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Lecture 1: Course Introduction

Read: (All readings are from Cormen, Leiserson, Rivest and Stein,Introduction to Algorithms, 2nd Edition). Review
Chapts. 1–5 in CLRS.

What is an algorithm? Our text defines analgorithmto be any well-defined computational procedure that takes some
values asinputand produces some values asoutput. Like a cooking recipe, an algorithm provides a step-by-step
method for solving a computational problem. Unlike programs, algorithms are not dependent on a particular
programming language, machine, system, or compiler. They are mathematical entities, which can be thought of
as running on some sort ofidealized computerwith an infinite random access memory and an unlimited word
size. Algorithm design is all about the mathematical theory behind the design of good programs.

Why study algorithm design? Programming is a very complex task, and there are a number of aspects of program-
ming that make it so complex. The first is that most programming projects are very large, requiring the coor-
dinated efforts of many people. (This is the topic a course like software engineering.) The next is that many
programming projects involve storing and accessing large quantities of data efficiently. (This is the topic of
courses on data structures and databases.) The last is that many programming projects involve solving complex
computational problems, for which simplistic or naive solutions may not be efficient enough. The complex
problems may involve numerical data (the subject of courses on numerical analysis), but often they involve
discrete data. This is where the topic of algorithm design and analysis is important.

Although the algorithms discussed in this course will often represent only a tiny fraction of the code that is
generated in a large software system, this small fraction may be very important for the success of the overall
project. An unfortunately common approach to this problem is to first design an inefficient algorithm and
data structure to solve the problem, and then take this poor design and attempt to fine-tune its performance. The
problem is that if the underlying design is bad, then often no amount of fine-tuning is going to make a substantial
difference.

The focus of this course is on how to design good algorithms, and how to analyze their efficiency. This is among
the most basic aspects of good programming.

Course Overview: This course will consist of a number of major sections. The first will be a short review of some
preliminary material, including asymptotics, summations, and recurrences and sorting. These have been covered
in earlier courses, and so we will breeze through them pretty quickly. We will then discuss approaches to
designing optimization algorithms, including dynamic programming and greedy algorithms. The next major
focus will be on graph algorithms. This will include a review of breadth-first and depth-first search and their
application in various problems related to connectivity in graphs. Next we will discuss minimum spanning trees,
shortest paths, and network flows. We will briefly discuss algorithmic problems arising from geometric settings,
that is, computational geometry.

Most of the emphasis of the first portion of the course will be on problems that can be solved efficiently, in the
latter portion we will discuss intractability and NP-hard problems. These are problems for which no efficient
solution is known. Finally, we will discuss methods to approximate NP-hard problems, and how to prove how
close these approximations are to the optimal solutions.

Issues in Algorithm Design: Algorithms are mathematical objects (in contrast to the must more concrete notion of
a computer program implemented in some programming language and executing on some machine). As such,
we can reason about the properties of algorithms mathematically. When designing an algorithm there are two
fundamental issues to be considered: correctness and efficiency.

It is important to justify an algorithm’s correctness mathematically. For very complex algorithms, this typically
requires a careful mathematical proof, which may require the proof of many lemmas and properties of the
solution, upon which the algorithm relies. For simple algorithms (BubbleSort, for example) a short intuitive
explanation of the algorithm’s basic invariants is sufficient. (For example, in BubbleSort, the principal invariant
is that on completion of theith iteration, the lasti elements are in their proper sorted positions.)
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Establishing efficiency is a much more complex endeavor. Intuitively, an algorithm’s efficiency is a function
of the amount of computational resources it requires, measured typically as execution time and the amount of
space, or memory, that the algorithm uses. The amount of computational resources can be a complex function of
the size and structure of the input set. In order to reduce matters to their simplest form, it is common to consider
efficiency as a function of input size. Among all inputs of the same size, we consider the maximum possible
running time. This is calledworst-case analysis. It is also possible, and often more meaningful, to measure
average-case analysis. Average-case analyses tend to be more complex, and may require that some probability
distribution be defined on the set of inputs. To keep matters simple, we will usually focus on worst-case analysis
in this course.

Throughout out this course, when you are asked to present an algorithm, this means that you need to do three
things:

• Present a clear, simple and unambiguous description of the algorithm (in pseudo-code, for example). They
key here is “keep it simple.” Uninteresting details should be kept to a minimum, so that the key compu-
tational issues stand out. (For example, it is not necessary to declare variables whose purpose is obvious,
and it is often simpler and clearer to simply say, “AddX to the end of listL” than to present code to do
this or use some arcane syntax, such as “L.insertAtEnd(X).”)

• Present a justification or proof of the algorithm’s correctness. Your justification should assume that the
reader is someone of similar background as yourself, say another student in this class, and should be con-
vincing enough make a skeptic believe that your algorithm does indeed solve the problem correctly. Avoid
rambling about obvious or trivial elements. A good proof provides an overview of what the algorithm
does, and then focuses on any tricky elements that may not be obvious.

• Present a worst-case analysis of the algorithms efficiency, typically it running time (but also its space, if
space is an issue). Sometimes this is straightforward, but if not, concentrate on the parts of the analysis
that are not obvious.

Note that the presentation does not need to be in this order. Often it is good to begin with an explanation of
how you derived the algorithm, emphasizing particular elements of the design that establish its correctness and
efficiency. Then, once this groundwork has been laid down, present the algorithm itself. If this seems to be a bit
abstract now, don’t worry. We will see many examples of this process throughout the semester.

Lecture 2: Mathematical Background

Read: Review Chapters 1–5 in CLRS.

Algorithm Analysis: Today we will review some of the basic elements of algorithm analysis, which were covered in
previous courses. These include asymptotics, summations, and recurrences.

Asymptotics: Asymptotics involves O-notation (“big-Oh”) and its many relatives,Ω, Θ, o (“little-Oh”), ω. Asymp-
totic notation provides us with a way to simplify the functions that arise in analyzing algorithm running times
by ignoring constant factors and concentrating on the trends for large values ofn. For example, it allows us to
reason that for three algorithms with the respective running times

n3 log n + 4n2 + 52n log n ∈ Θ(n3 log n)
15n2 + 7n log3 n ∈ Θ(n2)

3n + 4 log5 n + 19n2 ∈ Θ(n2).

Thus, the first algorithm is significantly slower for largen, while the other two are comparable, up to a constant
factor.

Since asymptotics were covered in earlier courses, I will assume that this is familiar to you. Nonetheless, here
are a few facts to remember about asymptotic notation:
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Ignore constant factors: Multiplicative constant factors are ignored. For example,347n is Θ(n). Constant
factors appearing exponents cannot be ignored. For example,23n is not O(2n).

Focus on largen: Asymptotic analysis means that we consider trends for large values ofn. Thus, the fastest
growing function ofn is the only one that needs to be considered. For example,3n2 log n + 25n log n +
(log n)7 is Θ(n2 log n).

Polylog, polynomial, and exponential: These are the most common functions that arise in analyzing algo-
rithms:

Polylogarithmic: Powers oflog n, such as(log n)7. We will usually write this aslog7 n.

Polynomial: Powers ofn, such asn4 and
√

n = n1/2.

Exponential: A constant (not 1) raised to the powern, such as3n.

An important fact is that polylogarithmic functions are strictly asymptotically smaller than polynomial
function, which are strictly asymptotically smaller than exponential functions (assuming the base of the
exponent is bigger than 1). For example, if we let≺ mean “asymptotically smaller” then

loga n ≺ nb ≺ cn

for anya, b, andc, provided thatb > 0 andc > 1.

Logarithm Simplification: It is a good idea to first simplify terms involving logarithms. For example, the
following formulas are useful. Herea, b, c are constants:

logb n =
loga n

loga b
= Θ(loga n)

loga(nc) = c loga n = Θ(loga n)
bloga n = nloga b.

Avoid usinglog n in exponents. The last rule above can be used to achieve this. For example, rather than
saying3log2 n, express this asnlog2 3 ≈ n1.585.

Following the conventional sloppiness, I will often sayO(n2), when in fact the stronger statementΘ(n2) holds.
(This is just because it is easier to say “oh” than “theta”.)

Summations: Summations naturally arise in the analysis of iterative algorithms. Also, more complex forms of analy-
sis, such as recurrences, are often solved by reducing them to summations. Solving a summation means reducing
it to aclosed form formula, that is, one having no summations, recurrences, integrals, or other complex operators.
In algorithm design it is often not necessary to solve a summation exactly, since an asymptotic approximation or
close upper bound is usually good enough. Here are some common summations and some tips to use in solving
summations.

Constant Series: For integersa andb,
b∑

i=a

1 = max(b− a + 1, 0).

Notice that whenb = a − 1, there are no terms in the summation (since the index is assumed to count
upwards only), and the result is 0. Be careful to check thatb ≥ a− 1 before applying this formula blindly.

Arithmetic Series: Forn ≥ 0,
n∑

i=0

i = 1 + 2 + · · ·+ n =
n(n + 1)

2
.

This isΘ(n2). (The starting bound could have just as easily been set to 1 as 0.)
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Geometric Series: Let x 6= 1 be any constant (independent ofn), then forn ≥ 0,

n∑
i=0

xi = 1 + x + x2 + · · ·+ xn =
xn+1 − 1

x− 1
.

If 0 < x < 1 then this isΘ(1). If x > 1, then this isΘ(xn), that is, the entire sum is proportional to the
last element of the series.

Quadratic Series: Forn ≥ 0,

n∑
i=0

i2 = 12 + 22 + · · ·+ n2 =
2n3 + 3n2 + n

6
.

Linear-geometric Series: This arises in some algorithms based on trees and recursion. Letx 6= 1 be any
constant, then forn ≥ 0,

n−1∑
i=0

ixi = x + 2x2 + 3x3 · · ·+ nxn =
(n− 1)x(n+1) − nxn + x

(x− 1)2
.

As n becomes large, this is asymptotically dominated by the term(n − 1)x(n+1)/(x − 1)2. The multi-
plicative termn− 1 is very nearly equal ton for largen, and, sincex is a constant, we may multiply this
times the constant(x− 1)2/x without changing the asymptotics. What remains isΘ(nxn).

Harmonic Series: This arises often in probabilistic analyses of algorithms. It does not have an exact closed
form solution, but it can be closely approximated. Forn ≥ 0,

Hn =
n∑

i=1

1
i

= 1 +
1
2

+
1
3

+ · · ·+ 1
n

= (lnn) + O(1).

There are also a few tips to learn about solving summations.

Summations with general bounds:When a summation does not start at the 1 or 0, as most of the above for-
mulas assume, you can just split it up into the difference of two summations. For example, for1 ≤ a ≤ b

b∑
i=a

f(i) =
b∑

i=0

f(i)−
a−1∑
i=0

f(i).

Linearity of Summation: Constant factors and added terms can be split out to make summations simpler.∑
(4 + 3i(i− 2)) =

∑
4 + 3i2 − 6i =

∑
4 + 3

∑
i2 − 6

∑
i.

Now the formulas can be to each summation individually.

Approximate using integrals: Integration and summation are closely related. (Integration is in some sense
a continuous form of summation.) Here is a handy formula. Letf(x) be anymonotonically increasing
function(the function increases asx increases).

∫ n

0

f(x)dx ≤
n∑

i=1

f(i) ≤
∫ n+1

1

f(x)dx.

Example: Right Dominant Elements As an example of the use of summations in algorithm analysis, consider the
following simple problem. We are given a listL of numeric values. We say that an element ofL is right
dominantif it is strictly larger than all the elements that follow it in the list. Note that the last element of the list
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is always right dominant, as is the last occurrence of the maximum element of the array. For example, consider
the following list.

L = 〈10, 9, 5, 13, 2, 7, 1, 8, 4, 6, 3〉
The sequence of right dominant elements are〈13, 8, 6, 3〉.
In order to make this more concrete, we should think about howL is represented. It will make a difference
whetherL is represented as an array (allowing for random access), a doubly linked list (allowing for sequential
access in both directions), or a singly linked list (allowing for sequential access in only one direction). Among
the three possible representations, the array representation seems to yield the simplest and clearest algorithm.
However, we will design the algorithm in such a way that it only performs sequential scans, so it could also
be implemented using a singly linked or doubly linked list. (This is common in algorithms. Chose your rep-
resentation to make the algorithm as simple and clear as possible, but give thought to how it may actually be
implemented. Remember that algorithms are read by humans, not compilers.) We will assume here that the
arrayL of sizen is indexed from 1 ton.

Think for a moment how you would solve this problem. Can you see anO(n) time algorithm? (If not, think
a little harder.) To illustrate summations, we will first present a naiveO(n2) time algorithm, which operates
by simply checking for each element of the array whether all the subsequent elements are strictly smaller.
(Although this example is pretty stupid, it will also serve to illustrate the sort of style that we will use in
presenting algorithms.)

Right Dominant Elements (Naive Solution)
// Input: List L of numbers given as an array L[1..n]
// Returns: List D containing the right dominant elements of L
RightDominant(L) {

D = empty list
for (i = 1 to n)

isDominant = true
for (j = i+1 to n)

if (A[i] <= A[j]) isDominant = false
if (isDominant) append A[i] to D

}
return D

}

If I were programming this, I would rewrite the inner (j) loop as a while loop, since we can terminate the
loop as soon as we find thatA[i] is not dominant. Again, this sort of optimization is good to keep in mind in
programming, but will be omitted since it will not affect the worst-case running time.

The time spent in this algorithm is dominated (no pun intended) by the time spent in the inner (j) loop. On the
ith iteration of the outer loop, the inner loop is executed fromi + 1 to n, for a total ofn− (i + 1) + 1 = n− i
times. (Recall the rule for the constant series above.) Each iteration of the inner loop takes constant time. Thus,
up to a constant factor, the running time, as a function ofn, is given by the following summation:

T (n) =
n∑

i=1

(n− i).

To solve this summation, let us expand it, and put it into a form such that the above formulas can be used.

T (n) = (n− 1) + (n− 2) + . . . + 2 + 1 + 0
= 0 + 1 + 2 + . . . + (n− 2) + (n− 1)

=
n−1∑
i=0

i =
(n− 1)n

2
.
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The last step comes from applying the formula for the linear series (usingn− 1 in place ofn in the formula).

As mentioned above, there is a simpleO(n) time algorithm for this problem. As an exercise, see if you can find
it. As an additional challenge, see if you can design your algorithm so it only performs a single left-to-right scan
of the listL. (You are allowed to use up toO(n) working storage to do this.)

Recurrences: Another useful mathematical tool in algorithm analysis will be recurrences. They arise naturally in the
analysis of divide-and-conquer algorithms. Recall that these algorithms have the following general structure.

Divide: Divide the problem into two or more subproblems (ideally of roughly equal sizes),

Conquer: Solve each subproblem recursively, and

Combine: Combine the solutions to the subproblems into a single global solution.

How do we analyze recursive procedures like this one? If there is a simple pattern to the sizes of the recursive
calls, then the best way is usually by setting up arecurrence, that is, a function which is defined recursively in
terms of itself. Here is a typical example. Suppose that we break the problem into two subproblems, each of size
roughlyn/2. (We will assume exactlyn/2 for simplicity.). The additional overhead of splitting and merging
the solutions isO(n). When the subproblems are reduced to size 1, we can solve them inO(1) time. We will
ignore constant factors, writingO(n) just asn, yielding the following recurrence:

T (n) = 1 if n = 1,
T (n) = 2T (n/2) + n if n > 1.

Note that, since we assume thatn is an integer, this recurrence is not well defined unlessn is a power of 2 (since
otherwisen/2 will at some point be a fraction). To be formally correct, I should either writebn/2c or restrict
the domain ofn, but I will often be sloppy in this way.

There are a number of methods for solving the sort of recurrences that show up in divide-and-conquer algo-
rithms. The easiest method is to apply theMaster Theorem, given in CLRS. Here is a slightly more restrictive
version, but adequate for a lot of instances. See CLRS for the more complete version of the Master Theorem
and its proof.

Theorem: (Simplified Master Theorem) Leta ≥ 1, b > 1 be constants and letT (n) be the recurrence

T (n) = aT (n/b) + cnk,

defined forn ≥ 0.

Case 1: a > bk thenT (n) is Θ(nlogb a).
Case 2: a = bk thenT (n) is Θ(nk log n).
Case 3: a < bk thenT (n) is Θ(nk).

Using this version of the Master Theorem we can see that in our recurrencea = 2, b = 2, andk = 1, soa = bk

and Case 2 applies. ThusT (n) is Θ(n log n).

There many recurrences that cannot be put into this form. For example, the following recurrence is quite
common:T (n) = 2T (n/2) + n log n. This solves toT (n) = Θ(n log2 n), but the Master Theorem (either this
form or the one in CLRS will not tell you this.) For such recurrences, other methods are needed.

Lecture 3: Review of Sorting and Selection

Read: Review Chapts. 6–9 in CLRS.
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Review of Sorting: Sorting is among the most basic problems in algorithm design. We are given a sequence of items,
each associated with a givenkey value. The problem is to permute the items so that they are in increasing (or
decreasing) order by key. Sorting is important because it is often the first step in more complex algorithms.

Sorting algorithms are usually divided into two classes,internal sorting algorithms, which assume that data is
stored in an array in main memory, andexternal sorting algorithm, which assume that data is stored on disk or
some other device that is best accessed sequentially. We will only consider internal sorting.

You are probably familiar with one or more of the standard simpleΘ(n2) sorting algorithms, such asInsertion-
Sort, SelectionSortandBubbleSort. (By the way, these algorithms are quite acceptable for small lists of, say,
fewer than 20 elements.) BubbleSort is the easiest one to remember, but it widely considered to be the worst of
the three.

The three canonical efficient comparison-based sorting algorithms areMergeSort, QuickSort, andHeapSort. All
run inΘ(n log n) time. Sorting algorithms often have additional properties that are of interest, depending on the
application. Here are two important properties.

In-place: The algorithm uses no additional array storage, and hence (other than perhaps the system’s recursion
stack) it is possible to sort very large lists without the need to allocate additional working storage.

Stable: A sorting algorithm is stable if two elements that are equal remain in the same relative position after
sorting is completed. This is of interest, since in some sorting applications you sort first on one key and
then on another. It is nice to know that two items that are equal on the second key, remain sorted on the
first key.

Here is a quick summary of the fast sorting algorithms. If you are not familiar with any of these, check out the
descriptions in CLRS. They are shown schematically in Fig. 1

QuickSort: It works recursively, by first selecting a random “pivot value” from the array. Then it partitions the
array into elements that are less than and greater than the pivot. Then it recursively sorts each part.

QuickSort is widely regarded as the fastest of the fast sorting algorithms (on modern machines). One
explanation is that its inner loop compares elements against a single pivot value, which can be stored in
a register for fast access. The other algorithms compare two elements in the array. This is considered
an in-placesorting algorithm, since it uses no other array storage. (It does implicitly use the system’s
recursion stack, but this is usually not counted.) It isnot stable. There is a stable version of QuickSort,
but it is not in-place. This algorithm isΘ(n log n) in theexpected case, andΘ(n2) in the worst case. If
properly implemented, the probability that the algorithm takes asymptotically longer (assuming that the
pivot is chosen randomly) is extremely small for largen.

QuickSort:

MergeSort:

HeapSort:

Heap

extractMax

xpartition < x > xx

sort sort

x

split

sort

merge

buildHeap

Fig. 1: CommonO(n log n) comparison-based sorting algorithms.
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MergeSort: MergeSort also works recursively. It is a classical divide-and-conquer algorithm. The array is split
into two subarrays of roughly equal size. They are sorted recursively. Then the two sorted subarrays are
merged together inΘ(n) time.

MergeSort is the onlystablesorting algorithm of these three. The downside is the MergeSort is the only
algorithm of the three that requires additional array storage (ignoring the recursion stack), and thus it is
not in-place. This is because the merging process merges the two arrays into a third array. Although it is
possible to merge arrays in-place, it cannot be done inΘ(n) time.

HeapSort: HeapSort is based on a nice data structure, called aheap, which is an efficient implementation of a
priority queue data structure. A priority queue supports the operations of inserting a key, and deleting the
element with the smallest key value. A heap can be built forn keys inΘ(n) time, and the minimum key
can be extracted inΘ(log n) time. HeapSort is anin-placesorting algorithm, but it isnot stable.

HeapSort works by building the heap (ordered in reverse order so that the maximum can be extracted
efficiently) and then repeatedly extracting the largest element. (Why it extracts the maximum rather than
the minimum is an implementation detail, but this is the key to making this work as an in-place sorting
algorithm.)

If you only want to extract thek smallest values, a heap can allow you to do this isΘ(n+ k log n) time. A
heap has the additional advantage of being used in contexts where the priority of elements changes. Each
change of priority (key value) can be processed inΘ(log n) time.

Which sorting algorithm should you implement when implementing your programs? The correct answer is
probably “none of them”. Unless you know that your input has some special properties that suggest a much
faster alternative, it is best to rely on the library sorting procedure supplied on your system. Presumably, it
has been engineered to produce the best performance for your system, and saves you from debugging time.
Nonetheless, it is important to learn about sorting algorithms, since the fundamental concepts covered there
apply to much more complex algorithms.

Selection: A simpler, related problem to sorting is selection. The selection problem is, given an arrayA of n numbers
(not sorted), and an integerk, where1 ≤ k ≤ n, return thekth smallest value ofA. Although selection can be
solved inO(n log n) time, by first sortingA and then returning thekth element of the sorted list, it is possible
to select thekth smallest element inO(n) time. The algorithm is a variant of QuickSort.

Lower Bounds for Comparison-Based Sorting: The fact thatO(n log n) sorting algorithms are the fastest around
for many years, suggests that this may be the best that we can do. Can we sort faster? The claim is no, pro-
vided that the algorithm is comparison-based. Acomparison-basedsorting algorithm is one in which algorithm
permutes the elements based solely on the results of the comparisons that the algorithm makes between pairs of
elements.

All of the algorithms we have discussed so far are comparison-based. We will see that exceptions exist in
special cases. This does not preclude the possibility of sorting algorithms whose actions are determined by
other operations, as we shall see below. The following theorem gives the lower bound on comparison-based
sorting.

Theorem: Any comparison-based sorting algorithm has worst-case running timeΩ(n log n).

We will not present a proof of this theorem, but the basic argument follows from a simple analysis of the number
of possibilities and the time it takes to distinguish among them. There aren! ways to permute a given set of
n numbers. Any sorting algorithm must be able to distinguish between each of these different possibilities,
since two different permutations need to treated differently. Since each comparison leads to only two possible
outcomes, the execution of the algorithm can be viewed as a binary tree. (This is a bit abstract, but given a sorting
algorithm it is not hard, but quite tedious, to trace its execution, and set up a new node each time a decision is
made.) This binary tree, called adecision tree, must have at leastn! leaves, one for each of the possible input
permutations. Such a tree, even if perfectly balanced, must height at leastlg(n!). By Stirling’s approximation,n!

Lecture Notes 9 CMSC 451



is, up to constant factors, roughly(n/e)n. Plugging this in and simplifying yields theΩ(n log n) lower bound.
This can also be generalized to show that theaverage-casetime to sort is alsoΩ(n log n).

Linear Time Sorting: TheΩ(n log n) lower bound implies that if we hope to sort numbers faster than inO(n log n)
time, we cannot do it by making comparisons alone. In some special cases, it is possible to sort without the
use of comparisons. This leads to the possibility of sorting in linear (that is,O(n)) time. Here are three such
algorithms.

Counting Sort: Counting sort assumes that each input is an integer in the range from 1 tok. The algorithm
sorts inΘ(n + k) time. Thus, ifk is O(n), this implies that the resulting sorting algorithm runs inΘ(n)
time. The algorithm requires an additionalΘ(n + k) working storage but has the nice feature that it is
stable. The algorithm is remarkably simple, but deceptively clever. You are referred to CLRS for the
details.

Radix Sort: The main shortcoming of CountingSort is that (due to space requirements) it is only practical for
a very small ranges of integers. If the integers are in the range from say, 1 to a million, we may not want
to allocate an array of a million elements. RadixSort provides a nice way around this by sorting numbers
one digit, or one byte, or generally, some groups of bits, at a time. As the number of bits in each group
increases, the algorithm is faster, but the space requirements go up.

The idea is very simple. Let’s think of our list as being composed ofn integers, each havingd decimal
digits (or digits in any base). To sort these integers we simply sort repeatedly, starting at the lowest order
digit, and finishing with the highest order digit. Since the sorting algorithm is stable, we know that if the
numbers are already sorted with respect to low order digits, and then later we sort with respect to high
order digits, numbers having the same high order digit will remain sorted with respect to their low order
digit. An example is shown in Figure 2.

Input Output
576 49[4] 9[5]4 [1]76 176
494 19[4] 5[7]6 [1]94 194
194 95[4] 1[7]6 [2]78 278
296 =⇒ 57[6] =⇒ 2[7]8 =⇒ [2]96 =⇒ 296
278 29[6] 4[9]4 [4]94 494
176 17[6] 1[9]4 [5]76 576
954 27[8] 2[9]6 [9]54 954

Fig. 2: Example of RadixSort.

The running time isΘ(d(n + k)) whered is the number of digits in each value,n is the length of the list,
andk is the number of distinct values each digit may have. The space needed isΘ(n + k).
A common application of this algorithm is for sorting integers over some range that is larger thann, but
still polynomial inn. For example, suppose that you wanted to sort a list of integers in the range from 1
to n2. First, you could subtract 1 so that they are now in the range from 0 ton2 − 1. Observe that any
number in this range can be expressed as 2-digit number, where each digit is over the range from 0 to
n − 1. In particular, given any integerL in this range, we can writeL = an + b, wherea = bL/nc and
b = L mod n. Now, we can think ofL as the 2-digit number(a, b). So, we can radix sort these numbers
in timeΘ(2(n + n)) = Θ(n). In general this works to sort anyn numbers over the range from 1 tond, in
Θ(dn) time.

BucketSort: CountingSort and RadixSort are only good for sorting small integers, or at least objects (like
characters) that can be encoded as small integers. What if you want to sort a set of floating-point numbers?
In the worst-case you are pretty much stuck with using one of the comparison-based sorting algorithms,
such as QuickSort, MergeSort, or HeapSort. However, in special cases where you have reason to believe
that your numbers are roughly uniformly distributed over some range, then it is possible to do better. (Note
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that this is astrongassumption. This algorithm should not be applied unless you have good reason to
believe that this is the case.)

Suppose that the numbers to be sorted range over some interval, say[0, 1). (It is possible inO(n) time
to find the maximum and minimum values, and scale the numbers to fit into this range.) The idea is
the subdivide this interval inton subintervals. For example, ifn = 100, the subintervals would be
[0, 0.01), [0.01, 0.02), [0.02, 0.03), and so on. We createn different buckets, one for each interval. Then
we make a pass through the list to be sorted, and using the floor function, we can map each value to its
bucket index. (In this case, the index of elementx would beb100xc.) We then sort each bucket in as-
cending order. The number of points per bucket should be fairly small, so even a quadratic time sorting
algorithm (e.g. BubbleSort or InsertionSort) should work. Finally, all the sorted buckets are concatenated
together.

The analysis relies on the fact that, assuming that the numbers are uniformly distributed, the number of
elements lying within each bucket on average is a constant. Thus, the expected time needed to sort each
bucket isO(1). Since there aren buckets, the total sorting time isΘ(n). An example illustrating this idea
is given in Fig. 3.

.81.17.59.38.86.14.10.71.42 .56
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Fig. 3: BucketSort.

Lecture 4: Dynamic Programming: Longest Common Subsequence

Read: Introduction to Chapt 15, and Section 15.4 in CLRS.

Dynamic Programming: We begin discussion of an important algorithm design technique, calleddynamic program-
ming (or DP for short). The technique is among the most powerful for designing algorithms for optimization
problems. (This is true for two reasons. Dynamic programming solutions are based on a few common elements.
Dynamic programming problems are typically optimization problems (find the minimum or maximum cost so-
lution, subject to various constraints). The technique is related to divide-and-conquer, in the sense that it breaks
problems down into smaller problems that it solves recursively. However, because of the somewhat different
nature of dynamic programming problems, standard divide-and-conquer solutions are not usually efficient. The
basic elements that characterize a dynamic programming algorithm are:

Substructure: Decompose your problem into smaller (and hopefully simpler) subproblems. Express the solu-
tion of the original problem in terms of solutions for smaller problems.

Table-structure: Store the answers to the subproblems in a table. This is done because subproblem solutions
are reused many times.

Bottom-up computation: Combine solutions on smaller subproblems to solve larger subproblems. (Our text
also discusses a top-down alternative, calledmemoization.)
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The most important question in designing a DP solution to a problem is how to set up the subproblem structure.
This is called theformulation of the problem. Dynamic programming is not applicable to all optimization
problems. There are two important elements that a problem must have in order for DP to be applicable.

Optimal substructure: (Sometimes called theprinciple of optimality.) It states that for the global problem to
be solved optimally, each subproblem should be solved optimally. (Not all optimization problems satisfy
this. Sometimes it is better to lose a little on one subproblem in order to make a big gain on another.)

Polynomially many subproblems: An important aspect to the efficiency of DP is that the total number of
subproblems to be solved should be at most a polynomial number.

Strings: One important area of algorithm design is the study of algorithms for character strings. There are a number
of important problems here. Among the most important has to do with efficiently searching for a substring
or generally a pattern in large piece of text. (This is what text editors and programs like “grep” do when you
perform a search.) In many instances you do not want to find a piece of text exactly, but rather something that is
similar. This arises for example in genetics research and in document retrieval on the web. One common method
of measuring the degree of similarity between two strings is to compute their longest common subsequence.

Longest Common Subsequence:Let us think of character strings as sequences of characters. Given two sequences
X = 〈x1, x2, . . . , xm〉 andZ = 〈z1, z2, . . . , zk〉, we say thatZ is asubsequenceof X if there is a strictly in-
creasing sequence ofk indices〈i1, i2, . . . , ik〉 (1 ≤ i1 < i2 < . . . < ik ≤ n) such thatZ = 〈Xi1 , Xi2 , . . . , Xik

〉.
For example, letX = 〈ABRACADABRA〉 and letZ = 〈AADAA〉, thenZ is a subsequence ofX.

Given two stringsX andY , the longest common subsequenceof X andY is a longest sequenceZ that is a
subsequence of bothX andY . For example, letX = 〈ABRACADABRA〉 and letY = 〈YABBADABBADOO〉.
Then the longest common subsequence isZ = 〈ABADABA〉. See Fig. 4

OODBY AADB ABA

X =

Y = B

A

LCS = ABADABA

ARBARB ADAC

Fig. 4: An example of the LCS of two stringsX andY .

TheLongest Common Subsequence Problem(LCS) is the following. Given two sequencesX = 〈x1, . . . , xm〉
andY = 〈y1, . . . , yn〉 determine a longest common subsequence. Note that it is not always unique. For example
the LCS of〈ABC〉 and〈BAC〉 is either〈AC〉 or 〈BC〉.

DP Formulation for LCS: The simple brute-force solution to the problem would be to try all possible subsequences
from one string, and search for matches in the other string, but this is hopelessly inefficient, since there are an
exponential number of possible subsequences.

Instead, we will derive a dynamic programming solution. In typical DP fashion, we need to break the prob-
lem into smaller pieces. There are many ways to do this for strings, but it turns out for this problem that
considering all pairs ofprefixeswill suffice for us. A prefix of a sequence is just an initial string of values,
Xi = 〈x1, x2, . . . , xi〉. X0 is the empty sequence.

The idea will be to compute the longest common subsequence for every possible pair of prefixes. Letc[i, j]
denote the length of the longest common subsequence ofXi andYj . For example, in the above case we have
X5 = 〈ABRAC〉 andY6 = 〈YABBAD〉. Their longest common subsequence is〈ABA〉. Thus,c[5, 6] = 3.

Which of thec[i, j] values do we compute? Since we don’t know which will lead to the final optimum, we
compute all of them. Eventually we are interested inc[m,n] since this will be the LCS of the two entire strings.
The idea is to computec[i, j] assuming that we already know the values ofc[i′, j′], for i′ ≤ i andj′ ≤ j (but
not both equal). Here are the possible cases.
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Basis: c[i, 0] = c[j, 0] = 0. If either sequence is empty, then the longest common subsequence is empty.

Last characters match: Supposexi = yj . For example: LetXi = 〈ABCA〉 and letYj = 〈DACA〉. Since
both end inA, we claim that the LCSmustalso end inA. (We will leave the proof as an exercise.) Since
theA is part of the LCS we may find the overall LCS by removingA from both sequences and taking the
LCS ofXi−1 = 〈ABC〉 andYj−1 = 〈DAC〉 which is〈AC〉 and then addingA to the end, giving〈ACA〉
as the answer. (At first you might object: But how did you know that these twoA’s matched with each
other. The answer is that we don’t, but it will not make the LCS any smaller if we do.) This is illustrated
at the top of Fig. 5.

if xi = yj thenc[i, j] = c[i− 1, j − 1] + 1

LCS
Y

X A

yj

AA
j

jY

i−1iX A
add to LCSLast chars match:

j−1

i−1

j−1

x

B
LCS
X

LCS
A

Y

max

jskip y

iskip x

A

B

xi

match
Last chars do not

y

i

B

A

jY

iX jY

iX

Fig. 5: The possibe cases in the DP formulation of LCS.

Last characters do not match: Suppose thatxi 6= yj . In this casexi andyj cannot both be in the LCS (since
they would have to be the last character of the LCS). Thus eitherxi is not part of the LCS, oryj is not part
of the LCS (and possiblybothare not part of the LCS).

At this point it may be tempting to try to make a “smart” choice. By analyzing the last few characters
of Xi andYj , perhaps we can figure out which character is best to discard. However, this approach is
doomed to failure (and you are strongly encouraged to think about this, since it is a common point of
confusion.) Instead, our approach is to take advantage of the fact that we have already precomputed
smaller subproblems, and use these results to guide us.

In the first case (xi is not in the LCS) the LCS ofXi andYj is the LCS ofXi−1 andYj , which isc[i−1, j].
In the second case (yj is not in the LCS) the LCS is the LCS ofXi andYj−1 which isc[i, j − 1]. We do
not know which is the case, so we try both and take the one that gives us the longer LCS. This is illustrated
at the bottom half of Fig. 5.

if xi 6= yj thenc[i, j] = max(c[i− 1, j], c[i, j − 1])

Combining these observations we have the following formulation:

c[i, j] =




0 if i = 0 or j = 0,
c[i− 1, j − 1] + 1 if i, j > 0 andxi = yj ,
max(c[i, j − 1], c[i− 1, j]) if i, j > 0 andxi 6= yj .

Implementing the Formulation: The task now is to simply implement this formulation. We concentrate only on
computing the maximumlengthof the LCS. Later we will see how to extract the actual sequence. We will store
some helpful pointers in a parallel array,b[0..m, 0..n]. The code is shown below, and an example is illustrated
in Fig. 6
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LCS Length Table with back pointers included
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11
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0

0

0

00000
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LCS = BCB3221
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2

Fig. 6: Longest common subsequence example for the sequencesX = 〈BACDB〉 andY = 〈BCDB〉. The numeric
table entries are the values ofc[i, j] and the arrow entries are used in the extraction of the sequence.

Build LCS Table
LCS(x[1..m], y[1..n]) { // compute LCS table

int c[0..m, 0..n]
for i = 0 to m // init column 0

c[i,0] = 0; b[i,0] = SKIPX
for j = 0 to n // init row 0

c[0,j] = 0; b[0,j] = SKIPY
for i = 1 to m // fill rest of table

for j = 1 to n
if (x[i] == y[j]) // take X[i] (Y[j]) for LCS

c[i,j] = c[i-1,j-1]+1; b[i,j] = addXY
else if (c[i-1,j] >= c[i,j-1]) // X[i] not in LCS

c[i,j] = c[i-1,j]; b[i,j] = skipX
else // Y[j] not in LCS

c[i,j] = c[i,j-1]; b[i,j] = skipY
return c[m,n] // return length of LCS

}

Extracting the LCS
getLCS(x[1..m], y[1..n], b[0..m,0..n]) {

LCSstring = empty string
i = m; j = n // start at lower right
while(i != 0 && j != 0) // go until upper left

switch b[i,j]
case addXY: // add X[i] (=Y[j])

add x[i] (or equivalently y[j]) to front of LCSstring
i--; j--; break

case skipX: i--; break // skip X[i]
case skipY: j--; break // skip Y[j]

return LCSstring
}
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The running time of the algorithm is clearlyO(mn) since there are two nested loops withm andn iterations,
respectively. The algorithm also usesO(mn) space.

Extracting the Actual Sequence: Extracting the final LCS is done by using the back pointers stored inb[0..m, 0..n].
Intuitively b[i, j] = addXY means thatX[i] andY [j] together form the last character of the LCS. So we take
this common character, and continue with entryb[i− 1, j − 1] to the northwest (↖). If b[i, j] = skipX , then we
know thatX[i] is not in the LCS, and so we skip it and go tob[i−1, j] above us (↑). Similarly, if b[i, j] = skipY ,
then we know thatY [j] is not in the LCS, and so we skip it and go tob[i, j − 1] to the left (←). Following these
back pointers, and outputting a character with each diagonal move gives the final subsequence.

Lecture 5: Dynamic Programming: Chain Matrix Multiplication

Read: Chapter 15 of CLRS, and Section 15.2 in particular.

Chain Matrix Multiplication: This problem involves the question of determining the optimal sequence for perform-
ing a series of operations. This general class of problem is important in compiler design for code optimization
and in databases for query optimization. We will study the problem in a very restricted instance, where the
dynamic programming issues are easiest to see.

Suppose that we wish to multiply a series of matrices

A1A2 . . . An

Matrix multiplication is an associative but not a commutative operation. This means that we are free to paren-
thesize the above multiplication however we like, but we are not free to rearrange the order of the matrices. Also
recall that when two (nonsquare) matrices are being multiplied, there are restrictions on the dimensions. Ap×q
matrix hasp rows andq columns. You can multiply ap × q matrix A times aq × r matrix B, and the result
will be ap× r matrixC. (The number of columns ofA must equal the number of rows ofB.) In particular for
1 ≤ i ≤ p and1 ≤ j ≤ r,

C[i, j] =
q∑

k=1

A[i, k]B[k, j].

This corresponds to the (hopefully familiar) rule that the[i, j] entry ofC is the dot product of theith (horizontal)
row ofA and thejth (vertical) column ofB. Observe that there arepr total entries inC and each takesO(q) time
to compute, thus the total time to multiply these two matrices is proportional to the product of the dimensions,
pqr.

B C

=

A

p

q

q

r

r

Multiplication
time = pqr

=*

p

Fig. 7: Matrix Multiplication.

Note that although any legal parenthesization will lead to a valid result, not all involve the same number of
operations. Consider the case of 3 matrices:A1 be5× 4, A2 be4× 6 andA3 be6× 2.

multCost[((A1A2)A3)] = (5 · 4 · 6) + (5 · 6 · 2) = 180,
multCost[(A1(A2A3))] = (4 · 6 · 2) + (5 · 4 · 2) = 88.

Even for this small example, considerable savings can be achieved by reordering the evaluation sequence.
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Chain Matrix Multiplication Problem: Given a sequence of matricesA1, A2, . . . , An and dimensionsp0, p1, . . . , pn

whereAi is of dimensionpi−1 × pi, determine the order of multiplication (represented, say, as a binary
tree) that minimizes the number of operations.

Important Note: This algorithm does not perform the multiplications, it just determines the best order in which
to perform the multiplications.

Naive Algorithm: We could write a procedure which tries all possible parenthesizations. Unfortunately, the number
of ways of parenthesizing an expression is very large. If you have just one or two matrices, then there is only
one way to parenthesize. If you haven items, then there aren − 1 places where you could break the list with
the outermost pair of parentheses, namely just after the 1st item, just after the 2nd item, etc., and just after the
(n − 1)st item. When we split just after thekth item, we create two sublists to be parenthesized, one withk
items, and the other withn− k items. Then we could consider all the ways of parenthesizing these. Since these
are independent choices, if there areL ways to parenthesize the left sublist andR ways to parenthesize the right
sublist, then the total isL ·R. This suggests the following recurrence forP (n), the number of different ways of
parenthesizingn items:

P (n) =
{

1 if n = 1,∑n−1
k=1 P (k)P (n− k) if n ≥ 2.

This is related to a famous function in combinatorics called theCatalan numbers(which in turn is related to the
number of different binary trees onn nodes). In particularP (n) = C(n − 1), whereC(n) is thenth Catalan
number:

C(n) =
1

n + 1

(
2n

n

)
.

Applying Stirling’s formula (which is given in our text), we find thatC(n) ∈ Ω(4n/n3/2). Since4n is exponen-
tial andn3/2 is just polynomial, the exponential will dominate, implying that function grows very fast. Thus,
this will not be practical except for very smalln. In summary, brute force is not an option.

Dynamic Programming Approach: This problem, like other dynamic programming problems involves determining
a structure (in this case, a parenthesization). We want to break the problem into subproblems, whose solutions
can be combined to solve the global problem. As is common to any DP solution, we need to find some way to
break the problem into smaller subproblems, and we need to determine a recursive formulation, which represents
the optimum solution to each problem in terms of solutions to the subproblems. Let us think of how we can do
this.

Since matrices cannot be reordered, it makes sense to think about sequences of matrices. LetAi..j denote the
result of multiplying matricesi throughj. It is easy to see thatAi..j is api−1 × pj matrix. (Think about this for
a second to be sure you see why.) Now, in order to determine how to perform this multiplication optimally, we
need to make many decisions. What we want to do is to break the problem into problems of a similar structure.
In parenthesizing the expression, we can consider the highest level of parenthesization. At this level we are
simply multiplying two matrices together. That is, for anyk, 1 ≤ k ≤ n− 1,

A1..n = A1..k ·Ak+1..n.

Thus the problem of determining the optimal sequence of multiplications is broken up into two questions: how
do we decide where to split the chain (what isk?) and how do we parenthesize the subchainsA1..k andAk+1..n?
The subchain problems can be solved recursively, by applying the same scheme.

So, let us think about the problem of determining the best value ofk. At this point, you may be tempted to
consider some clever ideas. For example, since we want matrices with small dimensions, pick the value ofk
that minimizespk. Although this is not a bad idea, in principle. (After all it might work. It just turns out
that it doesn’t in this case. This takes a bit of thinking, which you should try.) Instead, as is true in almost all
dynamic programming solutions, we will do the dumbest thing of simply consideringall possiblechoices ofk,
and taking the best of them. Usually trying all possible choices is bad, since it quickly leads to an exponential

Lecture Notes 16 CMSC 451



number of total possibilities. What saves us here is that there are onlyO(n2) different sequences of matrices.
(There are

(
n
2

)
= n(n− 1)/2 ways of choosingi andj to formAi..j to be precise.) Thus, we do not encounter

the exponential growth.

