CMSC 451
Design and Analysis of Computer Algorithfns

David M. Mount
Department of Computer Science
University of Maryland
Fall 2003

1Copyright, David M. Mount, 2004, Dept. of Computer Science, University of Maryland, College Park, MD, 20742. These lecture notes were
prepared by David Mount for the course CMSC 451, Design and Analysis of Computer Algorithms, at the University of Maryland. Permission to
use, copy, modify, and distribute these notes for educational purposes and without fee is hereby granted, provided that this copyright notice appear
in all copies.

Lecture Notes 1 CMSC 451

Lecture 1: Course Introduction

Read: (All readings are from Cormen, Leiserson, Rivest and Steinpduction to Algorithms2nd Edition). Review
Chapts. 1-5in CLRS.

What is an algorithm? Our text defines aalgorithmto be any well-defined computational procedure that takes some
values asnputand produces some valuesaagput Like a cooking recipe, an algorithm provides a step-by-step
method for solving a computational problem. Unlike programs, algorithms are not dependent on a particular
programming language, machine, system, or compiler. They are mathematical entities, which can be thought of
as running on some sort @fealized computewith an infinite random access memory and an unlimited word
size. Algorithm design is all about the mathematical theory behind the design of good programs.

Why study algorithm design? Programming is a very complex task, and there are a number of aspects of program-
ming that make it so complex. The first is that most programming projects are very large, requiring the coor-
dinated efforts of many people. (This is the topic a course like software engineering.) The next is that many
programming projects involve storing and accessing large quantities of data efficiently. (This is the topic of
courses on data structures and databases.) The last is that many programming projects involve solving complex
computational problems, for which simplistic or naive solutions may not be efficient enough. The complex
problems may involve numerical data (the subject of courses on numerical analysis), but often they involve
discrete data. This is where the topic of algorithm design and analysis is important.

Although the algorithms discussed in this course will often represent only a tiny fraction of the code that is
generated in a large software system, this small fraction may be very important for the success of the overall
project. An unfortunately common approach to this problem is to first design an inefficient algorithm and
data structure to solve the problem, and then take this poor design and attempt to fine-tune its performance. The
problem is that if the underlying design is bad, then often no amount of fine-tuning is going to make a substantial
difference.

The focus of this course is on how to design good algorithms, and how to analyze their efficiency. This is among
the most basic aspects of good programming.

Course Overview: This course will consist of a number of major sections. The first will be a short review of some
preliminary material, including asymptotics, summations, and recurrences and sorting. These have been covered
in earlier courses, and so we will breeze through them pretty quickly. We will then discuss approaches to
designing optimization algorithms, including dynamic programming and greedy algorithms. The next major
focus will be on graph algorithms. This will include a review of breadth-first and depth-first search and their
application in various problems related to connectivity in graphs. Next we will discuss minimum spanning trees,
shortest paths, and network flows. We will briefly discuss algorithmic problems arising from geometric settings,
that is, computational geometry.

Most of the emphasis of the first portion of the course will be on problems that can be solved efficiently, in the
latter portion we will discuss intractability and NP-hard problems. These are problems for which no efficient
solution is known. Finally, we will discuss methods to approximate NP-hard problems, and how to prove how
close these approximations are to the optimal solutions.

Issues in Algorithm Design: Algorithms are mathematical objects (in contrast to the must more concrete notion of
a computer program implemented in some programming language and executing on some machine). As such,
we can reason about the properties of algorithms mathematically. When designing an algorithm there are two
fundamental issues to be considered: correctness and efficiency.

It is important to justify an algorithm’s correctness mathematically. For very complex algorithms, this typically
requires a careful mathematical proof, which may require the proof of many lemmas and properties of the
solution, upon which the algorithm relies. For simple algorithms (BubbleSort, for example) a short intuitive
explanation of the algorithm’s basic invariants is sufficient. (For example, in BubbleSort, the principal invariant
is that on completion of théh iteration, the last elements are in their proper sorted positions.)

Lecture Notes 2 CMSC 451

Establishing efficiency is a much more complex endeavor. Intuitively, an algorithm'’s efficiency is a function

of the amount of computational resources it requires, measured typically as execution time and the amount of
space, or memory, that the algorithm uses. The amount of computational resources can be a complex function of
the size and structure of the input set. In order to reduce matters to their simplest form, it is common to consider
efficiency as a function of input size. Among all inputs of the same size, we consider the maximum possible
running time. This is calleavorst-case analysislt is also possible, and often more meaningful, to measure
average-case analysigwverage-case analyses tend to be more complex, and may require that some probability
distribution be defined on the set of inputs. To keep matters simple, we will usually focus on worst-case analysis
in this course.

Throughout out this course, when you are asked to present an algorithm, this means that you need to do three
things:

e Present a clear, simple and unambiguous description of the algorithm (in pseudo-code, for example). They
key here is keep it simplé Uninteresting details should be kept to a minimum, so that the key compu-
tational issues stand out. (For example, it is not necessary to declare variables whose purpose is obvious,
and it is often simpler and clearer to simply say, “Addto the end of list.” than to present code to do
this or use some arcane syntax, suchagsertAtEnd X).”)

e Present a justification or proof of the algorithm’s correctness. Your justification should assume that the
reader is someone of similar background as yourself, say another student in this class, and should be con-
vincing enough make a skeptic believe that your algorithm does indeed solve the problem correctly. Avoid
rambling about obvious or trivial elements. A good proof provides an overview of what the algorithm
does, and then focuses on any tricky elements that may not be obvious.

e Present a worst-case analysis of the algorithms efficiency, typically it running time (but also its space, if
space is an issue). Sometimes this is straightforward, but if not, concentrate on the parts of the analysis
that are not obvious.

