Origami Mathematics in Education

Michael Assis

Melbourne University
School of Mathematics and Statistics

Tools and Mathematics 29 November 2016

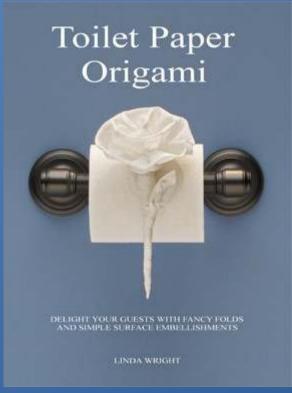
The Art of Folding

The Art of Folding

http://img.gawkerassets.com/img/17jp3vs9qkjb6jpg/original.jpg http://res.artnet.com/news-upload/2014/05/origami-6.jpg http://www.joostlangeveldorigami.nl/fotos/historyoforigami/bug.jpg http://i.ytimg.com/vi/5nZtibCqFxw/hqdefault.jpg

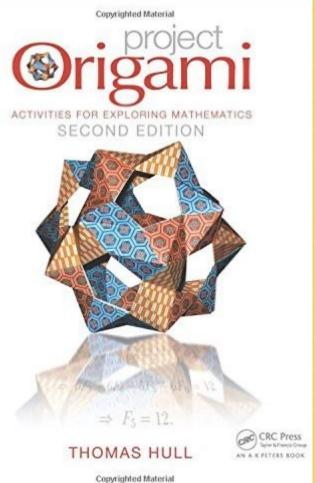
The Art of Folding

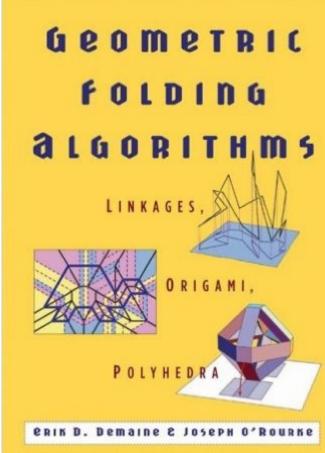
The Art of Folding

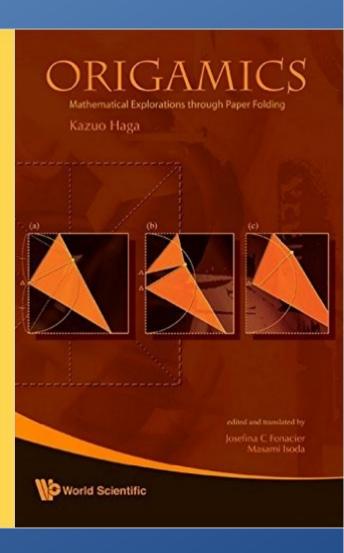


https://c2.staticflickr.com/4/3530/5835802683_a7ca138ff9.jpg
http://www.tporigami.com/wp-content/uploads/2010/09/ToiletPaperOrigami_Cover.jpg
https://nrgtucker.files.wordpress.com/2012/12/20121223-183459.jpg
http://strictlypaper.com/blog/wp-content/uploads/2013/03/nintai-origami-inspired-dresses-strictlypaper-1.jpg

Origami in the Classroom







Origami Resources

@AMS

1D Origami

Folding In Half

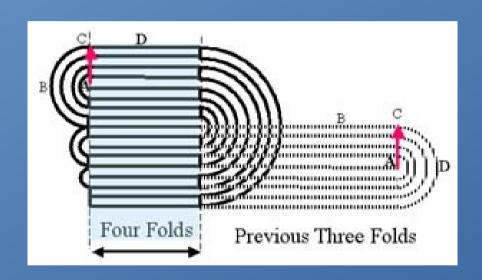
- How many times can you fold paper in half?
 - 8 times?

Folding In Half

- How many times can you fold paper in half?
 - 8 times?
- Is there an upper limit?

Folding In Half

Britney Gallivan 2001



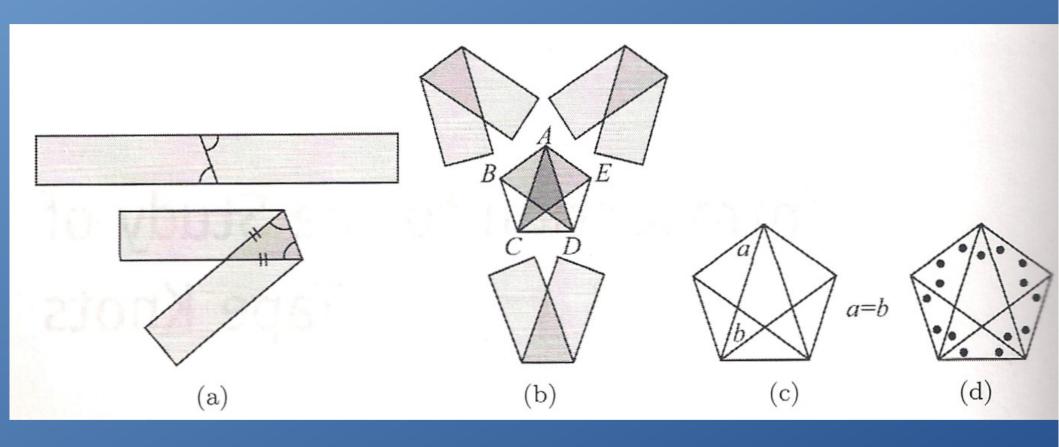
$$\mathbf{L} = \frac{\boldsymbol{\pi} \cdot \mathbf{t}}{6} \cdot \left(2^{\mathbf{n}} + 4\right) \left(2^{\mathbf{n}} - 1\right)$$

