduce its
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size. GIF and PNG use lossless data compression, which means that the original image
can be recovered perfectly from the compressed data. JPEG uses a lossy data compression
algorithm, which means that the image that is recovered from a JPEG file is not exactly the
same as the original image; some information has been lost. This might not sound like a good
idea, but in fact the difference is often not very noticeable, and using lossy compression usually
permits a greater reduction in the size of the compressed data. JPEG generally works well for
photographic images, but not as well for images that have sharp edges between different colors.
It is especially bad for line drawings and images that contain text; PNG is the preferred format
for such images. WebP can use both lossless and lossy compression.

SVG, on the other hand, is fundamentally a vector graphics format (although SVG images
can include raster images). SVG is actually an XML-based language for describing two-
dimensional vector graphics images. “SVG” stands for “Scalable Vector Graphics,” and the
term “scalable” indicates one of the advantages of vector graphics: There is no loss of quality
when the size of the image is increased. A line between two points can be represented at any
scale, and it is still the same perfect geometric line. If you try to greatly increase the size of
a raster image, on the other hand, you will find that you don’t have enough color values for
all the pixels in the new image; each pixel from the original image will be expanded to cover a
rectangle of pixels in the scaled image, and you will get multi-pixel blocks of uniform color. The
scalable nature of SVG images make them a good choice for web browsers and for graphical
elements on your computer’s desktop. And indeed, some desktop environments are now using
SVG images for their desktop icons.
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A digital image, no matter what its format, is specified using a coordinate system. A
coordinate system sets up a correspondence between numbers and geometric points. In two
dimensions, each point is assigned a pair of numbers, which are called the coordinates of the
point. The two coordinates of a point are often called its z-coordinate and y-coordinate,
although the names “x” and “y” are arbitrary.

A raster image is a two-dimensional grid of pixels arranged into rows and columns. As
such, it has a natural coordinate system in which each pixel corresponds to a pair of integers
giving the number of the row and the number of the column that contain the pixel. (Even in
this simple case, there is some disagreement as to whether the rows should be numbered from
top-to-bottom or from bottom-to-top.)

For a vector image, it is natural to use real-number coordinates. The coordinate system for
an image is arbitrary to some degree; that is, the same image can be specified using different
coordinate systems. I do not want to say a lot about coordinate systems here, but they will be a
major focus of a large part of the book, and they are even more important in three-dimensional
graphics than in two dimensions.

1.2 Elements of 3D Graphics

WEHEN WE TURN TO 3D graphics, we find that the most common approaches have more in
common with vector graphics than with raster graphics. That is, the content of an image is
specified as a list of geometric objects. The technique is referred to as geometric modeling.
The starting point is to construct an “artificial 3D world” as a collection of simple geometric
shapes, arranged in three-dimensional space. The objects can have attributes that, combined
with global properties of the world, determine the appearance of the objects. Often, the range
of basic shapes is very limited, perhaps including only points, line segments, and triangles. A
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more complex shape such as a polygon or sphere can be built or approximated as a collection
of more basic shapes, if it is not itself considered to be basic. To make a two-dimensional image
of the scene, the scene is projected from three dimensions down to two dimensions. Projection
is the equivalent of taking a photograph of the scene. Let’s look at how it all works in a little
more detail.

First, the geometry.... We start with an empty 3D space or “world.” Of course, this
space exists only conceptually, but it’s useful to think of it as real and to be able to visualize it
in your mind. The space needs a coordinate system that associates each point in the space with
three numbers, usually referred to as the z, y, and z coordinates of the point. This coordinate
system is referred to as “world coordinates.”

We want to build a scene inside the world, made up of geometric objects. For example,
we can specify a line segment in the scene by giving the coordinates of its two endpoints,
and we can specify a triangle by giving the coordinates of its three vertices. The smallest
building blocks that we have to work with, such as line segments and triangles, are called
geometric primitives. Different graphics systems make different sets of primitives available,
but in many cases only very basic shapes such as lines and triangles are considered primitive.
A complex scene can contain a large number of primitives, and it would be very difficult to
create the scene by giving explicit coordinates for each individual primitive. The solution,
as any programmer should immediately guess, is to chunk together primitives into reusable
components. For example, for a scene that contains several automobiles, we might create a
geometric model of a wheel. An automobile can be modeled as four wheels together with
models of other components. And we could then use several copies of the automobile model in
the scene. Note that once a geometric model has been designed, it can be used as a component
in more complex models. This is referred to as hierarchical modeling.

Suppose that we have constructed a model of a wheel out of geometric primitives. When
that wheel is moved into position in the model of an automobile, the coordinates of all of its
primitives will have to be adjusted. So what exactly have we gained by building the wheel? The
point is that all of the coordinates in the wheel are adjusted in the same way. That is, to place
the wheel in the automobile, we just have to specify a single adjustment that is applied to the
wheel as a whole. The type of “adjustment” that is used is called a geometric transform (or
geometric transformation). A geometric transform is used to adjust the size, orientation, and
position of a geometric object. When making a model of an automobile, we build one wheel.
We then apply four different transforms to the wheel model to add four copies of the wheel
to the automobile. Similarly, we can add several automobiles to a scene by applying different
transforms to the same automobile model.

The three most basic kinds of geometric transform are called scaling, rotation, and
translation. A scaling transform is used to set the size of an object, that is, to make it
bigger or smaller by some specified factor. A rotation transform is used to set an object’s
orientation, by rotating it by some angle about some specific axis. A translation transform
is used to set the position of an object, by displacing it by a given amount from its original
position. In this book, we will meet these transformations first in two dimensions, where they
are easier to understand. But it is in 3D graphics that they become truly essential.

X ok Xk
Next, appearance.... Geometric shapes by themselves are not very interesting. You
have to be able to set their appearance. This is done by assigning attributes to the geometric

objects. An obvious attribute is color, but getting a realistic appearance turns out to be a lot
more complicated than simply specifying a color for each primitive. In 3D graphics, instead of
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color, we usually talk about material. The term material here refers to the properties that
determine the intrinsic visual appearance of a surface. Essentially, this means how the surface
interacts with light that hits the surface. Material properties can include a basic color as well
as other properties such as shininess, roughness, and transparency.

One of the most useful kinds of material property is a texture. In most general terms,
a texture is a way of varying material properties from point-to-point on a surface. The most
common use of texture is to allow different colors for different points. This is often done by
using a 2D image as a texture. The image can be applied to a surface so that the image looks
like it is “painted” onto the surface. However, texture can also refer to changing values for
things like transparency or “bumpiness.” Textures allow us to add detail to a scene without
using a huge number of geometric primitives; instead, you can use a smaller number of textured
primitives.

A material is an intrinsic property of an object, but the actual appearance of the object
also depends on the environment in which the object is viewed. In the real world, you don’t
see anything unless there is some light in the environment. The same is true in 3D graphics:
you have to add simulated lighting to a scene. There can be several sources of light in a
scene. Each light source can have its own color, intensity, and direction or position. The light
from those sources will then interact with the material properties of the objects in the scene.
Support for lighting in a graphics system can range from fairly simple to very complex and
computationally intensive.

I S 3

Finally, the image.... In general, the ultimate goal of 3D graphics is to produce 2D
images of the 3D world. The transformation from 3D to 2D involves viewing and projection.
The world looks different when seen from different points of view. To set up a point of view,
we need to specify the position of the viewer and the direction that the viewer is looking. It
is also necessary to specify an “up” direction, a direction that will be pointing upwards in the
final image. This can be thought of as placing a “virtual camera” into the scene. Once the
view is set up, the world as seen from that point of view can be projected into 2D. Projection
is analogous to taking a picture with the camera.

The final step in 3D graphics is to assign colors to individual pixels in the 2D image. This
process is called rasterization, and the whole process of producing an image is referred to as
rendering the scene.

In many cases the ultimate goal is not to create a single image, but to create an animation,
consisting of a sequence of images that show the world at different times. In an animation, there
are small changes from one image in the sequence to the next. Almost any aspect of a scene
can change during an animation, including coordinates of primitives, transformations, material
properties, and the view. For example, an object can be made to grow over the course of an
animation by gradually increasing the scale factor in a scaling transformation that is applied to
the object. And changing the view during an animation can give the effect of moving or flying
through the scene. Of course, it can be difficult to compute the necessary changes. There are
many techniques to help with the computation. One of the most important is to use a “physics
engine,” which computes the motion and interaction of objects based on the laws of physics.
(However, you won'’t learn about physics engines in this book.)
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1.3 Hardware and Software

WE wiLL BE UsING OPENGL as the primary basis for 3D graphics programming. The original
version of OpenGL was released in 1992 by a company named Silicon Graphics, which was known
for its graphics workstations—powerful, expensive computers designed for intensive graphical
applications. (Today, you have more graphics computing power on your smart phone.) OpenGL
is supported by the graphics hardware in most modern computing devices, including desktop
computers, laptops, and many mobile devices. In the form of WebGL, it is the used for most
3D graphics on the Web. This section will give you a bit of background about the history of
OpenGL and about the graphics hardware that supports it.

In the first desktop computers, the contents of the screen were managed directly by the
CPU. For example, to draw a line segment on the screen, the CPU would run a loop to set the
color of each pixel that lies along the line. Needless to say, graphics could take up a lot of the
CPU’s time. And graphics performance was very slow, compared to what we expect today. So
what has changed? Computers are much faster in general, of course, but the big change is that
in modern computers, graphics processing is done by a specialized component called a GPU,
or Graphics Processing Unit. A GPU includes processors for doing graphics computations; in
fact, it can include a large number of such processors that work in parallel to greatly speed up
graphical operations. It also includes its own dedicated memory for storing things like images
and lists of coordinates. GPU processors have very fast access to data that is stored in GPU
memory—much faster than their access to data stored in the computer’s main memory.

To draw a line or perform some other graphical operation, the CPU simply has to send
commands, along with any necessary data, to the GPU, which is responsible for actually
carrying out those commands. The CPU offloads most of the graphical work to the GPU,
which is optimized to carry out that work very quickly. The set of commands that the GPU
understands make up the API of the GPU. OpenGL is an example of a graphics API, and
most GPUs support OpenGL in the sense that they can understand OpenGL commands, or at
least that OpenGL commands can efficiently be translated into commands that the GPU can
understand.

OpenGL is not the only graphics API. In fact, it is in the process of being replaced by more
modern alternatives, including Vulkan an open API from the same group that is responsible for
OpenGL. There are also proprietary APIs used by Apple and Microsoft: Metal and Direct3D.
As for the Web, a new API called WebGPU has been under development for some time and
is already implemented in some Web browsers. These newer APIs are complex and low-level.
They are designed more for speed and efficiency rather than ease-of-use. Metal, Direct3D, and
Vulkan are not covered in this textbook, but WebGPU is introduced in Chapter 9. For most of
the book, we will use OpenGL, because it provides an easier introduction to 3D graphics, and
WebGlL, because it is still the major API for 3D graphics in Web browsers.
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I have said that OpenGL is an API, but in fact it is a series of APIs that have been subject
to repeated extension and revision. In 2023, the current (and perhaps final) version is 4.6, which
was first released in 2017. It is very different from the 1.0 version from 1992. Furthermore,
there is a specialized version called OpenGL ES for “embedded systems” such as mobile phones
and tablets. And there is also WebGL, for use in Web browsers, which is basically a port of
OpenGL ES. It will be useful to know something about how and why OpenGL has changed.

First of all, you should know that OpenGL was designed as a “client/server” system. The
server, which is responsible for controlling the computer’s display and performing graphics
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computations, carries out commands issued by the client. Typically, the server is a GPU,
including its graphics processors and memory. The server executes OpenGL commands.
The client is the CPU in the same computer, along with the application program that it is
running. OpenGL commands come from the program that is running on the CPU. However,
it is actually possible to run OpenGL programs remotely over a network. That is, you can
execute an application program on a remote computer (the OpenGL client), while the graphics
computations and display are done on the computer that you are actually using (the OpenGL
server).

The key idea is that the client and the server are separate components, and there is a
communication channel between those components. OpenGL commands and the data that
they need are communicated from the client (the CPU) to the server (the GPU) over that
channel. The capacity of the channel can be a limiting factor in graphics performance. Think
of drawing an image onto the screen. If the GPU can draw the image in microseconds, but it
takes milliseconds to send the data for the image from the CPU to the GPU, then the great speed
of the GPU is irrelevant—most of the time that it takes to draw the image is communication
time.

For this reason, one of the driving factors in the evolution of OpenGL has been the desire
to limit the amount of communication that is needed between the CPU and the GPU. One
approach is to store information in the GPU’s memory. If some data is going to be used several
times, it can be transmitted to the GPU once and stored in memory there, where it will be
immediately accessible to the GPU. Another approach is to try to decrease the number of
OpenGL commands that must be transmitted to the GPU to draw a given image.

OpenGL draws primitives such as triangles. Specifying a primitive means specifying
coordinates and attributes for each of its vertices. In the original OpenGL 1.0, a separate
command was used to specify the coordinates of each vertex, and a command was needed each
time the value of an attribute changed. To draw a single triangle would require three or more
commands. Drawing a complex object made up of thousands of triangles would take many
thousands of commands. Even in OpenGL 1.1, it became possible to draw such an object with
a single command instead of thousands. All the data for the object would be loaded into arrays,
which could then be sent in a single step to the GPU. Unfortunately, if the object was going to
be drawn more than once, then the data would have to be retransmitted each time the object
was drawn. This was fixed in OpenGL 1.5 with Vertex Buffer Objects. A VBO is a block
of memory in the GPU that can store the coordinates or attribute values for a set of vertices.
This makes it possible to reuse the data without having to retransmit it from the CPU to the
GPU every time it is used.

Similarly, OpenGL 1.1 introduced texture objects to make it possible to store several
images on the GPU for use as textures. This means that texture images that are going to
be reused several times can be loaded once into the GPU, so that the GPU can easily switch
between images without having to reload them.

x kX

As new capabilities were added to OpenGL, the API grew in size. But the growth was still
outpaced by the invention of new, more sophisticated techniques for doing graphics. Some of
these new techniques were added to OpenGL, but the problem is that no matter how many
features you add, there will always be demands for new features—as well as complaints that all
the new features are making things too complicated! OpenGL was a giant machine, with new
pieces always being tacked onto it, but still not pleasing everyone. The real solution was to
make the machine programmable. With OpenGL 2.0, it became possible to write programs
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to be executed as part of the graphical computation in the GPU. The programs are run on the
GPU at GPU speed. A programmer who wants to use a new graphics technique can write a
program to implement the feature and just hand it to the GPU. The OpenGL API doesn’t have
to be changed. The only thing that the API has to support is the ability to send programs to
the GPU for execution.

The programs are called shaders (although the term doesn’t really describe what most of
them actually do). The first shaders to be introduced were vertex shaders and fragment
shaders. When a primitive is drawn, some work has to be done at each vertex of the primitive,
such as applying a geometric transform to the vertex coordinates or using the attributes and
global lighting environment to compute the color of that vertex. A vertex shader is a program
that can take over the job of doing such “per-vertex” computations. Similarly, some work has
to be done for each pixel inside the primitive. A fragment shader can take over the job of
performing such “per-pixel” computations. (Fragment shaders are also called pixel shaders.)

The idea of programmable graphics hardware was very successful—so successful that in
OpenGL 3.0, the usual per-vertex and per-fragment processing was deprecated (meaning that
its use was discouraged). And in OpenGL 3.1, it was removed from the OpenGL standard,
although it is still present as an optional extension. In practice, all the original features of
OpenGL are still supported in desktop versions of OpenGL and will probably continue to be
available in the future. On the embedded system side, however, with OpenGL ES 2.0 and later,
the use of shaders is mandatory, and a large part of the OpenGL 1.1 API has been completely
removed. WebGL, the version of OpenGL for use in web browsers, is based on OpenGL ES,
and it also requires shaders to get anything at all done. Nevertheless, we will begin our study of
OpenGL with version 1.1. Most of the concepts and many of the details from that version are
still relevant, and it offers an easier entry point for someone new to 3D graphics programming.

OpenGL shaders are written in GLSL (OpenGL Shading Language). Like OpenGL itself,
GLSL has gone through several versions. We will spend some time later in the course studying
GLSL ES, the version used with WebGL and OpenGL ES. GLSL uses a syntax similar to the
C programming language.

Xk ok

As a final remark on GPU hardware, I should note that the computations that are done for
different vertices are pretty much independent, and so can potentially be done in parallel. The
same is true of the computations for different fragments. In fact, GPUs can have hundreds or
thousands of processors that can operate in parallel. Admittedly, the individual processors are
much less powerful than a CPU, but then typical per-vertex and per-fragment computations
are not very complicated. The large number of processors, and the large amount of parallelism
that is possible in graphics computations, makes for impressive graphics performance even on
fairly inexpensive GPUs.



Chapter 2

Two-Dimensional Graphics

WiTH THIS CHAPTER, WE BEGIN our study of computer graphics by looking at the two-
dimensional case. Things are simpler and a lot easier to visualize in 2D than in 3D, but most
of the ideas that are covered in this chapter will also be very relevant to 3D.

The chapter begins with four sections that examine 2D graphics in a general way, without
tying it to a particular programming language or graphics API. The coding examples in these
sections are written in pseudocode that should make sense to anyone with enough programming
background to be reading this book. In the next three sections, we will take quick looks at 2D
graphics in three particular languages: Java with Graphics2D, JavaScript with HTML <canvas>
graphics, and SVG. We will see how these languages use many of the general ideas from earlier
in the chapter.

2.1 Pixels, Coordinates, and Colors

T'0O CREATE A TWO-DIMENSIONAL IMAGE, each point in the image is assigned a color. A
point in 2D can be identified by a pair of numerical coordinates. Colors can also be specified
numerically. However, the assignment of numbers to points or colors is somewhat arbitrary.
So we need to spend some time studying coordinate systems, which associate numbers to
points, and color models, which associate numbers to colors.

2.1.1 Pixel Coordinates

A digital image is made up of rows and columns of pixels. A pixel in such an image can be
specified by saying which column and which row contains it. In terms of coordinates, a pixel
can be identified by a pair of integers giving the column number and the row number. For
example, the pixel with coordinates (3,5) would lie in column number 3 and row number 5.
Conventionally, columns are numbered from left to right, starting with zero. Most graphics
systems, including the ones we will study in this chapter, number rows from top to bottom,
starting from zero. Some, including OpenGL, number the rows from bottom to top instead.

11
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12-by-8 pixel grids, shown with row and column numbers.
On the left, rows are numbered from top to bottom,
on the right, they are numberd bottom to top.
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Note in particular that the pixel that is identified by a pair of coordinates (z,y) depends on the
choice of coordinate system. You always need to know what coordinate system is in use before
you know what point you are talking about.

Row and column numbers identify a pixel, not a point. A pixel contains many points;
mathematically, it contains an infinite number of points. The goal of computer graphics is not
really to color pixels—it is to create and manipulate images. In some ideal sense, an image
should be defined by specifying a color for each point, not just for each pixel. Pixels are an
approximation. If we imagine that there is a true, ideal image that we want to display, then
any image that we display by coloring pixels is an approximation. This has many implications.

Suppose, for example, that we want to draw a line segment. A mathematical line has no
thickness and would be invisible. So we really want to draw a thick line segment, with some
specified width. Let’s say that the line should be one pixel wide. The problem is that, unless
the line is horizontal or vertical, we can’t actually draw the line by coloring pixels. A diagonal
geometric line will cover some pixels only partially. It is not possible to make part of a pixel
black and part of it white. When you try to draw a line with black and white pixels only,
the result is a jagged staircase effect. This effect is an example of something called “aliasing.”
Aliasing can also be seen in the outlines of characters drawn on the screen and in diagonal or
curved boundaries between any two regions of different color. (The term aliasing likely comes
from the fact that ideal images are naturally described in real-number coordinates. When you
try to represent the image using pixels, many real-number coordinates will map to the same
integer pixel coordinates; they can all be considered as different names or “aliases” for the same
pixel.)

Antialiasing is a term for techniques that are designed to mitigate the effects of aliasing.
The idea is that when a pixel is only partially covered by a shape, the color of the pixel should be
a mixture of the color of the shape and the color of the background. When drawing a black line
on a white background, the color of a partially covered pixel would be gray, with the shade of
gray depending on the fraction of the pixel that is covered by the line. (In practice, calculating
this area exactly for each pixel would be too difficult, so some approximate method is used.)
Here, for example, is a geometric line, shown on the left, along with two approximations of that
line made by coloring pixels. The lines are greatly magnified so that you can see the individual
pixels. The line on the right is drawn using antialiasing, while the one in the middle is not:



CHAPTER 2. TWO-DIMENSIONAL GRAPHICS 13

Note that antialiasing does not give a perfect image, but it can reduce the “jaggies” that are
caused by aliasing (at least when it is viewed on a normal scale).

There are other issues involved in mapping real-number coordinates to pixels. For example,
which point in a pixel should correspond to integer-valued coordinates such as (3,5)? The center
of the pixel? One of the corners of the pixel? In general, we think of the numbers as referring
to the top-left corner of the pixel. Another way of thinking about this is to say that integer
coordinates refer to the lines between pixels, rather than to the pixels themselves. But that
still doesn’t determine exactly which pixels are affected when a geometric shape is drawn. For
example, here are two lines drawn using HT'ML canvas graphics, shown greatly magnified. The
lines were specified to be colored black with a one-pixel line width:

The top line was drawn from the point (100,100) to the point (120,100). In canvas graphics,
integer coordinates correspond to the lines between pixels, but when a one-pixel line is drawn,
it extends one-half pixel on either side of the infinitely thin geometric line. So for the top line,
the line as it is drawn lies half in one row of pixels and half in another row. The graphics
system, which uses antialiasing, rendered the line by coloring both rows of pixels gray. The
bottom line was drawn from the point (100.5,100.5) to (120.5,100.5). In this case, the line lies
exactly along one line of pixels, which gets colored black. The gray pixels at the ends of the
bottom line have to do with the fact that the line only extends halfway into the pixels at its
endpoints. Other graphics systems might render the same lines differently.

The interactive demo c2/pizel-magnifier.html lets you experiment with pixels and
antialiasing. Interactive demos can be found on the web pages in the on-line version of this
book. If you have downloaded the web site, you can also find the demos in the folder named
demos. (Note that in any of the interactive demos that accompany this book, you can click the
question mark icon in the upper left for more information about how to use it.)

* kX

(Demo)


http://math.hws.edu/eck/cs424/graphicsbook-1.4/demos/c2/pixel-magnifier.html
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All this is complicated further by the fact that pixels aren’t what they used to be. Pixels
today are smaller! The resolution of a display device can be measured in terms of the number
of pixels per inch on the display, a quantity referred to as PPI (pixels per inch) or sometimes
DPI (dots per inch). Early screens tended to have resolutions of somewhere close to 72 PPI.
At that resolution, and at a typical viewing distance, individual pixels are clearly visible. For a
while, it seemed like most displays had about 100 pixels per inch, but high resolution displays
today can have 200, 300 or even 400 pixels per inch. At the highest resolutions, individual
pixels can no longer be distinguished.

The fact that pixels come in such a range of sizes is a problem if we use coordinate systems
based on pixels. An image created assuming that there are 100 pixels per inch will look tiny on a
400 PPI display. A one-pixel-wide line looks good at 100 PPI, but at 400 PPI, a one-pixel-wide
line is probably too thin.

In fact, in many graphics systems, “pixel” doesn’t really refer to the size of a physical
pixel. Instead, it is just another unit of measure, which is set by the system to be something
appropriate. (On a desktop system, a pixel is usually about one one-hundredth of an inch. On
a smart phone, which is usually viewed from a closer distance, the value might be closer to
1/160 inch. Furthermore, the meaning of a pixel as a unit of measure can change when, for
example, the user applies a magnification to a web page.)

Pixels cause problems that have not been completely solved. Fortunately, they are less of a
problem for vector graphics, which is mostly what we will use in this book. For vector graphics,
pixels only become an issue during rasterization, the step in which a vector image is converted
into pixels for display. The vector image itself can be created using any convenient coordinate
system. It represents an idealized, resolution-independent image. A rasterized image is an
approximation of that ideal image, but how to do the approximation can be left to the display
hardware.

2.1.2 Real-number Coordinate Systems

When doing 2D graphics, you are given a rectangle in which you want to draw some graphics
primitives. Primitives are specified using some coordinate system on the rectangle. It should
be possible to select a coordinate system that is appropriate for the application. For example, if
the rectangle represents a floor plan for a 15 foot by 12 foot room, then you might want to use
a coordinate system in which the unit of measure is one foot and the coordinates range from 0
to 15 in the horizontal direction and 0 to 12 in the vertical direction. The unit of measure in
this case is feet rather than pixels, and one foot can correspond to many pixels in the image.
The coordinates for a pixel will, in general, be real numbers rather than integers. In fact, it’s
better to forget about pixels and just think about points in the image. A point will have a pair
of coordinates given by real numbers.

To specify the coordinate system on a rectangle, you just have to specify the horizontal
coordinates for the left and right edges of the rectangle and the vertical coordinates for the top
and bottom. Let’s call these values left, right, top, and bottom. Often, they are thought of as
rmin, xmazx, ymin, and ymaz, but there is no reason to assume that, for example, top is less
than bottom. We might want a coordinate system in which the vertical coordinate increases
from bottom to top instead of from top to bottom. In that case, top will correspond to the
maximum y-value instead of the minimum value.

To allow programmers to specify the coordinate system that they would like to use, it would
be good to have a subroutine such as
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setCoordinateSystem(left,right,bottom,top)

The graphics system would then be responsible for automatically transforming the coordinates
from the specified coordinate system into pixel coordinates. Such a subroutine might not be
available, so it’s useful to see how the transformation is done by hand. Let’s consider the general
case. Given coordinates for a point in one coordinate system, we want to find the coordinates
for the same point in a second coordinate system. (Remember that a coordinate system is just
a way of assigning numbers to points. It’s the points that are real!) Suppose that the horizontal
and vertical limits are oldLeft, oldRight, oldTop, and oldBottom for the first coordinate system,
and are newlLeft, newRight, newTop, and newBottom for the second. Suppose that a point
has coordinates (0ldX,o0ldY’) in the first coordinate system. We want to find the coordinates
(newX,newY) of the point in the second coordinate system

oldLeft oldRight newLeft newRight
oldTop —I I newTop —I I
[ ] [ ]
(oldX, oldY) (newX, newY)
oldBottom — newBottom=—

Formulas for newX and newY are then given by

newX = newLeft +

((oldX - oldLeft) / (oldRight - oldLeft)) * (newRight - newLeft))
newY = newTop +

((0ldY - 0l1dTop) / (oldBottom - 0ldTop)) * (newBottom - newTop)

The logic here is that oldX is located at a certain fraction of the distance from oldLeft to
oldRight. That fraction is given by

((oldX - oldLeft) / (oldRight - oldLeft))

The formula for newX just says that newX should lie at the same fraction of the distance from
newLeft to newRight. You can also check the formulas by testing that they work when oldX is
equal to oldLeft or to oldRight, and when oldY is equal to oldBottom or to oldTop.

As an example, suppose that we want to transform some real-number coordinate system
with limits left, right, top, and bottom into pixel coordinates that range from 0 at left to 800 at
the right and from 0 at the top 600 at the bottom. In that case, newLeft and newTop are zero,
and the formulas become simply

newX = ((oldX - left) / (right - left)) * 800
newY = ((oldY - top) / (bottom - top)) * 600

Of course, this gives newX and newY as real numbers, and they will have to be rounded
or truncated to integer values if we need integer coordinates for pixels. The reverse
transformation—going from pixel coordinates to real number coordinates—is also useful. For
example, if the image is displayed on a computer screen, and you want to react to mouse clicks
on the image, you will probably get the mouse coordinates in terms of integer pixel coordinates,
but you will want to transform those pixel coordinates into your own chosen coordinate system.

In practice, though, you won’t usually have to do the transformations yourself, since most
graphics APIs provide some higher level way to specify transforms. We will talk more about
this in Section 2.3.
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2.1.3 Aspect Ratio

The aspect ratio of a rectangle is the ratio of its width to its height. For example an aspect
ratio of 2:1 means that a rectangle is twice as wide as it is tall, and an aspect ratio of 4:3 means
that the width is 4/3 times the height. Although aspect ratios are often written in the form
width:height, I will use the term to refer to the fraction width/height. A square has aspect ratio
equal to 1. A rectangle with aspect ratio 5/4 and height 600 has a width equal to 600*(5/4),
or 750.

A coordinate system also has an aspect ratio. If the horizontal and vertical limits for the
coordinate system are left, right, bottom, and top, as above, then the aspect ratio is the absolute
value of

(right - left) / (top - bottom)

If the coordinate system is used on a rectangle with the same aspect ratio, then when viewed in
that rectangle, one unit in the horizontal direction will have the same apparent length as a unit
in the vertical direction. If the aspect ratios don’t match, then there will be some distortion.
For example, the shape defined by the equation #° 4+1? = 9 should be a circle, but that will
only be true if the aspect ratio of the (z,y) coordinate system matches the aspect ratio of the
drawing area.

-5 5 -5 5 -5 5
5= 5= 5=

5 - 5 -

Suppose that x and y coordinates both range from -5 to 5,

and we draw a "circle" of radius 3 with center at (0,0).

If the drawing area is square, the "circle" looks like a

circle; if not, the circle is distorted into an ellipse. The

problem occurs when the aspect ratio of the coordinate

system does not match the aspect ratio of the drawing area. 5 _

It is not always a bad thing to use different units of length in the vertical and horizontal
directions. However, suppose that you want to use coordinates with limits left, right, bottom,
and top, and that you do want to preserve the aspect ratio. In that case, depending on the
shape of the display rectangle, you might have to adjust the values either of left and right or
of bottom and top to make the aspect ratios match:
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S 5 -

It is often a good idea to "preserve the aspect ratio"
by matching the aspect ratio of the coordinate system -5=
to the aspect ratio of the drawing area. This can be
done by extending the range of x or y values -- here,
-5 to 5 -- either horizontally or vertically.

-8=

We will look more deeply into geometric transforms later in the chapter, and at that time, we’ll
see some program code for setting up coordinate systems.

2.1.4 Color Models

We are talking about the most basic foundations of computer graphics. One of those is
coordinate systems. The other is color. Color is actually a surprisingly complex topic. We
will look at some parts of the topic that are most relevant to computer graphics applications.

The colors on a computer screen are produced as combinations of red, green, and blue light.
Different colors are produced by varying the intensity of each type of light. A color can be
specified by three numbers giving the intensity of red, green, and blue in the color. Intensity
can be specified as a number in the range zero, for minimum intensity, to one, for maximum
intensity. This method of specifying color is called the RGB color model, where RGB stands
for Red/Green/Blue. For example, in the RGB color model, the number triple (1, 0.5, 0.5)
represents the color obtained by setting red to full intensity, while green and blue are set to
half intensity. The red, green, and blue values for a color are called the color components of
that color in the RGB color model.

Light is made up of waves with a variety of wavelengths. A pure color is one for which
all the light has the same wavelength, but in general, a color can contain many wavelengths—
mathematically, an infinite number. How then can we represent all colors by combining just
red, green, and blue light? In fact, we can’t quite do that.

You might have heard that combinations of the three basic, or “primary,” colors are sufficient
to represent all colors, because the human eye has three kinds of color sensors that detect red,
green, and blue light. However, that is only an approximation. The eye does contain three
kinds of color sensors. The sensors are called “cone cells.” However, cone cells do not respond
exclusively to red, green, and blue light. Each kind of cone cell responds, to a varying degree,
to wavelengths of light in a wide range. A given mix of wavelengths will stimulate each type
of cell to a certain degree, and the intensity of stimulation determines the color that we see. A
different mixture of wavelengths that stimulates each type of cone cell to the same extent will
be perceived as the same color. So a perceived color can, in fact, be specified by three numbers
giving the intensity of stimulation of the three types of cone cell. However, it is not possible
to produce all possible patterns of stimulation by combining just three basic colors, no matter
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how those colors are chosen. This is just a fact about the way our eyes actually work; it might
have been different. Three basic colors can produce a reasonably large fraction of the set of
perceivable colors, but there are colors that you can see in the world that you will never see on
your computer screen. (This whole discussion only applies to people who actually have three
kinds of cone cell. Color blindness, where someone is missing one or more kinds of cone cell, is
surprisingly common.)

The range of colors that can be produced by a device such as a computer screen is called
the color gamut of that device. Different computer screens can have different color gamuts,
and the same RGB values can produce somewhat different colors on different screens. The color
gamut of a color printer is noticeably different—and probably smaller—than the color gamut
of a screen, which explains why a printed image probably doesn’t look exactly the same as it
did on the screen. (Printers, by the way, make colors differently from the way a screen does it.
Whereas a screen combines light to make a color, a printer combines inks or dyes. Because of
this difference, colors meant for printers are often expressed using a different set of basic colors.
A common color model for printer colors is CMYK, using the colors cyan, magenta, yellow, and
black.)

In any case, the most common color model for computer graphics is RGB. RGB colors are
most often represented using 8 bits per color component, a total of 24 bits to represent a color.
This representation is sometimes called “24-bit color.” An 8-bit number can represent 2%, or
256, different values, which we can take to be the positive integers from 0 to 255. A color is
then specified as a triple of integers (r,g,b) in that range.

This representation works well because 256 shades of red, green, and blue are about as many
as the eye can distinguish. In applications where images are processed by computing with color
components, it is common to use additional bits per color component to avoid visual effects
that might occur due to rounding errors in the computations. Such applications might use a
16-bit integer or even a 32-bit floating point value for each color component. On the other
hand, sometimes fewer bits are used. For example, one common color scheme uses 5 bits for
the red and blue components and 6 bits for the green component, for a total of 16 bits for a
color. (Green gets an extra bit because the eye is more sensitive to green light than to red or
blue.) This “16-bit color” saves memory compared to 24-bit color and was more common when
memory was more expensive.

There are many other color models besides RGB. RGB is sometimes criticized as being
unintuitive. For example, it’s not obvious to most people that yellow is made of a combination
of red and green. The closely related color models HSV and HSL describe the same set of
colors as RGB, but attempt to do it in a more intuitive way. (HSV is sometimes called HSB,
with the “B” standing for “brightness.” HSV and HSB are exactly the same model.)

The “H” in these models stands for “hue,” a basic spectral color. As H increases, the color
changes from red to yellow to green to cyan to blue to magenta, and then back to red. The
value of H is often taken to range from 0 to 360, since the colors can be thought of as arranged
around a circle with red at both 0 and 360 degrees.

The “S” in HSV and HSL stands for “saturation,” and is taken to range from 0 to 1. A
saturation of 0 gives a shade of gray (the shade depending on the value of V or L). A saturation
of 1 gives a “pure color,” and decreasing the saturation is like adding more gray to the color.
“V” stands for “value,” and “L” stands for “lightness.” They determine how bright or dark the
color is. The main difference is that in the HSV model, the pure spectral colors occur for V=1,
while in HSL, they occur for L=0.5.

Let’s look at some colors in the HSV color model. The illustration below shows colors with
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a full range of H-values, for S and V equal to 1 and to 0.5. Note that for S=V=1, you get
bright, pure colors. S=0.5 gives paler, less saturated colors. V=0.5 gives darker colors.

0 H=|60 HT120 H=|180 H=|240 H=|300 HI=360

S=1,v=1
S=05 V=1
S=1, v=0.5

S=0.5 V=05

It’s probably easier to understand color models by looking at some actual colors and how
they are represented. The interactive demo c2/rgb-hsv.html lets you experiment with the RGB
and HSV color models.
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Often, a fourth component is added to color models. The fourth component is called alpha,
and color models that use it are referred to by names such as RGBA and HSLA. Alpha is not a
color as such. It is usually used to represent transparency. A color with maximal alpha value is
fully opaque; that is, it is not at all transparent. A color with alpha equal to zero is completely
transparent and therefore invisible. Intermediate values give translucent, or partly transparent,
colors. Transparency determines what happens when you draw with one color (the foreground
color) on top of another color (the background color). If the foreground color is fully opaque,
it simply replaces the background color. If the foreground color is partly transparent, then it
is blended with the background color. Assuming that the alpha component ranges from 0 to 1,
the color that you get can be computed as

new_color = (alpha)*(foreground color) + (1 - alpha)*(background color)

This computation is done separately for the red, blue, and green color components. This is
called alpha blending. The effect is like viewing the background through colored glass; the
color of the glass adds a tint to the background color. This type of blending is not the only
possible use of the alpha component, but it is the most common.

An RGBA color model with 8 bits per component uses a total of 32 bits to represent a color.
This is a convenient number because integer values are often represented using 32-bit values. A
32-bit integer value can be interpreted as a 32-bit RGBA color. How the color components are
arranged within a 32-bit integer is somewhat arbitrary. The most common layout is to store the
alpha component in the eight high-order bits, followed by red, green, and blue. (This should
probably be called ARGB color.) However, other layouts are also in use.

2.2 Shapes

WE HAVE BEEN TALKING ABOUT low-level graphics concepts like pixels and coordinates, but
fortunately we don’t usually have to work on the lowest levels. Most graphics systems let you
work with higher-level shapes, such as triangles and circles, rather than individual pixels. And

(Demo)


http://math.hws.edu/eck/cs424/graphicsbook-1.4/demos/c2/rgb-hsv.html
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a lot of the hard work with coordinates is done using transforms rather than by working with
coordinates directly. In this section and the next, we will look at some of the higher-level
capabilities that are typically provided by 2D graphics APIs.

2.2.1 Basic Shapes

In a graphics API, there will be certain basic shapes that can be drawn with one command,
whereas more complex shapes will require multiple commands. Exactly what qualifies as a
basic shape varies from one API to another. In the WebGL API, for example, the only basic
shapes are points, lines, and triangles. In this subsection, I consider lines, rectangles, and ovals
to be basic.

By “line,” I really mean line segment, that is a straight line segment connecting two given
points in the plane. A simple one-pixel-wide line segment, without antialiasing, is the most
basic shape. It can be drawn by coloring pixels that lie along the infinitely thin geometric line
segment. An algorithm for drawing the line has to decide exactly which pixels to color. One of
the first computer graphics algorithms, Bresenham’s algorithm for line drawing, implements
a very efficient procedure for doing so. I won’t discuss such low-level details here, but it’s worth
looking them up if you want to start learning about what graphics hardware actually has
to do on a low level. In any case, lines are typically more complicated. Antialiasing is one
complication. Line width is another. A wide line might actually be drawn as a rectangle.

Lines can have other attributes, or properties, that affect their appearance. One question
is, what should happen at the end of a wide line? Appearance might be improved by adding
a rounded “cap” on the ends of the line. A square cap—that is, extending the line by half of
the line width—might also make sense. Another question is, when two lines meet as part of a
larger shape, how should the lines be joined? And many graphics systems support lines that
are patterns of dashes and dots. This illustration shows some of the possibilities:

On the left are three wide lines with no cap, a round cap, and a square cap. The geometric line
segment is shown as a dotted line. (The no-cap style is called “butt.”) To the right are four
lines with different patterns of dots and dashes. In the middle are three different styles of line
joins: mitered, rounded, and beveled.

I S 3

The basic rectangular shape has sides that are vertical and horizontal. (A tilted rectangle
generally has to be made by applying a rotation.) Such a rectangle can be specified with two
points, (x1,y1) and (x2,y2), that give the endpoints of one of the diagonals of the rectangle.
Alternatively, the width and the height can be given, along with a single base point, (x,y). In
that case, the width and height have to be positive, or the rectangle is empty. The base point
(x,y) will be the upper left corner of the rectangle if y increases from top to bottom, and it will
be the lower left corner of the rectangle if y increases from bottom to top.
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} height

Suppose that you are given points (x1,y1l) and (x2,y2), and that you want to draw the rectangle
that they determine. And suppose that the only rectangle-drawing command that you have
available is one that requires a point (x,y), a width, and a height. For that command, x must
be the smaller of x1 and x2, and the width can be computed as the absolute value of x1 minus
x2. And similarly for y and the height. In pseudocode,

(x1,y1) (x1,y1) (xy)

(x2,y2) (x2,y2)
v v width

DrawRectangle from points (x1,yl) and (x2,y2):
x = min( x1, x2 )
y = min( y1, y2 )
width = abs( x1 - x2 )
height = abs( y1 - y2 )
DrawRectangle( x, y, width, height )

A common variation on rectangles is to allow rounded corners. For a “round rect,” the
corners are replaced by elliptical arcs. The degree of rounding can be specified by giving the
horizontal radius and vertical radius of the ellipse. Here are some examples of round rects. For
the shape at the right, the two radii of the ellipse are shown:

OC

My final basic shape is the oval. (An oval is also called an ellipse.) An oval is a closed curve
that has two radii. For a basic oval, we assume that the radii are vertical and horizontal. An
oval with this property can be specified by giving the rectangle that just contains it. Or it can
be specified by giving its center point and the lengths of its vertical radius and its horizontal
radius. In this illustration, the oval on the left is shown with its containing rectangle and with

its center point and radii:

The oval on the right is a circle. A circle is just an oval in which the two radii have the same
length.

If ovals are not available as basic shapes, they can be approximated by drawing a large
number of line segments. The number of lines that is needed for a good approximation depends
on the size of the oval. It’s useful to know how to do this. Suppose that an oval has center
point (x,y), horizontal radius rl, and vertical radius r2. Mathematically, the points on the oval
are given by

( x + ri*xcos(angle), y + r2*sin(angle) )
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where angle takes on values from 0 to 360 if angles are measured in degrees or from 0 to 27 if
they are measured in radians. Here sin and cos are the standard sine and cosine functions. To
get an approximation for an oval, we can use this formula to generate some number of points
and then connect those points with line segments. In pseudocode, assuming that angles are
measured in radians and that p: represents the mathematical constant ,

Draw Oval with center (x,y), horizontal radius rl, and vertical radius r2:
for i = 0 to numberOfLines:

anglel = i * (2*pi/number0fLines)

angle2 = (i+1) * (2%pi/numberOfLines)

al = x + ril*cos(anglel)

bl = y + r2xsin(anglel)

a2 = x + rilxcos(angle2)

b2 = y + r2xsin(angle2)

Draw Line from (x1,y1l) to (x2,y2)

For a circle, of course, you would just have r1 = r2. This is the first time we have used the
sine and cosine functions, but it won’t be the last. These functions play an important role in
computer graphics because of their association with circles, circular motion, and rotation. We
will meet them again when we talk about transforms in the next section.

2.2.2 Stroke and Fill

There are two ways to make a shape visible in a drawing. You can stroke it. Or, if it is a closed
shape such as a rectangle or an oval, you can fill it. Stroking a line is like dragging a pen along
the line. Stroking a rectangle or oval is like dragging a pen along its boundary. Filling a shape
means coloring all the points that are contained inside that shape. It’s possible to both stroke
and fill the same shape; in that case, the interior of the shape and the outline of the shape can
have a different appearance.

When a shape intersects itself, like the two shapes in the illustration below, it’s not entirely
clear what should count as the interior of the shape. In fact, there are at least two different
rules for filling such a shape. Both are based on something called the winding number. The
winding number of a shape about a point is, roughly, how many times the shape winds around
the point in the positive direction, which I take here to be counterclockwise. Winding number
can be negative when the winding is in the opposite direction. In the illustration, the shapes on
the left are traced in the direction shown, and the winding number about each region is shown

as a number inside the region.
1
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(Demo)


http://math.hws.edu/eck/cs424/graphicsbook-1.4/demos/c2/approximating-ovals.html

CHAPTER 2. TWO-DIMENSIONAL GRAPHICS 23

The shapes are also shown filled using the two fill rules. For the shapes in the center, the fill
rule is to color any region that has a non-zero winding number. For the shapes shown on the
right, the rule is to color any region whose winding number is odd; regions with even winding
number are not filled.

There is still the question of what a shape should be filled with. Of course, it can be filled
with a color, but other types of fill are possible, including patterns and gradients. A pattern
is an image, usually a small image. When used to fill a shape, a pattern can be repeated
horizontally and vertically as necessary to cover the entire shape. A gradient is similar in that
it is a way for color to vary from point to point, but instead of taking the colors from an image,
they are computed. There are a lot of variations to the basic idea, but there is always a line
segment along which the color varies. The color is specified at the endpoints of the line segment,
and possibly at additional points; between those points, the color is interpolated. The color
can also be extrapolated to other points on the line that contains the line segment but lying
outside the line segment; this can be done either by repeating the pattern from the line segment
or by simply extending the color from the nearest endpoint. For a linear gradient, the color
is constant along lines perpendicular to the basic line segment, so you get lines of solid color
going in that direction. In a radial gradient, the color is constant along circles centered at
one of the endpoints of the line segment. And that doesn’t exhaust the possibilities. To give
you an idea what patterns and gradients can look like, here is a shape, filled with two gradients
and two patterns:

|

The first shape is filled with a simple linear gradient defined by just two colors, while the second
shape uses a radial gradient.

Patterns and gradients are not necessarily restricted to filling shapes. Stroking a shape is,
after all, the same as filling a band of pixels along the boundary of the shape, and that can be
done with a gradient or a pattern, instead of with a solid color.

Finally, I will mention that a string of text can be considered to be a shape for the purpose
of drawing it. The boundary of the shape is the outline of the characters. The text is drawn
by filling that shape. In some graphics systems, it is also possible to stroke the outline of the
shape that defines the text. In the following illustration, the string “Graphics” is shown, on
top, filled with a pattern and, below that, filled with a gradient and stroked with solid black:
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2.2.3 Polygons, Curves, and Paths

It is impossible for a graphics API to include every possible shape as a basic shape, but there is
usually some way to create more complex shapes. For example, consider polygons. A polygon
is a closed shape consisting of a sequence of line segments. Each line segment is joined to the
next at its endpoint, and the last line segment connects back to the first. The endpoints are
called the vertices of the polygon, and a polygon can be defined by listing its vertices.

In a regular polygon, all the sides are the same length and all the angles between sides are
equal. Squares and equilateral triangles are examples of regular polygons. A convex polygon
has the property that whenever two points are inside or on the polygon, then the entire line
segment between those points is also inside or on the polygon. Intuitively, a convex polygon
has no “indentations” along its boundary. (Concavity can be a property of any shape, not just
of polygons.)

Convex Polygons Non-convex Polygons

Sometimes, polygons are required to be “simple,” meaning that the polygon has no self-
intersections. That is, all the vertices are different, and a side can only intersect another
side at its endpoints. And polygons are usually required to be “planar,” meaning that all the
vertices lie in the same plane. (Of course, in 2D graphics, everything lies in the same plane, so
this is not an issue. However, it does become an issue in 3D.)

How then should we draw polygons? That is, what capabilities would we like to have in a
graphics API for drawing them. One possibility is to have commands for stroking and for filling
polygons, where the vertices of the polygon are given as an array of points or as an array of
x-coordinates plus an array of y-coordinates. In fact, that is sometimes done; for example, the
Java graphics API includes such commands. Another, more flexible, approach is to introduce
the idea of a “path.” Java, SVG, and the HT'ML canvas API all support this idea. A path is
a general shape that can include both line segments and curved segments. Segments can, but
don’t have to be, connected to other segments at their endpoints. A path is created by giving
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a series of commands that tell, essentially, how a pen would be moved to draw the path. While
a path is being created, there is a point that represents the pen’s current location. There will
be a command for moving the pen without drawing, and commands for drawing various kinds
of segments. For drawing polygons, we need commands such as

e createPath() — start a new, empty path

e moveTo(x,y) — move the pen to the point (x,y), without adding a segment to the path;
that is, without drawing anything

e lineTo(x,y) — add a line segment to the path that starts at the current pen location
and ends at the point (x,y), and move the pen to (x,y)

e closePath() — add a line segment from the current pen location back to the starting
point, unless the pen is already there, producing a closed path.

(For closePath, I need to define “starting point.” A path can be made up of “subpaths” A
subpath consists of a series of connected segments. A moveTo always starts a new subpath.
A closePath ends the current segment and implicitly starts a new one. So “starting point”
means the position of the pen after the most recent moveTo or closePath.)

Suppose that we want a path that represents the triangle with vertices at (100,100),
(300,100), and (200, 200). We can do that with the commands

createPath()
moveTo( 100, 100 )
lineTo( 300, 100 )
lineTo( 200, 200 )
closePath()

The closePath command at the end could be replaced by 1ineTo(100,100), to move the pen
back to the first vertex.

A path represents an abstract geometric object. Creating one does not make it visible on
the screen. Once we have a path, to make it visible we need additional commands for stroking
and filling the path.

Earlier in this section, we saw how to approximate an oval by drawing, in effect, a polygon
with a large number of sides. In that example, I drew each side as a separate line segment,
so we really had a bunch of separate lines rather than a polygon. There is no way to fill such
a thing. It would be better to approximate the oval with a polygonal path. For an oval with
center (x,y) and radii r1 and r2:

createPath()
moveTo( x + rl, y )
for i = 1 to numberOfPoints-1
angle = i * (2*pi/numberOfLines)
lineTo( x + rl*cos(angle), y + r2*sin(angle) )
closePath()

Using this path, we could draw a filled oval as well as stroke it. Even if we just want to draw
the outline of a polygon, it’s still better to create the polygon as a path rather than to draw
the line segments as separate sides. With a path, the computer knows that the sides are part of
single shape. This makes it possible to control the appearance of the “join” between consecutive
sides, as noted earlier in this section.
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I noted above that a path can contain other kinds of segments besides lines. For example,
it might be possible to include an arc of a circle as a segment. Another type of curve is a
Bezier curve. Bezier curves can be used to create very general curved shapes. They are fairly
intuitive, so that they are often used in programs that allow users to design curves interactively.
Mathematically, Bezier curves are defined by parametric polynomial equations, but you don’t
need to understand what that means to use them. There are two kinds of Bezier curve in
common use, cubic Bezier curves and quadratic Bezier curves; they are defined by cubic and
quadratic polynomials respectively. When the general term “Bezier curve” is used, it usually
refers to cubic Bezier curves.

A cubic Bezier curve segment is defined by the two endpoints of the segment together with
two control points. To understand how it works, it’s best to think about how a pen would
draw the curve segment. The pen starts at the first endpoint, headed in the direction of the
first control point. The distance of the control point from the endpoint controls the speed of
the pen as it starts drawing the curve. The second control point controls the direction and
speed of the pen as it gets to the second endpoint of the curve. There is a unique cubic curve
that satisfies these conditions.

The illustration above shows three cubic Bezier curve segments. The two curve segments on
the right are connected at an endpoint to form a longer curve. The curves are drawn as thick
black lines. The endpoints are shown as black dots and the control points as blue squares, with
a thin red line connecting each control point to the corresponding endpoint. (Ordinarily, only
the curve would be drawn, except in an interface that lets the user edit the curve by hand.)
Note that at an endpoint, the curve segment is tangent to the line that connects the endpoint
to the control point. Note also that there can be a sharp point or corner where two curve
segments meet. However, one segment will merge smoothly into the next if control points are
properly chosen.

This will all be easier to understand with some hands-on experience. The interactive demo
c2/cubic-bezier.html lets you edit cubic Bezier curve segments by dragging their endpoints and
control points.

When a cubic Bezier curve segment is added to a path, the path’s current pen location acts
as the first endpoint of the segment. The command for adding the segment to the path must
specify the two control points and the second endpoint. A typical command might look like

cubicCurveTo( cx1, cyl, cx2, cy2, x, y )

This would add a curve from the current location to point (x,y), using (cx1,cyl) and (cx2,cy2)
as the control points. That is, the pen leaves the current location heading towards (cx1,cyl),
and it ends at the point (x,y), arriving there from the direction of (cx2,cy2).

Quadratic Bezier curve segments are similar to the cubic version, but in the quadratic case,
there is only one control point for the segment. The curve leaves the first endpoint heading
in the direction of the control point, and it arrives at the second endpoint coming from the
direction of the control point. The curve in this case will be an arc of a parabola.

(Demo)
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Again, this is easier to understand this with some hands-on experience. Try the interactive
demo c¢2/quadratic-bezier.html.

2.3 Transforms

IN SECTION 2.1, WE DISCUSSED COORDINATE SYSTEMS and how it is possible to transform
coordinates from one coordinate system to another. In this section, we’ll look at that idea a
little more closely, and also look at how geometric transformations can be used to place graphics
objects into a coordinate system.

2.3.1 Viewing and Modeling

In a typical application, we have a rectangle made of pixels, with its natural pixel coordinates,
where an image will be displayed. This rectangle will be called the viewport. We also have
a set of geometric objects that are defined in a possibly different coordinate system, generally
one that uses real-number coordinates rather than integers. These objects make up the “scene”
or “world” that we want to view, and the coordinates that we use to define the scene are called
world coordinates.

For 2D graphics, the world lies in a plane. It’s not possible to show a picture of the entire
infinite plane. We need to pick some rectangular area in the plane to display in the image.
Let’s call that rectangular area the window, or view window. A coordinate transform is used

to map the window to the viewport.

(300,100)
0 800
-1,2) 0
\_ 3 T
4 4
e 600
(3.-1) (700,400)
Window Viewport

In this illustration, T represents the coordinate transformation. T is a function that takes world
coordinates (z,y) in some window and maps them to pixel coordinates T(z,y) in the viewport.
(I've drawn the viewport and window with different sizes to emphasize that they are not the
same thing, even though they show the same objects, but in fact they don’t even exist in the
same space, so it doesn’t really make sense to compare their sizes.) In this example, as you can
check,

T(x,y) = ( 800%(x+4)/8, 600*(3-y)/6 )

Look at the rectangle with corners at (-1,2) and (3,-1) in the window. When this rectangle is
displayed in the viewport, it is displayed as the rectangle with corners T(-1,2) and T(3,-1). In
this example, T(-1,2) = (300,100) and T(3,-1) = (700,400).

We use coordinate transformations in this way because it allows us to choose a world
coordinate system that is natural for describing the scene that we want to display, and it

(Demo)
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is easier to do that than to work directly with viewport coordinates. Along the same lines,
suppose that we want to define some complex object, and suppose that there will be several
copies of that object in our scene. Or maybe we are making an animation, and we would like the
object to have different positions in different frames. We would like to choose some convenient
coordinate system and use it to define the object once and for all. The coordinates that we
use to define an object are called object coordinates for the object. When we want to place
the object into a scene, we need to transform the object coordinates that we used to define the
object into the world coordinate system that we are using for the scene. The transformation that
we need is called a modeling transformation. This picture illustrates an object defined in
its own object coordinate system and then mapped by three different modeling transformations
into the world coordinate system:

I\

Remember that in order to view the scene, there will be another transformation that maps the
object from a view window in world coordinates into the viewport.

Now, keep in mind that the choice of a view window tells which part of the scene is shown
in the image. Moving, resizing, or even rotating the window will give a different view of the
scene. Suppose we make several images of the same car:

o

P
N -

What happened between making the top image in this illustration and making the image on
the bottom left? In fact, there are two possibilities: Either the car was moved to the right, or
the view window that defines the scene was moved to the left. This is important, so be sure
you understand it. (Try it with your cell phone camera. Aim it at some objects, take a step
to the left, and notice what happens to the objects in the camera’s viewfinder: They move
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to the right in the picture!) Similarly, what happens between the top picture and the middle
picture on the bottom? Either the car rotated counterclockwise, or the window was rotated
clockwise. (Again, try it with a camera—you might want to take two actual photos so that you
can compare them.) Finally, the change from the top picture to the one on the bottom right
could happen because the car got smaller or because the window got larger. (On your camera,
a bigger window means that you are seeing a larger field of view, and you can get that by
applying a zoom to the camera or by backing up away from the objects that you are viewing.)

There is an important general idea here. When we modify the view window, we change
the coordinate system that is applied to the viewport. But in fact, this is the same as leaving
that coordinate system in place and moving the objects in the scene instead. Except that to
get the same effect in the final image, you have to apply the opposite transformation to the
objects (for example, moving the window to the left is equivalent to moving the objects to the
right). So, there is no essential distinction between transforming the window and transforming
the object. Mathematically, you specify a geometric primitive by giving coordinates in some
natural coordinate system, and the computer applies a sequence of transformations to those
coordinates to produce, in the end, the coordinates that are used to actually draw the primitive
in the image. You will think of some of those transformations as modeling transforms and some
as coordinate transforms, but to the computer, it’s all the same.

The on-line version of this section includes the live demo ¢2/transform-equivalence-2d.html
that can help you to understand the equivalence between modeling transformations and
viewport transformations. Read the help text in the demo for more information.

We will return to this idea several times later in the book, but in any case, you can see that
geometric transforms are a central concept in computer graphics. Let’s look at some basic types
of transformation in more detail. The transforms we will use in 2D graphics can be written in
the form

x1l = a*x + b*xy + e
y1 c*x + dxy + f

where (z,y) represents the coordinates of some point before the transformation is applied, and
(z1,y1) are the transformed coordinates. The transform is defined by the six constants a, b, ¢,
d, e, and f. Note that this can be written as a function T, where

T(x,y) = ( a*x + bxy + e, c*x + d¥y + f )

A transformation of this form is called an affine transform. An affine transform has the
property that, when it is applied to two parallel lines, the transformed lines will also be parallel.
Also, if you follow one affine transform by another affine transform, the result is again an affine
transform.

2.3.2 Translation

A translation transform simply moves every point by a certain amount horizontally and a
certain amount vertically. If (x,y) is the original point and (x1,y1) is the transformed point,
then the formula for a translation is

x1l =x + e
yit=y+ 1

where e is the number of units by which the point is moved horizontally and f is the amount by
which it is moved vertically. (Thus for a translation, « = d = 1, and b = ¢ = 0 in the general
formula for an affine transform.) A 2D graphics system will typically have a function such as

(Demo)
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translate( e, f )

to apply a translate transformation. The translation would apply to everything that is drawn
after the command is given. That is, for all subsequent drawing operations, e would be added
to the x-coordinate and f would be added to the y-coordinate. Let’s look at an example.
Suppose that you draw an “F” using coordinates in which the “F” is centered at (0,0). If
you say translate(4,2) before drawing the “F”, then every point of the “F” will be moved
horizontally by 4 units and vertically by 2 units before the coordinates are actually used, so
that after the translation, the “F” will be centered at (4,2):

1M

The light gray “F” in this picture shows what would be drawn without the translation; the dark
red “F” shows the same “F” drawn after applying a translation by (4,2). The top arrow shows
that the upper left corner of the “F” has been moved over 4 units and up 2 units. Every point
in the “F” is subjected to the same displacement. Note that in my examples, I am assuming
that the y-coordinate increases from bottom to top. That is, the y-axis points up.

Remember that when you give the command translate(e,f ), the translation applies to all the
drawing that you do after that, not just to the next shape that you draw. If you apply another
transformation after the translation, the second transform will not replace the translation.
It will be combined with the translation, so that subsequent drawing will be affected by the
combined transformation. For example, if you combine translate(4,2) with translate(-1,5), the
result is the same as a single translation, translate(3,7). This is an important point, and there
will be a lot more to say about it later.

Also remember that you don’t compute coordinate transformations yourself. You just
specify the original coordinates for the object (that is, the object coordinates), and you specify
the transform or transforms that are to be applied. The computer takes care of applying the
transformation to the coordinates. You don’t even need to know the equations that are used
for the transformation; you just need to understand what it does geometrically.

2.3.3 Rotation

A rotation transform, for our purposes here, rotates each point about the origin, (0,0). Every
point is rotated through the same angle, called the angle of rotation. For this purpose, angles
can be measured either in degrees or in radians. (The 2D graphics APIs for Java and JavaScript
that we will look at later in this chapter use radians, but OpenGL and SVG use degrees.) A
rotation with a positive angle rotates objects in the direction from the positive x-axis towards
the positive y-axis. This is counterclockwise in a coordinate system where the y-axis points up,
as it does in my examples here, but it is clockwise in the usual pixel coordinates, where the
y-axis points down rather than up. Although it is not obvious, when rotation through an angle
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of r radians about the origin is applied to the point (z,y), then the resulting point (z1,y1) is
given by

x1 = cos(r) * x - sin(r) * y
y1l = sin(r) * x + cos(r) * y

That is, in the general formula for an affine transform, e = f = 0, a = d = cos(r), b = -sin(r),
and ¢ = sin(r). Here is a picture that illustrates a rotation about the origin by the angle
negative 135 degrees:

1

Again, the light gray “F” is the original shape, and the dark red “F” is the shape that results
if you apply the rotation. The arrow shows how the upper left corner of the original “F” has
been moved.

A 2D graphics API would typically have a command rotate(r) to apply a rotation. The
command is used before drawing the objects to which the rotation applies.