Note that the presentation does not need to be in this order. Often it is good to begin with an explanation of
how you derived the algorithm, emphasizing particular elements of the design that establish its correctness and
efficiency. Then, once this groundwork has been laid down, present the algorithm itself. If this seems to be a bit
abstract now, don’t worry. We will see many examples of this process throughout the semester.

Lecture 2: Mathematical Background

Read: Review Chapters 1-5 in CLRS.

Algorithm Analysis: Today we will review some of the basic elements of algorithm analysis, which were covered in
previous courses. These include asymptotics, summations, and recurrences.

Asymptotics: Asymptotics involves O-notation (“big-Oh”) and its many relativ@s©, o (“little-Oh”), w. Asymp-
totic notation provides us with a way to simplify the functions that arise in analyzing algorithm running times
by ignoring constant factors and concentrating on the trends for large valued-of example, it allows us to
reason that for three algorithms with the respective running times
n?logn 4+ 4n® + 52nlogn € ©O(n’logn)
15n2 + Tnlog®n € O(n?)

3n+4logsn+19n? € O(n?).
Thus, the first algorithm is significantly slower for largewhile the other two are comparable, up to a constant
factor.

Since asymptotics were covered in earlier courses, | will assume that this is familiar to you. Nonetheless, here
are a few facts to remember about asymptotic notation:

Lecture Notes 3 CMSC 451

Ignore constant factors: Multiplicative constant factors are ignored. For exampin is O(n). Constant
factors appearing exponents cannot be ignored. For exaiplés not O(2").

Focus on largen: Asymptotic analysis means that we consider trends for large values Bifius, the fastest
growing function ofn is the only one that needs to be considered. For exardptdpgn + 25nlogn +
(logn)" is ©(n?logn).

Polylog, polynomial, and exponential: These are the most common functions that arise in analyzing algo-
rithms:

Polylogarithmic: Powers oflog n, such aglogn)?. We will usually write this agog” .
Polynomial: Powers ofz, such as:* andy/n = n'/2.
Exponential: A constant (not 1) raised to the powersuch ass™.

An important fact is that polylogarithmic functions are strictly asymptotically smaller than polynomial
function, which are strictly asymptotically smaller than exponential functions (assuming the base of the
exponent is bigger than 1). For example, if wedemean “asymptotically smaller” then

log®n < nb < "

for anya, b, ande, provided that > 0 andc > 1.

Logarithm Simplification: It is a good idea to first simplify terms involving logarithms. For example, the
following formulas are useful. Here b, ¢ are constants:

log, n

1 = = O(1
Ogp N loga b 6(0g, TL)
log,(n®) = clog,n = ©(log,n)
bloga no_ nloga b.

Avoid usinglogn in exponents. The last rule above can be used to achieve this. For example, rather than
saying3'os2 ", express this ag'°s2 3 ~ n1-585,

Following the conventional sloppiness, | will often sayn?), when in fact the stronger stateméntn?) holds.
(This is just because it is easier to say “oh” than “theta”.)

Summations: Summations naturally arise in the analysis of iterative algorithms. Also, more complex forms of analy-
sis, such as recurrences, are often solved by reducing them to summations. Solving a summation means reducing
it to aclosed form formulathat is, one having no summations, recurrences, integrals, or other complex operators.

In algorithm design it is often not necessary to solve a summation exactly, since an asymptotic approximation or
close upper bound is usually good enough. Here are some common summations and some tips to use in solving
summations.

Constant Series: For integers: andb,
b

Zl = max(b—a+ 1,0).
Notice that wherb = a — 1, there are no terms in the summation (since the index is assumed to count
upwards only), and the result is 0. Be careful to checkihata — 1 before applying this formula blindly.

Arithmetic Series: Forn > 0,
nin+1)

Zi:1+2+...+n: 5
=0

This is©(n?). (The starting bound could have just as easily been setto 1 as 0.)

Lecture Notes 4 CMSC 451

Geometric Series: Letxz # 1 be any constant (independentof then forn > 0,

n n+1
) T —1
=0

r—1

If 0 < 2 < 1thenthisisO(1). If z > 1, then this is9(z™), that is, the entire sum is proportional to the
last element of the series.

Quadratic Series: Forn > 0,

n
7;2:12_‘_22_;_...4_”2:%.

=0

Linear-geometric Series: This arises in some algorithms based on trees and recursionz Eetl be any
constant, then fon > 0,

-1
nZixi =x+222+32% 4 na” = (nil)x(rwl) et
P (x —1)2

As n becomes large, this is asymptotically dominated by the term 1)z /(z — 1)2. The multi-
plicative termn — 1 is very nearly equal te for largen, and, sincer is a constant, we may multiply this
times the constaritr — 1)2 /2 without changing the asymptotics. What remain®{sz").

Harmonic Series: This arises often in probabilistic analyses of algorithms. It does not have an exact closed
form solution, but it can be closely approximated. koe 0,

n

1 1 1
E——l — = (lnn 1).
; + 5 +3+ g (Inn) +O(1)

There are also a few tips to learn about solving summations.

Summations with general bounds: When a summation does not start at the 1 or 0, as most of the above for-
mulas assume, you can just split it up into the difference of two summations. For examples oK b

b b a—1
Do) = Y i)=Y f).
1=a =0 1=0

Linearity of Summation;: Constant factors and added terms can be split out to make summations simpler.

D (A+3i(i—2)=) 4+3i°—6i=) 4+3) i*—6) i.

Now the formulas can be to each summation individually.

Approximate using integrals: Integration and summation are closely related. (Integration is in some sense
a continuous form of summation.) Here is a handy formula. flief) be anymonotonically increasing
function(the function increases asincreases).

n n+1
e < 0 A0) < / f(z)da.