Notice that our chain matrix multiplication problem satisfies the principle of optimality, because once we decide
to break the sequence into the productA1..k ·Ak+1..n, we should compute each subsequence optimally. That is,
for the global problem to be solved optimally, the subproblems must be solved optimally as well.

Dynamic Programming Formulation: We will store the solutions to the subproblems in a table, and build the table
in a bottom-up manner. For1 ≤ i ≤ j ≤ n, let m[i, j] denote the minimum number of multiplications needed
to computeAi..j . The optimum cost can be described by the following recursive formulation.

Basis: Observe that ifi = j then the sequence contains only one matrix, and so the cost is 0. (There is nothing
to multiply.) Thus,m[i, i] = 0.

Step: If i < j, then we are asking about the productAi..j . This can be split by considering eachk, i ≤ k < j,
asAi..k timesAk+1..j .
The optimum times to computeAi..k andAk+1..j are, by definition,m[i, k] andm[k + 1, j], respectively.
We may assume that these values have been computed previously and are already stored in our array. Since
Ai..k is api−1 × pk matrix, andAk+1..j is apk × pj matrix, the time to multiply them ispi−1pkpj . This
suggests the following recursive rule for computingm[i, j].

m[i, i] = 0
m[i, j] = min

i≤k<j
(m[i, k] + m[k + 1, j] + pi−1pkpj) for i < j.

i i+1 k k+1 j

k+1..j

A

A

AAAA A

i..k

i..j

A

?

......

Fig. 8: Dynamic Programming Formulation.

It is not hard to convert this rule into a procedure, which is given below. The only tricky part is arranging the
order in which to compute the values. In the process of computingm[i, j] we need to access valuesm[i, k] and
m[k +1, j] for k lying betweeni andj. This suggests that we should organize our computation according to the
number of matrices in the subsequence. LetL = j−i+1 denote the length of the subchain being multiplied. The
subchains of length 1 (m[i, i]) are trivial to compute. Then we build up by computing the subchains of lengths
2, 3, . . . , n. The final answer ism[1, n]. We need to be a little careful in setting up the loops. If a subchain of
lengthL starts at positioni, thenj = i + L − 1. Since we wantj ≤ n, this means thati + L − 1 ≤ n, or in
other words,i ≤ n−L + 1. So our loop fori runs from 1 ton−L + 1 (in order to keepj in bounds). The code
is presented below.

The arrays[i, j] will be explained later. It is used to extract the actual sequence. The running time of the
procedure isΘ(n3). We’ll leave this as an exercise in solving sums, but the key is that there are three nested
loops, and each can iterate at mostn times.

Extracting the final Sequence: Extracting the actual multiplication sequence is a fairly easy extension. The basic
idea is to leave asplit markerindicating what the best split is, that is, the value ofk that leads to the minimum

Lecture Notes 17 CMSC 451



Chain Matrix Multiplication
Matrix-Chain(array p[1..n]) {

array s[1..n-1,2..n]
for i = 1 to n do m[i,i] = 0; // initialize
for L = 2 to n do { // L = length of subchain

for i = 1 to n-L+1 do {
j = i + L - 1;
m[i,j] = INFINITY;
for k = i to j-1 do { // check all splits

q = m[i, k] + m[k+1, j] + p[i-1]*p[k]*p[j]
if (q < m[i, j]) {

m[i,j] = q;
s[i,j] = k;

}
}

}
}
return m[1,n] (final cost) and s (splitting markers);

}

value ofm[i, j]. We can maintain a parallel arrays[i, j] in which we will store the value ofk providing the
optimal split. For example, suppose thats[i, j] = k. This tells us that the best way to multiply the subchain
Ai..j is to first multiply the subchainAi..k and then multiply the subchainAk+1..j , and finally multiply these
together. Intuitively,s[i, j] tells us what multiplication to performlast. Note that we only need to stores[i, j]
when we have at least two matrices, that is, ifj > i.

The actual multiplication algorithm uses thes[i, j] value to determine how to split the current sequence. Assume
that the matrices are stored in an array of matricesA[1..n], and thats[i, j] is global to this recursive procedure.
The recursive procedure Mult does this computation and below returns a matrix.

Extracting Optimum Sequence
Mult(i, j) {

if (i == j) // basis case
return A[i];

else {
k = s[i,j]
X = Mult(i, k) // X = A[i]...A[k]
Y = Mult(k+1, j) // Y = A[k+1]...A[j]
return X*Y; // multiply matrices X and Y

}
}

In the figure below we show an example. This algorithm is tricky, so it would be a good idea to trace through
this example (and the one given in the text). The initial set of dimensions are〈5, 4, 6, 2, 7〉 meaning that we
are multiplyingA1 (5 × 4) timesA2 (4 × 6) timesA3 (6 × 2) timesA4 (2 × 7). The optimal sequence is
((A1(A2A3))A4).

Lecture 6: Dynamic Programming: Minimum Weight Triangulation

Read: This is not covered in CLRS.

Lecture Notes 18 CMSC 451



i

1

s[i,j]

2 3

1 3

3
j

2

3

4
2

3

0p 4p3p

Final order

4A3A2A1A

4A3A2A1A

3

2

1

1
m[i,j]

1

2

3

4 1

2

3

4

4

2p1p

5

158

88

120 48

104

84

0000

ij

726

Fig. 9: Chain Matrix Multiplication Example.

Polygons and Triangulations: Let’s consider a geometric problem that outwardly appears to be quite different from
chain-matrix multiplication, but actually has remarkable similarities. We begin with a number of definitions.
Define apolygonto be a piecewise linear closed curve in the plane. In other words, we form a cycle by joining
line segments end to end. The line segments are called thesidesof the polygon and the endpoints are called the
vertices. A polygon issimpleif it does not cross itself, that is, if the sides do not intersect one another except
for two consecutive sides sharing a common vertex. A simple polygon subdivides the plane into itsinterior, its
boundaryand itsexterior. A simple polygon is said to beconvexif every interior angle is at most 180 degrees.
Vertices with interior angle equal to 180 degrees are normally allowed, but for this problem we will assume that
no such vertices exist.

Polygon Simple polygon Convex polygon

Fig. 10: Polygons.

Given a convex polygon, we assume that its vertices are labeled in counterclockwise orderP = 〈v1, . . . , vn〉.
We will assume that indexing of vertices is done modulon, sov0 = vn. This polygon hasn sides,vi−1vi.

Given two nonadjacent sidesvi andvj , wherei < j−1, the line segmentvivj is achord. (If the polygon is simple
but not convex, we include the additional requirement that the interior of the segment must lie entirely in the
interior ofP .) Any chord subdivides the polygon into two polygons:〈vi, vi+1, . . . , vj〉, and〈vj , vj+1, . . . , vi〉.
A triangulationof a convex polygonP is a subdivision of the interior ofP into a collection of triangles with
disjoint interiors, whose vertices are drawn from the vertices ofP . Equivalently, we can define a triangulation
as a maximal setT of nonintersecting chords. (In other words, every chord that is not inT intersects the interior
of some chord inT .) It is easy to see that such a set of chords subdivides the interior of the polygon into a
collection of triangles with pairwise disjoint interiors (and hence the nametriangulation). It is not hard to prove
(by induction) that every triangulation of ann-sided polygon consists ofn − 3 chords andn − 2 triangles.
Triangulations are of interest for a number of reasons. Many geometric algorithm operate by first decomposing
a complex polygonal shape into triangles.

In general, given a convex polygon, there are many possible triangulations. In fact, the number is exponential in
n, the number of sides. Which triangulation is the “best”? There are many criteria that are used depending on
the application. One criterion is to imagine that you must “pay” for the ink you use in drawing the triangulation,
and you want to minimize the amount of ink you use. (This may sound fanciful, but minimizing wire length is an
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important condition in chip design. Further, this is one of many properties which we could choose to optimize.)
This suggests the following optimization problem:

Minimum-weight convex polygon triangulation: Given a convex polygon determine the triangulation that
minimizes the sum of the perimeters of its triangles. (See Fig. 11.)

Lower weight triangulationA triangulation

Fig. 11: Triangulations of convex polygons, and the minimum weight triangulation.

Given three distinct verticesvi, vj , vk, we define theweightof the associated triangle by the weight function

w(vi, vj , vk) = |vivj |+ |vjvk|+ |vkvi|,

where|vivj | denotes the length of the line segmentvivj .

Dynamic Programming Solution: Let us consider an(n + 1)-sided polygonP = 〈v0, v1, . . . , vn〉. Let us assume
that these vertices have been numbered in counterclockwise order. To derive a DP formulation we need to define
a set of subproblems from which we can derive the optimum solution. For0 ≤ i < j ≤ n, definet[i, j] to be the
weight of the minimum weight triangulation for the subpolygon that lies to the right of directed chordvivj , that
is, the polygon with the counterclockwise vertex sequence〈vi, vi+1, . . . , vj〉. Observe that if we can compute
this quantity for all suchi andj, then the weight of the minimum weight triangulation of the entire polygon can
be extracted ast[0, n]. (As usual, we only compute the minimum weight. But, it is easy to modify the procedure
to extract the actual triangulation.)

As a basis case, we define the weight of the trivial “2-sided polygon” to be zero, implying thatt[i, i + 1] = 0.
In general, to computet[i, j], consider the subpolygon〈vi, vi+1, . . . , vj〉, wherej > i + 1. One of the chords of
this polygon is the sidevivj . We may split this subpolygon by introducing a triangle whose base is this chord,
and whose third vertex is any vertexvk, wherei < k < j. This subdivides the polygon into the subpolygons
〈vi, vi+1, . . . vk〉 and〈vk, vk+1, . . . vj〉 whose minimum weights are already known to us ast[i, k] andt[k, j].
In addition we should consider the weight of the newly added triangle4vivkvj . Thus, we have the following
recursive rule:

t[i, j] =
{

0 if j = i + 1
mini<k<j(t[i, k] + t[k, j] + w(vivkvj)) if j > i + 1.

The final output is the overall minimum weight, which is,t[0, n]. This is illustrated in Fig. 12

Note that this has almost exactly the same structure as the recursive definition used in the chain matrix multipli-
cation algorithm (except that some indices are different by 1.) The sameΘ(n3) algorithm can be applied with
only minor changes.

Relationship to Binary Trees: One explanation behind the similarity of triangulations and the chain matrix multipli-
cation algorithm is to observe that both are fundamentally related to binary trees. In the case of the chain matrix
multiplication, the associated binary tree is the evaluation tree for the multiplication, where the leaves of the
tree correspond to the matrices, and each node of the tree is associated with a product of a sequence of two or
more matrices. To see that there is a similar correspondence here, consider an(n + 1)-sided convex polygon
P = 〈v0, v1, . . . , vn〉, and fix one side of the polygon (sayv0vn). Now consider a rooted binary tree whose root
node is the triangle containing sidev0vn, whose internal nodes are the nodes of the dual tree, and whose leaves
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Fig. 12: Triangulations and tree structure.

correspond to the remaining sides of the tree. Observe that partitioning the polygon into triangles is equivalent
to a binary tree withn leaves, and vice versa. This is illustrated in Fig. 13. Note that every triangle is associated
with an internal node of the tree and every edge of the original polygon, except for the distinguished starting
sidev0vn, is associated with a leaf node of the tree.
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Fig. 13: Triangulations and tree structure.

Once you see this connection. Then the following two observations follow easily. Observe that the associated
binary tree hasn leaves, and hence (by standard results on binary trees)n − 1 internal nodes. Since each
internal node other than the root has one edge entering it, there aren−2 edges between the internal nodes. Each
internal node corresponds to one triangle, and each edge between internal nodes corresponds to one chord of the
triangulation.

Lecture 7: Greedy Algorithms: Activity Selection and Fractional Knapack

Read: Sections 16.1 and 16.2 in CLRS.

Greedy Algorithms: In many optimization algorithms a series of selections need to be made. In dynamic program-
ming we saw one way to make these selections. Namely, the optimal solution is described in a recursive manner,
and then is computed “bottom-up”. Dynamic programming is a powerful technique, but it often leads to algo-
rithms with higher than desired running times. Today we will consider an alternative design technique, called
greedy algorithms. This method typically leads to simpler and faster algorithms, but it is not as powerful or as
widely applicable as dynamic programming. We will give some examples of problems that can be solved by
greedy algorithms. (Later in the semester, we will see that this technique can be applied to a number of graph
problems as well.) Even when greedy algorithms do not produce the optimal solution, they often provide fast
heuristics (nonoptimal solution strategies), are often used in finding good approximations.
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Activity Scheduling: Activity schedulingand it is a very simple scheduling problem. We are given a setS =
{1, 2, . . . , n} of n activitiesthat are to be scheduled to use some resource, where each activity must be started
at a given start timesi and ends at a given finish timefi. For example, these might be lectures that are to be
given in a lecture hall, where the lecture times have been set up in advance, or requests for boats to use a repair
facility while they are in port.

Because there is only one resource, and some start and finish times may overlap (and two lectures cannot be
given in the same room at the same time), not all the requests can be honored. We say that two activitiesi and
j arenoninterferingif their start-finish intervals do not overlap, more formally,[si, fi) ∩ [sj , fj) = ∅. (Note
that making the intervalshalf open, two consecutive activities are not considered to interfere.) Theactivity
scheduling problemis to select a maximum-size set of mutually noninterfering activities for use of the resource.
(Notice that goal here is maximum number of activities, not maximum utilization. Of course different criteria
could be considered, but the greedy approach may not be optimal in general.)

How do we schedule the largest number of activities on the resource? Intuitively, we do not like long activities,
because they occupy the resource and keep us from honoring other requests. This suggests the following greedy
strategy: repeatedly select the activity with the smallest duration (fi − si) and schedule it, provided that it does
not interfere with any previously scheduled activities. Although this seems like a reasonable strategy, this turns
out to be nonoptimal. (See Problem 17.1-4 in CLRS). Sometimes the design of a correct greedy algorithm
requires trying a few different strategies, until hitting on one that works.

Here is a greedy strategy that does work. The intuition is the same. Since we do not like activities that take a
long time, let us select the activity that finishes first and schedule it. Then, we skip all activities that interfere
with this one, and schedule the next one that has the earliest finish time, and so on. To make the selection process
faster, we assume that the activities have been sorted by their finish times, that is,

f1 ≤ f2 ≤ . . . ≤ fn,

Assuming this sorting, the pseudocode for the rest of the algorithm is presented below. The output is the listA
of scheduled activities. The variableprevholds the index of the most recently scheduled activity at any time, in
order to determine interferences.

Greedy Activity Scheduler
schedule(s[1..n], f[1..n]) { // given start and finish times

// we assume f[1..n] already sorted
List A = <1> // schedule activity 1 first
prev = 1
for i = 2 to n

if (s[i] >= f[prev]) { // no interference?
append i to A; prev = i // schedule i next

}
return A

}

It is clear that the algorithm is quite simple and efficient. The most costly activity is that of sorting the activities
by finish time, so the total running time isΘ(n log n). Fig. 14 shows an example. Each activity is represented
by its start-finish time interval. Observe that the intervals are sorted by finish time. Event 1 is scheduled first. It
interferes with activity 2 and 3. Then Event 4 is scheduled. It interferes with activity 5 and 6. Finally, activity 7
is scheduled, and it intereferes with the remaining activity. The final output is{1, 4, 7}. Note that this is not the
only optimal schedule.{2, 4, 7} is also optimal.

Proof of Optimality: Our proof of optimality is based on showing that the first choice made by the algorithm is the
best possible, and then using induction to show that the rest of the choices result in an optimal schedule. Proofs
of optimality for greedy algorithms follow a similar structure. Suppose that you have any nongreedy solution.

Lecture Notes 22 CMSC 451



4

1

4

11

Add 7:

Sched 7; Skip 8

Sched 4; Skip 5,6

Sched 1; Skip 2,3

Input:

3

2

3

2

3

5

6

2

7 7

5

Add 1:

7

6

7

Add 4:

8

4

8

6

5

4

2

1

3

5

8

8

6

Fig. 14: An example of the greedy algorithm for activity scheduling. The final schedule is{1, 4, 7}.

Show that its cost can be reduced by being “greedier” at some point in the solution. This proof is complicated a
bit by the fact that there may be multiple solutions. Our approach is to show that any schedule that is not greedy
can be made more greedy, without decreasing the number of activities.

Claim: The greedy algorithm gives an optimal solution to the activity scheduling problem.

Proof: Consider any optimal scheduleA that is not the greedy schedule. We will construct a new optimal
scheduleA′ that is in some sense “greedier” thanA. Order the activities in increasing order of finish
time. LetA = 〈x1, x2, . . . , xk〉 be the activities ofA. SinceA is not the same as the greedy schedule,
consider the first activityxj where these two schedules differ. That is, the greedy schedule is of the form
G = 〈x1, x2, . . . , xj−1, gj , . . .〉 wheregj 6= xj . (Note thatk ≥ j, since otherwiseG would have more
activities than the optimal schedule, which would be a contradiction.) The greedy algorithm selects the
activity with the earliest finish time that does not conflict with any earlier activity. Thus, we know thatgj

does not conflict with any earlier activity, and it finishes beforexj .

Consider the modified “greedier” scheduleA′ that results by replacingxj with gj in the scheduleA. (See
Fig. 15.) That is,

A′ = 〈x1, x2, . . . , xj−1, gj , xj+1, . . . , xk〉.

1 5x4

G: x1 x2

A: x x2 x3 x

g3

g3A’: x1 x2 x4 x5

Fig. 15: Proof of optimality for the greedy schedule (j = 3).

This is a feasible schedule. (Sincegj cannot conflict with the earlier activities, and it does not conflict with
later activities, because it finishes beforexj .) It has the same number of activities asA, and thereforeA′
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is also optimal. By repeating this process, we will eventually convertA into G, without decreasing the
number of activities. Therefore,G is also optimal.

Fractional Knapsack Problem: The classical(0-1) knapsack problemis a famous optimization problem. A thief is
robbing a store, and findsn items which can be taken. Theith item is worthvi dollars and weighswi pounds,
wherevi andwi are integers. He wants to take as valuable a load as possible, but has a knapsack that can only
carryW total pounds. Which items should he take? (The reason that this is called 0-1 knapsack is that each
item must be left (0) or taken entirely (1). It is not possible to take a fraction of an item or multiple copies of an
item.) This optimization problem arises in industrial packing applications. For example, you may want to ship
some subset of items on a truck of limited capacity.

In contrast, in thefractional knapsack problemthe setup is exactly the same, but the thief is allowed to take any
fractionof an item for a fraction of the weight and a fraction of the value. So, you might think of each object as
being a sack of gold, which you can partially empty out before taking.

The 0-1 knapsack problem is hard to solve, and in fact it is an NP-complete problem (meaning that there
probably doesn’t exist an efficient solution). However, there is a very simple and efficient greedy algorithm for
the fractional knapsack problem.

As in the case of the other greedy algorithms we have seen, the idea is to find the right order in which to process
items. Intuitively, it is good to have high value and bad to have high weight. This suggests that we first sort the
items according to some function that is an decreases with value and increases with weight. There are a few
choices that you might try here, but only one works. Letρi = vi/wi denote thevalue-per-pound ratio. We sort
the items in decreasing order ofρi, and add them in this order. If the item fits, we take it all. At some point
there is an item that does not fit in the remaining space. We take as much of this item as possible, thus filling
the knapsack entirely. This is illustrated in Fig. 16
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Fig. 16: Example for the fractional knapsack problem.

Correctness: It is intuitively easy to see that the greedy algorithm is optimal for the fractional problem. Given a room
with sacks of gold, silver, and bronze, you would obviously take as much gold as possible, then take as much
silver as possible, and then as much bronze as possible. But it would never benefit you to take a little less gold
so that you could replace it with an equal volume of bronze.

More formally, suppose to the contrary that the greedy algorithm is not optimal. This would mean that there is
an alternate selection that is optimal. Sort the items of the alternate selection in decreasing order byρ values.
Consider the first itemi on which the two selections differ. By definition, greedy takes a greater amount of item
i than the alternate (because the greedy always takes as much as it can). Let us say that greedy takesx more
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units of objecti than the alternate does. All the subsequent elements of the alternate selection are of lesser value
thanvi. By replacingx units of any such items withx units of itemi, we would increase the overall value of the
alternate selection. However, this implies that the alternate selection is not optimal, a contradiction.

Nonoptimality for the 0-1 Knapsack: Next we show that the greedy algorithm is not generally optimal in the 0-1
knapsack problem. Consider the example shown in Fig. 16. If you were to sort the items byρi, then you would
first take the items of weight 5, then 20, and then (since the item of weight 40 does not fit) you would settle for
the item of weight 30, for a total value of$30 + $100 + $90 = $220. On the other hand, if you had been less
greedy, and ignored the item of weight 5, then you could take the items of weights 20 and 40 for a total value of
$100 + $160 = $260. This feature of “delaying gratification” in order to come up with a better overall solution
is your indication that the greedy solution is not optimal.

Lecture 8: Greedy Algorithms: Huffman Coding

Read: Section 16.3 in CLRS.

Huffman Codes: Huffman codes provide a method of encoding data efficiently. Normally when characters are coded
using standard codes like ASCII, each character is represented by a fixed-lengthcodewordof bits (e.g. 8 bits
per character). Fixed-length codes are popular, because its is very easy to break a string up into its individual
characters, and to access individual characters and substrings by direct indexing. However, fixed-length codes
may not be the most efficient from the perspective of minimizing the total quantity of data.

Consider the following example. Suppose that we want to encode strings over the (rather limited) 4-character
alphabetC = {a, b, c, d}. We could use the following fixed-length code:

Character a b c d
Fixed-Length Codeword 00 01 10 11

A string such as “abacdaacac” would be encoded by replacing each of its characters by the corresponding binary
codeword.

a b a c d a a c a c
00 01 00 10 11 00 00 10 00 10

The final 20-character binary string would be “00010010110000100010”.

Now, suppose that you knew the relative probabilities of characters in advance. (This might happen by analyzing
many strings over a long period of time. In applications like data compression, where you want to encode one
file, you can just scan the file and determine the exact frequencies of all the characters.) You can use this
knowledge to encode strings differently. Frequently occurring characters are encoded using fewer bits and less
frequent characters are encoded using more bits. For example, suppose that characters are expected to occur
with the following probabilities. We could design avariable-length codewhich would do a better job.

Character a b c d
Probability 0.60 0.05 0.30 0.05
Variable-Length Codeword 0 110 10 111

Notice that there is no requirement that the alphabetical order of character correspond to any sort of ordering
applied to the codewords. Now, the same string would be encoded as follows.

a b a c d a a c a c
0 110 0 10 111 0 0 10 0 10
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Thus, the resulting 17-character string would be “01100101110010010”. Thus, we have achieved a savings of
3 characters, by using this alternative code. More generally, what would be the expected savings for a string of
lengthn? For the 2-bit fixed-length code, the length of the encoded string is just2n bits. For the variable-length
code, the expected length of a single encoded character is equal to the sum of code lengths times the respective
probabilities of their occurrences. The expected encoded string length is justn times the expected encoded
character length.

n(0.60 · 1 + 0.05 · 3 + 0.30 · 2 + 0.05 · 3) = n(0.60 + 0.15 + 0.60 + 0.15) = 1.5n.

Thus, this would represent a 25% savings in expected encoding length. The question that we will consider today
is how to form the best code, assuming that the probabilities of character occurrences are known.

Prefix Codes: One issue that we didn’t consider in the example above is whether we will be able todecodethe string,
once encoded. In fact, this code was chosen quite carefully. Suppose that instead of coding the character ‘a’
as 0, we had encoded it as 1. Now, the encoded string “111” is ambiguous. It might be “d” and it might be
“aaa”. How can we avoid this sort of ambiguity? You might suggest that we add separation markers between
the encoded characters, but this will tend to lengthen the encoding, which is undesirable. Instead, we would like
the code to have the property that it can be uniquely decoded.

Note that in both the variable-length codes given in the example above no codeword is aprefixof another. This
turns out to be the key property. Observe that if two codewords did share a common prefix, e.g.a → 001 and
b → 00101, then when we see00101 . . . how do we know whether the first character of the encoded message
is a or b. Conversely, if no codeword is a prefix of any other, then as soon as we see a codeword appearing as
a prefix in the encoded text, then we know that we may decode this without fear of it matching some longer
codeword. Thus we have the following definition.

Prefix Code: An assignment of codewords to characters so that no codeword is a prefix of any other.

Observe that any binary prefix coding can be described by a binary tree in which the codewords are the leaves
of the tree, and where a left branch means “0” and a right branch means “1”. The code given earlier is shown
in the following figure. The length of a codeword is just its depth in the tree. The code given earlier is a prefix
code, and its corresponding tree is shown in the following figure.
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Fig. 17: Prefix codes.

Decoding a prefix code is simple. We just traverse the tree from root to leaf, letting the input character tell
us which branch to take. On reaching a leaf, we output the corresponding character, and return to the root to
continue the process.

Expected encoding length:Once we know the probabilities of the various characters, we can determine the total
length of the encoded text. Letp(x) denote the probability of seeing characterx, and letdT (x) denote the
length of the codeword (depth in the tree) relative to some prefix treeT . The expected number of bits needed to
encode a text withn characters is given in the following formula:

B(T ) = n
∑
x∈C

p(x)dT (x).
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This suggests the following problem:

Optimal Code Generation: Given an alphabetC and the probabilitiesp(x) of occurrence for each character
x ∈ C, compute a prefix codeT that minimizes the expected length of the encoded bit-string,B(T ).

Note that the optimal code is not unique. For example, we could have complemented all of the bits in our earlier
code without altering the expected encoded string length. There is a very simple algorithm for finding such a
code. It was invented in the mid 1950’s by David Huffman, and is called aHuffman code.. By the way, this
code is used by the Unix utilitypack for file compression. (There are better compression methods however. For
example,compress, gzip and many others are based on a more sophisticated method called theLempel-Ziv
coding.)

Huffman’s Algorithm: Here is the intuition behind the algorithm. Recall that we are given the occurrence probabil-
ities for the characters. We are going to build the tree up from the leaf level. We will take two charactersx and
y, and “merge” them into a singlesuper-charactercalledz, which then replacesx andy in the alphabet. The
characterz will have a probability equal to the sum ofx andy’s probabilities. Then we continue recursively
building the code on the new alphabet, which has one fewer character. When the process is completed, we know
the code forz, say010. Then, we append a 0 and 1 to this codeword, given0100 for x and0101 for y.

Another way to think of this, is that we mergex andy as the left and right children of a root node calledz. Then
the subtree forz replacesx andy in the list of characters. We repeat this process until only one super-character
remains. The resulting tree is the final prefix tree. Sincex andy will appear at the bottom of the tree, it seem
most logical to select the two characters with the smallest probabilities to perform the operation on. The result
is Huffman’s algorithm. It is illustrated in the following figure.

The pseudocode for Huffman’s algorithm is given below. LetC denote the set of characters. Each character
x ∈ C is associated with an occurrence probabilityx.prob. Initially, the characters are all stored in apriority
queueQ. Recall that this data structure can be built initially inO(n) time, and we can extract the element with
the smallest key inO(log n) time and insert a new element inO(log n) time. The objects inQ are sorted by
probability. Note that with each execution of the for-loop, the number of items in the queue decreases by one.
So, aftern − 1 iterations, there is exactly one element left in the queue, and this is the root of the final prefix
code tree.

Correctness: The big question that remains is why is this algorithm correct? Recall that the cost of any encoding tree
T isB(T ) =

∑
x p(x)dT (x). Our approach will be to show that any tree that differs from the one constructed by

Huffman’s algorithm can be converted into one that is equal to Huffman’s tree without increasing its cost. First,
observe that the Huffman tree is afull binary tree, meaning that every internal node has exactly two children. It
would never pay to have an internal node with only one child (since such a node could be deleted), so we may
limit consideration to full binary trees.

Claim: Consider the two characters,x andy with the smallest probabilities. Then there is an optimal code tree
in which these two characters are siblings at the maximum depth in the tree.

Proof: Let T be any optimal prefix code tree, and letb andc be two siblings at the maximum depth of the
tree. Assume without loss of generality thatp(b) ≤ p(c) andp(x) ≤ p(y) (if this is not true, then rename
these characters). Now, sincex andy have the two smallest probabilities it follows thatp(x) ≤ p(b) and
p(y) ≤ p(c). (In both cases they may be equal.) Becauseb andc are at the deepest level of the tree we
know thatd(b) ≥ d(x) andd(c) ≥ d(y). (Again, they may be equal.) Thus, we havep(b)− p(x) ≥ 0 and
d(b)− d(x) ≥ 0, and hence their product is nonnegative. Now switch the positions ofx andb in the tree,
resulting in a new treeT ′. This is illustrated in the following figure.

Next let us see how the cost changes as we go fromT to T ′. Almost all the nodes contribute the same
to the expected cost. The only exception are nodesx andb. By subtracting the old contributions of these

Lecture Notes 27 CMSC 451



30

b: 48 d: 17 f: 13

smallest

smallest

smallest

smallest

22

12

a: 05 c: 07

e: 10

b: 48

d: 17 f: 13

30

smallest

b: 4852

22

12

a: 05

0

b: 48

Final Tree

011

1

010

0

1

1

1

0

0

1

001

0001

1

0

0000

f: 13d: 17

a: 05 c: 07

e: 10

f: 13d: 17e: 10

c: 07

e: 10

c: 07a: 05

12

22

12

c: 07a: 05

b: 48 d: 17 e: 10 f: 13

f: 13e: 10d: 17c: 07b: 48a: 05

Fig. 18: Huffman’s Algorithm.
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Huffman’s Algorithm
Huffman(int n, character C[1..n]) {

Q = C; // priority queue
for i = 1 to n-1 {

z = new internal tree node;
z.left = x = Q.extractMin(); // extract smallest probabilities
z.right = y = Q.extractMin();
z.prob = x.prob + y.prob; // z’s probability is their sum
Q.insert(z); // insert z into queue

}
return the last element left in Q as the root;

}

T’’
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Fig. 19: Correctness of Huffman’s Algorithm.

nodes and adding in the new contributions we have

B(T ′) = B(T )− p(x)d(x) + p(x)d(b)− p(b)d(b) + p(b)d(x)
= B(T ) + p(x)(d(b)− d(x))− p(b)(d(b)− d(x))
= B(T )− (p(b)− p(x))(d(b)− d(x))
≤ B(T ) because(p(b)− p(x))(d(b)− d(x)) ≥ 0.

Thus the cost does not increase, implying thatT ′ is an optimal tree. By switchingy with c we get a new
treeT ′′, which by a similar argument is also optimal. The final treeT ′′ satisfies the statement of the claim.

The above theorem asserts that the first step of Huffman’s algorithm is essentially the proper one to perform.
The complete proof of correctness for Huffman’s algorithm follows by induction onn (since with each step, we
eliminate exactly one character).

Claim: Huffman’s algorithm produces the optimal prefix code tree.

Proof: The proof is by induction onn, the number of characters. For the basis case,n = 1, the tree consists of
a single leaf node, which is obviously optimal.

Assume inductively that when strictly fewer thann characters, Huffman’s algorithm is guaranteed to pro-
duce the optimal tree. We want to show it is true with exactlyn characters. Suppose we have exactlyn
characters. The previous claim states that we may assume that in the optimal tree, the two characters of
lowest probabilityx andy will be siblings at the lowest level of the tree. Removex andy, replacing them
with a new characterz whose probability isp(z) = p(x) + p(y). Thusn− 1 characters remain.

Consider any prefix code treeT made with this new set ofn− 1 characters. We can convert it into a prefix
code treeT ′ for the original set of characters by undoing the previous operation and replacingz with x
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andy (adding a “0” bit forx and a “1” bit fory). The cost of the new tree is

B(T ′) = B(T )− p(z)d(z) + p(x)(d(z) + 1) + p(y)(d(z) + 1)
= B(T )− (p(x) + p(y))d(z) + (p(x) + p(y))(d(z) + 1)
= B(T ) + (p(x) + p(y))(d(z) + 1− d(z))
= B(T ) + p(x) + p(y).

Since the change in cost depends in no way on the structure of the treeT , to minimize the cost of the
final treeT ′, we need to build the treeT on n − 1 characters optimally. By induction, this exactly what
Huffman’s algorithm does. Thus the final tree is optimal.

Lecture 9: Graphs: Background and Breadth First Search

Read: Review Sections 22.1 and 22.2 CLR.

Graph Algorithms: We are now beginning a major new section of the course. We will be discussing algorithms for
both directed and undirected graphs. Intuitively, agraph is a collection of vertices or nodes, connected by a
collection of edges. Graphs are extremely important because they are a very flexible mathematical model for
many application problems. Basically, any time you have a set of objects, and there is some “connection” or “re-
lationship” or “interaction” between pairs of objects, a graph is a good way to model this. Examples of graphs in
application includecommunicationandtransportation networks, VLSI and other sorts oflogic circuits, surface
meshesused for shape description in computer-aided design and geographic information systems,precedence
constraintsin scheduling systems. The list of application is almost too long to even consider enumerating it.

Most of the problems in computational graph theory that we will consider arise because they are of importance
to one or more of these application areas. Furthermore, many of these problems form the basic building blocks
from which more complex algorithms are then built.

Graphs and Digraphs: Most of you have encountered the notions of directed and undirected graphs in other courses,
so we will give a quick overview here.

Definition: A directed graph(or digraph) G = (V,E) consists of a finite setV , called theverticesor nodes,
andE, a set ofordered pairs, called theedgesof G. (Another way of saying this is thatE is a binary
relation onV .)

Observe thatself-loopsare allowed by this definition. Some definitions of graphs disallow this. Multiple edges
are not permitted (although the edges(v, w) and(w, v) are distinct).

1

3

4 1

2

3

42

Digraph Graph

Fig. 20: Digraph and graph example.

Definition: An undirected graph(or graph) G = (V,E) consists of a finite setV of vertices, and a setE of
unordered pairsof distinct vertices, called the edges. (Note that self-loops are not allowed).
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Note that directed graphs and undirected graphs are different (but similar) objects mathematically. Certain
notions (such as path) are defined for both, but other notions (such as connectivity) may only be defined for one,
or may be defined differently.

We say that vertexv is adjacentto vertexu if there is an edge(u, v). In a directed graph, given the edge
e = (u, v), we say thatu is theorigin of e andv is thedestinationof e. In undirected graphsu andv are the
endpointsof the edge. The edgee is incident(meaning that it touches) bothu andv.

In a digraph, the number of edges coming out of a vertex is called theout-degreeof that vertex, and the number
of edges coming in is called thein-degree. In an undirected graph we just talk about thedegreeof a vertex as
the number of incident edges. By thedegreeof a graph, we usually mean the maximum degree of its vertices.

When discussing the size of a graph, we typically consider both the number of vertices and the number of edges.
The number of vertices is typically written asn or V , and the number of edges is written asm or E or e. Here
are some basic combinatorial facts about graphs and digraphs. We will leave the proofs to you. Given a graph
with V vertices andE edges then:

In a graph:

Number of edges: 0 ≤ E ≤ (n2) = n(n− 1)/2 ∈ O(n2).
Sum of degrees:

∑
v∈V deg(v) = 2E.

In a digraph:

Number of edges: 0 ≤ E ≤ n2.
Sum of degrees:

∑
v∈V in-deg(v) =

∑
v∈V out-deg(v) = E.

Notice that generally the number of edges in a graph may be as large as quadratic in the number of vertices.
However, the large graphs that arise in practice typically have much fewer edges. A graph is said to besparseif
E ∈ Θ(V ), anddense, otherwise. When giving the running times of algorithms, we will usually express it as a
function of bothV andE, so that the performance on sparse and dense graphs will be apparent.

Paths and Cycles:A path in a graph or digraph is a sequence of vertices〈v0, v1, . . . , vk〉 such that(vi−1, vi) is an
edge fori = 1, 2, . . . , k. Thelengthof the path is the number of edges,k. A path issimpleif all vertices and all
the edges are distinct. Acycleis a path containing at least one edge and for whichv0 = vk. A cycle issimpleif
its vertices (exceptv0 andvk) are distinct, and all its edges are distinct.

A graph or digraph is said to beacyclic if it contains no simple cycles. An acyclic connected graph is called a
free treeor simply tree for short. (The term “free” is intended to emphasize the fact that the tree has no root, in
contrast to arooted tree, as is usually seen in data structures.) An acyclic undirected graph (which need not be
connected) is a collection of free trees, and is (naturally) called aforest. An acyclic digraph is called adirected
acyclic graph, or DAG for short.

Free Tree
cycle

Simple
cycle

Nonsimple DAGForest

Fig. 21: Illustration of some graph terms.

We say thatw is reachablefrom u if there is a path fromu to w. Note that every vertex is reachable from itself
by a trivial path that uses zero edges. An undirected graph isconnectedif every vertex can reach every other
vertex. (Connectivity is a bit messier for digraphs, and we will define it later.) The subsets of mutually reachable
vertices partition the vertices of the graph into disjoint subsets, called theconnected componentsof the graph.
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Representations of Graphs and Digraphs:There are two common ways of representing graphs and digraphs. First
we show how to represent digraphs. LetG = (V,E) be a digraph withn = |V | and lete = |E|. We will assume
that the vertices ofG are indexed{1, 2, . . . , n}.
Adjacency Matrix: An n× n matrix defined for1 ≤ v, w ≤ n.

A[v, w] =
{

1 if (v, w) ∈ E
0 otherwise.

If the digraph has weights we can store the weights in the matrix. For example if(v, w) ∈ E then
A[v, w] = W (v, w) (the weight on edge(v, w)). If (v, w) /∈ E then generallyW (v, w) need not be
defined, but often we set it to some “special” value, e.g.A(v, w) = −1, or∞. (By ∞ we mean (in
practice) some number which is larger than any allowable weight. In practice, this might be some machine
dependent constant likeMAXINT.)

Adjacency List: An arrayAdj[1 . . . n] of pointers where for1 ≤ v ≤ n, Adj[v] points to a linked list contain-
ing the vertices which are adjacent tov (i.e. the vertices that can be reached fromv by a single edge). If
the edges have weights then these weights may also be stored in the linked list elements.
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Adjacency matrix

Adj
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Fig. 22: Adjacency matrix and adjacency list for digraphs.

We can represent undirected graphs using exactly the same representation, but we will store each edge twice. In
particular, we representing the undirected edge{v, w} by the two oppositely directed edges(v, w) and(w, v).
Notice that even though we represent undirected graphs in the same way that we represent digraphs, it is impor-
tant to remember that these two classes of objects are mathematically distinct from one another.

This can cause some complications. For example, suppose you write an algorithm that operates by marking
edges of a graph. You need to be careful when you mark edge(v, w) in the representation that you also mark
(w, v), since they are both the same edge in reality. When dealing with adjacency lists, it may not be convenient
to walk down the entire linked list, so it is common to includecross linksbetween corresponding edges.
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Fig. 23: Adjacency matrix and adjacency list for graphs.

An adjacency matrix requiresΘ(V 2) storage and an adjacency list requiresΘ(V + E) storage. TheV arises
because there is one entry for each vertex inAdj . Since each list hasout-deg(v) entries, when this is summed
over all vertices, the total number of adjacency list records isΘ(E). For sparse graphs the adjacency list
representation is more space efficient.
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Graph Traversals: There are a number of approaches used for solving problems on graphs. One of the most impor-
tant approaches is based on the notion of systematically visiting all the vertices and edge of a graph. The reason
for this is that these traversals impose a type of tree structure (or generally a forest) on the graph, and trees are
usually much easier to reason about than general graphs.

Breadth-first search: Given an graphG = (V,E), breadth-first search starts at some source vertexs and “discovers”
which vertices are reachable froms. Define thedistancebetween a vertexv ands to be the minimum number
of edges on a path froms to v. Breadth-first search discovers vertices in increasing order of distance, and hence
can be used as an algorithm for computing shortest paths. At any given time there is a “frontier” of vertices that
have been discovered, but not yet processed. Breadth-first search is named because it visits vertices across the
entire “breadth” of this frontier.

Initially all vertices (except the source) are colored white, meaning that they areundiscovered. When a vertex
has first beendiscovered, it is colored gray (and is part of the frontier). When a gray vertex isprocessed, then it
becomes black.

The search makes use of aqueue, a first-in first-out list, where elements are removed in the same order they
are inserted. The first item in the queue (the next to be removed) is called theheadof the queue. We will also
maintain arrayscolor[u] which holds the color of vertexu (either white, gray or black),pred[u] which points to
the predecessor ofu (i.e. the vertex who first discoveredu, andd[u], the distance froms to u. Only the color
is really needed for the search (in fact it is only necessary to know whether a node is nonwhite). We include all
this information, because some applications of BFS use this additional information.

Breadth-First Search
BFS(G,s) {

for each u in V { // initialization
color[u] = white
d[u] = infinity
pred[u] = null

}
color[s] = gray // initialize source s
d[s] = 0
Q = {s} // put s in the queue
while (Q is nonempty) {

u = Q.Dequeue() // u is the next to visit
for each v in Adj[u] {

if (color[v] == white) { // if neighbor v undiscovered
color[v] = gray // ...mark it discovered
d[v] = d[u]+1 // ...set its distance
pred[v] = u // ...and its predecessor
Q.Enqueue(v) // ...put it in the queue

}
}
color[u] = black // we are done with u

}
}

Observe that the predecessor pointers of the BFS search define aninverted tree(an acyclic directed graph in
which the source is the root, and every other node has a unique path to the root). If we reverse these edges we
get a rooted unordered tree called aBFS treefor G. (Note that there are many potential BFS trees for a given
graph, depending on where the search starts, and in what order vertices are placed on the queue.) These edges
of G are calledtree edgesand the remaining edges ofG are calledcross edges.

It is not hard to prove that ifG is an undirected graph, then cross edges always go between two nodes that are at
most one level apart in the BFS tree. (Can you see why this must be true?) Below is a sketch of a proof that on
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Fig. 24: Breadth-first search: Example.

termination,d[v] is equal to the distance froms to v. (See the CLRS for a detailed proof.)

Theorem: Let δ(s, v) denote the length (number of edges) on the shortest path froms tov. Then, on termination
of the BFS procedure,d[v] = δ(s, v).

