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Introduction 

Compass-and-straightedge geometric constructions are familiar to most students from high-school 

geometry. Nowadays, they are viewed by most as a quaint curiosity of no more than academic 

interest. To the ancient Greeks and Egyptians, however, geometric constructions were useful tools, 

and for some, everyday tools, used for construction and surveying, among other activities. 

The classical rules of compass-and-straightedge allow a single compass to strike arcs and transfer 

distances, and a single unmarked straightedge to draw straight lines; the two may not be used in 

combination (for example, holding the compass against the straightedge to effectively mark the 

latter). However, there are many variations on the general theme of geometric constructions that 

include use of marked rules and tools other than compasses for the construction of geometric 

figures. 

One of the more interesting variations is the use of a folded sheet of paper for geometric 

construction. Like compass-and-straightedge constructions, folded-paper constructions are both 

academically interesting and practically useful—particularly within origami, the art of folding 

uncut sheets of paper into interesting and beautiful shapes. Modern origami design has shown that 

it is possible to fold shapes of unbelievable complexity, realism, and beauty from a single uncut 

square. Origami figures posses an aesthetic beauty that appeals to both the mathematician and the 

layman. Part of their appeal is the simplicity of the concept: from the simplest of beginnings 

springs an object of depth, subtlety, and complexity that often can be constructed by a precisely 

defined sequence of folding steps. However, many origami designs—even quite simple ones—

require that one create the initial folds at particular locations on the square: dividing it into thirds 

or twelfths, for example. While one could always measure and mark these points, there is an 

aesthetic appeal to creating these key points, known as reference points, purely by folding. 

Thus, within origami, there is a practical interest in devising folding sequences for particular 

proportions that overlaps with the mathematical field of geometric constructions. Within this 

article, I will present a variety of techniques for origami geometric constructions. The field is rich 

and varied, with surprising connections to other branches of mathematics. I will show origami 

constructions based on binary divisions, and then show how these can be extended to construction 

of proportions that are arbitrary rational fractions. Certain irrational proportions are also 

constructible with origami; I will present several particularly interesting examples. I’ll then turn 

to the topic of approximate folding sequences, which, though perhaps not as mathematically 

interesting, are of considerable practical utility. Along the way, I’ll present the axiomatic theory 

of origami constructions, which not only stipulates what classes of proportions are foldable, but 

also provides the basis for finding extremely efficient approximate folding sequences by computer 

solution—a technique that has found application in a number of published origami books of 

designs. 

Preliminaries and Definitions 

Origami, like geometric constructions, has many variations. In the most common version, one 

starts with an unmarked square sheet of paper. Only folding is allowed: no cutting. The goal of 

origami construction is to precisely locate one or more points on the paper, often around the edges 

of the sheet, but also possibly in the interior. These points, known as reference points, are then 

used to define the remaining folds that shape the final object. The process of folding the model 

creates new reference points along the way, which are generated as intersections of creases or 
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points where a crease hits a folded edge. In an ideal origami folding sequence—a step-by-step 

series of origami instructions—each fold action is precisely defined by aligning combinations of 

features of the paper, where those features might be points, edges, crease lines, or intersections of 

same. 

Two examples of creating such alignments are shown in Figures 1 and 2. Figure 1 illustrates 

folding a sheet of paper in half along its diagonal. The fold is defined by bringing one corner to 

the opposite corner and flattening the paper. When the paper is flattened, a crease is formed that 

(if the paper was truly square) connects the other two corners. 

 

Figure 1. The sequence for folding a square in half diagonally. 

As a shorthand notation,  the two steps of folding and unfolding are commonly indicated by a 

single double-headed arrow as in the third step of Figure 1. 

Figure 2 illustrates another way of folding the paper in half (“bookwise”). This fold can be defined 

in 3 distinct, but equivalent ways: 

(1) Fold the bottom left corner up to the top left corner. 

(2) Fold the bottom right corner up to the top right corner. 

(3) Fold the bottom edge up to be aligned with the top edge. 

For a square, these three methods are equivalent. However, if you start with slightly skew paper (a 

parallelogram rather than a square), you will get slightly different results from the three. 
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Figure 2. The sequence for folding a square in half bookwise. 

In both cases, if you unfold the paper back to the original square, you will find you have created a 

new crease on the paper. For the sequence of Figure 2, you will also have now defined two new 

points: the midpoints of the two sides. Each point is precisely defined by the intersection of the 

crease with a raw edge of the paper. 

These two sequences also illustrate the rules we will adopt for origami geometric constructions. 

The goal of origami geometric constructions is to define one or more points or lines within a square 

that have a geometric specification (e.g., lines that bisect or trisect angles) or that have a 

quantitative definition (e.g., a point 1/3 of the way along an edge). We assume the following rules: 

(1) All lines are defined by either the edge of the square or a crease on the paper. 

(2) All points are defined by the intersection of two lines. 

(3) All folds must be uniquely defined by aligning combinations of points and lines. 

(4) A crease is formed by making a single fold, flattening the result, and (optionally) unfolding. 

Rule (4), in particular, is fairly restrictive; it says that folds must be made one at a time. By contrast, 

all but the simplest origami figures include steps in which multiple folds occur simultaneously. 

Later in this article, I will discuss what happens when we relax this constraint. 

Binary Divisions 

One of the most common origami constructions that turns up in practical folding is the problem of 

dividing one or both sides of the square into N equal divisions, where N is some integer. Figure 2 

illustrated the simplest case—dividing the edge of a square into two parts—and its solution. Of 

course, this method is not restricted to a square; it works equally well on any line segment in a 

square. Thus, the two halves of the square may be individually divided into two parts, and so on. 

By repeatedly dividing the segments in half, it is possible to divide the edge of a square (or 

rectangle) into 4ths, 8ths, and so forth, as shown in Figure 3. 
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Figure 3. Division of a square into 4ths, 8ths, and 16ths. 

This method allows us to divide a square into proportions of 1/2, 1/4, 1/8,…and in general, 1/2n  

for integer n. Each division is 1/2n of the side of the square. By scaling all numbers to the size of 

the square, we can say we have constructed the fraction 1/2n , where the fraction is given in terms 

of the side of the square. 

It is also possible to construct a fraction of the form m /2n  for any positive integer m < 2
n . (In all 

the discussion that follows, we will consider only fractions between 0 and 1.) The most direct 

method is to subdivide the edge of the square completely into 2n ths, then count up m divisions 

from the bottom. This method clearly requires 2n −1 creases, and is not very efficient, because 

completely subdividing the square results in the creation of many unnecessary creases. There is an 

elegant method for constructing any fraction of this type that uses the minimal number of folds. A 

rational fraction whose denominator is a perfect power of two is called a binary fraction; the 

folding method is called the binary folding algorithm. 

Binary Folding Algorithm 

The binary folding algorithm was described by Brunton [1] and expanded upon by Lang [2]. It 

produces an efficient folding sequence to construct any proportion that is a binary fraction and is 

based on binary notation. In binary notation, there are only two digits, 1 and 0; all numbers are 

written as strings of ones and zeros. Any number can be written in binary notation as a string of 

ones and zeros. For example, the numbers 1 through 10 can be written in binary as shown in Table 

1. 
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Decimal Binary 

1 1 

2 10 

3 11 

4 100 

5 101 

6 110 

7 111 

8 1000 

9 1001 

10 1010 

Table 1. Binary equivalents for decimal numbers 1–10. 

Any binary fraction of the form m /2n  can be folded in exactly n creases, and the required folding 

sequence is encoded in the binary expression of the fraction. 

Binary notation for fractions is best understood in analogy with ordinary decimal notation. In 

decimal notation, each digit to the left of the decimal point is understood to multiply a power of 

10; for example, 

 . (1) 

The same thing happens in binary notation, except you use powers of 2 rather than powers of 10 

and there are only two possible digits: 1 and 0. Therefore, the binary number 1011 is 

 1011=1× 2
3

+ 0 × 2
2

+1× 2
1

+1× 2
0

= 8 + 0 + 2 +1= eleven. (2) 

By this means, any integer may be written in binary notation with a unique combination of ones 

and zeros. 

While it is less commonly done, it is also possible to write fractional quantities in a binary notation 

that is analogous to our decimal notation, in which fractional quantities appear as digits to the right 

of the decimal point (although perhaps it should be called a “binary point” rather than a “decimal 

point”). For example, just as the decimal 0.753 means 

 0.753 = 7×10
−1
+ 5×10

−2
+ 3×10

−3
=
753

1000
, (3) 

the binary fraction 0.111 may be interpreted as 

 0.111=1× 2
−1
+1× 2

−2
+1× 2

−3
=
7

8
. (4) 

Other examples: the fraction 1/2 is given by .1 in binary; the fraction 1/4 is .01 in binary, while 

3/4 is .11. The fraction 5/8 is .101, and 23/32, written in binary, is .10111. Any fraction whose 

denominator is a perfect power of two has a binary representation with a finite number of digits to 

the right of the decimal point. 
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You can construct the binary fraction for any number by following this algorithm: 

(1) Write down a decimal point. 

(2) Multiply the fraction by 2. 

(3) Subtract off the integer part (either 1 or 0) and write it down to the right of the last thing 

you wrote. 

(4) Repeat steps (2) and (3) as many times as necessary, each time adding digits to the 

right, until you get a remainder of 0. 

Equivalently, the fraction m /2n  is written as a decimal point plus the binary expansion of the 

integer m, padded with enough zeros to the immediate right of the decimal to get a total of n digits. 

What about fractions whose denominator is not a perfect power of 2 (which includes most 

numbers)? If you write a number such as 1/3 in binary using the algorithm described above, you 

will never get a remainder of zero. Instead, it forms an infinite string of digits; for example, 

1/3=0.010101… If the number is a rational number—the ratio of two integers—then the fraction 

will eventually start to repeat itself. 

The binary expression for a fraction gives a precise description of the folding sequence needed to 

make a mark at a given distance up the side of the paper. First, here’s the folding algorithm: 

To mark off a distance equal to a binary fraction by folding, write down its binary form.  

Then, beginning from the right side of the fraction (the least significant digit): for the first 

digit (which is always a 1 because you drop any trailing zeros) fold the top down to the 

bottom and unfold.  

For each remaining digit, if it is a 1, fold the top of the paper to the previous crease, pinch, 

and unfold; if it is a 0, fold the bottom of the paper to the previous crease, pinch, and unfold. 

By comparing this algorithm with the expansion formula for a binary fraction, you can see how 

the folding algorithm works. Let’s take the number 0.11001 (25/32) as an example. The 

conventional way of expanding this is to expand the number in powers of 2, as shown in equation 

(5). 

  (5) 

Another way of writing this binary expansion is to expand it as a nested series, as in equation (6). 

  (6) 

To evaluate this form, you start at the innermost number in the expression (the terminal “1”) and 

work your way back to the left, slowly working your way out of the nested parentheses. If we write 

the fraction this way, it becomes a series of nested operations where each operation is either: 

(a) Add 0 and multiply by 1/2, or 
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(b) Add 1 and multiply by 1/2. 