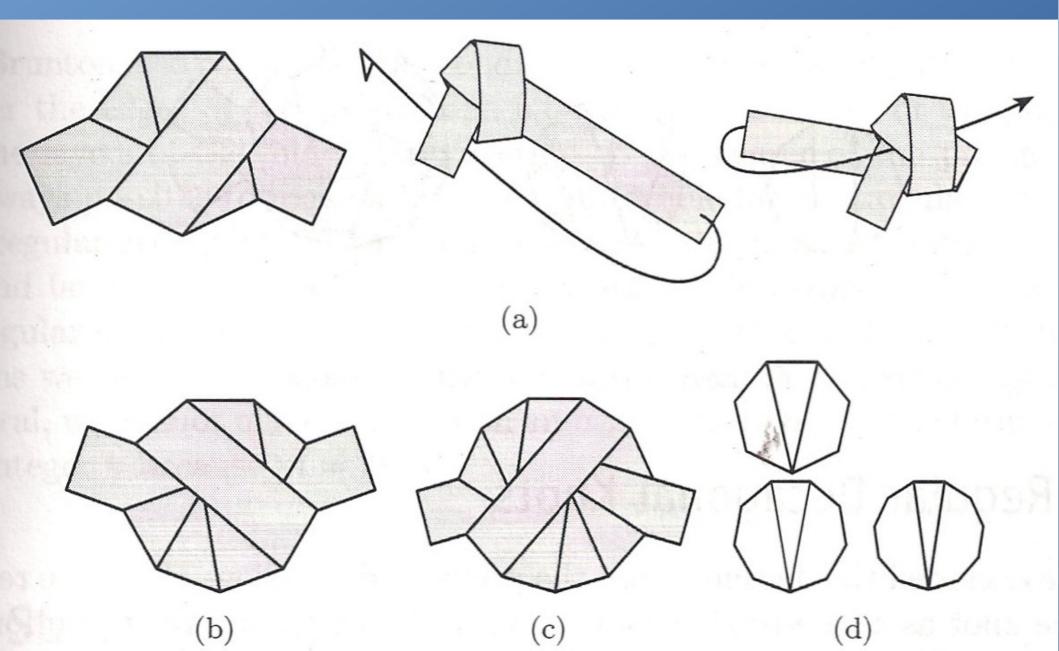
$$W = \pi t 2^{3(n-1)/2}$$

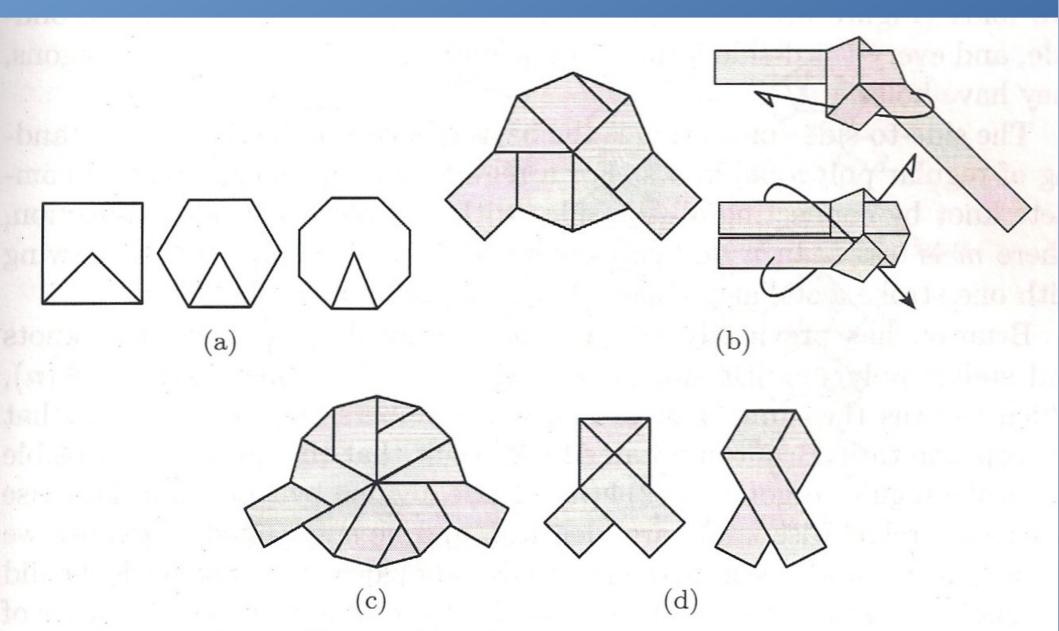
Activity 1

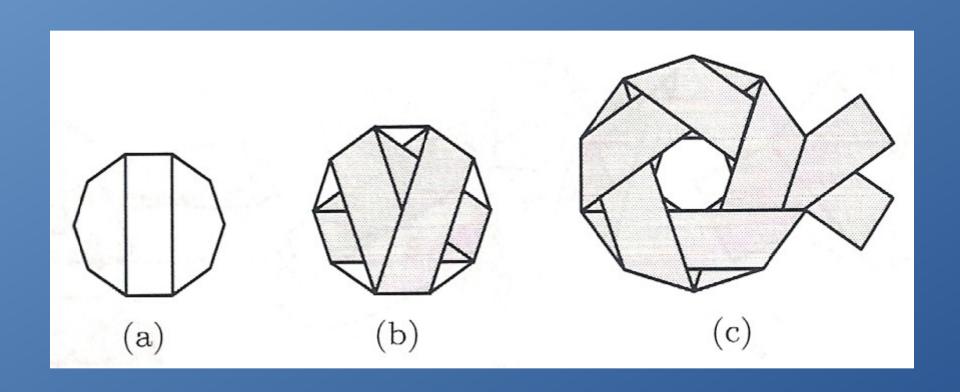
Parabolas

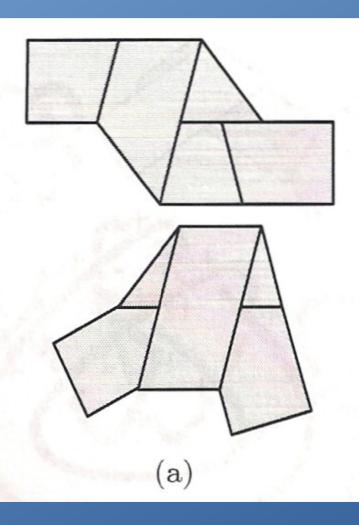
- Why does it work?
- Can other conics be constructed?
- What if you use non-flat paper?
- What can we learn concerning:
 - Parabolas?
 - Envelopes?
 - Derivatives?
 - Tangents?
 - Convergence of sequences?