Proof: (Sketch) The proof is by induction on the length of the shortest path. Letu be the predecessor ofv on
some shortest path froms to v, and among all such vertices the first to be processed by the BFS. Thus,
δ(s, v) = δ(s, u) + 1. Whenu is processed, we have (by induction)d[u] = δ(s, u). Sincev is a neighbor
of u, we setd[v] = d[u] + 1. Thus we have

d[v] = d[u] + 1 = δ(s, u) + 1 = δ(s, v),

as desired.

Analysis: The running time analysis of BFS is similar to the running time analysis of many graph traversal algorithms.
As done in CLRV = |V | andE = |E|. Observe that the initialization portion requiresΘ(V ) time. The real
meat is in the traversal loop. Since we never visit a vertex twice, the number of times we go through the while
loop is at mostV (exactlyV assuming each vertex is reachable from the source). The number of iterations
through the inner for loop is proportional todeg(u) + 1. (The+1 is because even ifdeg(u) = 0, we need to
spend a constant amount of time to set up the loop.) Summing up over all vertices we have the running time

T (V ) = V +
∑
u∈V

(deg(u) + 1) = V +
∑
u∈V

deg(u) + V = 2V + 2E ∈ Θ(V + E).

The analysis is essentially the same for directed graphs.
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Lecture 10: Depth-First Search

Read: Sections 23.2 and 23.3 in CLR.

Depth-First Search: The next traversal algorithm that we will study is calleddepth-first search, and it has the nice
property that nontree edges have a good deal of mathematical structure.

Consider the problem of searching a castle for treasure. To solve it you might use the following strategy. As
you enter a room of the castle, paint some graffiti on the wall to remind yourself that you were already there.
Successively travel from room to room as long as you come to a place you haven’t already been. When you
return to the same room, try a different door leaving the room (assuming it goes somewhere you haven’t already
been). When all doors have been tried in a given room, then backtrack.

Notice that this algorithm is described recursively. In particular, when you enter a new room, you are beginning
a new search. This is the general idea behind depth-first search.

Depth-First Search Algorithm: We assume we are given an directed graphG = (V,E). The same algorithm works
for undirected graphs (but the resulting structure imposed on the graph is different).

We use four auxiliary arrays. As before we maintain a color for each vertex: white meansundiscovered, gray
meansdiscoveredbut not finished processing, and black meansfinished. As before we also store predecessor
pointers, pointing back to the vertex that discovered a given vertex. We will also associate two numbers with
each vertex. These aretime stamps. When we first discover a vertexu store a counter ind[u] and when we are
finished processing a vertex we store a counter inf [u]. The purpose of the time stamps will be explained later.
(Note: Do not confuse the discovery timed[v] with the distanced[v] from BFS.) The algorithm is shown in code
block below, and illustrated in Fig. 25. As with BFS, DFS induces a tree structure. We will discuss this tree
structure further below.

Depth-First Search
DFS(G) { // main program

for each u in V { // initialization
color[u] = white;
pred[u] = null;

}
time = 0;
for each u in V

if (color[u] == white) // found an undiscovered vertex
DFSVisit(u); // start a new search here

}

DFSVisit(u) { // start a search at u
color[u] = gray; // mark u visited
d[u] = ++time;
for each v in Adj(u) do

if (color[v] == white) { // if neighbor v undiscovered
pred[v] = u; // ...set predecessor pointer
DFSVisit(v); // ...visit v

}
color[u] = black; // we’re done with u
f[u] = ++time;

}

Analysis: The running time of DFS isΘ(V + E). This is somewhat harder to see than the BFS analysis, because the
recursive nature of the algorithm obscures things. Normally, recurrences are good ways to analyze recursively
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Fig. 25: Depth-First search tree.

defined algorithms, but it is not true here, because there is no good notion of “size” that we can attach to each
recursive call.

First observe that if we ignore the time spent in the recursive calls, the main DFS procedure runs inO(V ) time.
Observe that each vertex is visited exactly once in the search, and hence the callDFSVisit() is made exactly
once for each vertex. We can just analyze each one individually and add up their running times. Ignoring the
time spent in the recursive calls, we can see that each vertexu can be processed inO(1+outdeg(u)) time. Thus
the total time used in the procedure is

T (V ) = V +
∑
u∈V

(outdeg(u) + 1) = V +
∑
u∈V

outdeg(u) + V = 2V + E ∈ Θ(V + E).

A similar analysis holds if we consider DFS for undirected graphs.

Tree structure: DFS naturally imposes a tree structure (actually a collection of trees, or a forest) on the structure
of the graph. This is just the recursion tree, where the edge(u, v) arises when processing vertexu we call
DFSVisit(v) for some neighborv. For directed graphs the other edges of the graph can be classified as
follows:

Back edges:(u, v) wherev is a (not necessarily proper) ancestor ofu in the tree. (Thus, a self-loop is consid-
ered to be a back edge).

Forward edges: (u, v) wherev is a proper descendent ofu in the tree.

Cross edges:(u, v) whereu andv are not ancestors or descendents of one another (in fact, the edge may go
between different trees of the forest).

It is not difficult to classify the edges of a DFS tree by analyzing the values of colors of the vertices and/or
considering the time stamps. This is left as an exercise.

With undirected graphs, there are some important differences in the structure of the DFS tree. First, there is
really no distinction between forward and back edges. So, by convention, they are all calledback edgesby
convention. Furthermore, it can be shown that there can be no cross edges. (Can you see why not?)
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Time-stamp structure: There is also a nice structure to the time stamps. In CLR this is referred to as theparenthesis
structure. In particular, the following are easy to observe.

Lemma: (Parenthesis Lemma) Given a digraphG = (V,E), and any DFS tree forG and any two vertices
u, v ∈ V .

• u is a descendent ofv if and only if [d[u], f [u]] ⊆ [d[v], f [v]].
• u is an ancestor ofv if and only if [d[u], f [u]] ⊇ [d[v], f [v]].
• u is unrelated tov if and only if [d[u], f [u]] and[d[v], f [v]] are disjoint.
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Fig. 26: Parenthesis Lemma.

Cycles: The time stamps given by DFS allow us to determine a number of things about a graph or digraph. For
example, suppose you are given a graph or digraph. You run DFS. You can determine whether the graph
contains any cycles very easily. We do this with the help of the following two lemmas.

Lemma: Given a digraphG = (V,E), consider any DFS forest ofG, and consider any edge(u, v) ∈ E. If this
edge is a tree, forward, or cross edge, thenf [u] > f [v]. If the edge is a back edge thenf [u] ≤ f [v].

Proof: For tree, forward, and back edges, the proof follows directly from the parenthesis lemma. (E.g. for a
forward edge(u, v), v is a descendent ofu, and sov’s start-finish interval is contained withinu’s, implying
thatv has an earlier finish time.) For a cross edge(u, v) we know that the two time intervals are disjoint.
When we were processingu, v was not white (otherwise(u, v) would be a tree edge), implying thatv was
started beforeu. Because the intervals are disjoint,v must have also finished beforeu.

Lemma: Consider a digraphG = (V,E) and any DFS forest forG. G has a cycle if and only the DFS forest
has a back edge.

Proof: (⇐) If there is a back edge(u, v), thenv is an ancestor ofu, and by following tree edges fromv to u
we get a cycle.

(⇒) We show the contrapositive. Suppose there are no back edges. By the lemma above, each of the
remaining types of edges, tree, forward, and cross all have the property that they go from vertices with
higher finishing time to vertices with lower finishing time. Thus along any path, finish times decrease
monotonically, implying there can be no cycle.

Beware: No back edges means no cycles. But you should not infer that there is some simple relationship
between thenumberof back edges and thenumberof cycles. For example, a DFS tree may only have a single
back edge, and there may anywhere from one up to an exponential number of simple cycles in the graph.

A similar theorem applies to undirected graphs, and is not hard to prove.
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Lecture 11: Topological Sort and Strong Components

Read: Sects. 22.3–22.5 in CLRS.

Directed Acyclic Graph: A directed acyclic graphis often called a DAG for short DAG’s arise in many applications
where there are precedence or ordering constraints. For example, if there are a series of tasks to be performed,
and certain tasks must precede other tasks (e.g. in construction you have to build the first floor before you build
the second floor, but you can do the electrical wiring while you install the windows). In general aprecedence
constraint graphis a DAG in which vertices are tasks and the edge(u, v) means that tasku must be completed
before taskv begins.

A topological sortof a DAG is a linear ordering of the vertices of the DAG such that for each edge(u, v), u
appears beforev in the ordering. Note that in general, there may be many legal topological orders for a given
DAG.

To compute a topological ordering is actually very easy, given DFS. By the previous lemma, for every edge
(u, v) in a DAG, the finish time ofu is greater than the finish time ofv. Thus, it suffices to output the vertices
in reverse order of finishing time. To do this we run a (stripped down) DFS, and when each vertex is finished
we add it to the front of a linked list. The final linked list order will be the final topological order. This is given
below.

Topological Sort
TopSort(G) {

for each (u in V) color[u] = white; // initialize
L = new linked_list; // L is an empty linked list
for each (u in V)

if (color[u] == white) TopVisit(u);
return L; // L gives final order

}

TopVisit(u) { // start a search at u
color[u] = gray; // mark u visited
for each (v in Adj(u))

if (color[v] == white) TopVisit(v);
Append u to the front of L; // on finishing u add to list

}

This is typical example of DFS is used in applications. Observe that the structure is essentially the same as the
basic DFS procedure, but we only include the elements of DFS that are needed for this application.

As an example we consider the DAG presented in CLRS for Professor Bumstead’s order of dressing. Bumstead
lists the precedences in the order in which he puts on his clothes in the morning. We do our depth-first search in
a different order from the one given in CLRS, and so we get a different final ordering. However both orderings
are legitimate, given the precedence constraints. As with depth-first search, the running time of topological sort
is Θ(V + E).

Strong Components: Next we consider a very important connectivity problem with digraphs. When digraphs are
used in communication and transportation networks, people want to know that there networks are complete in
the sense that from any location it is possible to reach any other location in the digraph. A digraph isstrongly
connectedif for every pair of vertices,u, v ∈ V , u can reachv and vice versa.

We would like to write an algorithm that determines whether a digraph is strongly connected. In fact we will
solve a generalization of this problem, of computing thestrongly connected components(or strong components
for short) of a digraph. In particular, we partition the vertices of the digraph into subsets such that the induced
subgraph of each subset is strongly connected. (These subsets should be as large as possible, and still have this
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Fig. 27: Topological sort.

property.) More formally, we say that two verticesu andv aremutually reachableif u and reachv and vice
versa. It is easy to see that mutual reachability is an equivalence relation. This equivalence relation partitions
the vertices into equivalence classes of mutually reachable vertices, and these are the strong components.

Observe that if we merge the vertices in each strong component into a singlesuper vertex, and joint two su-
pervertices(A,B) if and only if there are verticesu ∈ A andv ∈ B such that(u, v) ∈ E, then the resulting
digraph, called thecomponent digraph, is necessarily acyclic. (Can you see why?) Thus, we may be accurately
refer to it as thecomponent DAG.
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Fig. 28: Strong Components.

The algorithm that we will present is an algorithm designer’s “dream” (and an algorithm student’s nightmare).
It is amazingly simple and efficient, but it is so clever that it is very difficult to even see how it works. We will
give some of the intuition that leads to the algorithm, but will not prove the algorithm’s correctness formally.
See CLRS for a formal proof.

Strong Components and DFS:By way of motivation, consider the DFS of the digraph shown in the following figure
(left). By definition of DFS, when you enter a strong component, every vertex in the component is reachable,
so the DFS does not terminate until all the vertices in the component have been visited. Thus all the vertices
in a strong component must appear in the same tree of the DFS forest. Observe that in the figure each strong
component is just a subtree of the DFS forest. Is it always true for any DFS? Unfortunately the answer is
no. In general, many strong components may appear in the same DFS tree. (See the DFS on the right for a
counterexample.) Does there always exist a way to order the DFS such that it is true? Fortunately, the answer is
yes.

Suppose that you knew the component DAG in advance. (This is ridiculous, because you would need to know
the strong components, and that is the problem we are trying to solve. But humor me for a moment.) Further
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suppose that you computed areversed topological orderon the component digraph. That is,(u, v) is an edge in
the component digraph, thenv comesbeforeu in this reversed order (not after as it would in a normal topological
ordering). Now, run DFS, but every time you need a new vertex to start the search from, select the next available
vertex according to this reverse topological order of the component digraph.

Here is an informal justification. Clearly once the DFS starts within a given strong component, it must visit
every vertex within the component (and possibly some others) before finishing. If we do not start in reverse
topological, then the search may “leak out” into other strong components, and put them in the same DFS tree.
For example, in the figure below right, when the search is started at vertexa, not only does it visit its component
with b andc, but the it also visits the other components as well. However, by visiting components in reverse
topological order of the component tree, each search cannot “leak out” into other components, because other
components would have already have been visited earlier in the search.
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Fig. 29: Two depth-first searches.

This leaves us with the intuition that if we could somehow order the DFS, so that it hits the strong components
according to a reverse topological order, then we would have an easy algorithm for computing strong compo-
nents. However, we do not know what the component DAG looks like. (After all, we are trying to solve the
strong component problem in the first place). The “trick” behind the strong component algorithm is that we
can find an ordering of the vertices that has essentially the necessary property, without actually computing the
component DAG.

The Plumber’s Algorithm: I call this algorithm the plumber’s algorithm (because it avoids leaks). Unfortunately it
is quite difficult to understand why this algorithm works. I will present the algorithm, and refer you to CLRS
for the complete proof. First recall thatGR (what CLRS callsGT ) is the digraph with the same vertex set asG
but in which all edges have been reversed in direction. Given an adjacency list forG, it is possible to compute
GR in Θ(V + E) time. (I’ll leave this as an exercise.)

Observe that the strongly connected components are not affected by reversing all the digraph’s edges. Ifu andv
are mutually reachable inG, then certainly this is still true inGR. All that changes is that the component DAG
is completely reversed. The ordering trick is to order the vertices ofG according to their finish times in a DFS.
Then visit the nodes ofGR in decreasing order of finish times. All the steps of the algorithm are quite easy to
implement, and all operate inΘ(V + E) time. Here is the algorithm.

Correctness: Why visit vertices in decreasing order of finish times? Why use the reversal digraph? It is difficult
to justify these elements formally. Here is some intuition, though. Recall that the main intent is to visit the
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Strong Components
StrongComp(G) {

Run DFS(G), computing finish times f[u] for each vertex u;
Compute R = Reverse(G), reversing all edges of G;
Sort the vertices of R (by CountingSort) in decreasing order of f[u];
Run DFS(R) using this order;
Each DFS tree is a strong component;

}
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strong components in a reverse topological order. The question is how to order the vertices so that this is true.
Recall from the topological sorting algorithm, that in a DAG, finish times occur in reverse topological order
(i.e., the first vertex in the topological order is the one with the highest finish time). So, if we wanted to visit
the components in reverse topological order, this suggests that we should visit the vertices in increasing order
of finish time, starting with the lowest finishing time. This is a good starting idea, but it turns out that it doesn’t
work. The reason is that there are many vertices in each strong component, and they all have different finish
times. For example, in the figure above observe that in the first DFS (on the left) the lowest finish time (of 4) is
achieved by vertexc, and its strong component is first, not last, in topological order.

It is tempting to give up in frustration at this point. But there is something to notice about the finish times. If
we consider themaximum finish timein each component, then these are related to the topological order of the
component DAG. In particular, given any strong componentC, definef(C) to be the maximum finish time
among all vertices in this component.

f(C) = max
u∈C

f [u].

Lemma: Consider a digraphG = (V,E) and letC andC ′ be two distinct strong components. If there is an
(u, v) of G such thatu ∈ C andv ∈ C ′, thenf(C) > f(C ′).

See the book for a complete proof. Here is a quick sketch. If the DFS visitsC first, then the DFS will leak into
C ′ (along edge(u, v) or some other edge), and then will visit everything inC ′ before finally returning toC.
Thus, some vertex ofC will finish later than every vertex ofC ′. On the other hand, suppose thatC ′ is visited
first. Because there is an edge fromC to C ′, we know from the definition of the component DAG that there
cannot be a path fromC ′ to C. SoC ′ will completely finish before we even startC. Thus all the finish times of
C will be larger than the finish times ofC ′.

For example, in the previous figure, the maximum finish times for each component are 18 (for{a, b, c}), 17 (for
{d, e}), and 12 (for{f, g, h, i}). The order〈18, 17, 12〉 is a valid topological order for the component digraph.
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This is a big help. It tells us that if we run DFS and compute finish times, and then run a new DFS in decreasing
order of finish times, we will visit the components in topological order. The problem is that this is not what
we wanted. We wanted areversetopological order for the component DAG. So, the final trick is to reverse
the digraph, by formingGR. This does not change the strong components, but it reverses the edges of the
component graph, and so reverses the topological order, which is exactly what we wanted. In conclusion we
have:

Theorem: Consider a digraphG on which DFS has been run. Sort the vertices by decreasing order of finish
time. Then a DFS of the reversed digraphGR, visits the strong components according to a reversed
topological order of the component DAG ofGR.

Lecture 12: Minimum Spanning Trees and Kruskal’s Algorithm

Read: Chapt 23 in CLRS, up through 23.2.

Minimum Spanning Trees: A common problem in communications networks and circuit design is that of connect-
ing together a set of nodes (communication sites or circuit components) by a network of minimal total length
(where length is the sum of the lengths of connecting wires). We assume that the network is undirected. To
minimize the length of the connecting network, it never pays to have any cycles (since we could break any
cycle without destroying connectivity and decrease the total length). Since the resulting connection graph is
connected, undirected, and acyclic, it is afree tree.

The computational problem is called theminimum spanning treeproblem (MST for short). More formally, given
a connected, undirected graphG = (V,E), aspanning treeis an acyclic subset of edgesT ⊆ E that connects
all the vertices together. Assuming that each edge(u, v) of G has a numeric weight or cost,w(u, v), (may be
zero or negative) we define the cost of a spanning treeT to be the sum of edges in the spanning tree

w(T ) =
∑

(u,v)∈T

w(u, v).

A minimum spanning tree(MST) is a spanning tree of minimum weight. Note that the minimum spanning tree
may not be unique, but it is true that if all the edge weights are distinct, then the MST will be distinct (this is a
rather subtle fact, which we will not prove). Fig. 31 shows three spanning trees for the same graph, where the
shaded rectangles indicate the edges in the spanning tree. The one on the left is not a minimum spanning tree,
and the other two are. (An interesting observation is that not only do the edges sum to the same value, but in
fact the same set of edge weights appear in the two MST’s. Is this a coincidence? We’ll see later.)
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Steiner Minimum Trees: Minimum spanning trees are actually mentioned in the U.S. legal code. The reason is
that AT&T was a government supported monopoly at one time, and was responsible for handling all telephone
connections. If a company wanted to connect a collection of installations by an private internal phone system,
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AT&T was required (by law) to connect them in the minimum cost manner, which is clearly a spanning tree
. . . or is it?

Some companies discovered that they could actually reduce their connection costs by opening a new bogus
installation. Such an installation served no purpose other than to act as an intermediate point for connections.
An example is shown in Fig. 32. On the left, consider four installations that lie at the corners of a1× 1 square.
Assume that all edge lengths are just Euclidean distances. It is easy to see that the cost of any MST for this
configuration is 3 (as shown on the left). However, if you introduce a new installation at the center, whose
distance to each of the other four points is1/

√
2. It is now possible to connect these five points with a total cost

of 4/
√

2 = 2
√

2 ≈ 2.83. This is better than the MST.

Cost = 3

1
Steiner point

SMTMST

Cost = 2 sqrt(2) = 2.83

Fig. 32: Steiner Minimum tree.

In general, the problem of determining the lowest cost interconnection tree between a given set of nodes, assum-
ing that you are allowed additional nodes (calledSteiner points) is called the Steiner minimum tree(or SMT
for short). An interesting fact is that although there is a simple greedy algorithm for MST’s (as we will see
below), the SMT problem is much harder, and in fact is NP-hard. (Luckily for AT&T, the US Legal code is
rather ambiguous on the point as to whether the phone company was required to use MST’s or SMT’s in making
connections.)

Generic approach: We will present twogreedyalgorithms (Kruskal’s and Prim’s algorithms) for computing a min-
imum spanning tree. Recall that agreedy algorithmis one that builds a solution by repeated selecting the
cheapest (or generally locally optimal choice) among all options at each stage. An important characteristic of
greedy algorithms is that once they make a choice, they never “unmake” this choice. Before presenting these
algorithms, let us review some basic facts about free trees. They are all quite easy to prove.

Lemma:

• A free tree withn vertices has exactlyn− 1 edges.
• There exists a unique path between any two vertices of a free tree.
• Adding any edge to a free tree creates a unique cycle. Breakinganyedge on this cycle restores a free

tree.

Let G = (V,E) be an undirected, connected graph whose edges have numeric edge weights (which may be
positive, negative or zero). The intuition behind the greedy MST algorithms is simple, we maintain a subset of
edgesA, which will initially be empty, and we will add edges one at a time, untilA equals the MST. We say
that a subsetA ⊆ E is viable if A is a subset of edges in some MST. (We cannot say “the” MST, since it is not
necessarily unique.) We say that an edge(u, v) ∈ E − A is safeif A ∪ {(u, v)} is viable. In other words, the
choice(u, v) is a safe choice to add so thatA can still be extended to form an MST. Note that ifA is viable it
cannot contain a cycle. A generic greedy algorithm operates by repeatedly adding anysafeedge to the current
spanning tree. (Note that viability is a property of subsets of edges and safety is a property of a single edge.)

When is an edge safe?We consider the theoretical issues behind determining whether an edge is safe or not. LetS
be a subset of the verticesS ⊆ V . A cut (S, V − S) is just a partition of the vertices into two disjoint subsets.
An edge(u, v) crossesthe cut if one endpoint is inS and the other is inV − S. Given a subset of edgesA, we
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say that a cutrespectsA if no edge inA crosses the cut. It is not hard to see why respecting cuts are important
to this problem. If we have computed a partial MST, and we wish to know which edges can be added that do
not induce a cycle in the current MST, any edge that crosses a respecting cut is a possible candidate.

An edge ofE is a light edgecrossing a cut, if among all edges crossing the cut, it has the minimum weight
(the light edge may not be unique if there are duplicate edge weights). Intuition says that since all the edges
that cross a respecting cut do not induce a cycle, then the lightest edge crossing a cut is a natural choice. The
main theorem which drives both algorithms is the following. It essentially says that we can always augmentA
by adding the minimum weight edge that crosses a cut which respectsA. (It is stated in complete generality, so
that it can be applied to both algorithms.)

MST Lemma: Let G = (V,E) be a connected, undirected graph with real-valued weights on the edges. Let
A be a viable subset ofE (i.e. a subset of some MST), let(S, V − S) be any cut that respectsA, and let
(u, v) be a light edge crossing this cut. Then the edge(u, v) is safefor A.

Proof: It will simplify the proof to assume that all the edge weights are distinct. LetT be any MST forG (see
Fig. ). If T contains(u, v) then we are done. Suppose that no MST contains(u, v). We will derive a
contradiction.
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Fig. 33: Proof of the MST Lemma. Edge(u, v) is the light edge crossing cut(S, V − S).

Add the edge(u, v) to T , thus creating a cycle. Sinceu andv are on opposite sides of the cut, and since
any cycle must cross the cut an even number of times, there must be at least one other edge(x, y) in T that
crosses the cut.

The edge(x, y) is not inA (because the cut respectsA). By removing(x, y) we restore a spanning tree,
call it T ′. We have

w(T ′) = w(T )− w(x, y) + w(u, v).

Since(u, v) is lightest edge crossing the cut, we havew(u, v) < w(x, y). Thusw(T ′) < w(T ). This
contradicts the assumption thatT was an MST.

Kruskal’s Algorithm: Kruskal’s algorithm works by attempting to add edges to theA in increasing order of weight
(lightest edges first). If the next edge does not induce a cycle among the current set of edges, then it is added to
A. If it does, then this edge is passed over, and we consider the next edge in order. Note that as this algorithm
runs, the edges ofA will induce a forest on the vertices. As the algorithm continues, the trees of this forest are
merged together, until we have a single tree containing all the vertices.

Observe that this strategy leads to a correct algorithm. Why? Consider the edge(u, v) that Kruskal’s algorithm
seeks to add next, and suppose that this edge does not induce a cycle inA. Let A′ denote the tree of the forest
A that contains vertexu. Consider the cut(A′, V − A′). Every edge crossing the cut is not inA, and so this
cut respectsA, and(u, v) is the light edge across the cut (because any lighter edge would have been considered
earlier by the algorithm). Thus, by the MST Lemma,(u, v) is safe.
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The only tricky part of the algorithm is how to detect efficiently whether the addition of an edge will create a
cycle inA. We could perform a DFS on subgraph induced by the edges ofA, but this will take too much time.
We want a fast test that tells us whetheru andv are in the same tree ofA.

This can be done by a data structure (which we have not studied) called the disjoint set Union-Find data structure.
This data structure supports three operations:

Create-Set(u): Create a set containing a single itemv.

Find-Set(u): Find the set that contains a given itemu.

Union(u, v): Merge the set containingu and the set containingv into a common set.

You are not responsible for knowing how this data structure works (which is described in CLRS). You may
use it as a “black-box”. For our purposes it suffices to know that each of these operations can be performed in
O(log n) time, on a set of sizen. (The Union-Find data structure is quite interesting, because it can actually
perform a sequence ofn operations much faster thanO(n log n) time. However we will not go into this here.
O(log n) time is fast enough for its use in Kruskal’s algorithm.)

In Kruskal’s algorithm, the vertices of the graph will be the elements to be stored in the sets, and the sets will be
vertices in each tree ofA. The setA can be stored as a simple list of edges. The algorithm is shown below, and
an example is shown in Fig. 34.

Kruskal’s Algorithm
Kruskal(G=(V,E),w) {

A = {} // initially A is empty
for each (u in V) Create_Set(u) // create set for each vertex
Sort E in increasing order by weight w
for each ((u,v) from the sorted list) {

if (Find_Set(u) != Find_Set(v)) { // u and v in different trees
Add (u,v) to A
Union(u, v)

}
}
return A

}
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Fig. 34: Kruskal’s Algorithm. Each vertex is labeled according to the set that contains it.

Analysis: How long does Kruskal’s algorithm take? As usual, letV be the number of vertices andE be the number of
edges. Since the graph is connected, we may assume thatE ≥ V − 1. Observe that it takesΘ(E log E) time to
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sort the edges. The for-loop is iteratedE times, and each iteration involves a constant number of accesses to the
Union-Find data structure on a collection ofV items. Thus each access isΘ(V ) time, for a total ofΘ(E log V ).
Thus the total running time is the sum of these, which isΘ((V +E) log V ). SinceV is asymptotically no larger
thanE, we could write this more simply asΘ(E log V ).

Lecture 13: Prim’s and Baruvka’s Algorithms for MSTs

Read: Chapt 23 in CLRS. Baruvka’s algorithm is not described in CLRS.

Prim’s Algorithm: Prim’s algorithm is another greedy algorithm for minimum spanning trees. It differs from Kruskal’s
algorithm only in how it selects the nextsafe edgeto add at each step. Its running time is essentially the same
as Kruskal’s algorithm,O((V + E) log V ). There are two reasons for studying Prim’s algorithm. The first is to
show that there is more than one way to solve a problem (an important lesson to learn in algorithm design), and
the second is that Prim’s algorithm looks very much like another greedy algorithm, called Dijkstra’s algorithm,
that we will study for a completely different problem, shortest paths. Thus, not only is Prim’s a different way to
solve the same MST problem, it is also the same way to solve a different problem. (Whatever that means!)

Different ways to grow a tree: Kruskal’s algorithm worked by ordering the edges, and inserting them one by one
into the spanning tree, taking care never to introduce a cycle. Intuitively Kruskal’s works by merging or splicing
two trees together, until all the vertices are in the same tree.

In contrast, Prim’s algorithm builds the tree up by adding leaves one at a time to the current tree. We start with
a root vertexr (it can beany vertex). At any time, the subset of edgesA forms a single tree (in Kruskal’s it
formed a forest). We look to add a single vertex as a leaf to the tree. The process is illustrated in the following
figure.
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Fig. 35: Prim’s Algorithm.

Observe that if we consider the set of verticesS currently part of the tree, and its complement(V −S), we have
a cut of the graph and the current set of tree edgesA respects this cut. Which edge should we add next? The
MST Lemma from the previous lecture tells us that it is safe to add thelight edge. In the figure, this is the edge
of weight 4 going to vertexu. Thenu is added to the vertices ofS, and the cut changes. Note that some edges
that crossed the cut before are no longer crossing it, and others that were not crossing the cut are.

It is easy to see, that the key questions in the efficient implementation of Prim’s algorithm is how to update the
cut efficiently, and how to determine the light edge quickly. To do this, we will make use of apriority queue
data structure. Recall that this is the data structure used in HeapSort. This is a data structure that stores a set of
items, where each item is associated with akeyvalue. The priority queue supports three operations.

insert(u, key): Insertu with the key valuekeyin Q.

extractMin (): Extract the item with the minimum key value inQ.
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decreaseKey(u, new key): Decrease the value ofu’s key value tonewkey.

A priority queue can be implemented using the same heap data structure used in heapsort. All of the above
operations can be performed inO(log n) time, wheren is the number of items in the heap.

What do we store in the priority queue? At first you might think that we should store the edges that cross the
cut, since this is what we are removing with each step of the algorithm. The problem is that when a vertex is
moved from one side of the cut to the other, this results in a complicated sequence of updates.

There is a much more elegant solution, and this is what makes Prim’s algorithm so nice. For each vertex in
u ∈ V − S (not part of the current spanning tree) we associateu with a key valuekey[u], which is the weight
of the lightest edge going fromu to any vertex inS. We also store inpred[u] the end vertex of this edge inS.
If there is not edge fromu to a vertex inV − S, then we set its key value to+∞. We will also need to know
which vertices are inS and which are not. We do this by coloring the vertices inS black.

Here is Prim’s algorithm. The root vertexr can be any vertex inV .

Prim’s Algorithm
Prim(G,w,r) {

for each (u in V) { // initialization
key[u] = +infinity;
color[u] = white;

}
key[r] = 0; // start at root
pred[r] = nil;
Q = new PriQueue(V); // put vertices in Q
while (Q.nonEmpty()) { // until all vertices in MST

u = Q.extractMin(); // vertex with lightest edge
for each (v in Adj[u]) {

if ((color[v] == white) && (w(u,v) < key[v])) {
key[v] = w(u,v); // new lighter edge out of v
Q.decreaseKey(v, key[v]);
pred[v] = u;

}
}
color[u] = black;

}
[The pred pointers define the MST as an inverted tree rooted at r]

}

The following figure illustrates Prim’s algorithm. The arrows on edges indicate the predecessor pointers, and
the numeric label in each vertex is the key value.

To analyze Prim’s algorithm, we account for the time spent on each vertex as it is extracted from the priority
queue. It takesO(log V ) to extract this vertex from the queue. For each incident edge, we spend potentially
O(log V ) time decreasing the key of the neighboring vertex. Thus the time isO(log V + deg(u) log V ) time.
The other steps of the update are constant time. So the overall running time is

T (V,E) =
∑
u∈V

(log V + deg(u) log V ) =
∑
u∈V

(1 + deg(u)) log V

= log V
∑
u∈V

(1 + deg(u)) = (log V )(V + 2E) = Θ((V + E) log V ).

SinceG is connected,V is asymptotically no greater thanE, so this isΘ(E log V ). This is exactly the same as
Kruskal’s algorithm.
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Fig. 36: Prim’s Algorithm.

Baruvka’s Algorithm: We have seen two ways (Kruskal’s and Prim’s algorithms) for solving the MST problem. So,
it may seem like complete overkill to consider yet another algorithm. This one is called Baruvka’s algorithm.
It is actually the oldest of the three algorithms (invented in 1926, well before the first computers). The reason
for studying this algorithm is that of the three algorithms, it is the easiest to implement on a parallel computer.
Unlike Kruskal’s and Prim’s algorithms, which add edges one at a time, Baruvka’s algorithm adds a whole set
of edges all at once to the MST.

Baruvka’s algorithm is similar to Kruskal’s algorithm, in the sense that it works by maintaining a collection
of disconnected trees. Let us call each subtree acomponent. Initially, each vertex is by itself in a one-vertex
component. Recall that with each stage of Kruskal’s algorithm, we add the lightest-weight edge that connects
two different components together. To prove Kruskal’s algorithm correct, we argued (from the MST Lemma)
that the lightest such edge will besafeto add to the MST.

In fact, a closer inspection of the proof reveals that the cheapest edge leavingany component is always safe.
This suggests a more parallel way to grow the MST. Each component determines the lightest edge that goes
from inside the component to outside the component (we don’t care where). We say that such an edgeleavesthe
component. Note that two components might select the same edge by this process. By the above observation,
all of these edges are safe, so we may add them all at once to the setA of edges in the MST. As a result, many
components will be merged together into a single component. We then apply DFS to the edges ofA, to identify
the new components. This process is repeated until only one component remains. A fairly high-level description
of Baruvka’s algorithm is given below.

Baruvka’s Algorithm
Baruvka(G=(V,E), w) {

initialize each vertex to be its own component;
A = {}; // A holds edges of the MST
do {

for (each component C) {
find the lightest edge (u,v) with u in C and v not in C;
add {u,v} to A (unless it is already there);

}
apply DFS to graph H=(V,A), to compute the new components;

} while (there are 2 or more components);
return A; // return final MST edges
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There are a number of unspecified details in Baruvka’s algorithm, which we will not spell out in detail, except to
note that they can be solved inΘ(V + E) time through DFS. First, we may apply DFS, but only traversing the
edges ofA to compute the components. Each DFS tree will correspond to a separate component. We label each
vertex with its component number as part of this process. With these labels it is easy to determine which edges
go between components (since their endpoints have different labels). Then we can traverse each component
again to determine the lightest edge that leaves the component. (In fact, with a little more cleverness, we can do
all this without having to perform two separate DFS’s.) The algorithm is illustrated in the figure below.
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Fig. 37: Baruvka’s Algorithm.

Analysis: How long does Baruvka’s algorithm take? Observe that because each iteration involves doing a DFS, each
iteration (of the outer do-while loop) can be performed inΘ(V + E) time. The question is how many iterations
are required in general? We claim that there are never more thanO(log n) iterations needed. To see why, letm
denote the number of components at some stage. Each of them components, will merge with at least one other
component. Afterwards the number of remaining components could be a low as 1 (if they all merge together),
but never higher thanm/2 (if they merge in pairs). Thus, the number of components decreases by at least
half with each iteration. Since we start withV components, this can happen at mostlg V time, until only one
component remains. Thus, the total running time isΘ((V + E) log V ) time. Again, sinceG is connected,V is
asymptotically no larger thanE, so we can write this more succinctly asΘ(E log V ). Thus all three algorithms
have the same asymptotic running time.

Lecture 14: Dijkstra’s Algorithm for Shortest Paths

Read: Chapt 24 in CLRS.

Shortest Paths: Consider the problem of computing shortest paths in a directed graph. We have already seen that
breadth-first search is anO(V + E) algorithm for finding shortest paths from a single source vertex to all other
vertices, assuming that the graph has no edge weights. Suppose that the graph has edge weights, and we wish
to compute the shortest paths from a single source vertex to all other vertices in the graph.

By the way, there are other formulations of the shortest path problem. One may want just the shortest path
between a single pair of vertices. Most algorithms for this problem are variants of the single-source algorithm
that we will present. There is also a single sink problem, which can be solved in the transpose digraph (that is,
by reversing the edges). Computing all-pairs shortest paths can be solved by iterating a single-source algorithm
over all vertices, but there are other global methods that are faster.

Think of the vertices as cities, and the weights represent the cost of traveling from one city to another (nonex-
istent edges can be thought of a having infinite cost). When edge weights are present, we define thelengthof a

Lecture Notes 49 CMSC 451



path to be the sum of edge weights along the path. Define thedistancebetween two vertices,u andv, δ(u, v) to
be the length of the minimum length path fromu to v. (δ(u, u) = 0 by considering path of 0 edges fromu to
itself.)

Single Source Shortest Paths:Thesingle source shortest pathproblem is as follows. We are given a directed graph
with nonnegativeedge weightsG = (V,E) and a distinguishedsource vertex, s ∈ V . The problem is to
determine the distance from the source vertex to every vertex in the graph.

It is possible to have graphs with negative edges, but in order for the shortest path to be well defined, we need to
add the requirement that there be no cycles whose total cost is negative (otherwise you make the path infinitely
short by cycling forever through such a cycle). The text discusses theBellman-Ford algorithmfor finding
shortest paths assuming negative weight edges but no negative-weight cycles are present. We will discuss a
simple greedy algorithm, calledDijkstra’s algorithm, which assumes there are no negative edge weights.

We will stress the task of computing the minimum distance from the source to each vertex. Computing the
actual path will be a fairly simple extension. As in breadth-first search, for each vertex we will have a pointer
pred[v] which points back to the source. By following the predecessor pointers backwards from any vertex, we
will construct the reversal of the shortest path tov.

Shortest Paths and Relaxation:The basic structure of Dijkstra’s algorithm is to maintain anestimateof the shortest
path for each vertex, call thisd[v]. (NOTE: Don’t confused[v] with thed[v] in the DFS algorithm. They are
completely different.) Intuitivelyd[v] will be the length of the shortest paththat the algorithm knows offrom
s to v. This, value will always greater than or equal to the true shortest path distance froms to v. Initially, we
know of no paths, sod[v] = ∞. Initially d[s] = 0 and all the otherd[v] values are set to∞. As the algorithm
goes on, and sees more and more vertices, it attempts to updated[v] for each vertex in the graph, until all the
d[v] values converge to the true shortest distances.

The process by which an estimate is updated is calledrelaxation. Here is how relaxation works. Intuitively, if
you can see that your solution is not yet reached an optimum value, then push it a little closer to the optimum.
In particular, if you discover a path froms to v shorter thand[v], then you need to updated[v]. This notion is
common to many optimization algorithms.

Consider an edge from a vertexu to v whose weight isw(u, v). Suppose that we have already computed current
estimates ond[u] andd[v]. We know that there is a path froms to u of weightd[u]. By taking this path and
following it with the edge(u, v) we get a path tov of lengthd[u]+w(u, v). If this path is better than the existing
path of lengthd[v] to v, we should updated[v] to the valued[u] + w(u, v). This is illustrated in Fig. 38. We
should also remember that the shortest path tov passes throughu, which we do by updatingv’s predecessor
pointer.

v

u

8
3 5

s
0

relax(u,v)
s

v

u

11
3 5

0

Fig. 38: Relaxation.

Relaxing an edge
Relax(u,v) {

if (d[u] + w(u,v) < d[v]) { // is the path through u shorter?
d[v] = d[u] + w(u,v) // yes, then take it
pred[v] = u // record that we go through u

}
}
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Observe that whenever we setd[v] to a finite value, there is always evidence of a path of that length. Therefore
d[v] ≥ δ(s, v). If d[v] = δ(s, v), then further relaxations cannot change its value.

It is not hard to see that if we performRelax(u, v) repeatedly over all edges of the graph, thed[v] values will
eventually converge to the final true distance value froms. The cleverness of any shortest path algorithm is
to perform the updates in a judicious manner, so the convergence is as fast as possible. In particular, the best
possible would be to order relaxation operations in such a way that each edge is relaxed exactly once. Dijkstra’s
algorithm does exactly this.

Dijkstra’s Algorithm: Dijkstra’s algorithm is based on the notion of performing repeated relaxations. Dijkstra’s
algorithm operates by maintaining a subset of vertices,S ⊆ V , for which we claim we “know” the true distance,
that isd[v] = δ(s, v). Initially S = ∅, the empty set, and we setd[s] = 0 and all others to+∞. One by one we
select vertices fromV − S to add toS.

The setS can be implemented using an array of vertex colors. Initially all vertices are white, and we set
color[v] = blackto indicate thatv ∈ S.

How do we select which vertex among the vertices ofV − S to add next toS? Here is where greedy selection
comes in. Dijkstra recognized that the best way in which to perform relaxations is by increasing order of distance
from the source. This way, whenever a relaxation is being performed, it is possible to infer that result of the
relaxation yields the final distance value. To implement this, for each vertex inu ∈ V − S, we maintain a
distance estimated[u]. The greedy thing to do is to take the vertex ofV − S for which d[u] is minimum, that
is, take the unprocessed vertex that is closest (by our estimate) tos. Later we will justify why this is the proper
choice.

In order to perform this selection efficiently, we store the vertices ofV − S in a priority queue(e.g. a heap),
where the key value of each vertexu is d[u]. Note the similarity with Prim’s algorithm, although a different
key value is used there. Also recall that if we implement the priority queue using a heap, we can perform the
operationsInsert(), Extract Min(), andDecreaseKey(), on a priority queue of sizen each inO(log n) time.
Each vertex “knows” its location in the priority queue (e.g. has a cross reference link to the priority queue entry),
and each entry in the priority queue “knows” which vertex it represents. It is important when implementing the
priority queue that this cross reference information is updated.

Here is Dijkstra’s algorithm. (Note the remarkable similarity to Prim’s algorithm.) An example is presented in
Fig. 39.

Notice that the coloring is not really used by the algorithm, but it has been included to make the connection with
the correctness proof a little clearer. Because of the similarity between this and Prim’s algorithm, the running
time is the same, namelyΘ(E log V ).

Correctness: Recall thatd[v] is the distance value assigned to vertexv by Dijkstra’s algorithm, and letδ(s, v) denote
the length of the true shortest path froms to v. To see that Dijkstra’s algorithm correctly gives the final true
distances, we need to show thatd[v] = δ(s, v) when the algorithm terminates. This is a consequence of the
following lemma, which states that once a vertexu has been added toS (i.e. colored black),d[u] is the true
shortest distance froms to u. Since at the end of the algorithm, all vertices are inS, then all distance estimates
are correct.

Lemma: When a vertexu is added toS, d[u] = δ(s, u).

Proof: It will simplify the proof conceptually if we assume that all the edge weights arestrictly positive (the
general case of nonnegative edges is presented in the text).