Now let’s look at the origami folding sequence in the recipe above. If we have a square with a 

crease mark located a distance r from the bottom and fold the bottom of the square up and unfold, 

the new crease is made a distance (1/2)r from the bottom. If instead, we fold the top of the square 

down to the mark and unfold, the new crease is made a distance (1/2)(1+r) from the bottom. Thus, 

folding the bottom up or top down is equivalent to performing operations (a) or (b), respectively. 

 

Figure 4. (Top) Folding the bottom edge up to a crease r gives a new crease (r/2) from the 

bottom. (Bottom) Folding the top edge down to a crease r gives a new crease ((1+r)/2) from the 

bottom. 

Since any binary fraction can be written as a nested sequence of the two operations (a) and (b) and 

the two folding steps shown in figure 1 implement these two operations, it follows that any 

proportion can be folded from its binary expansion.  

The difference in efficiency between folding all divisions and counting upward, versus the binary 

method, is substantial. For a fraction m /2n , the former method requires 2n −1 folds; the latter, 

only n. 

Binary Approximations 

Only fractions whose denominator is a perfect power of 2 possess a binary expansion with a finite 

number of digits. For most fractions, the binary expansion of the fraction is infinite. But if we 

truncate the binary expansion at some point, we get a binary fraction that provides a close 

approximation of the number. This works in any number base. For example, in decimal notation, 

1/3=0.3333… (also an infinite decimal). If we truncate at one digit (0.3), we get the fraction 3/10, 

which is only roughly equal to 1/3. If we take two digits (0.33), we get 33/100, which is very close 

to 1/3; and if we take 3 digits (0.333), we get 333/1000, which is very close indeed. 
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The same thing happens in binary notation. If we truncate the binary expansion of 1/3 at 2 digits, 

we get 0.01=1/4 — a rather crude approximation of 1/3. But 0.0101 is 5/16, which is closer to 1/3, 

and 0.010101 is 21/64, which differs from 1/3 by less than 1%. Thus, any number can be 

approximated by a binary fraction to arbitrary accuracy, which leads to an easy way to find an 

approximation of any proportion by folding: Construct the binary expansion of the fraction; 

truncate the expansion at a desired level of accuracy; then use the binary algorithm to construct a 

folding sequence. 

Fractions that are the ratio of two integers where the denominator is not a power of 2 have binary 

expansions that eventually repeat. This property allows an iterative folding sequence that 

successively approximates the desired proportion. The repeating part defines the folding sequence 

that is to be repeated 

For example, the binary expansion of 1/3 is .01, where the overbar indicates repetition (i.e., 

.01= .010101…). The repeating part, 01, defines the sequence (remember, we start at the right), 

“Fold the top down to the previous mark and unfold; fold the bottom up to the previous mark and 

unfold.” Repeating this procedure over and over will produce a series of pairs of crease marks that 

fairly rapidly converges on 1/3 and 2/3, as illustrated in Figure 5. 

 

Figure 5. Iterative folding sequence to find 1/3. 

A similar iterative technique exists for finding 1/5, whose binary expansion is .0011. Its iterative 

sequence, too, can be read off from its binary expansion: fold the top down twice, then the bottom 

up twice; repeat as needed. Since all non-binary rational fractions eventually repeat, there are 

iterative procedures for them all. 

One can also consider the converse; suppose we choose a procedure, like “fold the bottom up three 

times; then the top down twice, then repeat.” What fraction does this converge to? Such a 

procedure would have a binary expansion of .11000. There is a well-known procedure for 

converting a repeating expansion into a rational fraction. You write the repeating part in the 

numerator, and fill the denominator with the same number of digits d, where d is one less than the 

base of the number system. In our example, d=1, and thus 
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 .11000 =
11000

11111 binary

=
24

31 decimal

. (7) 

The iterative procedure for 1/3 shown in Figure 5 converges on two creases, at 1/3 and 2/3 of the 

way along the edge. That’s because the iterative procedure defined by 01 corresponds to two 

repeating fractions: .01 and .10, whose repeating parts are cyclic permutations of one another. By 

the same token, any repeating folding sequence will converge to the set of creases defined by all 

cyclic permutations of the repeating part. Thus, for example, 001 (down, up, up) will converge to 

creases at 

 
001

111
=
1

7
, 
010

111
=
2

7
, and 

100

111
=
4

7
. (8) 

Since any number, rational or not, can be approximated by a binary expansion, this technique gives 

a way of folding any proportion to arbitrary accuracy.  

The power of the binary approximation algorithm is that it attains fairly good accuracy with a 

relatively small number of folds. One can easily compute the number of folds necessary to attain 

a given level of accuracy. If you want to fold a fraction r to an accuracy , the number of creases 

required by a binary approximation is less than or equal to  

 log2
1

ε
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ −1

⎡ 

⎢ 
⎢ 

⎤ 

⎥ 
⎥ ,  (9) 

where …⎡ ⎤ is the ceiling function (round upward to the nearest integer).  

The number of creases needed to fold a given proportion is an important practical measure of a 

folding sequence, called the rank of the sequence. A low rank takes less time and in general, leaves 

fewer unnecessary creases on the paper. For a finite binary fraction m/p (reduced to lowest terms), 

the rank of the binary fold method, denoted by bin(m/p), is given by 

 rank bin m / p( )( ) = log2 p . (10) 

From a purely mathematical standpoint, constructions that are mathematically exact are most 

interesting, but from a practical standpoint, approximate constructions with low rank are more 

useful. To get one-part-in-a-thousand accuracy (more accurate than is usually required in real-

world origami), equation (9) shows that we would need no more than 9 creases to approximate the 

desired proportion. In practice, the number of creases can be less than the theoretical maximum. 

Some proportions will just happen to have binary expansions that are accurate with fewer than 9 

digits. 

Another nice property of the binary algorithm is that you can make most of the creases with small 

pinch marks along the edge of the paper; it doesn’t clutter up the main square with a lot of 

extraneous creases.  

There is another use for the binary algorithm; it is a key element in several exact distance-finding 

algorithms. While the binary algorithm is exact only for fractions whose denominator is a perfect 

power of two, there are several other algorithms that can fold any rational fraction exactly. These 

algorithms are described in subsequent sections. 

Rational Fractions 



Lang, Origami and Geometric Constructions 

 12 

In the style of folding known as box-pleating, typified by the works of Hulme and Elias, among 

others, the paper is initially creased into a grid of equal-sized squares. A model might begin by 

dividing the paper into twelfths, sixteenths, or less commonly, ninths, fifteenths, or even such 

oddities as 78ths [3]. The frequency of the need to divide a square into a set number of equal 

divisions leads to a mathematical construction problem: how to divide a square into b equal parts. 

More generally, we can ask the question, how can we construct by folding alone a segment of 

length a/b times the side of the square, where a and b are both integers and b is not a power of 2. 

The binary algorithm lets us find any fraction of the form m/p, where p is a power of 2. Is it possible 

to start with one or more binary fractions and construct proportions equal to non-binary fractions? 

There are several different ways of doing this. 

Crossing Diagonals 

The construction for one of the most versatile origami constructions for an arbitrary fraction a/b is 

shown in Figure 6. It uses two creases: one of them is the diagonal of the square; the other is a 

crease that connects two points on opposite sides. 

 

Figure 6. Construction for finding a rational number as the fraction of the side of a square. 

We start with a unit square in which we have creased the diagonal that runs from lower left to 

upper right. We then construct two marks at distances w and x, respectively, along each of the two 

sides, and connect them with a crease. The intersection of the two creases defines a new point, 

whose projection onto any edge defines a new distance y. Solving for y and its complement z=1–

y, gives 

 
. (11) 

The idea behind the crossing-diagonals construction (and many others) is that one picks the two 

initial proportions w and x to be relatively easy to construct, i.e., binary fractions, in order to 

construct the fraction y (or z), which is a non-binary fraction (which we will denote by a/b). Thus, 

we take w and x to be the binary fractions 

 
, (12) 

where m and n are integers smaller than p, and p is a power of 2. Then 

y =
w

1+ w − x
, z =

1− x

1+ w − x

w ≡
m

p
, x ≡

n

p
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, . (13) 

Setting y=a/b gives rise to the following sequence. 

Define p to be the next power of 2 equal to or larger than both a and b–a. 

Define m=a, n=(p+a–b). 

Construct the points w=m/p, x=n/p along the left and right edges using the binary method. 

Connect them with a crease. 

Construct the diagonal. 

The intersection of the two creases defines the fraction a/b as its height above the bottom 

of the square (or equivalently its distance from the left edge). 

Let’s look at a few examples. The most common odd division of a square is to divide it into thirds. 

If we take a/b=1/3, then p=2, m=1, n=0, which gives rise to the folding sequence shown in Figure 

7. 

 

Figure 7. An exact folding sequence for dividing a square into thirds. 

The sequence for dividing into thirds shown in Figure 7 is quite well-known in origami. It is just 

one example of a general origami construction, known as the crossing diagonals method [2], which 

can be applied to any non-binary rational. Table 2 tabulates the values of w and x, as well as the 

rank, for the reduced non-binary fractions with denominators up to 10. (Note that for a fraction 

y=a/b, the distance marked z in Figure 6 gives the fraction (b–a)/b, so we only need to consider 

fractions smaller than 1/2.) 
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y=a/b z=1–y w x rank 

1/3 2/3 1/2 0 3 

1/5 4/5 1/4 0 4 

1/6 5/6 1/8 3/8 8 

1/7 6/7 1/8 1/4 7 

2/7 5/7 1/4 3/8 7 

3/7 4/7 3/4 0 4 

1/9 8/9 1/8 0 5 

2/9 7/9 1/4 1/8 7 

4/9 5/9 1/2 3/8 6 

1/10 9/10 1/16 7/16 10 

3/10 7/10 3/8 1/8 8 

Table 2. Reduced non-binary fractions and the binary fractions that give rise to their 

construction. 

There are many possible variations on this basic idea for finding rational number proportions. They 

are all based on the idea of crossing two diagonal creases that have different slopes. (The same 

concept can also be applied to find many irrational numbers, notably bilinear combinations of 

integers and √2, as we will see later.) Here’s another version of crossing-diagonals. Instead of 

taking one crease always to be the diagonal of the square and the other connecting two points on 

opposite sides, one could instead cross two diagonals, both of which begin from the bottom corners 

of the square, as illustrated in Figure 8. 

 

Figure 8. An alternative crossing diagonals construction for finding proportions. 

For this construction, we find that the bottom edge is divided into the fractions 

 
, . (14) 

Again, choosing our proportions w and x to be binary fractions, 

 
, (15) 
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we find that 

 
, . (16) 

This gives rise to the folding sequence below for a fraction a/b. 

Define p to be the smallest power of 2 larger than both a and b-a. 

Define m=a, n=b–a. 

Construct the points w=m/p, x=n/p along the left and right edges using the binary method.  

Connect points w and x with the bottom opposite corners with creases. 

The intersection of the two creases defines the fraction a/b as its height above the bottom 

of the square (or equivalently its distance from the left edge). 