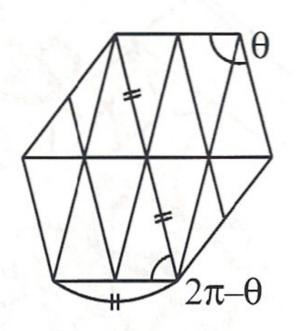




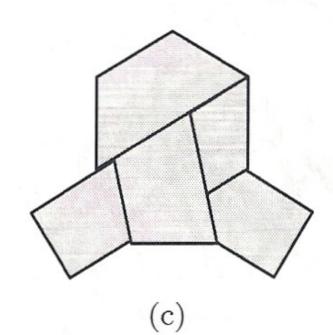


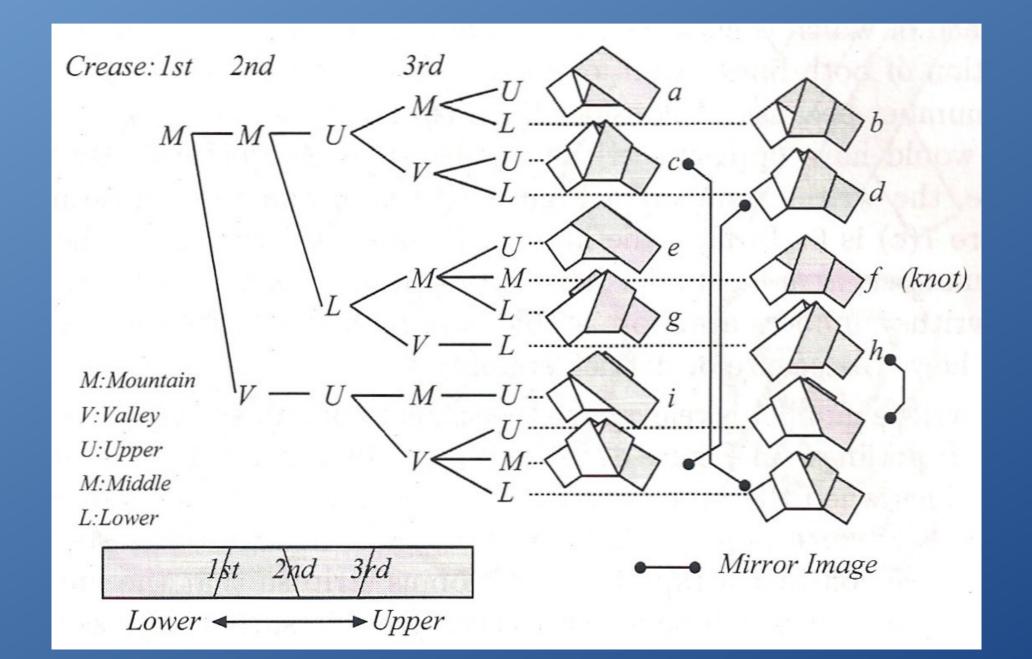


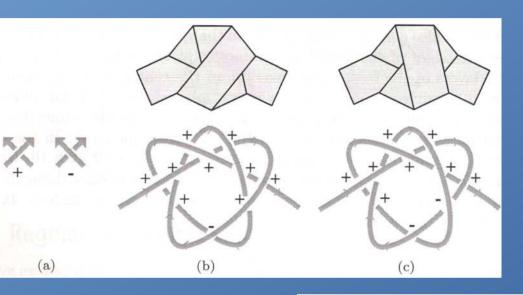


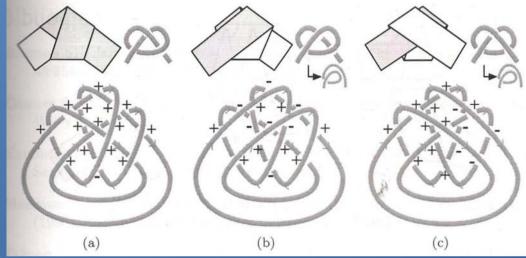


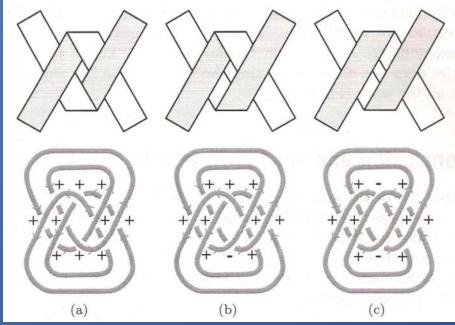
$$2\cos(2\pi - \theta) = 1/2$$
 (b)











- Explorations:
 - Perimeter, area
 - Irregular patterns
 - Enumerations
 - Knot theory, topology

Activity 2

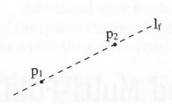
Fujimoto approximation

Fujimoto Approximation

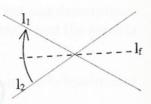
- Error is halved at each operation
- Repeating left-right pattern represented as the binary expansion of 1/n
 - 1/5: .00110011...
 - 1/7: .011011011...

Between 1D and 2D

What geometric constructions are possible?



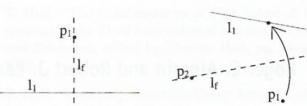
 p_1 l_f

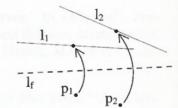


(O1) Given two points p_1 and p_2 , we can fold a line connecting them.

(O2) Given two points p_1 and p_2 , we can fold p_1 onto p_2 .

(O3) Given two lines l_1 and l_2 , we can fold line l_1 onto l_2 .

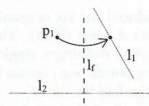




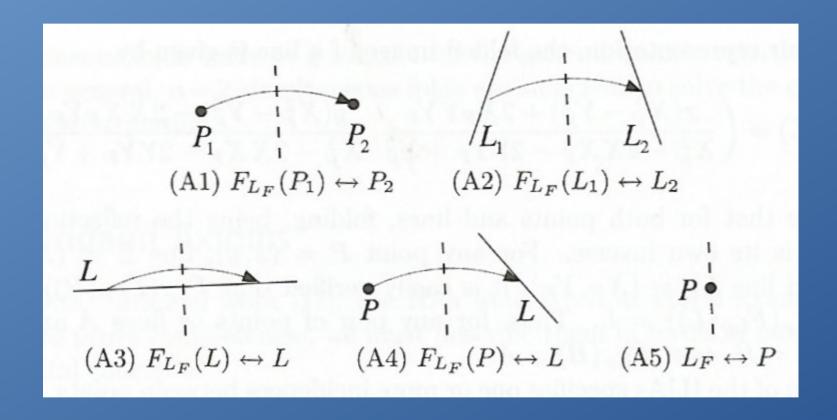
(O4) Given a point p_1 and a line l_1 , we can make a fold perpendicular to l_1 passing through the point p_1 .

(O5) Given two points p_1 and p_2 and a line l_1 , we can make a fold that places p_1 onto l_1 and passes through the point p_2 .

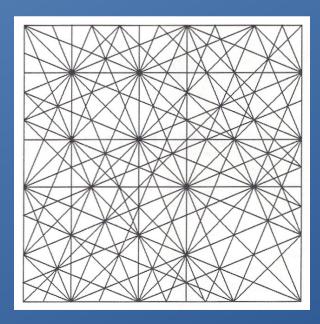
(O6) Given two points p_1 and p_2 and two lines l_1 and l_2 , we can make a fold that places p_1 onto line l_1 and places p_2 onto line l_2 .



(O7) Given a point p_1 and two lines l_1 and l_2 , we can make a fold perpendicular to l_2 that places p_1 onto line l_1 .



- 22.5 degree angle restriction
 - All coordinates of the form $\frac{m+n\sqrt{2}}{2^l}$ are constructible
 - Algorithm linear in I, log(m), log(n)



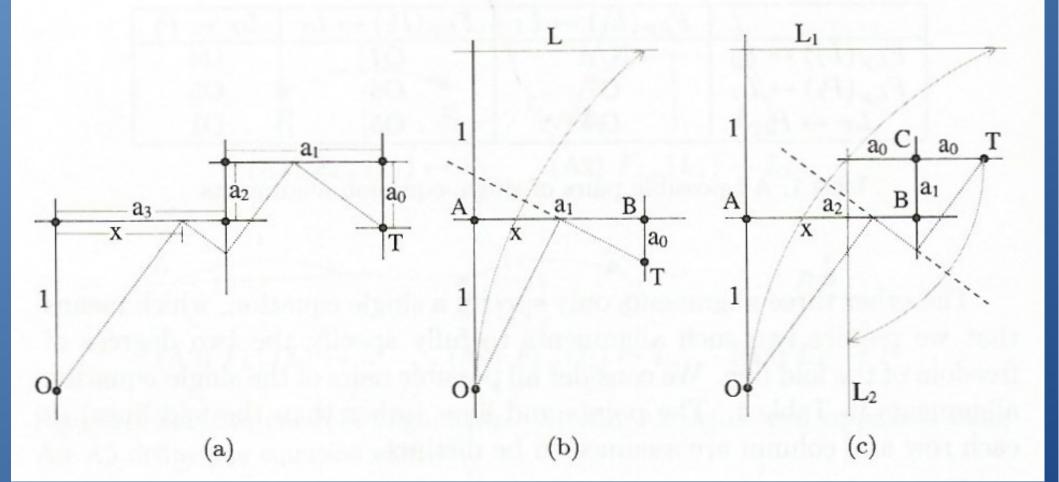
- More generally:
 - Constructible numbers of the form 2^m3ⁿ
 - Angle trisection, cube doubling possible
 - Roots of the general cubic

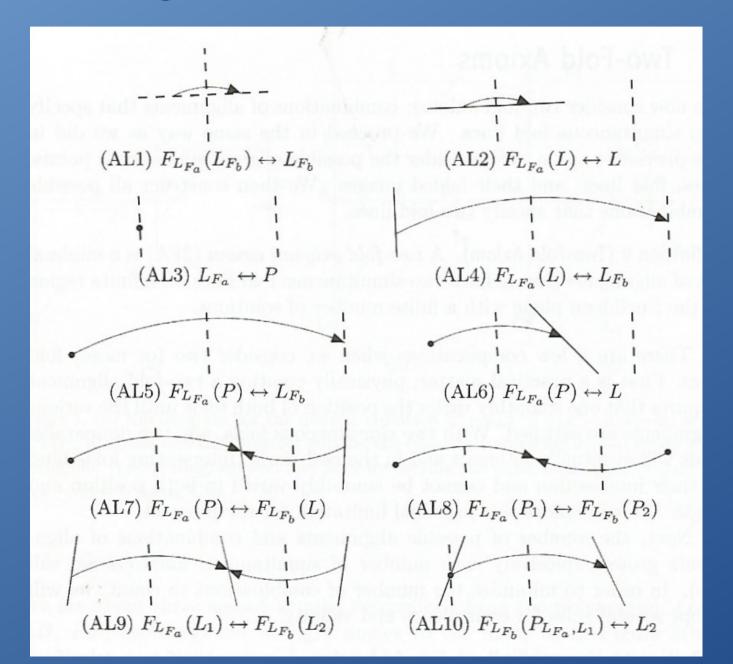
Polynomial root finding, Lill's method

$$x^4 - a_3 x^3 + a_2 x^2 - a_1 x - a_0 = 0$$
 $x^2 - a_1 x - a_0 = 0$ $x^3 - a_2 x^2 + a_1 x - a_0 = 0$