Suppose to the contrary that at some point Dijkstra’s algorithmfirst attempts to add a vertexu to S for
which d[u] 6= δ(s, u). By our observations about relaxation,d[u] is never less thanδ(s, u), thus we have
d[u] > δ(s, u). Consider the situation just prior to the insertion ofu. Consider the true shortest path from
s to u. Becauses ∈ S andu ∈ V − S, at some point this path must first jump out ofS. Let (x, y) be the
edge taken by the path, wherex ∈ S andy ∈ V − S. (Note that it may be thatx = s and/ory = u).
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Dijkstra’s Algorithm
Dijkstra(G,w,s) {

for each (u in V) { // initialization
d[u] = +infinity
color[u] = white
pred[u] = null

}
d[s] = 0 // dist to source is 0
Q = new PriQueue(V) // put all vertices in Q
while (Q.nonEmpty()) { // until all vertices processed

u = Q.extractMin() // select u closest to s
for each (v in Adj[u]) {

if (d[u] + w(u,v) < d[v]) { // Relax(u,v)
d[v] = d[u] + w(u,v)
Q.decreaseKey(v, d[v])
pred[v] = u

}
}
color[u] = black

}
[The pred pointers define an ‘‘inverted’’ shortest path tree]

}
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Fig. 39: Dijkstra’s Algorithm example.
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Fig. 40: Correctness of Dijkstra’s Algorithm.
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We argue thaty 6= u. Why? Sincex ∈ S we haved[x] = δ(s, x). (Sinceu was the first vertex added to
S which violated this, all prior vertices satisfy this.) Since we applied relaxation tox when it was added,
we would have setd[y] = d[x] + w(x, y) = δ(s, y). Thusd[y] is correct, and by hypothesis,d[u] is not
correct, so they cannot be the same.

Now observe that sincey appears somewhere along the shortest path froms to u (but not atu) and all
subsequent edges followingy are of positive weight, we haveδ(s, y) < δ(s, u), and thus

d[y] = δ(s, y) < δ(s, u) < d[u].

Thusy would have been added toS beforeu, in contradiction to our assumption thatu is the next vertex
to be added toS.

Lecture 15: All-Pairs Shortest Paths

Read: Section 25.2 in CLRS.

All-Pairs Shortest Paths: We consider the generalization of the shortest path problem, to computing shortest paths
between all pairs of vertices. LetG = (V,E) be a directed graph with edge weights. If(u, v) E, is an edge
of G, then the weight of this edge is denotedw(u, v). Recall that thecostof a path is the sum of edge weights
along the path. Thedistancebetween two verticesδ(u, v) is the cost of the minimum cost path between them.
We will allow G to have negative cost edges, but we will not allowG to have any negative cost cycles.

We consider the problem of determining the cost of the shortest path between all pairs of vertices in a weighted
directed graph. We will present aΘ(n3) algorithm, called theFloyd-Warshall algorithm. This algorithm is
based ondynamic programming.

For this algorithm, we will assume that the digraph is represented as an adjacency matrix, rather than the more
common adjacency list. Although adjacency lists are generally more efficient for sparse graphs, storing all the
inter-vertex distances will requireΩ(n2) storage, so the savings is not justified here. Because the algorithm is
matrix-based, we will employ common matrix notation, usingi, j andk to denote vertices rather thanu, v, and
w as we usually do.

Input Format: The input is ann× n matrixw of edge weights, which are based on the edge weights in the digraph.
We letwij denote the entry in rowi and columnj of w.

wij =




0 if i = j,
w(i, j) if i 6= j and(i, j) ∈ E,
+∞ if i 6= j and(i, j) /∈ E.

Settingwij =∞ if there is no edge, intuitively means that there is no direct link between these two nodes, and
hence the direct cost is infinite. The reason for settingwii = 0 is that there is always a trivial path of length 0
(using no edges) from any vertex to itself. (Note that in digraphs it is possible to have self-loop edges, and so
w(i, i) may generally be nonzero. It cannot be negative, since we assume that there are no negative cost cycles,
and if it is positive, there is no point in using it as part of any shortest path.)

The output will be ann × n distance matrixD = dij wheredij = δ(i, j), the shortest path cost from vertexi
to j. Recovering the shortest paths will also be an issue. To help us do this, we will also compute an auxiliary
matrix mid[i, j]. The value ofmid[i, j] will be a vertex that is somewhere along the shortest path fromi to j.
If the shortest path travels directly fromi to j without passing through any other vertices, thenmid[i, j] will be
set tonull. These intermediate values behave somewhat like the predecessor pointers in Dijkstra’s algorithm, in
order to reconstruct the final shortest path inΘ(n) time.
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Floyd-Warshall Algorithm: The Floyd-Warshall algorithm dates back to the early 60’s. Warshall was interested
in the weaker question of reachability: determine for each pair of verticesu andv, whetheru can reachv.
Floyd realized that the same technique could be used to compute shortest paths with only minor variations. The
Floyd-Warshall algorithm runs inΘ(n3) time.

As with any DP algorithm, the key is reducing a large problem to smaller problems. A natural way of doing this
is by limiting the number of edges of the path, but it turns out that this does not lead to the fastest algorithm (but is
an approach worthy of consideration). The main feature of the Floyd-Warshall algorithm is in finding a the best
formulation for the shortest path subproblem. Rather than limiting the number of edges on the path, they instead
limit the set of vertices through which the path is allowed to pass. In particular, for a pathp = 〈v1, v2, . . . , v`〉
we say that the verticesv2, v3, . . . , v`−1 are theintermediate verticesof this path. Note that a path consisting of
a single edge has no intermediate vertices.

Formulation: Defined
(k)
ij to be the shortest path fromi to j such that any intermediate vertices on the path are

chosen from the set{1, 2, . . . , k}.

In other words, we consider a path fromi to j which either consists of the single edge(i, j), or it visits some
intermediate vertices along the way, but these intermediate can only be chosen from among{1, 2, . . . , k}. The
path is free to visit any subset of these vertices, and to do so in any order. For example, in the digraph shown in
the Fig. 41(a), notice how the value ofd

(k)
5,6 changes ask varies.
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Fig. 41: Limiting intermediate vertices. For exampled
(3)
5,6 can go through any combination of the intermediate vertices

{1, 2, 3}, of which〈5, 3, 2, 6〉 has the lowest cost of 8.

Floyd-Warshall Update Rule: How do we computed(k)
ij assuming that we have already computed the previous ma-

trix d(k−1)? There are two basic cases, depending on the ways that we might get from vertexi to vertexj,
assuming that the intermediate vertices are chosen from{1, 2, . . . , k}:

Don’t go through k at all: Then the shortest path fromi to j uses only intermediate vertices{1, . . . , k − 1}
and hence the length of the shortest path isd

(k−1)
ij .

Do go throughk: First observe that a shortest path does not pass through the same vertex twice, so we can
assume that we pass throughk exactly once. (The assumption that there are no negative cost cycles is
being used here.) That is, we go fromi to k, and then fromk to j. In order for the overall path to be as
short as possible we should take the shortest path fromi to k, and the shortest path fromk to j. Since of
these paths uses intermediate vertices only in{1, 2, . . . , k − 1}, the length of the path isd(k−1)

ik + d
(k−1)
kj .
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This suggests the following recursive rule (the DP formulation) for computingd(k), which is illustrated in
Fig. 41(b).

d
(0)
ij = wij ,

d
(k)
ij = min

(
d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj

)
for k ≥ 1.

The final answer isd(n)
ij because this allows all possible vertices as intermediate vertices. We could write a

recursive program to computed(k)
ij , but this will be prohibitively slow because the same value may be reevaluated

many times. Instead, we compute it by storing the values in a table, and looking the values up as we need them.
Here is the complete algorithm. We have also included mid-vertex pointers,mid[i, j] for extracting the final
shortest paths. We will leave the extraction of the shortest path as an exercise.

Floyd-Warshall Algorithm
Floyd_Warshall(int n, int w[1..n, 1..n]) {

array d[1..n, 1..n]
for i = 1 to n do { // initialize

for j = 1 to n do {
d[i,j] = W[i,j]
mid[i,j] = null

}
}
for k = 1 to n do // use intermediates {1..k}

for i = 1 to n do // ...from i
for j = 1 to n do // ...to j

if (d[i,k] + d[k,j]) < d[i,j]) {
d[i,j] = d[i,k] + d[k,j] // new shorter path length
mid[i,j] = k // new path is through k

}
return d // matrix of distances

}

An example of the algorithm’s execution is shown in Fig. 42.

Clearly the algorithm’s running time isΘ(n3). The space used by the algorithm isΘ(n2). Observe that we
deleted all references to the superscript(k) in the code. It is left as an exercise that this does not affect the
correctness of the algorithm. (Hint: The danger is that values may be overwritten and then used later in the same
phase. Consider which entries might be overwritten and then reused, they occur in rowk and columnk. It can
be shown that the overwritten values are equal to their original values.)

Lecture 16: NP-Completeness: Languages and NP

Read: Chapt 34 in CLRS, up through section 34.2.

Complexity Theory: At this point of the semester we have been building up your “bag of tricks” for solving algorith-
mic problems. Hopefully when presented with a problem you now have a little better idea of how to go about
solving the problem. What sort of design paradigm should be used (divide-and-conquer, DFS, greedy, dynamic
programming), what sort of data structures might be relevant (trees, heaps, graphs) and what representations
would be best (adjacency list, adjacency matrices), what is the running time of your algorithm.

All of this is fine if it helps you discover an acceptably efficient algorithm to solve your problem. The question
that often arises in practice is that you have tried every trick in the book, and nothing seems to work. Although
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Fig. 42: Floyd-Warshall Example. Newly updates entries are circled.
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your algorithm can solve small problems reasonably efficiently (e.g.n ≤ 20) the really large applications that
you want to solve (e.g.n = 1, 000 or n = 10, 000) your algorithm never terminates. When you analyze its
running time, you realize that it is running in exponential time, perhapsn

√
n, or 2n, or 2(2n), or n!, or worse!

Near the end of the 60’s where there was great success in finding efficient solutions to many combinatorial prob-
lems, but there was also a growing list of problems for which there seemed to be no known efficient algorithmic
solutions. People began to wonder whether there was some unknown paradigm that would lead to a solution
to these problems, or perhaps some proof that these problems are inherently hard to solve and no algorithmic
solutions exist that run under exponential time.

Near the end of the 60’s a remarkable discovery was made. Many of these hard problems were interrelated
in the sense that if you could solve any one of them in polynomial time, then you could solve all of them in
polynomial time. This discovery gave rise to the notion of NP-completeness, and created possibly the biggest
open problems in computer science: is P= NP? We will be studying this concept over the next few lectures.

This area is a radical departure from what we have been doing because the emphasis will change. The goal is
no longer to prove that a problemcanbe solved efficiently by presenting an algorithm for it. Instead we will be
trying to show that a problemcannotbe solved efficiently. The question is how to do this?

Laying down the rules: We need some way to separate the class of efficiently solvable problems from inefficiently
solvable problems. We will do this by considering problems that can be solved in polynomial time.

When designing algorithms it has been possible for us to be rather informal with various concepts. We have
made use of the fact that an intelligent programmer could fill in any missing details. However, the task of
proving that something cannot be done efficiently must be handled much more carefully, since we do not want
leave any “loopholes” that would allow someone to subvert the rules in an unreasonable way and claim to have
an efficient solution when one does not really exist.

We have measured the running time of algorithms using worst-case complexity, as a function ofn, the size of
the input. We have defined input size variously for different problems, but the bottom line is the number of bits
(or bytes) that it takes to represent the input using anyreasonably efficient encoding. By a reasonably efficient
encoding, we assume that there is not some significantly shorter way of providing the same information. For
example, you could write numbers in unary notation111111111 = 1002 = 8 rather than binary, but that would
be unacceptably inefficient. You could describe graphs in some highly inefficient way, such as by listing all of
its cycles, but this would also be unacceptable. We will assume that numbers are expressed in binary or some
higher base and graphs are expressed using either adjacency matrices or adjacency lists.

We will usually restrict numeric inputs to be integers (as opposed to calling them “reals”), so that it is clear that
arithmetic can be performed efficiently. We have also assumed that operations on numbers can be performed in
constant time. From now on, we should be more careful and assume that arithmetic operations require at least
as much time as there are bits of precision in the numbers being stored.

Up until now all the algorithms we have seen have had the property that their worst-case running times are
bounded above by somepolynomialin the input size,n. A polynomial time algorithmis any algorithm that
runs in timeO(nk) wherek is some constant that is independent ofn. A problem is said to besolvable in
polynomial timeif there is a polynomial time algorithm that solves it.

Some functions that do not “look” like polynomials (such asO(n log n)) are bounded above by polynomials
(such asO(n2)). Some functions that do “look” like polynomials are not. For example, suppose you have an
algorithm which inputs a graph of sizen and an integerk and runs inO(nk) time. Is this a polynomial? No,
becausek is an input to the problem, so the user is allowed to choosek = n, implying that the running time
would beO(nn) which isnot a polynomial inn. The important thing is that the exponent must be aconstant
independent ofn.

Of course, saying that all polynomial time algorithms are “efficient” is untrue. An algorithm whose running
time isO(n1000) is certainly pretty inefficient. Nonetheless, if an algorithm runs in worse than polynomial time
(e.g.2n), then it is certainly not efficient, except for very small values ofn.

Lecture Notes 57 CMSC 451



Decision Problems: Many of the problems that we have discussed involveoptimizationof one form or another: find
the shortest path, find the minimum cost spanning tree, find the minimum weight triangulation. For rather tech-
nical reasons, most NP-complete problems that we will discuss will be phrased as decision problems. A problem
is called adecision problemif its output is a simple “yes” or “no” (or you may think of this as True/False, 0/1,
accept/reject).

We will phrase many optimization problems in terms of decision problems. For example, the minimum spanning
tree decision problem might be: Given a weighted graphG and an integerk, doesG have a spanning tree whose
weight is at mostk?

This may seem like a less interesting formulation of the problem. It does not ask for the weight of the minimum
spanning tree, and it does not even ask for the edges of the spanning tree that achieves this weight. However,
our job will be to show that certain problemscannotbe solved efficiently. If we show that the simple decision
problem cannot be solved efficiently, then the more general optimization problem certainly cannot be solved
efficiently either.

Language Recognition Problems:Observe that a decision problem can also be thought of as a language recognition
problem. We could define a languageL

L = {(G, k) | G has a MST of weight at mostk}.
This set consists of pairs, the first element is a graph (e.g. the adjacency matrix encoded as a string) followed
by an integerk encoded as a binary number. At first it may seem strange expressing a graph as a string, but
obviously anything that is represented in a computer is broken down somehow into a string of bits.

When presented with an input string(G, k), the algorithm would answer “yes” if(G, k) ∈ L implying thatG
has a spanning tree of weight at mostk, and “no” otherwise. In the first case we say that the algorithm “accepts”
the input and otherwise it “rejects” the input.

Given any language, we can ask the question of how hard it is to determine whether a given string is in the
language. For example, in the case of the MST languageL, we can determine membership easily in polynomial
time. We just store the graph internally, run Kruskal’s algorithm, and see whether the final optimal weight is at
mostk. If so we accept, and otherwise we reject.

Definition: Define P to be the set of all languages for which membership can be tested in polynomial time.
(Intuitively, this corresponds to the set of all decisions problems that can be solved in polynomial time.)

Note that languages are sets of strings, and P is a set of languages. P is defined in terms of how hard it is
computationally to recognized membership in the language. A set of languages that is defined in terms of how
hard it is to determine membership is called acomplexity class. Since we can compute minimum spanning trees
in polynomial time, we haveL ∈ P.

Here is a harder one, though.

M = {(G, k) | G has a simple path of length at leastk}.

Given a graphG and integerk how would you “recognize” whether it is in the languageM? You might try
searching the graph for a simple paths, until finding one of length at leastk. If you find one then you can accept
and terminate. However, if not then you may spend a lot of time searching (especially ifk is large, liken − 1,
and no such path exists). So isM ∈ P? No one knows the answer. In fact, we will show thatM is NP-complete.

In what follows, we will be introducing a number of classes. We will jump back and forth between the terms
“language” and “decision problems”, but for our purposes they mean the same things. Before giving all the
technical definitions, let us say a bit about what the general classes look like at an intuitive level.

P: This is the set of all decision problems that can besolvedin polynomial time. We will generally refer to
these problems as being “easy” or “efficiently solvable”. (Although this may be an exaggeration in many
cases.)
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NP: This is the set of all decision problems that can beverified in polynomial time. (We will give a definition
of this below.) This class contains P as a subset. Thus, it contains a number of easy problems, but it also
contains a number of problems that are believed to be very hard to solve. The term NP doesnot mean “not
polynomial”. Originally the term meant “nondeterministic polynomial time”. But it is bit more intuitive to
explain the concept from the perspective of verification.

NP-hard: In spite of its name, to say that problem is NP-hard doesnot mean that it is hard to solve. Rather
it means that if we could solve this problem in polynomial time, then we could solveall NP problems in
polynomial time. Note that for a problem to be NP hard, it does not have to be in the class NP. Since it
is widely believed that all NP problems are not solvable in polynomial time, it is widely believed that no
NP-hard problem is solvable in polynomial time.

NP-complete: A problem is NP-complete if (1) it is in NP, and (2) it is NP-hard. That is, NPC= NP∩NP-hard.

The figure below illustrates one way that the sets P, NP, NP-hard, and NP-complete (NPC)might look. We
saymight because we do not know whether all of these complexity classes are distinct or whether they are all
solvable in polynomial time. There are some problems in the figure that we will not discuss. One isGraph
Isomorphism, which asks whether two graphs are identical up to a renaming of their vertices. It is known that
this problem is in NP, but it is not known to be in P. The other is QBF, which stands forQuantified Boolean
Formulas. In this problem you are given a boolean formula with quantifiers (∃ and∀) and you want to know
whether the formula is true or false. This problem is beyond the scope of this course, but may be discussed in
an advanced course on complexity theory.

NP

P

NP−Hard

One way that things ‘might’ be.

Hamiltonian Cycle

Graph Isomorphism?

MST
Strong connectivity

Satisfiability

Knapsack

QBF

NPC

No Ham. Cycle

Easy

Harder

Fig. 43: The (possible) structure of P, NP, and related complexity classes.

Polynomial Time Verification and Certificates: Before talking about the class of NP-complete problems, it is im-
portant to introduce the notion of a verification algorithm. Many language recognition problems that may be
very hard to solve, but they have the property that it is easy toverifywhether a string is in the language.

Consider the following problem, called theHamiltonian cycle problem. Given an undirected graphG, doesG
have a cycle that visits every vertex exactly once. (There is a similar problem on directed graphs, and there is
also a version which asks whether there is a path that visits all vertices.) We can describe this problem as a
language recognition problem, where the language is

HC = {(G) | G has a Hamiltonian cycle},
where(G) denotes an encoding of a graphG as a string. The Hamiltonian cycle problem seems to be much
harder, and there is no known polynomial time algorithm for this problem. For example, the figure below shows
two graphs, one which is Hamiltonian and one which is not.

However, suppose that a graph did have a Hamiltonian cycle. Then it would be a very easy matter for someone
to convince us of this. They would simply say “the cycle is〈v3, v7, v1, . . . , v13〉”. We could then inspect the
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Nonhamiltonian Hamiltonian

Fig. 44: Hamiltonian cycle.

graph, and check that this is indeed a legal cycle and that it visits all the vertices of the graph exactly once. Thus,
even though we know of no efficient way tosolvethe Hamiltonian cycle problem, there is a very efficient way
to verify that a given graph is in HC. The given cycle is called acertificate. This is some piece of information
which allows us to verify that a given string is in a language.

More formally, given a languageL, and givenx ∈ L, a verification algorithmis an algorithm which givenx
and a stringy called thecertificate, can verify thatx is in the languageL using this certificate as help. Ifx is
not inL then there is nothing to verify.

Note that not all languages have the property that they are easy to verify. For example, consider the following
languages:

UHC = {(G) | G has a unique Hamiltonian cycle}
HC = {(G) | G has no Hamiltonian cycle}.

Suppose that a graphG is in the languageUHC. What information would someone give us that would allow
us to verify thatG is indeed in the language? They could give us an example of the unique Hamiltonian cycle,
and we could verify that it is a Hamiltonian cycle, but what sort of certificate could they give us to convince us
that this is theonly one? They could give another cycle that is NOT Hamiltonian, but this does not mean that
there is not another cycle somewhere that is Hamiltonian. They could try to list every other cycle of lengthn,
but this would not be at all efficient, since there aren! possible cycles in general. Thus, it is hard to imagine
that someone could give us some information that would allow us to efficiently convince ourselves that a given
graph is in the language.

The class NP:

Definition: Define NP to be the set of all languages that can be verified by a polynomial time algorithm.

Why is the set called “NP” rather than “VP”? The original term NP stood for “nondeterministic polynomial
time”. This referred to a program running on anondeterministic computerthat can make guesses. Basically,
such a computer could nondeterministically guess the value of certificate, and then verify that the string is in
the language in polynomial time. We have avoided introducing nondeterminism here. It would be covered in a
course on complexity theory or formal language theory.

Like P, NP is a set of languages based on some complexity measure (the complexity of verification). Observe
that P⊆ NP. In other words, if we can solve a problem in polynomial time, then we can certainly verify
membership in polynomial time. (More formally, we do not even need to see a certificate to solve the problem,
we can solve it in polynomial time anyway).

However it is not known whether P= NP. It seems unreasonable to think that this should be so. In other words,
just being able to verify that you have a correct solution does not help you in finding the actual solution very
much. Most experts believe that P6= NP, but no one has a proof of this. Next time we will define the notions of
NP-hard and NP-complete.

Lecture Notes 60 CMSC 451



Lecture 17: NP-Completeness: Reductions

Read: Chapt 34, through Section 34.4.

Summary: Last time we introduced a number of concepts, on the way to defining NP-completeness. In particular,
the following concepts are important.

Decision Problems: are problems for which the answer is either yes or no. NP-complete problems are ex-
pressed as decision problems, and hence can be thought of as language recognition problems, assuming
that the input has been encoded as a string. Weencodeinputs as strings. For example:

HC = {G | G has a Hamiltonian cycle}
MST = {(G, x) | G has a MST of cost at mostx}.

P: is the class of all decision problems which can be solved in polynomial time,O(nk) for some constantk.
For example MST∈ P but HC is not known (and suspected not) to be in P.

Certificate: is a piece of evidence that allows us toverify in polynomial time that a string is in a given language.
For example, suppose that the language is the set of Hamiltonian graphs. To convince someone that a graph
is in this language, we could supply the certificate consisting of a sequence of vertices along the cycle. It is
easy to access the adjacency matrix to determine that this is a legitimate cycle inG. Therefore HC∈ NP.

NP: is defined to be the class of all languages that can beverified in polynomial time. Note that since all
languages in P can be solved in polynomial time, they can certainly be verified in polynomial time, so we
have P⊆ NP. However, NP also seems to have some pretty hard problems to solve, such as HC.

Reductions: The class of NP-complete problems consists of a set of decision problems (languages) (a subset of the
class NP) that no one knows how to solve efficiently, but if there were a polynomial time solution for even a
single NP-complete problem, then every problem in NP would be solvable in polynomial time. To establish this,
we need to introduce the concept of a reduction.

Before discussing reductions, let us just consider the following question. Suppose that there are two problems,
H andU . We know (or you strongly believe at least) thatH is hard, that is it cannot be solved in polynomial
time. On the other hand, the complexity ofU is unknown, but we suspect that it too is hard. We want to prove
thatU cannot be solved in polynomial time. How would we do this? We want to show that

(H /∈ P)⇒ (U /∈ P).

To do this, we could prove the contrapositive,

(U ∈ P)⇒ (H ∈ P).

In other words, to show thatU is not solvable in polynomial time, we will suppose that there is an algorithm that
solvesU in polynomial time, and then derive a contradiction by showing thatH can be solved in polynomial
time.

How do we do this? Suppose that we have a subroutine that can solve any instance of problemU in polynomial
time. Then all we need to do is to show that we can use this subroutine to solve problemH in polynomial time.
Thus we have “reduced” problemH to problemU . It is important to note here that this supposed subroutine
is really afantasy. We know (or strongly believe) thatH cannot be solved in polynomial time, thus we are
essentially proving that the subroutine cannot exist, implying thatU cannot be solved in polynomial time. (Be
sure that you understand this, this the basis behind all reductions.)

Example: 3-Colorability and Clique Cover: Let us consider an example to make this clearer. The following prob-
lem is well-known to be NP-complete, and hence it is strongly believed that the problem cannot be solved in
polynomial time.
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3-coloring (3Col): Given a graphG, can each of its vertices be labeled with one of 3 different “colors”, such
that no two adjacent vertices have the same label.

Coloring arises in various partitioning problems, where there is a constraint that two objects cannot be assigned
to the same set of the partition. The term “coloring” comes from the original application which was in map
drawing. Two countries that share a common border should be colored with different colors. It is well known
that planar graphs can be colored with 4 colors, and there exists a polynomial time algorithm for this. But
determining whether 3 colors are possible (even for planar graphs) seems to be hard and there is no known
polynomial time algorithm. In the figure below we give two graphs, one is 3-colorable and one is not.

3−colorable Not 3−colorable Clique cover (size = 3)

Fig. 45: 3-coloring and Clique Cover.

The 3Col problem will play the role of the hard problemH, which we strongly suspect to not be solvable in
polynomial time. For our unknown problemU , consider the following problem. Given a graphG = (V,E), we
say that a subset of verticesV ′ ⊆ V forms aclique if for every pair of verticesu, v ∈ V ′ (u, v) ∈ E. That is,
the subgraph induced byV ′ is a complete graph.

Clique Cover (CCov): Given a graphG = (V,E) and an integerk, can we partition the vertex set intok
subsets of verticesV1, V2, . . . , Vk, such that

⋃
i Vi = V , and that eachVi is a clique ofG.

The clique cover problem arises in applications of clustering. We put an edge between two nodes if they are
similar enough to be clustered in the same group. We want to know whether it is possible to cluster all the
vertices intok groups.

Suppose that you want to solve the CCov problem, but after a while of fruitless effort, you still cannot find
a polynomial time algorithm for the CCov problem. How can you prove that CCov is likely to not have a
polynomial time solution? You know that 3Col is NP-complete, and hence experts believe that 3Col/∈ P. You
feel that there is some connection between the CCov problem and the 3Col problem. Thus, you want to show
that

(3Col /∈ P)⇒ (CCov /∈ P),

which you will show by proving the contrapositive

(CCov∈ P)⇒ (3Col∈ P).

To do this, you assume that you have access to a subroutine CCov(G, k). Given a graphG and an integerk, this
subroutine returns true ifG has a clique cover of sizek and false otherwise, and furthermore, this subroutine
runs in polynomial time. How can we use this “alleged” subroutine to solve the well-known hard 3Col problem?
We want to write a polynomial time subroutine for 3Col, and this subroutine is allowed to call the subroutine
CCov(G, k) for any graphG and any integerk.

Both problems involve partitioning the vertices up into groups. The only difference here is that in one problem
the number of cliques is specified as part of the input and in the other the number of color classes is fixed at 3.
In the clique cover problem, for two vertices to be in the same group they must be adjacent to each other. In the
3-coloring problem, for two vertices to be in the same color group, they must not be adjacent. In some sense,
the problems are almost the same, but the requirement adjacent/non-adjacent is exactly reversed.
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We claim that we canreducethe 3-coloring problem to the clique cover problem as follows. Given a graphG
for which we want to determine its 3-colorability, output the pair(G, 3) whereG denotes the complement ofG.
(That is,G is a graph on the same vertices, but(u, v) is an edge ofG if and only if it is not an edge ofG.) We
can then feed the pair(G, 3) into a subroutine for clique cover. This is illustrated in the figure below.

HG
_

3−colorable Coverable by 3 cliques

G

Not coverable

H

Not 3−colorable

_

Fig. 46: Clique covers in the complement.

Claim: A graphG is 3-colorable if and only if its complementG has a clique-cover of size 3. In other words,

G ∈ 3Col iff (G, 3) ∈ CCov.

Proof: (⇒) If G 3-colorable, then letV1, V2, V3 be the three color classes. We claim that this is a clique cover
of size 3 forG, since ifu andv are distinct vertices inVi, then{u, v} /∈ E(G) (since adjacent vertices
cannot have the same color) which implies that{u, v} ∈ E(G). Thus every pair of distinct vertices inVi

are adjacent inG.
(⇐) SupposeG has a clique cover of size 3, denotedV1, V2, V3. For i ∈ {1, 2, 3} give the vertices ofVi

color i. We assert that this is a legal coloring forG, since if distinct verticesu andv are both inVi, then
{u, v} ∈ E(G) (since they are in a common clique), implying that{u, v} /∈ E((G). Hence, two vertices
with the same color are not adjacent.

Polynomial-time reduction: We now take this intuition of reducing one problem to another through the use of a
subroutine call, and place it on more formal footing. Notice that in the example above, we converted an instance
of the 3-coloring problem(G) into an equivalent instance of the Clique Cover problem(G, 3).

Definition: We say that a language (i.e. decision problem)L1 is polynomial-time reducibleto languageL2

(writtenL1 ≤P L2) if there is a polynomial time computable functionf , such that for allx, x ∈ L1 if and
only if f(x) ∈ L2.

In the previous example we showed that
3Col≤P CCov.

In particular we havef(G) = (G, 3). Note that it is easy to complement a graph inO(n2) (i.e. polynomial)
time (e.g. flip 0’s and 1’s in the adjacency matrix). Thusf is computable in polynomial time.

Intuitively, saying thatL1 ≤P L2 means that “ifL2 is solvable in polynomial time, then so isL1.” This is
because a polynomial time subroutine forL2 could be applied tof(x) to determine whetherf(x) ∈ L2, or
equivalently whetherx ∈ L1. Thus, in sense of polynomial time computability,L1 is “no harder” thanL2.

The way in which this is used in NP-completeness is exactly the converse. We usually have strong evidence that
L1 is not solvable in polynomial time, and hence the reduction is effectively equivalent to saying “sinceL1 is
not likely to be solvable in polynomial time, thenL2 is also not likely to be solvable in polynomial time.” Thus,
this is how polynomial time reductions can be used to show that problems are as hard to solve as known difficult
problems.

Lemma: If L1 ≤P L2 andL2 ∈ P thenL1 ∈ P .
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Lemma: If L1 ≤P L2 andL1 /∈ P thenL2 /∈ P .

One important fact about reducibility is that it is transitive. In other words

Lemma: If L1 ≤P L2 andL2 ≤P L3 thenL1 ≤P L3.

The reason is that if two functionsf(x) andg(x) are computable in polynomial time, then their composition
f(g(x)) is computable in polynomial time as well. It should be noted that our text uses the term “reduction”
where most other books use the term “transformation”. The distinction is subtle, but people taking other courses
in complexity theory should be aware of this.

NP-completeness:The set of NP-complete problems are all problems in the complexity class NP, for which it is
known that if any one is solvable in polynomial time, then they all are, and conversely, if any one is not solvable
in polynomial time, then none are. This is made mathematically formal using the notion of polynomial time
reductions.

Definition: A languageL is NP-hardif:

L′ ≤P L for all L′ ∈ NP.

(Note thatL does not need to be in NP.)

Definition: A languageL is NP-completeif:

(1) L ∈ NP and
(2) L is NP-hard.

An alternative (and usually easier way) to show that a problem is NP-complete is to use transitivity.

Lemma: L is NP-complete if

(1) L ∈ NP and
(2) L′ ≤P L for some known NP-complete languageL′.

The reason is that allL′′ ∈ NP are reducible toL′ (sinceL′ is NP-complete and hence NP-hard) and hence by
transitivityL′′ is reducible toL, implying thatL is NP-hard.

This gives us a way to prove that problems are NP-complete, once we know thatoneproblem is NP-complete.
Unfortunately, it appears to be almost impossible to prove that one problem is NP-complete, because the defini-
tion says that we have to be able to reduceeveryproblem in NP to this problem. There are infinitely many such
problems, so how can we ever hope to do this? We will talk about this next time with Cook’s theorem. Cook
showed that there is one problem called SAT (short for boolean satisfiability) that is NP-complete. To prove a
second problem is NP-complete, all we need to do is to show that our problem is in NP (and hence it is reducible
to SAT), and then to show that we can reduce SAT (or generally some known NPC problem) to our problem. It
follows that our problem is equivalent to SAT (with respect to solvability in polynomial time). This is illustrated
in the figure below.

Lecture 18: Cook’s Theorem, 3SAT, and Independent Set

Read: Chapter 34, through 34.5. The reduction given here is similar, but not the same as the reduction given in the
text.

Recap: So far we introduced the definitions of NP-completeness. Recall that we mentioned the following topics:

P: is the set of decision problems (or languages) that are solvable in polynomial time.

NP: is the set of decision problems (or languages) that can be verified in polynomial time,
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Proving a problem is in NP

Your problem

Known NPC

Proving a problem is NP−hard Resulting structure

NPC

NP

Your reduction

NP

NPC

NP

P P

NPC

P

SAT SAT

Fig. 47: Structure of NPC and reductions.

Polynomial reduction: L1 ≤P L2 means that there is a polynomial time computable functionf such that
x ∈ L1 if and only if f(x) ∈ L2. A more intuitive to think about this, is that if we had a subroutine to
solveL2 in polynomial time, then we could use it to solveL1 in polynomial time.

Polynomial reductions are transitive, that is, ifL1 ≤P L2 andL2 ≤P L3, thenL1 ≤P L3.

NP-Hard: L is NP-hard if for allL′ ∈ NP,L′ ≤P L. Thus, if we could solveL in polynomial time, we could
solve all NP problems in polynomial time.

NP-Complete: L is NP-complete if (1)L ∈ NP and (2)L is NP-hard.

The importance of NP-complete problems should now be clear. If any NP-complete problems (and generally
any NP-hard problem) is solvable in polynomial time, then every NP-complete problem (and in fact every
problem in NP) is also solvable in polynomial time. Conversely, if we can prove that any NP-complete problem
(and generally any problem in NP) cannot be solved in polynomial time, then every NP-complete problem (and
generally every NP-hard problem) cannot be solved in polynomial time. Thus all NP-complete problems are
equivalent to one another (in that they are either all solvable in polynomial time, or none are).

An alternative way to show that a problem is NP-complete is to use transitivity of≤P .

Lemma: L is NP-complete if

(1) L ∈ NP and

(2) L′ ≤P L for some NP-complete languageL′.

Note: The knownNP-complete problemL′ is reduced to thecandidateNP-complete problemL. Keep this
order in mind.

Cook’s Theorem: Unfortunately, to use this lemma, we need to haveat least oneNP-complete problem to start the
ball rolling. Stephen Cook showed that such a problem existed. Cook’s theorem is quite complicated to prove,
but we’ll try to give a brief intuitive argument as to why such a problem might exist.

For a problem to be in NP, it must have an efficient verification procedure. Thus virtually all NP problems can
be stated in the form, “does there existsX such thatP (X)”, whereX is some structure (e.g. a set, a path, a
partition, an assignment, etc.) andP (X) is some property thatX must satisfy (e.g. the set of objects must fill
the knapsack, or the path must visit every vertex, or you may use at mostk colors and no two adjacent vertices
can have the same color). In showing that such a problem is in NP, the certificate consists of givingX, and the
verification involves testing thatP (X) holds.

In general, any setX can be described by choosing a set of objects, which in turn can be described as choosing
the values of some boolean variables. Similarly, the propertyP (X) that you need to satisfy, can be described as
a boolean formula. Stephen Cook was looking for themostgeneral possible property he could, since this should
represent thehardestproblem in NP to solve. He reasoned that computers (which represent the most general
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type of computational devices known) could be described entirely in terms of boolean circuits, and hence in
terms of boolean formulas. If any problem were hard to solve, it would be one in whichX is an assignment of
boolean values (true/false, 0/1) andP (X) could be any boolean formula. This suggests the following problem,
called theboolean satisfiability problem.

SAT: Given a boolean formula, is there some way to assign truth values (0/1, true/false) to the variables of the
formula, so that the formula evaluates to true?

A boolean formula is a logical formula which consists of variablesxi, and the logical operationsx meaning the
negationof x, boolean-or(x∨y) andboolean-and(x∧y). Given a boolean formula, we say that it issatisfiable
if there is a way to assign truth values (0 or 1) to the variables such that the final result is 1. (As opposed to the
case where no matter how you assign truth values the result is always 0.)

For example,
(x1 ∧ (x2 ∨ x3)) ∧ ((x2 ∧ x3) ∨ x1)

is satisfiable, by the assignmentx1 = 1, x2 = 0, x3 = 0 On the other hand,

(x1 ∨ (x2 ∧ x3)) ∧ (x1 ∨ (x2 ∧ x3)) ∧ (x2 ∨ x3) ∧ (x2 ∨ x3)

is not satisfiable. (Observe that the last two clauses imply that one ofx2 andx3 must be true and the other must
be false. This implies that neither of the subclauses involvingx2 andx3 in the first two clauses can be satisfied,
butx1 cannot be set to satisfy them either.)

Cook’s Theorem: SAT is NP complete.

We will not prove this theorem. The proof would take about a full lecture (not counting the week or so of
background on Turing machines). In fact, it turns out that a even more restricted version of the satisfiability
problem is NP-complete. Aliteral is a variable or its negationx or x. A formula is in3-conjunctive normal
form (3-CNF) if it is the boolean-and of clauses where each clause is the boolean-or of exactly 3 literals. For
example

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

is in 3-CNF form.3SATis the problem of determining whether a formula in 3-CNF is satisfiable. It turns out that
it is possible to modify the proof of Cook’s theorem to show that the more restricted 3SAT is also NP-complete.

As an aside, note that if we replace the 3 in 3SAT with a 2, then everything changes. If a boolean formula is
given in 2SAT, then it is possible to determine its satisfiability in polynomial time. Thus, even a seemingly small
change can be the difference between an efficient algorithm and none.

NP-completeness proofs:Now that we know that 3SAT is NP-complete, we can use this fact to prove that other
problems are NP-complete. We will start with the independent set problem.

Independent Set (IS): Given an undirected graphG = (V,E) and an integerk doesG contain a subsetV ′ of
k vertices such that no two vertices inV ′ are adjacent to one another.

For example, the graph shown in the figure below has an independent set (shown with shaded nodes) of size
4. The independent set problem arises when there is some sort of selection problem, but there are mutual
restrictions pairs that cannot both be selected. (For example, you want to invite as many of your friends to your
party, but many pairs do not get along, represented by edges between them, and you do not want to invite two
enemies.)

Note that if a graph has an independent set of sizek, then it has an independent set of all smaller sizes. So the
corresponding optimization problem would be to find an independent set of the largest size in a graph. Often
the vertices have weights, so we might talk about the problem of computing the independent set with the largest
total weight. However, since we want to show that the problem is hard to solve, we will consider the simplest
version of the problem.
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Fig. 48: Independent Set.

Claim: IS is NP-complete.

The proof involves two parts. First, we need to show that IS∈ NP. The certificate consists of thek vertices of
V ′. We simply verify that for each pair of vertexu, v ∈ V ′, there is no edge between them. Clearly this can be
done in polynomial time, by an inspection of the adjacency matrix.

boolean formula

polynomial time computable

graph and integer

no

(in 3−CNF)

yes
F

3SAT

f
IS(G,k)

Fig. 49: Reduction of 3-SAT to IS.

Secondly, we need to establish that IS is NP-hard, which can be done by showing that some known NP-complete
problem (3SAT) is polynomial-time reducible to IS, that is, 3SAT≤P IS. LetF be a boolean formula in 3-CNF
form (the boolean-and of clauses, each of which is the boolean-or of 3 literals). We wish to find a polynomial
time computable functionf that mapsF into a input for the IS problem, a graphG and integerk. That is,
f(F ) = (G, k), such thatF is satisfiable if and only ifG has an independent set of sizek. This will mean that
if we can solve the independent set problem forG andk in polynomial time, then we would be able to solve
3SAT in polynomial time.

An important aspect to reductions is that we do not attempt to solve the satisfiability problem. (Remember: It
is NP-complete, and there is not likely to be any polynomial time solution.) So the functionf must operate
without knowledge of whetherF is satisfiable. The idea is totranslatethe similar elements of the satisfiable
problem to corresponding elements of the independent set problem.

What is to be selected?

3SAT: Which variables are assigned to be true. Equivalently, which literals are assigned true.

IS: Which vertices are to be placed inV ′.

Requirements:

3SAT: Each clause must contain at least one literal whose value it true.

IS: V ′ must contain at leastk vertices.

Restrictions:

3SAT: If xi is assigned true, thenxi must be false, and vice versa.
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IS: If u is selected to be inV ′, andv is a neighbor ofu, thenv cannot be inV ′.

We want a functionf , which given any 3-CNF boolean formulaF , converts it into a pair(G, k) such that the
above elements are translated properly. Our strategy will be to create one vertex for each literal that appears
within each clause. (Thus, if there arem clauses inF , there will be3m vertices inG.) The vertices are grouped
into clause clusters, one for each clause. Selecting a true literal from some clause corresponds to selecting a
vertex to add toV ′. We setk to the number of clauses. This forces the independent set to pick one vertex
from each clause, thus, one literal from each clause is true. In order to keep the IS subroutine from selecting
two literals from some clause (and hence none from some other), we will connect all the vertices in each clause
cluster to each other. To keep the IS subroutine from selecting both a literal and its complement, we will put an
edge between each literal and its complement. This enforces the condition that if a literal is put in the IS (set to
true) then its complement literal cannot also be true. A formal description of the reduction is given below. The
input is a boolean formulaF in 3-CNF, and the output is a graphG and integerk.

3SAT to IS Reduction
k ← number of clauses inF ;
for each clauseC in F

create aclause clusterof 3 vertices from the literals ofC;
for each clause cluster(x1, x2, x3)

create an edge(xi, xj) between all pairs of vertices in the cluster;
for each vertexxi

create edges betweenxi and all its complement verticesxi;
return (G, k);

Given any reasonable encoding ofF , it is an easy programming exercise to createG (say as an adjacency matrix)
in polynomial time. We claim thatF is satisfiable if and only ifG has an independent set of sizek.

Example: Suppose that we are given the 3-CNF formula:

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

The reduction produces the graph shown in the following figure and setsk = 4.