Table 3 gives the construction fractions and ranks for the same fractions as in Table 2. It turns out 

that for a given fraction, the two crossing diagonals methods have the same rank. 

y=a/b z=1–y w x rank 

1/3 2/3 1/2 1 3 

1/5 4/5 1/4 1 4 

1/6 5/6 1/8 5/8 8 

1/7 6/7 1/8 3/4 7 

2/7 5/7 1/4 5/8 7 

3/7 4/7 3/4 1 4 

1/9 8/9 1/8 1 5 

2/9 7/7 1/4 7/8 7 

4/9 5/9 1/2 5/8 6 

1/10 9/10 1/16 9/16 10 

3/10 7/10 3/8 7/8 8 

Table 3. Construction fractions and rank for the second crossing diagonals folding sequence. 

Fujimoto’s Construction  

An alternative technique for folding rational fractions was devised by the Japanese mathematician 

Shuzo Fujimoto [4] and was independently rediscovered by the Boston geometer Jeannine Mosely 

[5]. Fujimoto’s algorithm relies on an elegant construction for taking reciprocals of folded 

proportions, based on the construction shown in Figure 9. 
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Figure 9. Schematic of Fujimoto’s construction of a reciprocal. 

Beginning from a proportion x defined by a crease along one side of a square, this two-fold 

sequence produces the reciprocal of (1+x). So, for example, if you want to find the reciprocal of a 

number y, if you start with the proportion (y–1) marked off along the left side, Fujimoto’s 

construction will produce the number 1/(1+y–1)=1/y. 

To construct a fraction a/b, we define x to be a binary fraction 

 
. (17) 

Using the Fujimoto construction, the distance y is 

 
. (18) 

We take p to be the largest power of 2 smaller than the denominator b, and m=b–p. Then 

 
, (19) 

which gives the desired denominator b. Since p is a power of 2, we can use the binary algorithm 

to reduce this fraction by the factor (a/p), giving the final proportion: 

  (20)
 

The complete algorithm is summarized below. 

Define p as the largest power of 2 smaller than b. 

Define x=(b–p)/p.  

Construct x using the binary algorithm, extending the final horizontal crease as shown in 

Figure 9. 

Apply Fujimoto’s construction. This will give the fraction (p/b) along the right side of the 

paper, defined by the mark along the right. 

Reduce this distance by the fraction a/p, again, using the binary algorithm. 

I summarize the construction fractions and rank for the irreducible non-binary fractions in Table 

4. 

z =
a

p
y =

a

p
×
p

b
=
a

b
.
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y 1–y x a/p rank 

1/3 2/3 1/2 1/2 4 

1/5 4/5 1/4 1/4 6 

1/6 5/6 1/2 1/4 5 

1/7 6/7 3/4 1/4 6 

2/7 5/7 3/4 1/2 5 

3/7 4/7 3/4 3/4 6 

1/9 8/9 1/8 1/8 8 

2/9 7/9 1/8 1/4 7 

4/9 5/9 1/8 1/2 6 

1/10 9/10 1/4 1/8 7 

3/10 7/10 1/4 1/4 6 

Table 4. Construction fractions and rank for Fujimoto’s algorithm. 

Although both crossing-diagonals and Fujimoto’s algorithms provide exact folding techniques for 

any rational fraction, the folding sequence may be imprecise in practice, for example, requiring 

one to fold a long, skinny triangular flap (which is difficult to do neatly). The various construction 

methods are sometimes complementary; when one algorithm is lengthy, the other may be short, 

and when one is imprecise, the other is not. For comparison, a division into equal fifths is shown 

in Figures 10 and 11 for two methods. 

 

Figure 10. Crossing diagonals algorithm for division into fifths. 

 

Figure 11. Fujimoto’s algorithm for division into fifths. 
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One drawback of the crossing-diagonals and Fujimoto algorithms is that they leave extra creases 

running across the middle of the paper. Wouldn’t it be nice, though, if there were a construction 

that could produce any possible fraction and that was constructed only with pinch marks around 

the edge and put no creases in the interior of the paper? There is such a construction, and it is the 

subject of the next section.  

Noma’s Method 

If you start with the requirement that the only allowed creases are pinch marks around the edges, 

you quickly find that there are only a few possible types of fold that create new marks on the edges. 

The two simplest are: 

(1) You can bring one mark on an edge to another mark on the same edge. This is what we do 

when we use the binary division algorithm; and we know already that this will only provide 

fractions whose denominators are powers of 2. 

(2) You can bring one mark on an edge to a different mark on a different edge.  

There are others (which we will encounter later), but there is substantial unrealized potential in 

just these two operations. Consider the case where we bring together two marks on adjacent edges 

and make new marks where the resulting crease hits the edges, as shown in Figure 12. The 

relevance of this operation to origami constructions was discovered by Masamichi Noma [6], and 

so we will call it Noma’s construction. 

 

Figure 12. Schematic of Noma’s construction. 

By working out the various dimensions (some of which are shown in Figure 12), one can show 

that  

 w = x ==
b

2p
, (21) 

so that if one takes 

 w = x =1−
b

2p
, (21a) 

then the point y is a distance 

 y =
p

b
 (22) 
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above the bottom of the square. This leads to the following algorithm. 

Define p as the largest power of 2 smaller than b. 

Construct the fractions w=b/2p, x=b/2p along the left and top edge, respectively. 

Bring point w to point x, making a crease along the left edge at height y=p/b. 

Construct the fraction a/p relative to this segment. 

The result is the desired fraction a/b. 

The full algorithm is illustrated in the abbreviated folding sequence shown in Figure 132. 

 

Figure 13. The complete Noma algorithm for any rational fraction. 

The required fractions and ranks for the rationals with denominators up to 10 are given in Table 5. 

y 1–y b/2p a/p rank 

1/3 2/3 3/4 1/2 6 

1/5 4/5 5/8 1/4 9 

1/6 5/6 3/4 1/4 7 

1/7 6/7 7/8 1/4 9 

2/7 5/7 7/8 1/2 8 

3/7 4/7 7/8 3/4 9 

1/9 8/9 9/16 1/8 12 

2/9 7/7 9/16 1/4 11 

4/9 5/9 9/16 1/2 10 

1/10 9/10 5/8 1/8 10 

3/10 7/10 5/8 3/8 10 

Table 5. Fractions, construction fractions, and rank for Noma’s algorithm. 

                                                
2 The distances marked “b/2p” were improperly labeled in the original version of this article. 



Lang, Origami and Geometric Constructions 

 20 

There is a tradeoff here; we need to apply the binary algorithm three times (first to the two different 

edges, then again to divide down the Noma division), so that the rank of Noma’s method is 

generally higher than the rank of the other methods. 

Haga’s Construction 

Yet another construction was discovered by Kazuo Haga [7–9], which requires only a single 

diagonal crease and can also produce all rational fractions. The construction is generally known as 

“Haga’s theorem.” A variation of Haga’s theorem, discovered by Husimi, also provides a division 

into fifths, which should be compared with the two previous examples of division into fifths. It is 

shown in Figure 14. 

 

Figure 14. A division into fifths based on the Haga theorem. 

Like the other two algorithms, there are numerous variations of Haga’s construction for finding 

other proportions that are rational fractions. The general form of the Haga construction is shown 

in Figure 15. There are two variations; the desired reference point can be the crossing of the two 

raw edges, in which case the mark is formed by folding along one of the two edges, as in the 

middle image of Figure 15. In the second, one folds the upper corner to the intersection. 

 

Figure 15. Schematic of the general Haga construction. 

Haga’s construction differs from the others in that the paper is not unfolded between all folds. 

However, it permits some particularly efficient rational constructions. If we make the first fold at 

a distance x along the top edge, then the two constructed distances in Figure 15 are 

 
z =

2x

1+ x
, w =

x

1+ x
. (23) 
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This leads to the following construction for a fraction a/b. 

Define p to be the largest power of 2 smaller than b. 

Define m=p–b. 

Construct the point x=m/p along the top edge using the binary method. 

Fold the bottom left corner up to the top edge. 

Fold the top right corner down to the crossing of the two raw edges and unfold, defining 

the distance y=p/b. 

Reduce the segment y by the fraction a/p using the binary method. The result is the desired 

fraction a/b. 

These dimensions are illustrated in Figure 16. 

 

Figure 16. Relevant dimensions for the construction of the fraction a/b using Haga’s 

construction. 

With the Haga construction, the diagonal crease doesn’t need to be made sharp anywhere along its 

length; the edge of the fold only needs to be held down while folding down the upper right corner 

that defines the distance w. Table 6 gives the relevant fractions for constructions using the Haga 

construction and their rank. 
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y=a/b 1–y m/p a/p rank 

1/3 2/3 1/2 1/2 4 

1/5 4/5 1/4 1/4 6 

1/6 5/6 1/2 1/4 5 

1/7 6/7 3/4 1/4 6 

2/7 5/7 3/4 1/2 5 

3/7 4/7 3/4 3/4 6 

1/9 8/9 1/8 1/8 8 

2/9 7/7 1/8 1/4 7 

4/9 5/9 1/8 1/2 6 

1/10 9/10 1/4 1/8 7 

3/10 7/10 1/4 3/8 7 

Table 6. Irreducible fractions, their construction fractions, and rank for Noma’s method. 

These solutions are, in general, simpler than the Noma construction, and if the diagonal crease is 

not pressed flat, can also be made without marking the interior of the paper. 

Irrational Proportions 

Continued Fractions 

While many geometric constructions are possible with origami and many proportions can be folded 

exactly, there are other proportions for which an exact folding sequence is either impossible with 

origami (like 1/π) or even if it is possible, it may leave the paper covered with so many creases as 

to be wholly impractical for any real folding. To the practicing origami artist, the question is not 

“how can I fold this proportion exactly?” but “how can I fold this proportion to necessary accuracy 

in as few creases as possible?” Ideally, one would find a mathematically exact method for folding 

the distance, but mathematical exactitude isn’t always necessary. In real-world folding, distance 

errors of less than 0.5% of the side of the square are rarely discernible. Consequently, one doesn’t 

have to find an exact method for folding a proportion: it merely suffices to find a method of folding 

a close approximation of the proportion. 

Here is a simple example; suppose we wished to construct a 60° angle inside one corner of a 

square, creating a 30–60-90 right triangle on one side. One way of doing this would be to locate 

the point where the crease intersects the side of the square, as shown in Figure 17. Since the sides 

of such a triangle are in the proportions 1:√3:2, expressed as a fraction of the side of the square, 

the distance from the corner to the crease along the bottom is the quantity 1/√3=0.577…. One way 

of constructing the angle is to find the point along the bottom where the line hits it, that is, to find 

the distance 1/√3. This distance is neither a binary fraction nor a rational fraction, so we don’t 

currently know an exact solution. How can we find a rational fraction approximation to this number 

that is accurate to better than a specified tolerance? 
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Figure 17. One way of constructing a 60° angle is to mark off a distance 1/√3 along one side of 

the square. 

(Note: there happen to be several elegant and exact constructions for finding a 60° angle, but we’ll 

overlook them for the moment for purposes of illustration.) 