Example: Right Dominant Elements As an example of the use of summations in algorithm analysis, consider the
following simple problem. We are given a ligt of numeric values. We say that an element/ofs right
dominantif it is strictly larger than all the elements that follow it in the list. Note that the last element of the list

0

Lecture Notes 5 CMSC 451

is always right dominant, as is the last occurrence of the maximum element of the array. For example, consider
the following list.
L=(10,9,5,13,2,7,1,8,4,6,3)

The sequence of right dominant elements(@fe 8, 6, 3).

In order to make this more concrete, we should think about haw represented. It will make a difference
whetherL is represented as an array (allowing for random access), a doubly linked list (allowing for sequential
access in both directions), or a singly linked list (allowing for sequential access in only one direction). Among
the three possible representations, the array representation seems to yield the simplest and clearest algorithm.
However, we will design the algorithm in such a way that it only performs sequential scans, so it could also
be implemented using a singly linked or doubly linked list. (This is common in algorithms. Chose your rep-
resentation to make the algorithm as simple and clear as possible, but give thought to how it may actually be
implemented. Remember that algorithms are read by humans, not compilers.) We will assume here that the
array L of sizen is indexed from 1 ton.

Think for a moment how you would solve this problem. Can you se@@r) time algorithm? (If not, think

a little harder.) To illustrate summations, we will first present a nae?) time algorithm, which operates

by simply checking for each element of the array whether all the subsequent elements are strictly smaller.
(Although this example is pretty stupid, it will also serve to illustrate the sort of style that we will use in
presenting algorithms.)

Right Dominant Elements (Naive Solution)

/I Input: List L of numbers given as an array L[1..n]
/I Returns: List D containing the right dominant elements of L
RightDominant(L) {
D = empty list
for i = 1 to n)
isDbominant = true
for (j = i+1 to n)
if (Ali] <= A[j]) isDominant = false
if (isDominant) append A[i] to D
}

return D

If I were programming this, | would rewrite the innef)(loop as a while loop, since we can terminate the
loop as soon as we find thalt{i] is not dominant. Again, this sort of optimization is good to keep in mind in
programming, but will be omitted since it will not affect the worst-case running time.

The time spent in this algorithm is dominated (no pun intended) by the time spent in thejiploap(On the

ith iteration of the outer loop, the inner loop is executed fiom1 ton, foratotalofn — (i + 1)+ 1=n—1

times. (Recall the rule for the constant series above.) Each iteration of the inner loop takes constant time. Thus,
up to a constant factor, the running time, as a function,a$ given by the following summation:

n

T(n) = Z(n —1).
i=1
To solve this summation, let us expand it, and put it into a form such that the above formulas can be used.
Tn) = n—-1)+n—-2)+...+42+1+0
= 0+1+2+...+(n—-2)+(n—-1)
- (n—1)n
= Z’L = .
; 2
=0

Lecture Notes 6 CMSC 451

The last step comes from applying the formula for the linear series (using in place ofn in the formula).

As mentioned above, there is a simp}én) time algorithm for this problem. As an exercise, see if you can find
it. As an additional challenge, see if you can design your algorithm so it only performs a single left-to-right scan
of the list L. (You are allowed to use up 10(n) working storage to do this.)

Recurrences: Another useful mathematical tool in algorithm analysis will be recurrences. They arise naturally in the
analysis of divide-and-conquer algorithms. Recall that these algorithms have the following general structure.

Divide: Divide the problem into two or more subproblems (ideally of roughly equal sizes),
Conquer: Solve each subproblem recursively, and
Combine: Combine the solutions to the subproblems into a single global solution.

How do we analyze recursive procedures like this one? If there is a simple pattern to the sizes of the recursive
calls, then the best way is usually by setting ugeurrence that is, a function which is defined recursively in
terms of itself. Here is a typical example. Suppose that we break the problem into two subproblems, each of size
roughlyn/2. (We will assume exactly,/2 for simplicity.). The additional overhead of splitting and merging

the solutions iD(n). When the subproblems are reduced to size 1, we can solve thérfi jrtime. We will

ignore constant factors, writing(n) just asn, yielding the following recurrence:

Tn) = 1 if n=1,
T(n) = 2T(n/2)+n ifn>1.

Note that, since we assume thais an integer, this recurrence is not well defined unteissa power of 2 (since
otherwisen /2 will at some point be a fraction). To be formally correct, | should either writ¢2 | or restrict
the domain of, but | will often be sloppy in this way.

There are a number of methods for solving the sort of recurrences that show up in divide-and-conquer algo-
rithms. The easiest method is to apply Master Theoremgiven in CLRS. Here is a slightly more restrictive
version, but adequate for a lot of instances. See CLRS for the more complete version of the Master Theorem
and its proof.

Theorem: (Simplified Master Theorem) Let > 1, b > 1 be constants and I&t(n) be the recurrence
T(n) = aT(n/b) + cn*,

defined forn > 0.

Case 1:a > b* thenT'(n) is ©O(n'o8: 9).

Case 2: a = b* thenT'(n) is O(n* logn).

Case 3: a < V¥ thenT'(n) is O(n*).
Using this version of the Master Theorem we can see that in our recurien b = 2, andk = 1, soa = b*
and Case 2 applies. Thilgn) is O(nlogn).

There many recurrences that cannot be put into this form. For example, the following recurrence is quite
common:T'(n) = 2T'(n/2) + nlogn. This solves tdl'(n) = ©(n log? n), but the Master Theorem (either this
form or the one in CLRS will not tell you this.) For such recurrences, other methods are needed.