1

x2

x3

Correctness (x1=x2=1, x3=0)

x3

x2

x1

x x

The reduction

x1

2

3

x2

x2 x3

x1

x3

x2x1

x

1 x x3

x1

x2

x3

x3x2x1

Fig. 50: 3SAT to IS Reduction for(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

In our example, the formula is satisfied by the assignmentx1 = 1, x2 = 1, andx3 = 0. Note that the literalx1

satisfies the first and last clauses,x2 satisfies the second, andx3 satifies the third. Observe that by selecting the
corresponding vertices from the clusters, we get an independent set of sizek = 4.
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Correctness Proof: We claim thatF is satisfiable if and only ifG has an independent set of sizek. If F is satisfiable,
then each of thek clauses ofF must have at least one true literal. LetV ′ denote the corresponding vertices
from each of the clause clusters (one from each cluster). Because we take vertices from each cluster, there are
no inter-cluster edges between them, and because we cannot set a variable and its complement to both be true,
there can be no edge of the form(xi, xi) between the vertices ofV ′. Thus,V ′ is an independent set of sizek.

Conversely, ifG has an independent setV ′ of sizek. First observe that we must select a vertex from each clause
cluster, because there arek clusters, and we cannot take two vertices from the same cluster (because they are all
interconnected). Consider the assignment in which we set all of these literals to 1. This assignment is logically
consistent, because we cannot have two vertices labeledxi andxi in the same cluster. Finally the transformation
clearly runs in polynomial time. This completes the NP-completeness proof.

Observe that our reduction did not attempt to solve the IS problem nor to solve the 3SAT. Also observe that
the reduction hadno knowledgeof the solution to either problem. (We did not assume that the formula was
satisfiable, nor did we assume we knew which variables to set to 1.) This is because computing these things
would require exponential time (by the best known algorithms). Instead the reduction simplytranslatedthe
input from one problem into an equivalent input to the other problem, while preserving the critical elements to
each problem.

Lecture 19: Clique, Vertex Cover, and Dominating Set

Read: Chapt 34 (up through 34.5). The dominating set proof is not given in our text.

Recap: Last time we gave a reduction from 3SAT (satisfiability of boolean formulas in 3-CNF form) to IS (indepen-
dent set in graphs). Today we give a few more examples of reductions. Recall that to show that a problem is
NP-complete we need to show (1) that the problem is in NP (i.e. we can verify when an input is in the language),
and (2) that the problem is NP-hard, by showing that some known NP-complete problem can be reduced to this
problem (there is a polynomial time function that transforms an input for one problem into an equivalent input
for the other problem).

Some Easy Reductions:We consider some closely related NP-complete problems next.

Clique (CLIQUE): The clique problemis: given an undirected graphG = (V,E) and an integerk, doesG
have a subsetV ′ of k vertices such that for each distinctu, v ∈ V ′, {u, v} ∈ E. In other words, doesG
have ak vertex subset whose induced subgraph is complete.

Vertex Cover (VC): A vertex coverin an undirected graphG = (V,E) is a subset of verticesV ′ ⊆ V such that
every edge inG has at least one endpoint inV ′. Thevertex cover problem(VC) is: given an undirected
graphG and an integerk, doesG have a vertex cover of sizek?

Dominating Set (DS): A dominating setin a graphG = (V,E) is a subset of verticesV ′ such that every vertex
in the graph is either inV ′ or is adjacent to some vertex inV ′. Thedominating set problem(DS) is: given
a graphG = (V,E) and an integerk, doesG have a dominating set of sizek?

Don’t confuse the clique (CLIQUE) problem with the clique-cover (CC) problem that we discussed in an earlier
lecture. The clique problem seeks to find a single clique of sizek, and the clique-cover problem seeks to partition
the vertices intok groups, each of which is a clique.

We have discussed the facts that cliques are of interest in applications dealing with clustering. The vertex cover
problem arises in various servicing applications. For example, you have a compute network and a program that
checks the integrity of the communication links. To save the space of installing the program on every computer
in the network, it suffices to install it on all the computers forming a vertex cover. From these nodes all the
links can be tested. Dominating set is useful in facility location problems. For example, suppose we want to
select where to place a set of fire stations such that every house in the city is within 2 minutes of the nearest

Lecture Notes 69 CMSC 451



fire station. We create a graph in which two locations are adjacent if they are within 2 minutes of each other. A
minimum sized dominating set will be a minimum set of locations such that every other location is reachable
within 2 minutes from one of these sites.

The CLIQUE problem is obviously closely related to the independent set problem (IS): Given a graphG does it
have ak vertex subset that is completelydisconnected. It is not quite as clear that the vertex cover problem is
related. However, the following lemma makes this connection clear as well.

GGG

V’ is CLIQUE of iff
size k in G

iff V’ is an IS of
size k in G

V−V’ is a VC of
size n−k in G

Fig. 51: Clique, Independent set, and Vertex Cover.

Lemma: Given an undirected graphG = (V,E) with n vertices and a subsetV ′ ⊆ V of sizek. The following
are equivalent:

(i) V ′ is a clique of sizek for the complement,G.

(ii) V ′ is an independent set of sizek for G.

(iii) V − V ′ is a vertex cover of sizen− k for G.

Proof:

(i) ⇒ (ii): If V ′ is a clique forG, then for eachu, v ∈ V ′, {u, v} is an edge ofG implying that{u, v} is
not an edge ofG, implying thatV ′ is an independent set forG.

(ii) ⇒ (iii): If V ′ is an independent set forG, then for eachu, v ∈ V ′, {u, v} is not an edge ofG, implying
that every edge inG is incident to a vertex inV − V ′, implying thatV − V ′ is a VC forG.

(iii) ⇒ (i): If V −V ′ is a vertex cover forG, then for anyu, v ∈ V ′ there is no edge{u, v} in G, implying
that there is an edge{u, v} in G, implying thatV ′ is a clique inG. V ′ is an independent set forG.

Thus, if we had an algorithm for solving any one of these problems, we could easily translate it into an algorithm
for the others. In particular, we have the following.

Theorem: CLIQUE is NP-complete.

CLIQUE ∈ NP: The certificate consists of thek vertices in the clique. Given such a certificate we can easily
verify in polynomial time that all pairs of vertices in the set are adjacent.

IS ≤P CLIQUE: We want to show that given an instance of the IS problem(G, k), we can produce an equiv-
alent instance of the CLIQUE problem in polynomial time. The reduction functionf inputsG andk, and
outputs the pair(G, k). Clearly this can be done in polynomial time. By the above lemma, this instance is
equivalent.

Theorem: VC is NP-complete.

VC ∈ NP: The certificate consists of thek vertices in the vertex cover. Given such a certificate we can easily
verify in polynomial time that every edge is incident to one of these vertices.
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IS ≤P VC: We want to show that given an instance of the IS problem(G, k), we can produce an equivalent
instance of the VC problem in polynomial time. The reduction functionf inputsG andk, computes the
number of vertices,n, and then outputs(G,n − k). Clearly this can be done in polynomial time. By the
lemma above, these instances are equivalent.

Note: Note that in each of the above reductions, the reduction function did not know whetherG has an inde-
pendent set or not. It must run in polynomial time, and IS is an NP-complete problem. So it does not have time
to determine whetherG has an independent set or which vertices are in the set.

Dominating Set: As with vertex cover, dominating set is an example of a graph covering problem. Here the condition
is a little different, each vertex is adjacent to the members of the dominating set, as opposed to each edge being
incident to each member of the dominating set. Obviously, ifG is connected and has a vertex cover of sizek,
then it has a dominating set of sizek (the same set of vertices), but the converse is not necessarily true. However
the similarity suggests that if VC in NP-complete, then DS is likely to be NP-complete as well. The main result
of this section is just this.

Theorem: DS is NP-complete.

As usual the proof has two parts. First we show that DS∈ NP. The certificate just consists of the subsetV ′ in
the dominating set. In polynomial time we can determine whether every vertex is inV ′ or is adjacent to a vertex
in V ′.

Reducing Vertex Cover to Dominating Set: Next we show that an existing NP-complete problem is reducible to
dominating set. We choose vertex cover and show that VC≤P DS. We want a polynomial time function,
which given an instance of the vertex cover problem(G, k), produces an instance(G′, k′) of the dominating set
problem, such thatG has a vertex cover of sizek if and only if G′ has a dominating set of sizek′.

How to we translate between these problems? The key difference is the condition. In VC: “every edge is incident
to a vertex inV ′”. In DS: “every vertex is either inV ′ or is adjacent to a vertex inV ′”. Thus the translation must
somehow map the notion of “incident” to “adjacent”. Because incidence is a property of edges, and adjacency
is a property of vertices, this suggests that the reduction function maps edges ofG into vertices inG′, such that
an incident edge inG is mapped to an adjacent vertex inG′.

This suggests the following idea (which does not quite work). We will insert a vertex into the middle of each
edge of the graph. In other words, for each edge{u, v}, we will create a newspecial vertex, calledwuv, and
replace the edge{u, v} with the two edges{u,wuv} and{v, wuv}. The fact thatu was incident to edge{u, v}
has now been replaced with the fact thatu is adjacent to the corresponding vertexwuv. We still need to dominate
the neighborv. To do this, we will leave the edge{u, v} in the graph as well. LetG′ be the resulting graph.

This is still not quite correct though. Define anisolated vertexto be one that is incident to no edges. Ifu is
isolated it can only be dominated if it is included in the dominating set. Since it is not incident to any edges, it
does not need to be in the vertex cover. LetVI denote the isolated vertices inG, and letI denote the number of
isolated vertices. The number of vertices to request for the dominating set will bek′ = k + I.

Now we can give the complete reduction. Given the pair(G, k) for the VC problem, we create a graphG′ as
follows. Initially G′ = G. For each edge{u, v} in G we create a new vertexwuv in G′ and add edges{u,wuv}
and{v, wuv} in G′. Let I denote the number of isolated vertices and setk′ = k + I. Output(G′, k′). This
reduction illustrated in the following figure. Note that every step can be performed in polynomial time.

Correctness of the Reduction:To establish the correctness of the reduction, we need to show thatG has a vertex
cover of sizek if and only if G′ has a dominating set of sizek′. First we argue that ifV ′ is a vertex cover forG,
thenV ′′ = V ′ ∪ VI is a dominating set forG′. Observe that

|V ′′| = |V ′ ∪ VI | ≤ k + I = k′.

Note that|V ′ ∪ VI | might be of size less thank + I, if there are any isolated vertices inV ′. If so, we can add
any vertices we like to make the size equal tok′.
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Fig. 52: Dominating set reduction.

To see thatV ′′ is a dominating set, first observe that all the isolated vertices are inV ′′ and so they are dominated.
Second, each of the special verticeswuv in G′ corresponds to an edge{u, v} in G implying that eitheru or v is
in the vertex coverV ′. Thuswuv is dominated by the same vertex inV ′′ Finally, each of the nonisolated original
verticesv is incident to at least one edge inG, and hence either it is inV ′ or else all of its neighbors are inV ′. In
either case,v is either inV ′′ or adjacent to a vertex inV ′′. This is shown in the top part of the following figure.

vertex cover for G dominating set for G’

vertex cover for Gusing original verticesdominating set for G’

Fig. 53: Correctness of the VC to DS reduction (wherek = 3 andI = 1).

Conversely, we claim that ifG′ has a dominating setV ′′ of sizek′ = k + I thenG has a vertex coverV ′ of
sizek. Note that allI isolated vertices ofG′ must be in the dominating set. First, letV ′′′ = V ′′ − VI be the
remainingk vertices. We might try to claim something like:V ′′′ is a vertex cover forG. But this will not
necessarily work, becauseV ′′′ may have vertices that are not part of the original graphG.

However, we claim that we never need to use any of the newly created special vertices inV ′′′. In particular,
if some vertexwuv ∈ V ′′′, then modifyV ′′′ by replacingwuv with u. (We could have just as easily replaced
it with v.) Observe that the vertexwuv is adjacent to onlyu andv, so it dominates itself and these other two
vertices. By usingu instead, we still dominateu, v, andwuv (becauseu has edges going tov andwuv). Thus
by replacingwu,v with u we dominate the same vertices (and potentially more). LetV ′ denote the resulting set
after this modification. (This is shown in the lower middle part of the figure.)

We claim thatV ′ is a vertex cover forG. If, to the contrary there were an edge{u, v} of G that was not
covered (neitheru nor v was inV ′) then the special vertexwuv would not be adjacent to any vertex ofV ′′ in
G′, contradicting the hypothesis thatV ′′ was a dominating set forG′.
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Lecture 20: Subset Sum

Read: Sections 34.5.5 in CLR.

Subset Sum: The Subset Sum problem (SS) is the following. Given a finite setS of positive integersS = {w1, w2, . . . , wn}
and atarget value, t, we want to know whether there exists a subsetS′ ⊆ S that sums exactly tot.

This problem is a simplified version of the 0-1 Knapsack problem, presented as a decision problem. Recall
that in the 0-1 Knapsack problem, we are given a collection of objects, each with an associated weightwi and
associated valuevi. We are given a knapsack of capacityW . The objective is to take as many objects as can fit
in the knapsack’s capacity so as to maximize the value. (In the fractional knapsack we could take a portion of
an object. In the 0-1 Knapsack we either take an object entirely or leave it.) In the simplest version, suppose
that the value is the same as the weight,vi = wi. (This would occur for example if all the objects were made of
the same material, say, gold.) Then, the best we could hope to achieve would be to fill the knapsack entirely. By
settingt = W , we see that the subset sum problem is equivalent to this simplified version of the 0-1 Knapsack
problem. It follows that if we can show that this simpler version is NP-complete, then certainly the more general
0-1 Knapsack problem (stated as a decision problem) is also NP-complete.

Consider the following example.

S = {3, 6, 9, 12, 15, 23, 32} and t = 33.

The subsetS′ = {6, 12, 15} sums tot = 33, so the answer in this case is yes. Ift = 34 the answer would be no.

Dynamic Programming Solution: There is a dynamic programming algorithm which solves the Subset Sum prob-
lem inO(n · t) time.2

The quantityn · t is a polynomial function ofn. This would seem to imply that the Subset Sum problem is in P.
But there is a important catch. Recall that in all NP-complete problems we assume (1) running time is measured
as a function of input size (number of bits) and (2) inputs must be encoded in a reasonable succinct manner. Let
us assume that the numberswi andt are allb-bit numbers represented in base 2, using the fewest number of bits
possible. Then the input size isO(nb). The value oft may be as large as2b. So the resulting algorithm has a
running time ofO(n2b). This is polynomial inn, but exponential inb. Thus, this running time is not polynomial
as a function of the input size.

Note that an important consequence of this observation is that the SS problem is not hard when the numbers
involved are small. If the numbers involved are of a fixed number of bits (a constant independent ofn), then
the problem is solvable in polynomial time. However, we will show that in the general case, this problem is
NP-complete.

SS is NP-complete:The proof that Subset Sum (SS) is NP-complete involves the usual two elements.

(i) SS∈ NP.
(ii) Some known NP-complete problem is reducible to SS. In particular, we will show that Vertex Cover (VC)

is reducible to SS, that is, VC≤P SS.

To show that SS is in NP, we need to give a verification procedure. GivenS andt, the certificate is just the
indices of the numbers that form the subsetS′. We can add twob-bit numbers together inO(b) time. So, in
polynomial time we can compute the sum of elements inS′, and verify that this sum equalst.

For the remainder of the proof we show how to reduce vertex cover to subset sum. We want a polynomial time
computable functionf that maps an instance of the vertex cover (a graphG and integerk) to an instance of the
subset sum problem (a set of integersS and target integert) such thatG has a vertex cover of sizek if and only
if S has a subset summing tot. Thus, if subset sum were solvable in polynomial time, so would vertex cover.

2We will leave this as an exercise, but the formulation is, for0 ≤ i ≤ n and0 ≤ t′ ≤ t, S[i, t′] = 1 if there is a subset of{w1, w2, . . . , wi}
that sums tot′, and 0 otherwise. Theith row of this table can be computed inO(t) time, given the contents of the(i − 1)-st row.
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How can we encode the notion of selecting a subset of vertices that cover all the edges to that of selecting a
subset of numbers that sums tot? In the vertex cover problem we are selecting vertices, and in the subset sum
problem we are selecting numbers, so it seems logical that the reduction should map vertices into numbers. The
constraint that these vertices should cover all the edges must be mapped to the constraint that the sum of the
numbers should equal the target value.

An Initial Approach: Here is an idea, which does not work, but gives a sense of how to proceed. LetE denote the
number of edges in the graph. First number the edges of the graph from 1 throughE. Then represent each vertex
vi as anE-element bit vector, where thej-th bit from the left is set to 1 if and only if the edgeej is incident
to vertexvi. (Another way to think of this is that these bit vectors form the rows of anincidence matrixfor the
graph.) An example is shown below, in whichk = 3.
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Fig. 54: Encoding a graph as a collection of bit vectors.

Now, suppose we take any subset of vertices and form the logical-or of the corresponding bit vectors. If the
subset is a vertex cover, then every edge will be covered by at least one of these vertices, and so the logical-or
will be a bit vector of all 1’s,1111 . . . 1. Conversely, if the logical-or is a bit vector of 1’s, then each edge has
been covered by some vertex, implying that the vertices form a vertex cover. (Later we will consider how to
encode the fact that there only allowedk vertices in the cover.)
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Fig. 55: The logical-or of a vertex cover equals1111 . . . 1.

Since bit vectors can be thought of as just a way of representing numbers in binary, this is starting to feel more
like the subset sum problem. The target would be the number whose bit vector is all 1’s. There are a number of
problems, however. First, logical-or is not the same as addition. For example, if both of the endpoints of some
edge are in the vertex cover, then its value in the corresponding column would be 2, not 1. Second, we have
no way of controlling how many vertices go into the vertex cover. (We could just take the logical-or of all the
vertices, and then the logical-or would certainly be a bit vectors of 1’s.)
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There are two ways in which addition differs significantly from logical-or. The first is the issue of carries. For
example, the1101 ∨ 0011 = 1111, but in binary1101 + 0011 = 1000. To fix this, we recognize that we do
not have to use a binary (base-2) representation. In fact, we can assume any base system we want. Observe that
each column of the incidence matrix has at most two 1’s in any column, because each edge is incident to at most
two vertices. Thus, if use any base that is at least as large as base 3, we will never generate a carry to the next
position. In fact we will use base 4 (for reasons to be seen below). Note that the base of the number system is
just for own convenience of notation. Once the numbers have been formed, they will be converted into whatever
form our machine assumes for its input representation, e.g. decimal or binary.

The second difference between logical-or and addition is that an edge may generally be covered either once or
twice in the vertex cover. So, the final sum of these numbers will be a number consisting of 1 and 2 digits, e.g.
1211 . . . 112. This does not provide us with a unique target valuet. We know that no digit of our sum can be a
zero. To fix this problem, we will create a set ofE additionalslack values. For1 ≤ i ≤ E, theith slack value
will consist of all 0’s, except for a single 1-digit in theith position, e.g.,00000100000. Our target will be the
number2222 . . . 222 (all 2’s). To see why this works, observe that from the numbers of our vertex cover, we
will get a sum consisting of 1’s and 2’s. For each position where there is a 1, we can supplement this value by
adding in the corresponding slack value. Thus we can boost any value consisting of 1’s and 2’s to all 2’s. On the
other hand, note that if there are any 0 values in the final sum, we will not have enough slack values to convert
this into a 2.

There is one last issue. We are only allowed to place onlyk vertices in the vertex cover. We will handle this by
adding an additional column. For each number arising from a vertex, we will put a 1 inthis additional column.
For each slack variable we will put a 0. In the target, we will require that this column sum to the valuek, the
size of the vertex cover. Thus, to form the desired sum, we must select exactlyk of the vertex values. Note that
since we only have a base-4 representation, there might be carries out of this last column (ifk ≥ 4). But since
this is the last column, it will not affect any of the other aspects of the construction.

The Final Reduction: Here is the final reduction, given the graphG = (V,E) and integerk for the vertex cover
problem.

(1) Create a set ofn vertex values,x1, x2, . . . , xn using base-4 notation. The valuexi is equal a 1 followed
by a sequence ofE base-4 digits. Thej-th digit is a 1 if edgeej is incident to vertexvi and 0 otherwise.

(2) CreateE slack valuesy1, y2, . . . , yE , whereyi is a 0 followed byE base-4 digits. Thei-th digit of yi is 1
and all others are 0.

(3) Let t be the base-4 number whose first digit isk (this may actually span multiple base-4 digits), and whose
remainingE digits are all 2.

(4) Convert thexi’s, theyj ’s, andt into whatever base notation is used for the subset sum problem (e.g. base
10). Output the setS = {x1, . . . , xn, y1, . . . , yE} andt.

Observe that this can be done in polynomial time, inO(E2), in fact. The construction is illustrated in Fig. 56.

Correctness: We claim thatG has a vertex cover of sizek if and only if S has a subset that sums tot. If G has a
vertex coverV ′ of sizek, then we take the vertex valuesxi corresponding to the vertices ofV ′, and for each
edge that is covered only once inV ′, we take the corresponding slack variable. It follows from the comments
made earlier that the lower-orderE digits of the resulting sum will be of the form222 . . . 2 and because there
arek elements inV ′, the leftmost digit of the sum will bek. Thus, the resulting subset sums tot.

Conversely, ifS has a subsetS′ that sums tot then we assert that it must select exactlyk values from among
the vertex values, since the first digit must sum tok. We claim that these verticesV ′ form a vertex cover. In
particular, no edge can be left uncovered byV ′, since (because there are no carries) the corresponding column
would be 0 in the sum of vertex values. Thus, no matter what slack values we add, the resulting digit position
could not be equal to 2, and so this cannot be a solution to the subset sum problem.
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It is worth noting again that in this reduction, we needed to have large numbers. For example, the target valuet
is at least as large as4E ≥ 4n (wheren is the number of vertices inG). In our dynamic programming solution
W = t, so the DP algorithm would run inΩ(n4n) time, which is not polynomial time.

Lecture 21: Approximation Algorithms: VC and TSP

Read: Chapt 35 (up through 35.2) in CLRS.

Coping with NP-completeness:With NP-completeness we have seen that there are many important optimization
problems that are likely to be quite hard to solve exactly. Since these are important problems, we cannot simply
give up at this point, since people do need solutions to these problems. How do we cope with NP-completeness:

Use brute-force search:Even on the fastest parallel computers this approach is viable only for the smallest
instances of these problems.

Heuristics: A heuristicis a strategy for producing a valid solution, but there are no guarantees how close it is
to optimal. This is worthwhile if all else fails, or if lack of optimality is not really an issue.

General Search Methods:There are a number of very powerful techniques for solving general combinatorial
optimization problems that have been developed in the areas of AI and operations research. These go under
names such asbranch-and-bound, A∗-search, simulated annealing, andgenetic algorithms. The perfor-
mance of these approaches varies considerably from one problem to problem and instance to instance. But
in some cases they can perform quite well.

Approximation Algorithms: This is an algorithm that runs in polynomial time (ideally), and produces a solu-
tion that is within a guaranteed factor of the optimum solution.

Performance Bounds: Most NP-complete problems have been stated as decision problems for theoretical reasons.
However underlying most of these problems is a natural optimization problem. For example, the TSP optimiza-
tion problem is to find the simple cycle of minimum cost in a digraph, the VC optimization problem is to find
the vertex cover of minimum size, the clique optimization problem is to find the clique of maximum size. Note
that sometimes we are minimizing and sometimes we are maximizing. An approximation algorithm is one that
returns a legitimate answer, but not necessarily one of the smallest size.

How do we measure how good an approximation algorithm is? We define theratio boundof an approximation
algorithm as follows. Given an instanceI of our problem, letC(I) be the cost of the solution produced by our
approximation algorithm, and letC∗(I) be the optimal solution. We will assume that costs are strictly positive
values. For a minimization problem we wantC(I)/C∗(I) to be small, and for a maximization problem we want
C∗(I)/C(I) to be small. For any input sizen, we say that the approximation algorithm achievesratio bound
ρ(n), if for all I, |I| = n we have

max
I

(
C(I)
C∗(I)

,
C∗(I)
C(I)

)
≤ ρ(n).

Observe thatρ(n) is always greater than or equal to 1, and it is equal to 1 if and only if the approximate solution
is the true optimum solution.

Some NP-complete problems can be approximated arbitrarily closely. Such an algorithm is given both the input,
and a real valueε > 0, and returns an answer whose ratio bound is at most(1 + ε). Such an algorithm is called
a polynomial time approximation scheme(or PTASfor short). The running time is a function of bothn andε.
As ε approaches 0, the running time increases beyond polynomial time. For example, the running time might be
O(nd1/εe). If the running time depends only on a polynomial function of1/ε then it is called afully polynomial-
time approximation scheme. For example, a running time likeO((1/ε)2n3) would be such an example, whereas
O(n1/ε) andO(2(1/ε)n) are not.

Although NP-complete problems are equivalent with respect to whether they can be solved exactly in polynomial
time in the worst case, their approximability varies considerably.
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• For some NP-complete problems, it is very unlikely that any approximation algorithm exists. For example,
if the graph TSP problem had an approximation algorithm with a ratio bound of any value less than∞,
then P= NP.

• Many NP-complete can be approximated, but the ratio bound is a (slow growing) function ofn. For
example, the set cover problem (a generalization of the vertex cover problem), can be approximated to
within a factor oflnn. We will not discuss this algorithm, but it is covered in CLRS.

• Some NP-complete problems can be approximated to within a fixed constant factor. We will discuss two
examples below.

• Some NP-complete problems have PTAS’s. One example is the subset problem (which we haven’t dis-
cussed, but is described in CLRS) and the Euclidean TSP problem.

In fact, much like NP-complete problems, there are collections of problems which are “believed” to be hard to
approximate and are equivalent in the sense that if any one can be approximated in polynomial time then they
all can be. This class is calledMax-SNP complete. We will not discuss this further. Suffice it to say that the
topic of approximation algorithms would fill another course.

Vertex Cover: We begin by showing that there is an approximation algorithm for vertex cover with a ratio bound of 2,
that is, this algorithm will be guaranteed to find a vertex cover whose size is at most twice that of the optimum.
Recall that a vertex cover is a subset of vertices such that every edge in the graph is incident to at least one of
these vertices. Thevertex cover optimization problemis to find a vertex cover of minimum size.

How does one go about finding an approximation algorithm. The first approach is to try something that seems
like a “reasonably” good strategy, aheuristic. It turns out that many simple heuristics, when not optimal, can
often be proved to be close to optimal.

Here is an very simple algorithm, that guarantees an approximation within a factor of 2 for the vertex cover
problem. It is based on the following observation. Consider an arbitrary edge(u, v) in the graph. One of its
two verticesmustbe in the cover, but we do not know which one. The idea of this heuristic is to simply put
bothvertices into the vertex cover. (You cannot get much stupider than this!) Then we remove all edges that are
incident tou andv (since they are now all covered), and recurse on the remaining edges. For every one vertex
that must be in the cover, we put two into our cover, so it is easy to see that the cover we generate is at most
twice the size of the optimum cover. The approximation is given in the figure below. Here is a more formal
proof of its approximation bound.

G and opt VC The 2−for−1 Heuristic

Fig. 58: The 2-for-1 heuristic for vertex cover.

Claim: ApproxVC yields a factor-2 approximation for Vertex Cover.

Proof: Consider the setC output by ApproxVC. LetC∗ be the optimum VC. LetA be the set of edges selected
by the line marked with “(*)” in the figure. Observe that the size ofC is exactly2|A| because we add two
vertices for each such edge. However note that in the optimum VC one of these two vertices must have
been added to the VC, and thus the size ofC∗ is at least|A|. Thus we have:

|C|
2

= |A| ≤ |C∗| ⇒ |C|
|C∗| ≤ 2.
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2-for-1 Approximation for VC
ApproxVC {

C = empty-set
while (E is nonempty) do {

(*) let (u,v) be any edge of E
add both u and v to C
remove from E all edges incident to either u or v

}
return C;

}

This proof illustrates one of the main features of the analysis of any approximation algorithm. Namely, that we
need some way of finding a bound on the optimal solution. (For minimization problems we want a lower bound,
for maximization problems an upper bound.) The bound should be related to something that we can compute in
polynomial time. In this case, the bound is related to the set of edgesA, which form a maximal independent set
of edges.

The Greedy Heuristic: It seems that there is a very simple way to improve the 2-for-1 heuristic. This algorithm
simply selects any edge, and adds both vertices to the cover. Instead, why not concentrate instead on vertices of
high degree, since a vertex of high degree covers the maximum number of edges. This is greedy strategy. We
saw in the minimum spanning tree and shortest path problems that greedy strategies were optimal.

Here is the greedy heuristic. Select the vertex with the maximum degree. Put this vertex in the cover. Then
delete all the edges that are incident to this vertex (since they have been covered). Repeat the algorithm on the
remaining graph, until no more edges remain. This algorithm is illustrated in the figure below.

The Greedy HeuristicG and opt VC

Fig. 59: The greedy heuristic for vertex cover.

Greedy Approximation for VC
GreedyVC(G=(V,E)) {

C = empty-set;
while (E is nonempty) do {

let u be the vertex of maximum degree in G;
add u to C;
remove from E all edges incident to u;

}
return C;

}

It is interesting to note that on the example shown in the figure, the greedy heuristic actually succeeds in find-
ing the optimum vertex cover. Can we prove that the greedy heuristic always outperforms the stupid 2-for-1
heuristic? The surprising answer is an emphatic “no”. In fact, it can be shown that the greedy heuristic does
not even have a constant performance bound. That is, it can perform arbitrarily poorly compared to the optimal
algorithm. It can be shown that the ratio bound grows asΘ(log n), wheren is the number of vertices. (We leave
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this as a moderately difficult exercise.) However, it should also be pointed out that the vertex cover constructed
by the greedy heuristic is (for typical graphs) smaller than that one computed by the 2-for-1 heuristic, so it would
probably be wise to run both algorithms and take the better of the two.

Traveling Salesman Problem: In the Traveling Salesperson Problem (TSP) we are given a complete undirected
graph with nonnegative edge weights, and we want to find a cycle that visits all vertices and is of minimum
cost. Letc(u, v) denote the weight on edge(u, v). Given a set of edgesA forming a tour we definec(A) to be
the sum of edge weights inA. Last time we mentioned that TSP (posed as a decision problem) is NP-complete.

For many of the applications of TSP, the problem satisfies something called thetriangle inequality. Intuitively,
this says that the direct path fromu tow, is never longer than an indirect path. More formally, for allu, v, w ∈ V

c(u,w) ≤ c(u, v) + c(v, w).

There are many examples of graphs that satisfy the triangle inequality. For example, given any weighted graph,
if we definec(u, v) to be the shortest path length betweenu and v (computed, say by the Floyd-Warshall
algorithm), then it will satisfy the triangle inequality. Another example is if we are given a set of points in
the plane, and define a complete graph on these points, wherec(u, v) is defined to be the Euclidean distance
between these points, then the triangle inequality is also satisfied.

When the underlying cost function satisfies the triangle inequality there is an approximation algorithm for TSP
with a ratio-bound of 2. (In fact, there is a slightly more complex version of this algorithm that has a ratio bound
of 1.5, but we will not discuss it.) Thus, although this algorithm does not produce an optimal tour, the tour that
it produces cannot be worse than twice the cost of the optimal tour.

The key insight is to observe that a TSP with one edge removed is a spanning tree. However it is not necessarily
a minimum spanning tree. Therefore, the cost of the minimum TSP tour is at least as large as the cost of the
MST. We can compute MST’s efficiently, using, for example, either Kruskal’s or Prim’s algorithm. If we can
find some way to convert the MST into a TSP tour while increasing its cost by at most a constant factor, then
we will have an approximation for TSP. We shall see that if the edge weights satisfy the triangle inequality, then
this is possible.

Here is how the algorithm works. Given any free tree there is a tour of the tree called atwice around tourthat
traverses the edges of the tree twice, once in each direction. The figure below shows an example of this.

Shortcut tour

start

Optimum tour

start

MST Twice−around tour

Fig. 60: TSP Approximation.

This path is not simple because it revisits vertices, but we can make it simple byshort-cutting, that is, we skip
over previously visited vertices. Notice that the final order in which vertices are visited using the short-cuts is
exactly the same as a preorder traversal of the MST. (In fact, any subsequence of the twice-around tour which
visits each vertex exactly once will suffice.) The triangle inequality assures us that the path length will not
increase when we take short-cuts.

Claim: Approx-TSP has a ratio bound of 2.

Proof: LetH denote the tour produced by this algorithm and letH∗ be the optimum tour. LetT be the minimum
spanning tree. As we said before, since we can remove any edge ofH∗ resulting in a spanning tree, and
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TSP Approximation
ApproxTSP(G=(V,E)) {

T = minimum spanning tree for G
r = any vertex
L = list of vertices visited by a preorder walk ot T

starting with r
return L

}

sinceT is the minimum cost spanning tree we have

c(T ) ≤ c(H∗).

Now observe that the twice around tour ofT has cost2c(T ), since every edge inT is hit twice. By the
triangle inequality, when we short-cut an edge ofT to formH we do not increase the cost of the tour, and
so we have

c(H) ≤ 2c(T ).

Combining these we have

c(H)
2
≤ c(T ) ≤ c(H∗) ⇒ c(H)

c(H∗)
≤ 2.

Lecture 22: Thek-Center Approximation

Read: Today’s material is not covered in CLR.

Facility Location: Imagine that Blockbuster Video wants to open a 50 stores in some city. The company asks you to
determine the best locations for these stores. The condition is that you are to minimize the maximum distance
that any resident of the city must drive in order to arrive at the nearest store.

If we model the road network of the city as an undirected graph whose edge weights are the distances between
intersections, then this is an instance of thek-center problem. In thek-center problem we are given an undirected
graphG = (V,E) with nonnegative edge weights, and we are given an integerk. The problem is to compute
a subset ofk verticesC ⊆ V , calledcenters, such that the maximum distance between any vertex inV and its
nearest center inC is minimized. (The optimization problem seeks to minimize the maximum distance and the
decision problem just asks whether there exists a set of centers that are within a given distance.)

More formally, letG = (V,E) denote the graph, and letw(u, v) denote the weight of edge(u, v). (w(u, v) =
w(v, u) becauseG is undirected.) We assume that all edge weights are nonnegative. For each pair of vertices,
u, v ∈ V , let d(u, v) = d(u, v) denote thedistancebetweenu to v, that is, the length of the shortest path from
u to v. (Note that the shortest path distance satisfies the triangle inequality. This will be used in our proof.)

Consider a subsetC ⊆ V of vertices, thecenters. For each vertexv ∈ V we can associate it with its nearest
center inC. (This is the nearest Blockbuster store to your house). For each centerci ∈ C we define its
neighborhoodto be the subset of vertices for whichci is the closest center. (These are the houses that are closest
to this center. See Fig. 61.) More formally, define:

V (ci) = {v ∈ V | d(v, ci) ≤ d(v, cj), for i 6= j}.

Let us assume for simplicity that there are no ties for the distances to the closest center (or that any such ties have
been broken arbitrarily). ThenV (c1), V (c2), . . . , V (ck) forms apartition of the vertex set ofG. Thebottleneck
distanceassociated with each center is the distance to its farthest vertex inV (ci), that is,

D(ci) = max
v∈V (ci)

d(v, ci).
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Fig. 61: Thek-center problem with optimum centersci and neighborhood setsV (ci).

Finally, we define the overallbottleneck distanceto be

D(C) = max
ci∈C

D(ci).

This is the maximum distance of any vertex from its nearest center. This distance is critical because it represents
the customer that must travel farthest to get to the nearest facility, thebottleneck vertex. Given this notation, we
can now formally define the problem.

k-center problem: Given a weighted undirected graphG = (V,E), and an integerk ≤ |V |, find a subset
C ⊆ V of sizek such thatD(C) is minimized.

The decision-problem formulation of thek-center problem is NP-complete (reduction from dominating set). A
brute force solution to this problem would involve enumerating allk-element of subsets ofV , and computing
D(C) for each one. However, lettingn = |V | andk, the number of possible subsets is

(
n
k

)
= Θ(nk). If k is

a function ofn (which is reasonable), then this an exponential number of subsets. Given that the problem is
NP-complete, it is highly unlikely that a significantly more efficient exact algorithm exists in the worst-case. We
will show that there does exist an efficient approximation algorithm for the problem.

Greedy Approximation Algorithm: Our approximation algorithm is based on a simple greedy algorithm that pro-
duces a bottleneck distanceD(C) that is not more than twice the optimum bottleneck distance. We begin by
letting the first centerc1 beanyvertex in the graph (the lower left vertex, say, in the figure below). Compute
the distances between this vertex and all the other vertices in the graph (Fig. 62(b)). Consider the vertex that is
farthest from this center (the upper right vertex at distance 23 in the figure). This the bottleneck vertex for{c1}.
We would like to select the next center so as to reduce this distance. So let us just make it the next center, called
c2. Then again we compute the distances from each vertex in the graph to thecloserof c1 andc2. (See Fig. 62(c)
where dashed lines indicate which vertices are closer to which center). Again we consider the bottleneck vertex
for the current centers{c1, c2}. We place the next center at this vertex (see Fig. 62(d)). Again we compute the
distances from each vertex to its nearest center. Repeat this until allk centers have been selected. In Fig. 62(d),
the final three greedy centers are shaded, and the final bottleneck distance is 11.

Although the greedy approach has a certain intuitive appeal (because it attempts to find the vertex that gives the
bottleneck distance, and then puts a center right on this vertex), it is not optimal. In the example shown in the
figure, the optimum solution (shown on the right) has a bottleneck cost of 9, which beats the 11 that the greedy
algorithm gave.

Here is a summary of the algorithm. For each vertexu, let d[u] denote the distance to the nearest center.

We know from Dijkstra’s algorithm how to compute the shortest path from a single source to all other vertices
in the graph. One way to solve the distance computation step above would be to invoke Dijkstra’s algorithmi
times. But there is an easier way. We can modify Dijkstra’s algorithm to operate as amultiple sourcealgorithm.
In particular, in the initialization of Dijkstra’s single source algorithm, it setsd[s] = 0 andpred[s] = null. In
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Fig. 62: Greedy approximation tok-center.

Greedy Approximation fork-center
KCenterApprox(G, k) {

C = empty_set
for each u in V do // initialize distances

d[u] = INFINITY
for i = 1 to k do { // main loop

Find the vertex u such that d[u] is maximum
Add u to C // u is the current bottleneck vertex

// update distances
Compute the distance from each vertex v to its closest

vertex in C, denoted d[v]
}
return C // final centers

}
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the modified multiple source version, we do this forall the vertices ofC. The final greedy algorithm involves
running Dijkstra’s algorithmk times (once for each time through the for-loop). Recall that the running time of
Dijkstra’s algorithm isO((V + E) log V ). Under the reasonable assumption thatE ≥ V , this isO(E log V ).
Thus, the overall running time isO(kE log V ).

Approximation Bound: How bad could greedy be? We will argue that it has a ratio bound of 2. To see that we can
get a factor of 2, consider a set ofn + 1 vertices arranged in a linear graph, in which all edges are of weight 1.
The greedy algorithm might pick any initial vertex that it likes. Suppose it picks the leftmost vertex. Then the
maximum (bottleneck) distance is the distance to the rightmost vertex which isn. If we had instead chosen the
vertex in the middle, then the maximum distance would only ben/2, which is better by a factor of 2.

Opt

Greedy

Cost =n/2

Cost = n

Fig. 63: Worst-case for greedy.

We want to show that this approximation algorithm always produces a final distanceD(C) that is within a factor
of 2 of the distance of the optimal solution.

LetO = {o1, o2, . . . , ok} denote the centers of the optimal solution (shown as black dots in Fig. 64, and the lines
show the partition into the neighborhoods for each of these points). LetD∗ = D(O) be the optimal bottleneck
distance.

Let G = {g1, g2, . . . , gk} be the centers found by the greedy approximation (shown as white dots in the figure
below). Also, letgk+1 denote the next center thatwould havebeen added next, that is, the bottleneck vertex for
G. Let D(G) denote the bottleneck distance forG. Notice that the distance fromgk+1 to its nearest center is
equalD(G). The proof involves a simple application of the pigeon-hole principal.

<D

>D*

o3

o4

o5

<D

o1

g1

g2

g3

g6

g5

g4

o2

opt

opt

Fig. 64: Analysis of the greedy heuristic fork = 5. The greedy centers are given as white dots and the optimal centers
as black dots. The regions represent the neighborhood setsV (oi) for the optimal centers.

Theorem: The greedy approximation has a ratio bound of 2, that isD(G)/D∗ ≤ 2.

Proof: Let G′ = {g1, g2, . . . , gk, gk+1} be the(k + 1)-element set consisting of the greedy centers together
with the next greedy centergk+1 First observe that fori 6= j, d(gi, gj) ≥ D(G). This follows as a result of
our greedy selection strategy. As each center is selected, it is selected to be at the maximum (bottleneck)
distance from all the previous centers. As we add more centers, the maximum distance between any pair
of centers decreases. Since the final bottleneck distance isD(G), all the centers are at least this far apart
from one another.
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Eachgi ∈ G′ is associated with its closest center in the optimal solution, that is, each belongs toV (om)
for somem. Because there arek centers inO, andk + 1 elements inG′, it follows from the pigeon-hole
principal, that at least two centers ofG′ are in the same setV (om) for somem. (In the figure, the greedy
centersg4 andg5 are both inV (o2)). Let these be denotedgi andgj .

SinceD∗ is the bottleneck distance forO, we know that the distance fromgi to ok is of length at most
D∗ and similarly the distance fromok to gj is at mostD∗. By concatenating these two paths, it follows
that there exists a path of length2D∗ from gi to gj , and hence we haved(gi, gj) ≤ 2D∗. But from the
comments above we haved(gi, gj) ≥ D(G). Therefore,

D(G) ≤ d(gi, gj) ≤ 2D∗,

from which the desired ratio follows.

Lecture 23: Approximations: Set Cover and Bin Packing

Read: Set cover is covered in Chapt 35.3. Bin packing is covered as an exercise in CLRS.

Set Cover: The set cover problem is a very important optimization problem. You are given a pair(X,F ) where
X = {x1, x2, . . . , xm} is a finite set (a domain of elements) andF = {S1, S2, . . . , Sn} is a family of subsets
of X, such that every element ofX belongs to at least one set ofF .

Consider a subsetC ⊆ F . (This is a collection of sets overX.) We say thatC coversthe domain if every
element ofX is in some set ofC, that is

X =
⋃

Si∈C

Si.

The problem is to find the minimum-sized subsetC of F that coversX. Consider the example shown below.
The optimum set cover consists of the three sets{S3, S4, S5}.

S1

S2

S3 S4 S5

S6

Fig. 65: Set cover.