The most direct way to fold a proportion is the brute-force one; write the number as a decimal, for 

example, 1/√3=0.57735…. Truncate it at three digits and write the decimal as a fraction; 

 
. (24) 

Divide the paper into one-thousandths, and count off five hundred and seventy-seven divisions. 

While this is clearly brute-force and inelegant, the binary algorithm described in the first section 

works in approximately the same fashion. If we write this fraction in binary, we get 

 

1

3
= 0.1001001111…≈

591

1024
, (25) 

and we could apply the binary algorithm (ten consecutive pinch marks) to find the desired 

proportion. But ten pinch marks is a lot of folding. Wouldn’t it be nice if we could find a relatively 

small fraction that still provides a close approximation to the number in question? Often there is, 

but how to find it?  

The answer lies within a mathematical object called a “continued fraction,” which arises in number 

theory and analysis [10]. A continued fraction is a way of representing a number as a fraction 

within a fraction within a fraction…and so forth. The general form of a continued fraction is 

 

r = b
0
+

1

b
1
+

1

b
2
+

1

b
3
+…

, (26) 

where r is the number in question and b0, b1, and b2 are (usually) integers. Some continued 

fractions have a finite number of terms; in others, the nested fractions go on forever. Any number 

may be written as a continued fraction; in fact, there are infinitely many continued fractions that 

can represent the same number. However, if we require that the numbers {bn} be positive integers, 

then the continued fraction representation for a given number is unique — meaning that there’s 
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only one sequence of digits you can plug into the fraction to obtain the number. For example, the 

fraction 3/16 is given by the continued fraction 

 
3

16
= 0 +

1

5+
1

3

 (27) 

which is quite simple. On the other hand, the fraction 1/√3 is given by the infinite continued 

fraction 

 
1

3
= 0.577…= 0 +

1

1+
1

1+
1

2 +
1

1+
1

2 +
1

1+…

 (28) 

where the ellipsis indicates that the hierarchy of fractions keeps going — forever. If the number r 

is a rational number — that is, it can be expressed as the ratio between two integers, like 3/16 — 

there is a finite number of terms in the fraction. If the number is irrational (for example, 1/√3), the 

sequence never stops. If the number is the sum of a rational number and the square root of a rational 

number, it eventually repeats (notice the repeating pattern of 1s and 2s in the fraction above) but 

for most irrational numbers, the sequence marches on its merry way, ad infinitum. 

The utility of a continued fraction is this: even if the continued fraction goes on forever, if you 

chop off the bottom of the infinite fraction, you get a finite fraction that is a close approximation 

of the original number. The more terms you take, the better is your rational approximation. 

With a pocket calculator, it is very simple to determine the first few terms of the continued fraction 

sequence for any number. Let us take the mathematical constant π=3.1415926535… as an 

example. Here’s how you make a continued fraction: 

(1) Subtract the integer part and write it down (e.g., subtract 3, leaving 0.14159…). 

(2) Take the reciprocal of the remainder (e.g., 1/0.14159…=7.06251…). 

(3) Repeat steps (1) and (2) on the remainder until the remainder is zero or you get tired 

(or you exceed the resolution of your calculator). 

The sequence of integers that you wrote comprises the continued fraction sequence. For the 

number π, you will find that its sequence is π = {3;7,15,1, 293,10,3,...} , which means that 

 

π = 3+
1

7+
1

15+
1

1+
1

293+
1

10 +…

. (28) 
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If you chop off the bottom of the fraction, you get a rational fraction that is an approximation to 

the irrational number π. The accuracy of the approximation depends on where you chop the infinite 

fraction. The first four fractions for π are, for example, 

 3 = 3.00, (29) 

 
, (30) 

 

, (31) 

 

. (32) 

  (33)

 

As you can see from this example, the farther you continue the fraction before chopping it off, the 

more accurate the rational approximation. The fractions obtained by this procedure are known as 

convergents of the continued fraction. (Recreational mathematicians will recognize 355/113, a 

famous approximation to π, as the fourth convergent.) 

Although you can evaluate the convergents by repeatedly simplifying the complex hierarchical 

fractional expression, there is a little table that you can construct to quickly evaluate the 

convergents. Write the continued fraction sequence in the top row of a table as shown in Table 7. 

  3 7 15 1 293 … 

0 1       

1 0       

Table 7. Convergents for the continued fraction expansion of π. 

The first two entries in the next two rows are, respectively, 0, 1 and 1, 0. Then you successively 

fill in each cell of the next two rows according to this rule: 

The number in any cell is the sum of the number 2 cells to the left and the product of the 

number at the top of the column with the number to the immediate left. 

Using this rule, you fill in the cells from left to right. For example, the cell immediately under the 

3 gets filled in with 3´1+0=3. The cell below it gets 3´0+1=1. The cell immediately under the 7 

gets 7´3+1=22, and the cell under that gets 7´1+0=7. And so forth. For the continued fraction 

sequence for π, the table fills in as such: 
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  3 7 15 1 293 … 

0 1 3 22 333 355 104,348 … 

1 0 1 7 106 113 33,215 … 

Table 8. Convergents for the continued fraction expansion of π. 

As you can see by comparing this table to the fractions earlier, each convergent is simply the ratio 

of a number in the middle row and the number below it. 

So why go to all this trouble to get a rational approximation; why not just write the number as a 

truncated decimal? The reason to use continued fractions as rational approximations stems from a 

unique property of the convergents; each convergent has the smallest possible denominator for a 

given level of accuracy. Each convergent is the best approximation you can find until the next 

convergent, where “best” means the smallest possible error. So 22/7 is the best approximation to 

π with a denominator smaller than 106; 333/106 is the best approximation with a denominator 

smaller than 113; and 355/113 is the best approximation with a denominator smaller than 33,215, 

which is anomalously good (which is one reason why this particular fraction is so famous). 

Continued fraction convergents with small denominators can be very accurate indeed. Even a 

fraction as simple as 22/7 differs from π by only 0.001. 

Even for origami constructions that do not have exact folding sequences, it is possible to come 

arbitrarily close to the exact proportion using continued fractions. Whatever the number, you need 

simply to write it as a continued fraction, work out the first 4 or 5 convergents, and pick the smallest 

convergent that gives an acceptably small error. The problem is thereby simplified; instead of 

being prepared to find a folding sequence for any number whatsoever, we need only to find a 

folding sequence for any rational fraction — a ratio of two integers. These can be provided by the 

folding algorithms already described. 

Quadratic Surds 

The algorithms I’ve described thus far apply to rational numbers, ratios of two integers. Sometimes 

these are required directly, for example, when you must divide the square in ninths; sometimes, 

we use a rational fraction as an approximation of another proportion. These other proportions may 

involve square roots, cube roots, trigonometric functions, or may even be numerical values solved 

for by calculator or computer. All such proportions can be approximated by converting them to 

rational numbers and then using an exact folding sequence for the rational proportion. 

However, there is another family of irrational proportions that frequently arise within origami for 

which simple and exact folding solutions often exist: those are proportions of the form 

 
1

a + b 2
 (34) 

where a and b are integers, which are usually small [2]. Such proportions are called quadratic 

surds. (To be precise, they are a subset of the quadratic surds; general quadratic surds can have 

numerators other than 1 and other numbers inside the square root.) These proportions arise often 

enough within origami that they are worth special mention. Many origami crease patterns make 

use of symmetries associated with geometric figures whose angles are multiples of 22.5°, which 

is 1/16th of a unit circle. In such bases, most of the major lines in the crease pattern are proportional 

to each other by factors that are of the form . For example, a square with a handful of 
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these angle-bisector creases contains a family of lines forming an ascending series of proportions 

that are all of this type. 

 

Figure 1 

Figure 18. Bilinear surds that appear in a creased square. 

The crease patterns of origami bases that utilize the symmetries of 22.5° geometry are composed 

of two types of triangles : the 45–45–90 right triangle and the 22.5–67.5–90 right triangles, whose 

sides have the proportions shown in figure 19. 

 

Figure 19. Proportions of triangles whose angles are multiples of 22.5°. 

The origami design methodology known as tiling, described in [11–15], constructs crease patterns 

for complicated bases by fitting together simpler patterns that are composed of these triangles. 

These patterns commonly appear over and over at different scales. When all the creases run at 

multiples of 22.5°, the proportions of the squares, rectangles, and triangles that make up these 

patterns are all bilinear combinations of 1 and √2. Furthermore, the scaling factors that apply to 

these patterns are also such bilinear combinations. The upshot is that the dimensions in such a 

crease pattern are typically all related to each other by factors that are of the form . 

As an example, figure 20 shows one such crease pattern, used in an eagle that I designed some 

years back: 
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Figure 20. Crease pattern for the Eagle and relative proportions. 

In this figure, I’ve marked in some of the proportions relative to a segment marked x. All of the 

segments are proportional to x. The proportions of adjacent triangles can be found by referring to 

the proportions of the three triangles shown in figure 2.  

We can fill in the proportions of all segments until we get to the edge of the square; by summing 

the lengths of all segments along the edge, we find that the edge of the square is x(4+√2) units 

long. If one assumes a unit square, then 

 
x =

1

4 + 2
. (35) 

To construct the origami crease pattern by folding, it is necessary to find the distance x—or any 

related distance, e.g., x√2, 2x, or x(1+√2) — by folding. This could be done by several methods: a 

binary approximation or approximation as a rational by a continued fraction, followed by any of 

the rational methods (crossing diagonals, Fujimoto, Haga, or Noma). 

It turns out, however, that many proportions of the form , and this one in particular, can 

be folded exactly using a construction similar to the crossing-diagonals construction. Let’s look 

again at the geometry of two crossing diagonals, shown in Figure 21. 
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Figure 21. General form of the crossing-diagonals algorithm. 

If the two diagonal creases hit the two sides at heights y and z, respectively, and we define w as 

the height of the intersection above the bottom of the paper, then dropping a line from the 

intersection divides the bottom of the square into segments of length  and , respectively. The 

total length of the bottom edge is thus 

 w
1

y
+
1

z

⎛
⎝⎜

⎞
⎠⎟

. (36) 

Now, compare this form to the side length we computed based on the crease pattern in Figure 20, 

which was . If we equate the two, then we can seek to find an assignment of w, x, y, and 

z that permits a relatively simple construction: 

 

. (37) 

The simplest assignment is to take x=w. Then we are left with the equation 

 4 + 2( ) =
1

y
+
1

z

⎛
⎝⎜

⎞
⎠⎟

. (38) 

If we could divide up  into two pieces whose reciprocals are easy to find, then we’d have 

an exact solution for finding that particular division. 

And as it turns out, there are many ways of performing this division. Let me first give a particular 

solution and show why it works, then I’ll go back and explain other ways of doing it and give a 

general procedure. 

The particular solution is: 

 

, (39) 

so if we take , the crossing diagonals will divide the bottom of the paper as 

shown in Figure 21. 
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Finding y=1/2 is easy enough, but finding z=1–1/√2 is not immediately obvious. It turns out, 

though, that this proportion resides within the origami shape known as the Fish Base, as shown in 

Figure 22. 