2.3.4 Combining Transformations

We are now in a position to see what can happen when you combine two transformations.
Suppose that before drawing some object, you say

translate(4,0)
rotate(90)

Assume that angles are measured in degrees. The translation will then apply to all subsequent
drawing. But, because of the rotation command, the things that you draw after the translation
are rotated objects. That is, the translation applies to objects that have already been rotated.
An example is shown on the left in the illustration below, where the light gray “F” is the original
shape, and red “F” shows the result of applying the two transforms to the original. The original
“F” was first rotated through a 90 degree angle, and then moved 4 units to the right.
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e = 1

Rotate then translate Translate then rotate

Note that transforms are applied to objects in the reverse of the order in which they are given
in the code (because the first transform in the code is applied to an object that has already
been affected by the second transform). And note that the order in which the transforms are
applied is important. If we reverse the order in which the two transforms are applied in this
example, by saying

rotate(90)

translate(4,0)

then the result is as shown on the right in the above illustration. In that picture, the original
“F” is first moved 4 units to the right and the resulting shape is then rotated through an angle
of 90 degrees about the origin to give the shape that actually appears on the screen.

For another example of applying several transformations, suppose that we want to rotate
a shape through an angle r about a point (p,q) instead of about the point (0,0). We can do
this by first moving the point (p,q) to the origin, using translate(-p,-q). Then we can do a
standard rotation about the origin by calling rotate(r). Finally, we can move the origin back
to the point (p,q) by applying translate(p,q). Keeping in mind that we have to write the code
for the transformations in the reverse order, we need to say

translate(p,q)
rotate(r)
translate(-p,-q)

before drawing the shape. (In fact, some graphics APIs let us accomplish this transform with a
single command such as rotate(r,p,q). This would apply a rotation through the angle r about

the point (p,q).)

2.3.5 Scaling

A scaling transform can be used to make objects bigger or smaller. Mathematically, a scaling
transform simply multiplies each x-coordinate by a given amount and each y-coordinate by a
given amount. That is, if a point (z,y) is scaled by a factor of a in the x direction and by a
factor of d in the y direction, then the resulting point (z1,yI) is given by

x1l = a x x
yl =4y

If you apply this transform to a shape that is centered at the origin, it will stretch the shape
by a factor of a horizontally and d vertically. Here is an example, in which the original light
gray “F” is scaled by a factor of 3 horizontally and 2 vertically to give the final dark red “F”:
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The common case where the horizontal and vertical scaling factors are the same is called
uniform scaling. Uniform scaling stretches or shrinks a shape without distorting it.

When scaling is applied to a shape that is not centered at (0,0), then in addition to being
stretched or shrunk, the shape will be moved away from 0 or towards 0. In fact, the true
description of a scaling operation is that it pushes every point away from (0,0) or pulls every
point towards (0,0). If you want to scale about a point other than (0,0), you can use a sequence
of three transforms, similar to what was done in the case of rotation.

A 2D graphics API can provide a function scale(a,d) for applying scaling transformations.
As usual, the transform applies to all z and y coordinates in subsequent drawing operations.
Note that negative scaling factors are allowed and will result in reflecting the shape as well
as possibly stretching or shrinking it. For example, scale(1,-1) will reflect objects vertically,
through the z-axis.

It is a fact that every affine transform can be created by combining translations,
rotations about the origin, and scalings about the origin. 1 won’t try to prove that, but
c2/transforms-2d.html is an interactive demo that will let you experiment with translations,
rotations, and scalings, and with the transformations that can be made by combining them.

I also note that a transform that is made from translations and rotations, with no scaling,
will preserve length and angles in the objects to which it is applied. It will also preserve aspect
ratios of rectangles. Transforms with this property are called “Fuclidean.” If you also allow
uniform scaling, the resulting transformation will preserve angles and aspect ratio, but not
lengths.

2.3.6 Shear

We will look at one more type of basic transform, a shearing transform. Although shears
can in fact be built up out of rotations and scalings if necessary, it is not really obvious how
to do so. A shear will “tilt” objects. A horizontal shear will tilt things towards the left (for
negative shear) or right (for positive shear). A vertical shear tilts them up or down. Here is an
example of horizontal shear:

(Demo)
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A horizontal shear does not move the x-axis. Every other horizontal line is moved to the left or
to the right by an amount that is proportional to the y-value along that line. When a horizontal
shear is applied to a point (z,y), the resulting point (z1,y1) is given by

x1 =x+Db=xy

yi=y
for some constant shearing factor b. Similarly, a vertical shear with shearing factor ¢ is given
by the equations

x1 = x
yl=c*xx+y

Shear is occasionally called “skew,” but skew is usually specified as an angle rather than as a
shear factor.

2.3.7 Window-to-Viewport

The last transformation that is applied to an object before it is displayed in an image is the
window-to-viewport transformation, which maps the rectangular view window in the xy-plane
that contains the scene to the rectangular grid of pixels where the image will be displayed.
I'll assume here that the view window is not rotated; that it, its sides are parallel to the x-
and y-axes. In that case, the window-to-viewport transformation can be expressed in terms of
translation and scaling transforms. Let’s look at the typical case where the viewport has pixel
coordinates ranging from 0 on the left to width on the right and from 0 at the top to height at
the bottom. And assume that the limits on the view window are left, right, bottom, and top.
In that case, the window-to-viewport transformation can be programmed as:

scale( width / (right-left), height / (bottom-top) );
translate( -left, -top )

These should be the last transforms that are applied to a point. Since transforms are applied
to points in the reverse of the order in which they are specified in the program, they should be
the first transforms that are specified in the program. To see how this works, consider a point
(z,y) in the view window. (This point comes from some object in the scene. Several modeling
transforms might have already been applied to the object to produce the point (z,y), and that
point is now ready for its final transformation into viewport coordinates.) The coordinates (z,y)
are first translated by (-left,-top) to give (z-left,y-top). These coordinates are then multiplied
by the scaling factors shown above, giving the final coordinates

x1
yi

width / (right-left) * (x-left)
height / (bottom-top) * (y-top)
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Note that the point (left,top) is mapped to (0,0), while the point (right,bottom) is mapped to
(width,height), which is just what we want.

There is still the question of aspect ratio. As noted in Subsection 2.1.3, if we want to force
the aspect ratio of the window to match the aspect ratio of the viewport, it might be necessary
to adjust the limits on the window. Here is pseudocode for a subroutine that will do that, again
assuming that the top-left corner of the viewport has pixel coordinates (0,0):

subroutine applyWindowToViewportTransformation (
left, right, // horizontal limits on view window
bottom, top, // vertical limits on view window
width, height, // width and height of viewport
preserveAspect // should window be forced to match viewport aspect?

)

if preserveAspect :
// Adjust the limits to match the aspect ratio of the drawing area.
displayAspect = abs(height / width);
windowAspect = abs(( top-bottom ) / ( right-left ));
if displayAspect > windowAspect :
// Expand the viewport vertically.
excess = (top-bottom) * (displayAspect/windowAspect - 1)
top = top + excess/2
bottom = bottom - excess/2
else if displayAspect < windowAspect :
// Expand the viewport horizontally.
excess = (right-left) * (windowAspect/displayAspect - 1)
right = right + excess/2
left = left - excess/2

scale( width / (right-left), height / (bottom-top) )
translate( -left, -top )

2.3.8 Matrices and Vectors

The transforms that are used in computer graphics can be represented as matrices, and the
points on which they operate are represented as vectors. Recall that a matriz, from the point
of view of a computer scientist, is a two-dimensional array of numbers, while a vector is a one-
dimensional array. Matrices and vectors are studied in the field of mathematics called linear
algebra. Linear algebra is fundamental to computer graphics. In fact, matrix and vector math
is built into GPUs. You won’t need to know a great deal about linear algebra for this textbook,
but a few basic ideas are essential.

The vectors that we need are lists of two, three, or four numbers. They are often written
as (z,y), (%,y,2), and (z,y,z,w). A matrix with N rows and M columns is called an “N-by-M
matrix.” For the most part, the matrices that we need are N-by-N matrices, where N is 2, 3,
or 4. That is, they have 2, 3, or 4 rows and columns, and the number of rows is equal to the
number of columns.

If A and B are two N-by-N matrices, then they can be multiplied to give a product matrix
C = AB. If A is an N-by-N matrix, and v is a vector of length N, then v can be multiplied
by A to give another vector w = Av. The function that takes v to Av is a transformation; it
transforms any given vector of size N into another vector of size N. A transformation of this
form is called a linear transformation.
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Now, suppose that A and B are N-by-N matrices and v is a vector of length N. Then, we can
form two different products: A(Bv) and (AB)v. It is a central fact that these two operations
have the same effect. That is, we can multiply v by B and then multiply the result by A, or
we can multiply the matrices A and B to get the matrix product AB and then multiply v by
AB. The result is the same.

Rotation and scaling, as it turns out, are linear transformations. That is, the operation of
rotating (z,y) through an angle d about the origin can be done by multiplying (z,y) by a 2-by-2
matrix. Let’s call that matrix R4. Similarly, scaling by a factor a in the horizontal direction
and b in the vertical direction can be given as a matrix S, ;. If we want to apply a scaling
followed by a rotation to the point v = (z,y), we can compute either R;(S,,v) or (RiS,p)v.

So what? Well, suppose that we want to apply the same two operations, scale then rotate, to
thousands of points, as we typically do when transforming objects for computer graphics. The
point is that we could compute the product matrix R4S, once and for all, and then apply the
combined transform to each point with a single multiplication. This means that if a program
says

rotate(d)
scale(a,b)

// draw a complex object

the computer doesn’t have to keep track of two separate operations. It combines the operations
into a single matrix and just keeps track of that. Even if you apply, say, 50 transformations to
the object, the computer can just combine them all into one matrix. By using matrix algebra,
multiple transformations can be handled as efficiently as a single transformation!

This is really nice, but there is a gaping problem: Translation is not a linear
transformation. To bring translation into this framework, we do something that looks a
little strange at first: Instead of representing a point in 2D as a pair of numbers (z,y), we
represent it as the triple of numbers (z,y,1). That is, we add a one as the third coordinate. It
then turns out that we can then represent rotation, scaling, and translation—and hence any
affine transformation—on 2D space as multiplication by a 3-by-3 matrix. The matrices that we
need have a bottom row containing (0,0,1). Multiplying (z,y,1) by such a matrix gives a new
vector (z1,y1,1). We ignore the extra coordinate and consider this to be a transformation of
(z,y) into (x1,y1). For the record, the 3-by-3 matrices for translation (7} ;), scaling (S,), and
rotation (Ry) in 2D are

1 0 a a 0 0 cos(d) -sin(d) O
T,pb=10 1 b| S,pb=1]0 b 0 R;= | sin(d) cos(d) 0
0 0 1 0 0 1 0 0 1

You can compare multiplication by these matrices to the formulas given above for translation,
scaling, and rotation. But when doing graphics programming, you won’t need to do the
multiplication yourself. For now, the important idea that you should take away from this
discussion is that a sequence of transformations can be combined into a single transformation.
The computer only needs to keep track of a single matrix, which we can call the “current
matrix” or “current transformation.” To implement transform commands such as translate(a,b)
or rotate(d), the computer simply multiplies the current matrix by the matrix that represents
the transform.
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2.4 Hierarchical Modeling

IN THIS SECTION, WE LOOK at how complex scenes can be built from very simple shapes. The
key is hierarchical structure. That is, a complex object can be made up of simpler objects,
which can in turn be made up of even simpler objects, and so on until it bottoms out with
simple geometric primitives that can be drawn directly. This is called hierarchical modeling.
We will see that the transforms that were studied in the previous section play an important
role in hierarchical modeling.

Hierarchical structure is the key to dealing with complexity in many areas of computer
science (and in the rest of reality), so it be no surprise that it plays an important role in
computer graphics.

2.4.1 Building Complex Objects

A major motivation for introducing a new coordinate system is that it should be possible to
use the coordinate system that is most natural to the scene that you want to draw. We can
extend this idea to individual objects in a scene: When drawing an object, use the coordinate
system that is most natural for the object.

Usually, we want an object in its natural coordinates to be centered at the origin, (0,0), or
at least to use the origin as a convenient reference point. Then, to place it in the scene, we
can use a scaling transform, followed by a rotation, followed by a translation to set its size,
orientation, and position in the scene. Recall that transformations used in this way are called
modeling transformations. The transforms are often applied in the order scale, then rotate,
then translate, because scaling and rotation leave the reference point, (0,0), fixed. Once the
object has been scaled and rotated, it’s easy to use a translation to move the reference point
to any desired point in the scene. (Of course, in a particular case, you might not need all three
operations.) Remember that in the code, the transformations are specified in the opposite
order from the order in which they are applied to the object and that the transformations are
specified before drawing the object. So in the code, the translation would come first, followed
by the rotation and then the scaling. Modeling transforms are not always composed in this
order, but it is the most common usage.

The modeling transformations that are used to place an object in the scene should not
affect other objects in the scene. To limit their application to just the one object, we can
save the current transformation before starting work on the object and restore it afterwards.
How this is done differs from one graphics API to another, but let’s suppose here that there
are subroutines saveTransform() and restore Transform() for performing those tasks. That is,
saveTransform will make a copy of the modeling transformation that is currently in effect and
store that copy. It does not change the current transformation; it merely saves a copy. Later,
when restore Transform is called, it will retrieve that copy and will replace the current modeling
transform with the retrieved transform. Typical code for drawing an object will then have the
form:

saveTransform()

translate(dx,dy) // move object into position
rotate(r) // set the orientation of the object
scale(sx,sy) // set the size of the object

// draw the object, using its natural coordinates
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restoreTransform()

Note that we don’t know and don’t need to know what the saved transform does. Perhaps
it is simply the so-called identity transform, which is a transform that doesn’t modify the
coordinates to which it is applied. Or there might already be another transform in place, such
as a coordinate transform that affects the scene as a whole. The modeling transform for the
object is effectively applied in addition to any other transform that was specified previously.
The modeling transform moves the object from its natural coordinates into its proper place in
the scene. Then on top of that, a coordinate transform that is applied to the scene as a whole
would carry the object along with it.

Now let’s extend this idea. Suppose that the object that we want to draw is itself a complex
entity, made up of a number of smaller objects. Think, for example, of a potted flower made
up of pot, stem, leaves, and bloom. We would like to be able to draw the smaller component
objects in their own natural coordinate systems, just as we do the main object. For example,
we would like to specify the bloom in a coordinate system in which the center of the bloom is
at (0,0). But this is easy: We draw each small component object, such as the bloom, in its own
coordinate system, and use a modeling transformation to move the sub-object into position
within the main object. We are composing the complex object in its own natural coordinate
system as if it were a complete scene.

On top of that, we can apply another modeling transformation to the complex object as
a whole, to move it into the actual scene; the sub-objects of the complex object are carried
along with it. That is, the overall transformation that applies to a sub-object consists of a
modeling transformation that places the sub-object into the complex object, followed by the
transformation that places the complex object into the scene.

In fact, we can build objects that are made up of smaller objects which in turn are made
up of even smaller objects, to any level. For example, we could draw the bloom’s petals in
their own coordinate systems, then apply modeling transformations to place the petals into the
natural coordinate system for the bloom. There will be another transformation that moves the
bloom into position on the stem, and yet another transformation that places the entire potted
flower into the scene. This is hierarchical modeling.

Let’s look at a little example. Suppose that we want to draw a simple 2D image of a cart
with two wheels.

This cart is used as one part of a complex scene in an example below. The body of the cart can
be drawn as a pair of rectangles. For the wheels, suppose that we have written a subroutine

drawWheel ()

that draws a wheel. This subroutine draws the wheel in its own natural coordinate system. In
this coordinate system, the wheel is centered at (0,0) and has radius 1.

In the cart’s coordinate system, I found it convenient to use the midpoint of the base of
the large rectangle as the reference point. I assume that the positive direction of the y-axis
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points upward, which is the common convention in mathematics. The rectangular body of the
cart has width 6 and height 2, so the coordinates of the lower left corner of the rectangle are
(-3,0), and we can draw it with a command such as fillRectangle(-3,0,6,2). The top of the cart
is a smaller red rectangle, which can be drawn in a similar way. To complete the cart, we need
to add two wheels to the object. To make the size of the wheels fit the cart, they need to be
scaled. To place them in the correct positions relative to body of the cart, one wheel must be
translated to the left and the other wheel, to the right. When I coded this example, I had to
play around with the numbers to get the right sizes and positions for the wheels, and I found
that the wheels looked better if I also moved them down a bit. Using the usual techniques of
hierarchical modeling, we save the current transform before drawing each wheel, and we restore
it after drawing the wheel. This restricts the effect of the modeling transformation for the wheel
to that wheel alone, so that it does not affect any other part of the cart. Here is pseudocode
for a subroutine that draws the cart in its own coordinate system:

subroutine drawCart()

saveTransform() // save the current transform
translate(-1.65,-0.1) // center of first wheel will be at (-1.65,-0.1)
scale(0.8,0.8) // scale to reduce radius from 1 to 0.8
drawWheel () // draw the first wheel

restoreTransform() // restore the saved transform

saveTransform() // save it again

translate(1.5,-0.1) // center of second wheel will be at (1.5,-0.1)
scale(0.8,0.8) // scale to reduce radius from 1 to 0.8
drawWheel () // draw the second wheel

restoreTransform() // restore the transform

setDrawingColor (RED) // use red color to draw the rectangles
fillRectangle(-3, 0, 6, 2) // draw the body of the cart

fillRectangle(-2.3, 1, 2.6, 1) // draw the top of the cart

It’s important to note that the same subroutine is used to draw both wheels. The reason that
two wheels appear in the picture in different positions is that different modeling transformations
are in effect for the two subroutine calls.

Once we have this cart-drawing subroutine, we can use it to add a cart to a scene. When
we do this, we apply another modeling transformation to the cart as a whole. Indeed, we could
add several carts to the scene, if we wanted, by calling the drawCart subroutine several times
with different modeling transformations.

You should notice the analogy here: Building up a complex scene out of objects is similar
to building up a complex program out of subroutines. In both cases, you can work on pieces of
the problem separately, you can compose a solution to a big problem from solutions to smaller
problems, and once you have solved a problem, you can reuse that solution in several places.

The demo ¢2/cart-and-windmills.html uses the cart in an animated scene. Here’s one of the
frames from that demo:
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You can probably guess how hierarchical modeling is used to draw the three windmills in
this example. There is a drawWindmill method that draws a windmill in its own coordinate
system. Each of the windmills in the scene is then produced by applying a different modeling
transform to the standard windmill. Furthermore, the windmill is itself a complex object that
is constructed from several sub-objects using various modeling transformations.

S S 3

It might not be so easy to see how different parts of the scene can be animated. In fact,
animation is just another aspect of modeling. A computer animation consists of a sequence
of frames. Each frame is a separate image, with small changes from one frame to the next.
From our point of view, each frame is a separate scene and has to be drawn separately. The
same object can appear in many frames. To animate the object, we can simply apply a different
modeling transformation to the object in each frame. The parameters used in the transformation
can be computed from the current time or from the frame number. To make a cart move from
left to right, for example, we might apply a modeling transformation

translate( frameNumber * 0.1, 0 )

to the cart, where frameNumber is the frame number. In each frame, the cart will be 0.1 units
farther to the right than in the previous frame. (In fact, in the actual program, the translation
that is applied to the cart is

translate( -3 + 13%(frameNumber % 300) / 300.0, O )

which moves the reference point of the cart from -3 to 13 along the horizontal axis every 300
frames. In the coordinate system that is used for the scene, the x-coordinate ranges from 0 to
7, so this puts the cart outside the scene for much of the loop.)

The really neat thing is that this type of animation works with hierarchical modeling.
For example, the drawWindmill method doesn’t just draw a windmill—it draws an animated
windmill, with turning vanes. That just means that the rotation applied to the vanes depends
on the frame number. When a modeling transformation is applied to the windmill, the rotating
vanes are scaled and moved as part of the object as a whole. This is an example of hierarchical
modeling. The vanes are sub-objects of the windmill. The rotation of the vanes is part of

(Demo)
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the modeling transformation that places the vanes into the windmill object. Then a further
modeling transformation is applied to the windmill object to place it in the scene.

The file java2d/HierarchicalModeling2D.java contains the complete source code for a Java
version of this example. The next section of this book covers graphics programming in Java.
Once you are familiar with that, you should take a look at the source code, especially the
paintComponent() method, which draws the entire scene. The same example, using the same
scene graph API, is implemented in JavaScript in canvas2d/HierarchicalModel2D.html.

2.4.2 Scene Graphs

Logically, the components of a complex scene form a structure. In this structure, each object is
associated with the sub-objects that it contains. If the scene is hierarchical, then the structure is
hierarchical. This structure is known as a scene graph. A scene graph is a tree-like structure,
with the root representing the entire scene, the children of the root representing the top-level
objects in the scene, and so on. We can visualize the scene graph for our sample scene:

.

CART
WHEEL WINDMILL
N
(12)
(12)
GROUND
FILLED
LINE SQUARE -
VANE

In this drawing, a single object can have several connections to one or more parent objects.
Each connection represents one occurrence of the object in its parent object. For example, the
“filled square” object occurs as a sub-object in the cart and in the windmill. It is used twice in
the cart and once in the windmill. (The cart contains two red rectangles, which are created as
squares with a non-uniform scaling; the pole of the windmill is made as a scaled square.) The
“filled circle” is used in the sun and is used twice in the wheel. The “line” is used 12 times in
the sun and 12 times in the wheel; I've drawn one thick arrow, marked with a 12, to represent
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12 connections. The wheel, in turn, is used twice in the cart. (My diagram leaves out, for lack
of space, two occurrences of the filled square in the scene: It is used to make the road and the
line down the middle of the road.)

Each arrow in the picture can be associated with a modeling transformation that places
the sub-object into its parent object. When an object contains several copies of a sub-object,
each arrow connecting the sub-object to the object will have a different associated modeling
transformation. The object is the same for each copy; only the transformation differs.

Although the scene graph exists conceptually, in some applications it exists only implicitly.
For example, the Java version of the program that was mentioned above draws the image
“procedurally,” that is, by calling subroutines. There is no data structure to represent the
scene graph. Instead, the scene graph is implicit in the sequence of subroutine calls that
draw the scene. Each node in the graph is a subroutine, and each arrow is a subroutine
call. The various objects are drawn using different modeling transformations. As discussed in
Subsection 2.3.8, the computer only keeps track of a “current transformation” that represents
all the transforms that are applied to an object. When an object is drawn by a subroutine, the
program saves the current transformation before calling the subroutine. After the subroutine
returns, the saved transformation is restored. Inside the subroutine, the object is drawn in
its own coordinate system, possibly calling other subroutines to draw sub-objects with their
own modeling transformations. Those extra transformations will have no effect outside of the
subroutine, since the transform that is in effect before the subroutine is called will be restored
after the subroutine returns.

It is also possible for a scene graph to be represented by an actual data structure in the
program. In an object-oriented approach, the graphical objects in the scene are represented
by program objects. There are many ways to build an object-oriented scene graph API. For a
simple example implemented in Java, you can take a look at java2d/SceneGraphAPI2D.java.
This program draws the same animated scene as the previous example, but it represents the
scene with an object-oriented data structure rather than procedurally. The same scene graph
APT is implemented in JavaScript in the live demo ¢2/cart-and-windmills.html, and you might
take a look at its source code after you read about HI'ML canvas graphics in Section 2.6.

In the example program, both in Java and in JavaScript, a node in the scene graph is
represented by an object belonging to a class named SceneGraphNode. SceneGraphNode is an
abstract class, and actual nodes in the scene graph are defined by subclasses of that class. For
example, there is a subclass named CompoundObject to represent a complex graphical object
that is made up of sub-objects. A variable, 0bj, of type CompoundObject includes a method
obj.add(subobj) for adding a sub-object to the compound object.

When implementing a scene graph as a data structure made up of objects, a decision has
to be made about how to handle transforms. One option is to allow transformations to be
associated with any node in the scene graph. In this case, however, I decided to use special
nodes to represent transforms as objects of type TransformedObject. A TransformedObject
is a SceneGraphNode that contains a link to another SceneGraphNode and also contains a
modeling transformation that is to be applied to that object. The modeling transformation
is given in terms of scaling, rotation, and translation amounts that are instance variables in
the object. It is worth noting that these are always applied in the order scale, then rotate,
then translate, no matter what order the instance variables are set in the code. If you want to
do a translation followed by a rotation, you will need two TransformedObjects to implement it,
since a translation plus a rotation in the same TransformedObject would be applied in the order
rotate-then-translate. It is also worth noting that the setter methods for the scaling, rotation,
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and translation have a return value that is equal to the object. This makes it possible to chain
calls to the methods into a single statement such as

transformedObject.setScale(5,2) .setTranslation(3.5,0);

and even say things like

world.add(
new TransformedObject(windmill) .setScale(0.4,0.4).setTranslation(2.2,1.3)
);
This type of chaining can make for more compact code and can eliminate the need for a lot of
extra temporary variables.

Another decision has to be made about how to handle color. One possibility would be to
make a ColoredObject class similar to TransformedObject. However, in this case I just added
a setColor() method to the main ScreenGraphNode class. A color that is set on a compound
object is inherited by any sub-objects, unless a different color is set on the sub-object. In other
words, a color on a compound object acts as a default color for its sub-objects, but color can
be overridden on the sub-objects.

In addition to compound objects and transformed objects, we need scene graph nodes to
represent the basic graphical objects that occupy the bottom level of the scene graph. These
are the nodes that do the actual drawing in the end.

For those who are familiar with data structures, I will note that a scene graph is actually
an example of a “directed acyclic graph” or “dag.” The process of drawing the scene involves
a traversal of this dag. The term “acyclic” means that there can’t be cycles in the graph. For
a scene graph, this is the obvious requirement that an object cannot be a sub-object, either
directly or indirectly, of itself.

2.4.3 The Transform Stack

Suppose that you write a subroutine to draw an object. At the beginning of the subroutine,
you use a routine such as saveTransform() to save a copy of the current transform. At the end
of the subroutine, you call restore Transform() to reset the current transform back to the value
that was saved. Now, in order for this to work correctly for hierarchical graphics, these routines
must actually use a stack of transforms. (Recall that a stack is simply a list where items can
be added, or “pushed,” onto one end of the list and removed, or “popped,” from the same end.)
The problem is that when drawing a complex object, one subroutine can call other subroutines.
This means that several drawing subroutines can be active at the same time, each with its own
saved transform. When a transform is saved after another transform has already been saved,
the system needs to remember both transforms. When restore Transform() is called, it is the
most recently saved transform that should be restored.

A stack has exactly the structure that is needed to implement these operations. Before you
start drawing an object, you would push the current transform onto the stack. After drawing
the object, you would pop the transform from the stack. Between those two operations, if the
object is hierarchical, the transforms for its sub-objects will have been pushed onto and popped
from the stack as needed.

Some graphics APIs come with transform stacks already defined. For example, the original
OpenGL API includes the functions glPushMatriz() and glPopMatriz() for using a stack of
transformation matrices that is built into OpenGL. The Java Graphics2D API does not include
a built-in stack of transforms, but it does have methods for getting and setting the current
transform, and the get and set methods can be used with an explicit stack data structure to
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implement the necessary operations. When we turn to the HTML canvas API for 2D graphics,
we’ll see that it includes functions named save() and restore() that are actually push and pop
operations on a stack. These functions are essential to implementing hierarchical graphics for
an HTML canvas.

Let’s try to bring this all together by considering how it applies to a simple object in a
complex scene: one of the filled circles that is part of the front wheel on the cart in our example
scene. Here, I have rearranged part of the scene graph for that scene, and I've added labels to
show the modeling transformations that are applied to each object:

scale(0.3, 0.3)
scale(2, 2) translate(dx, 0)

/~ N

@ & ¥

WHEEL CART

scale(0.8, 0.8)
translate(1.65, 0)
rotate(r)

The rotation amount for the wheel and the translation amount for the cart are shown as
variables, since they are different in different frames of the animation. When the computer
starts drawing the scene, the modeling transform that is in effect is the identity transform,
that is, no transform at all. As it prepares to draw the cart, it saves a copy of the current
transform (the identity) by pushing it onto the stack. It then modifies the current transform
by multiplying it by the modeling transforms for the cart, scale(0.3,0.3) and translate(dx,0).
When it comes to drawing the wheel, it again pushes the current transform (the modeling
transform for the cart as a whole) onto the stack, and it modifies the current transform to take
the wheel’s modeling transforms into account. Similarly, when it comes to the filled circle, it
saves the modeling transform for the wheel, and then applies the modeling transform for the
circle.

When, finally, the circle is actually drawn in the scene, it is transformed by the combined
transform. That transform places the circle directly into the scene, but it has been composed
from the transform that places the circle into the wheel, the one that places the wheel into the
cart, and the one that places the cart into the scene. After drawing the circle, the computer
replaces the current transform with one it pops from the stack. That will be the modeling
transform for the wheel as a whole, and that transform will be used for any further parts of the
wheel that have to be drawn. When the wheel is done, the transform for the cart is popped.
And when the cart is done, the original transform, the identity, is popped. When the computer
goes onto the next object in the scene, it starts the whole process again, with the identity
transform as the starting point.

This might sound complicated, but I should emphasize that it is something that the
computer does for you. Your responsibility is simply to design the individual objects, in their
own natural coordinate system. As part of that, you specify the modeling transformations that
are applied to the sub-objects of that object. You construct the scene as a whole in a similar
way. The computer will then put everything together for you, taking into account the many
layers of hierarchical structure. You only have to deal with one component of the structure at
a time. That’s the power of hierarchical design; that’s how it helps you deal with complexity.
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2.5 Java Graphics2D

IN THE REST OF THIS chapter, we look at specific implementations of two-dimensional graphics.
There are a few new ideas here, but mostly you will see how the general concepts that we have
covered are used in several real graphics systems.

In this section, our focus is on the Java programming language. Java remains one of the
most popular programming languages. Its standard desktop version includes a sophisticated
2D graphics API, which is our topic here. Before reading this section, you should already know
the basics of Java programming. But even if you don’t, you should be able to follow most
of the discussion of the graphics APT itself. (See Section A.1 in Appendix A for a very basic
introduction to Java.)

The graphics API that is discussed here is part of Swing, an API for graphical user interface
programming that is included as part of the standard distribution of Java. Many Java programs
are now written using an alternative API called JavaFX, which is not part of the standard
distribution. JavaFX is not discussed in this textbook. Its graphics API is, in fact, quite
similar to the API for HTML canvas graphics, which is discussed in Section 2.6.

The original version of Java had a much smaller graphics API. It was tightly focused on
pixels, and it used only integer coordinates. The API had subroutines for stroking and filling a
variety of basic shapes, including lines, rectangles, ovals, and polygons (although Java uses the
term draw instead of stroke). Its specification of the meaning of drawing operations was very
precise on the pixel level. Integer coordinates are defined to refer to the lines between pixels.
For example, a 12-by-8 pixel grid has z-coordinates from 0 to 12 and y-coordinates from 0 to
8, as shown below. The lines between pixels are numbered, not the pixels.

0 3 8 12 0 3 8 12
0 0
| - |
5 5
8 8

The command fillRect(3,2,5,3) fills the rectangle with upper left corner at (3,2), with width 5,
and with height 3, as shown on the left above. The command drawRect(3,2,5,3) conceptually
drags a “pen” around the outline of this rectangle. However, the pen is a 1-pixel square, and
it is the upper left corner of the pen that moves along the outline. As the pen moves along
the right edge of the rectangle, the pixels to the right of that edge are colored; as the pen
moves along the bottom edge, the pixels below the edge are colored. The result is as shown
on the right above. My point here is not to belabor the details, but to point out that having
a precise specification of the meaning of graphical operations gives you very fine control over
what happens on the pixel level.

Java’s original graphics did not support things like real-number coordinates, transforms,
antialiasing, or gradients. Just a few years after Java was first introduced, a new graphics API
was added that does support all of these. It is that more advanced API that we will look at
here.
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2.5.1 Graphics2D

Java is an object-oriented language. Its API is defined as a large set of classes, The actual
drawing operations in the original graphics API were mostly contained in the class named
Graphics. In the newer Swing API, drawing operations are methods in a class named Graphics2D,
which is a subclass of Graphics, so that all the original drawing operations are still available.
(A class in Java is contained in a collection of classes known as a “package.” Graphics and
Graphics2D, for example, are in the package named java.awt. Classes that define shapes and
transforms are in a package named java.awt.geom.)

A graphics system needs a place to draw. In Java, the drawing surface is often an object
of the class JPanel, which represents a rectangular area on the screen. The JPanel class has a
method named paintComponent() to draw its content. To create a drawing surface, you can
create a subclass of JPanel and provide a definition for its paintComponent() method. All
drawing should be done inside paintComponent(); when it is necessary to change the contents
of the drawing, you can call the panel’s repaint() method to trigger a call to paintComponent|().
The paintComponent() method has a parameter of type Graphics, but the parameter that is
passed to the method is actually an object of type Graphics2D, and it can be type-cast to
Graphics2D to obtain access to the more advanced graphics capabilities. So, the definition of
the paintComponent() method usually looks something like this:

protected void paintComponent( Graphics g ) {
Graphics2D g2;
g2 = (Graphics2D)g; // Type-cast the parameter to Graphics2D.

// Draw using g2.

3

In the rest of this section, I will assume that g2 is a variable of type Graphics2D, and 1 will
discuss some of the things that you can do with it. As a first example, I note that Graphics2D
supports antialiasing, but it is not turned on by default. It can be enabled in a graphics context
g2 with the rather intimidating command

g2.setRenderingHint (RenderingHints .KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS ON);

For simple examples of graphics in complete Java programs, you can look at the sample
programs java2d/GraphicsStarter.java and java2d/AnimationStarter.java. They provide very
minimal frameworks for drawing static and animated images, respectively, using Graphics2D.
The program java2d/EventsStarter.java is a similar framework for working with mouse and key
events in a graphics program. You can use these programs as the basis for some experimentation
if you want to explore Java graphics.

2.5.2 Shapes

Drawing with the original Graphics class is done using integer coordinates, with the measurement
given in pixels. This works well in the standard coordinate system, but is not appropriate when
real-number coordinates are used, since the unit of measure in such a coordinate system will
not be equal to a pixel. We need to be able to specify shapes using real numbers. The Java
package java.awt.geom provides support for shapes defined using real number coordinates. For
example, the class Line2D in that package represents line segments whose endpoints are given
as pairs of real numbers.


http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/java2d/GraphicsStarter.java
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/java2d/AnimationStarter.java
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/java2d/EventsStarter.java
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Now, Java has two real number types: double and float. The double type can represent a
larger range of numbers than float, with a greater number of significant digits, and double is
the more commonly used type. In fact, doubles are simply easier to use in Java. However, float
values generally have enough accuracy for graphics applications, and they have the advantage
of taking up less space in memory. Furthermore, computer graphics hardware often uses float
values internally.

So, given these considerations, the java.awt.geom package actually provides two versions
of each shape, one using coordinates of type float and one using coordinates of type double.
This is done in a rather strange way. Taking Line2D as an example, the class Line2D itself
is an abstract class. It has two subclasses, one that represents lines using float coordinates
and one using double coordinates. The strangest part is that these subclasses are defined
as nested classes inside Line2D: Line2D.Float and Line2D.Double. This means that you can
declare a variable of type Line2D, but to create an object, you need to use Line2D.Double or
Line2D.Float:

Line2D linel, line2;
linel = new Line2D.Double(1,2,5,7); // Line from (1.0,2.0) to (5.0,7.0)
line2 = new Line2D.Float(2.7F,3.1F,1.5F,7.1F); // (2.7,3.1) to (1.5,7.1)

Note that when using constants of type float in Java, you have to add “F” as a suffix to the
value. This is one reason why doubles are easier in Java. For simplicity, you might want to
stick to using Line2D.Double. However, Line2D.Float might give slightly better performance.

S 3

Let’s take a look at some of the other classes from java.awt.geom. The abstract class
Point2D—with its concrete subclasses Point2D.Double and Point2D.Float—represents a point
in two dimensions, specified by two real number coordinates. A point is not a shape;
you can’t fill or stroke it. A point can be constructed from two real numbers (“new
Point2D.Double(1.2,3.7)”). If p is a variable of type Point2D, you can use p.getX () and
p.getY () to retrieve its coordinates, and you can use p.setX (z), p.setY (y), or p.setLocation(z,y)
to set its coordinates. If pd is a variable of type Point2D.Double, you can also refer directly to the
coordinates as pd.z and pd.y (and similarly for Point2D.Float). Other classes in java.awt.geom
offer a similar variety of ways to manipulate their properties, and I won’t try to list them all
here.

There is a variety of classes that represent geometric shapes, including Line2D, Rectangle2D,
RoundRectangle2D, Ellipse2D, Arc2D, and Path2D. All of these are abstract classes, and each of
them contains a pair of subclasses such as Rectangle2D.Double and Rectangle2D.Float. Some
shapes, such as rectangles, have interiors that can be filled; such shapes also have outlines that
can be stroked. Some shapes, such as lines, are purely one-dimensional and can only be stroked.

Aside from lines, rectangles are probably the simplest shapes. A Rectangle2D has
a corner point (z,y), a width, and a height, and can be constructed from that data
(“new Rectangle2D.Double(x,y,w,h)”). The corner point (z,y) specifies the minimum z-
and y-values in the rectangle. For the usual pixel coordinate system, (z,y) is the upper left
corner. However, in a coordinate system in which the minimum value of y is at the bottom,
(z,y) would be the lower left corner. The sides of the rectangle are parallel to the coordinate
axes. A variable r of type Rectangle2D.Double has public instance variables r.z, r.y, r.width,
and r.height. If the width or the height is less than or equal to zero, nothing will be drawn
when the rectangle is filled or stroked. A common task is to define a rectangle from two corner
points (z1,y1) and (z2,y2). This can be accomplished by creating a rectangle with height and
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width equal to zero and then adding the second point to the rectangle. Adding a point to a
rectangle causes the rectangle to grow just enough to include that point:

Rectangle2D.Double r = new Rectangle2D.Double(x1,y1,0,0);
r.add(x2,y2);

The classes Line2D, Ellipse2D, RoundRectangle2D and Arc2D create other basic shapes and
work similarly to Rectangle2D. You can check the Java API documentation for details.

The Path2D class is more interesting. It represents general paths made up of segments that
can be lines and Bezier curves. Paths are created using methods similar to the moveTo and
lineTo subroutines that were discussed in Subsection 2.2.3. To create a path, you start by
constructing an object of type Path2D.Double (or Path2D.Float):

Path2D.Double p = new Path2D.Double();

The path p is empty when it is first created. You construct the path by moving an imaginary
“pen” along the path that you want to create. The method p.moveTo(z,y) moves the pen to
the point (x,y) without drawing anything. It is used to specify the initial point of the path or
the starting point of a new piece of the path. The method p.lineTo(z,y) draws a line from the
current pen position to (z,y), leaving the pen at (z,y). The method p.close() can be used to
close the path (or the current piece of the path) by drawing a line back to its starting point.
For example, the following code creates a triangle with vertices at (0,5), (2,-3), and (-4,1):

Path2D.Double p = new Path2D.Double();
p.moveTo(0,5);

p-lineTo(2,-3);

p.-lineTo(-4,1);

p-close(Q);

You can also add Bezier curve segments to a Path2D. Bezier curves were discussed in
Subsection 2.2.3. You can add a cubic Bezier curve to a Path2D p with the method

p.curveTo( cx1, cyl, cx2, cy2, x, y );

This adds a curve segment that starts at the current pen position and ends at (z,y), using
(cxl,cyl) and (cz2,cy2) as the two control points for the curve. The method for adding a
quadratic Bezier curve segment to a path is quadTo. It requires only a single control point:

p.quadTo( cx, cy, %, ¥ );

When a path intersects itself, its interior is determined by looking at the winding number,
as discussed in Subsection 2.2.2. There are two possible rules for determining whether a point
is interior: asking whether the winding number of the curve about that point is non-zero, or
asking whether it is odd. You can set the winding rule used by a Path2D p with

p.setWindingRule( Path2D.WIND_NON_ZERO ) ;
p.setWindingRule( Path2D.WIND_EVEN_ODD ) ;

The default is WIND_NON_ZERO.

Finally, I will note that it is possible to draw a copy of an image into a graphics context. The
image could be loaded from a file or created by the program. I discuss the second possibility
later in this section. An image is represented by an object of type Image. In fact, I will assume
here that the object is of type Bufferedlmage, which is a subclass of Image. If img is such an
object, then

g2.drawImage( img, x, y, null );
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will draw the image with its upper left corner at the point (z,y). (The fourth parameter is hard
to explain, but it should be specified as null for Bufferedlmages.) This draws the image at its
natural width and height, but a different width and height can be specified in the method:

g2.drawImage( img, x, y, width, height, null );
There is also a method for drawing a string of text. The method specifies the string and

the basepoint of the string. (The basepoint is the lower left corner of the string, ignoring
“descenders” like the tail on the letter “g”.) For example,

g2.drawString( "Hello World", 100, 50 );
Images and strings are subject to transforms in the same way as other shapes. Transforms are

the only way to get rotated text and images. As an example, here is what can happen when
you apply a rotation to some text and an image:

The Space Station

2.5.3 Stroke and Fill

Once you have an object that represents a shape, you can fill the shape or stroke it. The
Graphics2D class defines methods for doing this. The method for stroking a shape is called
draw:

g2.fill(shape);
g2.draw(shape) ;

Here, g2 is of type Graphics2D, and shape can be of type Path2D, Line2D, Rectangle2D or any
of the other shape classes. These are often used on a newly created object, when that object
represents a shape that will only be drawn once. For example

g2.draw( new Line2D.Double( -5, -5, 5, 5 ) );

Of course, it is also possible to create shape objects and reuse them many times.

The “pen” that is used for stroking a shape is usually represented by an object of type
BasicStroke. The default stroke has line width equal to 1. That’s one unit in the current
coordinate system, not one pixel. To get a line with a different width, you can install a new
stroke with

g2.setStroke( new BasicStroke(width) );

The width in the constructor is of type float. It is possible to add parameters to the
constructor to control the shape of a stroke at its endpoints and where two segments meet.
(See Subsection 2.2.1.) For example,
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g2.setStroke( new BasicStroke( 5.0F,
BasicStroke.CAP_ROUND, BasicStroke.JOIN_BEVEL) );

It is also possible to make strokes out of dashes and dots, but I won’t discuss how to do it here.
* ok %k

Stroking or filling a shape means setting the colors of certain pixels. In Java, the rule
that is used for coloring those pixels is called a “paint.” Paints can be solid colors, gradients,
or patterns. Like most things in Java, paints are represented by objects. If paint is such an
object, then

g2.setPaint (paint) ;

will set paint to be used in the graphics context g2 for subsequent drawing operations, until
the next time the paint is changed. (There is also an older method, g2.setColor(c), that works
only for colors and is equivalent to calling g2.setPaint(c).)

Solid colors are represented by objects of type Color. A color is represented internally as
an RGBA color. An opaque color, with maximal alpha component, can be created using the
constructor

new Color( r, g, b );

where r, g, and b are integers in the range 0 to 255 that give the red, green, and blue components
of the color. To get a translucent color, you can add an alpha component, also in the range 0
to 255:

new Color( r, b, g, a );

There is also a function, Color.getHSBColor(h,s,b), that creates a color from values in the HSB
color model (which is another name for HSV). In this case, the hue, saturation, and brightness
color components must be given as values of type float. And there are constants to represent
about a dozen common colors, such as Color. WHITE, Color.RED, and Color.YELLOW. For
example, here is how I might draw a square with a black outline and a light blue interior:

Rectangle2D square = new Rectangle2D.Double(-2,-2,4,4);
g2.setPaint( new Color(200,200,255) );

g2.£fi11( square );

g2.setStroke( new BasicStroke(0.1F) );

g2.setPaint ( Color.BLACK );

g2.draw( square );

Beyond solid colors, Java has the class GradientPaint, to represent simple linear gradients,
and TexturePaint to represent pattern fills. (Image patterns used in a similar way in 3D graphics
are called textures.) Gradients and patterns were discussed in Subsection 2.2.2. For these paints,
the color that is applied to a pixel depends on the coordinates of the pixel.

To create a TexturePaint, you need a Bufferedlmage object to specify the image that it will
use as a pattern. You also have to say how coordinates in the image will map to drawing
coordinates in the display. You do this by specifying a rectangle that will hold one copy of the
image. So the constructor takes the form:

new TexturePaint( image, rect );

where image is the Bufferedlmage and rect is a Rectangle2D. Outside that specified rectangle,
the image is repeated horizontally and vertically. The constructor for a GradientPaint takes the
form
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new GradientPaint( x1, yl, colorl, x2, y2, color2, cyclic )

Here, z1, y1, 2, and y2 are values of type float; color! and color2 are of type Color; and cyclic
is boolean. The gradient color will vary along the line segment from the point (z1,y1) to the
point (z2,92). The color is color! at the first endpoint and is color2 at the second endpoint.
Color is constant along lines perpendicular to that line segment. The boolean parameter cyclic
says whether or not the color pattern repeats. As an example, here is a command that will
install a GradientPaint into a graphics context:

g2.setPaint( new GradientPaint( 0,0, Color.BLACK, 200,100, Color.RED, true ) );

You should, by the way, note that the current paint is used for strokes as well as for fills.

The sample Java program java2d/PaintDemo.java displays a polygon filled with a
GradientPaint or a TexturePaint and lets you adjust their properties. The image files
java2d/QueenOfHearts.png and java2d/TinySmiley.png are part of that program, and they
must be in the same location as the compiled class files that make up that program when it is
run.

2.5.4 Transforms

Java implements geometric transformations as methods in the Graphics2D class. For example,
if g2 is a Graphics2D, then calling g2.translate(1,3) will apply a translation by (1,3) to objects
that are drawn after the method is called. The methods that are available correspond to the
transform functions discussed in Section 2.3:

e g2 .scale(sx,sy) — scales by a horizontal scale factor sz and a vertical scale factor sy.

e g2 .rotate(r) — rotates by the angle r about the origin, where the angle is measured in
radians. A positive angle rotates the positive x-axis in the direction of the positive y-axis.

e g2.rotate(r,x,y) — rotates by the angle r about the point (z,y).
e g2.translate(dx,dy) — translates by dx horizontally and dy vertically.

e g2.shear(sx,sy) — applies a horizontal shear amount sz and a vertical shear amount
sy. (Usually, one of the shear amounts is 0, giving a pure horizontal or vertical shear.)

A transform in Java is represented as an object of the class AffineTransform. You can create
a general affine transform with the constructor

AffineTransform trns = new AffineTransform(a,b,c,d,e,f);

The transform trns will transform a point (z,y) to the point (z1,y1) given by

xl = a*x + c*xy + e
yl = b*x + dxy + f;

You can apply the transform trns to a graphics context g2 by calling g2.transform(trns).

The graphics context ¢2 includes the current affine transform, which is the composition of
all the transforms that have been applied. Commands such as g2.rotate and ¢2.transform
modify the current transform. You can get a copy of the current transform by calling
g2.getTransform(), which returns an Affine Transform object. You can set the current transform
using g2.set Transform(trns). This replaces the current transform in g2 with the Affine Transform
trns. (Note that g2.setTransform(trns) is different from g2.transform(trns); the first command
replaces the current transform in ¢2, while the second modifies the current transform by
composing it with ¢rns.)


http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/java2d/PaintDemo.java
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The getTransform and setTransform methods can be used to implement hierarchical
modeling. The idea, as discussed in Section 2.4, is that before drawing an object, you should save
the current transform. After drawing the object, restore the saved transform. Any additional
modeling transformations that are applied while drawing the object and its sub-objects will
have no effect outside the object. In Java, this looks like

AffineTransform savedTransform = g2.getTransform();
drawObject () ;
g2.setTransform( savedTransform );

For hierarchical graphics, we really need a stack of transforms. However, if the hierarchy is
implemented using subroutines, then the above code would be part of a subroutine, and the value
of the local variable savedTransform would be stored on the subroutine call stack. Effectively,
we would be using the subroutine call stack to implement the stack of saved transforms.

In addition to modeling transformations, transforms are used to set up the window-to-
viewport transformation that establishes the coordinate system that will be used for drawing.
This is usually done in Java just after the graphics context has been created, before any drawing
operations. It can be done with a Java version of the apply WindowTo ViewportTransformation
function from Subsection 2.3.7. See the sample program java2d/GraphicsStarter.java for an
example.

S S 3

I will mention one more use for Affine Transform objects: Sometimes, you do need to explicitly
transform coordinates. For example, given object coordinates (z,y), I might need to know where
they will actually end up on the screen, in pixel coordinates. That is, I would like to transform
(z,y) by the current transform to get the corresponding pixel coordinates. The Affine Transform
class has a method for applying the affine transform to a point. It works with objects of type
Point2D. Here is an example:

AffineTransform trns = g2.getTransform();

Point2D.Double originalPoint = new Point2D.Double(x,y);

Point2D.Double transformedPoint = new Point2D.Double();

trns.transform( originalPoint, transformedPoint )R

// transformedPoint now contains the pixel coords corresponding to (x,y)
int pixelX = (int)transformedPoint.x;

int pixelY = (int)transformedPoint.y;

One way I have used this is when working with strings. Often when displaying a string in a
transformed coordinate system, I want to transform the basepoint of a string, but not the string
itself. That is, I want the transformation to affect the location of the string but not its size
or rotation. To accomplish this, I use the above technique to obtain the pixel coordinates for
the transformed basepoint, and then draw the string at those coordinates, using an original,
untransformed graphics context.

The reverse operation is also sometimes necessary. That is, given pixel coordinates (pz,py),
find the point (x,y) that is transformed to (pz,py) by a given affine transform. For example,
when implementing mouse interaction, you will generally know the pixel coordinates of the
mouse, but you will want to find the corresponding point in your own chosen coordinate
system. For that, you need an #nverse transform. The inverse of an affine transform T
is another transform that performs the opposite transformation. That is, if T(x,y) = (px,py),
and if R is the inverse transform, then R(pz,py) = (z,y). In Java, the inverse transform of an
AffineTransform trns can be obtained with
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AffineTransform inverse = trns.createlnverse();

(A final note: The older drawing methods from Graphics, such as drawLine, use integer
coordinates. It’s important to note that any shapes drawn using these older methods are
subject to the same transformation as shapes such as Line2D that are specified with real number
coordinates. For example, drawing a line with g.drawLine(1,2,5,7) will have the same effect as
drawing a Line2D that has endpoints (1.0,2.0) and (5.0,7.0). In fact, all drawing is affected by
the transformation of coordinates.)

2.5.5 BufferedIlmage and Pixels

In some graphics applications, it is useful to be able to work with images that are not visible
on the screen. That is, you need what I call an off-screen canwvas. You also need a way
to quickly copy the off-screen canvas onto the screen. For example, it can be useful to store
a copy of the on-screen image in an off-screen canvas. The canvas is the official copy of the
image. Changes to the image are made to the canvas, then copied to the screen. One reason
to do this is that you can then draw extra stuff on top of the screen image without changing
the official copy. For example, you might draw a box around a selected region in the on-screen
image. You can do this without damaging the official copy in the off-screen canvas. To remove
the box from the screen, you just have to copy the off-screen canvas image onto the screen.

In Java, an off-screen image can be implemented as an object of type Bufferedimage. A
Bufferedlmage represents a region in memory where you can draw, in exactly the same way that
you can draw to the screen. That is, you can obtain a graphics context g2 of type Graphics2D
that you can use for drawing on the image. A Bufferedlmage is an Image, and you can draw it
onto the screen—or into any other graphics context—Ilike any other /Image, that is, by using the
drawImage method of the graphics context where you want to display the image. In a typical
setup, there are variables

BufferedImage 0SC; // The off-screen canvas.
Graphics2D 0SG; // graphics context for drawing to the canvas

The objects are created using, for example,

0sC new BufferedImage( 640, 480, BufferedImage.TYPE_INT RGB );
0SG = 0SC.createGraphics();

The constructor for Bufferedlmage specifies the width and height of the image along with its
type. The type tells what colors can be represented in the image and how they are stored.
Here, the type is TYPE_INT RGB, which means the image uses regular RGB colors with 8 bits for
each color component. The three color components for a pixel are packed into a single integer
value.

In a program that uses a Bufferedlmage to store a copy of the on-screen image, the
paintComponent method generally has the form

protected void paintComponent(Graphics g) {
g.drawImage( 0SC, 0, O, null );
Graphics2D g2 = (Graphics2D)g.create();

. // Draw extra stuff on top of the image.
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A sample program that uses this technique is java2d/JavaPixelManipulation.java. In that
program, the user can draw lines, rectangles, and ovals by dragging the mouse. As the mouse
moves, the shape is drawn between the starting point of the mouse and its current location. As
the mouse moves, parts of the existing image can be repeatedly covered and uncovered, without
changing the existing image. In fact, the image is in an off-screen canvas, and the shape that
the user is drawing is actually drawn by paintComponent over the contents of the canvas. The
shape is not drawn to the official image in the canvas until the user releases the mouse and ends
the drag operation.

But my main reason for writing the program was to illustrate pixel manipulation, that is,
computing with the color components of individual pixels. The Bufferedlmage class has methods
for reading and setting the color of individual pixels. An image consists of rows and columns
of pixels. If OSC is a Bufferedlmage, then

int color = 0SC.getRGB(x,y)

gets the integer that represents the color of the pixel in column number z and row number y.
Fach color component is stored in an 8-bit field in the integer color value. The individual color
components can be extracted for processing using Java’s bit manipulation operators:

int red = (color >> 16) & 255;

int green = (color >> 8) & 255;
int blue = color & 255;

Similarly, given red, green, and blue color component values in the range 0 to 255, we can
combine those component values into a single integer and use it to set the color of a pixel in
the image:

int color = (red << 16) | (green << 8) | blue;
0SC.setRGB(x,y,color);

There are also methods for reading and setting the colors of an entire rectangular region of
pixels.

Pixel operations are used to implement two features of the sample program. First, there is
a “Smudge” tool. When the user drags with this tool, it’s like smearing wet paint. When the
user first clicks the mouse, the color components from a small square of pixels surrounding the
mouse position are copied into arrays. As the user moves the mouse, color from the arrays is
blended into the color of the pixels near the mouse position, while those colors are blended into
the colors in the arrays. Here is a small rectangle that has been “smudged”:

)

The second use of pixel manipulation is in implementing “filters.” A filter, in this program, is
an operation that modifies an image by replacing the color of each pixel with a weighted average
of the colors of a 3-by-3 square of pixels. A “Blur” filter for example, uses equal weights for all
pixels in the average, so the color of a pixel is changed to the simple average of the colors of
that pixel and its neighbors. Using different weights for each pixel can produce some striking
effects.

The pixel manipulation in the sample program produces effects that can’t be achieved with
pure vector graphics. I encourage you to learn more by looking at the source code. You might
also take a look at the live demos in the next section, which implement the same effects using
HTML canvas graphics.
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2.6 HTML Canvas Graphics

MosT MODERN WEB BROWSERS SUPPORT a 2D graphics API that can be used to create images
on a web page. The API is implemented using JavaScript, the client-side programming language
for the web. I won’t cover the JavaScript language in this section. To understand the material
presented here, you don’t need to know much about it. Even if you know nothing about it at
all, you can learn something about its 2D graphics API and see how it is similar to, and how
it differs from, the Java API presented in the previous section. (For a short introduction to
JavaScript, see Section A.3 in Appendix A.)

2.6.1 The 2D Graphics Context

The visible content of a web page is made up of “elements” such as headlines and paragraphs.
The content is specified using the HTML language. A “canvas” is an HTML element. It appears
on the page as a blank rectangular area which can be used as a drawing surface by what I am
calling the “HTML canvas” graphics API. In the source code of a web page, a canvas element
is created with code of the form

<canvas width="800" height="600" id="theCanvas"></canvas>

The width and height give the size of the drawing area, in pixels. The id is an identifier that
can be used to refer to the canvas in JavaScript.

To draw on a canvas, you need a graphics context. A graphics context is an object that
contains functions for drawing shapes. It also contains variables that record the current graphics
state, including things like the current drawing color, transform, and font. Here, I will generally
use graphics as the name of the variable that refers to the graphics context, but the variable
name is, of course, up to the programmer. This graphics context plays the same role in the
canvas API that a variable of type Graphics2D plays in Java. A typical starting point is

canvas = document.getElementById("theCanvas");
graphics = canvas.getContext("2d");

The first line gets a reference to the canvas element on the web page, using its id. The second
line creates the graphics context for that canvas element. (This code will produce an error in a
web browser that doesn’t support canvas, so you might add some error checking such as putting
these commands inside a try. .catch statement.)

Typically, you will store the canvas graphics context in a global variable and use the same
graphics context throughout your program. This is in contrast to Java, where you typically
get a new Graphics2D context each time the paintComponent() method is called, and that
new context is in its initial state with default color and stroke properties and with no applied
transform. When a graphics context is global, changes made to the state in one function call
will carry over to subsequent function calls, unless you do something to limit their effect. This
can actually lead to a fairly common type of bug: For example, if you apply a 30-degree rotation
in a function, those rotations will accumulate each time the function is called, unless you do
something to undo the previous rotation before the function is called again.

The rest of this section will be mostly concerned with describing what you can do with
a canvas graphics context. But here, for the record, is the complete source code for a very
minimal web page that uses canvas graphics:
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<IDOCTYPE html>

<html>
<head>
<title>Canvas Graphics</title>
<script>
let canvas; // DOM object corresponding to the canvas

let graphics; // 2D graphics context for drawing on the canvas

function draw() {
// draw on the canvas, using the graphics context
graphics.fillText ("Hello World", 10, 20);
}

function init() {
canvas = document.getElementById("theCanvas") ;
graphics = canvas.getContext("2d");
draw(); // draw something on the canvas

}
window.onload = init;

</script>
</head>
<body>
<canvas id="theCanvas" width="640" height="480"></canvas>
</body>
</html>

For a more complete, though still minimal, example, you can look at the sample page
canvas2d/GraphicsStarter.html.  (You should look at the page in a browser, but you
should also read the source code.) This example shows how to draw some basic shapes
using canvas graphics, and you can use it as a basis for your own experimentation.
There are also three more advanced “starter” examples: canvas2d/GraphicsPlusStarter.html
adds some wutility functions for drawing shapes and setting up a coordinate system;
canvas2d/AnimationStarter.html adds animation and includes a simple hierarchical modeling
example; and canvas2d/EventsStarter.html shows how to respond to keyboard and mouse
events.

2.6.2 Shapes

The default coordinate system on a canvas is the usual: The unit of measure is one pixel;
(0,0) is at the upper left corner; the z-coordinate increases to the right; and the y-coordinate
increases downward. The range of x and y values is given by the width and height properties
of the <canvas> element. The term “pixel” here for the unit of measure is not really correct.
Probably, I should say something like “one nominal pixel.” The unit of measure is one pixel
at typical desktop resolution with no magnification. If you apply a magnification to a browser
window, the unit of measure gets stretched. And on a high-resolution screen, one unit in the
default coordinate system might correspond to several actual pixels on the display device.
The canvas API supports only a very limited set of basic shapes. In fact, the only basic
shapes are rectangles and text. Other shapes must be created as paths. Shapes can be stroked
and filled. That includes text: When you stroke a string of text, a pen is dragged along the
outlines of the characters; when you fill a string, the insides of the characters are filled. It only
really makes sense to stroke text when the characters are rather large. Here are the functions
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for drawing rectangles and text, where graphics refers to the object that represents the graphics
context:

e graphics.fillRect(x,y,w,h) — draws a filled rectangle with corner at (x,y), with width
w and with height h. If the width or the height is less than or equal to zero, nothing is
drawn.

e graphics.strokeRect (x,y,w,h) — strokes the outline of the same rectangle.

e graphics.clearRect(x,y,w,h) — clears the rectangle by filling it with fully transparent
pixels, allowing the background of the canvas to show. The background is determined by
the properties of the web page on which the canvas appears. It might be a background
color, an image, or even another canvas.

e graphics.fillText(str,x,y) — fills the characters in the string str. The left end of the
baseline of the string is positioned at the point (z,y).

e graphics.strokeText (str,x,y) — strokes the outlines of the characters in the string.

A path can be created using functions in the graphics context. The context keeps track of
a “current path.” In the current version of the API, paths are not represented by objects, and
there is no way to work with more than one path at a time or to keep a copy of a path for later
reuse. Paths can contain lines, Bezier curves, and circular arcs. Here are the most common
functions for working with paths:

e graphics.beginPath() — start a new path. Any previous path is discarded, and the
current path in the graphics context is now empty. Note that the graphics context
also keeps track of the current point, the last point in the current path. After calling
graphics.beginPath(), the current point is undefined.

e graphics.moveTo(x,y) — move the current point to (z,y), without adding anything to
the path. This can be used for the starting point of the path or to start a new, disconnected
segment of the path.

e graphics.lineTo(x,y) — add the line segment starting at current point and ending at
(z,y) to the path, and move the current point to (z,y).

e graphics.bezierCurveTo(cxl,cyl,c2x,cy2,x,y) — add a cubic Bezier curve to the
path. The curve starts at the current point and ends at (z,y). The points (cz1,cyl) and
(cx2,cy2) are the two control points for the curve. (Bezier curves and their control points
were discussed in Subsection 2.2.3.)

e graphics.quadraticCurveTo(cx,cy,x,y) — adds a quadratic Bezier curve from the
current point to (z,y), with control point (cz,cy).

e graphics.arc(x,y,r,startAngle,endAngle) — adds an arc of the circle with center
(z,y) and radius 7. The next two parameters give the starting and ending angle of the arc.
They are measured in radians. The arc extends in the positive direction from the start
angle to the end angle. (The positive rotation direction is from the positive x-axis towards
the positive y-axis; this is clockwise in the default coordinate system.) An optional fifth
parameter can be set to true to get an arc that extends in the negative direction. After
drawing the arc, the current point is at the end of the arc. If there is a current point
before graphics.arc is called, then before the arc is drawn, a line is added to the path that
extends from the current point to the starting point of the arc. (Recall that immediately
after graphics.beginPath(), there is no current point.)
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e graphics.closePath() — adds to the path a line from the current point back to the
starting point of the current segment of the curve. (Recall that you start a new segment
of the curve every time you use moveTo.)