Set cover can be applied to a number of applications. For example, suppose you want to set up security cameras
to cover a large art gallery. From each possible camera position, you can see a certain subset of the paintings.
Each such subset of paintings is a set in your system. You want to put up the fewest cameras to see all the
paintings.

Complexity of Set Cover: We have seen special cases of the set cover problems that are NP-complete. For example,
vertex cover is a type of set cover problem. The domain to be covered are the edges, and each vertex covers the
subset of incident edges. Thus, the decision-problem formulation of set cover (“does there exist a set cover of
size at mostk?”) is NP-complete as well.

There is a factor-2 approximation for the vertex cover problem, but it cannot be applied to generate a factor-
2 approximation for set cover. In particular, the VC approximation relies on the fact that each element of the
domain (an edge) is in exactly 2 sets (one for each of its endpoints). Unfortunately, this is not true for the general
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set cover problem. In fact, it is known that there is no constant factor approximation to the set cover problem,
unless P= NP. This is unfortunate, because set cover is one of the most powerful NP-complete problems.

Today we will show that there is a reasonable approximation algorithm, thegreedy heuristic, which achieves
an approximation bound oflnm, wherem = |X|, the size of the underlying domain. (The book proves a
somewhat stronger result, that the approximation factor oflnm′ wherem′ ≤ m is the size of the largest set in
F . However, their proof is more complicated.)

Greedy Set Cover: A simple greedy approach to set cover works by at each stage selecting the set that covers the
greatest number of “uncovered” elements.

Greedy Set Cover
Greedy-Set-Cover(X, F) {

U = X // U are the items to be covered
C = empty // C will be the sets in the cover
while (U is nonempty) { // there is someone left to cover

select S in F that covers the most elements of U
add S to C
U = U - S

}
return C

}

For the example given earlier the greedy-set cover algorithm would selectS1 (since it covers 6 out of 12 ele-
ments), thenS6 (since it covers 3 out of the remaining 6), thenS2 (since it covers 2 of the remaining 3) and
finally S3. Thus, it would return a set cover of size 4, whereas the optimal set cover has size 3.

What is the approximation factor? The problem with the greedy set cover algorithm is that it can be “fooled” into
picking the wrong set, over and over again. Consider the following example. The optimal set cover consists of
setsS5 andS6, each of size 16. Initially all three setsS1, S5, andS6 have 16 elements. If ties are broken in the
worst possible way, the greedy algorithm will first select setsS1. We remove all the covered elements. NowS2,
S5 andS6 all cover 8 of the remaining elements. Again, if we choose poorly,S2 is chosen. The pattern repeats,
choosingS3 (size 4),S4 (size 2) and finallyS5 andS6 (each of size 1).

Thus, the optimum cover consisted of two sets, but we picked roughlylg m, wherem = |X|, for a ratio bound
of (lg m)/2. (Recall thelg denotes logarithm base 2.) There were many cases where ties were broken badly
here, but it is possible to redesign the example such that there are no ties and yet the algorithm has essentially
the same ratio bound.

Optimum: {S5, S6}

Greedy: {S1, S2, S3, S4, S5, S6}S6

S5

S4S3 S2 S1

Fig. 66: An example in which the Greedy Set cover performs poorly.

However we will show that the greedy set cover heuristic nevers performs worse than a factor oflnm. (Note
that this is natural log, not base 2.)

Before giving the proof, we need one important mathematical inequality.

Lemma: For all c > 0, (
1− 1

c

)c

≤ 1
e
.

wheree is the base of the natural logarithm.
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Proof: We use the fact that for allx, 1 + x ≤ ex. (The two functions are equal whenx = 0.) Now, if we
substitute−1/c for x we have(1− 1/c) ≤ e−1/c, and if we raise both sides to thecth power, we have the
desired result.

The theorem of the approximation bound for bin packing proven here is a bit weaker from the one in CLRS, but
I think it is easier to understand.

Theorem: Greedy set cover has the ratio bound of at mostlnm wherem = |X|.
Proof: Let c denote the size of the optimum set cover, and letg denote the size of the greedy set cover minus 1.

We will show thatg/c ≤ lnm. (This is not quite what we wanted, but we are correct to within 1 set.)

Initially, there arem0 = m elements left to be covered. We know that there is a cover of sizec (the
optimal cover) and therefore by the pigeonhole principle, there must be at least one set that covers at least
m0/c elements. (Since otherwise, if every set covered less thanm0/c elements, then no collection ofc
sets could cover allm0 elements.) Since the greedy algorithm selects the largest set, it will select a set
that covers at least this many elements. The number of elements that remain to be covered is at most
m1 = m0 −m0/c = m0(1− 1/c).
Applying the argument again, we know that we can cover thesem1 elements with a cover of sizec (the
optimal cover), and hence there exists a subset that covers at leastm1/c elements, leaving at mostm2 =
m1(1− 1/c) = m0(1− 1/c)2 elements remaining.

If we apply this argumentg times, each time we succeed in covering at least a fraction of(1− 1/c) of the
remaining elements. Then the number of elements that remain is uncovered afterg sets have been chosen
by the greedy algorithm is at mostmg = m0(1− 1/c)g.

How long can this go on? Consider the largest value ofg such that after removing all but the last set of the
greedy cover, we still have some element remaining to be covered. Thus, we are interested in the largest
value ofg such that

1 ≤ m

(
1− 1

c

)g

.

We can rewrite this as

1 ≤ m

[(
1− 1

c

)c]g/c

.

By the inequality above we have

1 ≤ m

[
1
e

]g/c

.

Now, if we multiply byeg/c and take natural logs we get thatg satisfies:

eg/c ≤ m ⇒ g

c
≤ lnm.

This completes the proof.

Even though the greedy set cover has this relatively bad ratio bound, it seems to perform reasonably well in
practice. Thus, the example shown above in which the approximation bound is(lg m)/2 is not “typical” of set
cover instances.

Bin Packing: Bin packing is another well-known NP-complete problem, which is a variant of the knapsack problem.
We are given a set ofn objects, wheresi denotes thesizeof the ith object. It will simplify the presentation to
assume that0 < si < 1. We want to put these objects into a set of bins. Each bin can hold a subset of objects
whose total size is at most 1. The problem is to partition the objects among the bins so as to use the fewest
possible bins. (Note that if your bin size is not 1, then you can reduce the problem into this form by simply
dividing all sizes by the size of the bin.)
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Bin packing arises in many applications. Many of these applications involve not only the size of the object but
their geometric shape as well. For example, these include packing boxes into a truck, or cutting the maximum
number of pieces of certain shapes out of a piece of sheet metal. However, even if we ignore the geometry,
and just consider the sizes of the objects, the decision problem is still NP-complete. (The reduction is from the
knapsack problem.)

Here is a simple heuristic algorithm for the bin packing problem, called thefirst-fit heuristic. We start with an
unlimited number of empty bins. We take each object in turn, and find the first bin that has space to hold this
object. We put this object in this bin. The algorithm is illustrated in the figure below. We claim that first-fit uses
at most twice as many bins as the optimum, that is, if the optimal solution usesb∗ bins, and first-fit usesbff bins,
then

bff

b∗
≤ 2.

4

5
2

1

3

6

7 s s
s

s
s

s

s

Fig. 67: First-fit Heuristic.

Theorem: The first-fit heuristic achieves a ratio bound of 2.

Proof: Consider an instance{s1, . . . , sn} of the bin packing problem. LetS =
∑

i si denote the sum of all the
object sizes. Letb∗ denote the optimal number of bins, andbff denote the number of bins used by first-fit.
First observe thatb∗ ≥ S. This is true, since no bin can hold a total capacity of more than 1 unit, and even
if we were to fill each bin exactly to its capacity, we would need at leastS bins. (In fact, since the number
of bins is an integer, we would need at leastdSe bins.)
Next, we claim thatbff ≤ 2S. To see this, letti denote the total size of the objects that first-fit puts into
bin i. Consider binsi andi + 1 filled by first-fit. Assume that indexing is cyclical, so ifi is the last index
(i = bff) theni + 1 = 1. We claim thatti + ti+1 ≥ 1. If not, then the contents of binsi andi + 1 could
both be put into the same bin, and hence first-fit would never have started to fill the second bin, preferring
to keep everything in the first bin. Thus we have:

bff∑
i=1

(ti + ti+1) ≥ bff.

But this sum adds up all the elements twice, so it has a total value of2S. Thus we have2S ≥ bff.
Combining this with the fact thatb∗ ≥ S we have

bff ≤ 2S ≤ 2b∗,

implying thatbff/b∗ ≤ 2, as desired.

There are in fact a number of other heuristics for bin packing. Another example isbest fit, which attempts to
put the object into the bin in which it fits most closely with the available space (assuming that there is sufficient
available space). There is also a variant of first-fit, calledfirst fit decreasing, in which the objects are first sorted
in decreasing order of size. (This makes intuitive sense, because it is best to first load the big items, and then try
to squeeze the smaller objects into the remaining space.)
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A more careful proof establishes that first fit has a approximation ratio that is a bit smaller than 2, and in fact
17/10 is possible. Best fit has a very similar bound. First fit decreasing has a significantly better bound of
11/9 = 1.222 . . ..

Lecture 24: Final Review

Overview: This semester we have discussed general approaches to algorithm design. The intent has been to investi-
gate basic algorithm design paradigms: dynamic programming, greedy algorithms, depth-first search, etc. And
to consider how these techniques can be applied on a number of well-defined problems. We have also discussed
the class NP-completeness, of problems that believed to be very hard to solve, and finally some examples of
approximation algorithms.

How to use this information: In some sense, the algorithms you have learned here are rarely immediately applicable
to your later work (unless you go on to be an algorithm designer) because real world problems are always
messier than these simple abstract problems. However, there are some important lessons to take out of this
class.

Develop a clean mathematical model:Most real-world problems are messy. An important first step in solving
any problem is to produce a simple and clean mathematical formulation. For example, this might involve
describing the problem as an optimization problem on graphs, sets, or strings. If you cannot clearly
describe what your algorithm is supposed to do, it is very difficult to know when you have succeeded.

Create good rough designs:Before jumping in and starting coding, it is important to begin with a good rough
design. If your rough design is based on a bad paradigm (e.g. exhaustive enumeration, when depth-first
search could have been applied) then no amount of additional tuning and refining will save this bad design.

Prove your algorithm correct: Many times you come up with an idea that seems promising, only to find out
later (after a lot of coding and testing) that it does not work. Prove that your algorithm is correct before
coding. Writing proofs is not always easy, but it may save you a few weeks of wasted programming time.
If you cannot see why it is correct, chances are that it is not correct at all.

Can it be improved?: Once you have a solution, try to come up with a better one. Is there some reason why a
better algorithm does not exist? (That is, can you establish a lower bound?) If your solution is exponential
time, then maybe your problem is NP-hard.

Prototype to generate better designs:We have attempted to analyze algorithms from an asymptotic perspec-
tive, which hides many of details of the running time (e.g. constant factors), but give a general perspective
for separating good designs from bad ones. After you have isolated the good designs, then it is time to start
prototyping and doing empirical tests to establish the real constant factors. A good profiling tool can tell
you which subroutines are taking the most time, and those are the ones you should work on improving.

Still too slow?: If your problem has an unacceptably high execution time, you might consider an approximation
algorithm. The world is full of heuristics, both good and bad. You should develop a good heuristic, and if
possible, prove a ratio bound for your algorithm. If you cannot prove a ratio bound, run many experiments
to see how good the actual performance is.

There is still much more to be learned about algorithm design, but we have covered a great deal of the basic
material. One direction is to specialize in some particular area, e.g. string pattern matching, computational
geometry, parallel algorithms, randomized algorithms, or approximation algorithms. It would be easy to devote
an entire semester to any one of these topics.

Another direction is to gain a better understanding of average-case analysis, which we have largely ignored.
Still another direction might be to study numerical algorithms (as covered in a course on numerical analysis),
or to consider general search strategies such as simulated annealing. Finally, an emerging area is the study of
algorithm engineering, which considers how to design algorithms that are both efficient in a practical sense, as
well as a theoretical sense.
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Material for the final exam:

Old Material: Know general results, but I will not ask too many detailed questions. Do not forget DFS and
DP. You will likely an algorithm design problem that will involve one of these two techniques.

All-Pairs Shortest paths: (Chapt 25.2.)

Floyd-Warshall Algorithm: All-pairs shortest paths, arbitrary edge weights (no negative cost cycles).
Running timeO(V 3).

NP-completeness:(Chapt 34.)

Basic concepts:Decision problems, polynomial time, the class P, certificates and the class NP, polynomial
time reductions.

NP-completeness reductions:You are responsible for knowing the following reductions.

• 3-coloring to clique cover.

• 3SAT to Independent Set (IS).

• Independent Set to Vertex Cover and Clique.

• Vertex Cover to Dominating Set.

• Vertex Cover to Subset Sum.

It is also a good idea to understand all the reductions that were used in the homework solutions, since
modifications of these will likely appear on the final.

NP-complete reductions can be challenging. If you cannot see how to solve the problem, here are some
suggestions for maximizing partial credit.

All NP-complete proofs have a very specific form. Explain that you know the template, and try to fill in as
many aspects as possible. Suppose that you want to prove that some problemB is NP-complete.

• B ∈ NP. This almost always easy, so don’t blow it. This basically involves specifying the certificate.
The certificate is almost always the thing that the problem is asking you to find.

• For some known NP-complete problemA, A ≤P B. This means that you want to find a polynomial
time functionf that maps an instance ofA to an instance ofB. (Make sure to get the direction
correct!)

• Show the correctness of your reduction, by showing thatx ∈ A if and only if f(x) ∈ B. First suppose
that you have a solution tox and show how to map this to a solution forf(x). Then suppose that you
have a solution tof(x) and show how to map this to a solution forx.

If you cannot figure out whatf is, at least tell me what you would likef to do. Explain which elements
of problemA will likely map to which elements of problemB. Remember that you are trying to translate
the elements of one problem into the common elements of the other problem.

I try to make at least one reduction on the exam similar to one that you have seen before, so make sure that
understand the ones that we have done either in class or on homework problems.

Approximation Algorithms: (Chapt. 35, up through 35.2.)

Vertex cover: Ratio bound of 2.

TSP with triangle inequality: Ratio bound of 2.

Set Cover: Ratio bound oflnm, wherem = |X|.
Bin packing: Ratio bound of 2.

k-center: Ratio bound of 2.

Many approximation algorithms are simple. (Most are based on simple greedy heuristics.) The key to
proving many ratio bounds is first coming up with a lower bound on the optimal solution (e.g., TSPopt ≥
MST). Next, provide an upper bound on the cost of your heuristic relative to this same quantity (e.g., the
shortcut twice-around tour for the MST is at most twice the MST cost).
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Supplemental Lecture 1: Asymptotics

Read: Chapters 2–3 in CLRS.

Asymptotics: The formulas that are derived for the running times of program may often be quite complex. When
designing algorithms, the main purpose of the analysis is to get a sense for the trend in the algorithm’s running
time. (An exact analysis is probably best done by implementing the algorithm and measuring CPU seconds.) We
would like a simple way of representing complex functions, which captures the essential growth rate properties.
This is the purpose ofasymptotics.

Asymptotic analysis is based on two simplifying assumptions, which hold in most (but not all) cases. But it is
important to understand these assumptions and the limitations of asymptotic analysis.

Large input sizes: We are most interested in how the running time grows for large values ofn.

Ignore constant factors: The actual running time of the program depends on various constant factors in the im-
plementation (coding tricks, optimizations in compilation, speed of the underlying hardware, etc). There-
fore, we will ignore constant factors.

The justification for considering largen is that ifn is small, then almost any algorithm is fast enough. People are
most concerned about running times for large inputs. For the most part, these assumptions are reasonable when
making comparisons between functions that have significantly different behaviors. For example, suppose we
have two programs, one whose running time isT1(n) = n3 and another whose running time isT2(n) = 100n.
(The latter algorithm may be faster because it uses a more sophisticated and complex algorithm, and the added
sophistication results in a larger constant factor.) For smalln (e.g.,n ≤ 10) the first algorithm is the faster of
the two. But asn becomes larger the relative differences in running time become much greater. Assuming one
million operations per second.

n T1(n) T2(n) T1(n)/T2(n)
10 0.001 sec 0.001 sec 1

100 1 sec 0.01 sec 100
1000 17 min 0.1 sec 10,000

10,000 11.6 days 1 sec 1,000,000

The clear lesson is that as input sizes grow, the performance of the asymptotically poorer algorithm degrades
much more rapidly.

These assumptions are not always reasonable. For example, in any particular application,n is a fixed value. It
may be the case that one function is smaller than another asymptotically, but for your value ofn, the asymptot-
ically larger value is fine. Most of the algorithms that we will study this semester will have both low constants
and low asymptotic running times, so we will not need to worry about these issues.

Asymptotic Notation: To represent the running times of algorithms in a simpler form, we useasymptotic notation,
which essentially represents a function by its fastest growing term and ignores constant factors. For example,
suppose we have an algorithm whose (exact) worst-case running time is given by the following formula:

T (n) = 13n3 + 5n2 − 17n + 16.

As n becomes large, the13n3 term dominates the others. By ignoring constant factors, we might say that the
running time grows “on the order of”n3, which will will express mathematically asT (n) ∈ Θ(n3). This
intuitive definition is fine for informal use. Let us consider how to make this idea mathematically formal.

Definition: Given any functiong(n), we defineΘ(g(n)) to be a set of functions:

Θ(g(n)) = {f(n) | there exist strictly positive constantsc1, c2, andn0 such that

0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}.
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Let’s dissect this definition. Intuitively, what we want to say with “f(n) ∈ Θ(g(n))” is that f(n) andg(n) are
asymptotically equivalent. This means that they have essentially the same growth rates for largen. For example,
functions such as

4n2, (8n2 + 2n− 3), (n2/5 +
√

n− 10 log n), and n(n− 3)

are all intuitively asymptotically equivalent, since asn becomes large, the dominant (fastest growing) term is
some constant timesn2. In other words, they all growquadratically in n. The portion of the definition that
allows us to selectc1 andc2 is essentially saying “the constants do not matter because you may pickc1 and
c2 however you like to satisfy these conditions.” The portion of the definition that allows us to selectn0 is
essentially saying “we are only interested in largen, since you only have to satisfy the condition for alln bigger
thann0, and you may maken0 as big a constant as you like.”

An example: Consider the functionf(n) = 8n2 + 2n − 3. Our informal rule of keeping the largest term and
throwing away the constants suggests thatf(n) ∈ Θ(n2) (sincef grows quadratically). Let’s see why the
formal definition bears out this informal observation.

We need to show two things: first, thatf(n) does grows asymptotically at least as fast asn2, and second, that
f(n) grows no faster asymptotically thann2. We’ll do both very carefully.

Lower bound: f(n) grows asymptotically at least as fast asn2: This is established by the portion of the
definition that reads: (paraphrasing): “there exist positive constantsc1 andn0, such thatf(n) ≥ c1n

2 for
all n ≥ n0.” Consider the following (almost correct) reasoning:

f(n) = 8n2 + 2n− 3 ≥ 8n2 − 3 = 7n2 + (n2 − 3) ≥ 7n2 = 7n2.

Thus, if we setc1 = 7, then we are done. But in the above reasoning we have implicitly made the
assumptions that2n ≥ 0 andn2 − 3 ≥ 0. These are not true for alln, but they are true for all sufficiently
large n. In particular, if n ≥ √3, then both are true. So let us selectn0 =

√
3, and now we have

f(n) ≥ c1n
2, for all n ≥ n0, which is what we need.

Upper bound: f(n) grows asymptotically no faster thann2: This is established by the portion of the definition
that reads “there exist positive constantsc2 andn0, such thatf(n) ≤ c2n

2 for all n ≥ n0.” Consider the
following reasoning (which is almost correct):

f(n) = 8n2 + 2n− 3 ≤ 8n2 + 2n ≤ 8n2 + 2n2 = 10n2.

This means that if we letc2 = 10, then we are done. We have implicitly made the assumption that
2n ≤ 2n2. This is not true for alln, but it is true for alln ≥ 1. So, let us selectn0 = 1, and now we have
f(n) ≤ c2n

2 for all n ≥ n0, which is what we need.

From the lower bound, we haven0 ≥
√

3 and from the upper bound we haven0 ≥ 1, and so combining these
we letn0 be the larger of the two:n0 =

√
3. Thus, in conclusion, if we letc1 = 7, c2 = 10, andn0 =

√
3, then

we have
0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0,

and this is exactly what the definition requires. Since we have shown (by construction) the existence of con-
stantsc1, c2, andn0, we have established thatf(n) ∈ n2. (Whew! That was a lot more work than just the
informal notion of throwing away constants and keeping the largest term, but it shows how this informal notion
is implemented formally in the definition.)

Now let’s show whyf(n) is not in some other asymptotic class. First, let’s show thatf(n) /∈ Θ(n). If this were
true, then we would have to satisfy both the upper and lower bounds. It turns out that the lower bound is satisfied
(becausef(n) grows at least as fast asymptotically asn). But the upper bound is false. In particular, the upper
bound requires us to show “there exist positive constantsc2 andn0, such thatf(n) ≤ c2n for all n ≥ n0.”
Informally, we know that asn becomes large enoughf(n) = 8n2 +2n−3 will eventually exceedc2n no matter
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how large we makec2 (sincef(n) is growing quadratically andc2n is only growing linearly). To show this
formally, suppose towards a contradiction that constantsc2 andn0 did exist, such that8n2 + 2n− 3 ≤ c2n for
all n ≥ n0. Since this is true for all sufficiently largen then it must be true in the limit asn tends to infinity. If
we divide both side byn we have:

lim
n→∞

(
8n + 2− 3

n

)
≤ c2.

It is easy to see that in the limit the left side tends to∞, and so no matter how largec2 is, this statement is
violated. This means thatf(n) /∈ Θ(n).

Let’s show thatf(n) /∈ Θ(n3). Here the idea will be to violate the lower bound: “there exist positive constants
c1 andn0, such thatf(n) ≥ c1n

3 for all n ≥ n0.” Informally this is true becausef(n) is growing quadratically,
and eventually any cubic function will exceed it. To show this formally, suppose towards a contradiction that
constantsc1 andn0 did exist, such that8n2 +2n−3 ≥ c1n

3 for all n ≥ n0. Since this is true for all sufficiently
largen then it must be true in the limit asn tends to infinity. If we divide both side byn3 we have:

lim
n→∞

(
8
n

+
2
n2
− 3

n3

)
≥ c1.

It is easy to see that in the limit the left side tends to 0, and so the only way to satisfy this requirement is to set
c1 = 0, but by hypothesisc1 is positive. This means thatf(n) /∈ Θ(n3).

O-notation and Ω-notation: We have seen that the definition ofΘ-notation relies on proving both a lower and upper
asymptotic bound. Sometimes we are only interested in proving one bound or the other. TheO-notation allows
us to state asymptotic upper bounds and theΩ-notation allows us to state asymptotic lower bounds.

Definition: Given any functiong(n),

O(g(n)) = {f(n) | there exist positive constantsc andn0 such that

0 ≤ f(n) ≤ cg(n) for all n ≥ n0}.

Definition: Given any functiong(n),

Ω(g(n)) = {f(n) | there exist positive constantsc andn0 such that

0 ≤ cg(n) ≤ f(n) for all n ≥ n0}.

Compare this with the definition ofΘ. You will see thatO-notation only enforces the upper bound of theΘ
definition, andΩ-notation only enforces the lower bound. Also observe thatf(n) ∈ Θ(g(n)) if and only if
f(n) ∈ O(g(n)) andf(n) ∈ Ω(g(n)). Intuitively, f(n) ∈ O(g(n)) means thatf(n) grows asymptotically at
the same rate or slower thang(n). Whereas,f(n) ∈ O(g(n)) means thatf(n) grows asymptotically at the same
rate or faster thang(n).

For examplef(n) = 3n2 + 4n ∈ Θ(n2) but it is not inΘ(n) or Θ(n3). But f(n) ∈ O(n2) and inO(n3) but
not inO(n). Finally,f(n) ∈ Ω(n2) and inΩ(n) but not inΩ(n3).

The Limit Rule for Θ: The previous examples which used limits suggest alternative way of showing thatf(n) ∈
Θ(g(n)).

Limit Rule for Θ-notation: Given positive functionsf(n) andg(n), if

lim
n→∞

f(n)
g(n)

= c,

for some constantc > 0 (strictly positive but not infinity), thenf(n) ∈ Θ(g(n)).
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Limit Rule for O-notation: Given positive functionsf(n) andg(n), if

lim
n→∞

f(n)
g(n)

= c,

for some constantc ≥ 0 (nonnegative but not infinite), thenf(n) ∈ O(g(n)).

Limit Rule for Ω-notation: Given positive functionsf(n) andg(n), if

lim
n→∞

f(n)
g(n)

6= 0

(either a strictly positive constant or infinity) thenf(n) ∈ Ω(g(n)).

This limit rule can be applied in almost every instance (that I know of) where the formal definition can be used,
and it is almost always easier to apply than the formal definition. The only exceptions that I know of are strange
instances where the limit does not exist (e.g.f(n) = n(1+sin n)). But since most running times are fairly
well-behaved functions this is rarely a problem.

For example, recall the functionf(n) = 8n2 + 2n − 3. To show thatf(n) ∈ Θ(n2) we let g(n) = n2 and
compute the limit. We have

lim
n→∞

8n2 + 2n− 3
n2

= lim
n→∞ 8 +

2
n
− 3

n2
= 8,

(since the two fractional terms tend to 0 in the limit). Since 8 is a nonzero constant, it follows thatf(n) ∈
Θ(g(n)).

You may recall the important rules from calculus for evaluating limits. (If not, dredge out your calculus book to
remember.) Most of the rules are pretty self evident (e.g., the limit of a finite sum is the sum of the individual
limits). One important rule to remember is the following:

L’H ôpital’s rule: If f(n) andg(n) both approach 0 or both approach∞ in the limit, then

lim
n→∞

f(n)
g(n)

= lim
n→∞

f ′(n)
g′(n)

,

wheref ′(n) andg′(n) denote the derivatives off andg relative ton.

Exponentials and Logarithms: Exponentials and logarithms are very important in analyzing algorithms. The fol-
lowing are nice to keep in mind. The terminologylgb n means(lg n)b.

Lemma: Given any positive constantsa > 1, b, andc:

lim
n→∞

nb

an
= 0 lim

n→∞
lgb n

nc
= 0.

We won’t prove these, but they can be shown by taking appropriate powers, and then applying L’Hôpital’s rule.
The important bottom line is that polynomials always grow more slowly than exponentials whose base is greater
than 1. For example:

n500 ∈ O(2n).

For this reason, we will try to avoid exponential running times at all costs. Conversely, logarithmic powers
(sometimes calledpolylogarithmic functions) grow more slowly than any polynomial. For example:

lg500 n ∈ O(n).
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For this reason, we will usually be happy to allow any number of additional logarithmic factors, if it means
avoiding any additional powers ofn.

At this point, it should be mentioned that these last observations are really asymptotic results. They are true
in the limit for largen, but you should be careful just how high the crossover point is. For example, by my
calculations,lg500 n ≤ n only for n > 26000 (which is much larger than input size you’ll ever see). Thus, you
should take this with a grain of salt. But, for small powers of logarithms, this applies to all reasonably large
input sizes. For examplelg2 n ≤ n for all n ≥ 16.

Asymptotic Intuition: To get a intuitive feeling for what common asymptotic running times map into in terms of
practical usage, here is a little list.

• Θ(1): Constant time; you can’t beat it!

• Θ(log n): This is typically the speed that most efficient data structures operate in for a single access. (E.g.,
inserting a key into a balanced binary tree.) Also it is the time to find an object in a sorted list of lengthn
by binary search.

• Θ(n): This is about the fastest that an algorithm can run, given that you needΘ(n) time just to read in all
the data.

• Θ(n log n): This is the running time of the best sorting algorithms. Since many problems require sorting
the inputs, this is still considered quite efficient.

• Θ(n2),Θ(n3), . . ..: Polynomial time. These running times are acceptable either when the exponent is
small or when the data size is not too large (e.g.n ≤ 1, 000).

• Θ(2n),Θ(3n): Exponential time. This is only acceptable when either (1) your know that you inputs will
be of very small size (e.g.n ≤ 50), or (2) you know that this is a worst-case running time that will rarely
occur in practical instances. In case (2), it would be a good idea to try to get a more accurate average case
analysis.

• Θ(n!),Θ(nn): Acceptable only for really small inputs (e.g.n ≤ 20).

Are their even bigger functions? Definitely! For example, if you want to see a function that grows inconceivably
fast, look up the definition ofAckerman’s functionin our text.

Max Dominance Revisited: Returning to our Max Dominance algorithms, recall that one had a running time of
T1(n) = n2 and the other had a running time ofT2(n) = n log n + n(n − 1)/2. Expanding the latter function
and grouping terms in order of their growth rate we have

T2(n) =
n2

2
+ n log n− n

2
.

We will leave it as an easy exercise to show that bothT1(n) and T2(n) are Θ(n2). Although the second
algorithm is twice as fast for largen (because of the1/2 factor multiplying then2 term), this does not represent
a significant improvement.

Supplemental Lecture 2: Max Dominance

Read: Review Chapters 1–4 in CLRS.

Faster Algorithm for Max-Dominance: Recall the max-dominance problem from the last two lectures. So far we
have introduced a simple brute-force algorithm that ran inO(n2) time, which operated by comparing all pairs
of points. Last time we considered a slight improvement, which sorted the points by theirx-coordinate, and
then compared each point against the subsequent points in the sorted order. However, this improvement, only
improved matters by a constant factor. The question we consider today is whether there is an approach that is
significantly better.
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A Major Improvement: The problem with the previous algorithm is that, even though we have cut the number of
comparisons roughly in half, each point is still making lots of comparisons. Can we save time by making only
one comparison for each point? The inner while loop is testing to see whetheranypoint that followsP [i] in the
sorted list has a largery-coordinate. This suggests, that if we knew which point amongP [i + 1, . . . , n] had the
maximumy-coordinate, we could just test against that point.

How can we do this? Here is a simple observation. For any set of points, the point with the maximumy-
coordinate is the maximal point with the smallestx-coordiante. This suggests that we can sweep the points
backwards, from right to left. We keep track of the indexj of the most recently seen maximal point. (Initially
the rightmost point is maximal.) When we encounter the pointP [i], it is maximal if and only ifP [i].y ≥ P [j].y.
This suggests the following algorithm.

Max Dominance: Sort and Reverse Scan
MaxDom3(P, n) {

Sort P in ascending order by x-coordinate;
output P[n]; // last point is always maximal
j = n;
for i = n-1 downto 1 {

if (P[i].y >= P[j].y) { // is P[i] maximal?
output P[i]; // yes..output it
j = i; // P[i] has the largest y so far

}
}

}

The running time of the for-loop is obviouslyO(n), because there is just a single loop that is executedn − 1
times, and the code inside takes constant time. The total running time is dominated by theO(n log n) sorting
time, for a total ofO(n log n) time.

How much of an improvement is this? Probably the most accurate way to find out would be to code the two up,
and compare their running times. But just to get a feeling, let’s look at the ratio of the running times, ignoring
constant factors:

n2

n lg n
=

n

lg n
.

(I use the notationlg n to denote the logarithm base 2,lnn to denote the natural logarithm (basee) andlog n
when I do not care about the base. Note that a change in base only affects the value of a logarithm function by
a constant amount, so inside ofO-notation, we will usually just writelog n.)

For relatively small values ofn (e.g. less than 100), both algorithms are probably running fast enough that the
difference will be practically negligible. (Rule 1 of algorithm optimization: Don’t optimize code that is already
fast enough.) On larger inputs, say,n = 1, 000, the ratio ofn to log n is about1000/10 = 100, so there is a 100-
to-1 ratio in running times. Of course, we would need to factor in constant factors, but since we are not using
any really complex data structures, it is hard to imagine that the constant factors will differ by more than, say,
10. For even larger inputs, say,n = 1, 000, 000, we are looking at a ratio of roughly1, 000, 000/20 = 50, 000.
This is quite a significant difference, irrespective of the constant factors.

Divide and Conquer Approach: One problem with the previous algorithm is that it relies on sorting. This is nice
and clean (since it is usually easy to get good code for sorting without troubling yourself to write your own).
However, if you really wanted to squeeze the most efficiency out of your code, you might consider whether you
can solve this problem without invoking a sorting algorithm.

One of the basic maxims of algorithm design is to first approach any problem using one of the standard algorithm
design paradigms, e.g. divide and conquer, dynamic programming, greedy algorithms, depth-first search. We
will talk more about these methods as the semester continues. For this problem, divide-and-conquer is a natural
method to choose. What is this paradigm?
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Divide: Divide the problem into two subproblems (ideally of approximately equal sizes),

Conquer: Solve each subproblem recursively, and

Combine: Combine the solutions to the two subproblems into a global solution.

How shall we divide the problem? I can think of a couple of ways. One is similar to howMergeSortoperates.
Just take the array of pointsP [1..n], and split into two subarrays of equal sizeP [1..n/2] andP [n/2 + 1..n].
Because we do not sort the points, there is no particular relationship between the points in one side of the list
from the other.

Another approach, which is more reminiscent ofQuickSortis to select a random element from the list, called a
pivot, x = P [r], wherer is a random integer in the range from 1 ton, and then partition the list into two sublists,
those elements whosex-coordinates are less than or equal tox and those that greater thanx. This will not be
guaranteed to split the list into two equal parts, but on average it can be shown that it does a pretty good job.

Let’s consider the first method. (The quicksort method will also work, but leads to a tougher analysis.) Here is
more concrete outline. We will describe the algorithm at a very high level. The input will be a point array, and
a point array will be returned. The key ingredient is a function that takes the maxima of two sets, and merges
them into an overall set of maxima.

Max Dominance: Divide-and-Conquer
MaxDom4(P, n) {

if (n == 1) return {P[1]}; // one point is trivially maximal
m = n/2; // midpoint of list
M1 = MaxDom4(P[1..m], m); // solve for first half
M2 = MaxDom4(P[m+1..n], n-m); // solve for second half
return MaxMerge(M1, M2); // merge the results

}

The general process is illustrated below.

The main question is how the procedureMax Merge() is implemented, because it does all the work. Let us
assume that it returns a list of points insorted orderaccording tox-coordinates of the maximal points. Observe
that if a point is to be maximal overall, then it must be maximal in one of the two sublists. However, just
because a point is maximal in some list, does not imply that it is globally maximal. (Consider point(7, 10) in
the example.) However, if it dominates all the points of the other sublist, then we can assert that it is maximal.

I will describe the procedure at a very high level. It operates by walking through each of the two sorted lists of
maximal points. It maintains two pointers, one pointing to the next unprocessed item in each list. Think of these
asfingers. Take the finger pointing to the point with the smallerx-coordinate. If itsy-coordinate is larger than
they-coordinate of the point under the other finger, then this point is maximal, and is copied to the next position
of the result list. Otherwise it is not copied. In either case, we move to the next point in the same list, and repeat
the process. The result list is returned.

The details will be left as an exercise. Observe that because we spend a constant amount of time processing each
point (either copying it to the result list or skipping over it) the total execution time of this procedure isO(n).

Recurrences: How do we analyze recursive procedures like this one? If there is a simple pattern to the sizes of
the recursive calls, then the best way is usually by setting up arecurrence, that is, a function which is defined
recursively in terms of itself.

We break the problem into two subproblems of size roughlyn/2 (we will say exactlyn/2 for simplicity), and
the additional overhead of merging the solutions isO(n). We will ignore constant factors, writingO(n) just as
n, giving:

T (n) = 1 if n = 1,
T (n) = 2T (n/2) + n if n > 1.
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Fig. 68: Divide and conquer approach.
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Solving Recurrences by The Master Theorem:There are a number of methods for solving the sort of recurrences
that show up in divide-and-conquer algorithms. The easiest method is to apply theMaster Theoremthat is given
in CLRS. Here is a slightly more restrictive version, but adequate for a lot of instances. See CLRS for the more
complete version of the Master Theorem and its proof.

Theorem: (Simplified Master Theorem) Leta ≥ 1, b > 1 be constants and letT (n) be the recurrence

T (n) = aT (n/b) + cnk,

defined forn ≥ 0.

Case (1): a > bk thenT (n) is Θ(nlogb a).
Case (2): a = bk thenT (n) is Θ(nk log n).
Case (3): a < bk thenT (n) is Θ(nk).

Using this version of the Master Theorem we can see that in our recurrencea = 2, b = 2, andk = 1, soa = bk

and case (2) applies. ThusT (n) is Θ(n log n).

There many recurrences that cannot be put into this form. For example, the following recurrence is quite
common:T (n) = 2T (n/2) + n log n. This solves toT (n) = Θ(n log2 n), but the Master Theorem (either this
form or the one in CLRS will not tell you this.) For such recurrences, other methods are needed.

Expansion: A more basic method for solving recurrences is that ofexpansion(which CLRS callsiteration). This is
a rather painstaking process of repeatedly applying the definition of the recurrence until (hopefully) a simple
pattern emerges. This pattern usually results in a summation that is easy to solve. If you look at the proof in
CLRS for the Master Theorem, it is actually based on expansion.

Let us consider applying this to the following recurrence. We assume thatn is a power of 3.

T (1) = 1

T (n) = 2T
(n

3

)
+ n if n > 1

First we expand the recurrence into a summation, until seeing the general pattern emerge.

T (n) = 2T
(n

3

)
+ n

= 2
(
2T
(n

9

)
+

n

3

)
+ n = 4T

(n

9

)
+
(

n +
2n

3

)

= 4
(
2T
( n

27

)
+

n

9

)
+
(

n +
2n

3

)
= 8T

( n

27

)
+
(

n +
2n

3
+

4n

9

)
...

= 2kT
( n

3k

)
+

k−1∑
i=0

2in

3i
= 2kT

( n

3k

)
+ n

k−1∑
i=0

(2/3)i.

The parameterk is the number of expansions (not to be confused with the value ofk we introduced earlier on
the overhead). We want to know how many expansions are needed to arrive at the basis case. To do this we set
n/(3k) = 1, meaning thatk = log3 n. Substituting this in and using the identityalog b = blog a we have:

T (n) = 2log3 nT (1) + n

log3 n−1∑
i=0

(2/3)i = nlog3 2 + n

log3 n−1∑
i=0

(2/3)i.
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Next, we can apply the formula for the geometric series and simplify to get:

T (n) = nlog3 2 + n
1− (2/3)log3 n

1− (2/3)

= nlog3 2 + 3n(1− (2/3)log3 n) = nlog3 2 + 3n(1− nlog3(2/3))
= nlog3 2 + 3n(1− n(log3 2)−1) = nlog3 2 + 3n− 3nlog3 2

= 3n− 2nlog3 2.

Sincelog3 2 ≈ 0.631 < 1, T (n) is dominated by the3n term asymptotically, and so it isΘ(n).

Induction and Constructive Induction: Another technique for solving recurrences (and this works for summations
as well) is to guess the solution, or the general form of the solution, and then attempt to verify its correctness
through induction. Sometimes there are parameters whose values you do not know. This is fine. In the course
of the induction proof, you will usually find out what these values must be. We will consider a famous example,
that of theFibonacci numbers.

F0 = 0
F1 = 1
Fn = Fn−1 + Fn−2 for n ≥ 2.

The Fibonacci numbers arise in data structure design. If you study AVL (height balanced) trees in data structures,
you will learn that the minimum-sized AVL trees are produced by the recursive construction given below. Let
L(i) denote the number of leaves in the minimum-sized AVL tree of heighti. To construct a minimum-sized
AVL tree of heighti, you create a root node whose children consist of a minimum-sized AVL tree of heights
i− 1 andi− 2. Thus the number of leaves obeysL(0) = L(1) = 1, L(i) = L(i− 1) + L(i− 2). It is easy to
see thatL(i) = Fi+1.

L(4)=5L(3)=3L(2)=2L(1)=1L(0) = 1

Fig. 69: Minimum-sized AVL trees.

If you expand the Fibonacci series for a number of terms, you will observe thatFn appears to grow exponentially,
but not as fast as2n. It is tempting to conjecture thatFn ≤ φn−1, for some real parameterφ, where1 < φ < 2.
We can use induction to prove this and derive a bound onφ.

Lemma: For all integersn ≥ 1, Fn ≤ φn−1 for some constantφ, 1 < φ < 2.

Proof: We will try to derive the tightest bound we can on the value ofφ.

Basis: For the basis cases we considern = 1. Observe thatF1 = 1 ≤ φ0, as desired.

Induction step: For the induction step, let us assume thatFm ≤ φm−1 whenever1 ≤ m < n. Using this
induction hypothesiswe will show that the lemma holds forn itself, whenevern ≥ 2.
Sincen ≥ 2, we haveFn = Fn−1 + Fn−2. Now, sincen− 1 andn− 2 are both strictly less thann,
we can apply the induction hypothesis, from which we have

Fn ≤ φn−2 + φn−3 = φn−3(1 + φ).
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We want to show that this is at mostφn−1 (for a suitable choice ofφ). Clearly this will be true if and
only if (1 + φ) ≤ φ2. This is not true for all values ofφ (for example it is not true whenφ = 1 but it
is true whenφ = 2.)
At the critical value ofφ this inequality will be an equality, implying that we want to find the roots of
the equation

φ2 − φ− 1 = 0.

By the quadratic formula we have

φ =
1±√1 + 4

2
=

1±√5
2

.

Since
√

5 ≈ 2.24, observe that one of the roots is negative, and hence would not be a possible
candidate forφ. The positive root is

φ =
1 +
√

5
2

≈ 1.618.

There is a very subtle bug in the preceding proof. Can you spot it? The error occurs in the casen = 2. Here
we claim thatF2 = F1 + F0 and then we apply the induction hypothesis to bothF1 andF0. But the induction
hypothesis only applies form ≥ 1, and hence cannot be applied toF0! To fix it we could includeF2 as part of
the basis case as well.

Notice not only did we prove the lemma by induction, but we actually determined the value ofφ which makes
the lemma true. This is why this method is calledconstructive induction.

By the way, the valueφ = 1
2 (1 +

√
5) is a famous constant in mathematics, architecture and art. It is thegolden

ratio. Two numbersA andB satisfy the golden ratio if

A

B
=

A + B

A
.

It is easy to verify thatA = φ andB = 1 satisfies this condition. This proportion occurs throughout the world
of art and architecture.

Supplemental Lecture 3: Recurrences and Generating Functions

Read: This material is not covered in CLR. There a good description of generating functions in D. E. Knuth,The Art
of Computer Programming, Vol 1.