 

Figure 22. Construction of 1–1/√2. 

So if we start with a half Fish Base on one side and pinch a mark halfway up on the other, then the 

two crossing diagonals divide the bottom in the desired proportion, as shown in Figure 23. 

 

Figure 23. Folding sequence to find the initial division. 

Essentially what we’re doing is finding a reciprocal of the bottom edge by finding a division of 

the bottom edge in which the separate parts have easy-to-find reciprocals. In general, when the 

side of the square is of the form , where x is the length of a significant crease in the 

pattern and a and b are rationals, one can usually find a crossing-diagonals sequence that gives the 

ratio x. Finding this sequence is tantamount to finding the reciprocal of . The trick to 

finding the crossing-diagonals sequence is to break up  into two terms for which we can 

easily find their reciprocals. 

The integer or rational part a is usually not a problem, since we can find the reciprocal of any 

integer using the rational fraction constructions given earlier. The difficulty comes in identifying 

an easily foldable fraction whose reciprocal contains a term b√2. 

Fortunately, there aren’t too many of these and we can easily enumerate the most common 

possibilities. All are found by kite-folding, folding angles of 22.5°. Figure 24 shows the distance 

y, its reciprocal, and the creases that specify the desired proportion. The dashed line traces the 

associated diagonal crease, which would be one of a pair. 
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Figure 24. Common quadratic surds in origami, their reciprocals, and how to fold lines with 

slope equal to the value of the quadratic surd. 

These tables give values of 1/y that contain factors ±√2; but what about larger multiples of √2? 

That’s easy; if you divide the fraction y by a factor b before forming the diagonal, the resulting 

reciprocal is increased by the same factor. 

So the algorithm for finding the reciprocal of  is to let one diagonal give you the portion 

containing √2, and let the other diagonal give you the integer or rational portion. As with the purely 

rational constructions of the earlier sections, there are many possible ways to find the same 

proportion. 

Angle Divisions 

Less common than divisions of a line are divisions of angles; dividing an angle into thirds, fifths, 

or sevenths. Like divisions of a line, divisions of angles into powers of 2 are relatively easy. One 

might think that since division of a line into an arbitrary proportion is straightforward, simple 

solutions would exist for division of an angle into arbitrary proportions as well. But divisions of 

angles into other fractions are considerably harder. 

In fact, it’s well-known that using compass and straightedge, while a line segment can be divided 

into any number of equal divisions, division of an arbitrary angle into something as simple as thirds 

is impossible. Compass-and-straightedge construction is an ancient branch of mathematics — 

historical texts on the subject date back over two millennia. Solutions to compass-and-straightedge 

constructions give us many of the tools used in origami constructions, so let us digress for a 

moment to consider the mathematical field. 

Many people encounter compass-and-straightedge problems in high school geometry. Compass-

and-straightedge construction is similar to origami in several ways. In both, you are trying to 

produce geometric shapes, and both have stringent rules. In origami, of course, you use folding 

with no cutting. In compass-and-straightedge, you may use a compass, which is a tool for drawing 
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circles, and an unmarked straightedge for drawing straight lines. It is a common part of the 

elementary education to learn various geometric constructions: drawing a line through a point 

parallel to a given line, bisecting an angle, or drawing geometric figures such as an equilateral 

triangle, isosceles right triangle, or square. The roots of the field stretch back into antiquity; 

solutions for many constructions were described in Euclid’s Elements, which was published 

sometime around the year 300 BCE. 

Although many compass-and-straightedge constructions were devised by the ancients, there were 

three famous mathematical problems of antiquity that date back to the glory days of Greek 

mathematics in Athens some four hundred years BCE. and that have a special significance to 

origamists. The earliest great conundrum for which we have records was the problem of “squaring 

the circle,” or constructing a square with the same area as a circle using compass and straightedge 

alone. The second was “doubling the cube,” also called the “Delian problem” because it was 

attributed to the Apollonian oracle at Delos; the object is to construct the side of a cube whose 

volume is precisely double that of a given cube, or equivalently, given a line segment, construct a 

second segment that is exactly  times as long. The third great problem, which is our interest 

here, was trisection of an arbitrary angle. Much of Greek mathematics (and in fact a substantial 

portion of modern mathematics) was devoted to the solution of these three problems. While an 

enormous body of mathematics grew out of this pursuit, it was all in vain, for ultimately all three 

compass-and-straightedge constructions were proven impossible some 2200 years later. While 

compass and straightedge allow one to draw both circles and lines, in origami, one can only fold 

straight lines. Thus it is rather surprising that angle trisection (and cube doubling, too, as it turns 

out) can be solved by origami techniques! 

The advantage that origami has over compass and straightedge lies in the character of the numbers 

constructible by both. All numbers constructible by compass and straightedge can be written in 

terms of solutions of a quadratic equation, an equation in which the exponent of the unknown is 

no larger than 2. Given a set of lines of set length, one can with compass and straightedge construct 

any linear combination, multiple, or square root of those lengths. Thus with compass and 

straightedge, one can solve any quadratic equation or higher order equation that is reducible to 

quadratic equations whose coefficients are given as constructible distances. 

However, the construction of the cube root of two and trisection of an arbitrary angle requires the 

solution of a cubic equation, in which the exponent of the unknown is 3, while squaring of the 

circle requires the construction of a segment of length π, which is a transcendental number that 

cannot be written as the root of a polynomial equation with less than an infinite number of terms. 

These three classical problems were proven impossible some 200 years ago. 

A “proof of the impossible” of a different sort was a 1995 article in The American Mathematical 

Monthly, titled “Totally Real Origami and Impossible Paper Folding,” in which the authors 

claimed to show that it was impossible to duplicate the cube using origami techniques [16, 17]. In 

fact, they claimed that origami was actually more restrictive than compass-and-straightedge 

constructions, and could not, for example, construct certain numbers of the form  that are 

constructible by compass and straightedge. 

However, solutions for duplication of the cube, trisection of an angle, as well as constructions of 

 and related numbers have been known for many years in origami. The advantage of 

origami over compass-and-straightedge construction is that origami permits one to simultaneously 
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align two separate points onto two different lines. The authors of the Monthly article considered a 

subset of the known origami operations that did not allow this type of simultaneous alignment. 

However, the simultaneous alignment of two points onto two lines permits the solution of cubic 

equations and therefore, solution of two of the classical problems of antiquity: duplication of the 

cube and trisection of a given angle. 

Therefore origami can solve cubic equations, and since angle trisection requires solution of a cubic 

equation, it would appear that origami could also trisect an arbitrary angle — the second classical 

problem. Indeed it can, and there are several such constructions. One solution for trisecting an 

acute angle in the corner of a square, devised by the Japanese folder and mathematician Hisashi 

Abe3 [18, 19], is illustrated in Figure 254. 

 

Figure 25. Hisashi Abe’s trisection of an arbitrary acute angle. 

The procedure for Abe’s trisection is the following: 

                                                
3 In the original version of this article I called him “Tsune.” I have no idea where that came from. His given name is 

Hisashi. My apologies to Dr. Abe. 

4 The strict rules of one-crease-at-a-time folding call for each fold to be unfolded before proceeding with the next. 

The sequence shown here does not adhere to this rule, but provides a slightly easier folding method for trisection. If 

one wishes to be rigorous, then after unfolding step 4, you can make crease BJ by extending from corner B through a 

crease intersection on line GH. 
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(1) Mark the angle to be trisected inside one corner of the square. In this example, angle 

PBC is to be trisected. 

(2) Fold any crease parallel to edge BC. 

(3) Fold edge BC up to crease EF and unfold. 

(4) Fold corner B up so that point E lies on line BP and corner B lies on line GH. 

(5) Crease along an existing crease through point G, creasing through all layers. 

(6) Unfold. 

(7) Extend the crease from point J back to point B. Also, bring edge BC to fold BJ and 

unfold. 

(8) The angle is trisected. 

A technique for trisecting obtuse angles devised by the French folder and mathematician Jacques 

Justin, is illustrated as well in figure 2 [20]. (Since any angle can be trisected by trisecting its 

complement, either technique can be used for any angle.) Justin’s technique does not require use 

of the corner of the square and is illustrated as if in the middle of an infinite sheet. The key 

observation to note is that both techniques require the simultaneous alignment of two points on a 

line. 

 

Figure 26. Jacques Justin’s trisection of an obtuse angle. 

Justin’s trisection is the following: 
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(1) The angle to be trisected is angle ZOX. 

(2) Extend lines ZO and XO. 

(3) Fold X to X¢ through point O. 

(4) Mark off points A¢ and A¢¢ on lines ZO and Z¢O at equal distances from point O. 

(5) Fold points A¢ and A¢¢ to lie on lines X¢O and Y¢O and unfold. 

(6) Fold a line perpendicular to the last crease through point O to trisect the angle. 

Angle trisection and bisection can be combined to divide the unit circle into many different 

divisions, or equivalently, to construct a regular polygon of N sides (a “regular N-gon”), where N 

is of the form  (n and m are arbitrary integers). Thus, using only folding, one can divide any 

angle into equal divisions numbering 2, 3, 4, 6, 8, 9, 12, and so forth. 

For the particular case where you are dividing a complete circle into N equal parts, there is another 

family of origami constructions discovered by the Austrian mathematician Robert Geretschläger 

[21–24], based on geometric constructions dating back to the 1890s [25]. He has shown a general 

approach for constructing a regular N-gon where N is a prime number of the form . The 

numbers of this form are 3, 5, 7, 13, 17… This construction can be combined with angle bisection 

and trisection as well to give other polygons of the form  whenever the term in 

parentheses is prime. Although a full description of Geretschläger’s approach is well beyond the 

scope of this article, the references at the end of this section illustrate several specific cases and 

the general approach. Using these constructions, the only nonconstructible regular N-gon for N≤20 

is N=11. 

Exact constructions of angular divisions are tours de force of mathematics, but they are usually 

impractically complex to be used for origami design, in that they cover the paper with incidental 

creases and can require inherently inaccurate creasing: long narrow triangles, distant 

extrapolations using creases, copying of angles and distances. 

However, as we have seen with divisions of an edge, for practical purposes, an approximation can 

often be as good or better than an exact solution. In fact, we can use edge division to construct 

approximations to angular divisions. 

An example from my own work will illustrate this process. In my book, The Complete Book of 

Origami, a Scorpion design required division of a 90-degree angle into sevenths in the early stages 

of the model [26]. This is not terribly difficult to find by trial-and-error (fan-fold the angle into 

sevenths and continuously adjust the creases until all divisions are equal), but we can also find an 

approximate solution that is deterministic and is accurate to within folding error. 
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Figure 27. First 2 steps of Lang’s Scorpion, which entails a division of an angle into sevenths. 

Now, we could approach this two ways: we could try to divide the angle itself into sevenths, or we 

could try to locate the points on the edge of the paper where one or more of the creases hits the 

edge of the paper. If we’re clever about this, we’ll only have to locate one of them; if, for example, 

we found the line for 4/7 of the angle, we could then bisect it twice to get 2/7 and 1/7, and 

subsequently all the other divisions, purely by folding. 