Creating a curve with these commands does not draw anything. To get something visible to
appear in the image, you must fill or stroke the path.

The commands graphics.fill() and graphics.stroke() are used to fill and to stroke the current
path. If you fill a path that has not been closed, the fill algorithm acts as though a final line
segment had been added to close the path. When you stroke a shape, it’s the center of the
virtual pen that moves along the path. So, for high-precision canvas drawing, it’s common
to use paths that pass through the centers of pixels rather than through their corners. For
example, to draw a line that extends from the pixel with coordinates (100,200) to the pixel with
coordinates (300,200), you would actually stroke the geometric line with endpoints (100.5,200.5)
and (100.5,300.5). We should look at some examples. It takes four steps to draw a line:

graphics.beginPath(); // start a new path
graphics.moveTo(100.5,200.5); // starting point of the new path
graphics.1ineTo(300.5,200.5); // add a line to the point (300.5,200.5)
graphics.stroke(); // draw the line

Remember that the line remains as part of the current path until the next time you call
graphics.beginPath(). Here’s how to draw a filled, regular octagon centered at (200,400) and
with radius 100:

graphics.beginPath();

graphics.moveTo (300,400) ;

for (let i =1; 1 < 8; i++) {
let angle = (2*Math.PI)/8 * 1i;
let x = 200 + 100*Math.cos(angle);
let y = 400 + 100*Math.sin(angle);
graphics.lineTo(x,y);

}

graphics.closePath();

graphics.fill();

The function graphics.arc() can be used to draw a circle, with a start angle of 0 and an end
angle of 2*Math.PI. Here’s a filled circle with radius 100, centered at 200,300:

graphics.beginPath();
graphics.arc( 200, 300, 100, O, 2#Math.PI );
graphics.fill();

To draw just the outline of the circle, use graphics.stroke() in place of graphics.fill(). You
can apply both operations to the same path. If you look at the details of graphics.arc(), you
can see how to draw a wedge of a circle:

graphics.beginPath();

graphics.moveTo(200,300); // Move current point to center of the circle.
graphics.arc(200,300,100,0,Math.PI/4); // Arc, plus line from current point.
graphics.1ineTo(200,300); // Line from end of arc back to center of circle.
graphics.fill1(); // Fill the wedge.

There is no way to draw an oval that is not a circle, except by using transforms. We
will cover that later in this section. But JavaScript has the interesting property that it is
possible to add new functions and properties to an existing object. The sample program
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canvas2d/GraphicsPlusStarter.html shows how to add functions to a graphics context for
drawing lines, ovals, and other shapes that are not built into the API.

2.6.3 Stroke and Fill

Attributes such as line width that affect the visual appearance of strokes and fills are stored as
properties of the graphics context. For example, the value of graphics.lineWidth is a number
that represents the width that will be used for strokes. (The width is given in pixels for the
default coordinate system, but it is subject to transforms.) You can change the line width by
assigning a value to this property:

graphics.lineWidth = 2.5; // Change the current width.

The change affects subsequent strokes. You can also read the current value:

saveWidth = graphics.lineWidth; // Save current width.

The property graphics.lineCap controls the appearance of the endpoints of a stroke. It can be
set to “round”, “square”, or “butt”. The quotation marks are part of the value. For example,

graphics.lineCap = "round";

Similarly, graphics.lineJoin controls the appearance of the point where one segment of a stroke
joins another segment; its possible values are “round”, “bevel”, or “miter”. (Line endpoints
and joins were discussed in Subsection 2.2.1.)

Note that the values for graphics.lineCap and graphics.lineJoin are strings. This is a
somewhat unusual aspect of the API. Several other properties of the graphics context take
values that are strings, including the properties that control the colors used for drawing and
the font that is used for drawing text.

Color is controlled by the values of the properties graphics.fillStyle and graphics.strokeStyle.
The graphics context maintains separate styles for filling and for stroking. A solid color for
stroking or filling is specified as a string. Valid color strings are ones that can be used in CSS,
the language that is used to specify colors and other style properties of elements on web pages.
Many solid colors can be specified by their names, such as “red”, “black”, and “beige”. An
RGB color can be specified as a string of the form “rgb(r,g,b)”, where the parentheses contain
three numbers in the range 0 to 255 giving the red, green, and blue components of the color.
Hexadecimal color codes are also supported, in the form “#XXYYZZ” where XX, YY, and ZZ
are two-digit hexadecimal numbers giving the RGB color components. For example,

graphics.fillStyle = "rgb(200,200,255)"; // light blue
graphics.strokeStyle = "#0070A0"; // a darker, greenish blue

The style can actually be more complicated than a simple solid color: Gradients and patterns
are also supported. As an example, a gradient can be created with a series of steps such as

let lineargradient = graphics.createLinearGradient (420,420,550,200) ;
lineargradient.addColorStop(0,"red");
lineargradient.addColorStop(0.5,"yellow") ;
lineargradient.addColorStop (1, "green") ;

graphics.fillStyle = lineargradient; // Use a gradient fill!

The first line creates a linear gradient that will vary in color along the line segment from the
point (420,420) to the point (550,200). Colors for the gradient are specified by the addColorStop
function: the first parameter gives the fraction of the distance from the initial point to the final
point where that color is applied, and the second is a string that specifies the color itself. A
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color stop at 0 specifies the color at the initial point; a color stop at 1 specifies the color at the
final point. Once a gradient has been created, it can be used both as a fill style and as a stroke
style in the graphics context.

Finally, I note that the font that is used for drawing text is the value of the property
graphics.font. The value is a string that could be used to specify a font in CSS. As such, it can
be fairly complicated, but the simplest versions include a font-size (such as 20px or 150%) and
a font-family (such as serif, sans-serif, monospace, or the name of any font that is accessible to
the web page). You can add italic or bold or both to the front of the string. Some examples:

graphics.font = "2cm monospace"; // the size is in centimeters
graphics.font = "bold 18px sans-serif";
graphics.font = "italic 150% serif"; // size is 150% of the usual size

The default is “10px sans-serif,” which is usually too small. Note that text, like all drawing,
is subject to coordinate transforms. Applying a scaling operation changes the size of the text,
and a negative scaling factor can produce mirror-image text.

2.6.4 Transforms

A graphics context has three basic functions for modifying the current transform by scaling,
rotation, and translation. There are also functions that will compose the current transform
with an arbitrary transform and for completely replacing the current transform:

e graphics.scale(sx,sy) — scale by sz in the z-direction and sy in the y-direction.

e graphics.rotate(angle) — rotate by angle radians about the origin. A positive rotation
is clockwise in the default coordinate system.

e graphics.translate(tx,ty) — translate by ¢z in the z-direction and ty in the y-
direction.

e graphics.transform(a,b,c,d,e,f) — apply the affine transform x1 = a*x + c*xy + e,
and y1 = b*x + dxy + f.

e graphics.setTransform(a,b,c,d,e,f) — discard the current transformation, and set
the current transformation to be x1 = a*x + c*y + e, and yl = b*x + d*y + f.

Note that there is no shear transform, but you can apply a shear as a general transform. For
example, for a horizontal shear with shear factor 0.5, use

graphics.transform(1, 0, 0.5, 1, 0, 0)

To implement hierarchical modeling, as discussed in Section 2.4, you need to be able to save
the current transformation so that you can restore it later. Unfortunately, no way is provided
to read the current transformation from a canvas graphics context. However, the graphics
context itself keeps a stack of transformations and provides methods for pushing and popping
the current transformation. In fact, these methods do more than save and restore the current
transformation. They actually save and restore almost the entire state of the graphics context,
including properties such as current colors, line width, and font (but not the current path):

e graphics.save() — push a copy of the current state of the graphics context, including
the current transformation, onto the stack.

e graphics.restore() — remove the top item from the stack, containing a saved state of
the graphics context, and restore the graphics context to that state.

Using these methods, the basic setup for drawing an object with a modeling transform
becomes:
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graphics.save(); // save a copy of the current state
graphics.translate(a,b); // apply modeling transformations
graphics.rotate(r);

graphics.scale(sx,sy);

// Draw the object!

graphics.restore(); // restore the saved state

Note that if drawing the object includes any changes to attributes such as drawing color, those
changes will be also undone by the call to graphics.restore(). In hierarchical graphics, this is
usually what you want, and it eliminates the need to have extra statements for saving and
restoring things like color.

To draw a hierarchical model, you need to traverse a scene graph, either procedurally or
as a data structure. It’s pretty much the same as in Java. In fact, you should see that the
basic concepts that you learned about transformations and modeling carry over to the canvas
graphics API. Those concepts apply very widely and even carry over to 3D graphics APIs,
with just a little added complexity. The sample web page canvas2d/HierarchicalModel2D.html
implements hierarchical modeling using the 2D canvas APL.

x kX

Now that we know how to do transformations, we can see how to draw an oval using the
canvas API. Suppose that we want an oval with center at (z,y), with horizontal radius 7 and
with vertical radius r2. The idea is to draw a circle of radius 1 with center at (0,0), then
transform it. The circle needs to be scaled by a factor of 71 horizontally and r2 vertically. It
should then be translated to move its center from (0,0) to (z,y). We can use graphics.save()
and graphics.restore() to make sure that the transformations only affect the circle. Recalling
that the order of transforms in the code is the opposite of the order in which they are applied
to objects, this becomes:

graphics.save();

graphics.translate( x, y );

graphics.scale( r1, r2 );

graphics.beginPath();

graphics.arc( 0, 0, 1, 0, Math.PI ); // a circle of radius 1
graphics.restore();

graphics.stroke();

Note that the current path is not affected by the calls to graphics.save() and graphics.restore().
So, in the example, the oval-shaped path is not discarded when graphics.restore() is called.
When graphics.stroke() is called at the end, it is the oval-shaped path that is stroked. On the
other hand, the line width that is used for the stroke is not affected by the scale transform that
was applied to the oval. Note that if the order of the last two commands were reversed, then
the line width would be subject to the scaling.

There is an interesting point here about transforms and paths. In the HTML canvas API,
the points that are used to create a path are transformed by the current transformation before
they are saved. That is, they are saved in pixel coordinates. Later, when the path is stroked
or filled, the current transform has no effect on the path (although it can affect, for example,
the line width when the path is stroked). In particular, you can’t make a path and then apply
different transformations. For example, you can’t make an oval-shaped path, and then use it to
draw several ovals in different positions. Every time you draw the oval, it will be in the same
place, even if different translation transforms are applied to the graphics context.
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The situation is different in Java, where the coordinates that are stored in the path are
the actual numbers that are used to specify the path, that is, the object coordinates. When
the path is stroked or filled, the transformation that is in effect at that time is applied to the
path. The path can be reused many times to draw copies with different transformations. This
comment is offered as an example of how APIs that look very similar can have subtle differences.

2.6.5 Auxiliary Canvases

In Subsection 2.5.5, we looked at the sample program java2d/JavaPixelManipulation.java,
which uses a Bufferedlmage both to implement an off-screen canvas and to allow direct
manipulation of the colors of individual pixels. The same ideas can be applied in HTML
canvas graphics, although the way it’s done is a little different. The sample web application
canvas2d/SimplePaintProgram.html does pretty much the same thing as the Java program
(except for the image filters).

The on-line version of this section has a live demo version of the program that has the same
functionality. You can try it out to see how the various drawing tools work. Don’t forget to
try the “Smudge” tool! (It has to be applied to shapes that you have already drawn.)

For JavaScript, a web page is represented as a data structure, defined by a standard called
the DOM, or Document Object model. For an off-screen canvas, we can use a <canvas> that is
not part of that data structure and therefore is not part of the page. In JavaScript, a <canvas>
can be created with the function call document.create Element(“canvas”). There is a way to add
this kind of dynamically created canvas to the DOM for the web page, but it can be used as an
off-screen canvas without doing so. To use it, you have to set its width and height properties,
and you need a graphics context for drawing on it. Here, for example, is some code that creates
a 640-by-480 canvas, gets a graphics context for the canvas, and fills the whole canvas with
white:

0SC = document.createElement("canvas"); // off-screen canvas

0SC.width = 640; // Size of 0SC must be set explicitly.
0SC.height = 480;

0SG = 0SC.getContext("2d"); // Graphics context for drawing on 0SC.

0SG.fillStyle = "white"; // Use the context to fill 0SC with white.
0SG.fillRect(0,0,0SC.width,0SC.height) ;

The sample program lets the user drag the mouse on the canvas to draw some shapes. The
off-screen canvas holds the official copy of the picture, but it is not seen by the user. There is
also an on-screen canvas that the user sees. The off-screen canvas is copied to the on-screen
canvas whenever the picture is modified. While the user is dragging the mouse to draw a line,
oval, or rectangle, the new shape is actually drawn on-screen, over the contents of the off-screen
canvas. It is only added to the off-screen canvas when the user finishes the drag operation. For
the other tools, changes are made directly to the off-screen canvas, and the result is then copied
to the screen. This is an exact imitation of the Java program.

(The demo version mentioned above actually uses a somewhat different technique to
accomplish the same thing. It uses two on-screen canvases, one located exactly on top of the
other. The lower canvas holds the actual image. The upper canvas is completely transparent,
except when the user is drawing a line, oval, or rectangle. While the user is dragging the mouse
to draw such a shape, the new shape is drawn on the upper canvas, where it hides the part of
the lower canvas that is beneath the shape. When the user releases the mouse, the shape is

(Demo)
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added to the lower canvas and the upper canvas is cleared to make it completely transparent
again. Again, the other tools operate directly on the lower canvas.)

2.6.6 Pixel Manipulation

The “Smudge” tool in the sample program and demo is implemented by computing with
the color component values of pixels in the image. The implementation requires some
way to read the colors of pixels in a canvas. That can be done with the function
graphics.getPizelData(x,y,w,h), where graphics is a 2D graphics context for the canvas. The
function reads the colors of a rectangle of pixels, where (z,y) is the upper left corner of the
rectangle, w is its width, and & is its height. The parameters are always expressed in pixel
coordinates. Consider, for example

colors = graphics.getImageData(0,0,20,10)

This returns the color data for a 20-by-10 rectangle in the upper left corner of the canvas. The
return value, colors, is an object with properties colors.width, colors.height, and colors.data.
The width and height give the number of rows and columns of pixels in the returned data.
(According to the documentation, on a high-resolution screen, they might not be the same as
the width and height in the function call. The data can be for real, physical pixels on the
display device, not the “nominal” pixels that are used in the pixel coordinate system on the
canvas. There might be several device pixels for each nominal pixel. I'm not sure whether this
can really happen in practice.)

The value of colors.data is an array, with four array elements for each pixel. The four
elements contain the red, blue, green, and alpha color components of the pixel, given as integers
in the range 0 to 255. For a pixel that lies outside the canvas, the four component values will
all be zero. The array is a value of type Uint8ClampedArray whose elements are 8-bit unsigned
integers limited to the range 0 to 255. This is one of JavaScript’s typed array datatypes,
which can only hold values of a specific numerical type. As an example, suppose that you just
want to read the RGB color of one pixel, at coordinates (z,y). You can set

pixel = graphics.getImageData(x,y,1,1);

Then the RGB color components for the pixel are R = pizel.data[0], G = pizel.data[l], and B
= pizel.data[2].

The function graphics.putImageData(imageData,z,y) is used to copy the colors from an
image data object into a canvas, placing it into a rectangle in the canvas with upper left corner
at (x,y). The imageData object can be one that was returned by a call to graphics. getImageData,
possibly with its color data modified. Or you can create a blank image data object by calling
graphics.createImageData(w,h) and fill it with data.

Let’s consider the “Smudge” tool in the sample program. When the user clicks the mouse
with this tool, I use OSG.getImageData to get the color data from a 9-by-9 square of pixels
surrounding the mouse location. OSG is the graphics context for the canvas that contains the
image. Since I want to do real-number arithmetic with color values, I copy the color components
into another typed array, one of type Float32Array, which can hold 32-bit floating point numbers.
Here is the function that I call to do this:

function grabSmudgeData(x, y) { // (x,y) gives mouse location
let colors = 0SG.getImageData(x-5,y-5,9,9);
if (smudgeColorArray == null) {
// Make image data & array the first time this function is called.
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smudgeImageData = 0SG.createImageData(9,9);
smudgeColorArray = new Float32Array(colors.data.length);
¥
for (let i = 0; i < colors.data.length; i++) {
// Copy the color component data into the Float32Array.
smudgeColorArray[i] = colors.datali];

3

The floating point array, smudgeColorArray, will be used for computing new color values for
the image as the mouse moves. The color values from this array will be copied into the image
data object, smudgelmageData, which will then be used to put the color values into the image.
This is done in another function, which is called for each point that is visited as the user drags
the Smudge tool over the canvas:

function swapSmudgeData(x, y) { // (x,y) is new mouse location
let colors = 0SG.getImageData(x-5,y-5,9,9); // get color data from image
for (let i = 0; i < smudgeColorArray.length; i += 4) {
// The color data for one pixel is in the next four array locations.
if (smudgeColorArray[i+3] && colors.datal[i+3]) {
// alpha-components are non-zero; both pixels are in the canvas;
// (getImageData() gets O for the alpha value at pixel coordinates
// that are not actually part of the canvas).
for (let j = i; j < i+3; j++) { // compute new RGB values
let newSmudge = smudgeColorArray[j]*0.8 + colors.datal[jl*0.2;
let newlImage smudgeColorArray[j]1*0.2 + colors.datal[j]*0.8;
smudgeImageData.datal[j] = newImage;
smudgeColorArray[j] = newSmudge;

}
smudgeImageData.data[i+3] = 255; // alpha component
}
else {
// one of the alpha components is zero; set the output
// color to all zeros, "transparent black", which will have
// no effect on the color of the pixel in the canvas.
for (let j = 1i; j <= i+3; j++) {
smudgeImageData.datal[j] = 0;
}
}

}

0SG.putImageData(smudgeImageData,x-5,y-5); // copy new colors into canvas

3

In this function, a new color is computed for each pixel in a 9-by-9 square of pixels around the
mouse location. The color is replaced by a weighted average of the current color of the pixel
and the color of the corresponding pixel in the smudgeColorArray. At the same time, the color
in smudgeColorArray is replaced by a similar weighted average.

It would be worthwhile to try to understand this example to see how pixel-by-pixel
processing of color data can be done. See the source code of the example for more details.
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2.6.7 Images

For another example of pixel manipulation, we can look at image filters that modify an image
by replacing the color of each pixel with a weighted average of the color of that pixel and the
8 pixels that surround it. Depending on the weighting factors that are used, the result can be
as simple as a slightly blurred version of the image, or it can be something more interesting.

The on-line version of this section includes an interactive demo that lets you apply several
different image filters to a variety of images.

The filtering operation in the demo uses the image data functions getImageData,
createImageData, and putImageData that were discussed above. Color data from the entire
image is obtained with a call to getImageData. The results of the averaging computation are
placed in a new image data object, and the resulting image data is copied back to the image
using putImageData.

The remaining question is, where do the original images come from, and how do they get
onto the canvas in the first place? An image on a web page is specified by an element in the
web page source such as

<img src="pic.jpg" width="400" height="300" id="mypic">

The src attribute specifies the URL from which the image is loaded. The optional id can be
used to reference the image in JavaScript. In the script,

image = document.getElementById("mypic");

gets a reference to the object that represents the image in the document structure. Once you
have such an object, you can use it to draw the image on a canvas. If graphics is a graphics
context for the canvas, then

graphics.drawImage (image, x, y);

draws the image with its upper left corner at (z,y). Both the point (z,y) and the image itself
are transformed by any transformation in effect in the graphics context. This will draw the
image using its natural width and height (scaled by the transformation, if any). You can also
specify the width and height of the rectangle in which the image is drawn:

graphics.drawImage (image, x, y, width, height);

With this version of drawlmage, the image is scaled to fit the specified rectangle.

Now, suppose that the image you want to draw onto the canvas is not part of the web page?
In that case, it is possible to load the image dynamically. This is much like making an off-screen
canvas, but you are making an “off-screen image.” Use the document object to create an img
element:

newImage = document.createElement("img");

An img element needs a src attribute that specifies the URL from which it is to be loaded. For
example,

newlmage.src = "pic2.jpg";

As soon as you assign a value to the src attribute, the browser starts loading the image. The
loading is done asynchronously; that is, the computer continues to execute the script without
waiting for the load to complete. This means that you can’t simply draw the image on the line
after the above assignment statement: The image is very likely not done loading at that time.
You want to draw the image after it has finished loading. For that to happen, you need to
assign a function to the image’s onload property before setting the src. That function will be

(Demo)
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called when the image has been fully loaded. Putting this together, here is a simple JavaScript
function for loading an image from a specified URL and drawing it on a canvas after it has
loaded:

function loadAndDraw( imageURL, x, y ) {
let image = document.createElement("img");
image.onload = donelLoading;
image.src = imageURL;
function doneLoading() {
graphics.drawImage (image, x, y);
}
}

A similar technique is used to load the images in the filter demo.

There is one last mystery to clear up. When discussing the use of an off-screen canvas in the
SimplePaintProgram example earlier in this section, I noted that the contents of the off-screen
canvas have to be copied to the main canvas, but I didn’t say how that can be done. In fact,
it is done using drawlmage. In addition to drawing an image onto a canvas, drawlmage can
be used to draw the contents of one canvas into another canvas. In the sample program, the
command

graphics.drawImage( 0SC, 0, 0 );

is used to draw the off-screen canvas to the main canvas. Here, graphics is a graphics context
for drawing on the main canvas, and OSC' is the object that represents the off-screen canvas.

2.7 SVG: A Scene Description Language

WE FINISH THIS CHAPTER WITH a look at one more 2D graphics system: SVG, or Scalable
Vector Graphics. So far, we have been considering graphics programming APIs. SVG, on
the other hand is a scene description language rather than a programming language.
Where a programming language creates a scene by generating its contents procedurally, a
scene description language specifies a scene “declaratively,” by listing its content. Since SVG is
a vector graphics language, the content of a scene includes shapes, attributes such as color and
line width, and geometric transforms. Most of this should be familiar to you, but it should be
interesting to see it in a new context.

SVG is an XML language, which means it has a very strict and somewhat verbose syntax.
This can make it a little annoying to write, but on the other hand, it makes it possible to read
and understand SVG documents even if you are not familiar with the syntax. It’s possible that
SVG originally stood for “Simple” Vector Graphics, but it is by no means a simple language
at this point. I will cover only a part of it here, and there are many parts of the language and
many options that I will not mention. My goal is to introduce the idea of a scene description
language and to show how such a language can use the same basic ideas that are used in the
rest of this chapter.

SVG can be used as a file format for storing vector graphics images, in much the same way
that PNG and JPEG are file formats for storing pixel-based images. That means that you
can open an SVG file with almost any web browser to view the image. An SVG image can
be included in a web page by using it as the src of an <img> element. That’s how the SVG
examples in the web version of this section are displayed. Since SVG documents are written in
plain text, you can create SVG images using a regular text editor, and you can read the source
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for an SVG image by opening it in a text editor or by viewing the source of the image when it
is displayed in a web browser.

2.7.1 SVG Document Structure

An SVG file, like any XML document, starts with some standard code that almost no one
memorizes. It should just be copied into a new document. Here is some code that can be
copied as a starting point for SVG documents of the type discussed in this section (which,
remember use only a subset of the full SVG specification):

<?7xml version="1.0"7>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://wuw.w3.org/Graphics/SVG/1.1/DTD/svgll.dtd">

<svg version="1.1" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.0rg/1999/x1ink"
width="4in" height="4in"
viewBox="0 0 400 400"
preserveAspectRatio="xMidYMid">

<!-- The scene description goes here! -->
</svg>

The first three lines say that this is an XML SVG document. The rest of the document is an
<svg> element that acts as a container for the entire scene description. You’ll need to know a
little about XML syntax. First, an XML “element” in its general form looks like this:

<elementname attribl="valuel" attrib2="value2">
...content. ..
</elementname>

The element starts with a “start tag,” which begins with a “<” followed by an identifier that
is the name of the tag, and ending with a ”>”. The start tag can include “attributes,” which
have the form name=“value”. The name is an identifier; the value is a string. The value
must be enclosed in single or double quotation marks. The element ends with an “end tag,”
which has an element name that matches the element name in the start tag and has the form
</elementname>. Element names and attribute names are case-sensitive. Between the start
and end tags comes the “content” of the element. The content can consist of text and nested
elements. If an element has no content, you can replace the “>” at the end of the start tag with
“/>” and leave out the end tag. This is called a “self-closing tag.” For example,

<circle cx="B" cy="b" r="4" fill="red"/>

This is an actual SVG element that specifies a circle. It’s easy to forget the “/” at the end of
a self-closing tag, but it has to be there to have a legal XML document.

Looking back at the SVG document, the five lines starting with <svg are just a long start
tag. You can use the tag as shown, and customize the values of the width, height, viewBoz,
and preserveAspectRatio attributes. The next line is a comment; comments in XML start with
“<1-=" and end with “-->".

The width and height attributes of the <svg> tag specify a natural or preferred size for the
image. It can be forced into a different size, for example if it is used in an <img> element on
a web page that specifies a different width and height. The size can be specified using units
of measure such as in for inches, c¢m for centimeters, and pz, for pixels, with 90 pixels to the
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inch. If no unit of measure is specified, pixels are used. There cannot be any space between
the number and the unit of measure.

The viewBozx attribute sets up the coordinate system that will be used for drawing the
image. It is what I called the view window in Subsection 2.3.1. The value for viewBox is a
list of four numbers, giving the minimum z-value, the minimum y-value, the width, and the
height of the view window. The width and the height must be positive, so z increases from
left-to-right, and y increases from top-to-bottom. The four numbers in the list can be separated
either by spaces or by commas; this is typical for lists of numbers in SVG.

Finally, the preserveAspectRatio attribute tells what happens when the aspect ratio of the
viewBox does not match the aspect ratio of the rectangle in which the image is displayed.
The default value, “xMidYMid”, will extend the limts on the viewBox either horizontally or
vertically to preserve the aspect ratio, and the viewBox will appear in the center of the display
rectangle. If you would like your image to stretch to fill the display rectangle, ignoring the aspect
ratio, set the value of preserveAspectRatio to “none”. (The aspect ratio issue was discussed in
Subsection 2.3.7.)

Let’s look at a complete SVG document that draws a few simple shapes. Here’s the
document. You could probably figure out what it draws even without knowing any more
about SVG:

<?xml version="1.0"7>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svgll.dtd">

<svg version="1.1" xmlns="http://www.w3.org/2000/svg"
xmlns:xlink="http://www.w3.org/1999/x1ink"
width="300px" height="200px"
viewBox="0 0 3 2"
preserveAspectRatio="xMidYMid">

<rect x="0" y="0" width="3" height="2"
stroke="blue" fill="none" stroke-width="0.05"/>

<text x="0.2" y="0.5" font-size="0.4" fill="red">Hello World!</text>
<line x1="0.1" y1="0.7" x2="2.9" y2="0.7" stroke-width="0.05" stroke="blue"/>
<ellipse cx="1.5" cy="1.4" rx=".6" ry=".4" fill="rgb(0,255,180)"/>
<circle cx="0.4" cy="1.4" r="0.3"

fill="magenta" stroke="black" stroke-width="0.03"/>
<polygon points="2.2,1.7 2.4,1 2.9,1.7"

fill="none" stroke="green" stroke-width="0.02"/>

</svg>

and here’s the image that is produced by this example:

Hello World!

@/
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In the drawing coordinate system for this example, x ranges from 0 to 3, and y ranges from
0 to 2. All values used for drawing, including stroke width and font size, are given in terms
of this coordinate system. Remember that you can use any coordinate system that you find
convenient! Note, by the way, that parts of the image that are not covered by the shapes that
are drawn will be transparent.

Here’s another example, with a larger variety of shapes. The source code for this example
has a lot of comments. It uses features that we will discuss in the remainer of this section.

O A N—

You can take a look at the source code, svg/svg-starter.svg. (For example, open it in a text
editor, or open it in a web browser and use the browser’s “view source” command.)

2.7.2 Shapes, Styles, and Transforms

In SVG, a basic shape is specified by an element in which the tag name gives the shape, and
attributes give the properties of the shape. There are attributes to specify the geometry, such
as the endpoints of a line or the radius of a circle. Other attributes specify style properties,
such as fill color and line width. (The style properties are what I call attributes elsewhere in
this book; in this section, I am using the term “attribute” in its XML sense.) And there is a
transform attribute that can be used to apply a geometric transform to the shape.

For a detailed example, consider the rect element, which specifies a rectangle. The geometry
of the rectangle is given by attributes named z, y, width and height in the usual way. The default
value for z and y is zero; that is, they are optional, and leaving them out is the same as setting
their value to zero. The width and the height are required attributes. Their values must be
non-negative. For example, the element

<rect width="3" height="2"/>
specifies a rectangle with corner at (0,0), width 3, and height 2, while
<rect x="100" y="200" height="480" width="640"/>

gives a rectangle with corner at (100,200), width 640, and height 480. (Note, by the way, that
the attributes in an XML element can be given in any order.) The rect element also has optional
attributes rx and ry that can be used to make “roundRects,” with their corners replaced by
elliptical arcs. The values of rz and ry give the horizontal and vertical radii of the elliptical
arcs.
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Style attributes can be added to say how the shape should be stroked and filled. The default
is to use a black fill and no stroke. (More precisely, as we will see later, the default is for a
shape to inherit the values of style attributes from its environment. Black fill and no stroke is
the initial environment.) Here are some common style attributes:

e £i11 — specifies how to fill the shape. The value can be “none” to indicate that the
shape is not filled. It can be a color, in the same format as the CSS colors that are used in
the HTML canvas API. For example, it can be a common color name such as “black” or
“red”, or an RGB color such as “rgb(255,200,180)”. There are also gradient and pattern
fills, though I will not discuss them here.

e stroke — specifies how to stroke the shape, with the same possible values as “fill”.

e stroke-opacity and fill-opacity — are numbers between 0.0 and 1.0 that specify the
opacity of the stroke and fill. Values less than 1.0 give a translucent stroke or fill. The
default value, 1.0, means fully opaque.

e stroke-width — is a number that sets the line width to use for the stroke. Note that the
line width is subject to transforms. The default value is 71”7, which is fine if the coordinate
system is using pixels as the unit of measure, but often too wide in custom coordinate
systems.

e stroke-linecap — determines the appearance of the endpoints of a stroke. The value
can be “square”, “round”, or “butt”. The default is “butt”. (See Subsection 2.2.1 for a
discussion of line caps and joins.)

e stroke-linejoin — determines the appearance of points where two segments of a stroke

meet. The values can be “miter”, “round”, or “bevel”. The default is “miter”.

As an example that uses many of these options, let’s make a square that is rounded rather than
pointed at the corners, with size 1, centered at the origin, and using a translucent red fill and
a gray stroke:

<rect x="-0.5" y="-0.5" width="1" height="1"
rx="0.1" ry="0.1"
fill="red" fill-opacity="0.5"
stroke="gray" stroke-width="0.05" stroke-linejoin="round"/>
and a simple outline of a rectangle with no fill:

<rect width="200" height="100" stroke="black" fill="none"/>

X* kX

The transform attribute can be used to apply a transform or a series of transforms to a
shape. As an example, we can make a rectangle tilted 30 degrees from the horizontal:

<rect width="100" height="50" transform="rotate(30)"/>

The value “rotate(30)” represents a rotation of 30 degrees (not radians!) about the origin, (0,0).
The positive direction of rotation, as usual, rotates the positive x-axis in the direction of the
positive y-axis. You can specify a different center of rotation by adding arguments to rotate.
For example, to rotate the same rectangle about its center

<rect width="100" height="50" transform="rotate(30,50,25)"/>
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Translation and scaling work as you probably expect, with transform values of the form
“translate(dr,dy)” and “scale(sz,sy)”. There are also shear transforms, but they go by the
names skewX and skewY, and the argument is a skew angle rather than a shear amount. For
example, the transform “skewX(45)” tilts the y-axis by 45 degrees and is equivalent to an
x-shear with shear factor 1. (The function that tilts the y-axis is called skewX because it
modifies, or skews, the x-coordinates of points while leaving their y-coordinates unchanged.)
For example, we can use skewX to tilt a rectangle and make it into a parallelogram:

<rect width="100" height="50" transform="skewX(-30)"/>

T used an angle of -30 degrees to make the rectangle tilt to the right in the usual pixel coordinate
system.

The value of the transform attribute can be a list of transforms, separated by spaces or
commas. The transforms are applied to the object, as usual, in the opposite of the order in
which they are listed. So,

<rect width="100" height="50"
transform="translate(0,50) rotate(45) skewX(-30)"/>

would first skew the rectangle into a parallelogram, then rotate the parallelogram by 45 degrees
about the origin, then translate it by 50 units in the y-direction.

* kX

In addition to rectangles, SVG has lines, circles, ellipses, and text as basic shapes. Here
are some details. A <line> element represents a line segement and has geometric attributes
z1, y1, 2, and y2 to specify the coordinates of the endpoints of the line segment. These four
attributes have zero as default value, which makes it easier to specify horizontal and vertical
lines. For example,

<line x1="100" x2="300" stroke="black"/>

Without the stroke attribute, you wouldn’t see the line, since the default value for stoke is
“none”.

For a <circle> element, the geometric attributes are cx, cy, and r giving the coordinates
of the center of the circle and the radius. The center coordinates have default values equal to
zero. For an <ellipse> element, the attributes are cx, cy, rz, and ry, where rz and ry give the
radii of the ellipse in the x- and y-directions.

A <text> element is a little different. It has attributes z and y, with default values zero, to
specify the location of the basepoint of the text. However, the text itself is given as the content
of the element rather than as an attribute. That is, the element is divided into a start tag and
an end tag, and the text that will appear in the drawing comes between the start and end tags.
For example,

<text x="10" y="30">This text will appear in the image</text>

The usual stroke and fill attributes apply to text, but text has additional style attributes.
The font-family attribute specifies the font itself. Its value can be one of the generic font
names “serif”, “sans-serif”, “monospace”, or the name of a specific font that is available on the
system. The font-size can be a number giving the (approximate) height of the characters in the
coordinate system. (Font size is subject to coordinate and modeling transforms like any other
length.) You can get bold and italic text by setting font-weight equal to “bold” and font-style
equal to “italic”. Here is an example that uses all of these options, and applies some additional
styles and a transform for good measure:
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<text x="10" y="30"
font-family="sans-serif" font-size="50"
font-style="italic" font-weight="bold"
stroke="black" stroke-width="1" fill="rgb(255,200,0)"
transform="rotate(20)">Hello World</text>

2.7.3 Polygons and Paths

SVG has some nice features for making more complex shapes. The <polygon> element makes
it easy to create a polygon from a list of coordinate pairs. For example,

<polygon points="0,0 100,0 100,75 50,100 0,75"/>

creates a five-sided polygon with vertices at (0,0), (100,0), (100,75), (50,100), and (0,75). Every
pair of numbers in the points attribute specifies a vertex. The numbers can be separated by
either spaces or commas. I've used a mixture of spaces and commas here to make it clear how
the numbers pair up. Of course, you can add the usual style attributes for stroke and fill to
the polygon element. A <polyline> is similar to a <polygon>, except that it leaves out the
last line from the final vertex back to the starting vertex. The difference only shows up when
a polyline is stroked; a polyline is filled as if the missing side were added.

The <path> element is much more interesting. In fact, all of the other basic shapes, except
text, could be made using path elements. A path can consist of line segments, Bezier curves,
and elliptical arcs (although I won’t discuss elliptical arcs here). The syntax for specifying a
path is very succinct, and it has some features that we have not seen before. A path element
has an attribute named d that contains the data for the path. The data consists of one or more
commands, where each command consists of a single letter followed by any data necessary for
the command. The moveTo, lineTo, cubic Bezier, and quadratic Bezier commands that you
are already familiar with are coded by the letters M, L, C, and Q. The command for closing a
path segment is Z, and it requires no data. For example the path data “M 10 20 L 100 200”
would draw a line segment from the point (10,20) to the point (100,200). You can combine
several connected line segments into one L command. For example, the <polygon> example
given above could be created using the <path> element

<path d4="M 0,0 L 100,0 100,75 50,100 0,75 Z"/>

The Z at the end of the data closes the path by adding the final side to the polygon. (Note
that, as usual, you can use either commas or spaces in the data.)

The C command takes six numbers as data, to specify the two control points and the final
endpoint of the cubic Bezier curve segment. You can also give a multiple of six values to get
a connected sequence of curve segements. Similarly, the Q command uses four data values to
specify the control point and final endpoint of the quadratic Bezier curve segment. The large,
curvy, yellow shape shown in the picture earlier in this section was created as a path with two
line segments and two Bezier curve segments:

<path

d="M 20,70 C 150,70 250,350 380,350 L 380,380 C 250,380 150,100 20,100 Z"
fill="yellow" stroke-width="2" stroke="black"/>

SVG paths add flexibility by defining “relative” versions of the path commands, where the
data for the command is given relative to the current position. A relative move command, for
example, instead of telling where to move, tells how far to move from the current position. The
names of the relative versions of the path commands are lower case letters instead of upper
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case. “M 10,20” means to move to the point with coordinates (10,20), while “m 10,20” means
to move 10 units horizontally and 20 units vertically from the current position. Similarly, if the
current position is (z,y), then the command “l 3,57, where the first character is a lower case L,
draws a line from (z,y) to (z+3,y+5).

2.7.4 Hierarchical Models

SVG would not be a very interesting language if it could only work with individual simple
shapes. For complex scenes, we want to be able to do hierarchical modeling, where objects can
be constructed from sub-objects, and a transform can be applied to an entire complex object.
We need a way to group objects so that they can be treated as a unit. For that, SVG has the
<g> element. The content of a <g> element is a list of shape elements, which can be simple
shapes or nested <g> elements.

You can add style and transform attributes to a <g> element. The main point of grouping
is that a group can be treated as a single object. A transform attribute in a <g> will transform
the entire group as a whole. A style attribute, such as fill or font-family, on a <g> element will
set a default value for the group, replacing the current default. Here is an example:

<g fill="none" stroke="black" stroke-width="2" transform="scale(1l,-1)">
<circle r="98"/>
<ellipse cx="40" cy="40" rx="20" ry="7"/>
<ellipse cx="-40" cy="40" rx="20" ry="7"/>
<line y1="20" y2="-10"/>
<path d="M -40,-40 C -30,-50 30,-50 40,-40" stroke-width="4"/>
</g>

The nested shapes use fill=“none” stroke=“black” stroke-width=*2" for the default values
of the attributes. The default can be overridden by specifying a different value for the
element, as is done for the stroke-width of the <path> element in this example. Setting
transform=“scale(1,—1)” for the group flips the entire image vertically. I do this only because I
am more comfortable working in a coordinate system in which y increases from bottom-to-top
rather than top-to-bottom. Here is the simple line drawing of a face that is produced by this

group:

Now, suppose that we want to include multiple copies of an object in a scene. It shouldn’t
be necessary to repeat the code for drawing the object. It would be nice to have something like
reusable subroutines. In fact, SVG has something very similar: You can define reusable objects
inside a <defs> element. An object that is defined inside <defs> is not added to the scene, but
copies of the object can be added to the scene with a single command. For this to work, the
object must have an id attribute to identify it. For example, we could define an object that
looks like a plus sign:
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<defs>
<g id="plus" stroke="black">
<line x1="-20" yi1="O" x2="20" y2="0"/>
<line x1="0" y1="-20" x2="0" y2="20"/>
</g>
</defs>

A <use> element can then be used to add a copy of the plus sign object to the scene. The
syntax is

<use xlink:href="#plus"/>

The value of the zlink:href attribute must be the id of the object, with a “#” character added
at the beginning. (Don’t forget the #. If you leave it out, the <use> element will simply be
ignored.) You can add a transform attribute to the <use> element to apply a transformation
to the copy of the object. You can also apply style attributes, which will be used as default
values for the attributes in the copy. For example, we can draw several plus signs with different
transforms and stroke widths:

<use xlink:href="#plus" transform="translate(50,20)" stroke-width="5"/>
<use xlink:href="#plus" transform="translate(0,30) rotate(45)"/>

Note that we can’t change the color of the plus sign, since it already specifies its own stroke
color.

An object that has been defined in the <defs> section can also be used as a sub-object in
other object definitions. This makes it possible to create a hierarchy with multiple levels. Here
is an example from svg/svg-hierarchy.svg that defines a “wheel” object, then uses two copies
of the wheel as sub-objects in a “cart” object:

<defs>

<!-- Define an object that represents a wheel centered at (0,0) and with
radius 1. The wheel is made out of several filled circles, with
thin rectangles for the spokes. -->

<g id="wheel">
<circle cx="0" cy="0" r="1" fill="black"/>
<circle cx="0" cy="0" r="0.8" fill="lightGray"/>
<rect x="-0.9" y="-0.05" width="1.8" height=".1" fill="black"/>
<rect x="-0.9" y="-0.05" width="1.8" height=".1" fill="black"
transform="rotate(120)"/>
<rect x="-0.9" y="-0.05" width="1.8" height=".1" fill="black"
transform="rotate(240)"/>
<circle cx="0" cy="0" r="0.2" fill="black"/>
</g>

<!-- Define an object that represents a cart made out of two wheels,
with two rectangles for the body of the cart. -->

<g id="cart">
<use xlink:href="#wheel" transform="translate(-1.5,-0.1) scale(0.8,0.8)"/>
<use xlink:href="#wheel" transform="translate(1.5,-0.1) scale(0.8,0.8)"/>
<rect x="-3" y="0" width="6" height="2"/>
<rect x="-2.3" y="1.9" width="2.6" height="1"/>

</g>

</defs>
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The SVG file goes on to add one copy of the wheel and four copies of the cart to the image.
The four carts have different colors and transforms. Here is the image:

» B
¢ [

2.7.5 Animation

SVG has a number of advanced features that I won’t discuss here, but I do want to mention one:
animation. It is possible to animate almost any property of an SVG object, including geometry,
style, and transforms. The syntax for animation is itself fairly complex, and I will only do a few
examples. But I will tell you enough to produce a fairly complex hierarchical animation like
the “cart-and-windmills” example that was discussed and used as a demo in Subsection 2.4.1.
An SVG version of that animation can be found in svg/cart-and-windmills.svg. (But note that
some web browsers do not implement SVG animations correctly or at all.)

Many attributes of a shape element can be animated by adding an <animate> element to
the content of the shape element. Here is an example that makes a rectangle move across the
image from left to right:

<rect x="0" y="210" width="40" height="40">
<animate attributeName="x"
from="0" to="430" dur="T7s"
repeatCount="indefinite"/>

</rect>

Note that the <animate> is nested inside the <rect>. The attributeName attribute tells which
attribute of the <rect> is being animated, in this case, x. The from and to attributes say that
z will take on values from 0 to 430. The dur attribute is the “duration”, that is, how long
the animation lasts; the value “7s” means “7 seconds.” The attribute repeatCount=“indefinite”
means that after the animation completes, it will start over, and it will repeat indefinitely, that
is, as long as the image is displayed. If the repeatCount attribute is omitted, then after the
animation runs once, the rectangle will jump back to its original position and remain there. If
repeatCount is replaced by fill="“freeze”, then after the animation runs, the rectangle will be
frozen in its final position, instead of jumping back to the starting position. The animation
begins when the image first loads. If you want the animation to start at a later time, you can
add a begin attribute whose value gives the time when the animation should start, as a number
of seconds after the image loads.

What if we want the rectangle to move back and forth between its initial and final position?
For that, we need something called keyframe animation, which is an important idea in its
own right. The from and to attributes allow you to specify values only for the beginning and
end of the animation. In a keyframe animation, values are specified at additional times in
the middle of the animation. For a keyframe animation in SVG, the from and to attributes
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are replaced by keyTimes and values. Here is our moving rectangle example, modified to use
keyframes:

<rect x="0" y="210" width="40" height="40">
<animate attributeName="x"
keyTimes="0;0.5;1" values="0;430;0" dur="7s"
repeatCount="indefinite"/>

</rect>

The keyTimes attribute is a list of numbers, separated by semicolons. The numbers are in
the range 0 to 1, and should be in increasing order. The first number should be 0 and the
last number should be 1. A number specifies a time during the animation, as a fraction of the
complete animation. For example, 0.5 is a point half-way through the animation, and 0.75 is
three-quarters of the way. The wvalues attribute is a list of values, with one value for each key
time. In this case, the value for x is 0 at the start of the animation, 430 half-way through the
animation, and 0 again at the end of the animation. Between the key times, the value for z
is obtained by interpolating between the values specified for the key times. The result in this
case is that the rectangle moves from left to right during the first half of the animation and
then back from right to left in the second half.

Transforms can also be animated, but you need to use the <animateTransform> tag instead
of <animate>, and you need to add a type attribute to specify which transform you are
animating, such as “rotate” or “translate”. Here, for example, is a transform animation applied
to a group:

<g transform="scale(0,0)">
<animateTransform attributeName="transform" type="scale"
from="0,0" to="0.4,0.7"
begin="3s" dur="15s" fill="freeze"/>
<rect x="-15" y="0" width="30" height="40" fill="rgb(150,100,0)"/>
<polygon points="-60,40 60,40 0,200" fill="green"/>
</g>

The animation shows a growing “tree” made from a green triangle and a brown rectangle. In
the animation, the transform goes from scale(0,0) to scale(0.4,0.7). The animation starts 3
seconds after the image loads and lasts 15 seconds. At the end of the animation, the tree
freezes at its final scale. The transform attribute on the <g> element specifies the scale that
is in effect until the animation starts. (A scale factor of 0 collapses the object to size zero, so
that it is invisible.) You can find this example, along with a moving rectangle and a keyframe
animation, in the sample file svg/first-svg-animation.svg.

You can create animated objects in the <defs> section of an SVG file, and you can apply
animation to <use> elements. This makes it possible to create hierarchical animations. A
simple example can be found in the sample file svg/hierarchical-animation.svg.

The example shows a rotating hexagon with a rotating square at each vertex of the hexagon.
The hexagon is constructed from six copies of one object, with a different rotation applied to
each copy. (A copy of the basic object is shown in the image to the right of the hexagon.) The
square is defined as an animated object with its own rotation. It is used as a sub-object in the
hexagon. The rotation that is applied to the hexagon applies to the square, on top of its own
built-in rotation. That’s what makes this an example of hierarchical animation.

If you look back at the cart-and-windmills example now, you can probably see how to do
the animation. Don’t forget to check out the source code, which is surprisingly short!


http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/svg/first-svg-animation.svg
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Chapter 3

OpenGL 1.1: Geometry

It 1s TIME TO MOVE on to computer graphics in three dimensions, although it won’t be until
Section 2 of this chapter that we really get into 3D. You will find that many concepts from
2D graphics carry over to 3D, but the move into the third dimension brings with it some new
features that take a while to get used to.

Our focus will be OpenGL, a graphics API that was introduced in 1992 and has gone
through many versions and many changes since then. OpenGL is a low-level graphics API,
similar to the 2D APIs we have covered. It is even more primitive in some ways, but of course
it is complicated by the fact that it supports 3D. OpenGL is the basis for WebGL, the current
standard for 3D applications on the Web that is covered in Chapter 6 and Chapter 7. There are
many competing frameworks for low-level 3D graphics, including Microsoft’s Direct3D, Apple’s
Metal, and Vulkan, which was designed by the creators of OpenGL as a more modern and
efficient replacement.

For the next two chapters, the discussion is limited to OpenGL 1.1. OpenGL 1.1 is a large
API, and we will only cover a part of it. The goal is to introduce 3D graphics concepts, not to
fully cover the API. A significant part of what we cover here has been removed from the most
modern versions of OpenGL, including WebGL. However, more modern graphics APIs have a
very steep initial learning curve, and they are not really the best starting place for someone
who is encountering 3D graphics for the first time. Some additional support is needed—if not
OpenGL 1.1 then some similar framework. Since OpenGL 1.1 is still supported, at least by
all desktop implementations of OpenGL, it’s a reasonable place to start learning about 3D
graphics.

This chapter concentrates on the geometric aspects of 3D graphics, such as defining and
transforming objects and projecting 3D scenes into 2D images. The images that we produce will
look very unrealistic. In the next chapter, we will see how to add some realism by simulating
the effects of lighting and of the material properties of surfaces.

3.1 Shapes and Colors in OpenGL 1.1

T'HIS SECTION INTRODUCES SOME OF the core features of OpenGL. Much of the discussion in
this section is limited to 2D. For now, all you need to know about 3D is that it adds a third
direction to the x and y directions that are used in 2D. By convention, the third direction is
called z. In the default coordinate system, the x and y axes lie in the plane of the image, and
the positive direction of the z-axis points in a direction perpendicular to the image.

In the default coordinate system for OpenGL, the image shows a region of 3D space in which

7



CHAPTER 3. OPENGL 1.1: GEOMETRY 78

z, y, and z all range from minus one to one. To show a different region, you have to apply a
transform. For now, we will just use coordinates that lie between -1 and 1.

A note about programming: OpenGL can be implemented in many different programming
languages, but the API specification more or less assumes that the language is C. (See
Section A.2 for a short introduction to C.) For the most part, the C specification translates
directly into other languages. The main differences are due to the special characteristics of
arrays in the C language. My examples will follow the C syntax, with a few notes about
how things can be different in other languages. Since I'm following the C API, T will refer
to “functions” rather than “subroutines” or “methods.” Section 3.6 explains in detail how to
write OpenGL programs in C and in Java. You will need to consult that section before you
can do any actual programming. The live OpenGL 1.1 demos for this book are written using a
JavaScript simulator that implements a subset of OpenGL 1.1. That simulator is discussed in
Subsection 3.6.3.

3.1.1 OpenGL Primitives

OpenGL can draw only a few basic shapes, including points, lines, and triangles. There is no
built-in support for curves or curved surfaces; they must be approximated by simpler shapes.
The basic shapes are referred to as primitives. A primitive in OpenGL is defined by its vertices.
A vertex is simply a point in 3D, given by its z, y, and z coordinates. Let’s jump right in and
see how to draw a triangle. It takes a few steps:

glBegin (GL_TRIANGLES) ;
glVertex2f( -0.7, -0.5 );
glVertex2f( 0.7, -0.5 );
glVertex2f( 0, 0.7 );
glEnd () ;

Each vertex of the triangle is specified by a call to the function glVertez2f. Vertices must be
specified between calls to glBegin and glEnd. The parameter to glBegin tells which type of
primitive is being drawn. The GL_TRIANGLES primitive allows you to draw more than one
triangle: Just specify three vertices for each triangle that you want to draw. Note that using
glBegin/glEnd is not the preferred way to specify primitives, even in OpenGL 1.1. However,
the alternative, which is covered in Subsection 3.4.2, is more complicated to use. You should
consider glBegin/glEnd to be a convenient way to learn about vertices and their properties, but
not the way that you will actually do things in modern graphics APIs.

(I should note that OpenGL functions actually just send commands to the GPU. OpenGL
can save up batches of commands to transmit together, and the drawing won’t actually be done
until the commands are transmitted. To ensure that that happens, the function glFlush() must
be called. In some cases, this function might be called automatically by an OpenGL API, but
you might well run into times when you have to call it yourself.)

For OpenGL, vertices have three coordinates. The function glVertex2f specifies the z and y
coordinates of the vertex, and the z coordinate is set to zero. There is also a function glVertex3f
that specifies all three coordinates. The “2” or “3” in the name tells how many parameters are
passed to the function. The “f” at the end of the name indicates that the parameters are of type
float. In fact, there are other “glVertex” functions, including versions that take parameters of
type int or double, with named like glVertex2i and glVertez3d. There are even versions that
take four parameters, although it won’t be clear for a while why they should exist. And, as we
will see later, there are versions that take an array of numbers instead of individual numbers
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as parameters. The entire set of vertex functions is often referred to as “glVertex*”, with the
“*7 gtanding in for the parameter specification. (The proliferation of names is due to the fact
that the C programming language doesn’t support overloading of function names; that is, C
distinguishes functions only by their names and not by the number and type of parameters that
are passed to the function.)

OpenGL 1.1 has ten kinds of primitive. Seven of them still exist in modern OpenGL; the
other three have been dropped. The simplest primitive is GL_POINTS, which simply renders
a point at each vertex of the primitive. By default, a point is rendered as a single pixel. The
size of point primitives can be changed by calling

glPointSize(size);

where the parameter, size, is of type float and specifies the diameter of the rendered point, in
pixels. By default, points are squares. You can get circular points by calling

glEnable (GL_POINT_SMOOTH) ;

The functions glPointSize and glEnable change the OpenGL “state.” The state includes
all the settings that affect rendering. We will encounter many state-changing functions. The
functions glEnable and glDisable can be used to turn many features on and off. In general, the
rule is that any rendering feature that requires extra computation is turned off by default. If you
want that feature, you have to turn it on by calling glEnable with the appropriate parameter.

There are three primitives for drawing line segments: GL_LINES, GL_LINE_STRIP, and
GL_LINE_LOOP. GL_LINES draws disconnected line segments; specify two vertices for each
segment that you want to draw. The other two primitives draw connected sequences of line
segments. The only difference is that GL_LINE_LOOP adds an extra line segment from the
final vertex back to the first vertex. Here is what you get if use the same six vertices with the
four primitives we have seen so far:

A A A A
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GL _POINTS GL LINES GL LINE STRIP  GL LINE LOOP

The points A, B, C, D, E, and F were specified in that order. In this illustration, all the points
lie in the same plane, but keep in mind that in general, points can be anywhere in 3D space.
The width for line primitives can be set by calling glLine Width(width). The line width is
always specified in pixels. It is not subject to scaling by transformations.
Let’s look at an example. OpenGL does not have a circle primitive, but we can approximate
a circle by drawing a polygon with a large number of sides. To draw an outline of the polygon,
we can use a GL_LINE_LOOP primitive:

glBegin( GL_LINE_LOOP );
for (i = 0; i < 64; i++) {
angle = 6.2832 * i / 64; // 6.2832 represents 2xPI
x = 0.5 * cos(angle);
y = 0.5 * sin(angle);
glVertex2f( x, y );
}
glEnd ) ;
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This draws an approximation for the circumference of a circle of radius 0.5 with center at (0,0).
Remember that to learn how to use examples like this one in a complete, running program,
you will have to read Section 3.6. Also, you might have to make some changes to the code,
depending on which OpenGL implementation you are using.

The next set of primitives is for drawing triangles. There are three of them:
GL_TRIANGLES, GL_.TRIANGLE_STRIP, and GL_TRIANGLE_FAN.
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The three triangles on the left make up one GL_.TRIANGLES primitive, with nine
vertices. With that primitive, every set of three vertices makes a separate triangle. For
a GL_.TRIANGLE_STRIP primitive, the first three vertices produce a triangle. After that,
every new vertex adds another triangle to the strip, connecting the new vertex to the two
previous vertices. Two GL_TRIANGLE_FAN primitives are shown on the right. Again for a
GL_TRIANGLE_FAN, the first three vertices make a triangle, and every vertex after that adds
anther triangle, but in this case, the new triangle is made by connecting the new vertex to the
previous vertex and to the very first vertex that was specified (vertex “A” in the picture). Note
that GI_LTRIANGLE_FAN can be used for drawing filled-in polygons. In this picture, by the
way, the dots and lines are not part of the primitive; OpenGL would only draw the filled-in,
green interiors of the figures.

The three remaining primitives, which have been removed from modern OpenGL,
are GL_.QUADS, GL_.QUAD_STRIP, and GL_POLYGON. The name “quad” is short for
quadrilateral, that is, a four-sided polygon. A quad is determined by four vertices. In order
for a quad to be rendered correctly in OpenGL, all vertices of the quad must lie in the same
plane. The same is true for polygon primitives. Similarly, to be rendered correctly, quads and
polygons must be convex (see Subsection 2.2.3). Since OpenGL doesn’t check whether these
conditions are satisfied, the use of quads and polygons is error-prone. Since the same shapes
can easily be produced with the triangle primitives, they are not really necessary, but here for

the record are some examples:
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The vertices for these primitives are specified in the order A, B, C, .... Note how the order
differs for the two quad primitives: For GL_QUADS, the vertices for each individual quad
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should be specified in counterclockwise order around the quad; for GL_QUAD_STRIP, the
vertices should alternate from one side of the strip to the other.

3.1.2 OpenGL Color

OpenGL has a large collection of functions that can be used to specify colors for the geometry
that we draw. These functions have names of the form g¢lColor*, where the “*” stands for
a suffix that gives the number and type of the parameters. I should warn you now that for
realistic 3D graphics, OpenGL has a more complicated notion of color that uses a different
set of functions. You will learn about that in the next chapter, but for now we will stick to
glColor*.

For example, the function glColor3f has three parameters of type float. The parameters
give the red, green, and blue components of the color as numbers in the range 0.0 to 1.0. (In
fact, values outside this range are allowed, even negative values. When color values are used in
computations, out-of-range values will be used as given. When a color actually appears on the
screen, its component values are clamped to the range 0 to 1. That is, values less than zero are
changed to zero, and values greater than one are changed to one.)

You can add a fourth component to the color by using glColor/f(). The fourth component,
known as alpha, is not used in the default drawing mode, but it is possible to configure OpenGL
to use it as the degree of transparency of the color, similarly to the use of the alpha component in
the 2D graphics APIs that we have looked at. You need two commands to turn on transparency:

glEnable (GL_BLEND) ;
glBlendFunc (GL_.SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

The first command enables use of the alpha component. It can be disabled by calling
glDisable(GL-BLEND). When the GL_BLEND option is disabled, alpha is simply ignored.
The second command tells how the alpha component of a color will be used. The parameters
shown here are the most common; they implement transparency in the usual way. I should
note that while transparency works fine in 2D, it is much more difficult to use transparency
correctly in 3D.

If you would like to use integer color values in the range 0 to 255, you can use glColor3ub()
or glColorjub to set the color. In these function names, “ub” stands for “unsigned byte.”
Unsigned byte is an eight-bit data type with values in the range 0 to 255. Here are some
examples of commands for setting drawing colors in OpenGL:

glColor3£(0,0,0); // Draw in black.

glColor3f(1,1,1); // Draw in white.

glColor3£f(1,0,0); // Draw in full-intensity red.

glColor3ub(1,0,0); // Draw in a color just a tiny bit different from

// black. (The suffix, "ub" or "f", is important!)
glColor3ub(255,0,0); // Draw in full-intensity red.

glColor4f(1, 0, 0, 0.5); // Draw in transparent red, but only if OpenGL
// has been configured to do transparency. By
// default this is the same as drawing in plain red.

Using any of these functions sets the value of a “current color,” which is part of the OpenGL
state. When you generate a vertex with one of the glVerter* functions, the current color is
saved along with the vertex coordinates, as an attribute of the vertex. We will see that vertices
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can have other kinds of attribute as well as color. One interesting point about OpenGL is
that colors are associated with individual vertices, not with complete shapes. By changing the
current color between calls to glBegin() and glEnd(), you can get a shape in which different
vertices have different color attributes. When you do this, OpenGL will compute the colors
of pixels inside the shape by interpolating the colors of the vertices. (Again, since OpenGL is
extremely configurable, I have to note that interpolation of colors is just the default behavior.)
For example, here is a triangle in which the three vertices are assigned the colors red, green,
and blue:

This image is often used as a kind of “Hello World” example for OpenGL. The triangle can be
drawn with the commands

glBegin (GL_TRIANGLES) ;
glColor3f( 1, 0, 0 ); // red
glVertex2f( -0.8, -0.8 );
glColor3f( 0, 1, 0 ); // green
glVertex2f( 0.8, -0.8 );
glColor3f( 0, 0, 1 ); // blue
glVertex2f( 0, 0.9 );

glEnd () ;

Note that when drawing a primitive, you do not need to explicitly set a color for each vertex,
as was done here. If you want a shape that is all one color, you just have to set the current
color once, before drawing the shape (or just after the call to glBegin(). For example, we can
draw a solid yellow triangle with

glColor3ub(255,255,0); // yellow
glBegin (GL_TRIANGLES) ;
glVertex2f( -0.5, -0.5 );
glVertex2f( 0.5, -0.5 );
glVertex2f( 0, 0.5 );

glEnd Q) ;

Also remember that the color for a vertex is specified before the call to gl Vertez* that generates
the vertex.

The on-line version of this section has an interactive demo that draws the basic OpenGL
triangle, with different colored vertices. That demo is our first OpenGL example. The demo
actually uses WebGL, so you can use it as a test to check whether your web browser supports
WebGL.