Lecture 3: Review of Sorting and Selection

Read: Review Chapts. 6-9 in CLRS.

Lecture Notes 7 CMSC 451

Review of Sorting: Sorting is among the most basic problems in algorithm design. We are given a sequence of items,
each associated with a givéry value The problem is to permute the items so that they are in increasing (or
decreasing) order by key. Sorting is important because it is often the first step in more complex algorithms.

Sorting algorithms are usually divided into two classeternal sorting algorithmswhich assume that data is
stored in an array in main memory, aexternal sorting algorithmwhich assume that data is stored on disk or
some other device that is best accessed sequentially. We will only consider internal sorting.

You are probably familiar with one or more of the standard sintie?) sorting algorithms, such dssertion-

Sort, SelectionSorandBubbleSort (By the way, these algorithms are quite acceptable for small lists of, say,
fewer than 20 elements.) BubbleSort is the easiest one to remember, but it widely considered to be the worst of
the three.

The three canonical efficient comparison-based sorting algorithniderge Sort QuickSort andHeapSort All
run in ©(n logn) time. Sorting algorithms often have additional properties that are of interest, depending on the
application. Here are two important properties.

In-place: The algorithm uses no additional array storage, and hence (other than perhaps the system'’s recursion
stack) it is possible to sort very large lists without the need to allocate additional working storage.

Stable: A sorting algorithm is stable if two elements that are equal remain in the same relative position after
sorting is completed. This is of interest, since in some sorting applications you sort first on one key and
then on another. It is nice to know that two items that are equal on the second key, remain sorted on the
first key.

Here is a quick summary of the fast sorting algorithms. If you are not familiar with any of these, check out the
descriptions in CLRS. They are shown schematically in Fig. 1

QuickSort: 1t works recursively, by first selecting a random “pivot value” from the array. Then it partitions the
array into elements that are less than and greater than the pivot. Then it recursively sorts each part.

QuickSort is widely regarded as the fastest of the fast sorting algorithms (on modern machines). One
explanation is that its inner loop compares elements against a single pivot value, which can be stored in
a register for fast access. The other algorithms compare two elements in the array. This is considered
an in-place sorting algorithm, since it uses no other array storage. (It does implicitly use the system'’s
recursion stack, but this is usually not counted.) Ih@ stable There is a stable version of QuickSort,

but it is not in-place. This algorithm i@ (nlogn) in the expected cas@nd©(n?) in the worst case. If
properly implemented, the probability that the algorithm takes asymptotically longer (assuming that the
pivot is chosen randomly) is extremely small for large

X
QuickSort: 4 partition —»=

T

sort sort

MergeSort: | | | \ \ |

sort

HeapSort: [| — buidHeap— ‘ga extrCc)tMaxa L]

Fig. 1: CommorO(n logn) comparison-based sorting algorithms.

Lecture Notes 8 CMSC 451

MergeSort: MergeSort also works recursively. It is a classical divide-and-conquer algorithm. The array is split
into two subarrays of roughly equal size. They are sorted recursively. Then the two sorted subarrays are
merged together i®(n) time.

MergeSort is the onlgtablesorting algorithm of these three. The downside is the MergeSort is the only
algorithm of the three that requires additional array storage (ignoring the recursion stack), and thus it is
not in-place This is because the merging process merges the two arrays into a third array. Although it is
possible to merge arrays in-place, it cannot be doré(im) time.

HeapSort: HeapSort is based on a nice data structure, callegbg which is an efficient implementation of a
priority queue data structure. A priority queue supports the operations of inserting a key, and deleting the
element with the smallest key value. A heap can be builtféeys in©(n) time, and the minimum key
can be extracted i®(log n) time. HeapSort is am-placesorting algorithm, but it i;mot stable

HeapSort works by building the heap (ordered in reverse order so that the maximum can be extracted
efficiently) and then repeatedly extracting the largest element. (Why it extracts the maximum rather than
the minimum is an implementation detail, but this is the key to making this work as an in-place sorting
algorithm.)

If you only want to extract thé smallest values, a heap can allow you to do th8(s + k log n) time. A

heap has the additional advantage of being used in contexts where the priority of elements changes. Each
change of priority (key value) can be processe®{tog n) time.

Which sorting algorithm should you implement when implementing your programs? The correct answer is
probably “none of them”. Unless you know that your input has some special properties that suggest a much
faster alternative, it is best to rely on the library sorting procedure supplied on your system. Presumably, it
has been engineered to produce the best performance for your system, and saves you from debugging time.
Nonetheless, it is important to learn about sorting algorithms, since the fundamental concepts covered there
apply to much more complex algorithms.

Selection: A simpler, related problem to sorting is selection. The selection problem is, given ardanfaynumbers
(not sorted), and an integér wherel < k < n, return thekth smallest value ofl. Although selection can be
solved inO(nlogn) time, by first sorting4 and then returning theth element of the sorted list, it is possible
to select thekth smallest element i®(n) time. The algorithm is a variant of QuickSort.

Lower Bounds for Comparison-Based Sorting: The fact thatO(n log n) sorting algorithms are the fastest around
for many years, suggests that this may be the best that we can do. Can we sort faster? The claim is no, pro-
vided that the algorithm is comparison-based:onparison-basesdorting algorithm is one in which algorithm
permutes the elements based solely on the results of the comparisons that the algorithm makes between pairs of
elements.

All of the algorithms we have discussed so far are comparison-based. We will see that exceptions exist in
special cases. This does not preclude the possibility of sorting algorithms whose actions are determined by
other operations, as we shall see below. The following theorem gives the lower bound on comparison-based
sorting.

Theorem: Any comparison-based sorting algorithm has worst-case running{méog n).