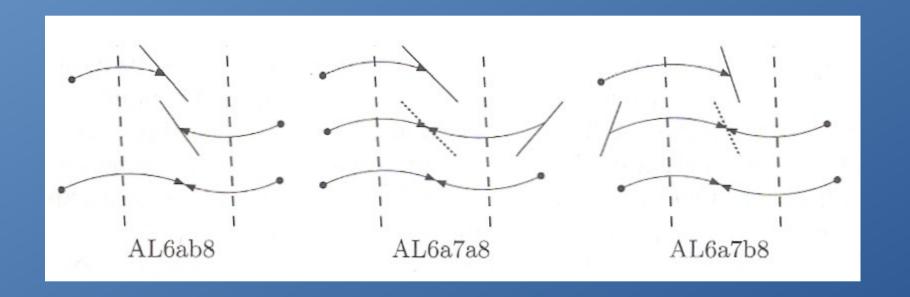
$$x^2 - a_1 x - a_0 = 0$$

$$x^3 - a_2 x^2 + a_1 x - a_0 = 0$$

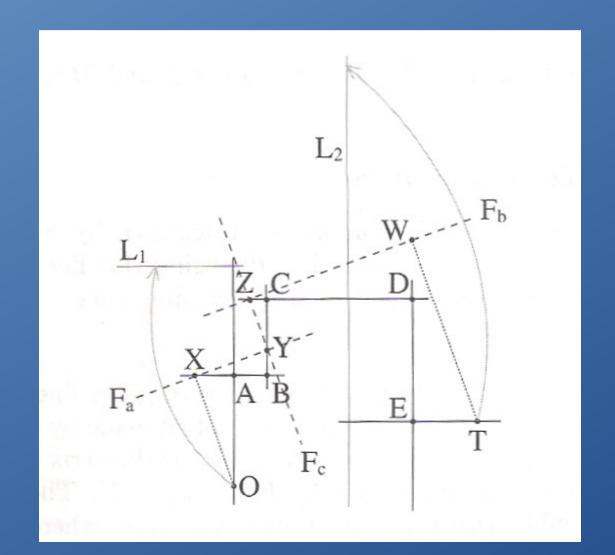




489 distinct two-fold line constructions



General quintic construction

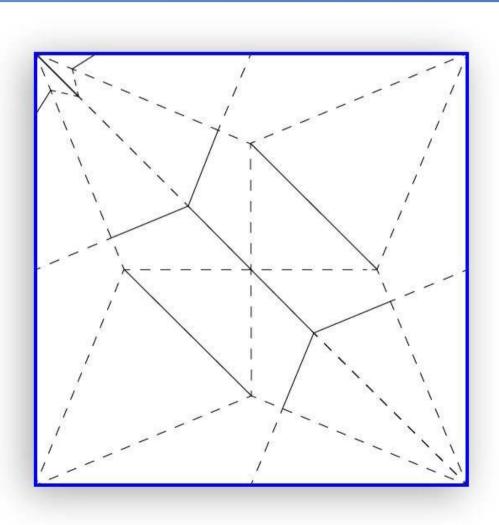


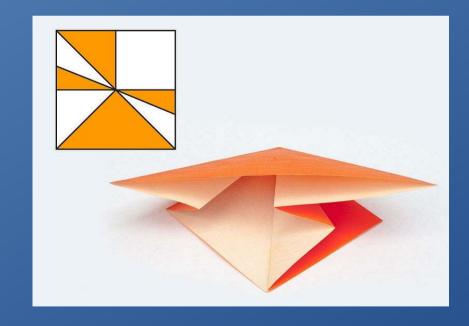
- Higher order equations, real solutions
 - Order *n* requires (*n*-2) simultaneous folds
- What can we learn concerning:
 - Polynomial roots
 - Geometric constructions
 - Field theory
 - Galois theory

2D Folding

Flat Foldability Theorems

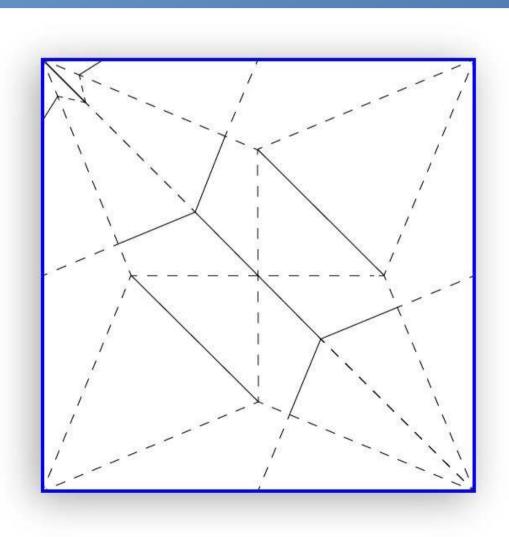
Maekawa's theorem: |M-V|=2, even degrees

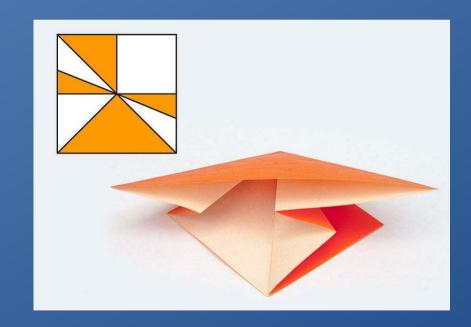




Flat Foldability Theorems

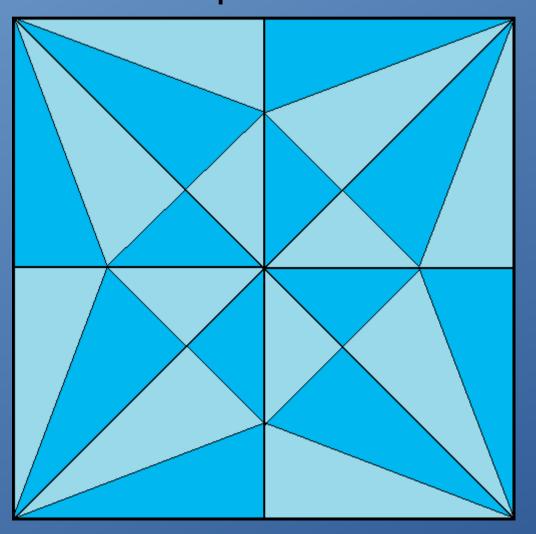
• Kawasaki's theorem: sum of alternating angles equals 180°