(Demo)
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The sample program jogl/FirstTriangle.java draws the basic OpenGL triangle using Java.
The program glut/first-triangle.c does the same using the C programming language. And
glsim /first-triangle.html is a version that uses my JavaScript simulator, which implements just
the parts of OpenGL 1.1 that are covered in this book. Any of those programs could be used
to experiment with 2D drawing in OpenGL. And you can use them to test your OpenGL
programming environment.

S S 3

A common operation is to clear the drawing area by filling it with some background color.
It is be possible to do that by drawing a big colored rectangle, but OpenGL has a potentially
more efficient way to do it. The function

glClearColor(r,g,b,a);

sets up a color to be used for clearing the drawing area. (This only sets the color; the color
isn’t used until you actually give the command to clear the drawing area.) The parameters
are floating point values in the range 0 to 1. There are no variants of this function; you must
provide all four color components, and they must be in the range 0 to 1. The default clear color
is all zeros, that is, black with an alpha component also equal to zero. The command to do the
actual clearing is:

glClear( GL_COLOR_BUFFER_BIT );

The correct term for what I have been calling the drawing area is the color buffer, where
“buffer” is a general term referring to a region in memory. OpenGL uses several buffers in
addition to the color buffer. We will encounter the “depth buffer” in just a moment. The
glClear command can be used to clear several different buffers at the same time, which can
be more efficient than clearing them separately since the clearing can be done in parallel. The
parameter to glClear tells it which buffer or buffers to clear. To clear several buffers at once,
combine the constants that represent them with an arithmetic OR operation. For example,

glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );

This is the form of glClear that is generally used in 3D graphics, where the depth buffer plays
an essential role. For 2D graphics, the depth buffer is generally not used, and the appropriate
parameter for glClear is just GL_COLOR_BUFFER_BIT.

3.1.3 glColor and glVertex with Arrays

We have see that there are versions of glColor* and glVertex* that take different numbers
and types of parameters. There are also versions that let you place all the data for the
command in a single array parameter. The names for such versions end with “v”. For example:
glColor3fv, glVertex2iv, glColorjubv, and glVertex3dv. The “v” actually stands for “vector,”
meaning essentially a one-dimensional array of numbers. For example, in the function call
glVertex3fv(coords), coords would be an array containing at least three floating point numbers.

The existence of array parameters in OpenGL forces some differences between OpenGL
implementations in different programming languages. Arrays in Java are different from arrays
in C, and arrays in JavaScript are different from both. Let’s look at the situation in C first,
since that’s the language of the original OpenGL API.

In C, array variables are a sort of variation on pointer variables, and arrays and pointers can
be used interchangeably in many circumstances. In fact, in the C API, array parameters are
actually specified as pointers. For example, the parameter for glVertez3fv is of type “pointer to
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float.” The actual parameter in a call to gl Vertex3fv can be an array variable, but it can also be
any pointer that points to the beginning of a sequence of three floats. As an example, suppose
that we want to draw a square. We need two coordinates for each vertex of the square. In C,
we can put all 8 coordinates into one array and use glVertex2fv to pull out the coordinates that
we need:

float coords[] = { -0.5, -0.5, 0.5, -0.5, 0.5, 0.5, -0.5, 0.5 };

glBegin (GL_-TRIANGLE_FAN) ;

glVertex2fv(coords); // Uses coords[0] and coords[1].
glVertex2fv(coords + 2); // Uses coords[2] and coords[3].
glVertex2fv(coords + 4); // Uses coords[4] and coords[5].
glVertex2fv(coords + 6); // Uses coords[6] and coords[7].
glEnd () ;

This example uses “pointer arithmetic,” in which coords + N represents a pointer to the N-th
element of the array. An alternative notation would be &coords[N|, where “&” is the address
operator, and &coords|N| means “a pointer to coords[N]”. This will all seem very alien to
people who are only familiar with Java or JavaScript. In my examples, I will avoid using
pointer arithmetic, but I will occasionally use address operators.

As for Java, the people who designed JOGL wanted to preserve the ability to pull data
out of the middle of an array. However, it’s not possible to work with pointers in Java. The
solution was to replace a pointer parameter in the C API with a pair of parameters in the JOGL
API—one parameter to specify the array that contains the data and one to specify the starting
index of the data in the array. For example, here is how the square-drawing code translates

into Java:
float[] coords = { -0.5F, -0.5F, O0.5F, -0.5F, O0.5F, 0.5F, -0.5F, 0.5F };

gl2.glBegin(GL2.GL_TRIANGLES) ;

gl2.glVertex2fv(coords, 0); // Uses coords[0] and coords[1].
gl2.glVertex2fv(coords, 2); // Uses coords[2] and coords[3].
gl2.glVertex2fv(coords, 4); // Uses coords[4] and coords[5].
gl2.glVertex2fv(coords, 6); // Uses coords[6] and coords[7].
gl2.glEnd();

There is really not much difference in the parameters, although the zero in the first gl Vertex2fv
is a little annoying. The main difference is the prefixes “gl2” and “GL2”, which are required
by the object-oriented nature of the JOGL API. I won’t say more about JOGL here, but if you
need to translate my examples into JOGL, you should keep in mind the extra parameter that
is required when working with arrays.

For the record, here are the glVerter* and ¢glColor* functions that I will use in this book.
This is not the complete set that is available in OpenGL:

glVertex2f( x, y ); glVertex2fv( xyArray );
glVertex2d( x, y ); glVertex2dv( xyArray ) ;
glVertex2i( x, y ); glVertex2iv( xyArray );
glVertex3f( x, y, z ); glVertex3fv( xyzArray );
glVertex3d( x, y, z ); glVertex3dv( xyzArray );
glVertex3i( x, y, z ); glVertex3iv( xyzArray );
glColor3f( r, g, b ); glColor3f ( rgbArray ) ;

glColor3d( r, g, b ); glColor3d( rgbArray ) ;

glColor3ub( r, g, b ); glColor3ub( rgbArray );
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glColor4f( r, g, b, a); glColor4f ( rgbaArray );
glColor4d( r, g, b, a); glColor4d( rgbaArray );
glColordub( r, g, b, a); glColor4ub( rgbaArray );

For ¢glColor*, keep in mind that the “ub” variations require integers in the range 0 to 255, while
the “f” and “d” variations require floating-point numbers in the range 0.0 to 1.0.

3.1.4 The Depth Test

An obvious point about viewing in 3D is that one object can be behind another object. When
this happens, the back object is hidden from the viewer by the front object. When we create an
image of a 3D world, we have to make sure that objects that are supposed to be hidden behind
other objects are in fact not visible in the image. This is the hidden surface problem.

The solution might seem simple enough: Just draw the objects in order from back to front.
If one object is behind another, the back object will be covered up later when the front object
is drawn. This is called the painter’s algorithm. It’s essentially what you are used to doing
in 2D. Unfortunately, it’s not so easy to implement. First of all, you can have objects that
intersect, so that part of each object is hidden by the other. Whatever order you draw the
objects in, there will be some points where the wrong object is visible. To fix this, you would
have to cut the objects into pieces, along the intersection, and treat the pieces as separate
objects. In fact, there can be problems even if there are no intersecting objects: It’s possible to
have three non-intersecting objects where the first object hides part of the second, the second
hides part of the third, and the third hides part of the first. The painter’s algorithm will fail
regardless of the order in which the three objects are drawn. The solution again is to cut the
objects into pieces, but now it’s not so obvious where to cut.

Even though these problems can be solved, there is another issue. The correct drawing order
can change when the point of view is changed or when a geometric transformation is applied,
which means that the correct drawing order has to be recomputed every time that happens. In
an animation, that would mean for every frame.

So, OpenGL does not use the painter’s algorithm. Instead, it uses a technique called the
depth test. The depth test solves the hidden surface problem no matter what order the objects
are drawn in, so you can draw them in any order you want! The term “depth” here has to do
with the distance from the viewer to the object. Objects at greater depth are farther from the
viewer. An object with smaller depth will hide an object with greater depth. To implement
the depth test algorithm, OpenGL stores a depth value for each pixel in the image. The extra
memory that is used to store these depth values makes up the depth bujffer that I mentioned
earlier. During the drawing process, the depth buffer is used to keep track of what is currently
visible at each pixel. When a second object is drawn at that pixel, the information in the depth
buffer can be used to decide whether the new object is in front of or behind the object that
is currently visible there. If the new object is in front, then the color of the pixel is changed
to show the new object, and the depth buffer is also updated. If the new object is behind the
current object, then the data for the new object is discarded and the color and depth buffers
are left unchanged.

By default, the depth test is not turned on, which can lead to very bad results when drawing
in 3D. You can enable the depth test by calling

glEnable( GL_DEPTH_TEST );

It can be turned off by calling glDisable(GL-DEPTH_TEST). If you forget to enable the depth
test when drawing in 3D, the image that you get will likely be confusing and will make no
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sense physically. You can also get quite a mess if you forget to clear the depth buffer, using
the glClear command shown earlier in this section, at the same time that you clear the color
buffer.

The demo c3/first-cube.html in the online version of this section lets you experiment with
the depth test. It also lets you see what happens when part of your geometry extends outside
the visible range of z-values.

Here are a few details about the implementation of the depth test: For each pixel, the depth
buffer stores a representation of the distance from the viewer to the point that is currently visible
at that pixel. This value is essentially the z-coordinate of the point, after any transformations
have been applied. (In fact, the depth buffer is often called the “z-buffer”.) The range of
possible z-coordinates is scaled to the range 0 to 1. The fact that there is only a limited
range of depth buffer values means that OpenGL can only display objects in a limited range
of distances from the viewer. A depth value of 0 corresponds to the minimal distance; a depth
value of 1 corresponds to the maximal distance. When you clear the depth buffer, every depth
value is set to 1, which can be thought of as representing the background of the image.

You get to choose the range of z-values that is visible in the image, by the transformations
that you apply. The default range, in the absence of any transformations, is -1 to 1. Points
with z-values outside the range are not visible in the image. It is a common problem to use
too small a range of z-values, so that objects are missing from the scene, or have their fronts
or backs cut off, because they lie outside of the visible range. You might be tempted to use a
huge range, to make sure that the objects that you want to include in the image are included
within the range. However, that’s not a good idea: The depth buffer has a limited number
of bits per pixel and therefore a limited amount of accuracy. The larger the range of values
that it must represent, the harder it is to distinguish between objects that are almost at the
same depth. (Think about what would happen if all objects in your scene have depth values
between 0.499999 and 0.500001—the depth buffer might see them all as being at exactly the
same depth!)

There is another issue with the depth buffer algorithm. It can give some strange results
when two objects have exactly the same depth value. Logically, it’s not even clear which object
should be visible, but the real problem with the depth test is that it might show one object
at some points and the second object at some other points. This is possible because numerical
calculations are not perfectly accurate. Here an actual example:

In the two pictures shown here, a gray square was drawn, followed by a white square, followed
by a black square. The squares all lie in the same plane. A very small rotation was applied,
to force the computer do some calculations before drawing the objects. The picture on the left
was drawn with the depth test disabled, so that, for example, when a pixel of the white square
was drawn, the computer didn’t try to figure out whether it lies in front of or behind the gray

(Demo)
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square; it simply colored the pixel white. On the right, the depth test was enabled, and you
can see the strange result.

Finally, by the way, note that the discussion here assumes that there are no transparent
objects.  Unfortunately, the depth test does not handle transparency correctly, since
transparency means that two or more objects can contribute to the color of the pixel, but
the depth test assumes that the pixel color is the color of the object nearest to the viewer at
that point. To handle 3D transparency correctly in OpenGL, you pretty much have to resort
to implementing the painter’s algorithm by hand, at least for the transparent objects in the
scene.

3.2 3D Coordinates and Transforms

IN CHAPTER 2, WE LOOKED FAIRLY closely at coordinate systems and transforms in two-
dimensional computer graphics. In this section and the next, we will move that discussion into
3D. Things are more complicated in three dimensions, but a lot of the basic concepts remain
the same.

3.2.1 3D Coordinates

A coordinate system is a way of assigning numbers to points. In two dimensions, you need a
pair of numbers to specify a point. The coordinates are often referred to as z and y, although
of course, the names are arbitrary. More than that, the assignment of pairs of numbers to
points is itself arbitrary to a large extent. Points and objects are real things, but coordinates
are just numbers that we assign to them so that we can refer to them easily and work with
them mathematically. We have seen the power of this when we discussed transforms, which are
defined mathematically in terms of coordinates but which have real, useful physical meanings.

In three dimensions, you need three numbers to specify a point. (That’s essentially what
it means to be three dimensional.) The third coordinate is often called z. The z-axis is
perpendicular to both the z-axis and the y-axis.

This image illustrates a 3D coordinate system. The positive directions of the z, y, and z
axes are shown as big arrows. The z-axis is green, the y-axis is blue, and the z-axis is red. The
on-line version of this section has a demo version of this image in which you drag on the axes
to rotate the image.

This example is a 2D image, but it has a 3D look. (The illusion is much stronger if you can
rotate the image.) Several things contribute to the effect. For one thing, objects that are farther
away from the viewer in 3D look smaller in the 2D image. This is due to the way that the 3D

(Demo)
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scene is “projected” onto 2D. We will discuss projection in the next section. Another factor
is the “shading” of the objects. The objects are shaded in a way that imitates the interaction
of objects with the light that illuminates them. We will put off a discussion of lighting until
Chapter 4. In this section, we will concentrate on how to construct a scene in 3D—what we
have referred to as modeling.

OpenGL programmers usually think in terms of a coordinate system in which the z- and
y-axes lie in the plane of the screen, and the z-axis is perpendicular to the screen with the
positive direction of the z-axis pointing out of the screen towards the viewer. Now, the default
coordinate system in OpenGL, the one that you are using if you apply no transformations at
all, is similar but has the positive direction of the z-axis pointing into the screen. This is not
a contradiction: The coordinate system that is actually used is arbitrary. It is set up by a
transformation. The convention in OpenGL is to work with a coordinate system in which the
positive z-direction points toward the viewer and the negative z-direction points away from the
viewer. The transformation into default coordinates reverses the direction of the z-axis.

This conventional arrangement of the axes produces a right-handed coordinate system.
This means that if you point the thumb of your right hand in the direction of the positive
z-axis, then when you curl the fingers of that hand, they will curl in the direction from the
positive z-axis towards the positive y-axis. If you are looking at the tip of your thumb, the curl
will be in the counterclockwise direction. Another way to think about it is that if you curl the
figures of your right hand from the positive z to the positive y-axis, then your thumb will point
in the direction of the positive z-axis. The default OpenGL coordinate system (which, again,
is hardly ever used) is a left-handed system. You should spend some time trying to visualize
right- and left-handed coordinates systems. Use your hands!

All of that describes the natural coordinate system from the viewer’s point of view, the
so-called “eye” or “viewing” coordinate system. However, these eye coordinates are not
necessarily the natural coordinates on the world. The coordinate system on the world—the
coordinate system in which the scene is assembled—is referred to as world coordinates.

Recall that objects are not usually specified directly in world coordinates. Instead, objects
are specified in their own coordinate system, known as object coordinates, and then modeling
transforms are applied to place the objects into the world, or into more complex objects. In
OpenGL, object coordinates are the numbers that are used in the glVertex* function to specify
the vertices of the object. However, before the objects appear on the screen, they are usually
subject to a sequence of transformations, starting with a modeling transform.

3.2.2 Basic 3D Transforms

The basic transforms in 3D are extensions of the basic transforms that you are already familiar
with from 2D: rotation, scaling, and translation. We will look at the 3D equivalents and see
how they affect objects when applied as modeling transforms. We will also discuss how to use
the transforms in OpenGL.

Translation is easiest. In 2D, a translation adds some number onto each coordinate. The
same is true in 3D; we just need three numbers, to specify the amount of motion in the direction
of each of the coordinate axes. A translation by (dz,dy,dz) transforms a point (z,y,z) to the
point (z+dz, y+dy, z+dz). In OpenGL, this translation would be specified by the command

glTranslatef ( dx, dy, dz );
or by the command

glTranslated( dx, dy, dz );
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The translation will affect any drawing that is done after the command is given. Note that
there are two versions of the command. The first, with a name ending in “f’, takes three float
values as parameters. The second, with a name ending in “d”, takes parameters of type double.
As an example,

glTranslatef( 0, 0, 1 );

would translate objects by one unit in the z direction.
Scaling works in a similar way: Instead of one scaling factor, you need three. The OpenGL
command for scaling is glScale*, where the “*” can be either “f” or “d”. The command

glScalef( sx, sy, sz );

transforms a point (z,y,z) to (z*sz, y*sy, z*sz). That is, it scales by a factor of sz in the z
direction, sy in the y direction, and sz in the z direction. Scaling is about the origin; that is, it
moves points farther from or closer to the origin, (0,0,0). For uniform scaling, all three factors
would be the same. You can use scaling by a factor of minus one to apply a reflection. For
example,

glScalef( 1, 1, -1 );

reflects objects through the zy-plane by reversing the sign of the z coordinate. Note that a
reflection will convert a right-handed coordinate system into a left-handed coordinate system,
and vice versa. Remember that the left /right handed distinction is not a property of the world,
just of the way that one chooses to lay out coordinates on the world.

Rotation in 3D is harder. In 2D, rotation is rotation about a point, which is usually taken
to be the origin. In 3D, rotation is rotation about a line, which is called the axis of rotation.
Think of the Earth rotating about its axis. The axis of rotation is the line that passes through
the North Pole and the South Pole. The axis stays fixed as the Earth rotates around it, and
points that are not on the axis move in circles about the axis. Any line can be an axis of rotation,
but we generally use an axis that passes through the origin. The most common choices for axis
of rotation are the coordinates axes, that is, the z-axis, the y-axis, or the z-axis. Sometimes,
however, it’s convenient to be able to use a different line as the axis.

There is an easy way to specify a line that passes through the origin: Just specify one other
point that is on the line, in addition to the origin. That’s how things are done in OpenGL: An
axis of rotation is specified by three numbers, (az,ay,az), which are not all zero. The axis is
the line through (0,0,0) and (az,ay,az). To specify a rotation transformation in 3D, you have
to specify an axis and the angle of rotation about that axis.

We still have to account for the difference between positive and negative angles. We can’t
just say clockwise or counterclockwise. If you look down on the rotating Earth from above the
North pole, you see a counterclockwise rotation; if you look down on it from above the South
pole, you see a clockwise rotation. So, the difference between the two is not well-defined. To
define the direction of rotation in 3D, we use the right-hand rule, which says: Point the
thumb of your right hand in the direction of the axis — from the point (0,0,0) towards the
point (az,ay,az) that determines the axis. Then the direction of rotation for positive angles is
given by the direction in which your fingers curl. I should emphasize that the right-hand rule
only works if you are working in a right-handed coordinate system. If you have switched to a
left-handed coordinate system, then you need to use a left-hand rule to determine the positive
direction of rotation.

The demo c3/rotation-axis.html can help you to understand rotation in three-dimensional
space.

(Demo)
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The rotation function in OpenGL is glRotatef (r,ax,ay,az). You can also use glRotated. The
first parameter specifies the angle of rotation, measured in degrees. The other three parameters
specify the axis of rotation, which is the line from (0,0,0) to (az,ay,az).

Here are a few examples of scaling, translation, and scaling in OpenGL:

glScalef(2,2,2); // Uniform scaling by a factor of 2.
glScalef(0.5,1,1); // Shrink by half in the x-direction only.
glScalef(-1,1,1); // Reflect through the yz-plane.

// Reflects the positive x-axis onto negative x.
glTranslatef(5,0,0); // Move 5 units in the positive x-direction.
glTranslatef (3,5,-7.5); // Move each point (x,y,z) to (x+3, y+5, z-7.5).

glRotatef (90,1,0,0); // Rotate 90 degrees about the x-axis.
// Moves the +y axis onto the +z axis
// and the +z axis onto the -y axis.

glRotatef(-90,-1,0,0); // Has the same effect as the previous rotation.

glRotatef (90,0,1,0); // Rotate 90 degrees about the y-axis.
// Moves the +z axis onto the +x axis
// and the +x axis onto the -z axis.

glRotatef (90,0,0,1); // Rotate 90 degrees about the z-axis.
// Moves the +x axis onto the +y axis
// and the +y axis onto the -x axis.

glRotatef(30,1.5,2,-3); // Rotate 30 degrees about the line through
// the points (0,0,0) and (1.5,2,-3).

Remember that transforms are applied to objects that are drawn after the transformation
function is called, and that transformations apply to objects in the opposite order of the order
in which they appear in the code.

Of course, OpenGL can draw in 2D as well as in 3D. For 2D drawing in OpenGL, you can
draw on the zy-plane, using zero for the z coordinate. When drawing in 2D, you will probably
want to apply 2D versions of rotation, scaling, and translation. OpenGL does not have 2D
transform functions, but you can just use the 3D versions with appropriate parameters:

e For translation by (dz,dy) in 2D, use glTranslatef (dz, dy, 0). The zero translation in the
z direction means that the transform doesn’t change the z coordinate, so it maps the
zy-plane to itself. (Of course, you could use glTranslated instead of glTranslatef.)

e For scaling by (sz,sy) in 2D, use glScalef(sz, sy, 1), which scales only in the z and y
directions, leaving the z coordinate unchanged.

e For rotation through an angle r about the origin in 2D, use glRotatef(r, 0, 0, 1). This
is rotation about the z-axis, which rotates the zy-plane into itself. In the usual OpenGL
coordinate system, the z-axis points out of the screen, and the right-hand rule says that
rotation by a positive angle will be in the counterclockwise direction in the zy-plane.
Since the z-axis points to the right and the y-axis points upwards, a counterclockwise
rotation rotates the positive z-axis in the direction of the positive y-axis. This is the same
convention that we have used previously for the positive direction of rotation.
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3.2.3 Hierarchical Modeling

Modeling transformations are often used in hierarchical modeling, which allows complex objects
to be built up out of simpler objects. See Section 2.4. To review briefly: In hierarchical
modeling, an object can be defined in its own natural coordinate system, usually using (0,0,0)
as a reference point. The object can then be scaled, rotated, and translated to place it into
world coordinates or into a more complex object. To implement this, we need a way of limiting
the effect of a modeling transformation to one object or to part of an object. That can be done
using a stack of transforms. Before drawing an object, push a copy of the current transform
onto the stack. After drawing the object and its sub-objects, using any necessary temporary
transformations, restore the previous transform by popping it from the stack.

OpenGL 1.1 maintains a stack of transforms and provides functions for manipulating that
stack. (In fact it has several transform stacks, for different purposes, which introduces some
complications that we will postpone to the next section.) Since transforms are represented as
matrices, the stack is actually a stack of matrices. In OpenGL, the functions for operating on
the stack are named glPushMatriz() and glPopMatriz().

These functions do not take parameters or return a value. OpenGL keeps track of a current
matrix, which is the composition of all transforms that have been applied. Calling a function
such as glScalef simply modifies the current matrix. When an object is drawn, using the
glVertex* functions, the coordinates that were specified for the object are transformed by the
current matrix. There is another function that affects the current matrix: glLoadIdentity().
Calling glLoadldentity sets the current matrix to be the identity transform, which represents
no change of coordinates at all and is the usual starting point for a series of transformations.

When the function glPushMatriz() is called, a copy of the current matrix is pushed onto
the stack. Note that this does not change the current matrix; it just saves a copy on the
stack. When glPopMatriz() is called, the matrix on the top of the stack is popped from the
stack, and that matrix replaces the current matrix. Note that glPushMatriz and glPopMatrix
must always occur in corresponding pairs; glPushMatriz saves a copy of the current matrix,
and a corresponding call to glPopMatrixz restores that copy. Between a call to glPushMatriz
and the corresponding call to glPopMatrix, there can be additional calls of these functions, as
long as they are properly paired. Usually, you will call glPushMatriz before drawing an object
and glPopMatriz after finishing that object. In between, drawing sub-objects might require
additional pairs of calls to those functions.

As an example, suppose that we want to draw a cube. It’s not hard to draw each face
using glBegin/glEnd, but let’s do it with transformations. We can start with a function that
draws a square in the position of the front face of the cube. For a cube of size 1, the front face
would sit one-half unit in front of the screen, in the plane z = 0.5, and it would have vertices
at (-0.5, -0.5, 0.5), (0.5, -0.5, 0.5), (0.5, 0.5, 0.5), and (-0.5, 0.5, 0.5). Here is a function that
draws the square. The function’s parameters are floating point numbers in the range 0.0 to 1.0
that give the RGB color of the square:

void square( float r, float g, float b ) {
glColor3f(r,g,b); // Set the color for the square.
glBegin (GL_TRIANGLE_FAN) ;
glVertex3f(-0.5, -0.5, 0.5);
glVertex3f(0.5, -0.5, 0.5);
glVertex3f (0.5, 0.5, 0.5);
glVertex3f(-0.5, 0.5, 0.5);
glEnd Q) ;
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}

To make a red front face for the cube, we just need to call square(1,0,0). Now, consider the
right face, which is perpendicular to the z-axis, in the plane z = 0.5. To make a right face, we
can start with a front face and rotate it 90 degrees about the y-axis. Think about rotating the
front face (red) to the position of the right face (green) in this illustration by rotating the red
square about the y-awis:

So, we can draw a green right face for the cube with

glPushMatrix();
glRotatef (90, 0, 1, 0);
square(0, 1, 0);
glPopMatrix () ;

The calls to glPushMatriz and glPopMatriz ensure that the rotation that is applied to the
square will not carry over to objects that are drawn later. The other four faces can be made in
a similar way, by rotating the front face about the coordinate axes. You should try to visualize
the rotation that you need in each case. We can combine it all into a function that draws a
cube. To make it more interesting, the size of the cube is a parameter:

void cube(float size) { // Draws a cube with side length = size.

glPushMatrix(); // Save a copy of the current matrix.
glScalef (size,size,size); // Scale unit cube to desired size.

square(1l, 0, 0); // red front face

glPushMatrix () ;

glRotatef (90, 0, 1, 0);

square(0, 1, 0); // green right face
glPopMatrix();

glPushMatrix () ;

glRotatef (-90, 1, 0, 0);
square(0, 0, 1); // blue top face
glPopMatrix () ;

glPushMatrix () ;

glRotatef (180, 0, 1, 0);

square(0, 1, 1); // cyan back face
glPopMatrix () ;

glPushMatrix() ;
glRotatef (-90, 0, 1, 0);
square(1, 0, 1); // magenta left face
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glPopMatrix();

glPushMatrix () ;

glRotatef (90, 1, 0, 0);

square(l, 1, 0); // yellow bottom face
glPopMatrix();

glPopMatrix(); // Restore matrix to its state before cube() was called.
}

The sample program glut/unlit-cube.c uses this function to draw a cube, and lets you rotate
the cube by pressing the arrow keys. A Java version is jogl/UnlitCube.java, and a web version
is glsim /unlit-cube.html. Here is an image of the cube, rotated by 15 degrees about the z-axis
and -15 degrees about the y-axis to make the top and right sides visible:

For a more complex example of hierarchical modeling with glPushMatriz and g¢lPop-
Matriz, you can check out an OpenGL equivalent of the “cart and windmills” anima-
tion that was used as an example in Subsection 2.4.1. The three versions of the
example are: glut/opengl-cart-and-windmill-2d.c, jogl/CartAndWindmillJogl2D.java, and
glsim/opengl-cart-and-windmill.html. This program is an example of hierarchical 2D graph-
ics in OpenGL.
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Keep in mind that transformation and matrix functions such as glRotated() and
glPushMatriz() are old-fashioned OpenGL. In WebGL and other modern graphics APIs, you
will be responsible for managing transforms and matrices on your own. You are quite likely to
do that using a software library that provides functions very similar to those that are built into
OpenGL 1.1.

3.3 Projection and Viewing

IN THE PREVIOUS SECTION, WE looked at the modeling transformation, which transforms from
object coordinates to world coordinates. However, for 3D computer graphics, you need to know
about several other coordinate systems and the transforms between them. We discuss them in
this section.

We start with an overview of the various coordinate systems. Some of this is review, and
some of it is new.


http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glut/unlit-cube.c
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/jogl/UnlitCube.java
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glsim/unlit-cube.html
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glut/opengl-cart-and-windmill-2d.c
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CHAPTER 3. OPENGL 1.1: GEOMETRY 94

3.3.1 Many Coordinate Systems

The coordinates that you actually use for drawing an object are called object coordinates. The
object coordinate system is chosen to be convenient for the object that is being drawn. A
modeling transformation can then be applied to set the size, orientation, and position of the
object in the overall scene (or, in the case of hierarchical modeling, in the object coordinate
system of a larger, more complex object). The modeling transformation is the first that is
applied to the vertices of an object.

The coordinates in which you build the complete scene are called world coordinates. These
are the coordinates for the overall scene, the imaginary 3D world that you are creating. The
modeling transformation maps from object coordinates to world coordinates.

In the real world, what you see depends on where you are standing and the direction in
which you are looking. That is, you can’t make a picture of the scene until you know the
position of the “viewer” and where the viewer is looking—and, if you think about it, how the
viewer’s head is tilted. For the purposes of OpenGL, we imagine that the viewer is attached to
their own individual coordinate system, which is known as eye coordinates. In this coordinate
system, the viewer is at the origin, (0,0,0), looking in the direction of the negative z-axis; the
positive direction of the y-axis is pointing straight up; and the z-axis is pointing to the right.
This is a viewer-centric coordinate system. In other words, eye coordinates are (almost) the
coordinates that you actually want to use for drawing on the screen. The transform from world
coordinates to eye coordinates is called the viewing transformation.

If this is confusing, think of it this way: We are free to use any coordinate system that we
want on the world. Eye coordinates are the natural coordinate system for making a picture
of the world as seen by a viewer. If we used a different coordinate system (world coordinates)
when building the world, then we have to transform those coordinates to eye coordinates to
find out what the viewer actually sees. That transformation is the viewing transform.

Note, by the way, that OpenGL doesn’t keep track of separate modeling and viewing
transforms. They are combined into a single transform, which is known as the modelview
transformation. In fact, even though world coordinates might seem to be the most important
and natural coordinate system, OpenGL doesn’t have any representation for them and doesn’t
use them internally. For OpenGL, only object and eye coordinates have meaning. OpenGL goes
directly from object coordinates to eye coordinates by applying the modelview transformation.

We are not done. The viewer can’t see the entire 3D world, only the part that fits into the
viewport, which is the rectangular region of the screen or other display device where the image
will be drawn. We say that the scene is “clipped” by the edges of the viewport. Furthermore,
in OpenGL, the viewer can see only a limited range of z-values in the eye coordinate system.
Points with larger or smaller z-values are clipped away and are not rendered into the image.
(This is not, of course, the way that viewing works in the real world, but it’s required by the
use of the depth test in OpenGL. See Subsection 3.1.4.) The volume of space that is actually
rendered into the image is called the view volume. Things inside the view volume make it
into the image; things that are not in the view volume are clipped and cannot be seen. For
purposes of drawing, OpenGL applies a coordinate transform that maps the view volume onto
a cube. The cube is centered at the origin and extends from -1 to 1 in the x-direction, in
the y-direction, and in the z-direction. The coordinate system on this cube is referred to as
clip coordinates. The transformation from eye coordinates to clip coordinates is called the
projection transformation. At this point, we haven’t quite projected the 3D scene onto a
2D surface, but we can now do so simply by discarding the z-coordinate. (The z-coordinate,
however, is still needed to provide the depth information that is needed for the depth test.)
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Note that clip coordinates are the coordinates will be used if you apply no transformation
at all, that is if both the modelview and the projection transforms are the identity. It is a left-
handed coordinate system, with the positive direction of the z-axis pointing into the screen.

We still aren’t done. In the end, when things are actually drawn, there are device
coordinates, the 2D coordinate system in which the actual drawing takes place on a physical
display device such as the computer screen. Ordinarily, in device coordinates, the pixel is the
unit of measure. The drawing region is a rectangle of pixels. This is the rectangle that is called
the viewport. The wiewport transformation takes x and y from the clip coordinates and
scales them to fit the viewport.

Let’s go through the sequence of transformations one more time. Think of a primitive, such
as a line or triangle, that is part of the scene and that might appear in the image that we want
to make of the scene. The primitive goes through the following sequence of operations:

Modeling Viewing Projection Viewport
Transform Transform Transform Transform
Object —3p World —3p Ey¢ ——3p Clip ————p Device
Coordinates Coordinates Coordinates Coordinates Coordinates

Modelview Transform

1. The points that define the primitive are specified in object coordinates, using methods
such as glVertexSf.

2. The points are first subjected to the modelview transformation, which is a combination of
the modeling transform that places the primitive into the world and the viewing transform
that maps the primitive into eye coordinates.

3. The projection transformation is then applied to map the view volume that is visible to
the viewer onto the clip coordinate cube. If the transformed primitive lies outside that
cube, it will not be part of the image, and the processing stops. If part of the primitive
lies inside and part outside, the part that lies outside is clipped away and discarded, and
only the part that remains is processed further.

4. Finally, the viewport transform is applied to produce the device coordinates that will
actually be used to draw the primitive on the display device. After that, it’s just a matter
of deciding how to color the individual pixels that are part of the primitive.

We need to consider these transforms in more detail and see how to use them in OpenGL 1.1.

3.3.2 The Viewport Transformation

The simplest of the transforms is the viewport transform. It transforms z and y clip coordinates
to the coordinates that are used on the display device. To specify the viewport transform, it is
only necessary to specify the rectangle on the device where the scene will be rendered. This is
done using the glViewport function.

OpenGL must be provided with a drawing surface by the environment in which it is running,
such as JOGL for Java or the GLUT library for C. That drawing surface is a rectangular grid
of pixels, with a horizontal size and a vertical size. OpenGL uses a coordinate system on the
drawing surface that puts (0,0) at the lower left, with y increasing from bottom to top and x
increasing from left to right. When the drawing surface is first given to OpenGL, the viewport
is set to be the entire drawing surface. However, it is possible for OpenGL to draw to a different
rectangle by calling
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glViewport( x, y, width, height );

where (z,y) is the lower left corner of the viewport, in the drawing surface coordinate system,
and width and height are the size of the viewport. Clip coordinates from -1 to 1 will then be
mapped to the specified viewport. Note that this means in particular that drawing is limited
to the viewport. It is not an error for the viewport to extend outside of the drawing surface,
though it would be unusual to set up that situation deliberately.

When the size of the drawing surface changes, such as when the user resizes a window that
contains the drawing surface, OpenGL does not automatically change the viewport to match
the new size. However, the environment in which OpenGL is running might do that for you.
(See Section 3.6 for information about how this is handled by JOGL and GLUT.)

glViewport is often used to draw several different scenes, or several views of the same scene,
on the same drawing surface. Suppose, for example, that we want to draw two scenes, side-by-
side, and that the drawing surface is 600-by-400 pixels. An outline for how to do that is very
simple:

glViewport(0,0,300,400); // Draw to left half of the drawing surface.

// Draw the first scene.

glViewport(300,0,300,400); // Draw to right half of the drawing surface.

// Draw the second scene.

The first gl Viewport command establishes a 300-by-400 pixel viewport with its lower left corner
at (0,0). That is, the lower left corner of the viewport is at the lower left corner of the drawing
surface. This viewport fills the left half of the drawing surface. Similarly, the second viewport,
with its lower left corner at (300,0), fills the right half of the drawing surface.

3.3.3 The Projection Transformation

We turn next to the projection transformation. Like any transform, the projection is represented
in OpenGL as a matrix. OpenGL keeps track of the projection matrix separately from the
matrix that represents the modelview transformation. The same transform functions, such
as glRotatef, can be applied to both matrices, so OpenGL needs some way to know which
matrix those functions apply to. This is determined by an OpenGL state property called the
matriz mode. The value of the matrix mode is a constant such as GL_.PROJECTION or
GL_MODELVIEW. When a function such as glRotatef is called, it modifies a matrix; which
matrix is modified depends on the current value of the matrix mode. The value is set by calling
the function giMatrizMode. The initial value is GL_MODELVIEW. This means that if you want
to work on the projection matrix, you must first call

glMatrixMode (GL_PROJECTION) ;

If you want to go back to working on the modelview matrix, you must call
glMatrixMode (GL_MODELVIEW) ;

In my programs, I generally set the matrix mode to GL_PROJECTION, set up the projection
transformation, and then immediately set the matrix mode back to GL_-MODELVIEW.
This means that anywhere else in the program, I can be sure that the matrix mode is
GL_-MODELVIEW.
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To help you to understand projection, remember that a 3D image can show only a part
of the infinite 3D world. The view volume is the part of the world that is visible in the
image. The view volume is determined by a combination of the viewing transformation and the
projection transformation. The viewing transform determines where the viewer is located and
what direction the viewer is facing, but it doesn’t say how much of the world the viewer can
see. The projection transform does that: It specifies the shape and extent of the region that
is in view. Think of the viewer as a camera, with a big invisible box attached to the front of
the camera that encloses the part of the world that that camera has in view. The inside of the
box is the view volume. As the camera moves around in the world, the box moves with it, and
the view volume changes. But the shape and size of the box don’t change. The shape and size
of the box correspond to the projection transform. The position and orientation of the camera
correspond to the viewing transform.

This is all just another way of saying that, mathematically, the OpenGL projection
transformation transforms eye coordinates to clip coordinates, mapping the view volume onto
the 2-by-2-by-2 clipping cube that contains everything that will be visible in the image. To
specify a projection just means specifying the size and shape of the view volume, relative to
the viewer.

There are two general types of projection, perspective projection and orthographic
projection. Perspective projection is more physically realistic. That is, it shows what you
would see if the OpenGL display rectangle on your computer screen were a window into an
actual 3D world (one that could extend in front of the screen as well as behind it). It shows
a view that you could get by taking a picture of a 3D world with an ordinary camera. In a
perspective view, the apparent size of an object depends on how far it is away from the viewer.
Only things that are in front of the viewer can be seen. In fact, ignoring clipping in the z-
direction for the moment, the part of the world that is in view is an infinite pyramid, with the
viewer at the apex of the pyramid, and with the sides of the pyramid passing through the sides
of the viewport rectangle.

However, OpenGL can’t actually show everything in this pyramid, because of its use of the
depth test to solve the hidden surface problem. Since the depth buffer can only store a finite
range of depth values, it can’t represent the entire range of depth values for the infinite pyramid
that is theoretically in view. Only objects in a certain range of distances from the viewer can
be part of the image. That range of distances is specified by two values, near and far. For a
perspective transformation, both of these values must be positive numbers, and far must be
greater than near. Anything that is closer to the viewer than the near distance or farther away
than the far distance is discarded and does not appear in the rendered image. The volume of
space that is represented in the image is thus a “truncated pyramid.” This pyramid is the view
volume for a perspective projection:
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View volume is the
"truncated pyramid"
between the near and
far clipping planes.

< near ;|

< far —

The view volume is bounded by six planes—the four sides plus the top and bottom of the
truncated pyramid. These planes are called clipping planes because anything that lies on the
wrong side of each plane is clipped away. The projection transformation maps the six sides of
the truncated pyramid in eye coordinates to the six sides of the clipping cube in clip coordinates.

In OpenGL, setting up the projection transformation is equivalent to defining the view
volume. For a perspective transformation, you have to set up a view volume that is a truncated
pyramid. A rather obscure term for this shape is a frustum. A perspective transformation
can be set up with the glFrustum command:

glFrustum( xmin, xmax, ymin, ymax, near, far );

The last two parameters specify the near and far distances from the viewer, as already discussed.
The viewer is assumed to be at the origin, (0,0,0), facing in the direction of the negative z-axis.
(This is the eye coordinate system.) So, the near clipping plane is at z = —near, and the far
clipping plane is at z = —far. (Notice the minus signs!) The first four parameters specify the
sides of the pyramid: zmin, xmazx, ymin, and ymaz specify the horizontal and vertical limits of
the view volume at the near clipping plane. For example, the coordinates of the upper-left
corner of the small end of the pyramid are (zmin, ymax, -near). The x and y limits at the
far clipping plane are larger, usually much larger, than the limits specified in the glFrustum
command.

Note that x and y limits in glFrustum are usually symmetrical about zero. That is, xmin
is usually equal to the negative of xmax and ymin is usually equal to the negative of ymaz.
However, this is not required. It is possible to have asymmetrical view volumes where the z-axis
does not point directly down the center of the view.

Since the matrix mode must be set to GL_.PROJECTION to work on the projection
transformation, glFrustum is often used in a code segment of the form

glMatrixMode (GL_PROJECTION) ;

glloadIdentity();

glFrustum( xmin, xmax, ymin, ymax, near, far );
glMatrixMode (GL_MODELVIEW) ;

The call to glLoadldentity ensures that the starting point is the identity transform. This is
important since glFrustum modifies the existing projection matrix rather than replacing it, and
although it is theoretically possible, you don’t even want to try to think about what would
happen if you combine several projection transformations into one.

X Kk ok

Compared to perspective projections, orthographic projections are easier to understand:
In an orthographic projection, the 3D world is projected onto a 2D image by discarding the
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z-coordinate of the eye-coordinate system. This type of projection is unrealistic in that it is not
what a viewer would see. For example, the apparent size of an object does not depend on its
distance from the viewer. Objects in back of the viewer as well as in front of the viewer can be
visible in the image. Orthographic projections are still useful, however, especially in interactive
modeling programs where it is useful to see true sizes and angles, undistorted by perspective.

In fact, it’s not really clear what it means to say that there is a viewer in the case
of orthographic projection. Nevertheless, for orthographic projection in OpenGL, there is
considered to be a viewer. The viewer is located at the eye-coordinate origin, facing in the
direction of the negative z-axis. Theoretically, a rectangular corridor extending infinitely in
both directions, in front of the viewer and in back, would be in view. However, as with
perspective projection, only a finite segment of this infinite corridor can actually be shown in
an OpenGL image. This finite view volume is a parallelepiped—a rectangular solid—that is cut
out of the infinite corridor by a near clipping plane and a far clipping plane. The value of far
must be greater than near, but for an orthographic projection, the value of near is allowed to
be negative, putting the “near” clipping plane behind the viewer, as shown in the lower section
of this illustration:

View volume is the
rectangular solid
between the near and
far clipping planes.

OEYE

[€——hnear —>

With an orthographic projection,
the EYE can be inside the view
volume. In that case, the near

clipping plane lies behind the eye,
and the value of near is negative.

|<— -near —>»

l«—— far —— |

Note that a negative value for near puts the near clipping plane on the positive z-axis, which
is behind the viewer.

An orthographic projection can be set up in OpenGL using the ¢glOrtho method, which is
has the following form:

glOrtho( xmin, xmax, ymin, ymax, near, far );

The first four parameters specify the z- and y-coordinates of the left, right, bottom, and top
of the view volume. Note that the last two parameters are near and far, not zmin and zmaz.
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In fact, the minimum z-value for the view volume is —far and the maximum z-value is —near.
However, it is often the case that near = —far, and if that is true then the minimum and
maximum z-values turn out to be near and far after alll

As with glFrustum, glOrtho should be called when the matrix mode is GL_.PROJECTION.
As an example, suppose that we want the view volume to be the box centered at the origin
containing z, y, and z values in the range from -10 to 10. This can be accomplished with

glMatrixMode (GL_PROJECTION) ;
glLoadIdentity();

glOrtho( -10, 10, -10, 10, -10, 10 );
glMatrixMode (GL_MODELVIEW) ;

Now, as it turns out, the effect of glOrtho in this simple case is exactly the same as the effect
of glScalef (0.1, 0.1, -0.1), since the projection just scales the box down by a factor of 10. But
it’s usually better to think of projection as a different sort of thing from scaling. (The minus
sign on the z scaling factor is there because projection reverses the direction of the z-axis,
transforming the conventionally right-handed eye coordinate system into OpenGL’s left-handed
default coordinate system.)

* kX

The glFrustum method is not particularly easy to use. There is a library known as GLU
that contains some utility functions for use with OpenGL. The GLU library includes the method
gluPerspective as an easier way to set up a perspective projection. The command

gluPerspective( fieldOfViewAngle, aspect, near, far );

can be used instead of glFrustum. The fieldOfViewAngle is the vertical angle, measured in
degrees, between the upper side of the view volume pyramid and the lower side. Typical values
are in the range 30 to 60 degrees. The aspect parameter is the aspect ratio of the view, that
is, the width of a cross-section of the pyramid divided by its height. The value of aspect
should generally be set to the aspect ratio of the viewport. The near and far parameters in
gluPerspective have the same meaning as for glFrustum.

3.3.4 The Modelview Transformation

“Modeling” and “viewing” might seem like very different things, conceptually, but OpenGL
combines them into a single transformation. This is because there is no way to distinguish
between them in principle; the difference is purely conceptual. That is, a given transformation
can be considered to be either a modeling transformation or a viewing transformation,
depending on how you think about it. (One significant difference, conceptually, is that the
same viewing transformation usually applies to every object in the 3D scene, while each object
can have its own modeling transformation. But this is not a difference in principle.) We have
already seen something similar in 2D graphics (Subsection 2.3.1), but let’s think about how it
works in 3D.

For example, suppose that there is a model of a house at the origin, facing towards the
direction of the positive z-axis. Suppose the viewer is on the positive z-axis, looking back
towards the origin. The viewer is looking directly at the front of the house. Now, you might
apply a modeling transformation to the house, to rotate it by 90 degrees about the y-axis. After
this transformation, the house is facing in the positive direction of the z-axis, and the viewer is
looking directly at the left side of the house. On the other hand, you might rotate the viewer
by minus 90 degrees about the y-axis. This would put the viewer on the negative z-axis, which
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would give it a view of the left side of the house. The net result after either transformation is
that the viewer ends up with exactly the same view of the house. Either transformation can be
implemented in OpenGL with the command

glRotatef (90,0,1,0);

That is, this command represents either a modeling transformation that rotates an object by
90 degrees or a viewing transformation that rotates the viewer by -90 degrees about the y-axis.
Note that the effect on the viewer is the inverse of the effect on the object. Modeling and
viewing transforms are always related in this way. For example, if you are looking at an object,
you can move yourself 5 feet to the left (viewing transform), or you can move the object 5 feet
to the right (modeling transform). In either case, you end up with the same view of the object.
Both transformations would be represented in OpenGL as

glTranslatef(5,0,0);

This even works for scaling: If the viewer shrinks, it will look to the viewer exactly the same
as if the world is expanding, and vice-versa.

x* kX

Although modeling and viewing transformations are the same in principle, they remain very
different conceptually, and they are typically applied at different points in the code. In general
when drawing a scene, you will do the following: (1) Load the identity matrix, for a well-defined
starting point; (2) apply the viewing transformation; and (3) draw the objects in the scene,
each with its own modeling transformation. Remember that OpenGL keeps track of several
transformations, and that this must all be done while the modelview transform is current; if you
are not sure of that then before step (1), you should call giMatricMode( GL_MODELVIEW ).
During step (3), you will probably use glPushMatriz() and glPopMatriz() to limit each modeling
transform to a particular object.

After loading the identity matrix, the viewer is in the default position, at the origin, looking
down the negative z-axis, with the positive y-axis pointing upwards in the view. Suppose, for
example, that we would like to move the viewer from its default location at the origin back
along the positive z-axis to the point (0,0,20). This operation has exactly the same effect as
moving the world, and the objects that it contains, 20 units in the negative direction along
the z-axis. Whichever operation is performed, the viewer ends up in exactly the same position
relative to the objects. Both operations are implemented by the same OpenGL command,
glTranslatef (0,0,-20). For another example, suppose that we use two commands

glRotatef(90,0,1,0);
glTranslatef (10,0,0);

to establish the viewing transformation. As a modeling transform, these commands would first
translate an object 10 units in the positive z-direction, then rotate the object 90 degrees about
the y-axis. This would move an object originally at (0,0,0) to (0,0,-10), placing the object 10
units directly in front of the viewer. (Remember that modeling transformations are applied
to objects in the order opposite to their order in the code.) What do these commands do as
a viewing transformation? The effect on the view is the inverse of the effect on objects. The
inverse of “translate 90 then rotate 10” is “rotate -10 then translate -90.” That is, to do the
inverse, you have to undo the rotation before you undo the translation. The effect as a viewing
transformation is first to rotate the view by -90 degrees about the y-axis (which would leave the
viewer at the origin, but now looking along the positive z-axis), then to translate the viewer
by -10 along the z-axis (backing up the viewer to the point (-10,0,0)). An object at the point
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(0,0,0) would thus be 10 units directly in front of the viewer. (You should think about how the
two interpretations affect the view of a house that starts out at (0,0,0). The transformation
affects which side of the house the viewer is looking at, as well as how far away from the house
the viewer is located).

Note, by the way, that the order in which viewing transformations are applied is the same
as the order in which they occur in the code.

The on-line version of this section includes the live demo ¢3/transform-equivalence-3d.html
that can help you to understand the equivalence between modeling and viewing. This picture,
taken from that demo, visualizes the view volume as a translucent gray box. The scene contains
eight cubes, but not all of them are inside the view volume, so not all of them would appear in
the rendered image:

In this case, the projection is a perspective projection, and the view volume is a frustum.
This picture might have been made either by rotating the frustum towards the right (viewing
transformation) or by rotating the cubes towards the left (modeling transform). Read the help
text in the demo for more information

It can be difficult to set up a view by combining rotations, scalings, and translations, so
OpenGL provides an easier way to set up a typical view. The command is not part of OpenGL
itself but is part of the GLU library.

The GLU library provides the following convenient method for setting up a viewing
transformation:

gluLookAt ( eyeX,eyeY,eyeZ, refX,refY,refZ, upX,upY,upZ );
This method places the viewer at the point (eyeX,eyeY,eyeZ), looking towards the point
(refX,refY,refZ). The viewer is oriented so that the vector (upX,upY,upZ) points upwards in
the viewer’s view. For example, to position the viewer on the negative z-axis, 10 units from

the origin, looking back at the origin, with the positive direction of the y-axis pointing up as
usual, use

gluLookAt( -10,0,0, 0,0,0, 0,1,0 );
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With all this, we can give an outline for a typical display routine for drawing an image of a
3D scene with OpenGL 1.1:

// possibly set clear color here, if not set elsewhere

glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT );

(Demo)


http://math.hws.edu/eck/cs424/graphicsbook-1.4/demos/c3/transform-equivalence-3d.html
http://math.hws.edu/eck/cs424/graphicsbook-1.4/demos/c3/transform-equivalence-3d.html
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// possibly set up the projection here, if not done elsewhere

glMatrixMode ( GL_MODELVIEW ) ;

glLoadIdentity();

gluLookAt( eyeX,eyeY,eyeZ, refX,refY,refZ, upX,upY,upZ ); [/ Viewing transform

glPushMatrix () ;
// apply modeling transform and draw an object

glPopMatrix();

glPushMatrix () ;
// apply another modeling transform and draw another object

glPopMatrix () ;

3.3.5 A Camera Abstraction

Projection and viewing are often discussed using the analogy of a camera. A real camera is
used to take a picture of a 3D world. For 3D graphics, it useful to imagine using a virtual
camera to do the same thing. Setting up the viewing transformation is like positioning and
pointing the camera. The projection transformation determines the properties of the camera:
What is its field of view, what sort of lens does it use? (Of course, the analogy breaks for
OpenGL in at least one respect, since a real camera doesn’t do clipping in its z-direction.)

I have written a camera utility to implement this idea. The camera is meant to take over the
job of setting the projection and view. Instead of doing that by hand, you set properties of the
camera. The API is available for both C and Java. The two versions are somewhat different
because the Java version is object-oriented. I will discuss the C implementation first. (See
Section 3.6 for basic information about programming OpenGL in C and Java. For an example
of using a camera in a program, see the polyhedron viewer example in the next section. Note
also that there is a version of the camera for use with my JavaScript simulator for OpenGL;
it is part of the simulator library glsim/glsim.js and has an API almost identical to the Java
APL)

In C, the camera is defined by the sample .c file, glut/camera.c and a corresponding header
file, glut/camera.h. Full documentation for the API can be found in the header file. To use the
camera, you should #include "camera.h" at the start of your program, and when you compile
the program, you should include camera.c in the list of files that you want to compile. The
camera depends on the GLU library and on C’s standard math library, so you have to make
sure that those libraries are available when it is compiled. To use the camera, you should call

cameralApply () ;


http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glsim/glsim.js
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glut/camera.c
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glut/camera.h

CHAPTER 3. OPENGL 1.1: GEOMETRY 104

to set up the projection and viewing transform before drawing the scene. Calling this function
replaces the usual code for setting up the projection and viewing transformations. It leaves the
matrix mode set to GL_.MODELVIEW.

The remaining functions in the API are used to configure the camera. This would usually
be done as part of initialization, but it is possible to change the configuration at any time.
However, remember that the settings are not used until you call cameraApply(). Available
functions include:

cameraLookAt ( eyeX,eyeY,eyeZ, refX,refY,refZ, upX,upY,upZ );
// Determines the viewing transform, just like gluLookAt
// Default is cameralookAt( 0,0,30, 0,0,0, 0,1,0 );

cameraSetLimits( xmin, xmax, ymin, ymax, zmin, zmax );
// Sets the limits on the view volume, where zmin and zmax are
// given with respect to the view reference point, NOT the eye,
// and the xy limits are measured at the distance of the
// view reference point, NOT the near distance.
// Default is cameraSetLimits( -5,5, -5,5, -10,10 );

cameraSetScale( limit );
// a convenience method, which is the same as calling
// cameraSetLimits( -limit,limit, -limit,limit, -2*limit, 2*limit );

cameraSetOrthographic( ortho );
// Switch between orthographic and perspective projection.
// The parameter should be O for perspective, 1 for
// orthographic. The default is perspective.

cameraSetPreserveAspect ( preserve ) ;
// Determine whether the aspect ratio of the viewport should
// be respected. The parameter should be O to ignore and
// 1 to respect the viewport aspect ratio. The default
// is to preserve the aspect ratio.

In many cases, the default settings are sufficient. Note in particular how cameraLookAt
and cameraSetLimits work together to set up the view and projection. The parameters
to cameraLookAt represent three points in world coordinates. The view reference point,
(refX,refY,refZ), should be somewhere in the middle of the scene that you want to render.
The parameters to cameraSetLimits define a box about that view reference point that should
contain everything that you want to appear in the image.

I S 3

For use with JOGL in Java, the camera API is implemented as a class named Camera,
defined in the file jogl/Camera.java. The camera is meant for use with a GLPanel or GLCanvas
that is being used as an OpenGL drawing surface. To use a camera, create an object of type
Camera as an instance variable:

camera = new Camera();
Before drawing the scene, call
camera.apply(gl2);

where ¢l2 is the OpenGL drawing context of type GL2. (Note the presence of the parameter
gl2, which was not necessary in C; it is required because the OpenGL drawing context in
JOGL is implemented as an object.) As in the C version, this sets the viewing and projection


http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/jogl/Camera.java
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transformations and can replace any other code that you would use for that purpose. The
functions for configuring the camera are the same in Java as in C, except that they become
methods in the camera object, and true/false parameters are boolean instead of int:

camera.lookAt( eyeX,eyeY,eyeZ, refX,refY,refZ, upX,upY,upZ );

camera.setLimits( xmin,xmax, ymin,ymax, zmin,zmax ) ;

camera.setScale( limit );

camera.setOrthographic( ortho ); // ortho is of type boolean
camera.setPreserveAspect( preserve ); // preserve is of type boolean

x kX

The camera comes with a simulated “trackball.” The trackball allows the user to rotate the
view by clicking and dragging the mouse on the display. To use it with GLUT in C, you just
need to install a mouse function and a mouse motion function by calling

glutMouseFunc( trackballMouseFunction );
glutMotionFunc( trackballMotionFunction );

The functions trackballMouseFunction and trackballMotionFunction are defined as part of the
camera API and are declared and documented in camera.h. The trackball works by modifying
the viewing transformation associated with the camera, and it only works if cameraApply() is
called at the beginning of the display function to set the viewing and projection transformations.
To install a trackball for use with a Camera object in JOGL, call

camera.installTrackball (drawSurface) ;

where drawSurface is the component on which the camera is used.

3.4 Polygonal Meshes and glDrawArrays

WE HAVE DRAWN ONLY VERY simple shapes with OpenGL. In this section, we look at how
more complex shapes can be represented in a way that is convenient for rendering in OpenGL,
and we introduce a new, more efficient way to draw OpenGL primitives.

OpenGL can only directly render points, lines, and polygons. (In fact, in modern OpenGL,
the only polygons that are used are triangles.) A polyhedron, the 3D analog of a polygon,
can be represented exactly, since a polyhedron has faces that are polygons. On the other hand,
if only polygons are available, then a curved surface, such as the surface of a sphere, can only
be approximated. A polyhedron can be represented, or a curved surface can be approximated,
as a polygonal mesh, that is, a set of polygons that are connected along their edges. If the
polygons are small, the approximation can look like a curved surface. (We will see in the next
chapter how lighting effects can be used to make a polygonal mesh look more like a curved
surface and less like a polyhedron.)

So, our problem is to represent a set of polygons—most often a set of triangles. We start
by defining a convenient way to represent such a set as a data structure.

3.4.1 Indexed Face Sets

The polygons in a polygonal mesh are also referred to as “faces” (as in the faces of a polyhedron),
and one of the primary means for representing a polygonal mesh is as an indexed face set,
or IFS.

The data for an IFS includes a list of all the vertices that appear in the mesh, giving the
coordinates of each vertex. A vertex can then be identified by an integer that specifies its index,
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or position, in the list. As an example, consider this “house,” a polyhedron with 10 vertices
and 9 faces:

v5=(-1.5,1.5,0) v4=(1.5,1.5,0)
[}
!
B vttt L LR EELELS v2=(2,1,-2
T Ne=(212) @1.2)
/2
v7=(-2,1,2) !
. v3=(2,1,2)
i
]
i
P R N N v1=(2,-1,-2)
/”
,I

v6=(-2,-1,2) v0=(2,-1,2)

The vertex list for this polyhedron has the form

Vertex #0. (2, -1, 2)
Vertex #1. (2, -1, -2)
Vertex #2. (2, 1, -2)
Vertex #3. (2, 1, 2)
Vertex #4. (1.5, 1.5, 0)
Vertex #5. (-1.5, 1.5, 0)

Vertex #6. (-2, -1, 2)
Vertex #7. (-2, 1, 2)

Vertex #8. (-2, 1, -2)
Vertex #9. (-2, -1, -2)

The order of the vertices is completely arbitrary. The purpose is simply to allow each vertex to
be identified by an integer.

To describe one of the polygonal faces of a mesh, we just have to list its vertices, in order
going around the polygon. For an IFS, we can specify a vertex by giving its index in the list.
For example, we can say that one of the triangular faces of the pyramid is the polygon formed
by vertex #3, vertex #2, and vertex #4. So, we can complete our data for the mesh by giving
a list of vertex indices for each face. Here is the face data for the house. Remember that the
numbers in parentheses are indices into the vertex list:

Face #0: (0, 1, 2, 3)
Face #1: (3, 2, 4)

Face #2: (7, 3, 4, 5)
Face #3: (2, 8, 5, 4)
Face #4: (5, 8, 7)

Face #5: (0, 3, 7, 6)
Face #6: (0, 6, 9, 1)
Face #7: (2, 1, 9, 8)
Face #8: (6, 7, 8, 9)

Again, the order in which the faces are listed in arbitrary. There is also some freedom in how
the vertices for a face are listed. You can start with any vertex. Once you've picked a starting
vertex, there are two possible orderings, corresponding to the two possible directions in which
you can go around the circumference of the polygon. For example, starting with vertex 0, the
first face in the list could be specified either as (0,1,2,3) or as (0,3,2,1). However, the first
possibility is the right one in this case, for the following reason. A polygon in 3D can be viewed
from either side; we can think of it as having two faces, facing in opposite directions. It turns
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out that it is often convenient to consider one of those faces to be the “front face” of the polygon
and one to be the “back face.” For a polyhedron like the house, the front face is the one that
faces the outside of the polyhedron. The usual rule is that the vertices of a polygon should be
listed in counterclockwise order when looking at the front face of the polygon. When looking
at the back face, the vertices will be listed in clockwise order. This is the default rule used by
OpenGL.