We will not present a proof of this theorem, but the basic argument follows from a simple analysis of the number
of possibilities and the time it takes to distinguish among them. There!amays to permute a given set of

n numbers. Any sorting algorithm must be able to distinguish between each of these different possibilities,
since two different permutations need to treated differently. Since each comparison leads to only two possible
outcomes, the execution of the algorithm can be viewed as a binary tree. (This is a bit abstract, but given a sorting
algorithm it is not hard, but quite tedious, to trace its execution, and set up a hew node each time a decision is
made.) This binary tree, calleddecision treemust have at least! leaves, one for each of the possible input
permutations. Such a tree, even if perfectly balanced, must height dgledst By Stirling’s approximationy!

Lecture Notes 9 CMSC 451

is, up to constant factors, rough(/e)™. Plugging this in and simplifying yields the(n logn) lower bound.
This can also be generalized to show thatatierage-caséime to sort is als@(n logn).

Linear Time Sorting: TheQ(nlogn) lower bound implies that if we hope to sort numbers faster tha(imlog n)
time, we cannot do it by making comparisons alone. In some special cases, it is possible to sort without the
use of comparisons. This leads to the possibility of sorting in linear (thél(is)) time. Here are three such
algorithms.

Counting Sort: Counting sort assumes that each input is an integer in the range frorh. 1Tioe algorithm
sorts in@(n + k) time. Thus, ifk is O(n), this implies that the resulting sorting algorithm runsdn)
time. The algorithm requires an additior@a(n + k) working storage but has the nice feature that it is
stable. The algorithm is remarkably simple, but deceptively clever. You are referred to CLRS for the
details.

Radix Sort: The main shortcoming of CountingSort is that (due to space requirements) it is only practical for
a very small ranges of integers. If the integers are in the range from say, 1 to a million, we may not want
to allocate an array of a million elements. RadixSort provides a nice way around this by sorting numbers
one digit, or one byte, or generally, some groups of bits, at a time. As the number of bits in each group
increases, the algorithm is faster, but the space requirements go up.

The idea is very simple. Let’s think of our list as being composed oftegers, each having decimal

digits (or digits in any base). To sort these integers we simply sort repeatedly, starting at the lowest order
digit, and finishing with the highest order digit. Since the sorting algorithm is stable, we know that if the
numbers are already sorted with respect to low order digits, and then later we sort with respect to high
order digits, numbers having the same high order digit will remain sorted with respect to their low order
digit. An example is shown in Figure 2.

Input Output
576 49[4] 9[5]4 [1]76 176
494 19[4] 5716 [1]94 194
194 95[4] 1[7]6 [2]78 278
206 = 576)] = 278 = [2]9¢ = 296
278 29[6] 4[9]4 [4]94 494
176 1716] 1[9]4 [5]76 576
954 27(8] 2[9]6 [9]54 954

Fig. 2: Example of RadixSort.

The running time i (d(n + k)) whered is the number of digits in each valuejs the length of the list,
andk is the number of distinct values each digit may have. The space nee@éd is k).

A common application of this algorithm is for sorting integers over some range that is larget,than

still polynomial inn. For example, suppose that you wanted to sort a list of integers in the range from 1
to n2. First, you could subtract 1 so that they are now in the range fromi3 te 1. Observe that any
number in this range can be expressed as 2-digit number, where each digit is over the range from 0 to
n — 1. In particular, given any integel in this range, we can writé = an + b, wherea = |L/n] and

b = L mod n. Now, we can think ofL as the 2-digit numbefa, b). So, we can radix sort these numbers

in time ©(2(n + n)) = O(n). In general this works to sort amynumbers over the range from 16, in

O(dn) time.

BucketSort: CountingSort and RadixSort are only good for sorting small integers, or at least objects (like
characters) that can be encoded as small integers. What if you want to sort a set of floating-point numbers?
In the worst-case you are pretty much stuck with using one of the comparison-based sorting algorithms,
such as QuickSort, MergeSort, or HeapSort. However, in special cases where you have reason to believe
that your numbers are roughly uniformly distributed over some range, then it is possible to do better. (Note

Lecture Notes 10 CMSC 451

that this is astrongassumption. This algorithm should not be applied unless you have good reason to
believe that this is the case.)

Suppose that the numbers to be sorted range over some interv@l, say(lt is possible inO(n) time

to find the maximum and minimum values, and scale the numbers to fit into this range.) The idea is
the subdivide this interval inta subintervals. For example, if = 100, the subintervals would be
[0,0.01),[0.01,0.02),[0.02,0.03), and so on. We create different buckets, one for each interval. Then

we make a pass through the list to be sorted, and using the floor function, we can map each value to its
bucket index. (In this case, the index of elementould be|100x].) We then sort each bucket in as-
cending order. The number of points per bucket should be fairly small, so even a quadratic time sorting
algorithm (e.g. BubbleSort or InsertionSort) should work. Finally, all the sorted buckets are concatenated
together.

The analysis relies on the fact that, assuming that the numbers are uniformly distributed, the number of
elements lying within each bucket on average is a constant. Thus, the expected time needed to sort each
bucket isO(1). Since there are buckets, the total sorting time &(n). An example illustrating this idea

is given in Fig. 3.
B

o

1| ++[.10]4+.14[++17]/
A ;Z 38
[.42].71].10].14] .86[.38] .59].17].81] .56 =y

5| ++.56 | ++.59]/

61

7 71

8| +~.81|1+.86]/

o/

Fig. 3: BucketSort.

Lecture 4: Dynamic Programming: Longest Common Subsequence
Read: Introduction to Chapt 15, and Section 15.4 in CLRS.