Now there is no simple algebraic expression for these points’ locations, but using some high-school 

trigonometry, we can calculate where the creases hit the edge; the decimal values of the numbers 

are shown on an unfolded square in figure 2. The distances, expressed as a fraction of the edge of 

the square, are given by the formula 

 
, (40) 

where i is the index of the angle shown in Figure 28. 

 

Figure 28. Intersections of seventh angular divisions with the edge of the paper. 

Any one of these could be approximated by the binary method or by a rational fraction derived 

from the convergents of the continued fraction. Noting that y
1
= 0.101≈1/10 leads to the folding 

sequence shown in Figure 29. 
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Figure 29. Folding sequence for dividing the central 90° angle into sevenths. 

It is also possible to use an iterative approximation to any angular division, based on the binary 

method, employing successive bisection of the angle (just as the binary method employed 

successive division). If we equate the rays on either side of an angle with the top and bottom edges 

of the square, then there is a natural correspondence between the folds that divide the edge of the 

square and the folds that divide an angle, as shown in Figure 30. 

 

Figure 30. Division of an angle by bisection corresponds to the two operations that make up the 

binary folding method. 

If we use the two operations shown in Figure 30, then we can apply these two operations according 

to the binary expansion of a fraction r to divide the angle in the ratio r:1–r. For non-binary fractions 

(like 1/3), the infinite but repeating binary expression for the fraction gives an iterative method of 

division. Thus, for example, dividing the angle into 7ths, which has the binary expansion 

 
1

7
= .001 , (41) 

can be accomplished by repeating the procedure (left, left, right), where “left” and “right” refer to 

the two sides of the angle to be divided into 7ths. 

Axiomatic Origami 

The folding methods I’ve shown thus far use the same basic operations in different combinations: 

fold a point to another point, fold a line to another line (angle bisection), put a crease through one 

or two points. Starting in the 1970s, several folders began to systematically enumerate the possible 
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combinations of folds and to study what types of distances were constructible by combining them 

in various ways. The first systematic study was by Humiaki Huzita [27–29], who described a set 

of six basic ways of defining a single fold by aligning various combinations of existing points, 

lines, and the fold line itself. These six operations have become known as “Huzita’s Axioms” 

(HA), although they may be best thought of as operations that act upon points and lines. Given a 

set of points and lines on a sheet of paper, Huzita’s operations allow one to create new lines; the 

intersections among old and new lines define additional points. The expanded set of points and 

lines may then be further expanded by repeated application of the operations to obtain further 

combinations of points and lines. 

The set of points constructible by repeated application of HA to some initial set of features—

typically, the corners and edges of the unit square—are of both academic and practical interest. 

From the academic side, it has been shown that HA can be used to construct distances that are 

solutions to cubic equations by sequential single folds. In particular, elegant constructions have 

been presented for two of the three great problems of classical antiquity that are not possible with 

compass and unmarked straightedge: angle trisection, as we have seen, and doubling of the cube 

[30], which we will shortly encounter.. On the practical side, HA can give both exact and 

approximate folding sequences of very low rank. 

A particularly clear and lucid account of HA is given at [31]. Although called “axioms” they are 

best thought of as fundamental operations that act on points and lines to produce a new line, which 

is the fold line. The six operations identified by Huzita are shown in Figure 31. 
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Figure 31. The six operations of Huzita’s Axioms. 
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As we will see, operations O1–O5 can be used to construct the solution of any quadratic equation 

with rational coefficients. Operation O6 is unique in that it allows the construction of solutions to 

the general cubic equation. 

In 2003, a 7th operation was identified by Hatori [32], which I will denote by (O7). It is shown in 

Figure 32. 

 

Figure 32. Hatori’s 7th axiom. 

Hatori noted that this operation was not equivalent to any of HA. Hatori’s O7 allows the solution 

of certain quadratic equations (equivalently, it can be constructed by compass and straightedge).  

5As it turns out, O7 was not entirely new; all 7 axioms had been identified in an article by Jacques 

Justin [37], which appeared in the same proceedings as Huzita’s original listing. Justin’s 

enumeration seems to have been overlooked by many (including this author) until recently 

(possibly because it was in French). 

If we denote the expanded set as the “Huzita-Justin Axioms6” (HJAs), it turns out that this set is 

complete; these are all of the operations that define a single fold by alignment of points with finite 

line segments. Over the next section, I will show that this set is complete7. 

Preliminaries 

The proof of completeness and enumeration relies in part on counting degrees of freedom in a 

system of operations. This enumeration is aided by creating an algebraic description of points, 

lines, and operations. 

Definition: a point P is an ordered pair (x, y) in ℜ2 with x ∈[−∞,∞] , y∈[−∞,∞] . 

We note that a point has 2 degrees of freedom (DOF), i.e., two parameters that can be varied 

independently, namely, the two coordinate values. 

Lines are a bit more complicated; a line can be defined in several ways. One possibility proceeds 

from O1, which corresponds to one of Euclid’s axioms: “through any two points there exists 

exactly one line.” This suggests that a line be defined by two different points somewhere upon it. 

Since each point is defined by two coordinates, that definition would require that four coordinate 

values be used to define any line. However, such a definition is not unique; one could define the 

same line by any two pairs of points. 

                                                
5 This entire paragraph is new as of 2010. 

6 Formerly “Huzita-Hatori Axioms” (HHAs). 

7 A somewhat more rigorous presentation of this completeness result may be found in [38]. 
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A second, more parsimonious definition is suggested by the high-school algebra equation of a line 

in Cartesian coordinates: y = mx + b , where m is the slope and b is the y-intercept, and the line is 

defined as all coordinate pairs (x, y) that satisfy this equation. This expression makes it clear that 

a line, too, has 2 DOF; the two coordinate values m and b are sufficient to uniquely describe nearly 

any line. 

A deficiency of using the Cartesian equation is that it does not uniquely specify lines parallel to 

the y-axis (which have infinite slope m and the intercept b is undefined). It is more useful to adopt 

a parameterization that does not require infinite values and that treats all lines in some sense 

“equally.” 

I find it useful to characterize a line by a 2-vector perpendicular to the line and a particular point 

on the line, according to the following. 

Definition: Define the directed unit vectorU(α ) , as 

 U(α ) ≡ cosα, sinα( ) for anyα ∈ 0,180°[ ) . (42) 

Definition: A line L(d,α ) is the set of all points P that satisfy the equation 

 P − dU(α )( ) ⋅U(α ) = 0 , (43) 

for any d ∈ −∞,∞[ ] , α ∈ 0,180°[ ) , and A ⋅B  denotes the scalar product of A and B. It is not hard 

to show that with this definition, any line is specified by a unique combination d,α( ) . It is also 

easy to show that equation (43) is equivalent to 

 P ⋅U(α )− d = 0 . (44) 

A convenient parameterization of the line L(d,α ) is given by the following. 

Definition: Given a vectorP = x, y( ) , the perpendicular vector P
⊥

is defined as 

 P
⊥
≡ y,−x( ) . (45) 

P
⊥

is P having undergone a 90° counterclockwise rotation. As a point of simplified notation, I 

will defineU
⊥
(α ) ≡ U(α )( )

⊥

. 

^Then it is easily shown that every point P on the line L(d,α ) can be expressed in the form 

 P = dU(α )+ tU
⊥
(α ) for some t ∈ −∞,∞[ ] . (46) 

The geometric interpretation of equation (46) is shown in Figure 33. The point dU(α )  is the point 

on the line closest to the origin; the offset tU⊥
(α )  shifts the point dU(α )  along the line by a 

distance t, which can be either positive or negative. 
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Figure 33. Geometric interpretation of the parameterization in equation (4). 

Every point of the form (4) satisfies equation (2) and vice-versa; thus, either equation may be used 

as the definition of a line. 

Folding 

A fold is defined by a line, called the fold line. The fold line divides the paper into two regions. 

On one side of the line is the stationary region; the other side is the moving region. The choice of 

which is stationary and which is moving is completely arbitrary and the names serve only to aid 

intuition. 

When a fold is formed, all features in the moving region have their coordinates reflected through 

the fold line, which will be denoted by L
F
(d

F
,α

F
) .  

Since a fold is defined by a line, and a line has two DOF (namely, the parameters d
F

 and α
F

), it 

takes two DOF to fully specify the fold line. 

For notational simplicity in what follows, I will defineU
F
≡U(α

F
) . 

If the fold line is given by L
F
(d

F
,α

F
) , then a point P within the moving region is, after the fold, 

located at a point ′P  given by 

 
′P = P − 2 P − dU

F( ) ⋅UF( )UF

= P + 2 d
F
− P ⋅U

F( )UF

. (47) 

We will denote the result of folding a point P by F(P). That is, 

 F(P) ≡ P + 2 d
F
− P ⋅U

F( )UF
. (48) 

It is relatively straightforward to verify two identities: 

 For any point P, F(F(P)) = P , (49) 

which simply states the obvious fact that folding a point back and forth along the same fold line 

leaves it unchanged. 

For any point P on the fold line L
F
(d

F
,α

F
) , 

 F(P) = P , (50) 

which states that a point on the fold line is unchanged by a fold. 
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We will also define the result of a fold acting on a line. For a line L, we denote by F(L) the set of 

all points F(P) such that (a) P satisfies equation (44), (b) P lies within the moving region of the 

paper. 

Alignments 

We now describe what it means to bring two features into alignment using a fold. A single 

alignment consists of bringing two features together. We have two types of features: points and 

lines. We must first define what we mean by alignment. 

Bringing a point to a point (P↔ P ) 

Two points P
1
≡ x

1
, y
1( )  and P

2
≡ x

2
, y

2( )  are said to be aligned when both their coordinate values 

are equal. We denote alignment by a double-headed arrow:P
1
↔ P

2
. That is, 

 P
1
↔ P

2
 if and only if x

1
= x

2
 and y

1
= y

2
.  (51) 

Since two equations must be satisfied, aligning two points consumes two DOF. 

Bringing a point onto a line (P↔ L ) 

A point P
1
≡ x

1
, y
1( )  is said to be aligned with a line L(d,α )  if and only if it lies on the line, that 

is, if P
1
 satisfies equation (44). We denote alignment between and point and a line by the same 

double-headed arrow:P
1
↔ L(d,α ) . That is, 

 P
1
↔ L(d,α )  if and only ifP

1
⋅U(α )− d = 0 . (52) 

Since only one equation must be satisfied, aligning a point to a line consumes only one DOF. 

We note that the alignment operator is defined to be commutative; that is, for dissimilar operands, 

 P
1
↔ L(d,α )  if and only if L(d,α )↔ P

1
. (53) 

Bringing one line to another line (L↔ L ) 

Two lines L
1
(d
1
,α

1
)  and L

2
(d

2
,α

2
)  are said to be aligned if and only if every point in L

1
 is aligned 

with L
2
 and vice-versa.  