Front face. Back face.
1

2 2
FLIP
e e
3 0

Vertex order 0,1,2,3 is counter-clockwise
from the front and clockwise from the back

The vertex and face data for an indexed face set can be represented as a pair of two-
dimensional arrays. For the house, in a version for Java, we could use

double[][] vertexList =
{ {23_132}, {2’_13_2}: {2:13_2}, {2:1:2}) {1~531'5:0},
{_1-5y1-590}: {_2:_1’2}, {_2,1:2}, {_2,13_2}’ {_2’_1,_2} }’

int[][] facelist =
{ {071’2,3}’ {3’2,4}’ {7’3’4’5}’ {2’8,5’4}, {5,8,7},
{o0,3,7,6}, {0,6,9,1}, {2,1,9,8}, {6,7,8,9F I};

In most cases, there will be additional data for the IFS. For example, if we want to color the
faces of the polyhedron, with a different color for each face, then we could add another array,
faceColors, to hold the color data. Each element of faceColors would be an array of three
double values in the range 0.0 to 1.0, giving the RGB color components for one of the faces.
With this setup, we could use the following code to draw the polyhedron, using Java and JOGL:
for (int i = 0; i < facelist.length; i++) {
gl2.glColor3dv( faceColors[i], 0 ); // Set color for face number i.
g12.glBegin (GL2.GL_TRIANGLE_FAN) ;
for (int j = 0; j < facelist[i].length; j++) {
int vertexNum = faceList[i][jl; // Index for vertex j of face i.
double[] vertexCoords = vertexList[vertexNum]; // The vertex itself.
gl2.glVertex3dv( vertexCoords, 0 );

}
gl2.glEnd();
}

Note that every vertex index is used three or four times in the face data. With the IFS
representation, a vertex is represented in the face list by a single integer. This representation
uses less memory space than the alternative, which would be to write out the vertex in full each
time it occurs in the face data. For the house example, the IF'S representation uses 64 numbers
to represent the vertices and faces of the polygonal mesh, as opposed to 102 numbers for the
alternative representation.

Indexed face sets have another advantage. Suppose that we want to modify the shape of
the polygon mesh by moving its vertices. We might do this in each frame of an animation, as a
way of “morphing” the shape from one form to another. Since only the positions of the vertices
are changing, and not the way that they are connected together, it will only be necessary to
update the 30 numbers in the vertex list. The values in the face list will remain unchanged.
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There are other ways to store the data for an IFS. In C, for example, where two-dimensional
arrays are more problematic, we might use one dimensional arrays for the data. In that case,
we would store all the vertex coordinates in a single array. The length of the vertex array would
be three times the number of vertices, and the data for vertex number N will begin at index
3*N in the array. For the face list, we have to deal with the fact that not all faces have the
same number of vertices. A common solution is to add a -1 to the array after the data for each
face. In C, where it is not possible to determine the length of an array, we also need variables
to store the number of vertices and the number of faces. Using this representation, the data for
the house becomes:

int vertexCount = 10; // Number of vertices.
double vertexDatal[] =
{ 2,-1,2, 2,-1,-2, 2,1,-2, 2,1,2, 1.5,1.5,0,
-1.5,1.5,0, -2,-1,2, -2,1,2, -2,1,-2, -2,-1,-2 };

int faceCount = 9; // Number of faces.
int[][] faceData
{ 0,1,

0

B

W N -

,3,-1, 3,2,4,-1, 7,3,4,5,-1, 2,8,5,4,-1, 5,8,7,-1,
7,6,-1, 0,6,9,1,-1, 2,1,9,8,-1, 6,7,8,9,-1 };

B

After adding a faceColors array to hold color data for the faces, we can use the following C
code to draw the house:
int 1,3;
j = 0; // index into the faceData array
for (i = 0; i < faceCount; i++) {
glColor3dv( &faceColors[ i*3 ] ); // Color for face number i.
glBegin (GL_.TRIANGLE_FAN) ;
while ( faceDatal[j] != -1) { // Generate vertices for face number i.
int vertexNum = faceDatal[j]; // Vertex number in vertexData array.
glVertex3dv( &vertexDatal[ vertexNumx*3 ] );
j+ts
}

j++; // increment j past the -1 that ended the data for this face.
glEnd Q) ;
¥

Note the use of the C address operator, &. For example, &faceColors[i*3] is a pointer
to element number :*3 in the faceColors array. That element is the first of the three color
component values for face number 4. This matches the parameter type for glColor3dv in C,
since the parameter is a pointer type.

I S 3

We could easily draw the edges of the polyhedron instead of the faces simply by using
GL_LINE_LOOP instead of GL_.TRIANGLE_FAN in the drawing code (and probably leaving
out the color changes). An interesting issue comes up if we want to draw both the faces and
the edges. This can be a nice effect, but we run into a problem with the depth test: Pixels
along the edges lie at the same depth as pixels on the faces. As discussed in Subsection 3.1.4,
the depth test cannot handle this situation well. However, OpenGL has a solution: a feature
called “polygon offset.” This feature can adjust the depth, in clip coordinates, of a polygon, in
order to avoid having two objects exactly at the same depth. To apply polygon offset, you need
to set the amount of offset by calling
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glPolygonOffset(1,1);

The second parameter gives the amount of offset, in units determined by the first parameter.
The meaning of the first parameter is somewhat obscure; a value of 1 seems to work in all cases.
You also have to enable the GL_.POLYGON_OFFSET_FILL feature while drawing the faces.

An outline for the procedure is

glPolygonOffset(1,1);
glEnable ( GL_POLYGON_OFFSET FILL );

// Draw the faces.
ngisable( GL_POLYGON_OFFSET_FILL );

// Draw the edges.

There is a sample program that can draw the house and a number of other polyhedra.
It uses drawing code very similar to what we have looked at here, including polygon offset.
The program is also an example of using the camera and trackball API that was discussed in
Subsection 3.3.5, so that the user can rotate a polyhedron by dragging it with the mouse. The
program has menus that allow the user to turn rendering of edges and faces on and off, plus some
other options. The Java version of the program is jogl/IFSPolyhedronViewer.java, and the C
version is glut/ifs-polyhedron-viewer.c. To get at the menu in the C version, right-click on the
display. The data for the polyhedra are created in jogl/Polyhedron.java and glut/polyhedron.c.
There is also a live demo version of the program in this section on line.

3.4.2 glDrawArrays and glDrawElements

All of the OpenGL commands that we have seen so far were part of the original OpenGL 1.0.
OpenGL 1.1 added some features to increase performance. One complaint about the original
OpenGL was the large number of function calls needed to draw a primitive using functions
such as glVertex2d and glColor3fv with glBegin/glEnd. To address this issue, OpenGL 1.1
introduced the functions glDrawArrays and glDrawElements. These functions are still used
in modern OpenGL, including WebGL. We will look at glDrawArrays first. There are some
differences between the C and the Java versions of the API. We consider the C version first and
will deal with the changes necessary for the Java version in the next subsection.

When using glDrawArrays, all of the data that is needed to draw a primitive, including
vertex coordinates, colors, and other vertex attributes, can be packed into arrays. Once that
is done, the primitive can be drawn with a single call to glDrawArrays. Recall that a primitive
such as a GL_.LINE_LOOP or a GL_.TRIANGLES can include a large number of vertices, so
that the reduction in the number of function calls can be substantial.

To use glDrawArrays, you must store all of the vertex coordinates for a primitive in a single
one-dimensional array. You can use an array of int, float, or double, and you can have 2, 3, or
4 coordinates for each vertex. The data in the array are the same numbers that you would pass
as parameters to a function such as glVerter3f, in the same order. You need to tell OpenGL
where to find the data by calling

void glVertexPointer(int size, int type, int stride, void* array)

The size parameter is the number of coordinates per vertex. (You have to provide the same
number of coordinates for each vertex.) The type is a constant that tells the data type of each

(Demo)


http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/jogl/IFSPolyhedronViewer.java
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glut/ifs-polyhedron-viewer.c
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/jogl/Polyhedron.java
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glut/polyhedron.c
http://math.hws.edu/eck/cs424/graphicsbook-1.4/demos/c3/IFS-polyhedron-viewer.html
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of the numbers in the array. The possible values are GL_FLOAT, GL_INT, and GL_DOUBLE.
The constant that you provide here must match the data type of the numbers in the array.
The stride is usually 0, meaning that the data values are stored in consecutive locations in the
array; if that is not the case, then stride gives the distance in bytes between the location of
the data for one vertex and location for the next vertex. (This would allow you to store other
data, along with the vertex coordinates, in the same array.) The final parameter is the array
that contains the data. It is listed as being of type “void*”, which is a C data type for a pointer
that can point to any type of data. (Recall that an array variable in C is a kind of pointer, so
you can just pass an array variable as the fourth parameter.) For example, suppose that we
want to draw a square in the zy-plane. We can set up the vertex array with

float coords[8] = { -0.5,-0.5, 0.5,-0.5, 0.5,0.5, -0.5,0.5 };
glVertexPointer( 2, GL_FLOAT, O, coords );

In addition to setting the location of the vertex coordinates, you have to enable use of the array
by calling

glEnableClientState (GL_VERTEX_ARRAY) ;

OpenGL ignores the vertex pointer except when this state is enabled. You can use
glDisableClientState to disable use of the vertex array. Finally, in order to actually draw the
primitive, you would call the function

void glDrawArrays( int primitiveType, int firstVertex, int vertexCount)

This function call corresponds to one use of glBegin/glEnd. The primitiveType tells which
primitive type is being drawn, such as GL_QUADS or GL_.TRIANGLE_STRIP. The same ten
primitive types that can be used with glBegin can be used here. The parameter first Vertex is the
number of the first vertex that is to be used for drawing the primitive. Note that the position
is given in terms of vertex number; the corresponding array index would be the vertex number
times the number of coordinates per vertex, which was set in the call to glVertezPointer. The
vertexCount parameter is the number of vertices to be used, just as if glVertex* were called
vertexrCount times. Often, firstVerter will be zero, and vertexCount will be the total number
of vertices in the array. The command for drawing the square in our example would be

glDrawArrays( GL_TRIANGLE_FAN, O, 4 );

Often there is other data associated with each vertex in addition to the vertex coordinates.
For example, you might want to specify a different color for each vertex. The colors for the
vertices can be put into another array. You have to specify the location of the data by calling

void glColorPointer(int size, int type, int stride, void* array)
which works just like gVertexPointer. And you need to enable the color array by calling

glEnableClientState (GL_COLOR_ARRAY) ;

With this setup, when you call glDrawArrays, OpenGL will pull a color from the color array for
each vertex at the same time that it pulls the vertex coordinates from the vertex array. Later,
we will encounter other kinds of vertex data besides coordinates and color that can be dealt
with in much the same way.

Let’s put this together to draw the standard OpenGL red/green/blue triangle, which we
drew using glBegin/glEnd in Subsection 3.1.2. Since the vertices of the triangle have different
colors, we will use a color array in addition to the vertex array.
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float coords[6]
float colors[9]

{ -0.9,-0.9, 0.9,-0.9, 0,0.7 }; // two coords per vertex.
{1,0,0, 0,1,0, 1,0,0 }; // three RGB values per vertex.

glVertexPointer( 2, GL_FLOAT, O, coords ); // Set data type and location.
glColorPointer( 3, GL_FLOAT, 0, colors );

glEnableClientState( GL_VERTEX_ARRAY ); // Enable use of arrays.
glEnableClientState( GL_COLOR-ARRAY );

glDrawArrays( GL_TRIANGLES, 0, 3 ); // Use 3 vertices, starting with vertex O.

In practice, not all of this code has to be in the same place. The function that does the actual
drawing, glDrawArrays, must be in the display routine that draws the image. The rest could
be in the display routine, but could also be done, for example, in an initialization routine.

S S 3

The function glDrawElements is similar to glDrawArrays, but it is designed for use with data
in a format similar to an indexed face set. With glDrawArrays, OpenGL pulls data from the
enabled arrays in order, vertex 0, then vertex 1, then vertex 2, and so on. With glDrawFElements,
you provide a list of vertex numbers. OpenGL will go through the list of vertex numbers, pulling
data for the specified vertices from the arrays. The advantage of this comes, as with indexed
face sets, from the fact that the same vertex can be reused several times.

To use glDrawFElements to draw a primitive, you need an array to store the vertex numbers.
The numbers in the array can be 8, 16, or 32 bit integers. (They are supposed to be unsigned
integers, but arrays of regular positive integers will also work.) You also need arrays to store
the vertex coordinates and other vertex data, and you must enable those arrays in the same
way as for glDrawArrays, using functions such as glVertexArray and glEnableClientState. To
actually draw the primitive, call the function

void glDrawElements( int primitiveType, vertexCount, dataType, void *array)

Here, primitive Type is one of the ten primitive types such as GL_LINES, vertexCount is the
number of vertices to be drawn, dataType specifies the type of data in the array, and array is the
array that holds the list of vertex numbers. The dataType must be given as one of the constants
GL_UNSIGNED_BYTE, GL_UNSIGNED_SHORT, or GL_.UNSIGNED_INT to specify 8, 16, or
32 bit integers respectively.

As an example, we can draw a cube. We can draw all six faces of the cube as one primitive
of type GL_QUADS. We need the vertex coordinates in one array and the vertex numbers for
the faces in another array. I will also use a color array for vertex colors. The vertex colors will
be interpolated to pixels on the faces, just like the red/green/blue triangle. Here is code that
could be used to draw the cube. Again, all this would not necessarily be in the same part of a
program:

float vertexCoords[24] = { // Coordinates for the vertices of a cube.
1,1,1, 1,1,-1, 1,-1,-1, 1,-1,1,
-1,1,1, -1,1,-1, -1,-1,-1, -1,-1,1 };

float vertexColors[24] = { // An RGB color value for each vertex
1,1,1, 1,0,0, 1,1,0, 0,1,0,
0,0,1, 1,0,1, 0,0,0, 0,1,1 3
\

int elementArray[24] = { // Vertex numbers for the six faces.
011’2’3’ 013’7’4’ 0,4’5’1!
6,2,1,5, 6,5,4,7, 6,7,3,2 1};
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glVertexPointer( 3, GL_FLOAT, O, vertexCoords );
glColorPointer( 3, GL_FLOAT, O, vertexColors );

glEnableClientState( GL_VERTEX_ARRAY );
glEnableClientState( GL_COLOR_ARRAY );

glDrawElements( GL_QUADS, 24, GL_UNSIGNED_INT, elementArray );

Note that the second parameter is the number of vertices, not the number of quads.

The sample program glut/cubes-with-vertex-arrays.c uses this code to draw a cube. It draws
a second cube using glDrawArrays. The Java version is jogl/CubesWithVertexArrays.java, but
you need to read the next subsection before you can understand it. There is also a JavaScript
version, glsim/cubes-with-vertex-arrays.html.

3.4.3 Data Buffers in Java

Ordinary Java arrays are not suitable for use with glDrawElements and glDrawArrays, partly
because of the format in which data is stored in them and partly because of inefficiency in
transfer of data between Java arrays and the Graphics Processing Unit. These problems are
solved by using direct nio buffers. The term “nio” here refers to the package java.nio, which
contains classes for input/output. A “buffer” in this case is an object of the class java.nio.Buffer
or one of its subclasses, such as FloatBuffer or IntBuffer. Finally, “direct” means that the buffer
is optimized for direct transfer of data between memory and other devices such as the GPU. Like
an array, an nio buffer is a numbered sequence of elements, all of the same type. A FloatBuftfer,
for example, contains a numbered sequence of values of type float. There are subclasses of
Buffer for all of Java’s primitive data types except boolean.

Nio buffers are used in JOGL in several places where arrays are used in the C API. For
example, JOGL has the following glVertexPointer method in the GL2 class:

public void glVertexPointer(int size, int type, int stride, Buffer buffer)

Only the last parameter differs from the C version. The buffer can be of type FloatBuffer,
IntBuffer, or DoubleBuffer. The type of buffer must match the type parameter in the method.
Functions such as glColorPointer work the same way, and glDrawFElements takes the form

public void glDrawElements( int primitiveType, vertexCount,
dataType, Buffer buffer)

where the buffer can be of type IntBuffer, ShortBuffer, or ByteBuffer to match the dataType
UNSIGNED_INT, UNSIGNED_SHORT, or UNSIGNED_BYTE.

The class com.jogamp.common.nio.Buffers contains static utility methods for working with
direct nio buffers. The easiest to use are methods that create a buffer from a Java
array. For example, the method Buffers.newDirectFloatBuffer(array) takes a float array
as its parameter and creates a FloatBuffer of the same length and containing the same
data as the array. These methods are used to create the buffers in the sample program
jogl/CubesWithVertexArrays.java. For example,

float[] vertexCoords = { // Coordinates for the vertices of a cube.

1,1,1, 1,1,-1, 1,-1,-1, 1,-1,1,
-1,1,1, -1,1,-1, -1,-1,-1, -1,-1,1 };

int[] elementArray = { // Vertex numbers for the six faces.
0’1’2’3’ 053’7’4’ 054’5’1’
6,2,1,5, 6,5,4,7, 6,7,3,2 };


http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glut/cubes-with-vertex-arrays.c
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/jogl/CubesWithVertexArrays.java
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glsim/cubes-with-vertex-arrays.html
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/jogl/CubesWithVertexArrays.java
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// Buffers for use with glVertexPointer and glDrawElements:
FloatBuffer vertexCoordBuffer = Buffers.newDirectFloatBuffer (vertexCoords);
IntBuffer elementBuffer = Buffers.newDirectIntBuffer (elementArray) ;

The buffers can then be used when drawing the cube:
gl2.glVertexPointer( 3, GL2.GL_FLOAT, 0, vertexCoordBuffer );
gl2.glDrawElements( GL2.GL_QUADS, 24, GL2.GL_UNSIGNED_INT, elementBuffer );

There are also methods such as Buffers.newDirectFloatBuffer(n), which creates a FloatBuffer
of length n. Remember that an nio Buffer, like an array, is simply a linear sequence of elements
of a given type. In fact, just as for an array, it is possible to refer to items in a buffer by their
index or position in that sequence. Suppose that buffer is a variable of type FloatBuffer, i is an
int and z is a float. Then

buffer.put(i,x);

copies the value of z into position number ¢ in the buffer. Similarly, buffer.get(i) can be used
to retrieve the value at index ¢ in the buffer. These methods make it possible to work with
buffers in much the same way that you can work with arrays.

3.4.4 Display Lists and VBOs

All of the OpenGL drawing commands that we have considered so far have an unfortunate
inefficiency when the same object is going be drawn more than once: The commands and data
for drawing that object must be transmitted to the GPU each time the object is drawn. It should
be possible to store information on the GPU, so that it can be reused without retransmitting
it. We will look at two techniques for doing this: display lists and vertex buffer objects
(VBOs). Display lists were part of the original OpenGL 1.0, but they are not part of the
modern OpenGL API. VBOs were introduced in OpenGL 1.5 and are still important in modern
OpenGL; we will discuss them only briefly here and will consider them more fully when we get
to WebGL.

Display lists are useful when the same sequence of OpenGL commands will be used several
times. A display list is a list of graphics commands and the data used by those commands. A
display list can be stored in a GPU. The contents of the display list only have to be transmitted
once to the GPU. Once a list has been created, it can be “called.” The key point is that calling
a list requires only one OpenGL command. Although the same list of commands still has to
be executed, only one command has to be transmitted from the CPU to the graphics card,
and then the full power of hardware acceleration can be used to execute the commands at the
highest possible speed.

Note that calling a display list twice can result in two different effects, since the effect can
depend on the OpenGL state at the time the display list is called. For example, a display list
that generates the geometry for a sphere can draw spheres in different locations, as long as
different modeling transforms are in effect each time the list is called. The list can also produce
spheres of different colors, as long as the drawing color is changed between calls to the list.

If you want to use a display list, you first have to ask for an integer that will identify that
list to the GPU. This is done with a command such as

listID = glGenLists(1);

The return value is an int which will be the identifier for the list. The parameter to
glGenLists is also an int, which is usually 1. (You can actually ask for several list IDs at once;
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the parameter tells how many you want. The list IDs will be consecutive integers, so that if
listA is the return value from glGenLists(3), then the identifiers for the three lists will be listA,
listA + 1, and listA + 2.)

Once you've allocated a list in this way, you can store commands into it. If listID is the 1D
for the list, you would do this with code of the form:

glNewList(1istID, GL_COMPILE);
// OpenGL commands to be stored in the list.
glEndList () ;

The parameter GL_.COMPILE means that you only want to store commands into the list, not
execute them. If you use the alternative parameter GL_COMPILE_AND_EXECUTE, then the
commands will be executed immediately as well as stored in the list for later reuse.

Once you have created a display list in this way, you can call the list with the command

glCallList(1listID);

The effect of this command is to tell the GPU to execute a list that it has already stored. You
can tell the graphics card that a list is no longer needed by calling

gl.glDeletelists(1istID, 1);

The second parameter in this method call plays the same role as the parameter in glGenLists;
that is, it allows you delete several sequentially numbered lists. Deleting a list when you are
through with it allows the GPU to reuse the memory that was used by that list.

I

Vertex buffer objects take a different approach to reusing information. They only store data,
not commands. A VBO is similar to an array. In fact, it is essentially an array that can be
stored on the GPU for efficiency of reuse. There are OpenGL commands to create and delete
VBOs and to transfer data from an array on the CPU side into a VBO on the GPU. You can
configure glDrawArrays() and glDrawElements() to take the data from a VBO instead of from
an ordinary array (in C) or from an nio Buffer (in JOGL). This means that you can send the
data once to the GPU and use it any number of times.

I will not discuss how to use VBOs here, since it was not a part of OpenGL 1.1. However,
there is a sample program that lets you compare different techniques for rendering a complex
image. The C version of the program is glut/color-cube-of-spheres.c, and the Java version is
jogl/ColorCubeOfSpheres.java. The program draws 1331 spheres, arranged in an 11-by-11-by-
11 cube. The spheres are different colors, with the amount of red in the color varying along
one axis, the amount of green along a second axis, and the amount of blue along the third.
Each sphere has 66 vertices, whose coordinates can be computed using the math functions sin
and cos. The program allows you to select from five different rendering methods, and it shows
the time that it takes to render the spheres using the selected method. (The Java version has
a drop-down menu for selecting the method; in the C version, right-click the image to get the
menu.) You can use your mouse to rotate the cube of spheres, both to get a better view and to
generate more data for computing the average render time. The five rendering techniques are:

e Direct Draw, Recomputing Vertex Data — A remarkably foolish way to draw 1331 spheres,
by recomputing all of the vertex coordinates every time a sphere is drawn.

e Direct Draw, Precomputed Data — The vertex coordinates are computed once and stored
in an array. The spheres are drawn using glBegin/glEnd, but the data used in the calls to
glVertex* are taken from the array rather than recomputed each time they are needed.


http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glut/color-cube-of-spheres.c
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/jogl/ColorCubeOfSpheres.java
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e Display List — A display list is created containing all of the commands and data needed
to draw a sphere. Each sphere can then be drawn by a single call of that display list.

e DrawArrays with Arrays — The data for the sphere is stored in a vertex array (or, for
Java, in an nio buffer), and each sphere is drawn using a call to glDrawArrays, using the
techniques discussed earlier in this section. The data has to be sent to the GPU every
time a sphere is drawn.

e DrawArrays with VBOs — Again, glDrawArrays is used to draw the spheres, but this time
the data is stored in a VBO instead of in an array, so the data only has to be transmitted
to the GPU once.

In my own experiments, I found, as expected, that display lists and VBOs gave the shortest
rendering times, with little difference between the two. There were some interesting differences
between the results for the C version and the results for the Java version, which seem to be due
to the fact that function calls in C are more efficient than method calls in Java. You should try
the program on your own computer, and compare the rendering times for the various rendering
methods.

3.5 Some Linear Algebra

LINEAR ALGEBRA IS A BRANCH of mathematics that is fundamental to computer graphics. It
studies vectors, linear transformations, and matrices. We have already encountered these topics
in Subsection 2.3.8 in a two-dimensional context. In this section, we look at them more closely
and extend the discussion to three dimensions.

It is not essential that you know the mathematical details that are covered in this section,
since they can be handled internally in OpenGL or by software libraries. However, you will
need to be familiar with the concepts and the terminology. This is especially true for modern
OpenGL, which leaves many of the details up to your programs. Even when you have a software
library to handle the details, you still need to know enough to use the library. You might want
to skim this section and use it later for reference.

3.5.1 Vectors and Vector Math

A vector is a quantity that has a length and a direction. A vector can be visualized as an arrow,
as long as you remember that it is the length and direction of the arrow that are relevant, and
that its specific location is irrelevant. Vectors are often used in computer graphics to represent
directions, such as the direction from an object to a light source or the direction in which a
surface faces. In those cases, we are more interested in the direction of a vector than in its
length.

If we visualize a 3D vector V as an arrow starting at the origin, (0,0,0), and ending at a
point P, then we can, to a certain extent, identify V with P—at least as long as we remember
that an arrow starting at any other point could also be used to represent V. If P has coordinates
(a,b,c), we can use the same coordinates for V. When we think of (a,b,c) as a vector, the value
of a represents the change in the z-coordinate between the starting point of the arrow and its
ending point, b is the change in the y-coordinate, and c¢ is the change in the z-coordinate. For
example, the 3D point (z,y,2) = (3,4,5) has the same coordinates as the vector (dz,dy,dz) =
(3,4,5). For the point, the coordinates (3,4,5) specify a position in space in the zyz coordinate
system. For the vector, the coordinates (3,4,5) specify the change in the z, y, and z coordinates
along the vector. If we represent the vector with an arrow that starts at the origin (0,0,0), then
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the head of the arrow will be at (3,4,5). But we could just as well visualize the vector as an
arrow that starts at the point (1,1,1), and in that case the head of the arrow would be at the
point (4,5,6).

The distinction between a point and a vector is subtle. For some purposes, the distinction
can be ignored; for other purposes, it is important. Often, all that we have is a sequence of
numbers, which we can treat as the coordinates of either a vector or a point, whichever is more
appropriate in the context.

One of the basic properties of a vector is its length. In terms of its coordinates, the length
of a 3D vector (z,y,2) is given by sqrt(z?+y?+22). (This is just the Pythagorean theorem in
three dimensions.) If v is a vector, its length is denoted by |v|. The length of a vector is also
called its morm. (We are considering 3D vectors here, but concepts and formulas are similar
for other dimensions.)

Vectors of length 1 are particularly important. They are called unit vectors. If v = (x,y,2)
is any vector other than (0,0,0), then there is exactly one unit vector that points in the same
direction as v. That vector is given by

( x/length, y/length, z/length )
where length is the length of v. Dividing a vector by its length is said to normalize the vector:
The result is a unit vector that points in the same direction as the original vector.

Two vectors can be added. Given two vectors vl = (z1,y1,z1) and v2 = (22,y2,22), their
sum is defined as

vl + v2 = ( x1+x2, yl+y2, zl+z2 );
The sum has a geometric meaning;:
The vector sum of vl and v2 can be

obtained by placing the starting point
of v2 at the ending point of vl. The

x@) sum is the vector from the starting
S V2 point of v1 to the ending point of v2.
Remember that vectors have length
vl and direction, but no set position.

Multiplication is more complicated. The obvious definition of the product of two vectors,
similar to the definition of the sum, does not have geometric meaning and is rarely used.
However, there are three kinds of vector multiplication that are used: the scalar product, the
dot product, and the cross product.

If v = (2,y,2) is a vector and a is a number, then the scalar product of a and v is defined
as

av = ( axx, axy, a*xz );

Assuming that a is positive and v is not zero, av is a vector that points in the same direction as
v, whose length is a times the length of v. If a is negative, av points in the opposite direction
from v, and its length is | a| times the length of v. This type of product is called a scalar product
because a number like ¢ is also referred to as a “scalar,” perhaps because multiplication by a
scales v to a new length.

Given two vectors vl = (x1,yl,z1) and v2 = (22,y2,22), the dot product of vi and v2 is
denoted by v1-v2 and is defined by

viv2 = x1*x2 + yl*xy2 + zl*z2
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Note that the dot product is a number, not a vector. The dot product has several very important
geometric meanings. First of all, note that the length of a vector v is just the square root of
v-v. Furthermore, the dot product of two non-zero vectors v and v2 has the property that

cos(angle) = vi-v2 / (lvil*|v2])

where angle is the measure of the angle between vl and v2. In particular, in the case of two
unit vectors, whose lengths are 1, the dot product of two unit vectors is simply the cosine
of the angle between them. Furthermore, since the cosine of a 90-degree angle is zero, two
non-zero vectors are perpendicular if and only if their dot product is zero. Because of these
properties, the dot product is particularly important in lighting calculations, where the effect
of light shining on a surface depends on the angle that the light makes with the surface.

The scalar product and dot product are defined in any dimension. For vectors in 3D, there
is another type of product called the cross product, which also has an important geometric
meaning. For vectors vl = (x1,y1,21) and v2 = (22,y2,22), the cross product of v1 and v2 is
denoted v1 xv2 and is the vector defined by

vixv2 = ( ylxz2 - zl*xy2, zl1*x2 - x1*z2, xlxy2 - yl*x2 )

If v1 and v2 are non-zero vectors, then v1 xv2 is zero if and only if v and v2 point in the same
direction or in exactly opposite directions. Assuming v X v2 is non-zero, then it is perpendicular
both to vl and to v2; furthermore, the vectors v1, v2, vl xv2 follow the right-hand rule (in
a right-handed coordinate system); that is, if you curl the fingers of your right hand from v?!
to v2, then your thumb points in the direction of v1 xv2. If vI and v2 are perpendicular unit
vectors, then the cross product v1 xv2 is also a unit vector, which is perpendicular both to v1
and to v2.

Finally, I will note that given two points P1 = (z1,y1,z1) and P2 = (z2,y2,22), the difference
P2—P1 is defined by

P2 — P1 = (x2 —x1, y2 —yl, z2 — z1)

This difference is a vector that can be visualized as an arrow that starts at P1 and ends at P2.
Now, suppose that P1, P2, and P3 are vertices of a polygon. Then the vectors P1—P2 and
P3— P2 lie in the plane of the polygon, and so the cross product

(P3—P2) x (P1-P2)

is a vector that is perpendicular to the polygon.

A

(P3-P2) X (P1-P2)

Try to visualize this in 3D!
A vector that is perpendicular to
the triangle is obtained by taking
the cross product of P3-P2 and
P1-P2, which are vectors that lie
along two sides of the triangle.

P2

This vector is said to be a normal vector for the polygon. A normal vector of length one is
called a unit normal. Unit normals will be important in lighting calculations, and it will be
useful to be able to calculate a unit normal for a polygon from its vertices.
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3.5.2 Matrices and Transformations

A matrix is just a two-dimensional array of numbers. A matrix with r rows and ¢ columns is
said to be an r-by-c matrix. If A and B are matrices, and if the number of columns in A is
equal to the number of rows in B, then A and B can be multiplied to give the matrix product
AB. If A is an n-by-m matrix and B is an m-by-k matrix, then AB is an n-by-k£ matrix. In
particular, two n-by-n matrices can be multiplied to give another n-by-n matrix.

An n-dimensional vector can be thought of an n-by-7 matrix. If A is an n-by-n matrix and
v is a vector in n dimensions, thought of as an n-by-1 matrix, then the product Av is again an
n-dimensional vector. The product of a 3-by-3 matrix A and a 3D vector v = (z,y,z) is often
displayed like this:

al a2 a3 X al*x + a2*y + a3*z
bl b2 b3| |y| = |bl*x+ b2*y +b3*z
cl c2 c3 z cl*x +c2*y + c3*z

Note that the i-th coordinate in the product Av is simply the dot product of the i-th row of
the matrix A and the vector v.

Using this definition of the multiplication of a vector by a matrix, a matrix defines a
transformation that can be applied to one vector to yield another vector. Transformations
that are defined in this way are linear transformations, and they are the main object of study
in linear algebra. A linear transformation L has the properties that for two vectors v and w,
L(v+w) = L(v) + L(w), and for a number s, L(sv) = sL(v).

Rotation and scaling are linear transformations, but translation is not a linear transforma-
tion. To include translations, we have to widen our view of transformation to include affine
transformations. An affine transformation can be defined, roughly, as a linear transformation
followed by a translation. Geometrically, an affine transformation is a transformation that
preserves parallel lines; that is, if two lines are parallel, then their images under an affine
transformation will also be parallel lines. For computer graphics, we are interested in affine
transformations in three dimensions. However—by what seems at first to be a very odd trick—
we can narrow our view back to the linear by moving into the fourth dimension.

Note first of all that an affine transformation in three dimensions transforms a vector
(z1,y1,21) into a vector (z2,y2,2z2) given by formulas

x2 = al*xl + a2xyl + a3*zl + tl

y2 = blkxl + b2xyl + b3*zl + t2
z2 = cl*xl + c2*xyl + c3*zl + t3

These formulas express a linear transformation given by multiplication by the 3-by-3 matrix

al a2 a3
bl b2 b3
cl ¢c2 c3

followed by translation by ¢1 in the z direction, 2 in the y direction and £3 in the z direction.
The trick is to replace each three-dimensional vector (z,y,z) with the four-dimensional vector
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(z,y,2,1), adding a “1” as the fourth coordinate. And instead of the 3-by-3 matrix, we use the
4-by-4 matrix

al a2 a3 ti1
bl b2 b3 t2
cl c2 c3 t3

0O 0 0 1

If the vector (x1,y1,z1,1) is multiplied by this 4-by-4 matrix, the result is precisely the vector
(22,y2,22,1). That is, instead of applying an affine transformation to the 3D vector (z1,y1,21),
we can apply a linear transformation to the 4D vector (z1,y1,21,1).

This might seem pointless to you, but nevertheless, that is what is done in OpenGL
and other 3D computer graphics systems: An affine transformation is represented as a 4-
by-4 matrix in which the bottom row is (0,0,0,1), and a three-dimensional vector is changed
into a four dimensional vector by adding a 1 as the final coordinate. The result is that all
the affine transformations that are so important in computer graphics can be implemented as
multiplication of vectors by matrices.

The identity transformation, which leaves vectors unchanged, corresponds to multiplication
by the identity matriz, which has ones along its descending diagonal and zeros elsewhere. The
OpenGL function glLoadlIdentity() sets the current matrix to be the 4-by-4 identity matrix. An
OpenGL transformation function, such as glTranslatef (tz,ty,tz), has the effect of multiplying
the current matrix by the 4-by-4 matrix that represents the transformation. Multiplication
is on the right; that is, if M is the current matrix and 7' is the matrix that represents the
transformation, then the current matrix will be set to the product matrix MT. For the record,
the following illustration shows the identity matrix and the matrices corresponding to various
OpenGL transformation functions:

1 0 0 O 1 0 0 tx sx 0 0 O
0 1 0 O 0 1 0 ¢ty 0 sy 0 O
0 0 1 O 0 0 1 tz 0 0 sz O
0 0 0 1 0 0 0 1 0 0 0 1
Identity Matrix glTranslatef(tx,ty,tz) glScalef(sx,sy,sz)
1 0 0 o0 cos(d) 0 sin(d) 0 cos(d) -sin(d) 0 0O
0 cos(d) -sin(d) 0 0 1 0 0 sin(d) cos(d) 0 O
0 sin(d) cos(d) 0 -sin(d) @ cos(d) 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1
glRotatef(d,1,0,0) glRotatef(d,0,1,0) glRotatef(d,0,0,1)

It is even possible to use an arbitrary transformation matrix in OpenGL, using the function
glMultMatrizf (T) or glMultMatrizd(T). The parameter, T, is an array of numbers of type
float or double, representing a transformation matrix. The array is a one-dimensional array of
length 16. The items in the array are the numbers from the transformation matrix, stored in
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column-major order, that is, the numbers in the fist column, followed by the numbers in the
second column, and so on. These functions multiply the current matrix by the matrix 7, on
the right. You could use them, for example, to implement a shear transform, which is not easy
to represent as a sequence of scales, rotations, and translations.

3.5.3 Homogeneous Coordinates

We finish this section with a bit of mathematical detail about the implementation of
transformations. There is one common transformation in computer graphics that is not an
affine transformation: In the case of a perspective projection, the projection transformation is
not affine. In a perspective projection, an object will appear to get smaller as it moves farther
away from the viewer, and that is a property that no affine transformation can express, since
affine transforms preserve parallel lines and parallel lines will seem to converge in the distance
in a perspective projection.

Surprisingly, we can still represent a perspective projection as a 4-by-4 matrix, provided
we are willing to stretch our use of coordinates even further than we have already. We have
already represented 3D vectors by 4D vectors in which the fourth coordinate is 1. We now
allow the fourth coordinate to be anything at all, except for requiring that at least one of
the four coordinates is non-zero. When the fourth coordinate, w, is non-zero, we consider the
coordinates (z,y,z,w) to represent the three-dimensional vector (z/w,y/w,z/w). Note that this
is consistent with our previous usage, since it considers (z,y,z,1) to represent (z,y,z), as before.
When the fourth coordinate is zero, there is no corresponding 3D vector, but it is possible to
think of (z,y,2,0) as representing a 3D “point at infinity” in the direction of (z,y,z).

Coordinates (z,y,z,w) used in this way are referred to as homogeneous coordinates. If
we use homogeneous coordinates, then any 4-by-4 matrix can be used to transform three-
dimensional vectors, including matrices whose bottom row is not (0,0,0,1). Among the
transformations that can be represented in this way is the projection transformation for a
perspective projection. And in fact, this is what OpenGL does internally. It represents
all three-dimensional points and vectors using homogeneous coordinates, and it represents
all transformations as 4-by-4 matrices. You can even specify vertices using homogeneous
coordinates. For example, the command

glVertex4f (x,y,z,w);

with a non-zero value for w, generates the 3D point (z/w,y/w,z/w). Fortunately, you will almost
never have to deal with homogeneous coordinates directly. The only real exception to this is
that homogeneous coordinates are used, surprisingly, when configuring OpenGL lighting, as
we’ll see in the next chapter.

3.6 Using GLUT and JOGL

OPENGL 15 AN API FOR graphics only, with no support for things like windows or events.
OpenGL depends on external mechanisms to create the drawing surfaces on which it will draw.
Windowing APIs that support OpenGL often do so as one library among many others that are
used to produce a complete application. We will look at two cross-platform APIs that make it
possible to use OpenGL in applications, one for C/C++ and one for Java.

For simple applications written in C or C++4, one possible windowing API is GLUT
(OpenGL Utility Toolkit). GLUT is a small API. It is used to create windows that serve
as simple frames for OpenGL drawing surfaces. It has support for handling mouse and
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keyboard events, and it can do basic animation. It does not support controls such as buttons
or input fields, but it does allow for a menu that pops up in response to a mouse action.
The original version of GLUT is no longer actively supported, and a version called freeglut
(http://freeglut.sourceforge.net/) is recommended instead. For example, the version included
in Linux is actually freeglut. For details of the freeglut API, see
http://freeglut.sourceforge.net/docs/api.php

JOGL (Java OpenGL) is a collection of classes that make it possible to use OpenGL in
Java applications. JOGL is integrated into Swing and AWT, the standard Java graphical user
interface APIs. With JOGL, you can create Java GUI components on which you can draw
using OpenGL. These OpenGL components can be used in any Java application, in much the
same way that you would use a Canvas or JPanel as a drawing surface. Like many things Java,
JOGL is immensely complicated. We will use it only in fairly simple applications. JOGL is not
a standard part of Java. It’s home web site is

http://jogamp.org/jogl/www /

This section contains information to get you started using GLUT and JOGL, assuming that
you already know the basics of programming with C and Java. It also briefly discusses glsim.js,
a JavaScript library that I have written to simulate the subset of OpenGL 1.1 that is used in
this book.

3.6.1 Using GLUT

To work with GLUT, you will need a C compiler and copies of the OpenGL and GLUT (or
freeglut) development libraries. I can’t tell you exactly that means on your own computer. On
my computer, which runs Linux Mint, for example, the free C compiler gcc is already available.
To do OpenGL development, I installed several packages, including freeglut3-dev and libgli-
mesa-dev. (Mesa is a Linux implementation of OpenGL.) If glutprog.c contains a complete C
program that uses GLUT, I can compile it using a command such as

gcc -o glutprog glutprog.c -1GL -lglut

The “-o glutprog” tells the compiler to use “glutprog” as the name of its output file, which
can then be run as a normal executable file; without this option, the executable file would be
named “a.out”. The “-lglut” and “-1GL” options tell the compiler to link the program with
the GLUT and OpenGL libraries. (The character after the “-” is a lower case “L”.) Without
these options, the linker won’t recognize any GLUT or OpenGL functions. If the program also
uses the GLU library, compiling it would require the option “-IGLU, and if it uses the math
library, it would need the option “Im”. If a program requires additional .c files, they should
be included as well. For example, the sample program glut/color-cube-of-spheres.c depends on
camera.c, and it can be compiled with the Linux gcc compiler using the command:

gcc -o cubes color-cube-of-spheres.c camera.c -1GL -lglut -1GLU -1m

The sample program glut/glut-starter.c can be used as a starting point for writing programs
that use GLUT. While it doesn’t do anything except open a window, the program contains the
framework needed to do OpenGL drawing, including doing animation, responding to mouse
and keyboard events, and setting up a menu. The source code contains comments that tell you
how to use it.

On Windows, you might consider installing the WSL, or Windows Subsystem for Linux,
(https://docs.microsoft.com/en-us/windows/wsl/), which as I write this should soon include
the ability to work with GUI programs. WSL is an official Microsoft system lets you install
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a version of Linux inside Windows. Another option is the older open source project, Cygwin
(https://cygwin.com/). (Using Cygwin, I installed the packages gcc-core, xinit, xorg-server,
libglut-devel, libGLU-devel, and libGL-devel. After starting the X11 window system with the
startxwin command, I was able to compile and run OpenGL examples from this textbook in a
Cygwin terminal window using the same commands that T would use in Linux.)

For MacOS, the situation is more complicated, because OpenGL has been deprecated in
favor of Metal, Apple’s own proprietary API. However, as I write this, OpenGL can still be
used on MacOS with Apple’s XCode developer tools. The examples from this textbook require
some modification to work with XCode tools, since the OpenGL and GLUT libraries are not
loaded in the same way on Mac as they are on Linux. Modified programs for use on MacOS
can be found in the source folder glut/glut-mac. See the README.txt file in that folder for
more information.

* koXk

The GLUT library makes it easy to write basic OpenGL applications in C. GLUT uses
event-handling functions. You write functions to handle events that occur when the display
needs to be redrawn or when the user clicks the mouse or presses a key on the keyboard.

To use GLUT, you need to include the header file glut.h (or freeglut.h) at the start of any
source code file that uses it, along with the general OpenGL header file, gl.h. The header files
should be installed in a standard location, in a folder named GL. (But note that the folder
name could be different, or omitted entirely.) So, the program usually begins with something
like

#include <GL/gl.h>
#include <GL/glut.h>

On my computer, saying #include <GL/glut.h> actually includes the subset of FreeGLUT
that corresponds to GLUT. To get access to all of FreeGLUT, I would substitute
#include <GL/freeglut.h>. Depending on the features that it uses, a program might need
other header files, such as #include <GL/glu.h> and #include <math.h>.

The program’s main() function must contain some code to initialize GLUT, to create and
open a window, and to set up event handling by registering the functions that should be called
in response to various events. After this setup, it must call a function that runs the GLUT
event-handling loop. That function waits for events and processes them by calling the functions
that have been registered to handle them. The event loop runs until the program ends, which
happens when the user closes the window or when the program calls the standard ezit() function.

To set up the event-handling functions, GLUT uses the fact that in C, it is possible to pass a
function name as a parameter to another function. For example, if display() is the function that
should be called to draw the content of the window, then the program would use the command

glutDisplayFunc(display) ;

to install this function as an event handler for display events. A display event occurs when the
contents of the window need to be redrawn, including when the window is first opened. Note
that display must have been previously defined, as a function with no parameters:

void display() {

// OpenGL drawing code goes here!
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Keep in mind that it’s not the name of this function that makes it an OpenGL display
function. It has to be set as the display function by calling glutDisplayFunc(display). All
of the GLUT event-handling functions work in a similar way (except many of them do need to
have parameters).

There are a lot of possible event-handling functions, and I will only cover some of them
here. Let’s jump right in and look at a possible main() routine for a GLUT program that uses
most of the common event handlers:

int main(int argc, char** argv) {
glutInit(&argc, argv); // Required initialization!
glutInitDisplayMode (GLUT_DOUBLE | GLUT_DEPTH) ;
glutInitWindowSize (500,500) ; // size of display area, in pixels
glutInitWindowPosition(100,100); // location in screen coordinates
glutCreateWindow ("OpenGL Program"); // the parameter is the window title

glutDisplayFunc(display) ; // called when window needs to be redrawn
glutReshapeFunc (reshape) ; // called when size of the window changes
glutKeyboardFunc (keyFunc) ; // called when user types a character
glutSpecialFunc(specialKeyFunc);// called when user presses a special key
glutMouseFunc (mouseFunc) ; // called for mousedown and mouseup events
glutMotionFunc (mouseDragFunc); // called when mouse is dragged
glutIdleFunc(idleFun); // called when there are no other events

glutMainLoop(); // Run the event loop! This function never returns.
return 0; // (This line will never actually be reached.)

3

The first five lines do some necessary initialization, the next seven lines install event handlers,
and the call to glutMainLoop() runs the GLUT event loop. I will discuss all of the functions
that are used here. The first GLUT function call must be glutinit, with the parameters as
shown. (Note that arge and argv represent command-line arguments for the program. Passing
them to glutinit allows it to process certain command-line arguments that are recognized
by GLUT. I won’t discuss those arguments here.) The functions glutInitWindowSize and
glutInitWindowPosition do the obvious things; size is given in pixels, and window position is
given in terms of pixel coordinates on the computer screen, with (0,0) at the upper left corner
of the screen. The function glutCreate Window creates the window, but note that nothing can
happen in that window until glutMainLoop is called. Often, an additional, user-defined function
is called in main() to do whatever initialization of global variables and OpenGL state is required
by the program. OpenGL initialization can be done after calling glutCreate Window and before
calling glutMainLoop. Turning to the other functions used in main(),

glutInitDisplayMode (GLUT_DOUBLE | GLUT_DEPTH) — Must be called to define some
characteristics of the OpenGL drawing context. The parameter specifies features that you
would like the OpenGL context to have. The features are represented by constants that are
OR’ed together in the parameter. GLUT_-DEPTH says that a depth buffer should be created;
without it, the depth test won’t work. If you are doing 2D graphics, you wouldn’t include this
option. GLUT_-DOUBLE asks for double buffering, which means that drawing is actually
done off-screen, and the off-screen copy has to copied to the screen to be seen. The copying is
done by glutSwapBuffers(), which must be called at the end of the display function. (You
can use GLUT_SINGLE instead of GLUT_DOUBLE to get single buffering; in that case, you
have to call glFlush() at the end of the display function instead of glutSwapBuffers(). However,
all of the examples in this book use GLUT_-DOUBLE.)
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glutDisplayFunc(display) — The display function should contain OpenGL drawing code
that can completely redraw the scene. This is similar to paintComponent() in the Java Swing
API. The display function can have any name, but it must be declared as a void function with
no parameters: void display().

glutReshapeFunc (reshape) — The reshape function is called when the user changes the
size of the window. Its parameters tell the new width and height of the drawing area:

void reshape( int width, int height )

For example, you might use this method to set up the projection transform, if the projection
depends only on the window size. A reshape function is not required, but if one is provided,
it should always set the OpenGL viewport, which is the part of the window that is used for
drawing. Do this by calling

glViewport(0,0,width,height);

The viewport is set automatically if no reshape function is specified.

glutKeyboardFunc (keyFunc) — The keyboard function is called when the user types a
character such as b’ or A’ or a space. It is not called for special keys such as arrow keys
that do not produce characters when pressed. The keyboard function has a parameter of type
unsigned char which represents the character that was typed. It also has two int parameters
that give the location of the mouse when the key was pressed, in pixel coordinates with (0,0)
at the upper left corner of the display area. So, the definition of the key function must have
the form:

void keyFunc( unsigned char ch, int x, int y )

Whenever you make any changes to the program’s data that require the display to be redrawn,
you should call glutPostRedisplay(). This is similar to calling repaint() in Java. It is better to
call glutPostRedisplay() than to call the display function directly. (I also note that it’s possible
to call OpenGL drawing commands directly in the event-handling functions, but it probably
only makes sense if you are using single buffering; if you do this, call glFlush() to make sure
that the drawing appears on the screen.)

glutSpecialFunc(specialKeyFunc) — The “special” function is called when the user
presses certain special keys, such as an arrow key or the Home key. The parameters are an
integer code for the key that was pressed, plus the mouse position when the key was pressed:

void specialKeyFunc( int key, int x, int y )

GLUT has constants to represent the possible key codes, including GLUT_-KEY_LEFT,
GLUT_KEY_RIGHT, GLUT_KEY_UP, and GLUT_-KEY_DOWN for the arrow keys and
GLUT_-KEY_HOME for the Home key. For example, you can check whether the user pressed
the left arrow key by testing if (key == GLUT_KEY_LEFT).

glutMouseFunc (mouseFunc) — The mouse function is called both when the user presses
and when the user releases a button on the mouse, with a parameter to tell which of these
occurred. The function will generally look like this:

void mouseFunc(int button, int buttonState, int x, int y) {
if (buttonState == GLUT_DOWN) {
// handle mousePressed event
}
else { // buttonState is GLUT_UP
// handle mouseReleased event

}
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The first parameter tells which mouse button was pressed or released; its value is the
constant GLUT_LEFT_BUTTON for the left, GLUT_MIDDLE_BUTTON for the middle, and
GLUT_RIGHT_-BUTTON for the right mouse button. The other two parameters tell the
position of the mouse. The mouse position is given in pixel coordinates with (0,0) in the
top left corner of the display area and with y increasing from top to bottom.

glutMotionFunc (mouseDragFunc) — The motion function is called when the user moves
the mouse while dragging, that is, while a mouse button is pressed. After the user presses the
mouse in the OpenGL window, this function will continue to be called even if the mouse moves
outside the window, and the mouse release event will also be sent to the same window. The
function has two parameters to specify the new mouse position:

void mouseDragFunc(int x, int y)

glutIdleFunc(idleFunction) — The idle function is called by the GLUT event loop
whenever there are no events waiting to be processed. The idle function has no parameters. It
is called as often as possible, not at periodic intervals. GLUT also has a timer function, which
schedules some function to be called once, after a specified delay. To set a timer, call

glutTimerFunc(delayInMilliseconds, timerFunction, userSelectedID)

and define timerFunction as

void timerFunction(int timerID) { ...

The parameter to timerFunction when it is called will be the same integer that was passed as
the third parameter to glutTimerFunc. If you want to use glutTimerFunc for animation, then
timerFunction should end with another call to glutTimerFunc.

I S 3

A GLUT window does not have a menu bar, but it is possible to add a hidden popup menu
to the window. The menu will appear in response to a mouse click on the display. You can set
whether it is triggered by the left, middle, or right mouse button.

A menu is created using the function glutCreateMenu(menuHandler), where the parameter
is the name of a function that will be called when the user selects a command from the menu.
The function must be defined with a parameter of type int that identifies the command that
was selected:

void menuHandler( int commandID ) { ...

Once the menu has been created, commands are added to the menu by calling the function
glutAddMenuEntry(name,commandID). The first parameter is the string that will appear in
the menu. The second is an int that identifies the command; it is the integer that will be
passed to the menu-handling function when the user selects the command from the menu.

Finally, the function glutAttachMenu(button) attaches the menu to the window. The
parameter specifies which mouse button will trigger the menu.  Possible values are
GLUT_LEFT_BUTTON, GLUT_-MIDDLE_BUTTON, and GLUT_RIGHT_-BUTTON. As far
as I can tell, if a mouse click is used to trigger the popup menu, than the same mouse click will
not also produce a call to the mouse-handler function.

Note that a call to glutAddMenuEntry doesn’t mention the menu, and a call to glutAttach-
Menu doesn’t mention either the menu or the window. When you call glutCreateMenu, the
menu that is created becomes the “current menu” in the GLUT state. When glutAddMenu-
Entry is called, it adds a command to the current menu. When glutAttachMenu is called, it
attaches the current menu to the current window, which was set by a call to glutCreate Window.
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All this is consistent with the OpenGL “state machine” philosophy, where functions act by
modifying the current state.

As an example, suppose that we want to let the user set the background color for the display.
We need a function to carry out commands that we will add to the menu. For example, we
might define

function doMenu( int commandID ) {
if ( commandID == 1)
glClearColor(0,0,0,1); // BLACK
else if ( commandID == 2)
glClearColor(1,1,1,1); // WHITE
else if ( commandID == 3)
glClearColor(0,0,0.5,1); // DARK BLUE
else if (commandID == 10)
exit(0); // END THE PROGRAM
glutPostRedisplay(); // redraw the display, with the new background color
}

We might have another function to create the menu. This function would be called in main(),
after calling glutCreate Window:

function createMenu() {
glutCreateMenu( doMenu ); // Call doMenu() in response to menu commands.
glutAddMenuEntry( "Black Background", 1 );
glutAddMenuEntry( "White Background", 2 );
glutAddMenuEntry( "Blue Background", 3 );
glutAddMenuEntry( "EXIT", 10 );
glutAttachMenu (GLUT_RIGHT_BUTTON); // Show menu on right-click.
}

It’s possible to have submenus in a menu. I won’t discuss the procedure here, but you can
look at the sample program glut/ifs-polyhedron-viewer.c for an example of using submenus.

I S 3

In addition to window and event handling, GLUT includes some functions for drawing basic
3D shapes such as spheres, cones, and regular polyhedra. It has two functions for each shape,
a “solid” version that draws the shape as a solid object, and a wireframe version that draws
something that looks like it’s made of wire mesh. (The wireframe is produced by drawing just
the outlines of the polygons that make up the object.) For example, the function

void glutSolidSphere(double radius, int slices, int stacks)

draws a solid sphere with the given radius, centered at the origin. Remember that this is just an
approximation of a sphere, made up of polygons. For the approximation, the sphere is divided
by lines of longitude, like the slices of an orange, and by lines of latitude, like a stack of disks.
The parameters slices and stacks tell how many subdivisions to use. Typical values are 32 and
16, but the number that you need to get a good approximation for a sphere depends on the size
of the sphere on the screen. The function glut WireframeSphere has the same parameters but
draws only the lines of latitude and longitude. Functions for a cone, a cylinder, and a torus
(doughnut) are similar:

void glutSolidCone(double base, double height,
int slices, int stacks)

void glutSolidTorus(double innerRadius, double outerRadius,
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int slices, int rings)

void glutSolidCylinder(double radius, double height,
int slices, int stacks)
// NOTE: Cylinders are available in FreeGLUT and in Java,
// but not in the original GLUT library.

For a torus, the innerRadius is the size of the doughnut hole. The function

void glutSolidCube(double size)

draws a cube of a specified size. There are functions for the other regular polyhedra
that have no parameters and draw the object at some fixed size: glutSolid Tetrahedron(),
glutSolidOctahedron(), glutSolidDodecahedron(), and glutSolidIcosahedron(). There is also
glutSolid Teapot(size) that draws a famous object that is often used as an example. Here’s
what the teapot looks like:

Wireframe versions of all of the shapes are also available. For example, glut WireTeapot(size)
draws a wireframe teapot. Note that GLUT shapes come with normal vectors that are required
for lighting calculations. However, except for the teapot, they do not come with texture
coordinates, which are required for applying textures to objects.

GLUT also includes some limited support for drawing text in an OpenGL drawing context. I
won’t discuss that possibility here. You can check the API documentation if you are interested,
and you can find an example in the sample program glut/color-cube-of-spheres.c.

3.6.2 Using JOGL

JOGL is a framework for using OpenGL in Java programs. It is a large and complex API that
supports all versions of OpenGL, but it is fairly easy to use for basic applications. You should
use JOGL 2.4 or later. The programs in this book were tested with version 2.4.0.

The sample program jogl/JoglStarter.java can be used as a starting point for writing
OpenGL programs using JOGL. While it doesn’t do anything except open a window, the
program contains the framework needed to do OpenGL drawing, including doing animation,
responding to mouse and keyboard events, and setting up a menu. The source code contains
comments that tell you how to use it.

To use JOGL, you will need two .jar files containing the Java classes for JOGL: jogl-all.jar
and gluegen-rt.jar. In addition, you will need two native library files. A native library is a
collection of routines that can be called from Java but are not written in Java. Routines in a
native library will work on only one kind of computer; you need a different native library for
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each type of computer on which your program is to be used. The native libraries for JOGL
are stored in additional .jar files, which are available in several versions for different computers.
For example, for 64-bit Linux on Intel or AMD CPUs, you need jogl-all-natives-linuz-amd64.jar
and gluegen-rt-natives-linuz-amd64.jar. 1t is unfortunate that there are different versions for
different platforms, since many people don’t know exactly which one they are using. However,
if you are in doubt, you can get more than one version; JOGL will figure out which one to use.

JOGL software can be found at https://jogamp.org/. You can download the jar files from

the most recent release, which can be found near the end of the list at
https://jogamp.org/deployment /archive/rc/
Click on the release name, then click on the jar/ link to see the full list of jar files. Find and
download jogl-all.jar and gluegen-rt.jar and the corresponding native library files. I have also
made jogl-all.jar and gluegen-rt.jar available on my own web site, along with the native libraries
for some of the most common platforms, at
http://math.hws.edu/eck/cs424 /jogl 2_4_support/
JOGL is open-source, and the files are freely redistributable, according to their license.

To do JOGL development, you should create a directory somewhere on your computer to
hold the jar files. Place the two JOGL jar files in that directory, along with the two native
library jar files for your platform. (Having extra native library jar files doesn’t hurt, as long as
you have the ones that you need.)

It is possible to do JOGL development on the command line. You have to tell the javac
command where to find the two JOGL jar files. You do that in the classpath (“-cp”) option to
the javac command. For example, if you are working in Linux or MacOS, and if the jar files
happen to be in the same directory where you are working, you might say:

javac -cp jogl-all.jar:gluegen-rt.jar:. MyOpenGLProg.java

(A5

It’s similar for Windows, except that the classpath uses a “;” instead of a “:” to separate the
items in the list:

javac -cp jogl-all.jar;gluegen-rt.jar;. MyOpenGLProg.java

There is an essential period at the end of the classpath, which makes it possible for Java to find
Jjava files in the current directory. If the jar files are not in the current directory, you can use
full path names or relative path names to the files. For example,

javac -cp ../jogl/jogl-all.jar:../jogl/gluegen-rt.jar:. MyOpenGLProg.java
Running a program with the javae command is exactly similar. For example:
java -cp jogl-all.jar:gluegen-rt.jar:. MyOpenGLProg

Note that you don’t have to explicitly reference the native library jar files. They just have to
be in the same directory with the JOGL jar files.

X* kX

I do most of my Java development using the Eclipse IDE (http://eclipse.org). To do
development with JOGL in Eclipse, you will have to configure Eclipse with information about
the jar files. To do that, start up Eclipse. You want to create a “User Library” to contain the jar
files: Open the Eclipse Preferences window, and select “Java” / “Build Path” / “User Libraries”
on the left. Click the “New” button on the right. Enter “JOGL” (or any name you like) as
the name of the user library. Make sure that the new user library is selected in the list of
libraries, then click the “Add External Jars” button. In the file selection box, navigate to the
directory that contains the JOGL jar files, and select the two jar files that are needed for JOGL,
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jogl-all.jar and gluegen-rt.jar. (Again, you do not need to add the native libraries; they just
need to be in the same directory as the JOGL jar files.) Click “Open”. The selected jars will
be added to the user library. (You could also add them one at a time, if you don’t know how
to select multiple files.) It should look something like this:

Preferences S ]
User Libraries Qv v 3B
» General User libraries can be added to a Java Build path and bundle a number of
b Ant external archives. System libraries will be added to the boot class path when
launched.

» Gradle )
b Help Defined user libraries:
¥ Install/Update New...
v Java .

b Appearance [El source attachment: (None) Edit

« Build Path ta] Javadoc location: (None)

Classpath Varial &= External annotations: (None) Add JARs...
; " Is not modular
@ oty _ Add External JARS.
Code Coverage 2 Mative library location: (None)

b Codestyle S Access rules: (No restrictions) Hemave

» compiler [P Visible only For test sources: No =

» Debug ~ & jogl-alljar - home/eck/Desktop/araphics, i

b Ediar [l source attachment: (None) -

¥ Installed JREs (@] Javadoc location: (Nong) Down

riamte &= External annotations: (None)

Click “OK.” The user library has been created. You will only have to do this once, and then
you can use it in all of your JOGL projects.

Now, to use OpenGL in a project, create a new Java project as usual in Eclipse. (If you are
asked whether you want to create a module-info.java file for the project, say “Don’t Create”.
Sample programs for this textbook do not use Java modules.) Right-click the new project in
the Project Explorer view, and select “Build Path” / “Configure Build Path” from the menu.
You will see the project Properties dialog, with “Java Build Path” selected on the left. (You
can also access this through the “Properties” command in the “Project” menu.) Select the
“Libraries” tab at the top of the window, and then click on “Class Path” in the “Libraries”
tab to select it. Click the “Add Library” button, on the right. In the popup window, select
“User Library” and click “Next.” In the next window, select your JOGL User Library and click
“Finish.” Finally, click “Apply and Close” in the main Properties window. Your project should
now be set up to do JOGL development. You should see the JOGL User Library listed as part
of the project in the Project Explorer. Any time you want to start a new JOGL project, you
can go through the same setup to add the JOGL User Library to the build path in the project.

* kX

With all that setup out of the way, it’s time to talk about actually writing OpenGL programs
with Java. With JOGL, we don’t have to talk about mouse and keyboard handling or animation,
since that can be done in the same way as in any Java Swing program. You will only need to
know about a few classes from the JOGL API.