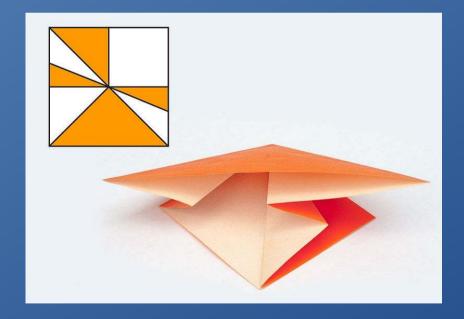




Flat Foldability Theorems

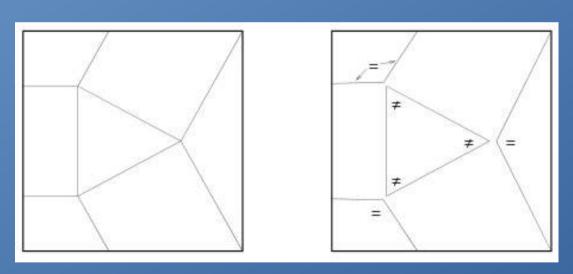
Crease patterns are two-colorable

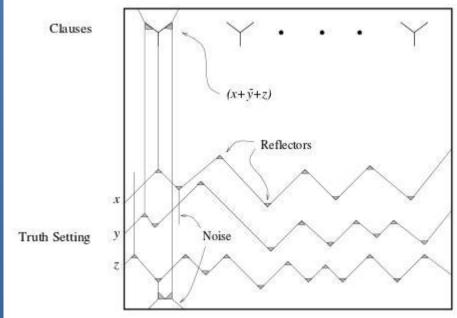




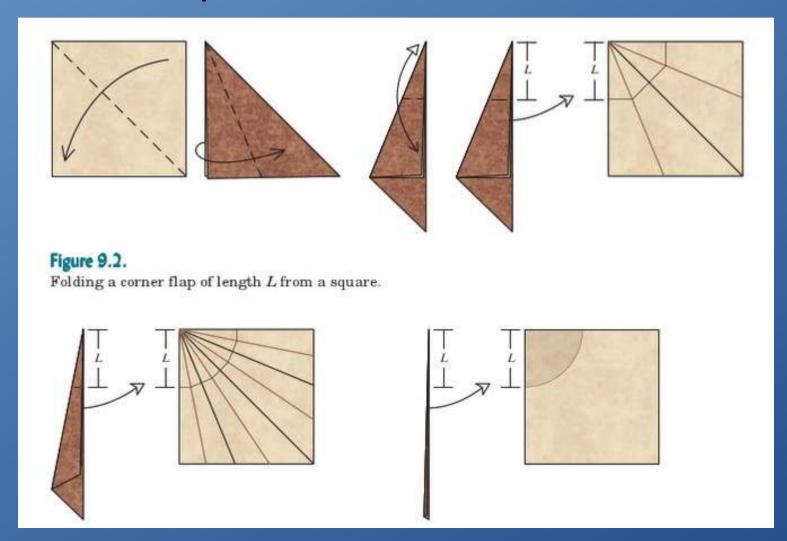
Flat Foldability is Hard

Deciding flat-foldability is NP-complete

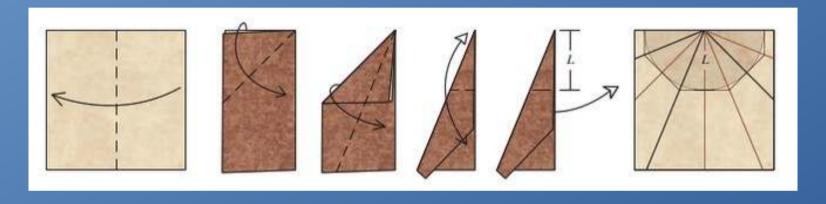


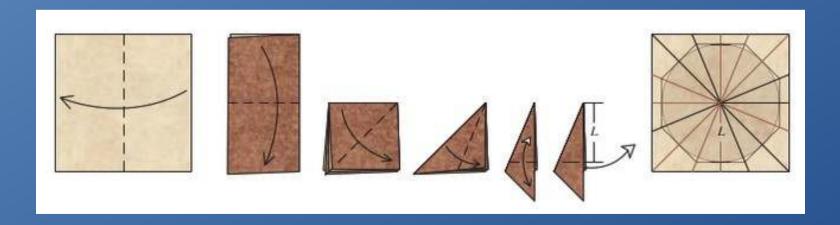


What is a flap?

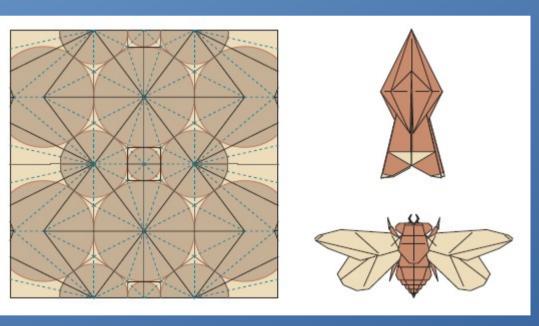


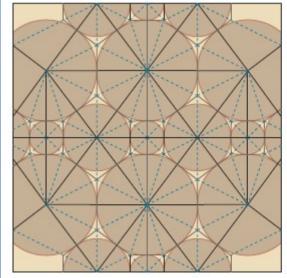
What is a flap?

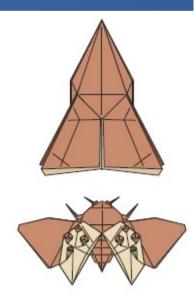




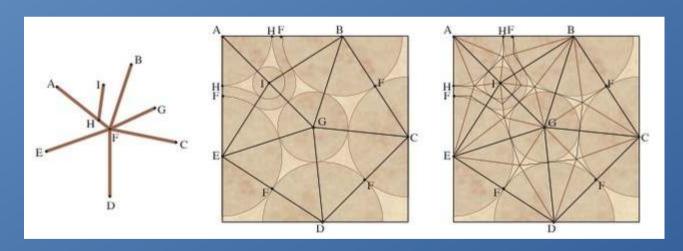
Understanding crease patterns using circles

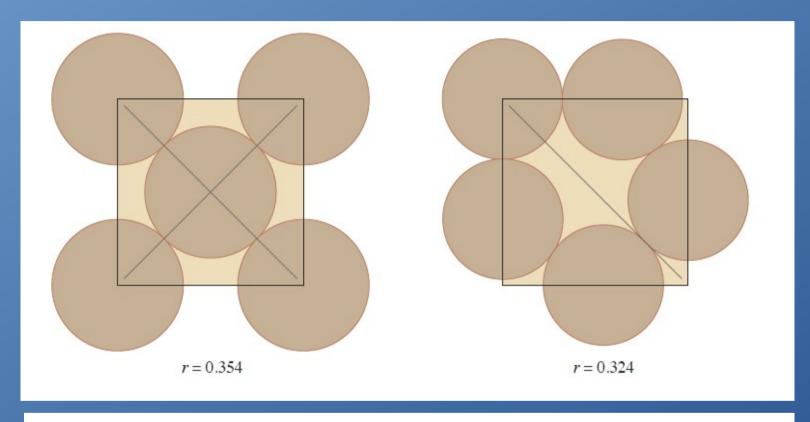


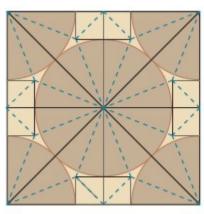


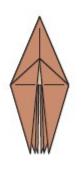


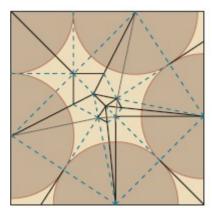
- Design algorithm
 - Uniaxial tree theory
 - Universal molecule