For simplicity of notation, let us denoteU
1
≡U(α

1
) ,U

2
≡U(α

2
) . Then if we choose the 

parameterization of equation (46) to define line L
1
, that is, a point P

1
on line L

1
 is given by 

 P
1
= dU

1
+ tU

1

⊥ , (54) 

for some (d, t) , then alignment of the two lines implies that every such point P
1
 must satisfy 

equation (44), namely: 

 d
1
U
1
+ tU

1

⊥( ) ⋅U2
− d

2
= 0 . (55) 

A bit of rearranging gives 

 d
1
U
1
⋅U

2( )− d2( )+ t U1

⊥
⋅U

2( ) = 0 . (56) 

The left side of equation (56) is linear in t; for the equation to be satisfied for all t, both the linear 

term and the constant must individually be equal to zero. Thus: 
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 d
1
U
1
⋅U

2( )− d2 = 0 , (57) 

 U
1

⊥
⋅U

2
= 0 . (58) 

Consequently, for two separate lines to be brought into alignment, two equations must be satisfied 

and two DOF are consumed. 

A geometric interpretation of the two equations is that equation (58) enforces that the two lines are 

parallel, while equation (57) enforces that they intersect. 

In fact, it can easily be shown that if the two lines are known to have a point of intersection, then 

equation (58) is sufficient. 

Alignments by folding 

In the previous section, I defined the three basic types of alignments:P↔ P , P↔ L , L↔ L . I 

will now enumerate all possible alignments that may be created by a single fold. Such alignments 

may be made between preexisting features on the paper, or may include the feature created by the 

fold, namely, the fold line itself. 

We consider (and dismiss) alignments between two preexisting features that are both moving or 

both stationary. Any such alignments are not created by the fold and thus cannot be used to specify 

the location of the fold line. The remaining, interesting classes of alignments are those between 

two preexisting features where one is moving and one is stationary, and alignments between a 

preexisting feature and the fold line. 

Consider first alignments between two features that already exist on the paper, one of which is on 

the moving portion and the other must be on the stationary portion. This gives rise to 5 possible 

alignments, which are given in Table 9. 

Symbol Description # of Equations 

F(P
1
)↔ P

2
 Fold point P

1
 to another point P

2
 2 

F(P
1
)↔ L  Fold point P

1
to line L 1 

F(L)↔ P  Fold line L to point P 1 

F(L
1
)↔ L

2
 Fold line L

1
 to different line L

2
 2 

F(L)↔ L  Fold line L onto itself 1 

Table 9. The five distinct nontrivial alignments between points and lines. 

We must distinguish the last two cases, because while folding a line onto another line requires the 

solution of two conditions (equations (15) and (16)), when folding a line onto itself, the line and 

its image under folding intersect at the fold line; thus it is sufficient to require only equation (16). 

The second set of alignments consists of alignments between preexisting features and the fold line. 

There are two possibilities: aligning a point with the fold line, and aligning a line with the fold 

line. The latter case is trivial; making the fold along an existing line creates no new features. So 

the only nontrivial case is aligning a point with the folding line, given in Table 10. 
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Symbol Description # of Equations 

P↔ L
F

 Align point P with the fold line L
F

 1 

Table 10. The sole distinct nontrivial alignment between a point and a fold line. 

This completes the listing of all nontrivial alignments that can be created by a single fold. 

Multiple Alignments 

Now, we would like to use alignments to define the fold; that is, by specifying one or more 

alignments, we completely specify the location of the fold line (or equivalently, its two parameters 

d
F

 and α
F

). This requires that we have as many equations created by the alignments as we have 

unknowns: two. We observe that there are two alignments that each by itself imposes two 

equations. They are F(P
1
)↔ P

2
 (fold one point to another point), and F(L

1
)↔ L

2
 (fold one line 

to another line). These two alignments are individually sufficient to define a fold line; they 

correspond to Huzita’s axioms O2 and O3, respectively, and are given in Table 11. 

F(P
1
)↔ P

2
 O2 

F(L
1
)↔ L

2
 O3 

Table 11. The two operations that specify two DOF and the HA that they correspond to. 

The other four alignments only create a single equation; we must therefore take pairs of them to 

create two equations to fully specify the fold line. With four possible alignments, there are 10 

possible distinct pairs (since the order is unimportant), which are summarized in Table 12. 

 F(P
2
)↔ L

2
 F(L

2
)↔ P

2
 F(L

2
)↔ L

2
 P

2
↔ L

F
 

F(P
1
)↔ L

1
 O6    

F(L
1
)↔ P

1
 O6 O6   

F(L
1
)↔ L

1
 O7 O7 N/P  

P
1
↔ L

F
 O5 O5 O4 O1 

Table 12. Possible alignment pairs that specify a single fold and their corresponding HJA. 

One combination, (F(L
1
)↔ L

1
,F(L

2
)↔ L

2
) has no solutions if L

1
 and L

2
are nonparallel and 

infinite solutions if they are parallel. Each of the remaining pairs correspond to one of the Huzita-

Hatori axioms. Since these represent all possible alignments that create exactly two degrees of 

freedom, this shows that the HJA set is complete (and that Hatori’s 7th axiom is indeed necessary 

for completeness). 

Constructibility 

It is relatively straightforward to construct explicit expressions for the fold line parameters 

d
F
,α

F( )  for six of the seven HJA operations in terms of the parameters of the constituent points 

and lines. Each involves the solution of equations no more complicated than quadratic, and indeed, 

the six operations can be used to construct exact solutions for any quadratic equation with rational 

coefficients. 
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However, operation O6—fold two points to two lines—is more complicated. An analytic solution 

for the fold line requires that one solve a cubic equation, which means that by performing this 

maneuver, one can solve cubic equations exactly. 

Perhaps the most famous example of solving a cubic using this fold is Peter Messer’s solution for 

the doubling of the cube—or more specifically, constructing two segments whose lengths are in 

the proportion of 2
3 . This beautiful construction was presented in [30], and is reproduced in 

Figure 34. The square is divided into thirds by horizontal creases. Then the corners is folded so 

that points P1 and P2 lie on lines L1 (the left edge) and L2 (the upper horizontal crease). The point 

where P1 hits the edge divides it in the desired proportion.  

 

Figure 34. Peter Messer’s construction of 2
3 . 

In fact, Axiom O6 has connections to several interesting branches of mathematics, and so is worth 

a bit closer study. 

Axiom 6 and Cubic Curves 

Given any two points and two lines on a sheet of paper, Axiom 6 states that it is possible to fold 

both points onto both lines. This is an incomplete generalization; as it turns out, it is not always 

possible for some combinations of points and lines and for others it is possible in more than one 

way. We should consider all possible combinations of two points P
1
, P

2
 and two lines L

1
, L

2
. To 

simplify the examination, we will adjust our coordinate system so that one of the lines, L
1
, is the 

x-axis, so that 

 d
1
= 0, U

1
= 0,1( ) . (59) 

Similarly, we can assume with no loss of generality that point P
1
 is located at 

 P
1
= −1,0( ) . (60) 

We also assume that line L
1
 is stationary and point P

1
 is moving. 

We now assume a fold line L f , characterized by parameters d f  and a f  such that 

 U f = a f , 1− a f
2( ) . (61) 

We define ′P
1

 as the image of P
1
 under the foldL f , that is, 
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′P
1
= F P

1( )

= P
1
+ 2 d

F
− P

1
⋅U

F( )UF
.
 (62) 

If we require that fold line L f  places point ′P
1

 onto line L
1
, then equation (44) must be satisfied, 

i.e., 

 ′P
1
⋅U

1
− d

1
= 0 . (63) 

Substituting (59–62) into (63) and solving for d f  gives 

 d f =
2a f

2
−1

2 1− a f
2

, (64) 

leaving only a single free parameter ( a f ) to specify the fold line. 

For any fold line parameter a f , any point P
2
 has an image ′P

2
 that results from the action of folding 

about the fold line. For a given pointP
2
, as we vary a f over its range from –1 to 1, the point ′P

2
 

sweeps out a curve in space. Two such curves, for the points P
2
= 2,−1.5( )  andP

2
= 2,+1.5( ) , are 

illustrated in Figure 35. 

 

Figure 35. Locus of points swept out by P
2
 as the fold line parameter a f  varies from –1 to 1 for 

two pointsP
2
. 

The question of whether there is a solution that places ′P
2

  on a given line L
2
 is answered by 

whether, and how many times, line L
2
 intersects the curve swept out by ′P

2
. Thus, it is useful to 

derive an equation for this curve. 

If we define 

 P
2
≡ a,b( ) , (65) 

 ′P
2
≡ x, y( ) , (66) 

and solve for the coordinates of ′P
2

, we find that 

 x = a − 2aa f
2
+
a f 2a f

2
1+ b( )− 1+ 2b( )( )
1− a f

2

, (67) 

 y = 2aa f 1− a f
2
+ 2a f

2
−1( ) 1+ b( ) . (68) 
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Eliminating a f  from the two equations gives an equation for the shape of the curve swept out by

′P
2

: 

 
y
3
+ 1− b( )y2 + x

2
− b 2 + b( )− a2( )y +

b
3
+ b

2
+ a

2
b − a

2
+ 2ax − x

2
− bx

2( ) = 0
. (69) 

Equation (69) contains terms at most cubic in y, quadratic in x, with no term of degree higher than 

3; it is a cubic curve, a type of curve that figures in many branches of mathematics. 

Figure 35 illustrates several salient features of such a curve, which may be derived from equation 

(69). 

• As a f → ±1 , the curve approaches the asymptotes ±∞,1+ b( ) .  

• It usually contains a loop (colored light gray in Figure 35); the crossing of the loop occurs 

at pointP
2
= a,b( ) . 

• Any line L
2
 cuts the curve in at most 3 places; thus, there at most 3 possible alignments of 

P
2
 onto L

2
. If line L

2
 only cuts the curve in 1 place, then there is only one possible 

alignment; and if L
2
 misses the curve entirely, there are no possible alignments. 

If we impose a change of variable on this curve, 

 
x→ x + a

y→ y + b
, (70) 

the equation takes on the homogeneous form 

 y
3
+ (1+ 2b)y

2
+ y(2a + x)x = x

2 , (71) 

which for the special case b=–1/2,  is called an Ophiuride curve [33], and for a=0, b=–1/2, is called 

the Cissoid of Diocles [34]. 

I implicitly assumed in the analysis above that L
2
 was stationary and P

2
 was moving; to be 

consistent with this assumption, for each fold lineL
2
, we must ensure that P

1
 and P

2
 both lie on 

the same side of the fold line. It can be shown that this condition holds everywhere along the curve 

except within the loop; thus, only the black portion of the curve corresponds to a physically 

realizable alignment. 

We can also use this curve (and this alignment) to solve a general cubic equation. If we set equation 

(26) equal to a general cubic, 

 y
3
+ ry

2
+ sy + t , (72) 

and equate coefficients, we can find two solutions for a, b, and x, which turn out to be fairly 

complicated algebraic expressions but that involve only square roots. Taking the particular case 

 y
3
− 2 = 0 , (73) 

we find two possible solutions: 
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 P
2
= a,b( ) = ±1,1( ), x = ±2 . (74) 

Consequently, one solution for 2
3 is given by placing the point P

1
 on L

1
 and P

2
= 1,1( )  onto 

vertical line x = 2 , as illustrated in Figure 36, with the other solution given by its mirror image. 