Dynamic Programming: We begin discussion of an important algorithm design technique, aiieaimic program-
ming (or DP for short). The technique is among the most powerful for designing algorithms for optimization
problems. (This is true for two reasons. Dynamic programming solutions are based on a few common elements.
Dynamic programming problems are typically optimization problems (find the minimum or maximum cost so-
lution, subject to various constraints). The technique is related to divide-and-conquer, in the sense that it breaks
problems down into smaller problems that it solves recursively. However, because of the somewhat different
nature of dynamic programming problems, standard divide-and-conquer solutions are not usually efficient. The
basic elements that characterize a dynamic programming algorithm are:

Substructure: Decompose your problem into smaller (and hopefully simpler) subproblems. Express the solu-
tion of the original problem in terms of solutions for smaller problems.

Table-structure: Store the answers to the subproblems in a table. This is done because subproblem solutions
are reused many times.

Bottom-up computation: Combine solutions on smaller subproblems to solve larger subproblems. (Our text
also discusses a top-down alternative, catteimoizatior)

Lecture Notes 11 CMSC 451

The most important question in designing a DP solution to a problem is how to set up the subproblem structure.
This is called theformulation of the problem. Dynamic programming is not applicable to all optimization
problems. There are two important elements that a problem must have in order for DP to be applicable.

Optimal substructure: (Sometimes called therinciple of optimality) It states that for the global problem to
be solved optimally, each subproblem should be solved optimally. (Not all optimization problems satisfy
this. Sometimes it is better to lose a little on one subproblem in order to make a big gain on another.)

Polynomially many subproblems: An important aspect to the efficiency of DP is that the total number of
subproblems to be solved should be at most a polynomial number.

Strings: One important area of algorithm design is the study of algorithms for character strings. There are a number
of important problems here. Among the most important has to do with efficiently searching for a substring
or generally a pattern in large piece of text. (This is what text editors and programs like “grep” do when you
perform a search.) In many instances you do not want to find a piece of text exactly, but rather something that is
similar. This arises for example in genetics research and in document retrieval on the web. One common method
of measuring the degree of similarity between two strings is to compute their longest common subsequence.

Longest Common Subsequencet et us think of character strings as sequences of characters. Given two sequences
X = (x1,29,...,&m) @andZ = (z1, 22, ..., z), We say thatZ is asubsequencef X if there is a strictly in-
creasing sequence kfndices(iy, ia, ..., i) (1 < iy < iz < ... <ip <n)suchthatZ = (X;,, X,,,..., X;,.).

For example, leX = (ABRACADABRAand letZ = (AADAA), thenZ is a subsequence of .
Given two stringsX andY’, thelongest common subsequerafeX andY is a longest sequencg that is a

subsequence of botki andY". For example, leX = (ABRACADABRAand letY” = (YABBADABBADOQ
Then the longest common subsequencg is (ABADABA. See Fig. 4

Fig. 4: An example of the LCS of two strings andY'.

TheLongest Common Subsequence Prohle@S) is the following. Given two sequencés = (x1,...,x.,)
andY = (y1,...,y,) determine a longest common subsequence. Note that it is not always unique. For example
the LCS of(ABC) and(BAC) is either(AC) or (BC).

DP Formulation for LCS: The simple brute-force solution to the problem would be to try all possible subsequences
from one string, and search for matches in the other string, but this is hopelessly inefficient, since there are an
exponential number of possible subsequences.

Instead, we will derive a dynamic programming solution. In typical DP fashion, we need to break the prob-
lem into smaller pieces. There are many ways to do this for strings, but it turns out for this problem that
considering all pairs oprefixeswill suffice for us. Aprefix of a sequence is just an initial string of values,

X; = (x1,22,...,2;). Xo is the empty sequence.

The idea will be to compute the longest common subsequence for every possible pair of prefixgs, jLet
denote the length of the longest common subsequengg ahdY;. For example, in the above case we have
X5 = (ABRAGC andYs = (YABBAD. Their longest common subsequencéABA). Thus,c[5, 6] = 3.

Which of thec|[s, j] values do we compute? Since we don’t know which will lead to the final optimum, we
compute all of them. Eventually we are interested[in, n] since this will be the LCS of the two entire strings.
The idea is to computeli, j] assuming that we already know the valuegef, j'], fori’ < i andj’ < j (but

not both equal). Here are the possible cases.

Lecture Notes 12 CMSC 451

Basis: c[i, 0] = c[j,0] = 0. If either sequence is empty, then the longest common subsequence is empty.

Last characters match: Supposer; = y;. For example: LelX; = (ABCA) and letY; = (DACA). Since
both end inA, we claim that the LC®nustalso end inA. (We will leave the proof as an exercise.) Since
the A is part of the LCS we may find the overall LCS by removifigrom both sequences and taking the
LCSof X;_1 = (ABC) andY;_, = (DAC) which is(AC) and then adding! to the end, giving AC' 4)
as the answer. (At first you might object: But how did you know that theseAisonatched with each
other. The answer is that we don't, but it will not make the LCS any smaller if we do.) This is illustrated
at the top of Fig. 5.

if z; =y thencli,j] =cli —1,j —1]+1

X| A] [X1]
Last chars match: yj >+~ JJLcs laddtoLCS
Y, m
Xi-1 IXI skip x;
JLCS
Last chars do not _ E
match
*) x, A
JLCS
X skiny,

Fig. 5: The possibe cases in the DP formulation of LCS.