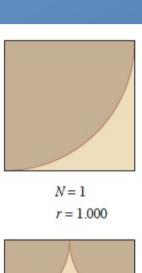


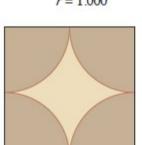


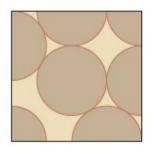




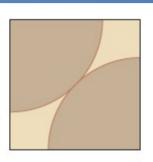




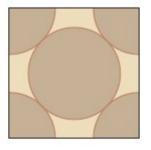




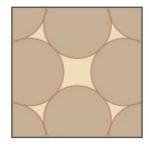
N = 7 r = 0.270



N = 2 r = 0.707

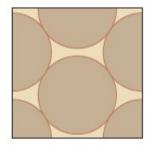


N = 5 r = 0.354

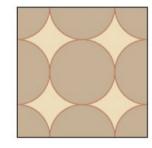


N = 8r = 0.259

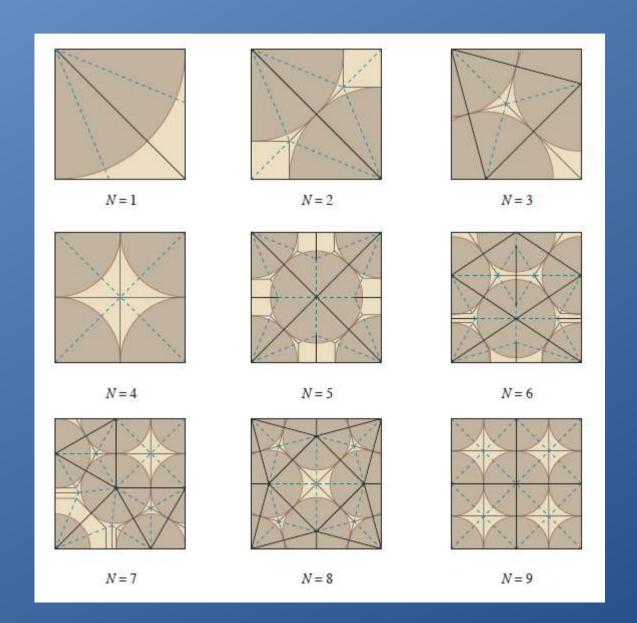
N = 3r = 0.518

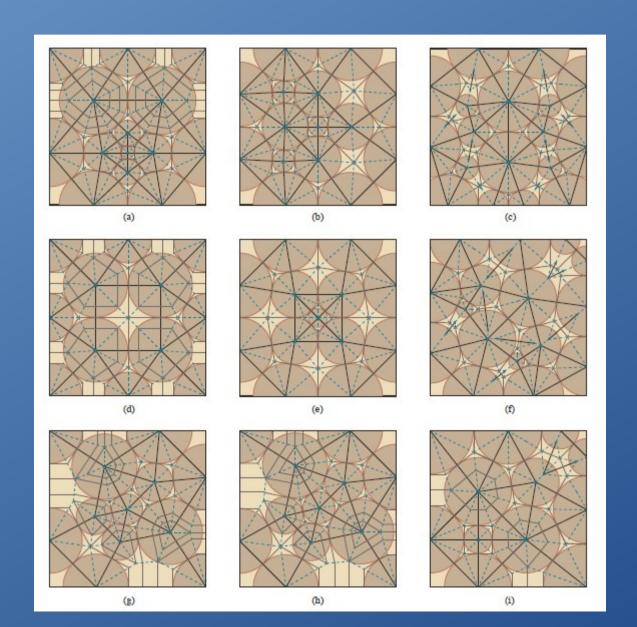


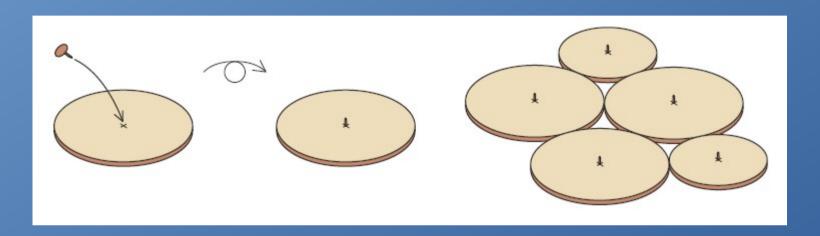
N = 6r = 0.300

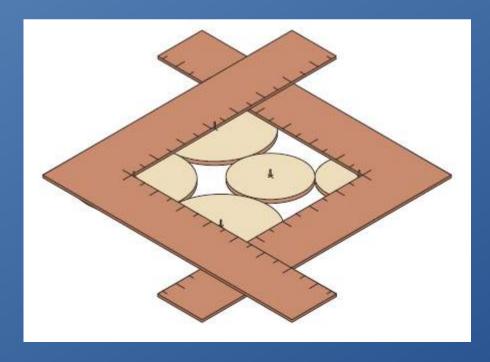


N = 9r = 0.250





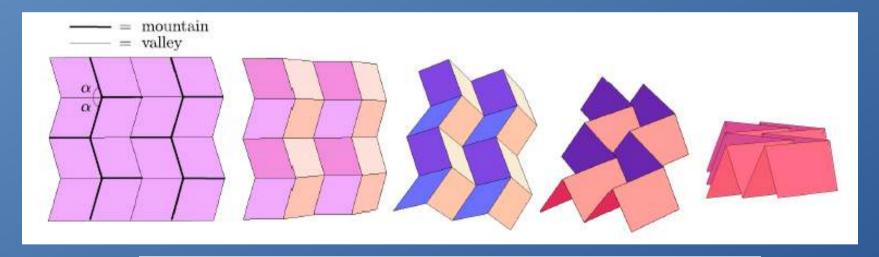


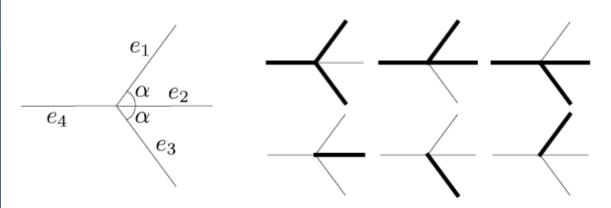


- Software TreeMaker automates solving the circle packing problem
- Non-linear constrained optimization problem

Coloring Problems

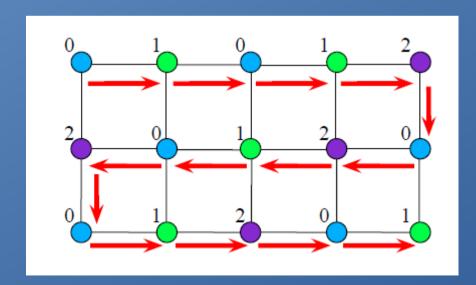
- Miura-ori: row staggered pattern
- One angle parameter

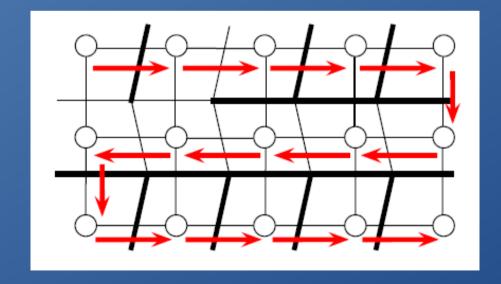




Coloring Problems

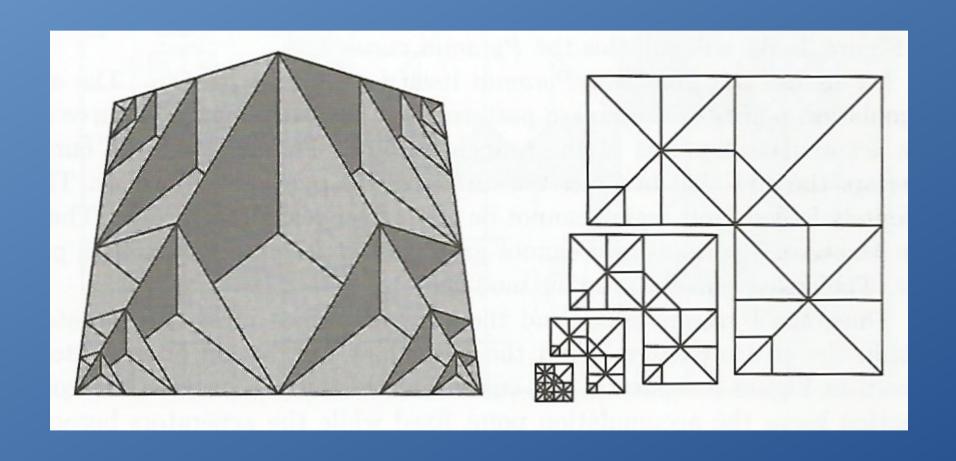
- Miura-ori: 3-colorings of the square lattice
- Equivalent to an ice problem in statistical mechanics
- Asymptotic number of colorings is (4/3)^{3 N/2}