First, you need a GUI component on which you can draw using OpenGL. For that, you can
use GLJPanel, which is a subclass of JPanel. (GLJPanel is for use in programs based on the
Swing API; an alternative is GLCanvas, which is a subclass of the older AWT class Canvas.)



CHAPTER 3. OPENGL 1.1: GEOMETRY 130

The class is defined in the package com.jogamp.opengl.awt. All of the other classes that we will
need for basic OpenGL programming are in the package com.jogamp.opengl.

JOGL uses Java’s event framework to manage OpenGL drawing contexts, and it defines
a custom event listener interface, GLEventListener, to manage OpenGL events. To draw on
a GLJPanel with OpenGL, you need to create an object that implements the GLEventListener
interface, and register that listener with your GLJPanel. The GLEventListener interface defines
the following methods:

public void init(GLAutoDrawable drawable)
public void display(GLAutoDrawable drawable)
public void dispose(GLAutoDrawable drawable)

public void reshape(GLAutoDrawable drawable,
int x, int y, int width, int height)

The drawable parameter in these methods tells which OpenGL drawing surface is involved. It
will be a reference to the GLJPanel. (GLAutoDrawable is an interface that is implemented by
GLJPanel and other OpenGL drawing surfaces.) The init() method is a place to do OpenGL
initialization. (According to the documentation, it can actually be called several times, if the
OpenGL context needs to be recreated for some reason. So init() should not be used to do
initialization that shouldn’t be done more than once.) The dispose() method will be called to
give you a chance to do any cleanup before the OpenGL drawing context is destroyed. The
reshape() method is called when the window first opens and whenever the size of the GLJPanel
changes. OpenGL’s glViewport() function is called automatically before reshape() is called, so
you won’t need to do it yourself. Usually, you won’t need to write any code in dispose() or
reshape(), but they have to be there to satisfy the definition of the GLEventListener interface.
The display() method is where the actual drawing is done and where you will do most of

your work. It should ordinarily clear the drawing area and completely redraw the scene. Take
a minute to study an outline for a minimal JOGL program. It creates a GLJPanel which also
serves as the GLEventListener:

import com.jogamp.opengl.x*;

import com.jogamp.opengl.awt.GLJPanel;

import java.awt.Dimension;
import javax.swing.JFrame;

public class JOGLProgram extends GLJPanel implements GLEventListener {

public static void main(String[] args) {
JFrame window = new JFrame("JOGL Program");
JOGLProgram panel = new JOGLProgram();
window.setContentPane (panel) ;
window.pack();
window.setLocation(50,50);
window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE) ;
window.setVisible(true);

}

public JOGLProgram() {
setPreferredSize( new Dimension(500,500) );
addGLEventListener (this);
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/] ——————————————e Methods of the GLEventListener interface -----—-————-—-

public void init(GLAutoDrawable drawable) {
// called when the panel is created
GL2 gl = drawable.getGL().getGL2();
// Add initialization code here!

}

public void display(GLAutoDrawable drawable) {
// called when the panel needs to be drawn
GL2 gl = drawable.getGL().getGL2();
// Add drawing code here!
}

public void reshape(GLAutoDrawable drawable,
int x, int y, int width, int height) {
// called when user resizes the window

public void dispose(GLAutoDrawable drawable) {
// called when the panel is being disposed

* kX

At this point, the only other thing you need to know is how to use OpenGL functions in the
program. In JOGL, the OpenGL 1.1 functions are collected into an object of type GL2. (There
are different classes for different versions of OpenGL; GL2 contains OpenGL 1.1 functionality,
along with later versions that are compatible with 1.1.) An object of type GL2 is an OpenGL
graphics context, in the same way that an object of type Graphics2D is a graphics context for
ordinary Java 2D drawing. The statement

GL2 gl = drawable.getGL().getGL2();

in the above program obtains the drawing context for the GLAutoDrawable, that is, for the
GLJPanel in that program. The name of the variable could, of course, be anything, but gl or
gl2 is conventional.

For the most part, using OpenGL functions in JOGL is the same as in C, except that
the functions are now methods in the object gl. For example, a call to glClearColor(r,g,b,a)
becomes

gl.glClearColor(r,g,b,a);

The redundant “gl.gl” is a little annoying, but you get used to it. OpenGL constants such as
GL_TRIANGLES are static members of GL2, so that, for example, GL_TRIANGLES becomes
GL2.GL_TRIANGLES in JOGL. Parameter lists for OpenGL functions are the same as in
the C API in most cases. One exception is for functions such as glVertex3fv() that take an
array/pointer parameter in C. In JOGL, the parameter becomes an ordinary Java array, and
an extra integer parameter is added to give the position of the data in the array. Here, for
example, is how one might draw a triangle in JOGL, with all the vertex coordinates in one
array:
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float[] coords = { 0,0.5F, -0.5F,-0.5F, 0.5F,-0.5F };

gl.glBegin(GL2.GL_TRIANGLES) ;

gl.glVertex2fv(coords, 0); // first vertex data starts at index O
gl.glVertex2fv(coords, 2); // second vertex data starts at index 2
gl.glVertex2fv(coords, 4); // third vertex data starts at index 4
gl.glEnd () ;

The biggest change in the JOGL API is the use of nio buffers instead of arrays in functions
such as glVerterPointer. This is discussed in Subsection 3.4.3. We will see in Subsection 4.3.9
that texture images also get special treatment in JOGL.

X* kX

The JOGL API includes a class named GLUT that makes GLUT’s shape-drawing functions
available in Java. (Since you don’t need GLUT’s window or event functions in Java, only the
shape functions are included.) Class GLUT is defined in the package com.jogamp.opengl.util. gl2.
To draw shapes using this class, you need to create an object of type GLUT. It’s only necessary
to make one of these for use in a program:

GLUT glut = new GLUTQ);

The methods in this object include all the shape-drawing functions from the GLUT C API,
with the same names and parameters. For example:

glut.glutSolidSphere( 2, 32, 16 );
glut.glutWireTeapot( 5 );
glut.glutSolidIcosahedron();

(I don’t know why these are instance methods in an object rather than static methods in a
class; logically, there is no need for the object.)

The GLU library is available through the class com.jogamp.opengl.glu. GLU, and it works
similarly to GLUT. That is, you have to create an object of type GLU, and the GLU functions
will be available as methods in that object. We have encountered GLU only for the functions
gluLookAt and gluPerspective, which are discussed in Section 3.3. For example,

GLU glu = new GLU();

glu.gluLookAt( 5,15,7, 0,0,0, 0,1,0 );

3.6.3 About glsim.js

The JavaScript library glsim.js was written to accompany and support this textbook. It
implements the subset of OpenGL 1.1 that is discussed in Chapter 3 and Chapter 4, except for
display lists (Subsection 3.4.4). Tt is used in the demos that appear in the on-line versions of
those chapters. Many of the sample programs that are discussed in those chapters are available
in JavaScript versions that use glsim.js.

If you would like to experiment with OpenGL 1.1, but don’t want to go through the trouble
of setting up a C or Java environment that supports OpenGL programming, you can consider
writing your programs as web pages using glsim.js. Note that glsim is meant for experimentation
and practice only, not for serious applications.

The OpenGL API that is implemented by glsim.js is essentially the same as the C API,
although some of the details of semantics are different. Of course the techniques for creating
a drawing surface and an OpenGL drawing context are specific to JavaScript and differ from
those used in GLUT or JOGL.



CHAPTER 3. OPENGL 1.1: GEOMETRY 133

To use glsim.js, you need to create an HTML document with a <canvas> element to serve as
the drawing surface. The HTML file has to import the script; if glsim.js is in the same directory
as the HTML file, you can do that with

<script src="glsim.js"></script>
To create the OpenGL drawing context, use the JavaScript command
glsimUse(canvas) ;

where canvas is either a string giving the id of the <canvas> element or is the JavaScript DOM
object corresponding to the <canvas> element. Once you have created the drawing context in
this way, any OpenGL commands that you give will apply to the canvas. To run the program,
you just need to open the HI'ML document in a web browser that supports WebGL 1.0.

The easiest way to get started programming is to modify a program that already exists. The
sample program glsim/first-triangle.html, from Subsection 3.1.2 is a very minimal example of
using glsim.js. The sample web page glsim/glsim-starter.html can be used as a starting point for
writing longer programs that use glsim.js. It provides a framework for doing OpenGL drawing,
with support for animation and mouse and keyboard events. The code contains comments
that tell you how to use it. Some documentation for the glsim.js library can be found in
glsim/glsim-doc.html. All of these files are part of the web site for this textbook and can be
found in the web site download in a folder named glsim inside the source folder.


http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glsim/first-triangle.html
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glsim/glsim-starter.html
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glsim/glsim-doc.html

Chapter 4

OpenGL 1.1: Light and Material

ONE OF THE GOALS OF computer graphics is physical realism, that is, making images that
look like they could be photographs of reality. This is not the only goal. For example, for
scientific visualization, the goal is to use computer graphics to present information accurately
and clearly. Artists can use computer graphics to create abstract rather than realistic art.
However, realism is a major goal of some of the most visible uses of computer graphics, such as
video games, movies, and advertising.

One important aspect of physical realism is lighting: the play of light and shadow, the
way that light reflects from different materials, the way it can bend or be diffracted as it passes
through translucent objects. The techniques that are used to produce the most realistic graphics
can take all these factors and more into account.

However, another goal of computer graphics is speed. OpenGL, in particular, was designed
for real-time graphics, where the time that is available for rendering an image is a fraction
of a second. For an animated movie, it’s OK if it takes hours to render each frame. But a
video game is expected to render sixty frames every second. Even with the incredible speed of
modern computer graphics hardware, compromises are necessary to get that speed. And thirty
years ago, when OpenGL was still new, the compromises were a lot bigger

In this chapter, we look at light and material in OpenGL 1.1. You will learn how to configure
light sources and how to assign material properties to objects. Material properties determine
how the objects interact with light. And you will learn how to apply an image to a surface as
a texture. The support for light, material, and texture in OpenGL 1.1 is relatively crude and
incomplete, by today’s standards. But the concepts that it uses still serve as the foundation
for modern real-time graphics and, to a significant extent, even for the most realistic computer
graphics.

4.1 Introduction to Lighting

LicHTING 1S ONE OF THE most important considerations for realistic 3D graphics. The goal is
to simulate light sources and the way that the light that they emit interacts with objects in the
scene. Lighting calculations are disabled by default in OpenGL. This means that when OpenGL
applies color to a vertex, it simply uses the current color value as set by the one of the functions
glColor*. In order to get OpenGL to do lighting calculations, you need to enable lighting by
calling glEnable(GL_-LIGHTING). If that’s all you do, you will find that your objects are all
completely black. If you want to see them, you have to turn on some lights.

The properties of a surface that determine how it interacts light are referred to as the
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material of the surface. A surface can have several different material properties. Before we
study the OpenGL API for light and material, there are a few general ideas about light and
material properties that you need to understand. Those ideas are introduced in this section.
We postpone discussion of how lighting is actually done in OpenGL 1.1 until the next section.

4.1.1 Light and Material

When light strikes a surface, some of it will be reflected. Exactly how it reflects depends in a
complicated way on the nature of the surface, what I am calling the material properties of the
surface. In OpenGL 1.1, the complexity is approximated—very crudely—Dby two general types
of reflection, specular reflection and diffuse reflection. These two types of reflection are
important in other 3D graphics systems as well. (But see Section 8.2 for a more modern view
of materials.)

Specular Reflection Diffuse Reflection
Incoming . Incoming )
rays of light Viewer rays of light ..,V|ewer

N\

\ Light from all
Viewer sees a points on the
; surface reaches
reflection at

just one point the viewer.

In perfect specular (“mirror-like”) reflection, an incoming ray of light is reflected from the
surface intact. The reflected ray makes the same angle with the surface as the incoming ray. A
viewer can see the reflected ray only if the viewer is in exactly the right position, somewhere
along the path of the reflected ray. Even if the entire surface is illuminated by the light source,
the viewer will only see the reflection of the light source at those points on the surface where
the geometry is right. Such reflections are referred to as specular highlights. In practice, we
think of a ray of light as being reflected not as a single perfect ray, but as a cone of light, which
can be more or less narrow.

Specular Reflection Cone

Viewer at center of cone
sees maximal reflextion.

Incoming
ray of light

Viewer farther from center
sees less intense reflextion.

Specular reflection from a very shiny surface produces very narrow cones of reflected light;
specular highlights on such a material are small and sharp. A duller surface will produce wider
cones of reflected light and bigger, fuzzier specular highlights. In OpenGL, the material property
that determines the size and sharpness of specular highlights is called shininess. Shininess in
OpenGL is a number in the range 0 to 128. As the number increases, specular highlights get
smaller. This image shows eight spheres that differ only in the value of the shininess material

property:
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For the sphere on the left, the shininess is 0, which leads to an ugly specular “highlight” that
almost covers an entire hemisphere. Going from left to right, the shininess increases by 16 from
one sphere to the next.

In pure diffuse reflection, an incoming ray of light is scattered in all directions equally. A
viewer would see reflected light from all points on the surface. If the incoming light arrives in
parallel rays that evenly illuminate the surface, then the surface would appear to the viewer to
be evenly illuminated. (If different rays strike the surface at different angles, as they would if
they come from a nearby lamp or if the surface is curved, then the amount of illumination at
a point depends on the angle at which the ray hits the surface at that point, but not on the
angle of the line from that point to the user.)

When light strikes a surface, some of the light can be absorbed, some can be reflected
diffusely, and some can be reflected specularly. The amount of reflection can be different for
different wavelengths. The degree to which a material reflects light of various wavelengths is
what constitutes the color of the material. We now see that a material can have two different
colors—a diffuse color that tells how the material reflects light diffusely, and a specular color
that tells how it reflects light specularly. The diffuse color is the basic color of the object. The
specular color determines the color of specular highlights. The diffuse and specular colors can
be the same; for example, this is often true for metallic surfaces. Or they can be different; for
example, a plastic surface will often have white specular highlights no matter what the diffuse
color.

(The demo c4/materials-demo.html in the on-line version of this section lets the user
experiment with the material properties that we have discussed so far.)

x kX

OpenGL goes even further. In fact, there are two more colors associated with a material.
The third color is the ambient color of the material, which tells how the surface reflects
ambient light. Ambient light refers to a general level of illumination that does not come
directly from a light source. It consists of light that has been reflected and re-reflected so many
times that it is no longer coming from any particular direction. Ambient light is why shadows
are not absolutely black. In fact, ambient light is only a crude approximation for the reality of
multiply reflected light, but it is better than ignoring multiple reflections entirely. The ambient
color of a material determines how it will reflect various wavelengths of ambient light. Ambient
color is generally set to be the same as the diffuse color.

The fourth color associated with a material is an emsission color, which is not really a
color in the same sense as the first three color properties. That is, it has nothing to do with
how the surface reflects light. The emission color is color that does not come from any external
source, and therefore seems to be emitted by the material itself. This does not mean that the
object is giving off light that will illuminate other objects, but it does mean that the object
can be seen even if there is no source of light (not even ambient light). In the presence of light,
the object will be brighter than can be accounted for by the light that illuminates it, and in
that sense it appears to glow. The emission color is usually black; that is, the object has no
emission at all.

Each of the four material color properties is specified in terms of three numbers giving

(Demo)
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the RGB (red, green, and blue) components of the color. Real light can contain an infinite
number of different wavelengths. An RGB color is made up of just three components, but
the nature of human color vision makes this a pretty good approximation for most purposes.
(See Subsection 2.1.4.) Material colors can also have alpha components, but the only alpha
component that is ever used in OpenGL is the one for the diffuse material color.

In the case of the red, blue, and green components of the ambient, diffuse, or specular
color, the term “color” really means reflectivity. That is, the red component of a color gives
the proportion of red light hitting the surface that is reflected by that surface, and similarly
for green and blue. There are three different types of reflective color because there are three
different types of light in OpenGL, and a material can have a different reflectivity for each type
of light.

4.1.2 Light Properties

Leaving aside ambient light, the light in an environment comes from a light source such as a
lamp or the sun. In fact, a lamp and the sun are examples of two essentially different kinds
of light source: a point light and a directional light. A point light source is located at a
point in 3D space, and it emits light in all directions from that point. For a directional light,
all the light comes from the same direction, so that the rays of light are parallel. The sun is
considered to be a directional light source since it is so far away that light rays from the sun
are essentially parallel when they get to the Earth .

% D\

POINT LIGHT DIRECTIONAL LIGHT
emits light in has parallel light rays, all
all directions. from the same direction.

A light can have color. In fact, in OpenGL, each light source has three colors: an ambient
color, a diffuse color, and a specular color. Just as the color of a material is more properly
referred to as reflectivity, color of a light is more properly referred to as intensity or energy.
More exactly, color refers to how the light’s energy is distributed among different wavelengths.
Real light can contain an infinite number of different wavelengths; when the wavelengths are
separated, you get a spectrum or rainbow containing a continuum of colors. Light as it is
usually modeled on a computer contains only the three basic colors, red, green, and blue. So,
just like material color, light color is specified by giving three numbers representing the red,
green, and blue intensities of the light.

The diffuse intensity of a light is the aspect of the light that interacts with diffuse material
color, and the specular intensity of a light is what interacts with specular material color. It is
common for the diffuse and specular light intensities to be the same.

The ambient intensity of a light works a little differently. Recall that ambient light is light
that is not directly traceable to any light source. Still, it has to come from somewhere and
we can imagine that turning on a light should increase the general level of ambient light in
the environment. The ambient intensity of a light in OpenGL is added to the general level of
ambient light. (There can also be global ambient light, which is not associated with any of the
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light sources in the scene.) Ambient light interacts with the ambient color of a material, and
this interaction has no dependence on the position of the light sources or viewer. So, a light
doesn’t have to shine on an object for the object’s ambient color to be affected by the light
source; the light source just has to be turned on.

I should emphasize again that this is all just an approximation, and in this case not one that
has a basis in the physics of the real world. Real light sources do not have separate ambient,
diffuse, and specular colors, and many computer graphics systems model light sources using
just one color.

4.1.3 Normal Vectors

The visual effect of a light shining on a surface depends on the properties of the surface and
of the light. But it also depends to a great extent on the angle at which the light strikes the
surface. The angle is essential to specular reflection and also affects diffuse reflection. That’s
why a curved, lit surface looks different at different points, even if its surface is a uniform color.
To calculate this angle, OpenGL needs to know the direction in which the surface is facing.
That direction is specified by a vector that is perpendicular to the surface. Another word for
“perpendicular” is “normal,” and a non-zero vector that is perpendicular to a surface at a given
point is called a normal vector to that surface. When used in lighting calculations, a normal
vector must have length equal to one. A normal vector of length one is called a unit normal.
For proper lighting calculations in OpenGL, a unit normal must be specified for each vertex.
However, given any normal vector, it is possible to calculate a unit normal from it by dividing
the vector by its length. (See Section 3.5 for a discussion of vectors and their lengths.)

Since a surface can be curved, it can face different directions at different points. So, a
normal vector is associated with a particular point on a surface. In OpenGL, normal vectors
are actually assigned only to the vertices of a primitive. The normal vectors at the vertices of
a primitive are used to do lighting calculations for the entire primitive.

Note in particular that you can assign different normal vectors at each vertex of a polygon.
Now, you might be asking yourself, “Don’t all the normal vectors to a polygon point in the
same direction?” After all, a polygon is flat; the perpendicular direction to the polygon doesn’t
change from point to point. This is true, and if your objective is to display a polyhedral object
whose sides are flat polygons, then in fact, all the normals of each of those polygons should
point in the same direction. On the other hand, polyhedra are often used to approximate curved
surfaces such as spheres. If your real objective is to make something that looks like a curved
surface, then you want to use normal vectors that are perpendicular to the actual surface, not
to the polyhedron that approximates it. Take a look at this example:
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The two objects in this picture are made up of bands of rectangles. The two objects have exactly
the same geometry, yet they look quite different. This is because different normal vectors are
used in each case. For the top object, the band of rectangles is supposed to approximate a
smooth surface. The vertices of the rectangles are points on that surface, and I really didn’t want
to see the rectangles at all—I wanted to see the curved surface, or at least a good approximation.
So for the top object, when I specified the normal vector at each of the vertices, I used a vector
that is perpendicular to the surface rather than one perpendicular to the rectangle. For the
object on the bottom, on the other hand, I was thinking of an object that really is a band
of rectangles, and I used normal vectors that were actually perpendicular to the rectangles.
Here’s a two-dimensional illustration that shows the normal vectors that were used for the two
pictures:

The thick blue lines represent the rectangles, as seen edge-on from above. The arrows represent
the normal vectors. Each rectangle has two normals, one at each endpoint. Each vertex is part
of two rectangles, and so two normal vectors are specified at each vertex.

In the bottom half of the illustration, two rectangles that meet at a point have different
normal vectors at that point. The normal vectors for a rectangle are actually perpendicular
to the rectangle. There is an abrupt change in direction as you move from one rectangle to
the next, so where one rectangle meets the next, the normal vectors to the two rectangles
are different. The visual effect on the rendered image is an abrupt change in shading that is
perceived as a corner or edge between the two rectangles.

In the top half, on the other hand, the vectors are perpendicular to a curved surface that
passes through the endpoints of the rectangles. When two rectangles share a vertex, they also
share the same normal at that vertex. Visually, this eliminates the abrupt change in shading,
resulting in something that looks more like a smoothly curving surface.

The two ways of assigning normal vectors are called flat shading and smooth shading.
Flat shading makes a surface look like it is made of flat sides or facets. Smooth shading makes
it look more like a smooth surface. The on-line demo c¢4/smooth-vs-flat.html can help you to
understand the difference. It shows a polygonal mesh being used to approximate a sphere, with
your choice of smooth or flat shading.

The upshot of all this is that you get to make up whatever normal vectors suit your purpose.
A normal vector at a vertex is whatever you say it is, and it does not have to be literally
perpendicular to the polygon. The normal vector that you choose should depend on the object
that you are trying to model.

There is one other issue in choosing normal vectors: There are always two possible unit
normal vectors at a point on a surface, pointing in opposite directions. A polygon in 3D has

(Demo)
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two faces, facing in opposite directions. OpenGL considers one of these to be the front face
and the other to be the back face. OpenGL tells them apart by the order in which the vertices
are specified. (See Subsection 3.4.1.) The default rule is that the order of the vertices is
counterclockwise when looking at the front face and is clockwise when looking at the back face.
When the polygon is drawn on the screen, this rule lets OpenGL tell whether it is the front
face or the back face that is being shown. When specifying a normal vector for the polygon,
the vector should point out of the front face of the polygon. This is another example of the
right-hand rule. If you curl the fingers of your right hand in the direction in which the vertices of
the polygon were specified, then the normal vector should point in the direction of your thumb.
Note that when you are looking at the front face of a polygon, the normal vector should be
pointing towards you. If you are looking at the back face, the normal vector should be pointing
away from you.

It can be a difficult problem to come up with the correct normal vectors for an object.
Complex geometric models often come with the necessary normal vectors included. This is
true, for example, for the solid shapes drawn by the GLUT library.

4.1.4 The OpenGL 1.1 Lighting Equation

What does it actually mean to say that OpenGL performs “lighting calculations”? The goal of
the calculation is to produce a color, (r,g,b,a), for a point on a surface. In OpenGL 1.1, lighting
calculations are actually done only at the vertices of a primitive. After the color of each vertex
has been computed, colors for interior points of the primitive are obtained by interpolating the
vertex colors.

The alpha component of the vertex color, a, is easy: It’s simply the alpha component of the
diffuse material color at that vertex. The calculation of r, g, and b is fairly complex and rather
mathematical, and you don’t necessarily need to understand it. But here is a short description
of how it’s done. ..

Ignoring alpha components, let’s assume that the ambient, diffuse, specular, and emission
colors of the material have RGB components (ma,,mag,map), (md,,mdg,mdy), (ms,,msqg,msy),
and (me,,meg,mep), respectively. Suppose that the global ambient intensity, which represents
ambient light that is not associated with any light source in the environment, is (ga.,gagy,9ap).
There can be several point and directional light sources, which we refer to as light number 0,
light number 1, light number 2, and so on. With this setup, the red component of the vertex
color will be:

r = me, + gaskma, + Ig, + Iy, + Io, + ...

where Iy, is the red component of the contribution to the color that comes from light number
0; I1,» is the contribution from light number 1; and so on. A similar equation holds for the green
and blue components of the color. This equation says that the emission color, me,, is simply
added to any other contributions to the color. And the contribution of global ambient light is
obtained by multiplying the global ambient intensity, ga,, by the material ambient color, ma,..
This is the mathematical way of saying that the material ambient color is the fraction of the
ambient light that is reflected by the surface.

The terms Io,, I, and so on, represent contributions to the final color from the various
light sources in the environment. The contributions from the light sources are complicated.
Consider just one of the light sources. Note, first of all, that if a light source is disabled (that
is, if it is turned off ), then the contribution from that light source is zero. For an enabled light
source, we have to look at the geometry as well as the colors:
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In this illustration, N is the normal vector at the point whose color we want to compute. L is
a vector that points back along the direction from which the light arrives at the surface. V is
a vector that points in the direction of the viewer. And R is the direction of the reflected ray,
that is, the direction in which a light ray from the source would be reflected specularly when
it strikes the surface at the point in question. The angle between N and L is the same as the
angle between N and R; this is a basic fact about the physics of light. All of the vectors are
unit vectors, with length 1. Recall that for unit vectors A and B, the inner product A - B is
equal to the cosine of the angle between the two vectors. Inner products occur at several points
in the lighting equation, as the way of accounting for the angles between various vectors.

Now, let’s say that the light has ambient, diffuse, and specular color components (la,,lag,lap),
(1d;,1dg,1dp), and (ls,,lsg,lsp). Also, let mh be the value of the shininess property of the material.
Then, assuming that the light is enabled, the contribution of this light source to the red
component of the vertex color can be computed as

I, = la,*ma, + f*( 1d,*md,*(L-N) + ls,*ms,*max(0,V-R)™" )

with similar equations for the green and blue components. The first term, la, *ma, accounts
for the contribution of the ambient light from this light source to the color of the surface. This
term is added to the color whether or not the surface is facing the light.

The value of f is 0 if the surface is facing away from the light and is 1 if the surface faces
the light; that is, it accounts for the fact that the light only illuminates one side of the surface.
To test whether f is 0 or 1, we can check whether L-N is less than 0. This dot product is the
cosine of the angle between L and N; it is less than 0 when the angle is greater than 90 degrees,
which would mean that the normal vector is on the opposite side of the surface from the light.
When f is zero, there is no diffuse or specular contribution from the light to the color of the
vertex.

The diffuse component of the color, before adjustment by f, is given by Ild. *md, *(L-N).
This represents the diffuse intensity of the light times the diffuse reflectivity of the material,
multiplied by the cosine of the angle between L and N. The angle is involved because for a
larger angle, the same amount of energy from the light is spread out over a greater area:
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As the angle increases from 0 to 90 degrees, the cosine of the angle decreases from 1 to 0, so
the larger the angle, the smaller the value of Id, *md, *(L-N) and the smaller the contribution
of diffuse illumination to the color.

For the specular component, recall that a light ray is reflected specularly as a cone of light.
The reflection vector, R, is at the center of the cone. The closer the viewer is to the center of the
cone, the more intense the specular reflection. The distance of the viewer from the center of the
cone depends on the angle between V and R, which appears in the equation as the dot product
V-R. Mathematically, the specular contribution to the color is given by Is, *ms, *maz(0, V-R)™".
Taking the maximum of 0 and V-R ensures that the specular contribution is zero if the angle
between V and R is greater than 90 degrees. Assuming that is not the case, maz(0,V-R) is
equal to V-R. Note that this dot product is raised to the exponent mh, which is the material’s
shininess property. When mh is 0, (V-R)™ is 1, and there is no dependence on the angle; in
that case, the result is the sort of huge and undesirable specular highlight that we have seen for
shininess equal to zero. For positive values of shininess, the specular contribution is maximal
when the angle between V and R is zero, and it decreases as the angle increases. The larger
the shininess value, the faster the rate of decrease. The result is that larger shininess values
give smaller, sharper specular highlights.

Remember that the same calculation is repeated for every enabled light and that the results
are combined to give the final vertex color. It’s easy, especially when using several lights, to
end up with color components larger than one. In the end, before the color is used to color a
pixel on the screen, the color components must be clamped to the range zero to one. Values
greater than one are replaced by one. This makes it easy to produce ugly pictures in which
large areas are a uniform white because all the color values in those areas exceeded one. All
the information that was supposed to be conveyed by the lighting has been lost. The effect
is similar to an over-exposed photograph. It can take some work to find appropriate lighting
levels to avoid this kind of over-exposure.

(My discussion of lighting in this section leaves out some factors. The equation as presented
doesn’t take into account the fact that the effect of a point light can depend on the distance to
the light, and it doesn’t take into account spotlights, which emit just a cone of light. Both of
these can configured in OpenGL 1.1, but this book does not cover how to do that. There are
also many aspects of light that are not captured by the simple model used in OpenGL. One of
the most obvious omissions is shadows: Objects don’t block light! Light shines right through
them. We will encounter some extensions to the model in later chapters when we discuss other
graphics systems. )
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4.2 Light and Material in OpenGL 1.1

IN THIS SECTION, WE WILL see how to use light and material in OpenGL. The functions that
are discussed in this section are specific to older versions of OpenGL, and will not carry over
directly to other graphics APIs. (But the general ideas that they implement, which were covered
in the previous section are more generally applicable.)

In OpenGL 1.1, the use of light and material must be enabled by calling g¢lEn-
able(GL_LIGHTING). When lighting is disabled, the color of a vertex is simply the current
color as set by glColor*. When lighting is enabled, the color of a vertex is computed using a
mathematical formula that takes into account the lighting of the scene and the material proper-
ties that have been assigned to the vertex, as discussed in the previous section. Now it’s time to
learn about the OpenGL commands that are used to configure lighting and to assign materials
to objects.

It is common for lighting to be turned on for rendering some parts of a scene, but turned
off for other parts. We will say that some objects are “lit” while others aren’t. For example,
wireframe objects are usually drawn with lighting disabled, even if they are part of a scene in
which solid objects are lit. But note that it is illegal to call glEnable or glDisable between calls
to glBegin and glEnd, so it is not possible for part of a primitive to be lit while another part of
the same primitive is unlit. (I should note that when lighting is enabled, it is applied to point
and line primitives as well as to polygons, even though it rarely makes sense to do so.) Lighting
can be enabled and disabled by calling glEnable and glDisable with parameter GL_LIGHTING.
Other light and material settings don’t have to be modified when lighting is turned off, since
they are simply ignored when lighting is disabled.

To light a scene, in addition to enabling GL_LIGHTING, you must configure at least one
source of light. For very basic lighting, it often suffices to call

glEnable (GL_LIGHTO) ;

This command turns on a directional light that shines from the direction of the viewer into
the scene. (Note that the last character in GL_.LIGHTO is a zero.) Since it shines from the
direction of the viewer, it will illuminate everything that the user can see. The light is white,
with no specular component; that is, you will see the diffuse color of objects, without any
specular highlights. We will see later in this section how to change the characteristics of this
light source and how to configure additional sources. But first, we will consider materials and
normal vectors.

4.2.1 Working with Material

Material properties are vertex attributes in that same way that color is a vertex attribute. That
is, the OpenGL state includes a current value for each of the material properties. When a vertex
is generated by a call to one of the glVertex® functions, a copy of each of the current material
properties is stored, along with the vertex coordinates. When a primitive that contains the
vertex is rendered, the material properties that are associated with the vertex are used, along
with information about lighting, to compute a color for the vertex.

This is complicated by the fact that polygons are two-sided, and the front face and back
face of a polygon can have different materials. This means that, in fact, two sets of material
property values are stored for each vertex: the front material and the back material. (The
back material isn’t actually used unless you turn on two-sided lighting, which will be discussed
below.)
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With all that in mind, we will look at functions for setting the current values of material
properties. For setting the ambient, diffuse, specular, and emission material colors, the function
is

void glMaterialfv( int side, int property, float* valueArray )

The first parameter can be GL.FRONT_-AND_BACK, GL_FRONT, or GL_.BACK. 1t tells
whether you are setting a material property value for the front face, the back face, or both.
The second parameter tells which material property is being set. It can be GL_AMBIENT,
GL_DIFFUSE, GL_.SPECULAR, GL_EMISSION, or GL_AMBIENT_AND_DIFFUSE. Note
that it is possible to set the ambient and diffuse colors to the same value with one call to
glMaterialfv by using GL_AMBIENT_AND_DIFFUSE as the property name; this is the most
common case. The last parameter to glMaterialfv is an array containing four float numbers.
The numbers give the RGBA color components as values in the range from 0.0 to 1.0; values
outside this range are actually allowed, and will be used in lighting computations, but such
values are unusual. Note that an alpha component is required, but it is used only in the case
of diffuse color: When the vertex color is computed, its alpha component is set equal to the
alpha component of the diffuse material color.

The shininess material property is a single number rather than an array, and there is a

(A=)

different function for setting its value (without the “v” at the end of the name):

void glMaterialf( int side, int property, float value )

Again, the side can be GL_FRONT_AND_BACK, GL_FRONT, or GL_BACK. The property
must be GL_SHININESS. And the value is a float in the range 0.0 to 128.0.

Compared to the large number of versions of glColor* and glVertex*, the options for setting
material are limited. In particular, it is not possible to set a material color without defining
an array to contain the color component values. Suppose for example that we want to set the
ambient and diffuse colors to a bluish green. In C, that might be done with

float bgcolor[4] = { 0.0, 0.7, 0.5, 1.0 };
glMaterialfv( GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, bgcolor )

With my JavaScript simulator for OpenGL, this would look like

let bgcolor = [ 0.0, 0.7, 0.5, 1.0 ];

glMaterialfv( GL_FRONT_AND_BACK, GL_AMBIENT_AND DIFFUSE, bgcolor );
And in the JOGL API for Java, where methods with array parameters have an additional
parameter to give the starting index of the data in the array, it becomes

float[] bgcolor = { 0.0F, 0.7F, 0.5F, 1.0F };
gl.glMaterialfv(GL2.GL_FRONT_AND _BACK, GL2.GL_AMBIENT_AND DIFFUSE, bgcolor, 0);

In C, the third parameter is actually a pointer to float, which allows the flexibility of storing
the values for several material properties in one array. Suppose, for example, that we have a C
array

float gold[13] = { 0.24725, 0.1995, 0.0745, 1.0, /* ambient */
0.75164, 0.60648, 0.22648, 1.0, /* diffuse */
0.628281, 0.555802, 0.366065, 1.0, /* specular */
50.0 /* shininess */
}s

where the first four numbers in the array specify an ambient color; the next four, a diffuse color;
the next four, a specular color; and the last number, a shininess exponent. This array can be
used to set all the material properties:
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glMaterialfv( GL_FRONT_AND_BACK, GL_AMBIENT, gold );

glMaterialfv( GL_FRONT_AND_BACK, GL_DIFFUSE, &gold[4] );
glMaterialfv( GL_FRONT_AND BACK, GL_SPECULAR, &gold[8] );
glMaterialf ( GL_FRONT_AND_BACK, GL_SHININESS, gold[12] );

Note that the last function is giMaterialf rather than glMaterialfv, and that its third parameter
is a number rather than a pointer. Something similar can be done in Java with

float[] gold = { 0.24725F, 0.1995F, 0.0745F, 1.0F, /* ambient */
0.75164F, 0.60648F, 0.22648F, 1.0F, /* diffuse */
0.628281F, 0.555802F, 0.366065F, 1.0F, /* specular */
50.0F /* shininess */
}s;

gl.glMaterialfv( GL2.GL_FRONT_AND_BACK, GL2.GL_AMBIENT, gold, O );
gl.glMaterialfv( GL2.GL_FRONT_AND_BACK, GL2.GL_DIFFUSE, gold, 4 );
gl.glMaterialfv( GL2.GL_FRONT_AND_BACK, GL2.GL_SPECULAR, gold, 8 );
gl.glMaterialf ( GL2.GL_FRONT_AND BACK, GL2.GL_SHININESS, gold[12] );

The functions glMaterialfv and glMaterialf can be called at any time, including between
calls to glBegin and glEnd. This means that different vertices of a primitive can have different
material properties.

X* kX

So, maybe you like glColor* better than glMaterialfv? If so, you can use it to work with
material as well as regular color. If you call

glEnable( GL_COLOR_MATERIAL );

then some of the material color properties will track the color. By default, setting the color
will also set the current front and back, ambient and diffuse material properties. That is, for
example, calling

glColor3f( 1, 0, 0 );
will, if lighting is enabled, have the same effect as calling

glMaterialfv( GL_FRONT_AND_BACK, GL_AMBIENT_AND DIFFUSE, array );

where array contains the values 1, 0, 0, 1. You can change the material property that tracks
the color using

void glColorMaterial( side, property );

where side can be GL_.FRONT_AND_BACK, GL_FRONT, or GL_BACK, and property can be
GL_AMBIENT, GL_DIFFUSE, GL_.SPECULAR, GL_EMISSION, or GL_AMBIENT_AND_DIFFUSE.
Neither glEnable nor glColorMaterial can be called between calls to glBegin and glEnd, so all

of the vertices of a primitive must use the same setting.

Recall that when glDrawArrays or glDrawElements is used to draw a primitive, the color
values for the vertices of the primitive can be taken from a color array, as specified using
glColorPointer. (See Subsection 3.4.2.) There are no similar arrays for material properties.
However, if a color array is used while lighting is enabled, and if GL_.COLOR_-MATERIAL is
also enabled, then the color array will be used as the source for the values of the material
properties that are tracking the color.
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4.2.2 Defining Normal Vectors

Normal vectors are essential to lighting calculations. (See Subsection 4.1.3.) Like color and
material, normal vectors are attributes of vertices. The OpenGL state includes a current normal
vector, which is set using functions in the family gINormal*. When a vertex is specified with
glVertex*, a copy of the current normal vector is saved as an attribute of the vertex, and it
is used as the normal vector for that vertex when the color of the vertex is computed by the
lighting equation. Note that the normal vector for a vertex must be specified before glVertexr™
is called for that vertex.

Functions in the family ¢giNormal* include gINormal3f, glNormal3d, glNormal3fv, and
glNormal3dv. As usual, a “v” means that the values are in an array, “f” means that the
values are floats, and “d” means that the values are doubles. (All normal vectors have three
components). Some examples:

glNormal3f( 0, O, 1 ); // (This is the default value.)
glNormal3d( 0.707, 0.707, 0.0 );

float normalArray[3] = { 0.577, 0.577, 0.577 };
glNormal3fv( normalArray );

For a polygon that is supposed to look flat, the same normal vector is used for all of the
vertices of the polygon. For example, to draw one side of a cube, say the “top” side, facing in
the direction of the positive y-axis:

glNormal3f( O, 1, O ); // Points along positive y-axis
glBegin (GL_QUADS) ;

glVertex3fv(1,1,1);

glVertex3fv(1l,1,-1);

glVertex3fv(-1,1,-1);

glVertex3fv(-1,1,1);

glEnd () ;

Remember that the normal vector should point out of the front face of the polygon, and that
the front face is determined by the order in which the vertices are generated. (You might think
that the front face should be determined by the direction in which the normal vector points,
but that is not how its done. If a normal vector for a vertex points in the wrong direction,
then lighting calculations will not give the correct color for that vertex.)

When modeling a smooth surface, normal vectors should be chosen perpendicular to the
surface, rather than to the polygons that approximate the surface. (See Subsection 4.1.3.)
Suppose that we want to draw the side of a cylinder with radius 1 and height 2, where the
center of the cylinder is at (0,0,0) and the axis lies along the z-axis. We can approximate the
surface using a single triangle strip. The top and bottom edges of the side of a cylinder are
circles. Vertices along the top edge will have coordinates (cos(a),sin(a),1) and vertices along
the bottom edge will have coordinates (cos(a),sin(a),—1), where a is some angle. The normal
vector points in the same direction as the radius, but its z-coordinate is zero since it points
directly out from the side of the cylinder. So, the normal vector to the side of the cylinder
at both of these points will be (cos(a),sin(a),0). Looking down the z-axis at the top of the
cylinder, it looks like this:
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. The vector
(cos(a),sin(a),0)

! \ The point

(cos(a),sin(a),1)

16-sided polygon approximating
a circle, lying in the plane z = 1.

When we draw the side of the cylinder as a triangle strip, we have to generate pairs of vertices
on alternating edges. The normal vector is the same for the two vertices in the pair, but it is
different for different pairs. Here is the code:

glBegin (GL_-TRIANGLE_STRIP);

for (i = 0; i <= 16; i++) {
double angle = 2%3.14159/16 * i; // i 16-ths of a full circle
double x = cos(angle);
double y = sin(angle);
glNormal3f( x, y, O ); // Normal for both vertices at this angle.
glVertex3f( x, y, 1 ); // Vertex on the top edge.
glVertex3f( x, y, -1 ); // Vertex on the bottom edge.

}

glEnd Q) ;

When we draw the top and bottom of the cylinder, on the other hand, we want a flat polygon,
with the normal vector pointing in the direction (0,0,1) for the top and in the direction (0,0,—1)
for the bottom:

glNormal3f( 0, 0, 1);
glBegin(GL_TRIANGLE_FAN); // Draw the top, in the plane z = 1.
for (i = 0; i <= 16; i++) {
double angle = 2%3.14159/16 * 1i;
double x = cos(angle);
double y = sin(angle);
glVertex3f( x, y, 1 );
}
glEnd();

glNormal3f( O, 0, -1 );
glBegin (GL_TRIANGLE_FAN); // Draw the bottom, in the plane z = -1
for (i = 16; i >= 0; i--) {
double angle = 2%3.14159/16 * i;
double x = cos(angle);
double y = sin(angle);
glVertex3f( x, y, -1 );
}
glEnd () ;

Note that the vertices for the bottom are generated in the opposite order from the vertices for
the top, to account for the fact that the top and bottom face in opposite directions. As always,
vertices need to be enumerated in counterclockwise order, as seen from the front.

S S 3
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When drawing a primitive with glDrawArrays or glDrawElements, it is possible to provide
a different normal for each vertex by using a normal array to hold the normal vectors. The
normal array works in the same way as the color array and the vertex array. To use one, you
need to enable the use of a normal array by calling

glEnableClientState (GL_NORMAL_ARRAY) ;

The coordinates for the normal vectors must be stored in an array (or in an nio buffer for
JOGL), and the location of the data must be specified by calling

glNormalPointer( type, stride, data );

The type specifies the type of values in the array. It can be GL_INT, GL_FLOAT, or
GL_DOUBLE. The stride is an integer, which is usually 0, meaning that there is no extra
data in the array between the normal vectors. And data is the array (or buffer) that holds the
normal vectors, with three numbers for each normal.

With this setup, when g¢glDrawArrays or glDrawElements is used to draw a primitive,
the normal vectors for the primitive will be pulled from the array. Note that if
GL_NORMAL_ARRAY is not enabled, then all of the normal vectors for the primitive will
be the same, and will be equal to the current normal vector as set by glNormal*.

x* kX

The lighting equation assumes that normal vectors are unit normals, that is, that they have
length equal to one. The default in OpenGL is to use normal vectors as provided, even if they
don’t have length one, which will give incorrect results. However, if you call

glEnable (GL_NORMALIZE) ;

then OpenGL will automatically convert every normal vector into a unit normal that points in
the same direction.

Note that when a geometric transform is applied, normal vectors are transformed along
with vertices; this is necessary because a transformation can change the direction in which a
surface is facing. A scaling transformation can change the length of a normal vector, so even if
you provided unit normal vectors, they will not be unit normals after a scaling transformation.
However, if you have enabled GL_.NORMALIZE, the transformed normals will automatically be
converted back to unit normals. My recommendation is to always enable GL_NORMALIZE as
part of your OpenGL initialization. The only exception would be if all of the normal vectors that
you provide are of length one and you do not apply any scaling transformations. (Translations
and rotations are OK, because they do not modify lengths.)

4.2.3 Working with Lights

OpenGL 1.1 supports at least eight light sources, which are identified by the constants
GL_.LIGHTO0, GL-LIGHT1, ..., GL.LIGHT7. (An OpenGL implementation might allow
additional lights.) Each light source can be configured to be either a directional light or a
point light, and each light can have its own diffuse, specular, and ambient intensities. (See
Subsection 4.1.2.)

By default, all of the light sources are disabled. To enable a light, call glEnable(light), where
light is one of the constants GL_LIGHT0, GL_LIGHT1, .... However, just enabling a light does
not give any illumination, except in the case of GL_LIGHT0, since all light intensities are zero
by default, with the single exception of the diffuse color of light number 0. To get any light
from the other light sources, you need to change some of their properties. Light properties can
be set using the functions
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void glLightfv( int light, int property, float* valueArray );

The first parameter is one of the constants GL_LIGHT0, GL_LIGHT1I, ..., GL_.LIGHT7. 1t
specifies which light is being configured. The second parameter says which property of the light
is being set. It can be GL_DIFFUSE, GL_.SPECULAR, GL_AMBIENT, or GL_POSITION.
The last parameter is an array that contains at least four float numbers, giving the value of
the property.

For the color properties, the four numbers in the array specify the red, green, blue, and
alpha components of the color. (The alpha component is not actually used for anything.) The
values generally lie in the range 0.0 to 1.0, but can lie outside that range; in fact, values larger
than 1.0 are occasionally useful. Remember that the diffuse and specular colors of a light tell
how the light interacts with the diffuse and specular material colors, and the ambient color is
simply added to the global ambient light when the light is enabled. For example, to set up light
zero as a bluish light, with blue specular highlights, that adds a bit of blue to the ambient light
when it is turned on, you might use:

float bluel[4] {0.4, 0.4, 0.6, 1 };
float blue2[4] = { 0, 0, 0.8, 1 };

float blue3[4] = { 0, 0, 0.15, 1 };
glLightfv( GL_LIGHT1, GL_DIFFUSE, bluel );
glLightfv( GL_LIGHT1, GL_SPECULAR, blue2 );
glLightfv( GL_LIGHT1, GL_AMBIENT, blue3 );

It would likely take some experimentation to figure out exactly what values to use in the arrays
to get the effect that you want.
X Kk ok

The GL_POSITION property of a light is quite a bit different. It is used both to set whether
the light is a point light or a directional light, and to set its position or direction. The property
value for GL_POSITION is an array of four numbers (z,y,z,w), of which at least one must be
non-zero. When the fourth number, w, is zero, then the light is directional and the point (z,y,z)
specifies the direction of the light: The light rays shine in the direction of the line from the
point (z,y,z) towards the origin. This is related to homogeneous coordinates: The source of
the light can be considered to be a point at infinity in the direction of (z,y,z).

On the other hand, if the fourth number, w, is non-zero, then the light is a point light, and
it is located at the point (z/w, y/w, z/w). Usually, w is 1. The value (z,y,2,1) gives a point
light at (z,y,2). Again, this is really homogeneous coordinates.

The default position for all lights is (0,0,1,0), representing a directional light shining from
the positive direction of the z-axis, towards the negative direction of the z-axis.

One important and potentially confusing fact about lights is that the position that is
specified for a light is transformed by the modelview transformation that is in effect at the
time the position is set using glLightfv. Another way of saying this is that the position
is set in eye coordinates, not in world coordinates. Calling glLightfv with the property set to
GL_POSITION is very much like calling glVertez*. The light position is transformed in the
same way that the vertex coordinates would be transformed. For example,

float position[4] = { 1,2,3,1 }
glLightfv(GL_LIGHT1, GL_POSITION, position);

puts the light in the same place as

glTranslatef (1,2,3);
float position[4] = { 0,0,0,1 }
glLightfv(GL_.LIGHT1, GL_POSITION, position);
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For a directional light, the direction of the light is transformed by the rotational part of the
modelview transformation.

There are three basic ways to use light position. It is easiest to think in terms of potentially
animated scenes.

First, if the position is set before any modelview transformation is applied, then the light
is fixed with respect to the viewer. For example, the default light position is effectively set
to (0,0,1,0) while the modelview transform is the identity. This means that it shines in the
direction of the negative z-axis, in the coordinate system of the viewer, where the negative
z-axis points into the screen. Another way of saying this is that the light always shines from
the direction of the viewer into the scene. It’s like the light is attached to the viewer. If the
viewer moves about in the world, the light moves with the viewer.

Second, if the position is set after the viewing transform has been applied and before any
modeling transform is applied, then the position of the light is fixed in world coordinates. It
will not move with the viewer, and it will not move with objects in the scene. It’s like the light
is attached to the world.

Third, if the position is set after a modeling transform has been applied, then the light is
subject to that modeling transformation. This can be used to make a light that moves around in
the scene as the modeling transformation changes. If the light is subject to the same modeling
transformation as an object, then the light will move around with that object, as if it is attached
to the object.

The sample program glut /four-lights.c or jogl/FourLights.java uses multiple moving, colored
lights and lets you turn them on and off to see the effect. The image below is taken from the
program. There is also a live demo version on-line. The program lets you see how light from
various sources combines to produce the visible color of an object. The source code provides
examples of configuring lights and using material properties.

4.2.4 Global Lighting Properties

In addition to the properties of individual light sources, the OpenGL lighting system uses
several global properties. There are only three such properties in OpenGL 1.1. One of them
is the global ambient light, which is ambient light that doesn’t come from the ambient color

(Demo)


http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glut/four-lights.c
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/jogl/FourLights.java
http://math.hws.edu/eck/cs424/graphicsbook-1.4/demos/c4/four-lights-demo.html
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property of any light source. Global ambient light will be present in the environment even if all
of GL_.LIGHTO, GL_LIGHT1, ... are disabled. By default, the global ambient light is black
(that is, its RGB components are all zero). The value can be changed using the function

void glLightModelfv( int property, float* value )

where the property must be GL_LIGHT MODEL_AMBIENT and the wvalue is an array
containing four numbers giving the RGBA color components of the global ambient light as
numbers in the range 0.0 to 1.0. In general, the global ambient light level should be quite low.
For example, in C:

float ambientLevel[] = { 0.15, 0.15, 0.15, 1 };
glLightModelfv( GL_LIGHT_MODEL_AMBIENT, ambientLevel );

The alpha component of the color is usually set to 1, but it is not used for anything. For JOGL,
as usual, there is an extra parameter to specify the starting index of the data in the array, and
the example becomes:

float[] ambientLevel = { 0.15F, 0.15F, 0.15F, 0 I};
gl.gllightModelfv( GL2.GL_LIGHT_MODEL_AMBIENT, ambientLevel, 0 );

The other two light model properties are options that can be either off or on. The properties
are GL_.LIGHT_MODEL_TWO_SIDE and GL_LIGHT_MODEL_LOCAL_VIEWER. They can
be set using the function

void glLightModeli( int property, int value )

with a value equal to 0 or 1 to indicate whether the option should be off or on. You can use
the symbolic constants GL_FALSE and GL_TRUFE for the value, but these are just names for
0 and 1.

GL_LIGHT_-MODEL_-TWO_SIDE is used to turn on two-sided lighting. Recall that a
polygon can have two sets of material properties, a front material and a back material. When
two-sided lighting is off, which is the default, only the front material is used; it is used for both
the front face and the back face of the polygon. Furthermore, the same normal vector is used
for both faces. Since those vectors point—or at least are supposed to point—out of the front
face, they don’t give the correct result for the back face. In effect, the back face looks like
it is illuminated by light sources that lie in front of the polygon, but the back face should be
illuminated by the lights that lie behind the polygon.

On the other hand, when two-sided lighting is on, the back material is used on the back
face and the direction of the normal vector is reversed when it is used in lighting calculations
for the back face.

You should use two-sided lighting whenever there are back faces that might be visible in
your scene. (This will not be the case when your scene consists of “solid” objects, where the
back faces are hidden inside the solid.) With two-sided lighting, you have the option of using
the same material on both faces or specifying different materials for the two faces. For example,
to put a shiny purple material on front faces and a duller yellow material on back faces:

glLightModeli( GL_LIGHT_MODEL_TWO_SIDE, 1 ); // Turn on two-sided lighting.

{0.6, 0, 0.6, 1 };

{0.6, 0.6, 0, 1 };

{0.4, 0.4, 0.4, 1 }; // For specular highlights.
{0, 0,0, 13}

float purplel]
float yellow[]
float whitel[]
float black[]
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glMaterialfv( GL_FRONT, GL_AMBIENT_AND_DIFFUSE, purple ); // front material
glMaterialfv( GL_FRONT, GL_SPECULAR, white );
glMaterialf ( GL_FRONT, GL_SHININESS, 64 );

glMaterialfv( GL_BACK, GL_AMBIENT_AND DIFFUSE, yellow ); // back material
glMaterialfv( GL_BACK, GL_SPECULAR, black ); // no specular highlights

This picture shows what these materials look like on a cylinder that has no top, so that you
can see the back faces on the inside surface:

The third material property, GL_LIGHT_ MODEL_LOCAL_VIEWER, is much less impor-
tant. It has to do with the direction from a surface to the viewer in the lighting equation. By
default, this direction is always taken to point directly out of the screen, which is true for an
orthographic projection but is not accurate for a perspective projection. If you turn on the local
viewer option, the true direction to the viewer is used. In practice, the difference is usually not
very noticeable.

4.3 Image Textures

UNIFORMLY COLORED 3D OBJECTS LOOK nice enough, but they are a little bland. Their
uniform colors don’t have the visual appeal of, say, a brick wall or a plaid couch. Three-
dimensional objects can be made to look more interesting and more realistic by adding a
texture to their surfaces. A texture, in general, is some sort of variation from pixel to pixel
within a single primitive. We will consider only one kind of texture: image textures. An
image texture can be applied to a surface to make the color of the surface vary from point to
point, something like painting a copy of the image onto the surface. Here is a picture that
shows six objects with various image textures:

(Demo)


http://math.hws.edu/eck/cs424/graphicsbook-1.4/demos/c4/two-sided-lighting.html
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(Topographical Earth image, courtesy NASA/JPL-Caltech. The brick and metal are free
textures (which were downloaded from a web site that no longer exists). EarthAtNight image
taken from the Astronomy Picture of the Day web site; it is also a NASA /JPL image. Copies
of the images can be found in the folder named textures in either the jogl or glut folder inside
the source folder of the web site download. Images from that folder will be used in several
examples in this book.)

Textures might be the most complicated part of OpenGL, and they are a part that has
survived, and become more complicated, in the most modern versions since they are so vital
for the efficient creation of realistic images. This section covers only part of the OpenGL 1.1
texture API. We will see more of textures in later chapters.

Note that an image that is used as a texture should have a width and a height that are
powers of two, such as 128, 256, or 512. This is a requirement in OpenGL 1.1. The requirement
is relaxed in some versions, but it’s still a good idea to use power-of-two textures Some
of the things discussed in this section will not work with non-power-of-two textures, even on
modern systems.

When an image texture is applied to a surface, the default behavior is to multiply the RGBA
color components of pixels on the surface by the color components from the image. The surface
color will be modified by light effects, if lighting is turned on, before it is multiplied by the
texture color. It is common to use white as the surface color. If a different color is used on the
surface, it will add a “tint” to the color from the texture image.

4.3.1 Texture Coordinates

When a texture is applied to a surface, each point on the surface has to correspond to a point in
the texture. There has to be a way to determine how this mapping is computed. For that, the
object needs texture coordinates. As is generally the case in OpenGL, texture coordinates
are specified for each vertex of a primitive. Texture coordinates for points inside the primitive
are calculated by interpolating the values from the vertices of the primitive.

A texture image comes with its own 2D coordinate system. Traditionally, s is used for the
horizontal coordinate on the image and ¢ is used for the vertical coordinate. The s coordinate


http://maps.jpl.nasa.gov/
http://apod.nasa.gov/apod/ap001127.html
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glut/textures
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is a real number that ranges from 0 on the left of the image to 1 on the right, while ¢ ranges
from 0 at the bottom to 1 at the top. Values of s or ¢ outside of the range 0 to 1 are not inside
the image, but such values are still valid as texture coordinates. Note that texture coordinates
are not based on pixels. No matter what size the image is, values of s and ¢ between 0 and 1
cover the entire image.

To draw a textured primitive, we need a pair of numbers (s,t) for each vertex. These are the
texture coordinates for that vertex. They tell which point in the image is mapped to the vertex.
For example, suppose that we want to apply part of an FarthAtNight image to a triangular
primitive. Let’s say that the area in the image that is to be mapped onto the primitive is the
triangle shown here outlined in thick orange:

0.0 0.3 0.45 1.0

S

The vertices of this area have (s,t) coordinates (0.3,0.1), (0.45,0.6), and (0.25,0.7). These
coordinates from the image should be used as the texture coordinates for the vertices of the
triangular primitive.

The texture coordinates of a vertex are an attribute of the vertex, just like color,
normal vectors, and material properties. Texture coordinates are specified by the family
of functions glTexCoord*, including the functions glTexCoord2f(s,t), glTexCoord2d(s,t),
glTexCoord2fv(array), and glTexrCoord2dv(array). The OpenGL state includes a current set of
texture coordinates, as specified by these functions. When you specify a vertex with glVertex*,
the current texture coordinates are copied and become an attribute that is associated with the
vertex. As usual, this means that the texture coordinates for a vertex must be specified before
glVertex™ is called. Each vertex of a primitive will need a different set of texture coordinates.

For example, to apply the triangular region in the image shown above to the triangle in the
zy-plane with vertices at (0,0), (0,1), and (1,0), we can say:

glNormal3d(0,0,1); // This normal works for all three vertices.
glBegin (GL_TRIANGLES) ;

glTexCoord2d(0.3,0.1); // Texture coords for vertex (0,0)
glVertex2d(0,0);

glTexCoord2d(0.45,0.6); // Texture coords for vertex (0,1)
glVertex2d(0,1);

glTexCoord2d(0.25,0.7); // Texture coords for vertex (1,0)
glVertex2d(1,0);

glEnd () ;

Note that there is no particular relationship between the (z,y) coordinates of a vertex, which
give its position in space, and the (s,t) texture coordinates associated with the vertex. In fact,
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in this case, the triangle that I am drawing has a different shape from the triangular area in
the image, and that piece of the image will have to be stretched and distorted to fit. Such
distortion occurs in most uses of texture images.

Sometimes, it’s difficult to decide what texture coordinates to use. One case where it’s easy
is applying the complete texture to a rectangle. Here is a code segment that draws a square in
the zy-plane, with appropriate texture coordinates to map the entire image onto the square:

glBegin (GL_.TRIANGLE_FAN) ;

glNormal3f (0,0,1);

glTexCoord2d (0,0) ; // Texture coords for lower left corner

glVertex2d(-0.5,-0.5);

glTexCoord2d(1,0) ; // Texture coords for lower right corner
glVertex2d(0.5,-0.5);

glTexCoord2d(1,1); // Texture coords for upper right corner
glVertex2d(0.5,0.5);

glTexCoord2d(0,1); // Texture coords for upper left corner

glVertex2d(-0.5,0.5);

glEnd () ;

Unfortunately, the standard shapes in the GLUT library do not come with texture
coordinates (except for the teapot, which does). I have written a set of functions for
drawing similar shapes that do come with texture coordinates. The functions can be found
in jogl/TexturedShapes.java for JOGL or in glut/textured-shapes.c (plus the corresponding
header file glut/textured-shapes.h) for C. Of course, there are many ways of applying a texture
to a given object. If you use my functions, you are stuck with my decision about how to do so.

The sample program jogl/TextureDemo.java or glut/texture-demo.c lets you view several
different texture images on my textured shapes.

One last question: What happens if you supply texture coordinates that are not in the range
from 0 to 17 It turns out that such values are legal. By default, in OpenGL 1.1, they behave
as though the entire st-plane is filled with copies of the image. For example, if the texture
coordinates for a square range from 0 to 3 in both directions, instead of 0 to 1, then you get
nine copies of the image on the square (three copies horizontally by three copies vertically).

Kk Ok

To draw a textured primitive using glDrawArrays or glDrawElements, you will need to supply

the texture coordinates in a vertex array, in the same way that you supply vertex coordinates,

colors, and normal vectors. (See Subsection 3.4.2.) The details are similar: You have to enable
the use of a texture coordinate array by calling

glEnableClientState (GL_TEXTURE_COORD_ARRAY) ;

and you have to tell OpenGL the location of the data using the function
void glTexCoordPointer( int size, int dataType, int stride, void* array)

The size, for us, will always be 2. (OpenGL also allows 3 or 4 texture coordinates, but we have
no use for them.) The dataType can be GL_.FLOAT, GL_.DOUBLE, or GL_INT. The stride
will ordinarily be zero, to indicate that there is no extra data between texture coordinates in
the array. The last parameter is an array or pointer to the data, which must be of the type
indicated by the dataType. In JOGL, as usual, you would use an nio buffer instead of an array.


http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/jogl/TexturedShapes.java
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glut/textured-shapes.c
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glut/textured-shapes.h
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/jogl/TextureDemo.java
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glut/texture-demo.c
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4.3.2 MipMaps and Filtering

When a texture is applied to a surface, the pixels in the texture do not usually match up one-
to-one with pixels on the surface, and in general, the texture must be stretched or shrunk as
it is being mapped onto the surface. Sometimes, several pixels in the texture will be mapped
to the same pixel on the surface. In this case, the color that is applied to the surface pixel
must somehow be computed from the colors of all the texture pixels that map to it. This is
an example of “filtering”; in particular, it uses a minification filter because the texture is
being shrunk. When one pixel from the texture covers more than one pixel on the surface, the
texture has to be magnified, and we need a magnification filter.