Last characters do not match: Suppose that; # y;. In this caser; andy; cannot both be in the LCS (since
they would have to be the last character of the LCS). Thus eithismot part of the LCS, oy; is notpart
of the LCS (and possibligothare not part of the LCS).
At this point it may be tempting to try to make a “smart” choice. By analyzing the last few characters
of X; andY}, perhaps we can figure out which character is best to discard. However, this approach is
doomed to failure (and you are strongly encouraged to think about this, since it is a common point of
confusion.) Instead, our approach is to take advantage of the fact that we have already precomputed
smaller subproblems, and use these results to guide us.
In the first casex; is not in the LCS) the LCS ak; andY] is the LCS ofX;_; andY}, which isc[i —1, j].
In the second case(is not in the LCS) the LCS is the LCS &f; andY,_; which isc[i, j — 1]. We do
not know which is the case, so we try both and take the one that glves us the longer LCS. This is illustrated
at the bottom half of Fig. 5.

if x; # y; thenc[i, j] = max(c[i — 1, 7], ¢c[i,j — 1])

Combining these observations we have the following formulation:

0 ifi=0o0rj =0,
cli,j]=4 cli—1,j—1+1 if 4,5 > 0 anda; = y;,
max(c[i, j — 1], c[i — 1, 4]) if i,7 > 0andz; # y;.

Implementing the Formulation: The task now is to simply implement this formulation. We concentrate only on
computing the maximurtengthof the LCS. Later we will see how to extract the actual sequence. We will store
some helpful pointers in a parallel arr&jQ)..m, 0..n]. The code is shown below, and an example is illustrated
in Fig. 6

Lecture Notes 13 CMSC 451

Y: 3 4=n Y:
C B

0 1.0:0:0: 00 X = BACDB 0

1B L Y = BDCB 178
x: 2 A,,, 1 x: 2 A,,

3 C| o 20 3 C

4 D 0O 12 2 4 D|
m=5 Bl 0. 1. 2. 2 LCS = BCB m=5 B start here

LCS Length Table with back pointers included

Fig. 6: Longest common subsequence example for the sequ&neeSBACDB) andY = (BC'DB). The numeric
table entries are the valuesdf, j] and the arrow entries are used in the extraction of the sequence.

Build LCS Table

LCS(x[1..m], y[1..n]) { /I compute LCS table
int c[0..m, 0..n]
fori = 0tom /I init column O
c[i,0] = 0; b[i,0] = SKIPX
forj = 0ton /I init row O
c[0,j] = 0; b[0,j] = SKIPY
for i = 1 tom /I fill rest of table
for j = 1ton
if (X[l == y[il) Il take X[i] (Y[]) for LCS
cfij = c[i-1,j-1]+1; bli,j] = addXY
else if (c[i-1,j] >= c[i,j-1]) /I X[i] not in LCS
cfij] = cli-1,jl; bfi,j] = skipX
else /I Y[j] not in LCS
cfij] = cfij-1]; b[i,j] = skipY
return c[m,n] /I return length of LCS
}

Extracting the LCS

getLCS(x[1..m], y[1..n], b[0..m,0..n]) {
LCSstring = empty string

i=m;j=n /I start at lower right
while(i = 0 && j = 0) /I go until upper left
switch b[i,j]
case addXY: /Il add X[i] (=Y[j])
add x[i] (or equivalently y[j]) to front of LCSstring
i--; I break
case skipX: i--; break Il skip X[i]
case skipY: j--; break Il skip Y[j]

return LCSstring

Lecture Notes 14 CMSC 451

The running time of the algorithm is clearly(mn) since there are two nested loops withandn iterations,
respectively. The algorithm also us@émn) space.

Extracting the Actual Sequence: Extracting the final LCS is done by using the back pointers storéfinn, 0..n].
Intuitively b[¢, j] = addxy means thafX[i] andY[j] together form the last character of the LCS. So we take
this common character, and continue with erfiy— 1, j — 1] to the northwest™(). If b[i, j] = skipy, then we
know thatX [i] is not in the LCS, and so we skip it and gabfo— 1, j] above us{). Similarly, if b[z, j] = skip,-,
then we know thal’[;] is not in the LCS, and so we skip it and gob{o, j — 1] to the left ¢—). Following these
back pointers, and outputting a character with each diagonal move gives the final subsequence.

Lecture 5: Dynamic Programming: Chain Matrix Multiplication

Read: Chapter 15 of CLRS, and Section 15.2 in particular.

Chain Matrix Multiplication: This problem involves the question of determining the optimal sequence for perform-
ing a series of operations. This general class of problem is important in compiler design for code optimization
and in databases for query optimization. We will study the problem in a very restricted instance, where the
dynamic programming issues are easiest to see.

Suppose that we wish to multiply a series of matrices
A1As .. A,

Matrix multiplication is an associative but not a commutative operation. This means that we are free to paren-
thesize the above multiplication however we like, but we are not free to rearrange the order of the matrices. Also
recall that when two (nonsquare) matrices are being multiplied, there are restrictions on the dimengigns. A
matrix hasp rows andg columns. You can multiply & x ¢ matrix A times ag x r matrix B, and the result

will be ap x r» matrix C. (The number of columns of must equal the number of rows 8f) In particular for
1<i<pandl <j<r,

Cli,j] = Ali, k]B[k, j].
k=1

This corresponds to the (hopefully familiar) rule that thg] entry of C' is the dot product of théth (horizontal)
row of A and thejth (vertical) column ofB. Observe that there ape total entries inC' and each take®(q) time
to compute, thus the total time to multiply these two matrices is proportional to the product of the dimensions,

pqr.
A * B = C

q = Multiplication
p p time = pgr

P m— P E—

q r
Fig. 7: Matrix Multiplication.

Note that although any legal parenthesization will lead to a valid result, not all involve the same number of
operations. Consider the case of 3 matricésbe5 x 4, A, be4 x 6 andA3 be6 x 2.

multCosf((A4;142)A43)] = (5-4-6)+ (5-6-2) =180,
multCosf(A;(A243))] = (4:-6-2)+(5-4-2) =88.