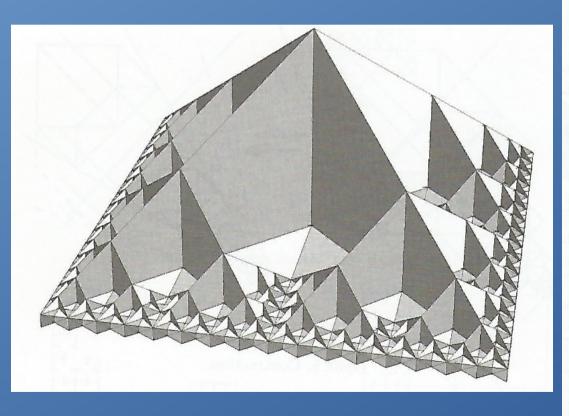


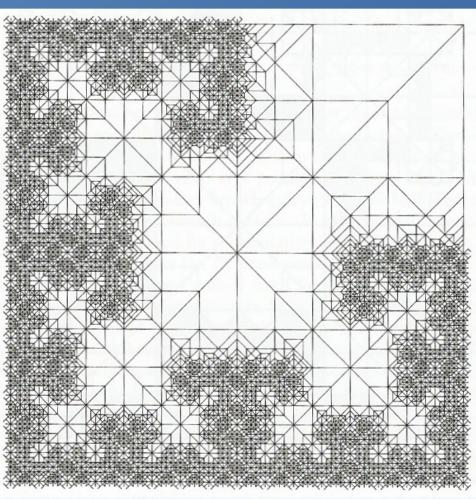
Beyond Flat 2D origami

Fractal Origami

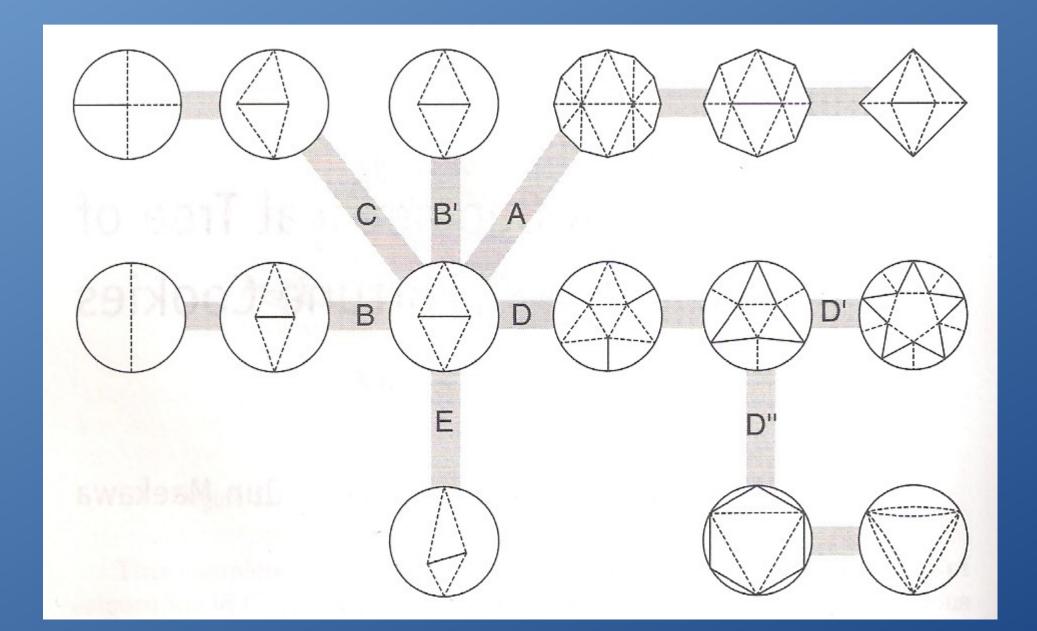


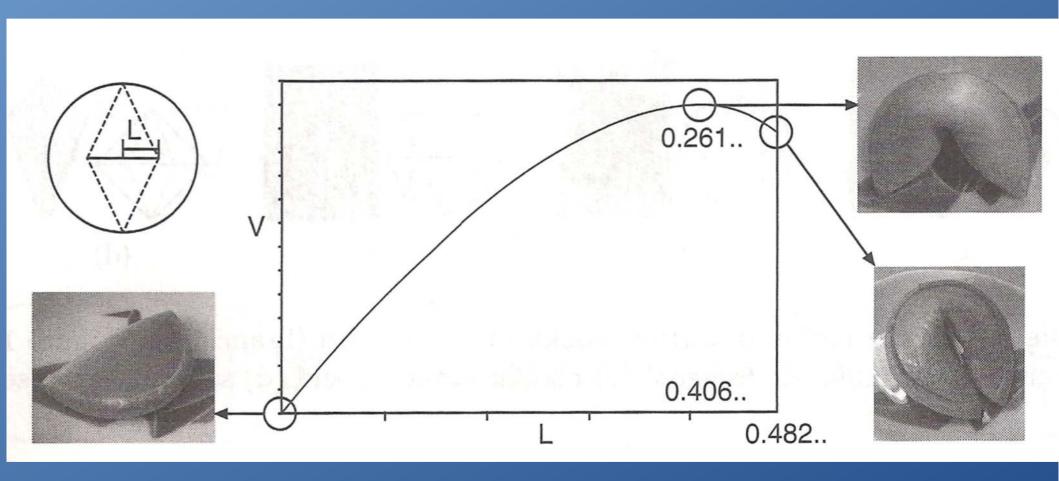
Fractal Origami

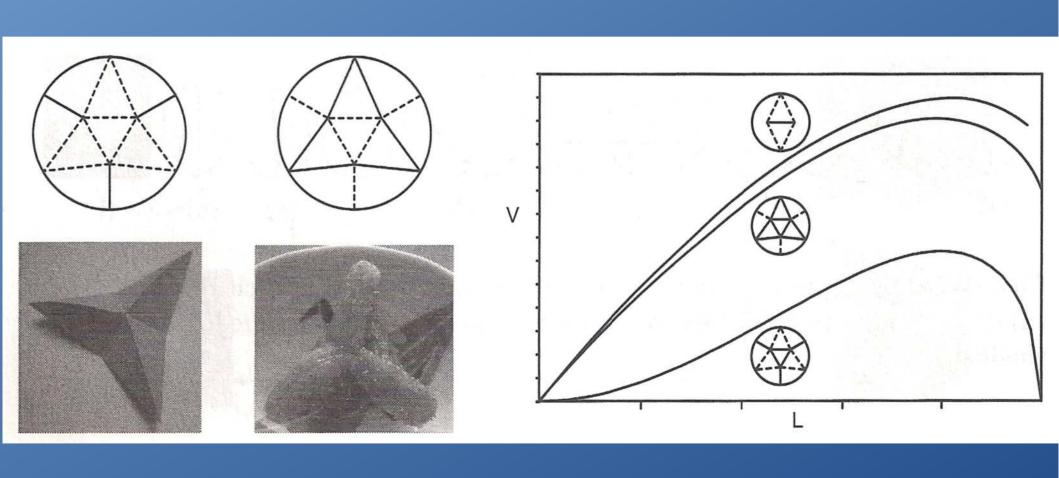




Fractal Origami





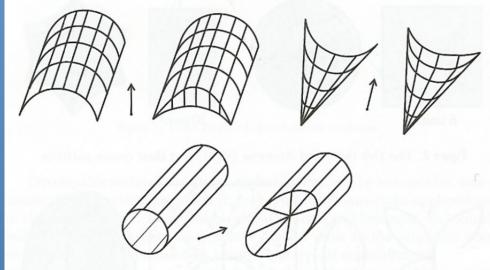


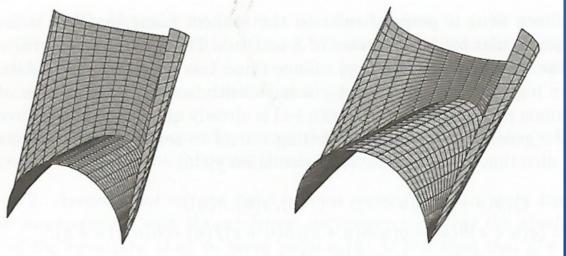
- Explorations:
 - Surface Area
 - Volume
 - Optimization problem
 - Other shapes

Non-flat paper

Non-flat paper

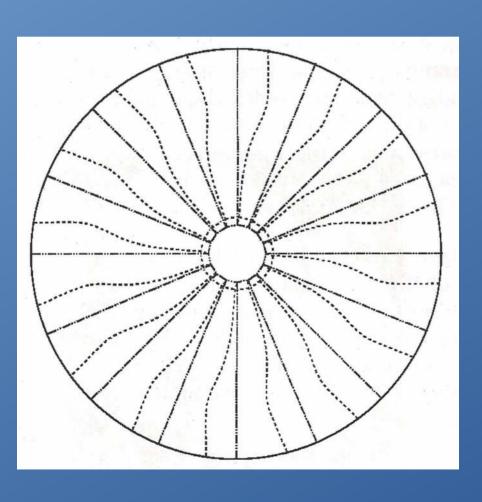
Conics

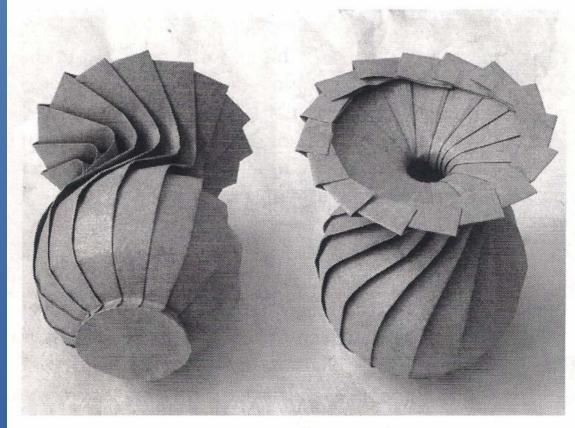


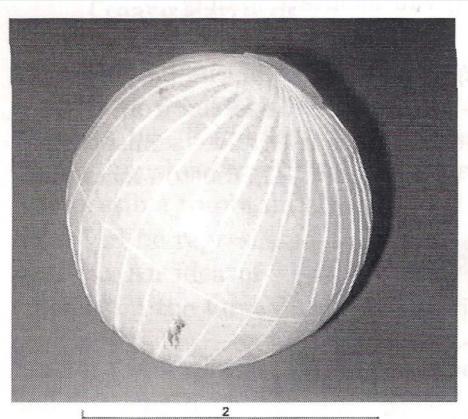


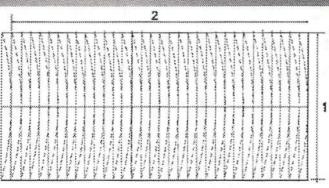