Generating Functions: The method of constructive induction provided a way to get a bound onFn, but we did not
get an exact answer, and we had to generate a good guess before we were even able to start.

Let us consider an approach to determine an exact representation ofFn, which requires no guesswork. This
method is based on a very elegant concept, called agenerating function. Consider any infinite sequence:

a0, a1, a2, a3, . . .

If we would like to “encode” this sequence succinctly, we could define a polynomial function such that these
are the coefficients of the function:

G(z) = a0 + a1z + a2z
2 + a3z

3 + . . .

This is called thegenerating functionof the sequence. What isz? It is just a symbolic variable. We will (almost)
never assign it a specific value. Thus, every infinite sequence of numbers has a corresponding generating func-
tion, and vice versa. What is the advantage of this representation? It turns out that we can perform arithmetic
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transformations on these functions (e.g., adding them, multiplying them, differentiating them) and this has a
corresponding effect on the underlying transformations. It turns out that some nicely-structured sequences (like
the Fibonacci numbers, and many sequences arising from linear recurrences) have generating functions that are
easy to write down and manipulate.

Let’s consider the generating function for the Fibonacci numbers:

G(z) = F0 + F1z + F2z
2 + F3z

3 + . . .

= z + z2 + 2z3 + 3z4 + 5z5 + . . .

The trick in dealing with generating functions is to figure out how various manipulations of the generating
function to generate algebraically equivalent forms. For example, notice that if we multiply the generating
function by a factor ofz, this has the effect of shifting the sequence to the right:

G(z) = F0 + F1z + F2z
2 + F3z

3 + F4z
4 + . . .

zG(z) = F0z + F1z
2 + F2z

3 + F3z
4 + . . .

z2G(z) = F0z
2 + F1z

3 + F2z
4 + . . .

Now, let’s try the following manipulation. ComputeG(z)− zG(z)− z2G(z), and see what we get

(1− z − z2)G(z) = F0 + (F1 − F0)z + (F2 − F1 − F0)z2 + (F3 − F2 − F1)z3

+ . . . + (Fi − Fi−1 − Fi−2)zi + . . .

= z.

Observe that every term except the second is equal to zero by the definition ofFi. (The particular manipulation
we picked was chosen to cause this cancellation to occur.) From this we may conclude that

G(z) =
z

1− z − z2
.

So, now we have an alternative representation for the Fibonacci numbers, as the coefficients of this function if
expanded as a power series. So what good is this? The main goal is to get at the coefficients of its power series
expansion. There are certain common tricks that people use to manipulate generating functions.

The first is to observe that there are some functions for which it is very easy to get an power series expansion.
For example, the following is a simple consequence of the formula for the geometric series. If0 < c < 1 then

∞∑
i=0

ci =
1

1− c
.

Settingz = c, we have
1

1− z
= 1 + z + z2 + z3 + . . .

(In other words,1/(1−z) is the generating function for the sequence(1, 1, 1, . . .). In general, given an constant
a we have

1
1− az

= 1 + az + a2z2 + a3z3 + . . .

is the generating function for(1, a, a2, a3, . . .). It would be great if we could modify our generating function to
be in the form of1/(1− az) for some constanta, since then we could then extract the coefficients of the power
series easily.

In order to do this, we would like to rewrite the generating function in the following form:

G(z) =
z

1− z − z2
=

A

1− az
+

B

1− bz
,
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for someA,B, a, b. We will skip the steps in doing this, but it is not hard to verify the roots of(1− az)(1− bz)
(which are1/a and1/b) must be equal to the roots of1 − z − z2. We can then solve fora andb by taking the
reciprocals of the roots of this quadratic. Then by some simple algebra we can plug these values in and solve
for A andB yielding:

G(z) =
z

1− z − z2
=

(
1/
√

5
1− φz

+
−1/
√

5

1− φ̂

)
=

1√
5

(
1

1− φz
− 1

1− φ̂

)
,

whereφ = (1 +
√

5)/2 andφ̂ = (1−√5)/2. (In particular, to determineA, multiply the equation by1− φz,
and then consider what happens whenz = 1/φ. A similar trick can be applied to getB. In general, this is called
the method ofpartial fractions.)

Now we are in good shape, because we can extract the coefficients for these two fractions from the above
function. From this we have the following:

G(z) = 1√
5

( 1 + φz + φ2z2 + . . .

−1 + −φ̂z + −φ̂2z2 + . . . )

Combining terms we have

G(z) =
1√
5

∞∑
i=0

(φi − φ̂i)zi.

We can now read off the coefficients easily. In particular it follows that

Fn =
1√
5
(φn − φ̂n).

This is an exact result, and no guesswork was needed. The only parts that involved some cleverness (beyond the
invention of generating functions) was (1) coming up with the simple closed form formula forG(z) by taking
appropriate differences and applying the rule for the recurrence, and (2) applying the method of partial fractions
to get the generating function into one for which we could easily read off the final coefficients.

This is a rather remarkable, because it says that we can express the integerFn as the sum of two powers of to
irrational numbersφ andφ̂. You might try this for a few specific values ofn to see why this is true. By the way,
when you observe that̂φ < 1, it is clear that the first term is the dominant one. Thus we have, for large enough
n, Fn = φn/

√
5, rounded to the nearest integer.

Supplemental Lecture 4: Medians and Selection

Read: Chapter 9 of CLRS.

Selection: We have discussed recurrences and the divide-and-conquer method of solving problems. Today we will
give a rather surprising (and very tricky) algorithm which shows the power of these techniques.

The problem that we will consider is very easy to state, but surprisingly difficult to solve optimally. Suppose
that you are given a set ofn numbers. Define therank of an element to be one plus the number of elements
that are smaller than this element. Since duplicate elements make our life more complex (by creating multiple
elements of the same rank), we will make the simplifying assumption that all the elements are distinct for now.
It will be easy to get around this assumption later. Thus, the rank of an element is its final position if the set is
sorted. The minimum is of rank 1 and the maximum is of rankn.

Of particular interest in statistics is themedian. If n is odd then the median is defined to be the element of rank
(n + 1)/2. Whenn is even there are two natural choices, namely the elements of ranksn/2 and(n/2) + 1. In
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statistics it is common to return the average of these two elements. We will define the median to be either of
these elements.

Medians are useful as measures of thecentral tendencyof a set, especially when the distribution of values is
highly skewed. For example, the median income in a community is likely to be more meaningful measure of
the central tendency than the average is, since if Bill Gates lives in your community then his gigantic income
may significantly bias the average, whereas it cannot have a significant influence on the median. They are also
useful, since in divide-and-conquer applications, it is often desirable to partition a set about its median value,
into two sets of roughly equal size. Today we will focus on the following generalization, called theselection
problem.

Selection: Given a setA of n distinct numbers and an integerk, 1 ≤ k ≤ n, output the element ofA of rankk.

The selection problem can easily be solved inΘ(n log n) time, simply by sorting the numbers ofA, and then
returningA[k]. The question is whether it is possible to do better. In particular, is it possible to solve this
problem inΘ(n) time? We will see that the answer is yes, and the solution is far from obvious.

The Sieve Technique:The reason for introducing this algorithm is that it illustrates a very important special case of
divide-and-conquer, which I call thesieve technique. We think of divide-and-conquer as breaking the problem
into a small number of smaller subproblems, which are then solved recursively. The sieve technique is a special
case, where the number of subproblems is just 1.

The sieve technique works in phases as follows. It applies to problems where we are interested in finding a
single item from a larger set ofn items. We do not know which item is of interest, however after doing some
amount of analysis of the data, taking sayΘ(nk) time, for some constantk, we find that we do not know what
the desired item is, but we can identify a large enough number of elements thatcannotbe the desired value, and
can be eliminated from further consideration. In particular “large enough” means that the number of items is
at least some fixed constant fraction ofn (e.g. n/2, n/3, 0.0001n). Then we solve the problem recursively on
whatever items remain. Each of the resulting recursive solutions then do the same thing, eliminating a constant
fraction of the remaining set.

Applying the Sieve to Selection:To see more concretely how the sieve technique works, let us apply it to the selec-
tion problem. Recall that we are given an arrayA[1..n] and an integerk, and want to find thek-th smallest
element ofA. Since the algorithm will be applied inductively, we will assume that we are given a subarray
A[p..r] as we did in MergeSort, and we want to find thekth smallest item (wherek ≤ r − p + 1). The initial
call will be to the entire arrayA[1..n].

There are two principal algorithms for solving the selection problem, but they differ only in one step, which
involves judiciously choosing an item from the array, called thepivot element, which we will denote byx. Later
we will see how to choosex, but for now just think of it as a random element ofA. We then partitionA into
three parts.A[q] contains the elementx, subarrayA[p..q − 1] will contain all the elements that are less thanx,
andA[q+1..r], will contain all the element that are greater thanx. (Recall that we assumed that all the elements
are distinct.) Within each subarray, the items may appear in any order. This is illustrated below.

It is easy to see that the rank of the pivotx is q − p + 1 in A[p..r]. Let xRank = q − p + 1. If k = xRank , then
the pivot is thekth smallest, and we may just return it. Ifk < xRank , then we know that we need to recursively
search inA[p..q−1] and ifk > xRank then we need to recursively searchA[q+1..r]. In this latter case we have
eliminatedq smaller elements, so we want to find the element of rankk − q. Here is the complete pseudocode.

Notice that this algorithm satisfies the basic form of a sieve algorithm. It analyzes the data (by choosing the pivot
element and partitioning) and it eliminates some part of the data set, and recurses on the rest. Whenk = xRank
then we get lucky and eliminate everything. Otherwise we either eliminate the pivot and the right subarray or
the pivot and the left subarray.

We will discuss the details of choosing the pivot and partitioning later, but assume for now that they both take
Θ(n) time. The question that remains is how many elements did we succeed in eliminating? Ifx is the largest
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Fig. 70: Selection Algorithm.

Selection by the Sieve Technique
Select(array A, int p, int r, int k) { // return kth smallest of A[p..r]

if (p == r) return A[p] // only 1 item left, return it
else {

x = ChoosePivot(A, p, r) // choose the pivot element
q = Partition(A, p, r, x) // partition <A[p..q-1], x, A[q+1..r]>
xRank = q - p + 1 // rank of the pivot
if (k == xRank) return x // the pivot is the kth smallest
else if (k < xRank)

return Select(A, p, q-1, k) // select from left subarray
else

return Select(A, q+1, r, k-xRank)// select from right subarray
}

}
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or smallest element in the array, then we may only succeed in eliminating one element with each phase. In fact,
if x is one of the smallest elements ofA or one of the largest, then we get into trouble, because we may only
eliminate it and the few smaller or larger elements ofA. Ideallyx should have a rank that is neither too large
nor too small.

Let us suppose for now (optimistically) that we are able to design the procedureChoose Pivot in such a
way that is eliminates exactly half the array with each phase, meaning that we recurse on the remainingn/2
elements. This would lead to the following recurrence.

T (n) =
{

1 if n = 1,
T (n/2) + n otherwise.

We can solve this either by expansion (iteration) or the Master Theorem. If we expand this recurrence level by
level we see that we get the summation

T (n) = n +
n

2
+

n

4
+ · · · ≤

∞∑
i=0

n

2i
= n

∞∑
i=0

1
2i

.

Recall the formula for the infinite geometric series. For anyc such that|c| < 1,
∑∞

i=0 ci = 1/(1 − c). Using
this we have

T (n) ≤ 2n ∈ O(n).

(This only proves the upper bound on the running time, but it is easy to see that it takes at leastΩ(n) time, so
the total running time isΘ(n).)

This is a bit counterintuitive. Normally you would think that in order to design aΘ(n) time algorithm you could
only make a single, or perhaps a constant number of passes over the data set. In this algorithm we make many
passes (it could be as many aslg n). However, because we eliminate a constant fraction of elements with each
phase, we get this convergent geometric series in the analysis, which shows that the total running time is indeed
linear inn. This lesson is well worth remembering. It is often possible to achieve running times in ways that
you would not expect.

Note that the assumption of eliminating half was not critical. If we eliminated even one per cent, then the
recurrence would have beenT (n) = T (99n/100) + n, and we would have gotten a geometric series involving
99/100, which is still less than 1, implying a convergent series. Eliminatinganyconstant fraction would have
been good enough.

Choosing the Pivot: There are two issues that we have left unresolved. The first is how to choose the pivot element,
and the second is how to partition the array. Both need to be solved inΘ(n) time. The second problem is a
rather easy programming exercise. Later, when we discuss QuickSort, we will discuss partitioning in detail.

For the rest of the lecture, let’s concentrate on how to choose the pivot. Recall that before we said that we might
think of the pivot as a random element ofA. Actually this is not such a bad idea. Let’s see why.

The key is that we want the procedure to eliminate at least some constant fraction of the array after each parti-
tioning step. Let’s consider the top of the recurrence, when we are givenA[1..n]. Suppose that the pivotx turns
out to be of rankq in the array. The partitioning algorithm will split the array intoA[1..q − 1] < x, A[q] = x
andA[q + 1..n] > x. If k = q, then we are done. Otherwise, we need to search one of the two subarrays. They
are of sizesq − 1 andn − q, respectively. The subarray that contains thekth smallest element will generally
depend on whatk is, so in the worst case,k will be chosen so that we have to recurse on the larger of the two
subarrays. Thus ifq > n/2, then we may have to recurse on the left subarray of sizeq− 1, and ifq < n/2, then
we may have to recurse on the right subarray of sizen− q. In either case, we are in trouble ifq is very small, or
if q is very large.

If we could selectq so that it is roughly of middle rank, then we will be in good shape. For example, if
n/4 ≤ q ≤ 3n/4, then the larger subarray will never be larger than3n/4. Earlier we said that we might think
of the pivot as a random element of the arrayA. Actually this works pretty well in practice. The reason is that
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roughly half of the elements lie between ranksn/4 and3n/4, so picking a random element as the pivot will
succeed about half the time to eliminate at leastn/4. Of course, we might be continuously unlucky, but a careful
analysis will show that the expected running time is stillΘ(n). We will return to this later.

Instead, we will describe a rather complicated method for computing a pivot element that achieves the desired
properties. Recall that we are given an arrayA[1..n], and we want to compute an elementx whose rank is
(roughly) betweenn/4 and3n/4. We will have to describe this algorithm at a very high level, since the details
are rather involved. Here is the description for SelectPivot:

Groups of 5: PartitionA into groups of 5 elements, e.g.A[1..5], A[6..10], A[11..15], etc. There will be exactly
m = dn/5e such groups (the last one might have fewer than 5 elements). This can easily be done inΘ(n)
time.

Group medians: Compute the median of each group of 5. There will bem group medians. We do not need an
intelligent algorithm to do this, since each group has only a constant number of elements. For example, we
could just BubbleSort each group and take the middle element. Each will takeΘ(1) time, and repeating
this dn/5e times will give a total running time ofΘ(n). Copy the group medians to a new arrayB.

Median of medians: Compute the median of the group medians. For this, we will have to call the selection
algorithm recursively onB, e.g. Select(B, 1, m, k) , wherem = dn/5e, andk = b(m + 1)/2c.
Let x be this median of medians. Returnx as the desired pivot.

The algorithm is illustrated in the figure below. To establish the correctness of this procedure, we need to argue
thatx satisfies the desired rank properties.
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Fig. 71: Choosing the Pivot. 30 is the final pivot.

Lemma: The elementx is of rank at leastn/4 and at most3n/4 in A.

Proof: We will show thatx is of rank at leastn/4. The other part of the proof is essentially symmetrical. To
do this, we need to show that there are at leastn/4 elements that are less than or equal tox. This is a bit
complicated, due to the floor and ceiling arithmetic, so to simplify things we will assume thatn is evenly
divisible by 5. Consider the groups shown in the tabular form above. Observe that at least half of the group
medians are less than or equal tox. (Becausex is their median.) And for each group median, there are
three elements that are less than or equal to this median within its group (because it is the median of its
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group). Therefore, there are at least3((n/5)/2 = 3n/10 ≥ n/4 elements that are less than or equal tox
in the entire array.

Analysis: The last order of business is to analyze the running time of the overall algorithm. We achieved the main
goal, namely that of eliminating a constant fraction (at least1/4) of the remaining list at each stage of the
algorithm. The recursive call inSelect() will be made to list no larger than3n/4. However, in order
to achieve this, withinSelect Pivot() we needed to make a recursive call toSelect() on an arrayB
consisting ofdn/5e elements. Everything else took onlyΘ(n) time. As usual, we will ignore floors and ceilings,
and write theΘ(n) asn for concreteness. The running time is

T (n) ≤
{

1 if n = 1,
T (n/5) + T (3n/4) + n otherwise.

This is a very strange recurrence because it involves a mixture of different fractions (n/5 and3n/4). This
mixture will make it impossible to use the Master Theorem, and difficult to apply iteration. However, this is a
good place to apply constructive induction. We know we want an algorithm that runs inΘ(n) time.

Theorem: There is a constantc, such thatT (n) ≤ cn.

Proof: (by strong induction onn)

Basis: (n = 1) In this case we haveT (n) = 1, and soT (n) ≤ cn as long asc ≥ 1.

Step: We assume thatT (n′) ≤ cn′ for all n′ < n. We will then show thatT (n) ≤ cn. By definition we
have

T (n) = T (n/5) + T (3n/4) + n.

Sincen/5 and3n/4 are both less thann, we can apply the induction hypothesis, giving

T (n) ≤ c
n

5
+ c

3n

4
+ n = cn

(
1
5

+
3
4

)
+ n

= cn
19
20

+ n = n

(
19c
20

+ 1
)

.

This last expression will be≤ cn, provided that we selectc such thatc ≥ (19c/20) + 1. Solving for
c we see that this is true provided thatc ≥ 20.

Combining the constraints thatc ≥ 1, andc ≥ 20, we see that by lettingc = 20, we are done.

A natural question is why did we pick groups of 5? If you look at the proof above, you will see that it works for
any value that is strictly greater than 4. (You might try it replacing the 5 with 3, 4, or 6 and see what happens.)

Supplemental Lecture 5: Analysis of BucketSort

Probabilistic Analysis of BucketSort: We begin with a quick-and-dirty analysis of bucketsort. Since there aren
buckets, and the items fall uniformly between them, we would expect a constant number of items per bucket.
Thus, the expected insertion time for each bucket is only a constant. Therefore the expected running time of
the algorithm isΘ(n). This quick-and-dirty analysis is probably good enough to convince yourself of this
algorithm’s basic efficiency. A careful analysis involves understanding a bit about probabilistic analyses of
algorithms. Since we haven’t done any probabilistic analyses yet, let’s try doing this one. (This one is rather
typical.)

The first thing to do in a probabilistic analysis is to define a random variable that describes the essential quantity
that determines the execution time. Adiscrete random variablecan be thought of as variable that takes on some
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set of discrete values with certain probabilities. More formally, it is a function that maps some some discrete
sample space (the set of possible values) onto the reals (the probabilities). For0 ≤ i ≤ n− 1, let Xi denote the
random variable that indicates the number of elements assigned to thei-th bucket.

Since the distribution is uniform, all of the random variablesXi have the same probability distribution, so we
may as well talk about a single random variableX, which will work for any bucket. Since we are using a
quadratic time algorithm to sort the elements of each bucket, we are interested in the expected sorting time,
which isΘ(X2). So this leads to the key question, what is the expected value ofX2, denotedE[X2].

Because the elements are assumed to be uniformly distributed, each element has an equal probability of going
into any bucket, or in particular, it has a probability ofp = 1/n of going into theith bucket. So how many items
do we expect will wind up in bucketi? We can analyze this by thinking of each element ofA as being represented
by a coin flip (with a biased coin, which has a different probability of heads and tails). With probabilityp = 1/n
the number goes into bucketi, which we will interpret as the coin coming up heads. With probability1 − 1/n
the item goes into some other bucket, which we will interpret as the coin coming up tails. Since we assume
that the elements ofA are independent of each other,X is just the total number of heads we see after makingn
tosses with this (biased) coin.

The number of times that a heads event occurs, givenn independent trials in which each trial has two possible
outcomes is a well-studied problem in probability theory. Such trials are calledBernoulli trials (named after the
Swiss mathematician James Bernoulli). Ifp is the probability of getting a head, then the probability of gettingk
heads inn tosses is given by the following important formula

P (X = k) =
(

n

k

)
pk(1− p)n−k where

(
n

k

)
=

n!
k!(n− k)!

.

Although this looks messy, it is not too hard to see where it comes from. Basicallypk is the probability of
tossingk heads,(1 − p)n−k is the probability of tossingn − k tails, and

(
n
k

)
is the total number of different

ways that thek heads could be distributed among then tosses. This probability distribution (as a function ofk,
for a givenn andp) is called thebinomial distribution, and is denotedb(k;n, p).

If you consult a standard textbook on probability and statistics, then you will see the two important facts that we
need to know about the binomial distribution. Namely, that its mean valueE[X] and its varianceVar[X] are

E[X] = np and Var[X] = E[X2]− E2[X] = np(1− p).

We want to determineE[X2]. By the above formulas and the fact thatp = 1/n we can derive this as

E[X2] = Var[X] + E2[X] = np(1− p) + (np)2 =
n

n

(
1− 1

n

)
+
(n

n

)2

= 2− 1
n

.

Thus, for largen the time to insert the items into any one of the linked lists is a just shade less than 2. Summing
up over alln buckets, gives a total running time ofΘ(2n) = Θ(n). This is exactly what our quick-and-dirty
analysis gave us, but now we know it is true with confidence.

Supplemental Lecture 6: Long Integer Multiplication

Read: This material on integer multiplication is not covered in CLRS.

Long Integer Multiplication: The following little algorithm shows a bit more about the surprising applications of
divide-and-conquer. The problem that we want to consider is how to perform arithmetic on long integers, and
multiplication in particular. The reason for doing arithmetic on long numbers stems from cryptography. Most
techniques for encryption are based on number-theoretic techniques. For example, the character string to be
encrypted is converted into a sequence of numbers, and encryption keys are stored as long integers. Efficient
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encryption and decryption depends on being able to perform arithmetic on long numbers, typically containing
hundreds of digits.

Addition and subtraction on large numbers is relatively easy. Ifn is the number of digits, then these algorithms
run in Θ(n) time. (Go back and analyze your solution to the problem on Homework 1). But the standard
algorithm for multiplication runs inΘ(n2) time, which can be quite costly when lots of long multiplications are
needed.

This raises the question of whether there is a more efficient way to multiply two very large numbers. It would
seem surprising if there were, since for centuries people have used the same algorithm that we all learn in grade
school. In fact, we will see that it is possible.

Divide-and-Conquer Algorithm: We know the basic grade-school algorithm for multiplication. We normally think
of this algorithm as applying on a digit-by-digit basis, but if we partition ann digit number into two “super
digits” with roughlyn/2 each into longer sequences, the same multiplication rule still applies.

w

y

x

z

xzwz

xywy

wy wz + xy xz

n
n/2 n/2

A

B

Product

Fig. 72: Long integer multiplication.

To avoid complicating things with floors and ceilings, let’s just assume that the number of digitsn is a power of
2. LetA andB be the two numbers to multiply. LetA[0] denote the least significant digit and letA[n−1] denote
the most significant digit ofA. Because of the way we write numbers, it is more natural to think of the elements
of A as being indexed in decreasing order from left to right asA[n− 1..0] rather than the usualA[0..n− 1].

Let m = n/2. Let
w = A[n− 1..m] x = A[m− 1..0] and
y = B[n− 1..m] z = B[m− 1..0].

If we think of w, x, y andz asn/2 digit numbers, we can expressA andB as

A = w · 10m + x

B = y · 10m + z,

and their product is

mult(A,B) = mult(w, y)102m + (mult(w, z) + mult(x, y))10m + mult(x, z).

The operation of multiplying by10m should be thought of as simply shifting the number over bym positions to
the right, and so is not really a multiplication. Observe that all the additions involve numbers involving roughly
n/2 digits, and so they takeΘ(n) time each. Thus, we can express the multiplication of two long integers as the
result of four products on integers of roughly half the length of the original, and a constant number of additions
and shifts, each takingΘ(n) time. This suggests that if we were to implement this algorithm, its running time
would be given by the following recurrence

T (n) =
{

1 if n = 1,
4T (n/2) + n otherwise.

Lecture Notes 110 CMSC 451



If we apply the Master Theorem, we see thata = 4, b = 2, k = 1, anda > bk, implying that Case 1 holds and
the running time isΘ(nlg 4) = Θ(n2). Unfortunately, this is no better than the standard algorithm.

Faster Divide-and-Conquer Algorithm: Even though the above exercise appears to have gotten us nowhere, it ac-
tually has given us an important insight. It shows that the critical element is the number of multiplications on
numbers of sizen/2. The number of additions (as long as it is a constant) does not affect the running time. So,
if we could find a way to arrive at the same result algebraically, but by trading off multiplications in favor of
additions, then we would have a more efficient algorithm. (Of course, we cannot simulate multiplication through
repeated additions, since the number of additions must be a constant, independent ofn.)

The key turns out to be a algebraic “trick”. The quantities that we need to compute areC = wy, D = xz,
andE = (wz + xy). Above, it took us four multiplications to compute these. However, observe that if instead
we compute the following quantities, we can get everything we want, using only three multiplications (but with
more additions and subtractions).

C = mult(w, y)
D = mult(x, z)
E = mult((w + x), (y + z))− C −D = (wy + wz + xy + xz)− wy − xz = (wz + xy).

Finally we have
mult(A,B) = C · 102m + E · 10m + D.

Altogether we perform 3 multiplications, 4 additions, and 2 subtractions all of numbers withn/2 digitis. We
still need to shift the terms into their proper final positions. The additions, subtractions, and shifts takeΘ(n)
time in total. So the total running time is given by the recurrence:

T (n) =
{

1 if n = 1,
3T (n/2) + n otherwise.

Now when we apply the Master Theorem, we havea = 3, b = 2 andk = 1, yielding T (n) ∈ Θ(nlg 3) ≈
Θ(n1.585).

Is this really an improvement? This algorithm carries a larger constant factor because of the overhead of recur-
sion and the additional arithmetic operations. But asymptotics says that ifn is large enough, then this algorithm
will be superior. For example, if we assume that the clever algorithm has overheads that are 5 times greater
than the simple algorithm (e.g.5n1.585 versusn2) then this algorithm beats the simple algorithm forn ≥ 50.
If the overhead was 10 times larger, then the crossover would occur forn ≥ 260. Although this may seem like
a very large number, recall that in cryptogrphy applications, encryption keys of this length and longer are quite
reasonable.

Supplemental Lecture 7: Dynamic Programming: 0–1 Knapsack Problem

Read: The introduction to Chapter 16 in CLR. The material on the Knapsack Problem is not presented in our text, but
is briefly discussed in Section 17.2.

0-1 Knapsack Problem: Imagine that a burglar breaks into a museum and findsn items. Letvi denote the value of the
i-th item, and letwi denote the weight of thei-th item. The burglar carries a knapsack capable of holding total
weightW . The burglar wishes to carry away the most valuable subset items subject to the weight constraint.

For example, a burglar would rather steal diamonds before gold because the value per pound is better. But he
would rather steal gold before lead for the same reason. We assume that the burglar cannot take a fraction of an
object, so he/she must make a decision to take the object entirely or leave it behind. (There is a version of the
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problem where the burglar can take a fraction of an object for a fraction of the value and weight. This is much
easier to solve.)

More formally, given〈v1, v2, . . . , vn〉 and 〈w1, w2 . . . , wn〉, andW > 0, we wish to determine the subset
T ⊆ {1, 2, . . . , n} (of objects to “take”) that maximizes∑

i∈T

vi,

subject to ∑
i∈T

wi ≤W.

Let us assume that thevi’s, wi’s andW are all positive integers. It turns out that this problem is NP-complete,
and so we cannot really hope to find an efficient solution. However if we make the same sort of assumption that
we made in counting sort, we can come up with an efficient solution.

We assume that thewi’s are small integers, and thatW itself is a small integer. We show that this problem
can be solved inO(nW ) time. (Note that this is not very good ifW is a large integer. But if we truncate our
numbers to lower precision, this gives a reasonable approximation algorithm.)

Here is how we solve the problem. We construct an arrayV [0..n, 0..W ]. For1 ≤ i ≤ n, and0 ≤ j ≤ W , the
entryV [i, j] we will store the maximum value of any subset of objects{1, 2, . . . , i} that can fit into a knapsack of
weightj. If we can compute all the entries of this array, then the array entryV [n,W ] will contain the maximum
value of alln objects that can fit into the entire knapsack of weightW .

To compute the entries of the arrayV we will imply an inductive approach. As a basis, observe thatV [0, j] = 0
for 0 ≤ j ≤W since if we have no items then we have no value. We consider two cases:

Leave objecti: If we choose to not take objecti, then the optimal value will come about by considering how
to fill a knapsack of sizej with the remaining objects{1, 2, . . . , i− 1}. This is justV [i− 1, j].

Take object i: If we take objecti, then we gain a value ofvi but have used upwi of our capacity. With the
remainingj−wi capacity in the knapsack, we can fill it in the best possible way with objects{1, 2, . . . , i−
1}. This isvi + V [i− 1, j − wi]. This is only possible ifwi ≤ j.

Since these are the only two possibilities, we can see that we have the following rule for constructing the array
V . The ranges oni andj arei ∈ [0..n] andj ∈ [0..W ].

V [0, j] = 0

V [i, j] =
{

V [i− 1, j] if wi > j
max(V [i− 1, j], vi + V [i− 1, j − wi]) if wi ≤ j

The first line states that if there are no objects, then there is no value, irrespective ofj. The second line
implements the rule above.

It is very easy to take these rules an produce an algorithm that computes the maximum value for the knapsack
in time proportional to the size of the array, which isO((n + 1)(W + 1)) = O(nW ). The algorithm is given
below.

An example is shown in the figure below. The final output isV [n,W ] = V [4, 10] = 90. This reflects the
selection of items 2 and 4, of values $40 and $50, respectively and weights4 + 3 ≤ 10.

The only missing detail is what items should we select to achieve the maximum. We will leave this as an
exercise. They key is to record for each entryV [i, j] in the matrix whether we got this entry by taking theith
item or leaving it. With this information, it is possible to reconstruct the optimum knapsack contents.
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0-1 Knapsack Problem
KnapSack(v[1..n], w[1..n], n, W) {

allocate V[0..n][0..W];
for j = 0 to W do V[0, j] = 0; // initialization
for i = 1 to n do {

for j = 0 to W do {
leave_val = V[i-1, j]; // total value if we leave i
if (j >= w[i]) // enough capacity to take i

take_val = v[i] + V[i-1, j - w[i]]; // total value if we take i
else

take_val = -INFINITY; // cannot take i
V[i,j] = max(leave_val, take_val); // final value is max

}
}
return V[n, W];

}

Values of the objects are〈10, 40, 30, 50〉.
Weights of the objects are〈5, 4, 6, 3〉.

Capacity→ j = 0 1 2 3 4 5 6 7 8 9 10
Item Value Weight 0 0 0 0 0 0 0 0 0 0 0

1 10 5 0 0 0 0 0 10 10 10 10 10 10
2 40 4 0 0 0 0 40 40 40 40 40 50 50
3 30 6 0 0 0 0 40 40 40 40 40 50 70
4 50 3 0 0 0 50 50 50 50 90 90 90 90

Final result isV [4, 10] = 90 (for taking items 2 and 4).

Fig. 73: 0–1 Knapsack Example.
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Supplemental Lecture 8: Dynamic Programming: Memoization

Read: Section 15.3 of CLRS.

Recursive Implementation: We have described dynamic programming as a method that involves the “bottom-up”
computation of a table. However, the recursive formulations that we have derived have been set up in a “top-
down” manner. Must the computation proceed bottom-up? Consider the following recursive implementation of
the chain-matrix multiplication algorithm. The callRec-Matrix-Chain(p, i, j) computes and returns
the value ofm[i, j]. The initial call isRec-Matrix-Chain(p, 1, n) . We only consider the cost here.

Recursive Chain Matrix Multiplication
Rec-Matrix-Chain(array p, int i, int j) {

if (i == j) m[i,j] = 0; // basis case
else {

m[i,j] = INFINITY; // initialize
for k = i to j-1 do { // try all splits

cost = Rec-Matrix-Chain(p, i, k) +
Rec-Matrix-Chain(p, k+1, j) + p[i-1]*p[k]*p[j];

if (cost < m[i,j]) m[i,j] = cost; // update if better
}

}
return m[i,j]; // return final cost

}

(Note that the tablem[1..n, 1..n] is not really needed. We show it just to make the connection with the earlier
version clearer.) This version of the procedure certainly looks much simpler, and more closely resembles the
recursive formulation that we gave previously for this problem. So, what is wrong with this?

The answer is the running time is much higher than theΘ(n3) algorithm that we gave before. In fact, we will
see that its running time isexponentialin n. This is unacceptably slow.

LetT (n) denote the running time of this algorithm on a sequence of matrices of lengthn. (That is,n = j−i+1.)
If i = j then we have a sequence of length 1, and the time isΘ(1). Otherwise, we doΘ(1) work and then
consider all possible ways of splitting the sequence of lengthn into two sequences, one of lengthk and the other
of lengthn− k, and invoke the procedure recursively on each one. So we get the following recurrence, defined
for n ≥ 1. (We have replaced theΘ(1)’s with the constant 1.)

T (n) =
{

1 if n = 1,
1 +

∑n−1
k=1(T (k) + T (n− k)) if n ≥ 2.

Claim: T (n) ≥ 2n−1.

Proof: The proof is by induction onn. Clearly this is true forn = 1, sinceT (1) = 1 = 20. In general, for
n ≥ 2, the induction hypothesis is thatT (m) ≥ 2m−1 for all m < n. Using this we have

T (n) = 1 +
n−1∑
k=1

(T (k) + T (n− k)) ≥ 1 +
n−1∑
k=1

T (k)

≥ 1 +
n−1∑
k=1

2k−1 = 1 +
n−2∑
k=0

2k

= 1 + (2n−1 − 1) = 2n−1.

In the first line we simply ignored theT (n−k) term, in the second line we applied the induction hypothesis,
and in the last line we applied the formula for the geometric series.
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Why is this so much worse than the dynamic programming version? If you “unravel” the recursive calls on a
reasonably long example, you will see that the procedure is called repeatedly with the same arguments. The
bottom-up version evaluates each entry exactly once.

Memoization: Is it possible to retain the nice top-down structure of the recursive solution, while keeping the same
O(n3) efficiency of the bottom-up version? The answer is yes, through a technique calledmemoization. Here
is the idea. Let’s reconsider the functionRec-Matrix-Chain() given above. It’s job is to computem[i, j],
and return its value. As noted above, the main problem with the procedure is that it recomputes the same entries
over and over. So, we will fix this by allowing the procedure to compute each entry exactly once. One way to
do this is to initialize every entry to somespecial value(e.g. UNDEFINED). Once an entries value has been
computed, it is never recomputed.

Memoized Chain Matrix Multiplication
Mem-Matrix-Chain(array p, int i, int j) {

if (m[i,j] != UNDEFINED) return m[i,j]; // already defined
else if (i == j) m[i,j] = 0; // basis case
else {

m[i,j] = INFINITY; // initialize
for k = i to j-1 do { // try all splits

cost = Mem-Matrix-Chain(p, i, k) +
Mem-Matrix-Chain(p, k+1, j) + p[i-1]*p[k]*p[j];

if (cost < m[i,j]) m[i,j] = cost; // update if better
}

}
return m[i,j]; // return final cost

}

This version runs inO(n3) time. Intuitively, this is because each of theO(n2) table entries is only computed
once, and the work needed to compute one table entry (most of it in the for-loop) is at mostO(n).

Memoization is not usually used in practice, since it is generally slower than the bottom-up method. However,
in some DP problems, many of the table entries are simply not needed, and so bottom-up computation may
compute entries that are never needed. In these cases memoization may be a good idea. If you have know that
most of the table will not be needed, here is a way to save space. Rather than storing the whole table explicitly
as an array, you can store the “defined” entries of the table in a hash table, using the index pair(i, j) as the hash
key. (See Chapter 11 in CLRS for more information on hashing.)

Supplemental Lecture 9: Articulation Points and Biconnectivity

Read: This material is not covered in CLR (except as Problem 23–2).

Articulation Points and Biconnected Graphs: Today we discuss another application of DFS, this time to a problem
on undirected graphs. LetG = (V,E) be aconnectedundirected graph. Consider the following definitions.

Articulation Point (or Cut Vertex): Is any vertex whose removal (together with the removal of any incident
edges) results in a disconnected graph.

Bridge: Is an edge whose removal results in a disconnected graph.

Biconnected: A graph isbiconnectedif it contains no articulation points. (In general a graph isk-connected, if
k vertices must be removed to disconnect the graph.)

Biconnected graphs and articulation points are of great interest in the design of network algorithms, because
these are the “critical” points, whose failure will result in the network becoming disconnected.
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Last time we observed that the notion of mutual reachability partitioned the vertices of a digraph into equivalence
classes. We would like to do the same thing here. We say that two edgese1 ande2 are cocyclicif eithere1 = e2

or if there is a simple cycle that contains both edges. It is not too hard to verify that this defines an equivalence
relation on the edges of a graph. Notice that if two edges are cocyclic, then there are essentially two different
ways of getting from one edge to the other (by going around the the cycle each way).

Biconnected components:The biconnected components of a graph are the equivalence classes of the cocylicity
relation.

Notice that unlike strongly connected components of a digraph (which form a partition of the vertex set) the
biconnected components of a graph form a partition of the edge set. You might think for a while why this is so.

We give an algorithm for computing articulation points. An algorithm for computing bridges is simple modifi-
cation to this procedure.

Articulation Points and DFS: In order to determine the articulation points of an undirected graph, we will call depth-
first search, and use the tree structure provided by the search to aid us. In particular, let us ask ourselves if a
vertexu is an articulation point, how would we know it by its structure in the DFS tree?

We assume thatG is connected (if not, we can apply this algorithm to each individual connected component).
So we assume is only one tree in the DFS forest. BecauseG is undirected, the DFS tree has a simpler structure.
First off, we cannot distinguish between forward edges and back edges, and we just call them back edges. Also,
there are no cross edges. (You should take a moment to convince yourself why this is true.)

For now, let us consider the typical case of a vertexu, whereu is not a leaf andu is not the root. Let’s let
v1, v2, . . . , vk be the children ofu. For each child there is a subtree of the DFS tree rooted at this child. If for
some child, there is no back edge going to a proper ancestor ofu, then if we were to removeu, this subtree
would become disconnected from the rest of the graph, and henceu is an articulation point. On the other hand,
if every one of the subtrees rooted at the children ofu have back edges to proper ancestors ofu, then if u is
removed, the graph remains connected (the backedges hold everything together). This leads to the following.

Observation 1: An internal vertexu of the DFS tree (other than the root) is an articulation point if and only
there exists a subtree rooted at a child ofu such that there is no back edge from any vertex in this subtree
to a proper ancestor ofu.

Please check this condition carefully to see that you understand it. In particular, notice that the condition for
whetheru is an articulation point depends on a test applied to its children. This is the most common source of
confusion for this algorithm.

What about the leaves? Ifu is a leaf, can it be an articulation point? Answer: No, because when you delete a
leaf from a tree, the rest of the tree remains connected, thus even ignoring the back edges, the graph is connected
after the deletion of a leaf from the DFS tree.
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Observation 2: A leaf of the DFS tree is never an articulation point. Note that this is completely consistent
with Observation 1, since a leaf will not have any subtrees in the DFS tree, so we can delete the word
“internal” from Observation 1.

What about the root? Since there are no cross edges between the subtrees of the root if the root has two or more
children then it is an articulation point (since its removal separates these two subtrees). On the other hand, if
the root has only a single child, then (as in the case of leaves) its removal does not disconnect the DFS tree, and
hence cannot disconnect the graph in general.

Observation 3: The root of the DFS is an articulation point if and only if it has two or more children.

Articulation Points by DFS: Observations 1, 2, and 3 provide us with a structural characterization of which vertices
in the DFS tree are articulation points. How can we design an algorithm which tests these conditions? Checking
that the root has multiple children is an easy exercise. Checking Observation 1 is the hardest, but we will exploit
the structure of the DFS tree to help us.

The basic thing we need to check for is whether there is a back edge from some subtree to an ancestor of a given
vertex. How can we do this? It would be too expensive to keep track of all the back edges from each subtree
(because there may beΘ(e) back edges. A simpler scheme is to keep track of back edge that goes highest in the
tree (in the sense of going closest to the root). If any back edge goes to an ancestor ofu, this one will.

How do we know how close a back edge goes to the root? As we travel fromu towards the root, observe that
the discovery times of these ancestors ofu get smaller and smaller (the root having the smallest discovery time
of 1). So we keep track of the back edge(v, w) that has the smallest value ofd[w].

Low: DefineLow[u] to be the minimum ofd[u] and

{d[w] | where(v, w) is a back edge andv is a descendent ofu}.
The term “descendent” is used in the nonstrict sense, that is,v may be equal tou. Intuitively, Low[u] is the
highest (closest to the root) that you can get in the tree by taking any one backedge from eitheru or any
of its descendents. (Beware of this notation: “Low” means low discovery time, not low in the tree. In fact
Low[u] tends to be “high” in the tree, in the sense of being close to the root.)

To computeLow[u] we use the following simple rules: Suppose that we are performing DFS on the vertexu.

Initialization: Low[u] = d[u].

Back edge(u, v): Low[u] = min(Low[u], d[v]). Explanation: We have detected a new back edge coming out
of u. If this goes to a lowerd value than the previous back edge then make this the new low.

Tree edge(u, v): Low[u] = min(Low[u], Low[v]). Explanation: Sincev is in the subtree rooted atu any single
back edge leaving the tree rooted atv is a single back edge for the tree rooted atu.
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Observe that onceLow[u] is computed for all verticesu, we can test whether a given nonroot vertexu is an
articulation point by Observation 1 as follows:u is an articulation point if and only if it has a childv in the
DFS tree for whichLow[v] ≥ d[u] (since if there were a back edge from eitherv or one of its descendents to an
ancestor ofv then we would haveLow[v] < d[u]).

The Final Algorithm: There is one subtlety that we must watch for in designing the algorithm (in particular this is
true for any DFS on undirected graphs). When processing a vertexu, we need to know when a given edge(u, v)
is a back edge. How do we do this? An almost correct answer is to test whetherv is colored gray (since all gray
vertices are ancestors of the current vertex). This is not quite correct becausev may be the parent ofv in the DFS
tree and we are just seeing the “other side” of the tree edge betweenv andu (recalling that in constructing the
adjacency list of an undirected graph we create two directed edges for each undirected edge). To test correctly
for a back edge we use the predecessor pointer to check thatv is not the parent ofu in the DFS tree.