The y-coordinate of ′P
2

 gives the desired proportion. 

 

Figure 36. Another folding sequence to construct 2
3 . 

By using operation O6, it is possible to solve cubic equations. What about higher-order equations? 

As noted already, Robert Geretschläger has shown how to construct regular N-gons when N is a 

prime number of the form , a “Pierpont prime” [25]. Such a construction is tantamount to 

solving the cyclotomic equation, 

 z
N
−1= 0 , (75) 

for its complex roots z. It is not know whether the Pierpont primes go on forever—there are 42 

such primes below 1,000,000—but clearly, solving equation (30)—which can be done with 

folding—provides examples of solving high-order polynomial equations. However, the solution 

relies on the fact that for Pierpont primes, equation (30) can be factored in a way that requires 

solution of only cubic and quadratic equations. The more general question is whether an 

irreducible higher-order equation is solvable by folding. 

If we require that all folds occur one at a time, then the seven HJA operations define all possible 

alignments, and since they collectively solve only quadratic and cubic equations, the answer is 

“no.” However, if we broaden the acceptable operations to include alignments that specify multiple 

folds, the answer appears to be that at least some irreducible higher-order polynomial equations 

are solvable by folding. 

Consider, for example, the following operation. We make fold L f 1  that moves point P
1
 onto line 

L
1
 and fold L f 2   that moves point P

2
 onto line L

2
; we additionally require that L f 1  moves a point 

P
3
 and L f 2  moves a point P

4
 so that their images ′P

3
 and ′P

4
 are aligned with each other, as shown 

in Figure 37. The solutions to such an operation will be defined by the points of intersection 

between two cubic curves of the form of equation (26), which are overlaid on the figure. There are 

five possible points of intersection, corresponding to 5 possible solutions for the two folds. The 

points of intersection are indicated by colored dots; from these working out the necessary folds is 
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relatively straightforward. Without the aid of the two cubic curves, finding the five possible 

solutions by empirical trial and error is quite challenging. 

It is possible to get at least 7 points of intersection between two such curves, indicating that the 

defining polynomial can be of at least order 7. While this argument does not address whether all 

such polynomials are irreducible, given the generality of the configuration, the prospect seems 

unlikely. The question is also quite open as to which general higher-order polynomials can be 

translated into a folding problem. 

 

Figure 37. A two-fold construction whose solution is given by the intersections of two cubic 

curves. 

Approximation by Computer 

As we have seen, it is possible to approximate any proportion along the edge of a square to arbitrary 

accuracy. Indeed, it is similarly possible to locate any point in the interior of a square; all one needs 

to do is locate the x- and y-coordinates of the point along two adjacent sides, then project inward 

perpendicular creases, as Figure 38 shows for the point (3/8,5/8). The intersection of the creases 

that define the two coordinates gives the desired reference point. 
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Figure 38. Construction of the point (3/8,5/8) in the interior of a square from reference points 

along the edges. 

The points along the edges may be approximated in several ways, as we have seen. The simplest 

is the binary method used in the figure. Recall that with the binary method, approximating an 

arbitrary location along a single edge to an accuracy of .005 required at most 9 folds. To locate a 

point within the interior to this accuracy would then require 18 folds. 

However, constructing the x and y coordinates independently is a rather inefficient method of 

locating a point. The binary algorithm for locating a point only makes use of one of the seven 

Huzita-Justin operations, specifically O2 (“given two points p
1
 and p

2
, we can fold p

1
 onto p

2
”), 

and then only considers points along a single edge of the square. Might we do better by using any 

of the other operations? And if so, how? 

Let us consider a broader question: Given a square, how many distinct points can we create using 

no more than r folds? If there are a large number of points constructible in relatively few steps, the 

odds are good that for any desired reference point, one of the constructible points is fairly close to 

the desired point. And this can be quantified; with N constructible points, so long as the points are 

distributed roughly uniformly, then for any desired reference point, there is a constructible point 

within a distance N −1/2  of the target, on average. So, for example, with 106 constructible points, 

for any given target point, one of the constructible points is, on average, only about .001 units 

away, anywhere in the square. 

The question then becomes: what are the constructible points of a given rank? This question can 

be addressed by recursively constructing all possible points. 

Consider first the case r=0, i.e., an unmarked square. In this case, there are four identifiable points: 

the four corners, and four lines: the four edges. It takes no folds to identify the corners of the 

square; we therefore assign the four corners a rank of zero. 

We can also assign a rank to a fold line as well as to a point; the rank of a line is the number of 

folds it takes to create the line. In an unfolded square, there are four identifiable lines, which are 

the four edges of the square. Since they take no folds to construct, these four lines get a rank of 

zero as well. Thus, a square has four distinct points and four distinct lines of rank r=0. 

Now consider r=1. The possible folds for each operation are illustrated in Figure 39 for O1, O2, 

O3, and O5. O4, O6 and O7 do not (yet) permit the creation of any new lines. 



Lang, Origami and Geometric Constructions 

 52 

 

Figure 39. The constructible lines on an unmarked square using the 7 HJA operations. The 

points and lines involved in the construction are highlighted. 

Figure 39 shows that among all HJA operations, there are four distinct new lines that can be 

created: the two angle bisectors and the two midlines of the square. Since each of these lines 

requires one fold to create, each has rank 1. 

The intersections between the four new lines with each other and with the original edges of the 

square defines five new points: the midpoints of the sides and the very center of the square. Each 

new point along the edge of the square is defined by the intersection of a rank-0 edge and a rank-

1 line; since they can be formed with a single fold, we therefore give them a rank of 1. The center 

point may be defined as the intersection of several pairs of lines, but in all combinations, both lines 

are rank-1; therefore, the center point is rank 2. There are now a total of 9 distinct points and 12 

distinct lines. 8 of each have rank r≤1. 

Now, let us consider making one more fold. With 9 distinct points, there are 9 ×8 = 72  possible 

pairs of points. Operations O1 and O2 each act on a pair of points and create a new point; thus, for 

this next stage of construction, we would expect to go from 9 points to 153 possible points. 

Similarly, O3 acts on pairs of lines, O4 on point-line combinations, and so forth. Each operation 

creates geometrically more lines (pairs of whose intersections define geometrically more points). 

Even though duplications are inevitable, the number of distinct possible lines and points increases 

exponentially with the number of allowed folds. 

As we make more folds, the rank of the newly created folds and points can be expressed in terms 

of the ranks of the points and lines that are brought into alignment to create them. A new point is 

always defined as the intersection of exactly two lines, and its rank is given by 

 rp = rl
1

+ rl
2

. (76) 
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On the other hand, a fold line can be created in several ways by various combinations of points 

and lines, and its rank is always increased by 1 (to account for the fold line itself): 

 rl f =1+ rpi
pi

∑ + rl j
l j

∑ . (77) 

The number of constructible points of a given rank depends on the operations we allow for their 

construction. The simplest case, and one that is analytically treatable, is the double-binary method, 

in which we restrict ourselves to bringing pairs of points along a single edge together to make 

folds. It is fairly easy to show that the number of constructible point along a single edge is given 

by 

 N(r) =1+ 2
r . (78) 

With somewhat more effort it can be shown that the number of constructible points of rank r 

located anywhere within a square using the double-binary construction is given by 

 N(r) =1+ 3+
r

2

⎛
⎝⎜

⎞
⎠⎟
2
r
, (79) 

which defines the sequence N={4, 8, 17, 37, 81…} for r={0, 1, 2…}. 

If we open up the acceptable operations to include all 7 HJA operations, the combinatorics explode. 

Simply counting up the number of ways of combining points and lines among all possible 

operations gives the sequence N={4, 258, 154,800, 132,826,269…}, which grows by about a factor 

of 1000 with each iteration. However, only a fraction of the possible combinations are physically 

realizable, and those include many duplicates — identical points that can be constructed with 

different folding sequences. The number of distinct constructible points is far smaller than the 

combinatorial limit.  

Another fly in the ointment is that knowing that a simply-constructible point is somewhere near a 

target point is not the same as knowing what the constructible point actually is. It would be nice 

if, given an arbitrary point (x,y), we could find a formula for the nearest constructible point of a 

given rank and the folding sequence for its construction. 

Such a formula existed for the binary approximation of a single proportion; given a number x, the 

nearest constructible fraction of rank N was the N-digit binary approximation for x, and the folding 

sequence was encoded in the binary representation of x. 

For the general case, we allow all of the HJA operations, and allow any combination of lines and 

points that creates a line within the square. Unfortunately, for the general case, there is no known 

method for efficiently finding the nearest constructible point of a given rank, and I strongly suspect 

that no such method exists. 

Fortunately, even inefficient methods can be suitable. Since 106 points should suffice to provide 

an accuracy of around .001, it would suffice to simply construct the 106 or so lowest-rank marks 

and lines; then given a desired target point, one simply searches through them all to find the closest 

point. Obviously, this is not something that one does by hand; but it is quite possible for a 

computer. 

I wrote a C++ program called ReferenceFinder that does just this. It takes as input the coordinates 

of a target reference and prints out the best folding sequences for locating that point. In its 
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initialization, ReferenceFinder constructs a database of about 300,000 distinct lines and marks of 

rank 6 or below, by recursively building up higher-rank marks from the lower ranks, weeding out 

duplicates, near-duplicates, and combinations that are not physically realizable as it goes. This 

fairly restrictive filtering results in a much more modest, but still impressive rate of growth in 

numbers of marks, which runs N={4, 8, 65, 1033, 7009, 32,469, 277,546}. 

Using the 277,546 marks with rank of 6 or less, I picked 1000 random target points, found the 

closest constructible points, and computed statistics on the distribution of errors. The results are 

shown in Table 13. 

Percentile Error 

10th 0.0004 

20th 0.0006 

50th 0.0013 

80th 0.0024 

90th 0.0032 

95th 0.0042 

99th 0.0081 

Table 13. Percentile and error for sequences taken from 277,546 6-fold constructions of distinct 

points. 

In general, an error of 0.005 — 1.2 mm out of a 25 cm square — is barely noticeable. For 97% of 

target points, there is a 6-fold sequence that achieves that level of error. Compare that with the 

binary method, which requires 18 folds to achieve the same accuracy. 

The difference arises from the fact that at each stage of the construction, the number of possible 

distinct creases and marks is based on many possible combinations of lower-rank objects, which 

leads to exponential growth; the exponential scaling constant is roughly related to the number of 

different ways that points and lines can be combined to yield new ones.  

Computer solution for efficient folding sequences is of more than academic interest. As origami 

designers turn to mathematical methods of designing origami, it becomes necessary to develop 

efficient folding sequences for reference points that are defined solely as the solution of high-order 

algebraic equations. Programs like ReferenceFinder can construct those folding sequences, which 

can be surprising in their efficiency. Several recent origami books [3, 35, 36] have incorporated 

such computer-generated folding sequences as part of the instruction of individual figures, and I 

anticipate that such usage will become more common in the future. 
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