Non-flat paper

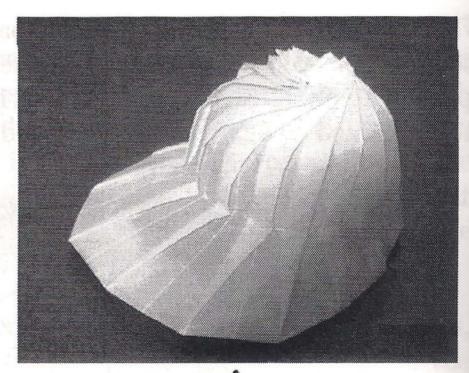
- Spherical paper, hyperbolic paper
 - One fold constructions are known

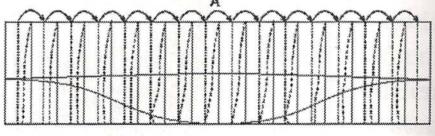


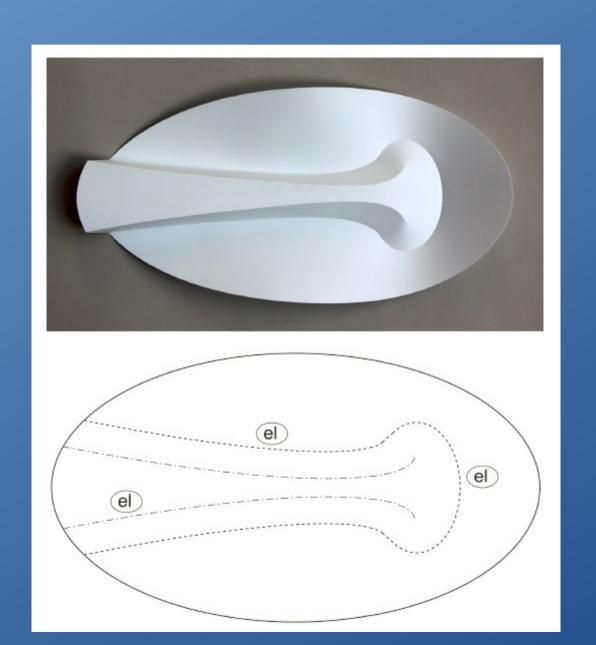


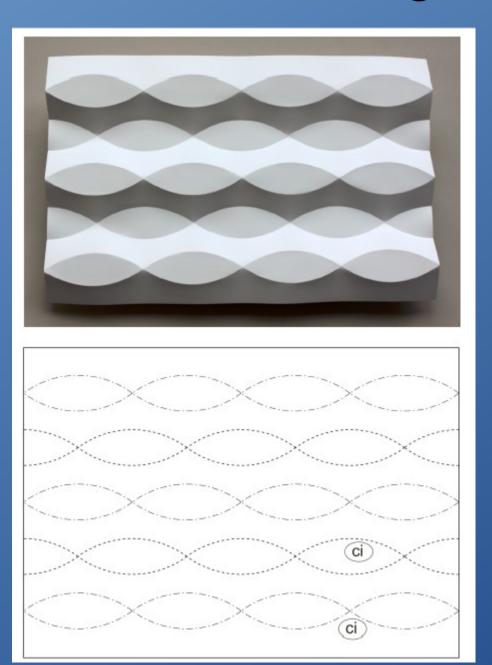












- No systematic algorithm for design known
- Direct applications in differential geometry
- Curved folding on non-flat paper not yet explored

A World Of Origami Maths

- Areas of mathematics involved only limited by imagination
- Many more applications in textbooks and convention proceedings
- Many simple research projects are awaiting students and teachers

Thank You!