The complete algorithm for computing articulation points is given below. The main procedure for DFS is the
same as before, except that it calls the following routine rather thanDFSvisit() .

Articulation Points
ArtPt(u) {

color[u] = gray
Low[u] = d[u] = ++time
for each (v in Adj(u)) {

if (color[v] == white) { // (u,v) is a tree edge
pred[v] = u
ArtPt(v)
Low[u] = min(Low[u], Low[v]) // update Low[u]
if (pred[u] == NULL) { // root: apply Observation 3

if (this is u’s second child)
Add u to set of articulation points

}
else if (Low[v] >= d[u]) { // internal node: apply Observation 1

Add u to set of articulation points
}

}
else if (v != pred[u]) { // (u,v) is a back edge

Low[u] = min(Low[u], d[v]) // update L[u]
}

}
}

An example is shown in the following figure. As with all DFS-based algorithms, the running time isΘ(n + e).
There are some interesting problems that we still have not discussed. We did not discuss how to compute the
bridges of a graph. This can be done by a small modification of the algorithm above. We’ll leave it as an
exercise. (Notice that if{u, v} is a bridge then it does not follow thatu andv are both articulation points.)
Another question is how to determine which edges are in the biconnected components. A hint here is to store
the edges in a stack as you go through the DFS search. When you come to an articulation point, you can show
that all the edges in the biconnected component will be consecutive in the stack.

Supplemental Lecture 10: Bellman-Ford Shortest Paths

Read: Section 24.1 in CLRS.

Bellman-Ford Algorithm: We saw that Dijkstra’s algorithm can solve the single-source shortest path problem, under
the assumption that the edge weights are nonnegative. We also saw that shortest paths are undefined if you
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Fig. 76: Articulation Points.

have cycles of total negative cost. What if you have negative edge weights, but no negative cost cycles? We
shall present the Bellman-Ford algorithm, which solves this problem. This algorithm is slower that Dijkstra’s
algorithm, running inΘ(V E) time. In our version we will assume that there are no negative cost cycles. The
one presented in CLRS actually contains a bit of code that checks for this. (Check it out.)

Recall that we are given a graphG = (V,E) with numeric edge weights,w(u, v). Like Dijkstra’s algorithm, the
Bellman-Ford algorithm is based on performing repeated relaxations. (Recall that relaxation updates shortest
path information along a single edge. It was described in our discussion of Dijkstra’s algorithm.) Dijkstra’s
algorithm was based on the idea of organizing the relaxations in the best possible manner, namely in increasing
order of distance. Once relaxation is applied to an edge, it need never be relaxed again. This trick doesn’t seem
to work when dealing with graphs with negative edge weights. Instead, the Bellman-Ford algorithm simply
applies a relaxation toeveryedge in the graph, and repeats thisV − 1 times.

Bellman-Ford Algorithm
BellmanFord(G,w,s) {

for each (u in V) { // standard initialization
d[u] = +infinity
pred[u] = null

}
d[s] = 0
for i = 1 to V-1 { // repeat V-1 times

for each (u,v) in E { // relax along each edge
Relax(u,v)

}
}

}

TheΘ(V E) running time is pretty obvious, since there are two main nested loops, one iteratedV − 1 times and
the other iteratedE times. The interesting question is how and why it works.

Correctness of Bellman-Ford: I like to think of the Bellman-Ford as a sort of “BubbleSort analogue” for shortest
paths, in the sense that shortest path information is propagated sequentially along each shortest path in the graph.
Consider any shortest path froms to some other vertexu: 〈v0, v1, . . . , vk〉 wherev0 = s andvk = u. Since a
shortest path will never visit the same vertex twice, we know thatk ≤ V − 1, and hence the path consists of at
mostV − 1 edges. Since this is a shortest path we haveδ(s, vi) (the true shortest path cost froms to vi) satisfies

δ(s, vi) = δ(s, vi−1) + w(vi−1, vi).
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We assert that after theith pass of the “for-i” loop thatd[vi] = δ(s, vi). The proof is by induction oni. Observe
that after the initialization (pass 0) we haved[v1] = d[s] = 0. In general, prior to theith pass through the loop,
the induction hypothesis tells us thatd[vi−1] = δ(s, vi−1). After theith pass through the loop, we have done a
relaxation on the edge(vi−1, vi) (since we do relaxations along all the edges). Thus after theith pass we have

d[vi] ≤ d[vi−1] + w(vi−1, vi) = δ(s, vi−1) + w(vi−1, vi) = δ(s, vi).

Recall from Dijkstra’s algorithm thatd[vi] is never less thanδ(s, vi) (since each time we do a relaxation there
exists a path that witnesses its value). Thus,d[vi] is in fact equal toδ(s, vi), completing the induction proof.

In summary, afteri passes through the for loop, all vertices that arei edges away (along the shortest path tree)
from the source have the correct distance values stored ind[u]. Thus, after the(V − 1)st iteration of the for
loop, all verticesu have the correct distance values stored ind[u].

Supplemental Lecture 11: Network Flows and Matching

Read: Chapt 27 in CLR.

Maximum Flow: The Max Flow problem is one of the basic problems of algorithm design. Intuitively we can think
of a flow network as a directed graph in which fluid is flowing along the edges of the graph. Each edge has
certain maximum capacity that it can carry. The idea is to find out how much flow we can push from one point
to another.

The max flow problem has applications in areas like transportation, routing in networks. It is the simplest
problem in a line of many important problems having to do with the movement of commodities through a
network. These are often studied in business schools, and operations research.

Flow Networks: A flow networkG = (V,E) is a directed graph in which each edge(u, v) ∈ E has a nonegative
capacityc(u, v) ≥ 0. If (u, v) 6∈ E we model this by settingc(u, v) = 0. There are two special vertices: a
sources, and asinkt. We assume that every vertex lies on some path from the source to the sink (for otherwise
the vertex is of no use to us). (This implies that the digraph is connected, and hencee ≥ n− 1.)

A flow is a real valued function on pairs of vertices,f : V × V → R which satisfies the following three
properties:

Capacity Constraint: For allu, v ∈ V , f(u, v) ≤ c(u, v).

Skew Symmetry: For all u, v ∈ V , f(u, v) = −f(v, u). (In other words, we can think of backwards flow as
negative flow. This is primarily for making algebraic analysis easier.)

Flow conservation: For allu ∈ V − {s, t}, we have∑
v∈V

f(u, v) = 0.
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(Given skew symmetry, this is equivalent to saying, flow-in = flow-out.) Note that flow conservation
does NOT apply to the source and sink, since we think of ourselves as pumping flow froms to t. Flow
conservation means that no flow is lost anywhere else in the network, thus the flow out ofs will equal the
flow into t.

The quantityf(u, v) is called thenet flowfrom u to v. The totalvalueof the flowf is defined as

|f | =
∑
v∈V

f(s, v)

i.e. the flow out ofs. It turns out that this is also equal to
∑

v∈V f(v, t), the flow intot. We will show this later.

The maximum-flow problemis, given a flow network, and source and sink verticess and t, find the flow of
maximum value froms to t.

Example: Page 581 of CLR.

Multi-source, multi-sink flow problems: It may seem overly restrictive to require that there is only a single source
and a single sink vertex. Many flow problems have situations in which many source verticess1, s2, . . . , sk and
many sink verticest1, t2, . . . , tl. This can easily be modelled by just adding a specialsupersources′ and a
supersinkt′, and attachings′ to all thesi and attach all thetj to t′. We let these edges have infinite capacity.
Now by pushing the maximum flow froms′ to t′ we are effectively producing the maximum flow from all the
s′i to all thetj ’s.

Note that we don’t care which flow from one source goes to another sink. If you require that the flow from
sourcei goes ONLY to sinki, then you have a tougher problem called themulti-commodity flow problem.

Set Notation: Sometimes rather than talking about the flow from a vertexu to a vertexv, we want to talk about the
flow from a SET of verticesX to another SET of verticesY . To do this we extend the definition off to sets by
defining

f(X,Y ) =
∑
x∈X

∑
y ∈ Y f(x, y).

Using this notation we can define flow balance for a vertexu more succintly by just writingf(u, V ) = 0. One
important special case of this concept is whenX andY define acut (i.e. a partition of the vertex set into two
disjoint subsetsX ⊆ V andY = V − X). In this casef(X,Y ) can be thought of as the net amount of flow
crossing over the cut.

From simple manipulations of the definition of flow we can prove the following facts.

Lemma:

(i) f(X,X) = 0.

(ii) f(X,Y ) = −f(Y,X).
(iii) If X ∩ Y = ∅ thenf(X ∪ Y,Z) = f(X,Z) + f(Y,Z) andf(Z,X ∪ Y ) = f(Z,X) + f(Z, Y ).

Ford-Fulkerson Method: The most basic concept on which all network-flow algorithms work is the notion ofaug-
menting flows. The idea is to start with a flow of size zero, and then incrementally make the flow larger and
larger by finding a path along which we can push more flow. A path in the network froms to t along which more
flow can be pushed is called anaugmenting path. This idea is given by the most simple method for computing
network flows, called the Ford-Fulkerson method.

Almost all network flow algorithms are based on this simple idea. They only differ in how they decide which
path or paths along which to push flow. We will prove that when it is impossible to “push” any more flow
through the network, we have reached the maximum possible flow (i.e. a locally maximum flow is globally
maximum).
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Ford-Fulkerson Network Flow
FordFulkerson(G, s, t) {

initialize flow f to 0;
while (there exists an augmenting path p) {

augment the flow along p;
}
output the final flow f;

}

Residual Network: To define the notion of an augmenting path, we first define the notion of a residual network. Given
a flow networkG and a flowf , define theresidual capacityof a pairu, v ∈ V to becf (u, v) = c(u, v)−f(u, v).
Because of the capacity constraint,cf (u, v) ≥ 0. Observe that ifcf (u, v) > 0 then it is possible to push more
flow through the edge(u, v). Otherwise we say that the edge issaturated.

Theresidual networkis the directed graphGf with the same vertex set asG but whose edges are the pairs(u, v)
such thatcf (u, v) > 0. Each edge in the residual network is weighted with its residual capacity.

Example: Page 589 of CLR.

Lemma: Let f be a flow inG and letf ′ be a flow inGf . Then(f + f ′) (defined(f + f ′)(u, v) = f(u, v) +
f ′(u, v)) is a flow inG. The value of the flow is|f |+ |f ′|.

Proof: Basically the residual network tells us how much additional flow we can push throughG. This implies
thatf + f ′ never exceeds the overall edge capacities ofG. The other rules for flows are easy to verify.

Augmenting Paths: An augmenting pathis a simple path froms to t in Gf . The residual capacityof the path is
the MINIMUM capacity of any edge on the path. It is denotedcf (p). Observe that by pushingcf (p) units of
flow along each edge of the path, we get a flow inGf , and hence we can use this to augment the flow inG.
(Remember that when defining this flow that whenever we pushcf (p) units of flow along any edge(u, v) of p,
we have to push−cf (p) units of flow along the reverse edge(v, u) to maintain skew-symmetry. Since every
edge of the residual network has a strictly positive weight, the resulting flow is strictly larger than the current
flow for G.

In order to determine whether there exists an augmenting path froms to t is an easy problem. First we construct
the residual network, and then we run DFS or BFS on the residual network starting ats. If the search reaches
t then we know that a path exists (and can follow the predecessor pointers backwards to reconstruct it). Since
DFS and BFS takeΘ(n + e) time, and it can be shown that the residual network hasΘ(n + e) size, the running
time of Ford-Fulkerson is basically

Θ((n + e)(number of augmenting stages)).

Later we will analyze the latter quantity.

Correctness: To establish the correctness of the Ford-Fulkerson algorithm we need to delve more deeply into the
theory of flows and cuts in networks. Acut, (S, T ), in a flow network is a partition of the vertex set into two
disjoint subsetsS andT such thats ∈ S andt ∈ T . We define the flow across the cut asf(S, T ), and we define
the capcity of the cut asc(S, T ). Note that in computingf(S, T ) flows fromT to S are counted negatively (by
skew-symmetry), and in computingc(S, T ) we ONLY count constraints on edges leading fromS to T ignoring
those fromT to S).

Lemma: The amount of flow across any cut in the network is equal to|f |.
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Proof:

f(S, T ) = f(S, V )− f(S, S)
= f(S, V )
= f(s, V ) + f(S − s, V )
= f(s, V )
= |f |

(The fact thatf(S − s, V ) = 0 comes from flow conservation.f(u, V ) = 0 for all u other thans andt,
and sinceS − s is formed of such vertices the sum of their flows will be zero also.)

Corollary: The value of any flow is bounded from above by the capacity of any cut. (i.e. Maximum flow≤
Minimum cut).

Proof: You cannot push any more flow through a cut than its capacity.

The correctness of the Ford-Fulkerson method is based on the following theorem, called the Max-Flow, Min-Cut
Theorem. It basically states that in any flow network the minimum capacity cut acts like a bottleneck to limit
the maximum amount of flow. Ford-Fulkerson algorithm terminates when it finds this bottleneck, and hence it
finds the minimum cut and maximum flow.

Max-Flow Min-Cut Theorem: The following three conditions are equivalent.

(i) f is a maximum flow inG,

(ii) The residual networkGf contains no augmenting paths,

(iii) |f | = c(S, T ) for some cut(S, T ) of G.

Proof: (i) ⇒ (ii): If f is a max flow and there were an augmenting path inGf , then by pushing flow along this
path we would have a larger flow, a contradiction.

(ii) ⇒ (iii): If there are no augmenting paths thens andt are not connected in the residual network. Let
S be those vertices reachable froms in the residual network and letT be the rest.(S, T ) forms a cut.
Because each edge crossing the cut must be saturated with flow, it follows that the flow across the cut
equals the capacity of the cut, thus|f | = c(S, T ).
(iii) ⇒ (i): Since the flow is never bigger than the capacity of any cut, if the flow equals the capacity of
some cut, then it must be maximum (and this cut must be minimum).

Analysis of the Ford-Fulkerson method: The problem with the Ford-Fulkerson algorithm is that depending on how
it picks augmenting paths, it may spend an inordinate amount of time arriving a the final maximum flow. Con-
sider the following example (from page 596 in CLR). If the algorithm were smart enough to send flow along
the edges of weight 1,000,000, the algorithm would terminate in two augmenting steps. However, if the algo-
rithm were to try to augment using the middle edge, it will continuously improve the flow by only a single unit.
2,000,000 augmenting will be needed before we get the final flow. In general, Ford-Fulkerson can take time
Θ((n + e)|f∗|) wheref∗ is the maximum flow.

An Improvement: We have shown that if the augmenting path was chosen in a bad way the algorithm could run for a
very long time before converging on the final flow. It seems (from the example we showed) that a more logical
way to push flow is to select the augmenting path which holds the maximum amount of flow. Computing this
path is equivalent to determining the path of maximum capacity froms to t in the residual network. (This is
exactly the same as the beer transport problem given on the last exam.) It is not known how fast this method
works in the worst case, but there is another simple strategy that is guaranteed to give good bounds (in terms of
n ande).
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Edmonds-Karp Algorithm: The Edmonds-Karp algorithm is Ford-Fulkerson, with one little change. When finding
the augmenting path, we use Breadth-First search in the residual network, starting at the sources, and thus we
find the shortest augmenting path (where the length of the path is the number of edges on the path). We claim
that this choice is particularly nice in that, if we do so, the number of flow augmentations needed will be at most
O(e · n). Since each augmentation takesO(n + e) time to compute using BFS, the overall running time will be
O((n + e)e · n) = O(n2e + e2n) ∈ O(e2n) (under the reasonable assumption thate ≥ n). (The best known
algorithm is essentiallyO(e · n log n).

The fact that Edmonds-Karp usesO(en) augmentations is based on the following observations.

Observation: If the edge(u, v) is an edge on the minimum length augmenting path froms to t in Gf , then
δf (s, v) = δf (s, u) + 1.

Proof: This is a simple property of shortest paths. Since there is an edge fromu to v, δf (s, v) ≤ δf (s, u) + 1,
and ifδf (s, v) < δf (s, u) + 1 thenu would not be on the shortest path froms to v, and hence(u, v) is not
on any shortest path.

Lemma: For each vertexu ∈ V −{s, t}, letδf (s, u) be the distance function froms tou in the residual network
Gf . Then as we peform augmentations by the Edmonds-Karp algorithm the value ofδf (s, u) increases
monotonically with each flow augmentation.

Proof: (Messy, but not too complicated. See the text.)

Theorem: The Edmonds-Karp algorithm makes at mostO(n · e) augmentations.

Proof: An edge in the augmenting path iscritical if the residual capacity of the path equals the residual capacity
of this edge. In other words, after augmentation the critical edge becomes saturated, and disappears from
the residual graph.
How many times can an edge become critical before the algorithm terminates? Observe that when the
edge(u, v) is critical it lies on the shortest augmenting path, implying thatδf (s, v) = δf (s, u) + 1. After
this it disappears from the residual graph. In order to reappear, it must be that we reduce flow on this edge,
i.e. we push flow along the reverse edge(v, u). For this to be the case we have (at some later flowf ′)
δf ′(s, u) = δf ′(s, v) + 1. Thus we have:

δf ′(s, u) = δf ′(s, v) + 1
≥ δf (s, v) + 1 since dists increase with time

= (δf (s, u) + 1) + 1
= δf (s, u) + 2.

Thus, between the time that an edge becomes critical, its tail vertex increases in distance from the source
by two. This can only happenn/2 times, since no vertex can be further thann from the source. Thus, each
edge can become critical at mostO(n) times, there areO(e) edges, hence afterO(ne) augmentations, the
algorithm must terminate.

In summary, the Edmonds-Karp algorithm makes at mostO(ne) augmentations and runs inO(ne2) time.

Maximum Matching: One of the important elements of network flow is that it is a very general algorithm which is
capable of solving many problems. (An example is problem 3 in the homework.) We will give another example
here.

Consider the following problem, you are running a dating service and there are a set of menL and a set of
womenR. Using a questionaire you establish which men are compatible which which women. Your task is
to pair up as many compatible pairs of men and women as possible, subject to the constraint that each man is
paired with at most one woman, and vice versa. (It may be that some men are not paired with any woman.)

This problem is modelled by giving an undirected graph whose vertex set isV = L ∪ R and whose edge set
consists of pairs(u, v), u ∈ L, v ∈ R such thatu andv are compatible. The problem is to find amatching,
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that is a subset of edgesM such that for eachv ∈ V , there is at most one edge ofM incident tov. The desired
matching is the one that has the maximum number of edges, and is called amaximum matching.

Example: See page 601 in CLR.

The resulting undirected graph has the property that its vertex set can be divided into two groups such that all
its edges go from one group to the other (never within a group, unless the dating service is located on Dupont
Circle). This problem is called themaximum bipartite matching problem.

Reduction to Network Flow: We claim that if you have an algorithm for solving the network flow problem, then you
can use this algorithm to solve the maximum bipartite matching problem. (Note that this idea does not work for
general undirected graphs.)

Construct a flow networkG′ = (V ′, E′) as follows. Lets andt be two new vertices and letV ′ = V ∪ {s, t}.

E′ = {(s, u)|u ∈ L} ∪ {(v, t)|v ∈ R} ∪ {(u, v)|(u, v) ∈ E}.

Set the capacity of all edges in this network to 1.

Example: See page 602 in CLR.

Now, compute the maximum flow inG′. Although in general it can be that flows are real numbers, observe that
the Ford-Fulkerson algorithm will only assign integer value flows to the edges (and this is true of all existing
network flow algorithms).

Since each vertex inL has exactly 1 incoming edge, it can have flow along at most 1 outgoing edge, and since
each vertex inR has exactly 1 outgoing edge, it can have flow along at most 1 incoming edge. Thus lettingf
denote the maximum flow, we can define a matching

M = {(u, v)|u ∈ L, v ∈ R, f(u, v) > 0}.

We claim that this matching is maximum because for every matching there is a corresponding flow of equal
value, and for every (integer) flow there is a matching of equal value. Thus by maximizing one we maximize
the other.

Supplemental Lecture 12: Hamiltonian Path

Read: The reduction we present for Hamiltonian Path is completely different from the one in Chapt 36.5.4 of CLR.

Hamiltonian Cycle: Today we consider a collection of problems related to finding paths in graphs and digraphs.
Recall that given a graph (or digraph) aHamiltonian cycleis a simple cycle that visits every vertex in the graph
(exactly once). AHamiltonian pathis a simple path that visits every vertex in the graph (exactly once). The
Hamiltonian cycle (HC) and Hamiltonian path (HP) problems ask whether a given graph (or digraph) has such
a cycle or path, respectively. There are four variations of these problems depending on whether the graph is
directed or undirected, and depending on whether you want a path or a cycle, but all of these problems are
NP-complete.

An important related problem is the traveling salesman problem (TSP). Given a complete graph (or digraph)
with integer edge weights, determine the cycle of minimum weight that visits all the vertices. Since the graph
is complete, such a cycle will always exist. The decision problem formulation is, given a complete weighted
graphG, and integerX, does there exist a Hamiltonian cycle of total weight at mostX? Today we will prove
that Hamiltonian Cycle is NP-complete. We will leave TSP as an easy exercise. (It is done in Section 36.5.5 in
CLR.)
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Component Design: Up to now, most of the reductions that we have seen (for Clique, VC, and DS in particular) are
of a relatively simple variety. They are sometimes calledlocal replacementreductions, because they operate by
making some local change throughout the graph.

We will present a much more complex style of reduction for the Hamiltonian path problem on directed graphs.
This type of reduction is called acomponent designreduction, because it involves designing special subgraphs,
sometimes calledcomponentsor gadgets(also calledwidgets). whose job it is to enforce a particular constraint.
Very complex reductions may involve the creation of many gadgets. This one involves the construction of only
one. (See CLR’s presentation of HP for other examples of gadgets.)

The gadget that we will use in the directed Hamiltonian path reduction, called aDHP-gadget, is shown in the
figure below. It consists of three incoming edges labeledi1, i2, i3 and three outgoing edges, labeledo1, o2, o3. It
was designed so it satisfied the following property, which you can verify. Intuitively it says that if you enter the
gadget on any subset of 1, 2 or 3 input edges, then there is a way to get through the gadget and hit every vertex
exactly once, and in doing so each path must end on the corresponding output edge.

Claim: Given the DHP-gadget:

• For any subset of input edges, there exists a set of paths which join each input edgei1, i2, or i3 to
its respective output edgeo1, o2, or o3 such that together these paths visit every vertex in the gadget
exactly once.

• Any subset of paths that start on the input edges and end on the output edges, and visit all the vertices
of the gadget exactly once, must join corresponding inputs to corresponding outputs. (In other words,
a path that starts on inputi1 must exit on outputo1.)

The proof is not hard, but involves a careful inspection of the gadget. It is probably easiest to see this on your
own, by starting with one, two, or three input paths, and attempting to get through the gadget without skipping
vertex and without visiting any vertex twice. To see whether you really understand the gadget, answer the
question of why there are 6 groups of triples. Would some other number work?

DHP is NP-complete: This gadget is an essential part of our proof that the directed Hamiltonian path problem is
NP-complete.

Theorem: The directed Hamiltonian Path problem is NP-complete.

Proof: DHP ∈ NP: The certificate consists of the sequence of vertices (or edges) in the path. It is an easy
matter to check that the path visits every vertex exactly once.

3SAT≤P DHP: This will be the subject of the rest of this section.

Let us consider the similar elements between the two problems. In 3SAT we are selecting a truth assignment
for the variables of the formula. In DHP, we are deciding which edges will be a part of the path. In 3SAT there
must be at least one true literal for each clause. In DHP, each vertex must be visited exactly once.

We are given a boolean formulaF in 3-CNF form (three literals per clause). We will convert this formula into
a digraph. Letx1, x2, . . . , xm denote the variables appearing inF . We will construct one DHP-gadget for each
clause in the formula. The inputs and outputs of each gadget correspond to the literals appearing in this clause.
Thus, the clause(x2 ∨x5∨x8) would generate a clause gadget with inputs labeledx2, x5, andx8, and the same
outputs.

The general structure of the digraph will consist of a series vertices, one for each variable. Each of these vertices
will have two outgoing paths, one taken ifxi is set to true and one ifxi is set to false. Each of these paths will
then pass through some number of DHP-gadgets. The true path forxi will pass through all the clause gadgets
for clauses in whichxi appears, and the false path will pass through all the gadgets for clauses in whichxi

appears. (The order in which the path passes through the gadgets is unimportant.) When the paths forxi have
passed through their last gadgets, then they are joined to the next variable vertex,xi+1. This is illustrated in
the following figure. (The figure only shows a portion of the construction. There will be paths coming into
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Fig. 78: DHP-Gadget and examples of path traversals.
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these same gadgets from other variables as well.) We add one final vertexxe, and the last variable’s paths are
connected toxe. (If we wanted to reduce to Hamiltonian cycle, rather than Hamiltonian path, we could joinxe

back tox1.)
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Fig. 79: General structure of reduction from 3SAT to DHP.

Note that for each variable, the Hamiltonian path must either use the true path or the false path, but it cannot use
both. If we choose the true path forxi to be in the Hamiltonian path, then we will have at least one path passing
through each of the gadgets whose corresponding clause containsxi, and if we chose the false path, then we
will have at least one path passing through each gadget forxi.

For example, consider the following boolean formula in 3-CNF. The construction yields the digraph shown in
the following figure.

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x1 ∨ x3) ∧ (x1 ∨ x3 ∨ x2).
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Fig. 80: Example of the 3SAT to DHP reduction.

The Reduction: Let us give a more formal description of the reduction. Recall that we are given a boolean formulaF
in 3-CNF. We create a digraphG as follows. For each variablexi appearing inF , we create avariable vertex,
namedxi. We also create a vertex namedxe (the ending vertex). For each clausec, we create a DHP-gadget
whose inputs and outputs are labeled with the three literals ofc. (The order is unimportant, as long as each input
and its corresponding output are labeled the same.)

We join these vertices with the gadgets as follows. For each variablexi, consider all the clausesc1, c2, . . . , ck in
whichxi appears as a literal (uncomplemented). Joinxi by an edge to the input labeled withxi in the gadget for
c1, and in general join the the output of gadgetcj labeledxi with the input of gadgetcj+1 with this same label.
Finally, join the output of the last gadgetck to the next vertex variablexi+1. (If this is the last variable, then
join it to xe instead.) The resulting chain of edges is called thetrue pathfor variablexi. Form a second chain
in exactly the same way, but this time joining the gadgets for the clauses in whichxi appears. This is called
the false pathfor xi. The resulting digraph is the output of the reduction. Observe that the entire construction
can be performed in polynomial time, by simply inspecting the formula, creating the appropriate vertices, and
adding the appropriate edges to the digraph. The following lemma establishes the correctness of this reduction.

Lemma: The boolean formulaF is satisfiable if and only if the digraphG produced by the above reduction has
a Hamiltonian path.
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Fig. 81: Correctness of the 3SAT to DHP reduction. The upper figure shows the Hamiltonian path resulting from the
satisfying assignment,x1 = 1, x2 = 1, x3 = 0, and the lower figure shows the non-Hamiltonian path resulting from
the nonsatisfying assignmentx1 = 0, x2 = 1, x3 = 0.

Proof: We need to prove both the “only if” and the “if”.

⇒: Suppose thatF has a satisfying assignment. We claim thatG has a Hamiltonian path. This path will start at
the variable vertexx1, then will travel along either the true path or false path forx1, depending on whether
it is 1 or 0, respectively, in the assignment, and then it will continue withx2, thenx3, and so on, until
reachingxe. Such a path will visit each variable vertex exactly once.

Because this is a satisfying assignment, we know that for each clause, either 1, 2, or 3 of its literals
will be true. This means that for each clause, either 1, 2, or 3, paths will attempt to travel through the
corresponding gadget. However, we have argued in the above claim that in this case it is possible to visit
every vertex in the gadget exactly once. Thus every vertex in the graph is visited exactly once, implying
thatG has a Hamiltonian path.

⇐: Suppose thatG has a Hamiltonian path. We assert that the form of the path must be essentially the same as
the one described in the previous part of this proof. In particular, the path must visit the variable vertices
in increasing order fromx1 until xe, because of the way in which these vertices are joined together.

Also observe that for each variable vertex, the path will proceed along either the true path or the false path.
If it proceeds along the true path, set the corresponding variable to 1 and otherwise set it to 0. We will
show that the resulting assignment is a satisfying assignment forF .

Any Hamiltonian path must visit all the vertices in every gadget. By the above claim about DHP-gadgets,
if a path visits all the vertices and enters along input edge then it must exit along the corresponding output
edge. Therefore, once the Hamiltonian path starts along the true or false path for some variable, it must
remain on edges with the same label. That is, if the path starts along the true path forxi, it must travel
through all the gadgets with the labelxi until arriving at the variable vertex forxi+1. If it starts along the
false path, then it must travel through all gadgets with the labelxi.

Since all the gadgets are visited and the paths must remain true to their initial assignments, it follows that
for each corresponding clause, at least one (and possibly 2 or three) of the literals must be true. Therefore,
this is a satisfying assignment.
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Supplemental Lecture 13: Subset Sum Approximation

Read: Section 37.4 in CLR.

Polynomial Approximation Schemes: Last time we saw that for some NP-complete problems, it is possible to ap-
proximate the problem to within a fixed constant ratio bound. For example, the approximation algorithm pro-
duces an answer that is within a factor of 2 of the optimal solution. However, in practice, people would like to
the control the precision of the approximation. This is done by specifying a parameterε > 0 as part of the input
to the approximation algorithm, and requiring that the algorithm produce an answer that is within arelative
error of ε of the optimal solution. It is understood that asε tends to 0, the running time of the algorithm will
increase. Such an algorithm is called apolynomial approximation scheme.

For example, the running time of the algorithm might beO(2(1/ε)n2). It is easy to see that in such cases the user
pays a big penalty in running time as a function ofε. (For example, to produce a 1% error, the “constant” factor
would be2100 which would be around 4 quadrillion centuries on your 100 Mhz Pentium.) Afully polynomial
approximation schemeis one in which the running time is polynomial in bothn and 1/ε. For example, a
running time ofO((n/ε)2) would satisfy this condition. In such cases, reasonably accurate approximations are
computationally feasible.

Unfortunately, there are very few NP-complete problems with fully polynomial approximation schemes. In fact,
recently there has been strong evidence that many NP-complete problems do not have polynomial approximation
schemes (fully or otherwise). Today we will study one that does.

Subset Sum: Recall that in the subset sum problem we are given a setS of positive integers{x1, x2, . . . , xn} and a
target valuet, and we are asked whether there exists a subsetS′ ⊆ S that sums exactly tot. The optimization
problem is to determine the subset whose sum is as large as possible but not larger thant.

This problem is basic to many packing problems, and is indirectly related to processor scheduling problems that
arise in operating systems as well. Suppose we are also given0 < ε < 1. Let z∗ ≤ t denote the optimum sum.
The approximation problem is to return a valuez ≤ t such that

z ≥ z∗(1− ε).

If we think of this as a knapsack problem, we want our knapsack to be within a factor of(1− ε) of being as full
as possible. So, ifε = 0.1, then the knapsack should be at least 90% as full as the best possible.

What do we mean by polynomial time here? Recall that the running time should be polynomial in the size of
the input length. Obviouslyn is part of the input length. Butt and the numbersxi could also be huge binary
numbers. Normally we just assume that a binary number can fit into a word of our computer, and do not count
their length. In this case we will to be on the safe side. Clearlyt requiresO(log t) digits to be store in the input.
We will take the input size to ben + log t.

Intuitively it is not hard to believe that it should be possible to determine whether we can fill the knapsack to
within 90% of optimal. After all, we are used to solving similar sorts of packing problems all the time in real
life. But the mental heuristics that we apply to these problems are not necessarily easy to convert into efficient
algorithms. Our intuition tells us that we can afford to be a little “sloppy” in keeping track of exactly full the
knapsack is at any point. The value ofε tells us just how sloppy we can be. Our approximation will do something
similar. First we consider an exponential time algorithm, and then convert it into an approximation algorithm.

Exponential Time Algorithm: This algorithm is a variation of the dynamic programming solution we gave for the
knapsack problem. Recall that there we used an 2-dimensional array to keep track of whether we could fill a
knapsack of a given capacity with the firsti objects. We will do something similar here. As before, we will
concentrate on the question of which sums are possible, but determining the subsets that give these sums will
not be hard.

Let Li denote a list of integers that contains the sums of all2i subsets of{x1, x2, . . . , xi} (including the empty
set whose sum is 0). For example, for the set{1, 4, 6} the corresponding list of sums contains〈0, 1, 4, 5(=
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1 + 4), 6, 7(= 1 + 6), 10(= 4 + 6), 11(= 1 + 4 + 6)〉. Note thatLi can have as many as2i elements, but may
have fewer, since some subsets may have the same sum.

There are two things we will want to do for efficiency. (1) Remove any duplicates fromLi, and (2) only keep
sums that are less than or equal tot. Let us suppose that we a procedureMergeLists(L1, L2) which
merges two sorted lists, and returns a sorted lists with all duplicates removed. This is essentially the procedure
used in MergeSort but with the added duplicate element test. As a bit of notation, letL + x denote the list
resulting by adding the numberx to every element of listL. Thus〈1, 4, 6〉 + 3 = 〈4, 7, 9〉. This gives the
following procedure for the subset sum problem.

Exact Subset Sum
Exact_SS(x[1..n], t) {

L = <0>;
for i = 1 to n do {

L = MergeLists(L, L+x[i]);
remove for L all elements greater than t;

}
return largest element in L;

}

For example, ifS = {1, 4, 6} andt = 8 then the successive lists would be

L0 = 〈0〉
L1 = 〈0〉 ∪ 〈0 + 1〉 = 〈0, 1〉
L2 = 〈0, 1〉 ∪ 〈0 + 4, 1 + 4〉 = 〈0, 1, 4, 5〉
L3 = 〈0, 1, 4, 5〉 ∪ 〈0 + 6, 1 + 6, 4 + 6, 5 + 6〉 = 〈0, 1, 4, 5, 6, 7, 10, 11〉.

The last list would have the elements 10 and 11 removed, and the final answer would be 7. The algorithm runs
in Ω(2n) time in the worst case, because this is the number of sums that are generated if there are no duplicates,
and no items are removed.

Approximation Algorithm: To convert this into an approximation algorithm, we will introduce a “trim” the lists to
decrease their sizes. The idea is that if the listL contains two numbers that are very close to one another, e.g.
91, 048 and91, 050, then we should not need to keep both of these numbers in the list. One of them is good
enough for future approximations. This will reduce the size of the lists that the algorithm needs to maintain.
But, how much trimming can we allow and still keep our approximation bound? Furthermore, will we be able
to reduce the list sizes from exponential to polynomial?

The answer to both these questions is yes, provided you apply a proper way of trimming the lists. We will trim
elements whose values are sufficiently close to each other. But we should define close in manner that is relative
to the sizes of the numbers involved. The trimming must also depend onε. We selectδ = ε/n. (Why? We will
see later that this is the value that makes everything work out in the end.) Note that0 < δ < 1. Assume that the
elements ofL are sorted. We walk through the list. Letz denote the last untrimmed element inL, and lety ≥ z
be the next element to be considered. If

y − z

y
≤ δ

then we trimy from the list. Equivalently, this means that the final trimmed list cannot contain two valuey and
z such that

(1− δ)y ≤ z ≤ y.

We can think ofz asrepresentingy in the list.

For example, givenδ = 0.1 and given the list

L = 〈10, 11, 12, 15, 20, 21, 22, 23, 24, 29〉,
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the trimmed listL′ will consist of
L′ = 〈10, 12, 15, 20, 23, 29〉.

Another way to visualize trimming is to break the interval from[1, t] into a set ofbucketsof exponentially
increasing size. Letd = 1/(1−δ). Note thatd > 1. Consider the intervals[1, d], [d, d2], [d2, d3], . . . , [dk−1, dk]
wheredk ≥ t. If z ≤ y are in the same interval[di−1, di] then

y − z

y
≤ di − di−1

di
= 1− 1

d
= δ.

Thus, we cannot have more than one item within each bucket. We can think of trimming as a way of enforcing
the condition that items in our lists are not relatively too close to one another, by enforcing the condition that no
bucket has more than one item.

L

L’

1 2 4 8 16

Fig. 82: Trimming Lists for Approximate Subset Sum.

Claim: The number of distinct items in a trimmed list isO((n log t)/ε), which is polynomial in input size and
1/ε.

Proof: We know that each pair of consecutive elements in a trimmed list differ by a ratio of at leastd =
1/(1− δ) > 1. Let k denote the number of elements in the trimmed list, ignoring the element of value 0.
Thus, the smallest nonzero value and maximum value in the the trimmed list differ by a ratio of at least
dk−1. Since the smallest (nonzero) element is at least as large as 1, and the largest is no larger thant, then
it follows thatdk−1 ≤ t/1 = t. Taking the natural log of both sides we have(k− 1) ln d ≤ ln t. Using the
facts thatδ = ε/n and the log identity thatln(1 + x) ≤ x, we have

k − 1 ≤ ln t

ln d
=

ln t

− ln(1− δ)

≤ ln t

δ
=

n ln t

ε

k = O

(
n log t

ε

)
.

Observe that the input size is at least as large asn (since there aren numbers) and at least as large aslog t
(since it takeslog t digits to write downt on the input). Thus, this function is polynomial in the input size
and1/ε.

The approximation algorithm operates as before, but in addition we call the procedureTrim given below.

For example, consider the setS = {104, 102, 201, 101} andt = 308 andε = 0.20. We haveδ = ε/4 = 0.05.
Here is a summary of the algorithm’s execution.
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Approximate Subset Sum
Trim(L, delta) {

let the elements of L be denoted y[1..m];
L’ = <y[1]>; // start with first item
last = y[1]; // last item to be added
for i = 2 to m do {

if (last < (1-delta) y[i]) { // different enough?
append y[i] to end of L’;
last = y[i];

}
}

}

Approx_SS(x[1..n], t, eps) {
delta = eps/n; // approx factor
L = <0>; // empty sum = 0
for i = 1 to n do {

L = MergeLists(L, L+x[i]); // add in next item
L = Trim(L, delta); // trim away "near" duplicates
remove for L all elements greater than t;

}
return largest element in L;

}

init: L0 = 〈0〉

merge: L1 = 〈0, 104〉
trim: L1 = 〈0, 104〉

remove: L1 = 〈0, 104〉

merge: L2 = 〈0, 102, 104, 206〉
trim: L2 = 〈0, 102, 206〉

remove: L2 = 〈0, 102, 206〉

merge: L3 = 〈0, 102, 201, 206, 303, 407〉
trim: L3 = 〈0, 102, 201, 303, 407〉

remove: L3 = 〈0, 102, 201, 303〉

merge: L4 = 〈0, 101, 102, 201, 203, 302, 303, 404〉
trim: L4 = 〈0, 101, 201, 302, 404〉

remove: L4 = 〈0, 101, 201, 302〉

The final output is 302. The optimum is307 = 104 + 102 + 101. So our actual relative error in this case is
within 2%.

The running time of the procedure isO(n|L|) which isO(n2 ln t/ε) by the earlier claim.
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Approximation Analysis: The final question is why the algorithm achieves an relative error of at mostε over the
optimum solution. LetY ∗ denote the optimum (largest) subset sum and letY denote the value returned by the
algorithm. We want to show thatY is not too much smaller thanY ∗, that is,

Y ≥ Y ∗(1− ε).

Our proof will make use of an important inequality from real analysis.

Lemma: Forn > 0 anda real numbers,

(1 + a) ≤
(
1 +

a

n

)n

≤ ea.

Recall that our intuition was that we would allow a relative error ofε/n at each stage of the algorithm. Since the
algorithm hasn stages, then the total relative error should be (obviously?)n(ε/n) = ε. The catch is that these
are relative, not absolute errors. These errors to not accumulate additively, but rather by multiplication. So we
need to be more careful.

Let L∗
i denote thei-th list in the exponential time (optimal) solution and letLi denote thei-th list in the approx-

imate algorithm. We claim that for eachy ∈ L∗
i there exists a representative itemz ∈ Li whose relative error

from y that satisfies
(1− ε/n)iy ≤ z ≤ y.

The proof of the claim is by induction oni. Initially L0 = L∗
0 = 〈0〉, and so there is no error. Suppose by

induction that the above equation holds for each item inL∗
i−1. Consider an elementy ∈ L∗

i−1. We know that
y will generate two elements inL∗

i : y andy + xi. We want to argue that there will be a representative that is
“close” to each of these items.

By our induction hypothesis, there is a representative elementz in Li−1 such that

(1− ε/n)i−1y ≤ z ≤ y.

When we apply our algorithm, we will form two new items to add (initially) toLi: z andz + xi. Observe that
by addingxi to the inequality above and a little simplification we get

(1− ε/n)i−1(y + xi) ≤ z + xi ≤ y + xi.

L
y

z y

iz+xz
z’’z’ y+xi

*
i−1L

i−1L

*
iL

i

Fig. 83: Subset sum approximation analysis.

The itemsz andz + xi might not appear inLi because they may be trimmed. Letz′ andz′′ be their respective
representatives. Thus,z′ andz′′ are elements ofLi. We have

(1− ε/n)z ≤ z′ ≤ z

(1− ε/n)(z + xi) ≤ z′′ ≤ z + xi.
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Combining these with the inequalities above we have

(1− ε/n)i−1(1− ε/n)y ≤ (1− ε/n)iy ≤ z′ ≤ y

(1− ε/n)i−1(1− ε/n)(y + xi) ≤ (1− ε/n)i(y + xi) ≤ z′′ ≤ z + yi.

Sincez andz′′ are inLi this is the desired result. This ends the proof of the claim.

Using our claim, and the fact thatY ∗ (the optimum answer) is the largest element ofL∗
n andY (the approximate

answer) is the largest element ofLn we have

(1− ε/n)nY ∗ ≤ Y ≤ Y ∗.

This is not quite what we wanted. We wanted to show that(1− ε)Y ∗ ≤ Y . To complete the proof, we observe
from the lemma above (settinga = −ε) that

(1− ε) ≤
(
1− ε

n

)n

.

This completes the approximate analysis.
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