One bit of terminology before we proceed: The pixels in a texture are referred to as texels,
short for “texture pixel” or “texture element”, and I will use that term from now on.

When deciding how to apply a texture to a pixel on a surface, OpenGL must deal with
the fact that that pixel actually contains an infinite number of points, and each point has its
own texture coordinates. So, how should a texture color for the pixel be computed? The
easiest thing to do is to select one point from the pixel, say the point at the center of the pixel.
OpenGL knows the texture coordinates for that point. Those texture coordinates correspond
to one point in the texture, and that point lies in one of the texture’s texels. The color of that
texel could be used as the texture color for the pixel. This is called “nearest texel filtering.” It is
very fast, but it does not usually give good results. It doesn’t take into account the difference in
size between the pixels on the surface and the texels in the image. An improvement on nearest
texel filtering is “linear filtering,” which can take an average of several texel colors to compute
the color that will be applied to the surface.

The problem with linear filtering is that it will be very inefficient when a large texture
is applied to a much smaller surface area. In this case, many texels map to one pixel, and
computing the average of so many texels becomes very inefficient. There is a neat solution for
this: mipmaps.

A mipmap for a texture is a scaled-down version of that texture. A complete set of mipmaps
consists of the full-size texture, a half-size version in which each dimension is divided by two,
a quarter-sized version, a one-eighth-sized version, and so on. If one dimension shrinks to a
single pixel, it is not reduced further, but the other dimension will continue to be cut in half
until it too reaches one pixel. In any case, the final mipmap consists of a single pixel. Here are
the first few images in the set of mipmaps for a brick texture:

You'll notice that the mipmaps become small very quickly. The total memory used by a set
of mipmaps is only about one-third more than the memory used for the original texture, so the
additional memory requirement is not a big issue when using mipmaps.

Mipmaps are used only for minification filtering. They are essentially a way of pre-computing
the bulk of the averaging that is required when shrinking a texture to fit a surface. To texture
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a pixel, OpenGL can first select the mipmap whose texels most closely match the size of the
pixel. It can then do linear filtering on that mipmap to compute a color, and it will have to
average at most a few texels in order to do so.

In newer versions of OpenGL, you can get OpenGL to generate mipmaps automatically. In
OpenGL 1.1, if you want to use mipmaps, you must either load each mipmap individually, or
you must generate them yourself. (The GLU library has a method, gluBuild2DMipmaps that
can be used to generate a set of mipmaps for a 2D texture.) However, my sample programs do
not use mipmaps.

4.3.3 Texture Target and Texture Parameters

OpenGL can actually use one-dimensional and three-dimensional textures, as well as two-
dimensional. Because of this, many OpenGL functions dealing with textures take a texture
target as a parameter, to tell whether the function should be applied to one, two, or three
dimensional textures. For us, the only texture target will be GL_.TEXTURE_2D.

There are a number of options that apply to textures, to control the details of how textures
are applied to surfaces. Some of the options can be set using the glTexParameteri() function,
including two that have to do with filtering. OpenGL supports several different filtering
techniques for minification and magnification. The filters can be set using glTexParameteri():

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, magFilter) ;
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, minFilter);

The values of magFilter and minFilter are constants that specify the filtering algorithm. For
the magFilter, the only options are GL_NEAREST and GL_LINEAR, giving nearest texel
and linear filtering. The default for the MAG filter is GL_LINEAR, and there is rarely
any need to change it. For minFilter, in addition to GL_.NEAREST and GL_LINEAR,
there are four options that use mipmaps for more efficient filtering. The default MIN
filter is GL.NEAREST_MIPMAP_LINEAR, which does averaging between mipmaps and
nearest texel filtering within each mipmap. For even better results, at the cost of greater
inefficiency, you can use GL_LINEAR_MIPMAP_LINEAR, which does averaging both between
and within mipmaps. The other two options are GL_NEAREST MIPMAP_NEAREST and
GL_LINEAR_MIPMAP_NEAREST.

One very important note: If you are not using mipmaps for a texture, it is imperative
that you change the minification filter for that texture to GL_LINEAR or, less likely,
GL_NEAREST. The default MIN filter requires mipmaps, and if mipmaps are not available,
then the texture is considered to be improperly formed, and OpenGL ignores it! Remember
that if you don’t create mipmaps and if you don’t change the minification filter, then your
texture will simply be ignored by OpenGL.

There is another pair of texture parameters to control how texture coordinates outside
the range 0 to 1 are treated. As mentioned above, the default is to repeat the texture. The
alternative is to “clamp” the texture. This means that when texture coordinates outside the
range 0 to 1 are specified, those values are forced into that range: Values less than 0 are replaced
by 0, and values greater than 1 are replaced by 1. Values can be clamped separately in the s
and t directions using

glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);
glTexParameteri (GL_TEXTURE_2D, GL_TEXTURE WRAP_T, GL_CLAMP);
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Passing GL_REPFEAT as the last parameter restores the default behavior. When clamping is
in effect, texture coordinates outside the range 0 to 1 return the same color as a texel that lies
along the outer edge of the image. Here is what the effect looks like on two textured squares:

The two squares in this image have s and ¢ texture coordinates that range from —1 to 2. The
original image lies in the center of the square. For the square on the left, the texture is repeated.
On the right, the texture is clamped.

4.3.4 Texture Transformation

When a texture is applied to a primitive, the texture coordinates for a vertex determine which
point in the texture is mapped to that vertex. Texture images are 2D, but OpenGL also
supports one-dimensional textures and three-dimensional textures. This means that texture
coordinates cannot be restricted to two coordinates. In fact, a set of texture coordinates in
OpenGL is represented internally in the form of homogeneous coordinates, which are referred
to as (s,t,1,q). We have used glTexCoord2* to specify texture s and ¢ coordinates, but a call to
glTexCoord2f (s,t), for example, is really just shorthand for glTexCoordjf (s,t,0,1).

Since texture coordinates are no different from vertex coordinates, they can be transformed
in exactly the same way. OpenGL maintains a texture transformation as part of its state,
along with the modelview and projection transformations. The current value of each of the
three transformations is stored as a matrix. When a texture is applied to an object, the texture
coordinates that were specified for its vertices are transformed by the texture matrix. The
transformed texture coordinates are then used to pick out a point in the texture. Of course,
the default texture transform is the identity transform, which doesn’t change the coordinates.

The texture matrix can represent scaling, rotation, translation and combinations of these
basic transforms. To specify a texture transform, you have to use giMatrizMode() to set the
matrix mode to GL_.TEXTURE. With this mode in effect, calls to methods such as glRotate*,
glScale*, and glLoadldentity are applied to the texture matrix. For example to install a texture
transform that scales texture coordinates by a factor of two in each direction, you could say:

glMatrixMode (GL_-TEXTURE) ;

glLoadIdentity(); // Make sure we are starting from the identity matrix.
glScalef(2,2,1);

glMatrixMode (GL.MODELVIEW); // Leave matrix mode set to GL_MODELVIEW.

Since the image lies in the st-plane, only the first two parameters of glScalef matter. For
rotations, you would use (0,0,1) as the axis of rotation, which will rotate the image within the
st-plane.
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Now, what does this actually mean for the appearance of the texture on a surface? In the
example, the scaling transform multiplies each texture coordinate by 2. For example, if a vertex
was assigned 2D texture coordinates (0.4,0.1), then after the texture transform is applied, that
vertex will be mapped to the point (s,¢) = (0.8,0.2) in the texture. The texture coordinates
vary twice as fast on the surface as they would without the scaling transform. A region on
the surface that would map to a 1-by-1 square in the texture image without the transform
will instead map to a 2-by-2 square in the image—so that a larger piece of the image will be
seen inside the region. In other words, the texture image will be shrunk by a factor of two on
the surface! More generally, the effect of a texture transformation on the appearance of the
texture is the inverse of its effect on the texture coordinates. (This is exactly analogous to the
inverse relationship between a viewing transformation and a modeling transformation.) If the
texture transform is translation to the right, then the texture moves to the left on the surface.
If the texture transform is a counterclockwise rotation, then the texture rotates clockwise on
the surface.

I mention texture transforms here mostly to show how OpenGL can use transformations in
another context. But it is sometimes useful to transform a texture to make it fit better on a
surface. And for an unusual effect, you might even animate the texture transform to make the
texture image move on the surface. To see the effect of texture transformations, try the on-line
demo c4/texture-transform.html.

4.3.5 Loading a Texture from Memory

It’s about time that we looked at the process of getting an image into OpenGL so that it can
be used as a texture. Usually, the image starts out in a file. OpenGL does not have functions
for loading images from a file. For now, we assume that the file has already been loaded from
the file into the computer’s memory. Later in this section, I will explain how that’s done in C
and in Java.

The OpenGL function for loading image data from the computer’s memory into a 2D texture
is glTexImage2D(), which takes the form:

glTexImage2D(target, mipmapLevel, internalFormat, width, height, border,
format, dataType, pixels);

The target should be GL_-TEXTURE_2D. The mipmapLevel should ordinarily be 0. The value
0 is for loading the main texture; a larger value is used to load an individual mipmap. The
internalFormat tells OpenGL how you want the texture data to be stored in OpenGL texture
memory. It can be GL_RGB to store an 8-bit red /green /blue component for each pixel. Another
possibility is GL_RGBA, which adds an alpha component. The width and height give the size
of the image; the values should be powers of two. The value of border should be 0; the only
other possibility is 1, which indicates that a one-pixel border has been added around the image
data for reasons that I will not discuss. The last three parameters describe the image data.
The format tells how the original image data is represented in the computer’s memory, such
as GL_RGB or GL_RGBA. The dataType is usually GL_-UNSIGNED_BYTE, indicating that
each color component is represented as a one-byte value in the range 0 to 255. And pizels is a
pointer to the start of the actual color data for the pixels. The pixel data has to be in a certain
format, but that need not concern us here, since it is usually taken care of by the functions that
are used to read the image from a file. (For JOGL, the pointer would be replaced by a buffer.)

This all looks rather complicated, but in practice, a call to glTexImage2D generally takes
the following form, except possibly with GL_RGB replaced with GL_RGBA.

(Demo)


http://math.hws.edu/eck/cs424/graphicsbook-1.4/demos/c4/texture-transform.html
http://math.hws.edu/eck/cs424/graphicsbook-1.4/demos/c4/texture-transform.html

CHAPTER 4. OPENGL 1.1: LIGHT AND MATERIAL 161

glTexImage2D (GL_-TEXTURE_2D, O, GL_RGB, width, height, O,
GL_RGB, GL_UNSIGNED.BYTE, pixels);

Calling this function will load the image into the texture, but it does not cause the texture to
be used. For that, you also have to call

glEnable (GL_TEXTURE_2D) ;

If you want to use the texture on some objects but not others, you can enable GL_TEXTURE_2D
before drawing objects that you want to be textured and disable it before drawing untextured
objects. You can also change the texture that is being used at any time by calling gl TexImage2D.

4.3.6 Texture from Color Buffer

Texture images for use in an OpenGL program usually come from an external source, most often
an image file. However, OpenGL is itself a powerful engine for creating images. Sometimes,
instead of loading an image file, it’s convenient to have OpenGL create the image internally, by
rendering it. This is possible because OpenGL can read texture data from its own color buffer,
where it does its drawing. To create a texture image using OpenGL, you just have to draw the
image using standard OpenGL drawing commands and then load that image as a texture using
the method

glCopyTexImage2D( target, mipmapLevel, internalFormat,
X, y, width, height, border );

In this method, target will be GL.TEXTURE_2D; mipmapLevel should be zero; the
internalFormat will ordinarily be GL_RGB or GL_RGBA; = and y specify the lower left corner of
the rectangle from which the texture will be read; width and height are the size of that rectangle;
and border should be 0. As usual with textures, the width and height should ordinarily be powers
of two. A call to glCopyTexImage2D will typically look like

glCopyTexImage2D (GL_TEXTURE 2D, O, GL_RGB, x, y, width, height, 0);

The end result is that the specified rectangle from the color buffer will be copied to texture
memory and will become the current 2D texture. This works in the same way as a call to
glTexImage2D(), except for the source of the image data.

An example can be found in the JOGL program jogl/TextureFromColorBuffer.java or in the
C version glut/texture-from-color-buffer.c. This program draws the windmill-and-cart scene
from Subsection 2.4.1 and then uses that drawing as a texture on 3D objects. Here is an image
from the program, showing the texture on a cylinder:

(Demo)


http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/jogl/TextureFromColorBuffer.java
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glut/texture-from-color-buffer.c
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The texture can be animated! For the animation, a new texture is drawn for each frame. All
the work is done in the program’s display function. In that function, the current frame of the
windmill-and-cart scene is first drawn as a 2D scene with lighting disabled. This picture is not
shown on the computer screen; the drawing is done off-screen and the image will be erased
and replaced with the 3D image before it’s ever shown on screen. The glCopyTexImage2D()
function is then called to copy the scene into the current texture. Then, the color buffer is
cleared, lighting is enabled, and a 3D projection is set up, before finally drawing the 3D object
that is seen on the computer screen.

4.3.7 Texture Objects

Everything that I've said so far about textures was already true for OpenGL 1.0. OpenGL
1.1 introduced a new feature called texture objects to make texture handling more efficient.
Texture objects are used when you need to work with several texture images in the same
program. The usual method for loading texture images, glTexImage2D, transfers data from
your program into the graphics card. This is an expensive operation, and switching among
multiple textures by using this method can seriously degrade a program’s performance. Texture
objects offer the possibility of storing texture data for multiple textures on the graphics card.
With texture objects, you can switch from one texture object to another with a single, fast
OpenGL command: You just have to tell OpenGL which texture object you want to use. (Of
course, the graphics card has only a limited amount of memory for storing textures, and you
aren’t guaranteed that all of your texture objects will actually be stored on the graphics card.
Texture objects that don’t fit in the graphics card’s memory are no more efficient than ordinary
textures.)

Texture objects are managed by OpenGL and the graphics hardware. A texture object is
identified by an integer ID number. To use a texture object, you need to obtain an ID number
from OpenGL. This is done with the glGenTextures function:

void glGenTextures( int textureCount, int* array )

This function can generate multiple texture IDs with a single call. The first parameter specifies
how many IDs you want. The second parameter says where the generated IDs will be stored.
It should be an array whose length is at least teztureCount. For example, if you plan to use
three texture objects, you can say

int idList[3];
glGenTextures( 3, idList );

You can then use idList[0], idList[1], and idList[2] to refer to the textures. Because of the way
pointers work in C, if you want to get a single texture ID, you can pass a pointer to an integer
variable as the second parameter to glGenTextures(). For example,

int texID;
glGenTextures( 1, &texID );

The new texture ID will be stored in the variable texID.

Every texture object has its own state, which includes the values of texture parameters such
as GL_.TEXTURE_MIN_FILTER as well as the texture image itself. To work with a specific
texture object, you must first call

glBindTexture( GL_TEXTURE_2D, texID )
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where texID is the texture ID returned by glGenTextures. After this call, any use of
glTexParameteri, glTexImage2D, or glCopyTexImage2D will be applied to the texture object
with ID texID.

Similarly, when a textured primitive is rendered, the texture that is used is the one that was
most recently bound using glBindTexture. A typical pattern would be to load and configure a
number of textures during program initialization:

glGenTextures( n, textureIdList );
for (i = 0; i < n; i++) {
glBindTexture( textureIDList[i] );

// Load texture image number i
// Configure texture image number i

3

Then, while rendering a scene, you would call glBindTexture every time you want to switch
from one texture image to another texture image. This would be much more efficient than
calling glTexImage2D every time you want to switch textures.

OpenGL 1.1 reserves texture ID zero as the default texture object, which is bound initially.
It is the texture object that you are using if you never call glBindTexture. This means that
you can write programs that use textures without ever mentioning glBind Texture. (However, 1
should note that when we get to WebGL, that will no longer be true.)

The small sample program glut/texture-objects.c shows how to use texture objects in C.
In is available only in C since, as we will see, JOGL has its own way of working with texture
objects.

4.3.8 Loading Textures in C

We have seen how to load texture image data from memory into OpenGL. The problem
that remains is how to get the image data into memory before calling glTexImage2D. One
possibility is to compute the data—you can actually have your program generate texture data
on the fly. More likely, however, you want to load it from a file. This section looks at how
that might be done in C. You will probably want to use a library of image-manipulation
functions. Several free image processing libraries are available. 1 will discuss one of them,
Freelmage, which can work with many image file formats. Freelmage can be obtained from
http://freeimage.sourceforge.net/, but I was able to use it in Linux simply by installing the
package libfreeimage-dev. To make it available to my program, I added #include “Freelmage.h”
to the top of my C program, and I added the option -ifreeimage to the gcc command to make the
library available to the compiler. (See the sample program glut/texture-demo.c for an example
that uses this library.) Instead of discussing Freelmage in detail, I present a well-commented
function that uses it to load image data from a file:

void* imgPixels; // Pointer to raw RGB data for texture in memory.
int imgWidth; // Width of the texture image.
int imgHeight; // Height of the texture image.

void loadTexture( char* fileName ) {
// Loads a texture image using the Freelmage library, and stores the
// required info in global variables imgPixels, imgWidth, imgHeight.
// The parameter fileName is a string that contains the name of the
// image file from which the image is to be loaded. If the image


http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/glut/texture-objects.c
http://freeimage.sourceforge.net/
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// can’t be loaded, then imgPixels will be set to be a null pointer.
imgPixels = 0; // Null pointer to signal that data has not been read.

FREE_IMAGE_FORMAT format = FreeImage GetFIFFromFilename (fileName) ;
// FREE_IMAGE_FORMAT is a type defined by the FreeImage library.
// Here, the format is determined from the file extension in
// the file name, such as .png, .jpg, or .gif. Many formats
// are supported.

if (format == FIF_UNKNOWN) {
printf ("Unknown file type for texture image file %s\n", fileName);
return;

}

FIBITMAP* bitmap = FreeImage Load(format, fileName, 0);
// FIBITMAP is a type defined by the Freelmage library, representing
// the raw image data plus some metadata such as width, height,
// and the format of the image data. This actually tries to
// read the data from the specified file.

if (!'bitmap) {
printf("Failed to load image %s\n", fileName);
return;

}

FIBITMAP* bitmap2 = FreeImage ConvertTo24Bits(bitmap) ;
// This creates a copy of the image, with the data represented
// in standard RGB (or BGR) format, for use with OpenGL.

FreeImage Unload(bitmap) ;
// After finishing with a bitmap, it should be disposed.
// We are finished with bitmap, but not with bitmap2, since
// we will continue to use the data from bitmap2.

imgPixels = FreeImage GetBits(bitmap2); // Get the data we need!
imgWidth = FreelImage GetWidth(bitmap2) ;
imgHeight = FreeImage GetHeight (bitmap2);

if (imgPixels) {
printf ("Texture image loaded from file %s, size %dx%d\n",
fileName, imgWidth, imgHeight);

}
else {

printf("Failed to get texture data from %s\n", fileName);
}

} // end loadTexture

After this function has been called, the data that we need for glTexImage2D() is in the global
variables img Width, imgHeight, and imgPizels (or imgPixels is 0 to indicate that the attempt
to load the image failed). There is one complication: Freelmage will store the color components
for a pixel in the order red/green/blue on some platforms but in the order blue/green/red on
other platforms. The second data format is called GL_BGR in OpenGL. If you use the wrong
format in glTextImage2D(), then the red and blue components of the color will be reversed. To
tell the difference, you can use the Freelmage constant F'I_RGBA_RED, which tells the position
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of the red color component in pixel data. This constant will be 0 if the format is GL_RGB and
will be 2 if the format is GL_BGR. So, to use the texture in OpenGL, you might say:

if ( imgPixels ) { // The image data exists
int format; // The format of the color data in memory
if ( FI.RGBARED == 0 )
format = GL_RGB;
else
format = GL_BGR;
ngexImageQD(GL,TEXTURE,QD, 0, GL_RGBA, imgWidth, imgHeight, O, format,
GL_UNSIGNED_BYTE, imgPixels);
glEnable (GL_TEXTURE_2D) ;
¥

else { // The image data was not loaded, so don’t attempt to use the texture.
glDisable (GL_-TEXTURE_2D) ;
}

To be even more careful, you could check that the width and the height of the image
are powers of two. If not, you can resize it using the function FreeImage_Rescale() from the
Freelmage library.

x* kX

Freelmage is a large, complicated system that might not be easily made available on
your computer. To make it easier for you to experiment with textures in C, I have also
included a small C utility for reading textures from .rgb files. The rgb file format is fairly
simple, but rgb files are generally much larger than the corresponding .png or .jpeg files.
The format is not widely supported, but I have included .rgb versions of my sample texture
images in the folder glut/textures-rgb. The small library for loading them into textures is
glut /textures-rgb /readrgb.c and its header file glut/textures-rgb/readrgb.h. (The library is
from http://paulbourke.net/dataformats/sgirgb/.) Sample programs that use the library are
glut /texture-objects-rgb.c and glut/texture-demo-rgb.c.

4.3.9 Using Textures with JOGL

We turn finally to using texture images in Java. JOGL comes with several
classes that make it fairly easy to use textures in Java, notably the classes Texture
and TexturelO in package com.jogamp.opengl.util.texture and AWT TexturelO in package
com.jogamp.opengl.util.texture.awt. For an example of using textures with JOGL, see the sam-
ple program jogl/TextureDemo.java.

An object of type Texture represents a texture that has already been loaded into OpenGL.
Internally, it uses a texture object to store the texture and its configuration data. If tex is an
object of type Texture, you can call

tex.bind(gl);

to use the texture image while rendering objects. The parameter, gl, as usual, is a variable of
type GL2 the represents the OpenGL drawing context. This function is equivalent to calling
glBindTexture for the OpenGL texture object that is used by the Java Texture. You still need
to enable GL_.TEXTURE_2D by calling gl.glEnable(GL2.GL_.TEXTURE_2D) or, equivalently,

tex.enable(gl);
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You can set texture parameters in the usual way, by calling gl.glTexParameteri() while
the texture is bound, but it is preferable to use a method from the Texture class to set the
parameters:

tex.setTexParameteri( gl, parameterName, value );

This will automatically bind the texture object before setting the texture parameter. For
example,

tex.setTexParameteri(gl, GL2.GL_TEXTURE_MIN FILTER, GL2.LINEAR MIPMAP LINEAR);

So, once you have a Texture, it’s pretty easy to use. But there remains the problem
of creating Texture objects. For that, you can use static methods in the TexturelO and
AWT TexturelO classes. For example, if fileName is the name of an image file (or a path to
such a file), then you can say

tex = TextureIO.newTexture( new File(fileName), true );

to load a texture from the file into a Texture object, tex. The boolean parameter here, and in
all the methods we will look at, tells JOGL whether or not to create mipmaps for the texture;
by passing true, we automatically get a full set of mipmaps!

One important note: Java’s texture creation functions will only work when an OpenGL
context is “current.” This will be true in the event-handling methods of a GLEventListener,
including the init() and display() methods. However, it will not be true in ordinary methods
and constructors.

Of course, in Java, you are more likely to store the image as a resource in the program than
as a separate file. If resourceName is a path to the image resource, you can load the image into
a texture with

URL textureURL;
textureURL = getClass().getClassLoader().getResource( resourceName );
texture = TexturelIO.newTexture(textureURL, true, null);

The third parameter to this version of newTexture specifies the image type and can be given as a
string containing a file suffix such as “png” or “jpg”; the value null tells OpenGL to autodetect
the image type, which should work in general. (By the way, all the texture-loading code that
I discuss here can throw exceptions, which you will have to catch or otherwise handle in some
way. )

One problem with all this is that textures loaded in this way will be upside down! This
happens because Java stores image data from the top row of the image to the bottom, whereas
OpenGL expects image data to be stored starting with the bottom row. If this is a problem for
you, you can flip the image before using it to create a texture. To do that, you have to load the
image into a Bufferedlmage and then load that into a texture using the AWT TexturelO class.
For example, assuming resourceName is a path to an image resource in the program:

URL textureURL;

textureURL = getClass().getClassLoader () .getResource( resourceName ) ;
BufferedImage img = ImageIO.read( textureURL );
ImageUtil.flipImageVertically( img );

texture = AWTTextureIO.newTexture(GLProfile.getDefault(), img, true);

The ImageUtil class is defined in package com.jogamp.opengl.util.awt. Here, 1 obtained a
Bufferedlmage by reading it from a resource. You could also read it from a file—or even draw
it using Java 2D graphics.
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4.4 Lights, Camera, Action

A SCENE IN COMPUTER GRAPHICS can be a complex collection of objects, each with its own
attributes. In Subsection 2.4.2, we saw how a scene graph can be used to organize all the
objects in a 2D scene. Rendering a scene means traversing the scene graph, rendering each
object in the graph as it is encountered. For 3D graphics, scene graphs must deal with a larger
variety of objects, attributes, and transforms. For example, it is often useful to consider lights
and cameras to be objects and to be able to include them in scene graphs. In this section, we
consider scene graphs in 3D, and how to treat cameras and lights as objects.

When designing scene graphs, there are many options to consider. For example, should
transforms be properties of object nodes, or should there be separate nodes to represent
transforms? The same question can be asked about attributes. Another question is whether an
attribute value should apply only to the node of which it is a property, or should it be inherited
by the children of that node?

A fundamental choice is the shape of the graph. In general, a scene graph can be a directed
acyclic graph, or “dag,” which is a tree-like structure except that a node can have several
parents in the graph. The scene graphs in Subsection 2.4.2 were dags. This has the advantage
that a single node in the graph can represent several objects in the scene, since in a dag, a node
can be encountered several times as the graph is traversed. On the other hand, representing
several objects with one scene graph node can lead to a lack of flexibility, since those objects
will all have the same value for any property encoded in the node. So, in some applications,
scene graphs are required to be trees. In a tree, each node has a unique parent, and the node
will be encountered only once as the tree in traversed. The distinction between trees and dags
will show up when we discuss camera nodes in scene graphs.

4.4.1 Attribute Stack

We have seen how the functions glPushMatriz and glPopMatriz are used to manipulate the
transform stack. These functions are useful when traversing a scene graph: When a node that
contains a transform is encountered during a traversal of the graph, glPushMatriz can be called
before applying the transform. Then, after the node and its descendants have been rendered,
glPopMatriz is called to restore the previous modelview transformation.

Something similar can be done for attributes such as color and material, if it is assumed
that an attribute value in a scene graph node should be inherited as the default value of
that attribute for children of the node. OpenGL 1.1 maintains an attribute stack, which is
manipulated using the functions glPushAttrib and glPopAttrib. In addition to object attributes
like the current color, the attribute stack can store global attributes like the global ambient
color and the enabled state of the depth test. Since there are so many possible attributes,
glPushAttrib does not simply save the value of every attribute. Instead, it saves a subset of the
possible attributes. The subset that is to be saved is specified as a parameter to the function.
For example, the command

glPushAttrib (GL_ENABLED_BIT) ;

will save a copy of each of the OpenGL state variables that can be enabled or disabled.
This includes the current state of GL_DEPTH_TEST, GL_LIGHTING, GL_NORMALIZE, and
others. Similarly,

glPushAttrib (GL_CURRENT_BIT) ;
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saves a copy of the current color, normal vector, and texture coordinates. And
glPushAttrib(GL_LIGHTING BIT) ;

saves attributes relevant to lighting such as the values of material properties and light properties,
the global ambient color, color material settings, and the enabled state for lighting and each
of the individual lights. Other constants can be used to save other sets of attributes; see the
OpenGL documentation for details. It is possible to OR together several constants to combine
sets of attributes. For example,

glPushAttrib(GL_LIGHTING.BIT | GL_ENABLED_BIT)

will save the attributes in both the GL_LIGHTING_BIT set and in the GL_ENABLED_BIT
set.

Calling glPopAttrib() will restore all the values that were saved by the corresponding call to
glPushAttrib. There is no need for a parameter to glPopAttrib, since the set of attributes that
are restored is determined by the parameter that was passed to glPushAttrib.

It should be easy to see how glPushAttrib and glPopAttrib can be used while traversing a
scene graph: When processing a node, before changing attribute values, call glPushAttrib to
save a copy of the relevant set or sets of attributes. Render the node and its descendants. Then
call glPopAttrib to restore the saved values. This limits the effect of the changes so that they
apply only to the node and its descendants.

S S 3

There is an alternative way to save and restore values. OpenGL has a variety of “get”
functions for reading the values of various state variables. I will discuss just some of them here.
For example,

glGetFloatv( GL_CURRENT_COLOR, floatArray );

retrieves the current color value, as set by glColor*. The floatArray parameter should be an
array of float, whose length is at least four. The RGBA color components of the current color
will be stored in the array. Note that, later, you can simply call glColorjfv(colorArray) to
restore the color. The same function can be used with different first parameters to read the
values of different floating-point state variables. To find the current value of the viewport, use

glGetIntegerv( GL_VIEWPORT, intArray );

This will set intArray[0] and intArray[1] to be the z and y coordinates of the lower left corner
of the current viewport, intArray[2] to be its width, and intArray[3] to be its height. To read
the current values of material properties, use

glGetMaterialfv( face, property, floatArray );

The face must be GL.FRONT or GL_-BACK. The property must be GL-AMBIENT,
GL_DIFFUSE, GL.SPECULAR, GL_EMISSION, or GL_SHININESS. The current value of
the property will be stored in floatArray, which must be of length at least four for the color
properties, or length at least one for GL_SHININESS. There is a similar command, glGetLightfuv,
for reading properties of lights.

Finally, I will mention gllsEnabled(name), which can be used to check the enabled /disabled
status of state variables such as GL_LIGHTING and GL_DEPTH_TEST. The parameter should
be the constant that identifies the state variable. The function returns 0 if the state variable
is disabled and 1 if it is enabled. For example, gllsEnabled( GL_.LIGHTING) tests whether
lighting is enabled. Suppose that a node in a scene graph has an attribute lit to tell whether
that node (and its descendants) should be rendered with lighting enabled. Then the code for
rendering a node might include something like this:
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int savelit = glIsEnabled(GL_LIGHTING) ;
if (1it)

glEnable (GL_LIGHTING) ;
else

glDisable (GL_LIGHTING) ;

// Render the node and its descendants

if (savelLit)

glEnable (GL_LIGHTING) ;
else

glDisable (GL_LIGHTING) ;

Since glPushAttrib can be used to push large groups of attribute values, you might think
that it would be more efficient to use gllsEnabled and the glGet* family of commands to read
the values of just those state variables that you are planning to modify. However, recall that
OpenGL can queue a number of commands into a batch to be sent to the graphics card, and
those commands can be executed by the GPU at the same time that your program continues to
run. A glGet command can require your program to communicate with the graphics card and
wait for the response. This means that any pending OpenGL commands will have to be sent
to the graphics card and executed before the glGet command can complete. This is the kind
of thing that can hurt performance. In contrast, calls to glPushAttrib and glPopAttrib can be
queued with other OpenGL commands and sent to the graphics card in batches, where they
can be executed efficiently by the graphics hardware. In fact, you should generally prefer using
glPushAttrib/ glPop Attrib instead of a glGet command when possible.

4.4.2 Moving Camera

Let’s turn to another aspect of modeling. Suppose that we want to implement a viewer that
can be moved around in the world like other objects. Sometimes, such a viewer is thought
of as a moving camera. The camera is used to take pictures of the scene. We want to be
able to apply transformations to a camera just as we apply transformations to other objects.
The position and orientation of the camera determine what should be visible when the scene
is rendered. And the “size” of the camera, which can be affected by a scaling transformation,
determines how large a field of view it has. But a camera is not just another object. A camera
really represents the viewing transformation that we want to use. Recall that modeling and
viewing transformations have opposite effects: Moving objects to the right with a modeling
transform is equivalent to moving the viewer to the left with a viewing transformation. (See
Subsection 3.3.4.) To apply a modeling transformation to the camera, we really want to apply a
viewing transformation to the scene as a whole, and that viewing transformation is the inverse
of the camera’s modeling transformation.

The following illustration shows a scene viewed from a moving camera. The camera starts
in the default viewing position, at the origin, looking in the direction of the negative z-axis.
This corresponds to using the identity as the viewing transform. For the second image, the
camera has moved forward by ten units. This would correspond to applying the modeling
transformation g¢lTranslatef (0,0,—10) to the camera (since it is moving in the negative z-
direction). But to implement this movement as a change of view, we want to apply the inverse
operation as a viewing transformation. So, the viewing transform that we actually apply is
glTranslatef (0,0,10). This can be seen, if you like, as a modeling transformation that is applied
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to all the other objects in the scene: Moving the camera ten units in one direction is equivalent
to moving all the other objects 10 units in the opposite direction.

Original View Afer moving forward After turning 21
ten units degrees to the right

For the third image, the camera has rotated in place by 21 degrees to the right—a 21-degree
clockwise rotation about the y-axis—after it has been translated. This can be implemented
by the transformation glRotatef(21,0,1,0)—a 21-degree counterclockwise rotation about the
y-axis—applied before the translation. Remember that the inverse of a composition of
transformations is the composition of their inverses, in the opposite order. Mathematically,
using 7! to represent the inverse of a transformation T, we have that (RS)™! = S~!R! for
two transformations R and S.

The images in the illustration are from the demo c4/walkthrough.html, which you can try
on-line. The demo lets you move around in a scene. More accurately, of course, it lets you
change the viewing transformation to see the scene from different viewpoints.

S S 3

When using scene graphs, it can be useful to include a camera object in the graph. That is,
we want to be able to include a node in the graph that represents the camera, and we want to
be able to use the camera to view the scene. It can even be useful to have several cameras in
the scene, providing alternative points of view. To implement this, we need to be able to render
a scene from the point of view of a given camera. From the previous discussion, we know that
in order to do that, we need to use a viewing transformation that is the inverse of the modeling
transformation that is applied to the camera object. The viewing transform must be applied
before any of the objects in the scene are rendered.

When a scene graph is traversed, a modeling transformation can be applied at any node.
The modeling transform that is in effect when a given node is encountered is the composition of
all the transforms that were applied at nodes along the path that led to given node. However,
if the node is a camera node, we don’t want to apply that modeling transform; we want to
apply its inverse as a viewing transform. To get the inverse, we can start at the camera node
and follow the path backwards, applying the inverse of the modeling transform at each node.

(Demo)
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A scene graph, actually
a tree, containing a camera
node. R, S, and T represent
S modeling transformations
applied to nodes in the graph.
The modeling transformation
applied to the camera is RST.
T The viewing transfomation is
the inverse, T1 S 1R 1, which
can be obtained by following
parent pointers from the
camera node.
camera

To easily implement this, we can add “parent pointers” to the scene graph data structure. A
parent pointer for a node is a link to the parent of that node in the graph. Note that this only
works if the graph is a tree; in a tree, each node has a unique parent, but that is not true in a
general directed acyclic graph. It is possible to move up the tree by following parent pointers.

We this in mind, the algorithm for rendering the scene from the point of view of a camera
goes as follows: Set the modelview transform to be the identity, by calling glLoadIdentity().
Start at the camera node, and follow parent pointers until you reach the root of the tree. At
each node, apply the inverse of any modeling transformation in that node. (For example, if the
modeling transform is translation by (a,b,c), call glTranslatef (—a,—b,—c).) Upon reaching the
root, the viewing transform corresponding to the camera has been established. Now, traverse
the scene graph to render the scene as usual. During this traversal, camera nodes should be
ignored.

Note that a camera can be attached to an object, in the sense that the camera and the
object are both subject to the same modeling transformation and so move together as a unit.
In modeling terms, the camera and the object are sub-objects in a complex object. For example,
a camera might be attached to a car to show the view through the windshield of that car. If
the car moves, because its modeling transformation changes, the camera will move along with
it.

4.4.3 Moving Light

It can also be useful to think of lights as objects, even as part of a complex object. Suppose
that a scene includes a model of a lamp. The lamp model would include some geometry to
make it visible, but if it is going to cast light on other objects in the scene, it also has to include
a source of light. This means that the lamp is a complex object made up of an OpenGL light
source plus some geometric objects. Any modeling transformation that is applied to the lamp
should affect the light source as well as the geometry. In terms of the scene graph, the light
is represented by a node in the graph, and it is affected by modeling transformations in the
same way as other objects in the scene graph. You can even have animated lights—or animated
objects that include lights as sub-objects, such as the headlights on a car.

Recall from Subsection 4.2.3 that a light source is subject to the modelview transform that is
in effect at the time the position of the light source is set by glLightfv. If the light is represented
as a node in a scene graph, then the modelview transform that we need is the one that is in
effect when that node is encountered during a traversal of the scene graph. So, it seems like
we should just traverse the graph and set the position of the light when we encounter it during
the traversal.
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But there is a problem: Before any geometry is rendered, all the light sources that might
affect that geometry must already be configured and enabled. In particular, the lights’ positions
must be set before rendering any geometry. This means that you can’t simply set the position
of light sources in the scene graph as you traverse the graph in the usual way. If you do that,
objects that are drawn before the light is encountered won’t be properly illuminated by the light.
Similarly, if the light node contains values for any other properties of the light, including the
enabled /disabled state of the light, those properties must be set before rendering any geometry.

One solution is to do two traversals of the scene graph, the first to set up the lights and the
second to draw the geometry. Since lights are affected by the modelview transformation, you
have to set up the modeling transform during the first traversal in exactly the same way that
you do in the second traversal. When you encounter the lights during the first traversal, you
need to set the position of the light, since setting the position is what triggers the application of
the current modelview transformation to the light. You also need to set any other properties of
the light. During the first traversal, geometric objects in the scene graph are ignored. During
the second traversal, when geometry is being rendered, light nodes can be ignored.



Chapter 5

Three.js: A 3D Scene Graph API

CHAPTER 3 AND CHAPTER 4 INTRODUCED 3D graphics using OpenGL 1.1. Most of the ideas
covered in those chapters remain relevant to modern computer graphics, but there have been
many changes and improvements since the early days of OpenGL. In Chapter 6 and Chapter 7,
we will be using WebGL, a modern version of OpenGL that is used to create 3D graphics
content for web pages. And Chapter 9 introduces WebGPU, a newer graphics API for the Web.

WebGL is a low level language—even more so than OpenGL 1.1, since a WebGL program
has to handle a lot of the low-level implementation details that were handled internally in the
original version of OpenGL. This makes WebGL much more flexible, but more difficult to use.
We will soon turn to working directly with WebGL. However, before we do that, we will look
at a higher-level API for 3D web graphics that is built on top of WegGL: three.js. There are
several reasons for starting at this high level. It will allow you to see how some of the things
that you have learned are used in a modern object-oriented graphics package. It will allow me
to introduce some new features such as shadows and environment mapping. It will let you work
with a graphics library that you might use in real web applications. And it will be a break from
the low-level detail we have been dealing with, before we move on to an even lower level.

You can probably follow much of the discussion in this chapter without knowing JavaScript.
However, if you want to do any programming with three.js (or with WebGL or WebGPU), you
need to know JavaScript. The basics of the language are covered in Section A.3 in Appendix A.

5.1 Three.js Basics

Three.js 1S AN OBJECT-ORIENTED JAVASCRIPT library for 3D graphics. It is an open-
source project originally created by Ricardo Cabello (who goes by the handle “mr.doob”,
https://mrdoob.com/), with contributions from other programmers. It seems to be the most
popular open-source JavaScript library for 3D web applications. (Another popular option is
Babylon.js.) Three.js uses concepts that you are already familiar with, such as geometric
objects, transformations, lights, materials, textures, and cameras. But it also has additional
features that build on the power and flexibility of WegGL.

You can download three.js and read the documentation at its main web site,
https://threejs.org. The download is quite large, since it includes many examples and sup-
port files. This book uses Release 154 of the software, from July, 2023. You should be aware
that some of the material about three.js that you might find on the Internet does not apply to
the most recent release.

The current release of three.js is a “modular” JavaScript library. The older, non-modular
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form is still available, but it is deprecated and is scheduled to be removed in Release 160.
Previous versions of this textbook used the non-modular version. Version 1.4 of the textbook
has been updated to use three.js modules; aside from that, the three.js material has been
changed only to account for some minor differences between three.js releases. (Notably, I found
that T had to significantly increase the specular component of material colors.)

Copies of all three.js scripts that are used in this textbook can be found in the threejs/script
folder in the source folder of this textbook’s web site. The three.js license allows these files to
be freely redistributed. But if you plan to do any serious work with three.js, you should read
the documentation on its web site about how to use it and how to deploy it.

The core features of three.js are defined in a single large JavaScript file named
“three.module.js”, which can be found in a build directory in the three.js download. There
is also a smaller “minified” version, three.module.min.js, that contains the same definitions in a
format that is not meant to be human-readable. It is the minified version that is usually used
on web pages. In addition to this core, the three.js download has a directory containing many
examples and a variety of support files that are used in the examples. The examples use many
features that are not part of the three.js core. These add-ons can be found in a folder named
jsm inside the folder named examples in the three.js download. Several of the add-ons are used
in this textbook and are included in the threejs/script folder.

5.1.1 About JavaScript Modules

The term “module” refers in general to a relatively independent component of a system.
Modules interact in limited, well-defined ways. They are an important tool for building complex
systems. In JavaScript, a module is a script that is isolated from other scripts, except that a
module can “export” identifiers that it defines. Identifiers that are exported by one script can
then be “imported” by another script. A module only has access to an identifier from another
module if the identifier is explicitly exported by one module and imported by the other. Modules
can also access identifiers from non-modular scripts, without having to import them.

A JavaScript module can export an identifier by adding the export modifier to its
declaration. For example,

export const RED="0xFF0000";

export function setColor(c) { .
export class FancyDraw { .

Alternatively, it can list the identifiers that it wants to export in an export statement. For
example,

export { RED, setColor, FancyDraw };

The export statement has many other options. However, here we are mostly interested in
importing from three.js modules.

To use modular three.js, you will need to write a modular script. You can do that on a web
page by adding the attribute type="module" to the <script> element:

<script type="module">

</script>

The script can then use import statements to access identifiers from other modules. For
example,
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<script type="module">
import { FancyDraw, setColor } from "./drawutil.js";

. // Use FancyDraw and setColor as usual!

This assumes that the module that exports the identifiers is defined in a script named
drawutil. js in the same directory as the web page. Note that if the path to the script
starts in the current directory, then the script name must start with “./”.

My three.js examples use the file three.module.min. js from a directory named script in
the same directory as the web page. They can import everything from that file using:

import * as THREE from "./script/three.module.min.js";

This form of the import statement gets all the exports from three.module.min. js and makes
them properties of a new object named THREE. For example, the exported identifier Mesh is
imported as THREE.Mesh. Again, the import statement has other forms, which are not covered
here.

N S 3

Many of my examples use add-ons that are not part of the main three.js script. I have placed
the files that use them in subdirectories of my script directory. All of the files come from the
examples/jsm folder in the three.js download. I have used the same subdirectory structure as
that folder, because some of the files refer to files in other subdirectories by name. One of the
add-on scripts is “OrbitControls.js” in the “controls” subdirectory. It exports a class named
OrbitControls, which can be imported using

import { Orbitcontrols } from "./script/controls/OrbitControls.js";

The add-on modules import many resources from the main three.js module. Unfortunately,
they don’t know where to find that file. They rely on something called an “import map”
to specify its location. An import map can be defined by another kind of script, with
type="importmap". So, you will see that the scripts in many of my examples start something
like this:

<script type="importmap">

{
"imports": {
"three": "./script/three.module.min. js",
"addons/": "./script/"
}
}
</script>

<script type="module">

import * as THREE from "three";

import { OrbitControls } from "addons/controls/OrbitControls.js";
import { GLTFLoader } from "addons/loaders/GLTFLoader.js";

The content of an “importmap” script is a JSON object. The import map here defines “three”
to refer to the main three.js file, and it defines “addons/” to refer to the script directory. The
add-on modules refer to the main three.js module as “three”, so that mapping is necessary. The
“addons/” mapping is actually not needed for my examples.

S S 3
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I have given you only a very brief overview of JavaScript modules—enough, I hope to
let you understand my sample programs and write some similar programs of your own. For
more complex projects, you should look at what the three.js developers have to say about
setting up a development environment. See the “Installation” section of the Manual at
https://threejs.org/docs/.

5.1.2 Scene, Renderer, Camera

Three.js works with the HTML <canvas> element, the same thing that we used for 2D graphics
in Section 2.6. In almost all web browsers, in addition to its 2D Graphics API, a canvas also
supports drawing in 3D using WebGL, which is used by three.js and which is about as different
as it can be from the 2D API.

Three.js is an object-oriented scene graph API. (See Subsection 2.4.2.) The basic procedure
is to build a scene graph out of three.js objects, and then to render an image of the scene it
represents. Animation can be implemented by modifying properties of the scene graph between
frames.

The three.js library is made up of a large number of classes. Three of the most basic
are THREE.Scene, THREE.Camera, and THREE.WebGLRenderer. (There are actually several
renderer classes available. THREE.WebGLRenderer is by far the most common. A renderer for
WebGPU is available but is still under development.) A three.js program will need at least one
object of each type. Those objects are often stored in global variables

let scene, renderer, camera;

Note that almost all of the three.js classes and constants that we will use are properties
of an object named THREE, and their names begin with “THREE.”. (The name “THREE”
is defined in the import statement that imports the three.js features; you can use a different
name.) I will sometimes refer to classes without using this prefix, and it is not usually used in
the three.js documentation, but the prefix must always be included in actual program code.

A Scene object is a holder for all the objects that make up a 3D world, including lights,
graphical objects, and possibly cameras. It acts as a root node for the scene graph. A Camera
is a special kind of object that represents a viewpoint from which an image of a 3D world
can be made. It represents a combination of a viewing transformation and a projection. A
WebGLRenderer is an object that can create an image from a scene graph.

The scene is the simplest of the three objects. A scene can be created as an object of type
THREE.Scene using a constructor with no parameters:

scene = new THREE.Scene();
The function scene.add(item) can be used to add cameras, lights, and graphical objects to

the scene. It is probably the only scene function that you will need to call. The function
scene.remove(item), which removes an item from the scene, is also occasionally useful.

* kX

There are two kinds of camera, one using orthographic projection and one using
perspective projection. They are represented by classes THREE.OrthographicCamera and
THREE . PerspectiveCamera, which are subclasses of THREE.Camera. The constructors specify
the projection, using parameters that are familiar from OpenGL (see Subsection 3.3.3):

camera = new THREE.DrthographicCamera( left, right, top, bottom, near, far )

or
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camera = new THREE.PerspectiveCamera( fieldOfViewAngle, aspect, near, far );

The parameters for the orthographic camera specify the x, y, and z limits of the view volume,
in eye coordinates—that is, in a coordinate system in which the camera is at (0,0,0) looking
in the direction of the negative z-axis, with the y-axis pointing up in the view. The near and
far parameters give the z-limits in terms of distance from the camera. For an orthographic
projection, near can be negative, putting the “near” clipping plane in back of the camera. The
parameters are the same as for the OpenGL function glOrtho(), except for reversing the order
of the two parameters that specify the top and bottom clipping planes.

Perspective cameras are more common. The parameters for the perspective camera come
from the function gluPerspective() in OpenGL’s GLU library. The first parameter determines
the vertical extent of the view volume, given as an angle measured in degrees. The aspect is
the ratio between the horizontal and vertical extents; it should usually be set to the width of
the canvas divided by its height. And near and far give the z-limits on the view volume as
distances from the camera. For a perspective projection, both must be positive, with near less
than far. Typical code for creating a perspective camera would be:

camera = new THREE.PerspectiveCamera( 45, canvas.width/canvas.height, 1, 100 );

where canvas holds a reference to the <canvas> element where the image will be rendered. The
near and far values mean that only things between 1 and 100 units in front of the camera
are included in the image. Remember that using an unnecessarily large value for far or an
unnecessarily small value for near can interfere with the accuracy of the depth test.

A camera, like other objects, can be added to a scene, but it does not have to be part of the
scene graph to be used. You might add it to the scene graph if you want it to be a parent or
child of another object in the graph. In any case, you will generally want to apply a modeling
transformation to the camera to set its position and orientation in 3D space. I will cover that
later when I talk about transformations more generally.

x kX

A renderer is an instance of the class THREE.WebGLRenderer. lts constructor has one
parameter, which is a JavaScript object containing settings that affect the renderer. The
settings you are most likely to specify are canvas, which tells the renderer where to draw, and
antialias, which asks the renderer to use antialiasing if possible:

renderer = new THREE.WebGLRenderer( {
canvas: theCanvas,
antialias: true

} s

Here, theCanvas would be a reference to the <canvas> element where the renderer will display
the images that it produces. (Note that the technique of having a JavaScript object as a
parameter is used in many three.js functions. It makes it possible to support a large number of
options without requiring a long list of parameters that must all be specified in some particular
order. Instead, you only need to specify the options for which you want to provide non-default
values, and you can specify those options by name, in any order.)

The main thing that you want to do with a renderer is render an image. For that, you also
need a scene and a camera. To render an image of a given scene from the point of view of a
given camera, call

renderer.render( scene, camera );
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This is really the central command in any three.js application.

(I should note that most of the examples that I have seen do not provide a canvas to the
renderer; instead, they allow the renderer to create it. The canvas can then be obtained from
the renderer and added to the page. Furthermore, the canvas typically fills the entire browser
window. The sample program threejs/full-window.html shows how to do that. However, all of
my other examples use an existing canvas, with the renderer constructor shown above.)

5.1.3 THREE.Object3D

A three.js scene graph is made up of objects of type THREE.Object3D (including objects that
belong to subclasses of that class). Cameras, lights, and visible objects are all represented by
subclasses of Object3D. In fact, THREE.Scene itself is also a subclass of Object3D.

Any Object3D contains a list of child objects, which are also of type Object3D. The child lists
define the structure of the scene graph. If node and object are of type Object3D, then the method
node.add(object) adds object to the list of children of node. The method node.remove(object)
can be used to remove an object from the list.

A three.js scene graph must, in fact, be a tree. That is, every node in the graph has a unique
parent node, except for the root node, which has no parent. An Object3D, obj, has a property
obj.parent that points to the parent of 0bj in the scene graph, if any. You should never set this
property directly. It is set automatically when the node is added to the child list of another
node. If 0bj already has a parent when it is added as a child of node, then obj is first removed
from the child list of its current parent before it is added to the child list of node.

The children of an Object3D, obj, are stored in a property named obj.children, which is an
ordinary JavaScript array. However, you should always add and remove children of 0bj using
the methods obj.add() and obj.remove().

To make it easy to duplicate parts of the structure of a scene graph, Object3D defines a
clone() method. This method copies the node, including the recursive copying of the children
of that node. This makes it easy to include multiple copies of the same structure in a scene
graph:

let node = THREE.Object3D();
// Add children to node.

scene.add(node) ;
let nodeCopyl = node.clone();

// Modify nodeCopyl, maybe apply a transformation.

scene.add (nodeCopy1l)
let nodeCopy2 = node.clone();

// Modify nodeCopy2, maybe apply a transformation.

scene.add (nodeCopy2) ;

An Object3D, obj, has an associated transformation, which is given by properties 0bj.scale,
obj.rotation, and obj.position. These properties represent a modeling transformation to be
applied to the object and its children when the object is rendered. The object is first scaled,
then rotated, then translated according to the values of these properties. (Transformations are
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actually more complicated than this, but we will keep things simple for now and will return to
the topic later.)

The values of obj.scale and obj.position are objects of type THREE.Vector3. A Vector3
represents a vector or point in three dimensions. (There are similar classes THREE. Vector2 and
THREE.Vector4 for vectors in 2 and 4 dimensions.) A Vector3 object can be constructed from
three numbers that give the coordinates of the vector:

let v = new THREE.Vector3( 17, -3.14159, 42 );

This object has properties v.z, v.y, and v.z representing the coordinates. The properties can
be set individually; for example: v.z = 10. They can also be set all at once, using the method
v.set(z,y,z). The Vector3 class also has many methods implementing vector operations such as
addition, dot product, and cross product.

For an Object3D, the properties obj.scale.z, obj.scale.y, and obj.scale.z give the amount of
scaling of the object in the x, y, and z directions. The default values, of course, are 1. Calling

obj.scale.set(2,2,2);

means that the object will be subjected to a uniform scaling factor of 2 when it is rendered.
Setting

obj.scale.y = 0.5;

will shrink it to half-size in the y-direction only (assuming that obj.scale.z and obj.scale.z still
have their default values).

Similarly, the properties obj.position.z, obj.position.y, and obj.position.z give the translation
amounts that will be applied to the object in the x, y, and z directions when it is rendered. For
example, since a camera is an Object3D, setting

camera.position.z = 20;

means that the camera will be moved from its default position at the origin to the point
(0,0,20) on the positive z-axis. This modeling transformation on the camera becomes a viewing
transformation when the camera is used to render a scene.

The object obj.rotation has properties obj.rotation.x, obj.rotation.y, and obj.rotation.z that
represent rotations about the x-, y-, and z-axes. The angles are measured in radians. The
object is rotated first about the x-axis, then about the y-axis, then about the z-axis. (It is
possible to change this order.) The value of obj.rotation is not a vector. Instead, it belongs to
a similar type, THREE.Euler, and the angles of rotation are called Fuler angles.

5.1.4 Object, Geometry, Material

A visible object in three.js is made up of either points, lines, or triangles. An individual object
corresponds to an OpenGL primitive such as GL_POINTS, GL_LINES, or GL_-TRIANGLES
(see Subsection 3.1.1). There are five classes to represent these possibilities: THREE.Points
for points, THREE.Mesh for triangles, and three classes for lines: THREE.Line, which uses the
GL_LINE_STRIP primitive; THREE.LineSegments, which uses the GL_LINES primitive; and
THREE.LineLoop, which uses the GL_LINE_LOQOP primitive.

A visible object is made up of some geometry plus a material that determines the appearance
of that geometry. In three.js, the geometry and material of a visible object are themselves
represented by JavaScript classes THREE.BufferGeometry and THREE.Material.

An object of type THREE.BufferGeometry can store vertex coordinates and their attributes.
(In fact, the vertex coordinates are also considered to be an “attribute” of the geometry.) These
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values must be stored in a form suitable for use with the OpenGL functions glDrawArrays and
glDrawElements (see Subsection 3.4.2). For JavaScript, this means that they must be stored
in typed arrays. A typed array is similar to a normal JavaScript array, except that its length
is fixed and it can only hold numerical values of a certain type. For example, a Float32Array
holds 32-bit floating point numbers, and a Ulnt16Array holds unsigned 16-bit integers. A typed
array can be created with a constructor that specifies the length of the array. For example,

vertexCoords = new Float32Array(300); // Space for 300 numbers.

Alternatively, the constructor can take an ordinary JavaScript array of numbers as its
parameter. This creates a typed array that holds the same numbers. For example,

data = new Float32Array( [ 1.3, 7, -2.89, 0, 3, 6.5 1 );

In this case, the length of data is six, and it contains copies of the numbers from the JavaScript
array.

Specifying the vertices for a BufferGeometry is a multistep process. You need to create a
typed array containing the coordinates of the vertices. Then you need to wrap that array inside
an object of type THREE.BufferAttribute. Finally, you can add the attribute to the geometry.
Here is an example:

let vertexCoords = new Float32Array([ 0,0,0, 1,0,0, 0,1,0 1);
let vertexAttrib = new THREE.BufferAttribute(vertexCoords, 3);
let geometry = new THREE.BufferGeometry();
geometry.setAttribute( "position", vertexAttrib );

The second parameter to the BufferGeometry constructor is an integer that tells three.js the
number of coordinates of each vertex. Recall that a vertex can be specified by 2, 3, or 4
coordinates, and you need to specify how many numbers are provided in the array for each
vertex. Turning to the setAttribute() function, a BufferGeometry can have attributes specifying
color, normal vectors, and texture coordinates, as well as other custom attributes. The first
parameter to setAttribute() is the name of the attribute. Here, “position” is the name of the
attribute that specifies the coordinates, or position, of the vertices.

Similarly, to specify a color for each vertex, you can put the RGB components of the colors
into a Float32Array, and use that to specify a value for the BufferGeometry attribute named
“color”.

For a specific example, suppose that we want to represent a primitive of type GL_POINTS,
using a three.js object of type THREE.Points. Let’s say we want 10000 points placed at random
inside the unit sphere, where each point can have its own random color. Here is some code that
creates the necessary BufferGeometry:

let pointsBuffer = new Float32Array( 30000 ); // 3 numbers per vertex!
let colorBuffer = new Float32Array( 30000 );
let i = 0;
while ( i < 10000 ) {
let x 2*Math.random() - 1;
let y = 2#Math.random() - 1;
let z = 2*Math.random() - 1;
if (xxx + yxy + zxz < 1 ) {
// only use points inside the unit sphere
pointsBuffer[3*i] = x;
pointsBuffer[3*i+1] = y;
pointsBuffer[3*i+2] = z;
colorBuffer[3*i] = 0.25 + 0.75*Math.random() ;
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colorBuffer[3*i+1] = 0.25 + 0.75*Math.random();
colorBuffer[3*i+2] = 0.25 + 0.75*Math.random() ;
it+;

)

}
}
let pointsGeom = new THREE.BufferGeometry();
pointsGeom.setAttribute("position",
new THREE.BufferAttribute(pointsBuffer,3));
pointsGeom.setAttribute("color",
new THREE.BufferAttribute(colorBuffer,3));

I S

In three.js, to make some geometry into a visible object, we also need an appropriate
material. For example, for an object of type THREE.Points, we can use a material of type
THREE.PointsMaterial, which is a subclass of Material. The material can specify the color and
the size of the points, among other properties:

let pointsMat = new THREE.PointsMaterial( {
color: "yellow",
size: 2,
sizeAttenuation: false

} s

The parameter to the constructor is a JavaScript object whose properties are used to initialize
the material. With the sizeAttenuation property set to false, the size is given in pixels; if it is
true, then size represents the size in world coordinates and the point is scaled to reflect distance
from the viewer. If the color is omitted, a default value of white is used. The default for size
is 1 and for sizeAttenuation is true. The parameter to the constructor can be omitted entirely,
to use all the defaults. A PointsMaterial is not affected by lighting; it simply shows the color
specified by its color property.

It is also possible to assign values to properties of the material after the object has been
created. For example,

let pointsMat = new THREE.PointsMaterial();
pointsMat.color = new THREE.Color("yellow");
pointsMat.size = 2;
pointsMat.sizeAttenuation = false;

Note that the color is set as a value of type THREE. Color, which is constructed from a string,
“yellow”. When the color property is set in the material constructor, the same conversion of
string to color is done automatically.

Once we have the geometry and the material, we can use them to create the visible object,
of type THREE.Points, and add it to a scene:

let sphereOfPoints = new THREE.Points( pointsGeom, pointsMat );
scene.add( sphereOfPoints );

This will show a cloud of yellow points. But we wanted each point to have its own color! Recall
that the colors for the points are stored in the geometry, not in the material. We have to tell
the material to use the colors from the geometry, not the material’s own color property. This
is done by setting the value of the material property vertezColors to true. So, we could create
the material using
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let pointsMat = new THREE.PointsMaterial( {
color: "white",
size: 2,
sizeAttenuation: false,
vertexColors: true

s

White is used here as the material color because the vertex colors are actually multiplied
by the material color, not simply substituted for it.

The on-line demo c5/point-cloud.html shows an animated point cloud, where the user can
choose between yellow points and randomly colored points.

* kX

The color parameter in the above material was specified by the string “yellow”. Colors in
three.js can be represented by values of type THREE.Color. The class THREE.Color represents
an RGB color. A Color object ¢ has properties c.r, c.g, and c¢.b giving the red, blue, and green
color components as floating point numbers in the range from 0.0 to 1.0. Note that there is no
alpha component; three.js handles transparency separately from color.

There are several ways to construct a THREE.Color object. The constructor can take three
parameters giving the RGB components as real numbers in the range 0.0 to 1.0. It can take a
single string parameter giving the color as a CSS color string, like those used in the 2D canvas
graphics API; examples include “white”, “red”, “rgb(255,0,0)”, and “#FF0000”. Or the color
constructor can take a single integer parameter in which each color component is given as
an eight-bit field in the integer. Usually, an integer that is used to represent a color in this
way is written as a hexadecimal literal, beginning with “0x”. Examples include 0xff0000 for
red, 0x00ff00 for green, 0x0000ff for blue, and 0x007050 for a dark blue-green. Here are some

examples of using color constructors:

let c1 = new THREE.Color("skyblue");
let c2 = new THREE.Color(1,1,0); // yellow
let c3 = new THREE.Color(0x98fb98); // pale green

In many contexts, such as the THREE.Points constructor, three.js will accept a string or
integer where a color is required; the string or integer will be fed through the Color constructor.
As another example, a WebGLRenderer object has a “clear color” property that is used as the
background color when the renderer renders a scene. This property could be set using any of
the following commands:

renderer.setClearColor( new THREE.Color(0.6, 0.4, 0.1) );
renderer.setClearColor( "darkgray" );
renderer.setClearColor ( 0x99BBEE ) ;

I S 3

Turning next to lines, an object of type THREE.Line represents a line strip—what would
be a primitive of the type called GL_LINE_STRIP in OpenGL. To get the same strip of
connected line segments, plus a line back to the starting vertex, we can use an object of type
THREE.LineLoop. For the outline of a triangle, for example, we could provide a BufferGeometry
holding coordinates for three points and use a LineLoop.

We will also need a material. For lines, the material can be represented by an object of type
THREE.LineBasicMaterial. As usual, the parameter for the constructor is a JavaScript object,
whose properties can include color and linewidth. For example:

(Demo)
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let lineMat = new THREE.LineBasicMaterial( {
color: O0xAOOOAO, // purple; the default is white
linewidth: 2 // 2 pixels; the default is 1
)

(The linewidth property might not be respected. According to the specification, a WebGL
implementation can set the maximum line width to 1.)

As with points, it is possible to specify a different color for each purpose by adding a “color”
attribute to the geometry and setting the value of the wvertexColors material property to true.
Here is a complete example that makes a triangle with vertices colored red, green, and blue:

let positionBuffer = new Float32Array([

-2, -2, // Coordinates for first vertex.
2, -2, // Coordinates for second vertex.
0, 2 // Coordinates for third vertex.

s
let colorBuffer = new Float32Array([
1, 0, 0, // Color for first vertex (red).
0, 1, 0, // Color for second vertex (green).
0, 0, 1 // Color for third vertex (blue).
;
let lineGeometry = new THREE.BufferGeometry();
lineGeometry.setAttribute(
"position",
new THREE.BufferAttribute(positionBuffer,?2)

);
lineGeometry.setAttribute(
"color",
new THREE.BufferAttribute(colorBuffer,3)
);

let lineMaterial = new THREE.LineBasicMaterial( {
linewidth: 3,
vertexColors: true
});
let triangle = new THREE.LineLoop( lineGeometry, lineMaterial );
scene.add(triangle);

This produces the image:

The “Basic” in LineBasicMaterial indicates that this material uses basic colors that do not
require lighting to be visible and are not affected by lighting. This is generally what you want
for lines.
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A mesh object in three.js corresponds to the OpenGL primitive GL_TRIANGLES. The
geometry object for a mesh must specify which vertices are part of which triangles. We will see
how to do that in the next section. However, three.js comes with classes to represent common
mesh geometries, such as a sphere, a cylinder, and a torus. For these built-in classes, you
just need to call a constructor to create the appropriate geometry. For example, the class
THREE.CylinderGeometry represents the geometry for a cylinder, and its constructor takes the
form

new THREE.CylinderGeometry(radiusTop, radiusBottom, height,
radiusSegments, heightSegments, openEnded, thetaStart, thetalength)

The geometry created by this constructor represents an approximation for a cylinder that has
its axis lying along the y-axis. It extends from —height/2 to height/2 along that axis. The
radius of its circular top is radiusTop and of its bottom is radiusBottom. The two radii don’t
have to be the same; when the are different, you get a truncated cone rather than a cylinder as
such. Using a value of zero for radiusTop makes an actual cone. The parameters radiusSegments
and heightSegments give the number of subdivisions around the circumference of the cylinder
and along its length respectively—what are called slices and stacks in the GLUT library for
OpenGL. The parameter openEnded is a boolean value that indicates whether the top and
bottom of the cylinder are to be drawn; use the value true to get an open-ended tube. Finally,
the last two parameters allow you to make a partial cylinder. Their values are given as angles,
measured in radians, about the y-axis. Only the part of the cylinder beginning at thetaStart
and ending at thetaStart plus thetaLength is rendered. For example, if thetaLength is Math.PI,
you will get a half-cylinder.

The large number of parameters to the constructor gives a lot of flexibility. The parameters
are all optional. The default value for each of the first three parameters is one. The default for
radiusSegments is 8, which gives a poor approximation for a smooth cylinder. Leaving out the
last three parameters will give a complete cylinder, closed at both ends.

Other standard mesh geometries are similar. Here are some constructors, listing all
parameters (but keep in mind that most of the parameters are optional):

new THREE.BoxGeometry(width, height, depth,
widthSegments, heightSegments, depthSegments)

new THREE.PlaneGeometry(width, height, widthSegments, heightSegments)

new THREE.RingGeometry(innerRadius, outerRadius, thetaSegments, phiSegments,
thetaStart, thetalength)

new THREE.ConeGeometry(radiusBottom, height, radiusSegments,
heightSegments, openEnded, thetaStart, thetalength)

new THREE.SphereGeometry(radius, widthSegments, heightSegments,
phiStart, philength, thetaStart, thetalength)

new THREE.TorusGeometry(radius, tube, radialSegments, tubularSegments, arc)

The class BoxGeometry represents the geometry of a rectangular box centered at the origin.
Its constructor has three parameters to give the size of the box in each direction; their default
value is one. The last three parameters give the number of subdivisions in each direction, with
a default of one; values greater than one will cause the faces of the box to be subdivided into
smaller triangles.

The class PlaneGeometry represents the geometry of a rectangle lying in the xy-plane,
centered at the origin. Its parameters are similar to those for a cube. A RingGeometry represents
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an annulus, that is, a disk with a smaller disk removed from its center. The ring lies in the
zy-plane, with its center at the origin. You should always specify the inner and outer radii of
the ring.

The constructor for ConeGeometry has exactly the same form and effect as the constructor
for CylinderGeometry, with the radiusTop set to zero. That is, it constructs a cone with axis
along the y-axis and centered at the origin.

For SphereGeometry, all parameters are optional. The constructor creates a sphere centered
at the origin, with axis along the y-axis. The first parameter, which gives the radius of the
sphere, has a default of one. The next two parameters give the numbers of slices and stacks,
with default values 32 and 16. The last four parameters allow you to make a piece of a sphere;
the default values give a complete sphere. The four parameters are angles measured in radians.
phiStart and phiLength are measured in angles around the equator and give the extent in
longitude of the spherical shell that is generated. For example,

new THREE.SphereGeometry( 5, 32, 16, 0, Math.PI )

creates the geometry for the “western hemisphere” of a sphere. The last two parameters are
angles measured along a line of latitude from the north pole of the sphere to the south pole.
For example, to get the sphere’s “northern hemisphere”:

new THREE.SphereGeometry( 5, 32, 16, 0, 2*Math.PI, 0, Math.PI/2 )

For TorusGeometry, the constructor creates a torus lying in the zy-plane, centered at the
origin, with the z-axis passing through its hole. The parameter radius is the distance from the
center of the torus to the center of the torus’s tube, while tube is the radius of the tube. The
next two parameters give the number of subdivisions in each direction. The last parameter,
arc, allows you to make just part of a torus. It is an angle between 0 and 2*Math. PI, measured
along the circle at the center of the tube.

There are also geometry classes representing the regular polyhedra: THREE. TetrahedronGeometry,
THREE. OctahedronGeometry, THREE.DodecahedronGeometry, and THREE.IcosahedronGeometry.
(For a cube use a BoxGeometry.) The constructors for these four classes take two parameters.
The first specifies the size of the polyhedron, with a default of 1. The size is given as the radius
of the sphere that contains the polyhedron. The second parameter is an integer called detail.
The default value, 0, gives the actual regular polyhedron. Larger values add detail by adding
additional faces. As the detail increases, the polyhedron becomes a better approximation for a
sphere. This is easier to understand with an illustration:

The image shows four mesh objects that use icosahedral geometries with detail parameter equal
to 0, 1, 2, and 3.
* kK

To create a mesh object, you need a material as well as a geometry. There are
several kinds of material suitable for mesh objects, including THREE.MeshBasicMaterial,
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THREE.MeshLambertMaterial, and THREE.MeshPhongMaterial. (There are more mesh materi-
als, including two newer ones, THREE.MeshStandardMaterial and THREE.MeshPhysicalMaterial,
that implement techniques associated with physically based rendering, an approach to improved
rendering that has become popular. However, I will not cover them here.)

A MeshBasicMaterial represents a color that is not affected by lighting; it looks the same
whether or not there are lights in the scene, and it is not shaded, giving it a flat rather than
3D appearance. The other two classes represent materials that need to be lit to be seen. They
implement models of lighting known as Lambert shading and Phong shading. The major
difference is that MeshPhongMaterial has a specular color but MeshLambertMaterial does not.
Both can have diffuse and emissive colors. For all three material classes, the constructor has
one parameter, a JavaScript object that specifies values for properties of the material. For
example:

let mat = new THREE.MeshPhongMaterial( {

color: 0xbbbb00, // reflectivity for diffuse and ambient light
emissive: O, // emission color; this is the default (black)
specular: 0x303030, // reflectivity for specular light

shininess: 50 // controls size of specular highlights

} s

This example shows the four color parameters for a Phong material. The parameters have
the same meaning as the five material properties in OpenGL (Subsection 4.1.1). A Lambert
material lacks specular and shininess, and a basic mesh material has only the color parameter.

There are a few other material properties that you might need to set in the constructor.
Except for flatShading, these apply to all three kinds of mesh material:

e vertexColors — a boolean property that can be set to true to use vertex colors from the
geometry. The default is false.

e wireframe — a boolean value that indicates whether the mesh should be drawn as a
wireframe model, showing only the outlines of its faces. The default is false. A true value
works best with MeshBasicMaterial.

e wireframeLinewidth — the width of the lines used to draw the wireframe, in pixels. The
default is 1. (Non-default values might not be respected.)

e visible — a boolean value that controls whether the object on which it is used is rendered
or not, with a default of true.

e side — has value THREE.FrontSide, THREFE.BackSide, or THREFE.DoubleSide, with
the default being THREFE.FrontSide. This determines whether faces of the mesh are
drawn or not, depending on which side of the face is visible. With the default
value, THRFEE.FrontSide, a face is drawn only if it is being viewed from the front.
THREE.DoubleSide will draw it whether it is viewed from the front or from the back,
and THREFE.BackSide only if it is viewed from the back. For closed objects, such as a
cube or a complete sphere, the default value makes sense, at least as long as the viewer is
outside of the object. For a plane, an open tube, or a partial sphere, the value should be
set to THREE.DoubleSide. Otherwise, parts of the object that should be in view won’t
be drawn.

e flatShading — a boolean value, with the default being false. This does not work for
MeshBasicMaterial. For an object that is supposed to look “faceted,” with flat sides, it is
important to set this property to true. That would be the case, for example, for a cube
or for a cylinder with a small number of sides.
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As an example, let’s make a shiny, blue-green, open, five-sided tube with flat sides:

let mat = new THREE.MeshPhongMaterial( {
color: 0x0088aa,
specular: 0x003344,
shininess: 100,
flatShading: true, // for flat-looking sides
side: THREE.DoubleSide // for drawing the inside of the tube
}
let geom = new THREE.CylinderGeometry(3,3,10,5,1,true);
let obj = new THREE.Mesh(geom,mat);
scene.add(obj) ;

The on-line demo ¢5/mesh-objects.html lets you view a variety of three.js mesh objects with
several different materials.

The demo can show a wireframe version of an object overlaid on a solid version. In three.js,
the wireframe and solid versions are actually two objects that use the same geometry but
different materials. Drawing two objects at exactly the same depth can be a problem for the
depth test. You might remember from Subsection 3.4.1 that OpenGL uses polygon offset to
solve the problem. In three.js, you can apply polygon offset to a material. In the demos, this
is done for the solid materials that are shown at the same time as wireframe materials. For
example,

mat = new THREE.MeshLambertMaterial ({
polygonOffset: true,
polygonOffsetUnits: 1,
polygonOffsetFactor: 1,
color: "yellow",
side: THREE.DoubleSide
B

The settings shown here for polygonOffset, polygonOffsetUnits, and polygonOffsetFactor will
increase the depth of the object that uses this material slightly so that it doesn’t interfere with
the wireframe version of the same object.

One final note: You don’t always need to make new materials and geometries to make new
objects. You can reuse the same materials and geometries in multiple objects.

5.1.5 Lights

Compared to geometries and materials, lights are easy! Three.js has several classes to represent
lights. Light classes are subclasses of THREE. Object3D. A light object can be added to a scene
and will then illuminate objects in the scene. We’ll look at directional lights, point lights,
ambient lights, and spotlights.

The class THREE.DirectionalLight represents light that shines in parallel rays from a given
direction, like the light from the sun. The position property of a directional light gives the
direction from which the light shines. (This is the same position property, of type Vector3,
that all scene graph objects have, but the meaning is different for directional lights.) Note that
the light shines from the given position towards the origin. The default position is the vector
(0,1,0), which gives a light shining down the y-axis. The constructor for this class has two
parameters:

new THREE.DirectionalLight( color, intensity )

(Demo)
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where color specifies the color of the light, given as a THREE.Color object, or as a hexadecimal
integer, or as a CSS color string. Lights do not have separate diffuse and specular colors, as
they do in OpenGL. The intensity is a non-negative number that controls the brightness of the
light, with larger values making the light brighter. A light with intensity zero gives no light
at all. The parameters are optional. The default for color is white (Oxffffff) and for intensity
is 1. The intensity can be greater than 1, but values less than 1 are usually preferable, to avoid
having too much illumination in the scene.

Suppose that we have a camera on the positive z-axis, looking towards the origin, and we
would like a light that shines in the same direction that the camera is looking. We can use a
directional light whose position is on the positive z-axis:

let light = new THREE.DirectionallLight(); // default white light
light.position.set( 0, 0, 1 );
scene.add(light);

The class THREE.PointLight represents a light that shines in all directions from a point.
The location of the point is given by the light’s position property. The constructor has three
optional parameters:

new THREE.PointLight( color, intensity, cutoff )

The first two parameters are the same as for a directional light, with the same defaults.
The cutoff is a non-negative number. If the value is zero—which is the default—then the
illumination from the light extends to infinity, and intensity does not decrease with distance.
While this is not physically realistic, it generally works well in practice. If cutoff is greater
than zero, then the intensity falls from a maximum value at the light’s position down to an
intensity of zero at a distance of cutoff from the light; the light has no effect on objects that
are at a distance greater than cutoff. This falloff of light intensity with distance is referred to
as attenuation of the light source.

A third type of light is THREE.AmbientLight. This class exists to add ambient light to a
scene. An ambient light has only a color:

new THREE.AmbientLight( color )

Adding an ambient light object to a scene adds ambient light of the specified color to the scene.
The color components of an ambient light should be rather small to avoid washing out colors
of objects.

For example, suppose that we would like a yellowish point light at (10,30,15) whose
illumination falls off with distance from that point, out to a distance of 100 units. We also
want to add a bit of yellow ambient light to the scene:

let light = new THREE.PointLight( Oxffffcc, 1, 100 );
light.position.set( 10, 30, 15 );

scene.add(light);

scene.add( new THREE.AmbientLight(0x111100) );

S S 3

The fourth type of light, THREE.SpotLight, is something new for us. An object of that type
represents a spotlight, which is similar to a point light, except that instead of shining in all
directions, a spotlight only produces a cone of light. The vertex of the cone is located at the
position of the light. By default, the axis of the cone points from that location towards the
origin (so unless you change the direction of the axis, you should move the position of the light
away from the origin). The constructor adds two parameters to those for a point light:
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new THREE.SpotLight( color, intensity, cutoff, coneAngle, exponent )

The coneAngle is a number between 0 and Math.PI/2 that determines the size of the cone of
light. It is the angle between the axis of the cone and the side of the cone. The default value is
Math.PI/3. The exponent is a non-negative number that determines how fast the intensity of
the light decreases as you move from the axis of the cone toward the side. The default value,
10, gives a reasonable result. An exponent of zero gives no falloff at all, so that objects at all
distances from the axis are evenly illuminated.

The technique for setting the direction of a three.js spotlight is a little odd, but it does
make it easy to control the direction. An object spot of type SpotLight has a property named
spot.target. The target is a scene graph node. The cone of light from the spotlight is pointed in
the direction from spotlight’s position towards the target’s position. When a spotlight is first
created, its target is a new, empty Object3D, with position at (0,0,0). However, you can set the
target to be any object in the scene graph, which will make the spotlight shine towards that
object. For three.js to calculate the spotlight direction, a target whose position is anything
other than the origin must actually be a node in the scene graph. For example, suppose we
want a spotlight located at the point (0,0,5) and pointed towards the point (2,2,0):

spotlight = new THREE.SpotLight();
spotlight.position.set(0,0,5);
spotlight.target.position.set(2,2,0);
scene.add(spotlight);
scene.add(spotlight.target);

5.1.6 A Modeling Example

In the rest of this chapter, we will go much deeper into three.js, but you already know enough
to build 3D models from basic geometric objects. An example is in the sample program
threejs/diskworld-1.html, which shows a very simple model of a car driving around the edge of
a cylindrical base. The car has rotating tires. The diskworld is shown in the picture on the left
below. The picture on the right shows one of the axles from the car, with a tire on each end.

«-‘4\4(

a

I will discuss some of the code that is used to build these models. If you want to experiment
with your own models, you can use the program threejs/modeling-starter.html as a starting
point.

To start with something simple, let’s look at how to make a tree from a brown cylinder and
a green cone. I use an Object3D to represent the tree as a whole, so that I can treat it as a
unit. The two geometric objects are added as children of the Object3D.


http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/threejs/diskworld-1.html
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let tree = new THREE.Object3D();

let trunk = new THREE.Mesh(
new THREE.CylinderGeometry(0.2,0.2,1,16,1),
new THREE.MeshLambertMaterial ({
color: 0x885522
19)
);

trunk.position.y = 0.5; // move base up to origin

let leaves = new THREE.Mesh(
new THREE.ConeGeometry(.7,2,16,3),
new THREE.MeshPhongMaterial ({
color: 0x00BBOO,
specular: 0x002000,
shininess: 5
1))
);

leaves.position.y = 2; // move bottom of cone to top of trunk

tree.add (trunk) ;
tree.add(leaves);

The trunk is a cylinder with height equal to 1. Its axis lies along the y-axis, and it is centered
at the origin. The plane of the diskworld lies in the xz-plane, so I want to move the bottom
of the trunk onto that plane. This is done by setting the value of trunk.position.y, which
represents a translation to be applied to the trunk. Remember that objects have their own
modeling coordinate system. The properties of objects that specify transformations, such as
trunk.position, transform the object in that coordinate system. In this case, the trunk is part
of a larger, compound object that represents the whole tree. When the scene is rendered, the
trunk is first transformed by its own modeling transformation. It is then further transformed by
any modeling transformation that is applied to the tree as a whole. (This type of hierarchical
modeling was first covered in Subsection 2.4.1.)

Once we have a tree object, it can be added to the model that represents the diskworld.
In the program, the model is an object of type Object3D named diskworldModel. The model
will contain several trees, but the trees don’t have to be constructed individually. I can make
additional trees by cloning the one that I have already created. For example:

tree.position.set(-1.5,0,2);
tree.scale.set(0.7,0.7,0.7);
diskworldModel.add( tree.clone() );

tree.position.set(-1,0,5.2);
tree.scale.set(0.25,0.25,0.25);
diskworldModel.add( tree.clone() );

This adds two trees to the model, with different sizes and positions. When the tree is cloned,
the clone gets its own copies of the modeling transformation properties, position and scale.
Changing the values of those properties in the original tree object does not affect the clone.
Lets turn to a more complicated object, the axle and wheels. I start by creating a wheel,
using a torus for the tire and using three copies of a cylinder for the spokes. In this case,
instead of making a new Object3D to hold all the components of the wheel, I add the cylinders
as children of the torus. Remember that any screen graph node in three.js can have child nodes.
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let wheel = new THREE.Mesh( // the tire; spokes will be added as children
new THREE.TorusGeometry(0.75, 0.25, 16, 32),
new THREE.MeshLambertMaterial({ color: 0x0000A0 })
);
let yellow = new THREE.MeshPhongMaterial ({
color: Oxff£ff00,
specular: 0x101010,
shininess: 16
b;
let cylinder = new THREE.Mesh( // a cylinder with height 1 and diameter 1
new THREE.CylinderGeometry(0.5,0.5,1,32,1),
yellow

);
cylinder.scale.set(0.15,1.2,0.15); // Make it thin and tall for use as a spoke.

wheel.add( cylinder.clone() ); // Add a copy of the cylinder.
cylinder.rotation.z = Math.PI/3; // Rotate it for the second spoke.
wheel.add( cylinder.clone() );

cylinder.rotation.z = -Math.PI/3; // Rotate it for the third spoke.
wheel.add( cylinder.clone() );

Once I have the wheel model, I can use it along with one more cylinder to make the axle. For
the axle, I use a cylinder lying along the z-axis. The wheel lies in the zy-plane. It is facing in
the correct direction, but it lies in the center of the axle. To get it into its correct position at
the end of the axle, it just has to be translated along the z-axis.

axleModel = new THREE.Object3D(); // A model containing two wheels and an axle.
cylinder.scale.set(0.2,4.3,0.2); // Scale the cylinder for use as an axle.
cylinder.rotation.set(Math.PI/2,0,0); // Rotate its axis onto the z-axis.
axleModel.add( cylinder );

wheel.position.z = 2; // Wheels are positioned at the two ends of the axle.
axleModel.add( wheel.clone() );

wheel.position.z = -2;

axleModel.add( wheel );

Note that for the second wheel, I add the original wheel model rather than a clone. There is no
need to make an extra copy. With the azleModel in hand, I can build the car from two copies
of the axle plus some other components.

The diskworld can be animated. To implement the animation, properties of the appropriate
scene graph nodes are modified before each frame of the animation is rendered. For example,
to make the wheels on the car rotate, the rotation of each axle about its z-axis is increased in
each frame:

carAxlel.rotation.z += 0.05;
carAxle2.rotation.z += 0.05;

This changes the modeling transformation that will be applied to the axles when they are
rendered. In its own coordinate system, the central axis of an axle lies along the z-axis. The
rotation about the z-axis rotates the axle, with its attached tires, about its axis.

For the full details of the sample program, see the source code.
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5.2 Building Objects

IN three.js, A VISIBLE OBJECT is constructed from a geometry and a material. We have
seen how to create simple geometries that are suitable for point and line primitives, and we
have encountered a variety of standard mesh geometries, such as THREE.CylinderGeometry and
THREE.IcosahedronGeometry, that use the GL_TRIANGLES primitive. In this section, we will
see how to create new mesh geometries from scratch. We’ll also look at some of the other
support that three.js provides for working with objects and materials.

5.2.1 Polygonal Meshes and IF'Ss

A mesh in three.js is what we called a polygonal mesh in Section 3.4, although in a three.js
mesh, all of the polygons must be triangles. There are two ways to draw polygonal meshes
in WebGL. One uses the function glDrawArrays(), which requires just a list of vertices. The
other uses the representation that we called an indexed face set (IFS), which is drawn using the
function glDrawElements(). In addition to a list of vertices, an IFS uses a list of face indices to
specify the triangles. We will look at both methods, using this pyramid as an example:

V4=(0,1,0)

V2=(-1,0,-1)

V1=(1,0,-1)

V3=(-1,0,1) V0=(1,0,1)

Note that the bottom face of the pyramid, which is a square, has to be divided into two triangles
in order for the pyramid to be represented as a mesh geometry. The vertices are numbered from
0 to 4. A triangular face can be specified by the three numbers that give the vertex numbers
of the vertices of that triangle. As usual, the vertices of a triangle should be specified in
counterclockwise order when viewed from the front, that is, from outside the pyramid. Here is
the data that we need.

VERTEX COORDINATES: FACE INDICES:
Vertex O: 1, 0, 1 Face 1: 3, 2, 1
Vertex 1: 1, 0, -1 Face 2: 3, 1, 0
Vertex 2: -1, 0, -1 Face 3: 3, 0, 4
Vertex 3: -1, 0, 1 Face 4: 0, 1, 4
Vertex 4: 0,1, O Face 5: 1, 2, 4
Face 6: 2, 3, 4

> B

A basic polygonal mesh representation does not use face indices. Instead, it specifies each
triangle by listing the coordinates of the vertices. This requires nine numbers—three numbers
per vertex—for the three vertices of the triangle. Since a vertex can be shared by several
triangles, there is some redundancy. For the pyramid, the coordinates for a vertex will be
repeated three or four times.

A three.js mesh object requires a geometry and a material. The geometry is an object
of type THREE.BufferedGeometry, which has a “position” attribute that holds the coordinates
of the vertices that are used in the mesh. The attribute uses a typed array that holds the
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coordinates of the vertices of the triangles that make up the mesh. Geometry for the pyramid
can be created like this:

let pyramidVertices = new Float32Array( [
// Data for the pyramidGeom "position" attribute.
// Contains the X,y,z coordinates for the vertices.
// Each group of three numbers is a vertex;
// each group of three vertices is one face.

-1,0,1, -1,0,-1, 1,0,-1, // First triangle in the base.
-1,0,1, 1,0,-1, 1,0,1, // Second triangle in the base.
-1,0,1, 1,0,1, 0,1,0, // Front face.

1,0,1, 1,0,-1, 0,1,0, // Right face.

1,0,-1, -1,0,-1, 0,1,0, // Back face.
-1,0,-1, -1,0,1, 0,1,0 // Left face.

1)
let pyramidGeom = new THREE.BufferGeometry() ;
pyramidGeom.setAttribute ("position",
new THREE.BufferAttribute(pyramidVertices,3) );

When this geometry is used with a Lambert or Phong material, normal vectors are required
for the vertices. If the geometry has no normal vectors, Lambert and Phong materials will
appear black. The normal vectors for a mesh have to be stored in another attribute of the
BufferedGeometry. The name of the attribute is “normal”, and it holds a normal vector for each
vertex in the “position” attribute. It could be created in the same way that the “position”
attribute is created, but a BufferedGeometry object includes a method for calculating normal
vectors. For the pyramidGeom, we can simply call

pyramidGeom. computeVertexNormals() ;

For a basic polygonal mesh, this will create normal vectors that are perpendicular to the faces.
When several faces share a vertex, that vertex will have a different normal vector for each face.
This will produce flat-looking faces, which are appropriate for a polyhedron, whose sides are
in fact flat. It is not appropriate if the polygonal mesh is being used to approximate a smooth
surface. In that case, we should be using normal vectors that are perpendicular to the surface,
which would mean creating the “normal” attribute by hand. (See Subsection 4.1.3.)

Once we have the geometry for our pyramid, we can use it in a three.js mesh object by
combining it with, say, a yellow Lambert material:

pyramid = new THREE.Mesh(
pyramidGeom,
new THREE.MeshLambertMaterial({ color: "yellow" 1})
);

But the pyramid would look a little boring with just one color. It is possible to use different
materials on different faces of a mesh. For that to work, the vertices in the geometry must be
divided into groups. The addGroup() method in the BufferedGeometry class is used to create
the groups. The vertices in the geometry are numbered 0, 1, 2, ..., according their sequence
in the “position” attribute. (This is not the same numbering used above.) The addGroup()
method takes three parameters: the number of the first vertex in the group, the number of
vertices in the group, and a material index. The material index is an integer that determines
which material will be applied to the group. If you are using groups, it is important to put all
of the vertices into groups. Here is how groups can be created for the pyramid:
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pyramidGeom.addGroup(0,6,0); // The base (2 triangles)
pyramidGeom.addGroup(6,3,1); // Front face.
pyramidGeom.addGroup(9,3,2); // Right face.
pyramidGeom.addGroup(12,3,3); // Back face.
pyramidGeom.addGroup(15,3,4); // Left face.

To apply different materials to different groups, the materials should be put into an array.
The material index of a group is an index into that array.

pyramidMaterialArray= [

// Array of materials, for use as pyramids’s material.
new THREE.MeshLambertMaterial( { color: Oxffffff } ),
new THREE.MeshLambertMaterial( { color: O0x99ffff } ),
new THREE.MeshLambertMaterial( { color: Oxff99ff } ),
new THREE.MeshLambertMaterial( { color: Oxffff99 } ),
new THREE.MeshLambertMaterial( { color: 0xff9999 } )

1

This array can be passed as the second parameter to the THREE.Mesh constructor, where a
single material would ordinarily be used.

pyramid = new THREE.Mesh( pyramidGeom, pyramidMaterialArray );

(But note that you can still use a single material on a mesh, even if the mesh geometry uses
groups.)

A THREE.BoxGeometry comes with groups that make it possible to assign a different
material to each face. The sample program threejs/vertex-groups.html uses the code from
this section to create a pyramid, and it displays both the pyramid and a cube, using multiple
materials on each object. Here’s what they look like:

x kX

There is another way to assign different colors to different vertices. A BufferedGeometry can
have an attribute named “color” that specifies a color for each vertex. The “color” attribute
uses an array containing a set of three RGB component values for each vertex. The vertex
colors are ignored by default. To use them, the geometry must be combined with a material in
which the vertexColors property is set to true. Here is how vertex colors could be used to color
the sides of the pyramid:

pyramidGeom.setAttribute (
"color",
new THREE.BufferAttribute( new Float32Array ([
1,1,1, 1,1,1, 1,1,1, // Base vertices are white
1,1,1, 1,1,1, 1,1,1,
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1,0,0, 1,0,0, 1,0,0, // Front face vertices are red,
0,1,0, 0,1,0, 0,1,0, // Right face vertices are green,
0,0,1, 0,0,1, 0,0,1, // Back face vertices are blue,
1,1,0, 1,1,0, 1,1,0 // Left face vertices are yellow.
D, 3)
);
pyramid = new THREE.Mesh(
pyramidGeom,

new THREE.MeshLambertMaterial ({
color: "white",
vertexColors: true

1))
)

The color components of the vertex colors from the geometry are actually multiplied by the
color components of the color in the Lambert material. It makes sense for that color to be
white, with color components equal to one; in that case the vertex colors are not modified by
the material color.

In this example, each face of the pyramid is a solid color. There is a lot of redundancy in
the color array for the pyramid, because a color must be specified for every vertex, even if all of
the vertex colors for a given face are the same. In fact, it’s not required that all of the vertices
of a face have the same color. If they are assigned different colors, colors will be interpolated
from the vertices to the interior of the face. As an example, in this image, a random vertex
color was specified for each vertex of an icosahedral approximation for a sphere:

The image is from a demo in the online version of this section. The demo can run two somewhat
silly animations; the vertex colors and the vertex positions can be animated.

S 3

The glDrawFElements() function is used to avoid the redundancy of the basic polygonal mesh
representation. It uses the indexed face set pattern, which requires an array of face indices to
specify the vertices for the faces of the mesh. In that array, a vertex is specified by a single
number, rather than repeating all of the coordinates and other data for that vertex. Note that a
given vertex number refers to all of the data for that vertex: vertex coordinates, normal vector,
vertex color, and any other data that are provided in attributes of the geometry. Suppose that
two faces share a vertex. If that vertex has a different normal vector, or a different value for
some other attribute, in the two faces, then that vector will need to occur twice in the attribute
arrays. The two occurrences can be combined only if the vertex has identical properties in the
two faces. The IFS representation is most suitable for a polygonal mesh that is being used as
an approximation for a smooth surface, since in that case a vertex has the same normal vector

(Demo)


http://math.hws.edu/eck/cs424/graphicsbook-1.4/demos/c5/vertex-and-color-animation.html
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for all of the vertices in which it occurs. It can also be appropriate for an object that uses a
MeshBasicMaterial, since normal vectors are not used with that type of material.

To use the IFS pattern with a BufferedGeometry, you need to provide a face index array for
the geometry. The array is specified by the geometry’s setIndez() method. The parameter can
be an ordinary JavaScript array of integers. For our pyramid example the “position” attribute
of the geometry would contain each vertex just once, and the face index array would refer to a
vertex by its position in that list of vertices:

pyramidVertices = new Float32Array( [
0, 1, // vertex number
0, -1, // vertex number
-1, 0, -1, // vertex number
0, 1, // vertex number
1

, 0 // vertex number

S W N e O

pyramidFaceIndexArray = [
3, 2, 1, // First triangle in the base.

3, 1, 0, // Second Triangle in the base.
3, 0, 4, // Front face.
0, 1, 4, // Right face.
1, 2, 4, // Back face.
2, 3, 4 // Left face.

1;

pyramidGeom = new THREE.BufferGeometry();
pyramidGeom.setAttribute ("position",

new THREE.BufferAttribute(pyramidVertices,3) );
pyramidGeom.setIndex( pyramidFaceIndexArray );

This would work with a MeshBasicMaterial. The sample program threejs/vertex-groups-indexed.html
is a variation on threejs/vertex-groups.html that uses this approach.

The computeVertezNormals() method can still be used for a BufferedGeometry that has an
index array. To compute a normal vector for a vertex, it finds all of the faces in which that
vertex occurs. For each of those faces, it computes a vector perpendicular to the face. Then it
averages those vectors to get the vertex normal. (I will note if you tried this for our pyramid,
it would look pretty bad. It’s really only appropriate for smooth surfaces.)

5.2.2 Curves and Surfaces

In addition to letting you build indexed face sets, three.js has support for working with curves
and surfaces that are defined mathematically. Some of the possibilities are illustrated in the
sample program threejs/curves-and-surfaces.html, and T will discuss a few of them here.

Parametric surfaces are the easiest to work with. They are represented by a three.js add-
on named ParametricGeometry. As an add-on, it must be imported separately from the main
three.js module. In my sample program, it is imported with

import {ParametricGeometry} from "addons/geometries/ParametricGeometry.js";

A parametric surface is defined by a mathematical function of two parameters (u,v), where
u and v are numbers, and each value of the function is a point in space. The surface consists of
all the points that are values of the function for v and v in some specified ranges. For three.js,
the function is a regular JavaScript function that takes three parameters: u, v, and an object


http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/threejs/vertex-groups-indexed.html
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/threejs/vertex-groups.html
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of type THREE.Vector3. The function must modify the vector to represent the point in space
that corresponds to the values of the u and v parameters. A parametric surface geometry is
created by calling the function at a grid of (u,v) points. This gives a collection of points on the
surface, which are then connected to give a polygonal approximation of the surface. In three.js,
the values of both u and v are always in the range 0.0 to 1.0. The geometry is created by a
constructor

new ParametricGeometry( func, slices, stacks )

where func is the JavaScript function that defines the surface, and slices and stacks determine
the number of points in the grid; slices gives the number of subdivisions of the interval from 0
to 1 in the w direction, and stacks, in the v direction. Once you have the geometry, you can
use it to make a mesh in the usual way. Here is an example, from the sample program:

This surface is defined by the function

function surfaceFunction( u, v, vector ) {
let x,y,z; // Coordinates for a point on the surface,
// calculated from u,v, where u and v
// range from 0.0 to 1.0.

x =20 % (u - 0.5); // x and z range from -10 to 10
z =20 * (v - 0.5);
y = 2x(Math.sin(x/2) * Math.cos(z));

vector.set( x, y, z );

3

and the three.js mesh that represents the surface is created using

let surfaceGeometry = new THREE.ParametricGeometry(surfaceFunction, 64, 64);
let surface = new THREE.Mesh( surfaceGeometry, material );

Curves are more complicated in three.js. The class THREE. Curve represents the abstract idea
of a parametric curve in two or three dimensions. (It does not represent a three.js geometry.)
A parametric curve is defined by a function of one numeric variable t. The value returned by
the function is of type THREE.Vector2 for a 2D curve or THREE.Vector3 for a 3D curve. For an
object, curve, of type THREE.Curve, the method curve.getPoint(t) should return the point on
the curve corresponding to the value of the parameter . The curve consists of points generated
by this function for values of ¢ ranging from 0.0 to 1.0. However, in the Curve class itself,
getPoint() is undefined. To get an actual curve, you have to define it. For example,
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let helix = new THREE.Curve();
helix.getPoint = function(t) {
let s = (¢t - 0.5) * 12*Math.PI;
// As t ranges from O to 1, s ranges from -6%PI to 6*PI
return new THREE.Vector3(
5%Math.cos(s),
s,
5*Math.sin(s)
);
}
Once getPoint is defined, you have a usable curve. One thing that you can do with it is
create a tube geometry, which defines a surface that is a tube with a circular cross-section and

with the curve running along the center of the tube. The sample program uses the helix curve,
defined above, to create two tubes:

The geometry for the wider tube is created with

tubeGeometryl = new THREE.TubeGeometry( helix, 128, 2.5, 32 );

The second parameter to the constructor is the number of subdivisions of the surface along the
length of the curve. The third is the radius of the circular cross-section of the tube, and the
fourth is the number of subdivisions around the circumference of the cross-section.

To make a tube, you need a 3D curve. There are also several ways to make a surface from
a 2D curve. One way is to rotate the curve about a line, generating a surface of rotation. The
surface consists of all the points that the curve passes through as it rotates. This is called
lathing. This image from the sample program shows the surface generated by lathing a cosine
curve. (The image is rotated 90 degrees, so that the y-axis is horizontal.) The curve itself is
shown above the surface:
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The surface is created in three.js using a THREE.LatheGeometry object. A LatheGeometry
is constructed not from a curve but from an array of points that lie on the curve. The points
are objects of type Vector2, and the curve lies in the xy-plane. The surface is generated by
rotating the curve about the y-axis. The LatheGeometry constructor takes the form

new THREE.LatheGeometry( points, slices )

The first parameter is the array of Vector2. The second is the number of subdivisions of the
surface along the circle generated when a point is rotated about the axis. (The number of
“stacks” for the surface is given by the length of the points array.) In the sample program, I
create the array of points from an object, cosine, of type Curve by calling cosine.getPoints(128).
This function creates an array of 128 points on the curve, using values of the parameter that
range from 0.0 to 1.0.

Another thing that you can do with a 2D curve is simply to fill in the inside of the curve,
giving a 2D filled shape. To do that in three.js, you can use an object of type THREE.Shape,
which is a subclass of THREE.Curve. A Shape can be defined in the same way as a path in the 2D
Canvas API that was covered in Section 2.6. That is, an object shape of type THREE.Shape has
methods shape.moveTo, shape.lineTo, shape.quadraticCurveTo and shape.bezierCurveTo that
can be used to define the path. See Subsection 2.6.2 for details of how these functions work.
As an example, we can create a teardrop shape:

let path = new THREE.Shape();
path.moveTo(0,10);

path.bezierCurveTo( 0,5, 20,-10, 0,-10 );
path.bezierCurveTo( -20,-10, 0,5, 0,10 );

To use the path to create a filled shape in three.js, we need a ShapeGeometry object:
let shapeGeom = new THREE.ShapeGeometry( path );

The 2D shape created with this geometry is shown on the left in this picture:
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The other two objects in the picture were created by extruding the shape. In extrusion, a
filled 2D shape is moved along a path in 3D. The points that the shape passes through make
up a 3D solid. In this case, the shape was extruded along a line segment perpendicular to the
shape, which is the most common case. The basic extruded shape is shown on the right in
the illustration. The middle object is the same shape with “beveled” edges. For more details
on extrusion, see the documentation for THREE.ExtrudeGeometry and the source code for the
sample program.

5.2.3 Textures

A texture can be used to add visual interest and detail to an object. In three.js, an image
texture is represented by an object of type THREE. Texture. Since we are talking about web
pages, the image for a three.js texture is generally loaded from a web address. Image textures
are usually created using the load function in an object of type THREE.TextureLoader. The
function takes a URL (a web address, usually a relative address) as parameter and returns a
Texture object:

let loader = new THREE.TexturelLoader();
let texture = loader.load( imageURL );

(It is also advisable to set

tex.colorSpace = THREE.SRGBColorSpace;

to display the colors correctly. The three.js documentation says, “PNG or JPEG Textures
containing color information (like .map or .emissiveMap) use the closed domain sRGB color
space, and must be annotated with texture.colorSpace = SRGBColorSpace.”)

A texture in three.js is considered to be part of a material. To apply a texture to a mesh, just
assign the Texture object to the map property of the mesh material that is used on the mesh:

material.map = texture;

The map property can also be set in the material constructor. All three types of mesh
material (Basic, Lambert, and Phong) can use a texture. In general, the material base color
will be white, since the material color will be multiplied by colors from the texture. A non-white
material color will add a “tint” to the texture colors. The texture coordinates that are needed
to map the image to a mesh are part of the mesh geometry. The standard mesh geometries
such as THREE.SphereGeometry come with texture coordinates already defined.

That’s the basic idea—create a texture object from an image URL and assign it to the
map property of a material. However, there are complications. First of all, image loading is
“asynchronous.” That is, calling the load function only starts the process of loading the image,
and the process can complete sometime after the function returns. Using a texture on an object
before the image has finished loading does not cause an error, but the object will be rendered as
completely black. Once the image has been loaded, the scene has to be rendered again to show
the image texture. If an animation is running, this will happen automatically; the image will
appear in the first frame after it has finished loading. But if there is no animation, you need a
way to render the scene once the image has loaded. In fact, the load function in a TextureLoader
has several optional parameters:

loader.load( imageURL, onLoad, undefined, onError );

The third parameter here is given as undefined because that parameter is no longer used. The
onLoad and onError parameters are callback functions. The onLoad function, if defined, will
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be called once the image has been successfully loaded. The onError function will be called if
the attempt to load the image fails. For example, if there is a function render() that renders
the scene, then render itself could be used as the onLoad function:

texture = new THREE.TextureLoader().load( "brick.png", render );

Another possible use of onLoad would be to delay assigning the texture to a material until the
image has finished loading. If you do add the texture later, be sure to set

material.needsUpdate = true;

to make sure that the change will take effect when the object is redrawn. (When exactly
needsUpdate needs to be set on various objects is not always clear. See the “Updating
Resources” section of the three.js documentation.)

A Texture has a number of properties that can be set, including properties to set the
minification and magnification filters for the texture and a property to control the generation
of mipmaps, which is done automatically by default. The properties that you are most likely
to want to change are the wrap mode for texture coordinates outside the range 0 to 1 and the
texture transformation. (See Section 4.3 for more information about these properties.)

For a Texture object tex, the properties tex.wrapS and tex.wrapT control how s and ¢ texture
coordinates outside the range 0 to 1 are treated. The default is “clamp to edge.” You will most
likely want to make the texture repeat in both directions by setting the property values to
THRFEE. Repeat Wrapping:

tex.wrapS = THREE.RepeatWrapping;
tex.wrapT = THREE.RepeatWrapping;

RepeatWrapping works best with “seamless” textures, where the top edge of the image matches
up with the bottom edge and the left edge with the right. Three.js also offers an interesting
variation called “mirrored repeat” in which every other copy of the repeated image is flipped.
This eliminates the seam between copies of the image. For mirrored repetition, use the property
value THRFEFE. MirroredRepeat Wrapping:

tex.wrapS
tex.wrapT

THREE.MirroredRepeatWrapping;
THREE.MirroredRepeatWrapping;

The texture properties repeat, offset, and rotation control the scaling, translation, and
rotation that are applied to the texture as texture transformations. The values of repeat and
offset are of type THREE.Vector2, so that each property has an z and a y component. The
rotation is a number, measured in radians, giving the rotation of the texture about the point
(0,0). (But the center of rotation is actually given by another property named center.) For a
Texture, tex, the two components of tex.offset give the texture translation in the horizontal and
vertical directions. To offset the texture by 0.5 horizontally, you can say either

tex.offset.x = 0.5;
or
tex.offset.set( 0.5, 0 );

Remember that a positive horizontal offset will move the texture to the left on the objects,
because the offset is applied to the texture coordinates not to the texture image itself.

The components of the property tex.repeat give the texture scaling in the horizontal and
vertical directions. For example,

tex.repeat.set(2,3);


https://threejs.org/docs/#manual/en/introduction/How-to-update-things
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will scale the texture coordinates by a factor of 2 horizontally and 3 vertically. Again, the effect
on the image is the inverse, so that the image is shrunk by a factor of 2 horizontally and 3
vertically. The result is that you get two copies of the image in the horizontal direction where
you would have had one, and three vertically. This explains the name “repeat,” but note that
the values are not limited to be integers.

The demo c5/textures.html shows image textures applied to a variety of three.js objects.

x kX

Suppose that we want to use an image texture on the pyramid that was created at the
beginning of this section. In order to apply a texture image to an object, WebGL needs texture
coordinates for that object. When we build a mesh from scratch, we have to supply the texture
coordinates as part of the mesh’s geometry object.

Let’s see how to do this on our pyramid example. A BufferedGeometry object such as
pyramidGeom in the example has an attribute named “uv” to hold texture coordinates. (The
name “uv” refers to the coordinates on an object that are mapped to the s and ¢ coordinates
in a texture. The texture coordinates for a surface are often referred to as “uv coordinates.”)
The BufferAttribute for a “uv” attribute can be made from a typed array containing a pair of
texture coordinates for each vertex.

Our pyramid example has six triangular faces, with a total of 18 vertices. We need an array
containing vertex coordinates for 18 vertices. The coordinates have to be chosen to map the
image in a reasonable way onto the faces. My choice of coordinates maps the entire texture
image onto the square base of the pyramid, and it cuts a triangle out of the image to apply
to each of the sides. It takes some care to come up with the correct coordinates. I define the
texture coordinates for the pyramid geometry as follows:

let pyramidUVs = new Float32Array([

, 1,1, // uv coords for first triangle in base.
, // uv coords for second triangle in base.
, // uv coords for front face.

0

5,1

5,1, // uv coords for right face.
5,1

5,1

0,1
0,0 1,1, 1
0,0 1,0, O.
1,0, 0,0, O.
0,0 1,0, O , // uv coords for back face.
1,0, 0,0, O // uv coords for left face.

sV

sV

D;
pyramidGeom.setAttribute ("uv",
new THREE.BufferAttribute(pyramidUVs,2) );

The sample program threejs/textured-pyramid.html shows the pyramid with a brick texture.
Here is an image from the program:

(Demo)
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5.2.4 Transforms

In order to understand how to work with objects effectively in three.js, it can be useful to
know more about how it implements transforms. I have explained that an Object3D, obj, has
properties obj.position, obj.scale, and obj.rotation that specify its modeling transformation in
its own local coordinate system. But these properties are not used directly when the object is
rendered. Instead, they are combined to compute another property, obj.matriz, that represents
the transformation as a matrix. By default, this matrix is recomputed automatically every
time the scene is rendered. This can be inefficient if the transformation never changes, so
obj has another property, obj.matrizAutoUpdate, that controls whether obj.matriz is computed
automatically. If you set obj.matrizAutoUpdate to false, the update is not done. In that case, if
you do want to change the modeling transformation, you can call obj.updateMatriz() to compute
the matrix from the current values of 0bj.position, obj.scale, and obj.rotation.

We have seen how to modify obj’s modeling transformation by directly changing the values
of the properties obj.position, obj.scale, and obj.rotation. However, you can also change the
position by calling the function obj.translateX (dzx), obj.translateY (dy), or obj.translateZ (dz)
to move the object by a specified amount in the direction of a coordinate axis. There is also
a function obj.translateOnAwis(axis,amount), where axis is a Vector3 and amount is a number
giving the distance to translate the object. The object is moved in the direction of the vector,
azis. The vector must be normalized; that is, it must have length 1. For example, to translate
obj by 5 units in the direction of the vector (1,1,1), you could say

obj.translateOnAxis( new THREE.Vector3(1,1,1).normalize(), 5 );

There are no functions for changing the scaling transform. But you can change the object’s
rotation with the functions obj.rotateX (angle), obj.rotateY (angle), and obj.rotateZ (angle) to
rotate the object about the coordinate axes. (Remember that angles are measured in radians.)
Calling obj.rotateX (angle) is not the same as adding angle onto the value of obj.rotation.z,
since it applies a rotation about the x-axis on top of other rotations that might already have
been applied.

There is also a function obj.rotateOnAwis(axis,angle), where azis is a Vector3. This function
rotates the object through the angle angle about the vector (that is, about the line between
the origin and the point given by axis). The axis must be a normalized vector.

(Rotation is actually even more complicated. The rotation of an object, obj, is actually
represented by the property obj.quaternion, not by the property obj.rotation. Quaternions
are mathematical objects that are often used in computer graphics as an alternative to Euler
angles, to represent rotations. However, when you change one of the properties obj.rotation or
obj.quaternion, the other is automatically updated to make sure that both properties represent
the same rotation. So, we don’t need to work directly with the quaternions.)

I should emphasize that the translation and rotation functions modify the position and
rotation properties of the object. That is, they apply in object coordinates, not world
coordinates, and they are applied as the first modeling transformation on the object when
the object is rendered. For example, a rotation in world coordinates can change the position
of an object, if it is not positioned at the origin. However, changing the value of the rotation
property of an object will never change its position.

The actual transformation that is applied to an object when it is rendered is a combination
of the modeling transformation of that object, combined with the modeling transformation on
all of its ancestors in the scene graph. In three.js, that transformation is stored in a property
of the object named obj.matrizWorld.
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There is one more useful method for setting the rotation: obj.lookAt(vec), which rotates the
object so that it is facing towards a given point. The parameter, vec, is a Vector3, which must
be expressed in the object’s own local coordinate system. (For an object that has no parent, or
whose ancestors have no modeling transformations, that will be the same as world coordinates.)
The object is also rotated so that its “up” direction is equal to the value of the property obj.up,
which by default is (0,1,0). This function can be used with any object, but it is most useful for
a camera.

5.2.5 Loading Models

Although it is possible to create mesh objects by listing their vertices and faces, it would be
difficult to do it by hand for all but very simple objects. It’s much easier, for example, to
design an object in an interactive modeling program such as Blender (Appendix B). Modeling
programs like Blender can export objects using many different file formats. Three.js has utility
functions for loading models from files in a variety of file formats. These utilities are not part
of the three.js core, but JavaScript files that define them can be found in the examples folder
in the three.js download.

The preferred format for model files is GLTF. A GLTF model can be stored in a text
file with extension .gltf or in a binary file with extension .glb. Binary files are smaller
and more efficient, but not human-readable. A three.js loader for GLTF files is defined by
the class GLTFLoader, which can be imported from the module GLTFLoader.js. from the
three.js download. Copies of that script, as well as scripts for other model loaders, can be
found in the threejs/script/loaders folder in the source folder for this textbook, or in the
examples/jsm/loaders folder in the three.js download. (Note that GLTFLoader is not part
of the object THREE.)

If loader is an object of type GLTFLoader, you can use its load() method to start the process
of loading a model:

loader = new GLTFLoader()
loader.load( url, onlLoad, onProgress, onError )

Only the first parameter is required; it is a URL for the file that contains the model. The other
three parameters are callback functions: onLoad will be called when the loading is complete,
with a parameter that represents the data from the file; onProgress is called periodically during
the loading with a parameter that contains information about the size of the model and how
much of it has be loaded; and onFError is called if any error occurs. (I have not actually used
onProgress myself.) Note that, as for textures, the loading is done asynchronously.

A GLTF file can be quite complicated and can contain an entire 3D scene, containing
multiple objects, lights, and other things. The data returned by a GLTFLoader contains a
three.js Scene. Any objects defined by the file will be part of the scene graph for that scene. All
of the model files used in this textbook define a Mesh object that is the first child of the Scene
object. This object comes complete with both geometry and material. The onLoad callback
function can add that object to the scene and might look something like this:

function onlLoad(data) { // the parameter is the loaded model data
let object = data.scene.children[0];
// maybe modify the modeling transformation or material...
scene.add(object); // add the loaded object to our scene
render(); // call render to show the scene with the new object


http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/threejs/script/loaders
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The sample program threejs/model-viewer.html uses GLTFLoader to load several models.
It also uses loaders for models in two other formats, Collada and OBJ, that work much the
same way. The technique for loading the models is actually a little more general that what I've
described here. See the source code for the example program for details.

I'll also mention that GLTF models can include animations.  Three.js has several
classes that support animation, including THREE.AnimationMixer, THREE.AnimationAction,
and THREE.AnimationClip. 1 won’t discuss animation here, but these three classes are used
to animate the horse and stork models in the on-line demo ¢5/mesh-animation.html.

5.3 Other Features

WE WILL FINISH THIS CHAPTER with a look at a few additional features of three.js. In the
process, you will learn about some new aspects of 3D graphics.

5.3.1 Instanced Meshes

The class THREE.InstancedMesh makes it possible to quickly render several objects, possibly
a large number of objects, that use the same geometry but differ in the transformations that
are applied to them and, possibly, in their material color. Each copy of the object is called an
“instance,” and the process of creating all of the copies is called instanced drawing or instancing.
In WebGL 2.0 (and in WebGL 1.0 with an extension), it is possible to draw all of the instances
with a single function call, making it very efficient.

InstancedMesh is fairly easy to use. Along with the geometry and material for the mesh, the
constructor specifies the maximum number of instances that it can support:

instances = new THREE.InstancedMesh(geometry, material, count)
To set the transformation for instance number i, you can call

instances.setMatrixAt( i, matrix );

where matriz is an object of type THREE.Matrix4 representing the modeling transformation.
Similarly, you can set the color for instance number ¢ with

instances.setColorAt( i, color );

where color is of type THREE.Color. Instance colors are optional. If provided, they replace the
color property of material.

The Matrix4 class includes methods that make it easy to create a transformation matrix.
The constructor

matrix = new THREE.Matrix4();

creates an identity matrix, which can then be modified. @ For example, the method
matriz.make Translation(dz,dy,dz) replaces the current matrix with the transformation matrix
for a translation by the vector (dz,dy,dz). There are functions for making scaling and rotation
matrices. To make more complex transformations, there is a function for multiplying matrices.
The sample program threejs/instanced-mesh.html uses a single InstancedMesh to make 1331
spheres, arranged in an 11-by-11-by-11 cube. To move the spheres into position, different
translations are applied to each instance. An instance color is also set for each instance.

(Demo)
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5.3.2 User Input

Most real programs require some kind of user interaction. For a web application, of course, the
program can get user input using HTML widgets such as buttons and text input boxes. But
direct mouse interaction with a 3D world is more natural in many programs.

The most basic example is using the mouse to rotate the scene. In three.js, rotation can
be implemented using the class TrackballControls or the class OrbitControls. Note that both
classes support touchscreen as well as mouse interaction. The main difference between the
classes is that with OrbitControls, the rotation is constrained so that the positive y-axis is
always the up direction in the view. TrackballControls, on the other hand, allows completely
free rotation. Another difference is that TrackballControls is meant to be used only with
a scene that is continuously animated. OrbitControls is used for rotation in most of my
sample programs and demos. TrackballControls is used only in threejs/full-window.html and
threejs/curves-and-surfaces.html.

The two control classes are not part of the main three.js JavaScript file. They can
be imported from the modules “OrbitControls.js” and “TrackballControls.js”, which can be
found in the threejs/script/controls folder in the source folder for this textbook, or in the
examples/jsm/loaders folder in the three.js download.

The two classes are used in a similar way. [ will discuss OrbitControls first. In my examples,
I create a camera and move it away from the origin. I usually add a light object to the camera
object, so that the light will move along with the camera, providing some illumination to
anything that is visible to the camera. The OrbitControls object is used to rotate the camera
around the scene. The constructor for the control object has two parameters, the camera and
the canvas on which the scene is rendered. Here is typical setup:

camera = new THREE.PerspectiveCamera(45, canvas.width/canvas.height, 0.1, 100);
camera.position.set(0,15,35);
camera.lookAt ( new THREE.Vector3(0,0,0) ); // camera looks toward origin

let light = new THREE.PointLight (Oxffffff, 0.6);
camera.add(light); // viewpoint light moves with camera
scene.add(camera) ;

controls = new OrbitControls( camera, canvas );

The constructor installs listeners on the canvas so that the controls can respond to mouse
events. If an animation is running, the only other thing that you need to do is call

controls.update();


http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/threejs/full-window.html
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/threejs/curves-and-surfaces.html
http://math.hws.edu/eck/cs424/graphicsbook-1.4/source/threejs/script/controls
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before rendering the scene. The user will be able to rotate the scene by dragging on it with
the left mouse button. The controls will also do “panning” (dragging the scene in the plane
of the screen) with the right mouse button and “zooming” (moving the camera forward and
backward) with the middle mouse button or scroll wheel. To disable zooming and panning, you
can set

controls.enablePan = false;
controls.enableZoom = false;

And you can return the original view of the scene by calling controls.reset().

If your program is not running a continuous animation, you need a way to re-render the
scene in response to user actions. When the user drags the mouse, the controls object generates
a “change” event. You can add a listener for that event, to respond to the event by redrawing
the scene. To do that, just call

controls.addEventListener( "change", callback );

Where callback() is the function that should be called when the event occurs. If you have a
function render() that renders your scene, you can simply pass render as the value of callback.

Unfortunately, a TrackballControls object does not emit “change” events, and there does
not seem to be any way to use it without having an animation running. With an animation,
TrackballControls are used in the same way as OrbitControls, except that the properties for
panning and zooming are controls.noPan and controls.noZoom; they should be set to true to
disable panning and zooming. One nice feature of TrackballControls is that they implement
inertia: When the user releases the mouse after dragging, the motion of the scene will slow to
a stop instead of stopping abruptly.

x kX

A much more interesting form of mouse interaction is to let the user select objects in the
scene by clicking on them. The problem is to determine which object the user is clicking. The
general procedure is something like this: Follow a ray from the camera through the point on
the screen where the user clicked and find the first object in the scene that is intersected by
that ray. That’s the object that is visible at the point where the user clicked. Unfortunately,
the procedure involves a lot of calculations. Fortunately, three.js has a class that can do the
work for you: THREE.Raycaster.

A Raycaster can be used to find intersections of a ray with objects in a scene. (A ray is just
half of a line, stretching from some given starting point in a given direction towards infinity.)
You can make one raycaster object to use throughout your program:

raycaster = new THREE.Raycaster();

To tell it which ray to use, you can call

raycaster.set( startingPoint, direction );

where both of the parameters are of type THREE.Vector3. Their values are in terms of world
coordinates, the same coordinate system that you use for the scene as a whole. The direction
must be a normalized vector, with length equal to one. For example, suppose that you want
to fire a laser gun.... The startingPoint is the location of the gun, and the direction is the
direction that the gun is pointing. Configure the raycaster with those parameters, and you can
use it to find out what object is struck by the laser beam.

Alternatively, and more conveniently for processing user input, you can express the ray in
terms of the camera and a point on the screen:
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raycaster.setFromCamera( screenCoords, camera );

The screenCoords are given as a THREE. Vector2 expressed in clip coordinates. This means the
horizontal coordinate ranges from —1 on the left edge of the viewport to 1 on the right, and the
vertical coordinate ranges from —1 at the bottom to 1 on the top. (Clip coordinates are called
“normalized device coordinates” in three.js.) So, we need to convert from pixel coordinates on
a canvas to clip coordinates. Here’s one way to do it, given a mouse event, evt:

let r = canvas.getBoundingClientRect();
let x = evt.clientX - r.left; // convert mouse location to canvas pixel coords
let y = evt.clientY - r.top;

let a = 2#*x/canvas.width - 1; // convert canvas pixel coords to clip coords
let b = 1 - 2xy/canvas.height;

raycaster.setFromCamera( new THREE.Vector2(a,b), camera );

Once you have told the raycaster which ray to use, it is ready to find intersections of that
ray with objects in the scene. This can be done with the function

raycaster.intersectObjects( objectArray, recursive );

The first parameter is an array of Object3D. The raycaster will search for intersections of its
current ray with objects in the array. If the second parameter is true, it will also search
descendants of those objects in the scene graph; if it is false or is omitted, then only the objects
in the array will be searched. For example, to search for intersections with all objects in the
scene, use

raycaster.intersectObjects( scene.children, true );

The return value from intersectObjects is an array of JavaScript objects. KEach item in
the array represents an intersection of the ray with an Object3D. The function finds all such
intersections, not just the first. If no intersection is found, the array is empty. The array is
sorted by increasing distance from the starting point of the ray. If you just want the first
intersection, use the first element of the array.

Each element in the array is an object whose properties contain information about the
intersection. Suppose that item is one of the array elements. Then the most useful properties
are: item.object, which is the Object3D that was intersected by the ray; and item.point, which
is the point of intersection, given as a Vector3 in world coordinates. That information is enough
to implement some interesting user interaction.

The demo c5/raycaster-input.html uses some basic mouse interaction to let the user edit a
scene. The scene shows a number of tapered yellow cylinders standing on a green base. The user
can drag the cylinders, add and delete cylinders, and rotate the scene. A set of radio buttons
lets the user select which action should be performed by the mouse. Here’s a screenshot from
the program:

(Demo)


http://math.hws.edu/eck/cs424/graphicsbook-1.4/demos/c5/raycaster-input.html
http://math.hws.edu/eck/cs424/graphicsbook-1.4/demos/c5/raycaster-input.html
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Let’s look at how the actions are implemented. The only objects are the base and the
cylinders. In the program, the base is referred to as ground, and all the objects are children
of an Object3D named world. (I use the world object to make it easy to rotate the set of all
visible objects without moving the camera or lights.) For all drag, ad