Even for this small example, considerable savings can be achieved by reordering the evaluation sequence.

Lecture Notes 15 CMSC 451

Chain Matrix Multiplication Problem: Given a sequence of matricds, A, ..., A, and dimensiongg, p1, ..., pn
where A; is of dimensiorp; | x p;, determine the order of multiplication (represented, say, as a binary
tree) that minimizes the number of operations.

Important Note: This algorithm does not perform the multiplications, it just determines the best order in which
to perform the multiplications.

Naive Algorithm: We could write a procedure which tries all possible parenthesizations. Unfortunately, the number
of ways of parenthesizing an expression is very large. If you have just one or two matrices, then there is only
one way to parenthesize. If you hawdtems, then there are — 1 places where you could break the list with
the outermost pair of parentheses, namely just after the 1st item, just after the 2nd item, etc., and just after the
(n — 1)st item. When we split just after theth item, we create two sublists to be parenthesized, oneiwith
items, and the other with — & items. Then we could consider all the ways of parenthesizing these. Since these
are independent choices, if there drevays to parenthesize the left sublist aRdvays to parenthesize the right
sublist, then the total i& - R. This suggests the following recurrence fofr), the number of different ways of
parenthesizing items:

1 ifn=1,
P(n) = { "1 p(1)P(n - k) if n > 2.

This is related to a famous function in combinatorics called@htalan numbergwhich in turn is related to the
number of different binary trees onnodes). In particulaP(n) = C(n — 1), whereC'(n) is thenth Catalan

number: .)
n
C(n) = n—&—l(n/)'

Applying Stirling’s formula (which is given in our text), we find th@{(n) € Q(4" /n?/?). Since4™ is exponen-
tial andn3/2 is just polynomial, the exponential will dominate, implying that function grows very fast. Thus,
this will not be practical except for very small In summary, brute force is not an option.

Dynamic Programming Approach: This problem, like other dynamic programming problems involves determining
a structure (in this case, a parenthesization). We want to break the problem into subproblems, whose solutions
can be combined to solve the global problem. As is common to any DP solution, we need to find some way to
break the problem into smaller subproblems, and we need to determine a recursive formulation, which represents
the optimum solution to each problem in terms of solutions to the subproblems. Let us think of how we can do
this.

Since matrices cannot be reordered, it makes sense to think about sequences of matridgs. dextote the

result of multiplying matrices throughyj. It is easy to see that;_ ; is ap;—; x p; matrix. (Think about this for

a second to be sure you see why.) Now, in order to determine how to perform this multiplication optimally, we
need to make many decisions. What we want to do is to break the problem into problems of a similar structure.
In parenthesizing the expression, we can consider the highest level of parenthesization. At this level we are
simply multiplying two matrices together. That is, forahyl < k <n —1,

Alun - Al..k . Ak+1“n~

Thus the problem of determining the optimal sequence of multiplications is broken up into two questions: how
do we decide where to split the chain (what® and how do we parenthesize the subchding. andAx1.,?
The subchain problems can be solved recursively, by applying the same scheme.

So, let us think about the problem of determining the best value @kt this point, you may be tempted to
consider some clever ideas. For example, since we want matrices with small dimensions, pick the kalue of
that minimizesp,. Although this is not a bad idea, in principle. (After all it might work. It just turns out
that it doesn't in this case. This takes a bit of thinking, which you should try.) Instead, as is true in almost all
dynamic programming solutions, we will do the dumbest thing of simply considatimgssiblechoices ofk,

and taking the best of them. Usually trying all possible choices is bad, since it quickly leads to an exponential

Lecture Notes 16 CMSC 451

number of total possibilities. What saves us here is that there areqnly) different sequences of matrices.
(There are(g) = n(n — 1)/2 ways of choosing andj to form A;_; to be precise.) Thus, we do not encounter
the exponential growth.

Notice that our chain matrix multiplication problem satisfies the principle of optimality, because once we decide
to break the sequence into the proddgt . - Ax+1..», We should compute each subsequence optimally. That is,
for the global problem to be solved optimally, the subproblems must be solved optimally as well.

Dynamic Programming Formulation: We will store the solutions to the subproblems in a table, and build the table
in a bottom-up manner. Fdr< i < j < n, letm]i, j] denote the minimum number of multiplications needed
to computed; ;. The optimum cost can be described by the following recursive formulation.

Basis: Observe that if = j then the sequence contains only one matrix, and so the cost is 0. (There is nothing
to multiply.) Thus,m[i,] = 0.
Step: If ¢ < j, then we are asking about the produgt ;. This can be split by considering eakhi < k < j,
asA; ptimesA,1 ;.
The optimum times to computé; ;, and A, ; are, by definitioni[i, k] andm[k + 1, j], respectively.
We may assume that these values have been computed previously and are already stored in our array. Since
A; i is ap;_1 x pi matrix, andAyy;.; is ap, x p; matrix, the time to multiply them ig; _1pip;. This
suggests the following recursive rule for computing, j].

mli,i] = 0
mlid] = min (nli, K+l L]+ pioppy) fori <

Akl j

AiAi1 o A A A

?
Fig. 8: Dynamic Programming Formulation.

It is not hard to convert this rule into a procedure, which is given below. The only tricky part is arranging the
order in which to compute the values. In the process of computifigj] we need to access valuesi, k] and

m[k+ 1, j] for k lying between andj. This suggests that we should organize our computation according to the
number of matrices in the subsequence. et j—i+1 denote the length of the subchain being multiplied. The
subchains of length In{[i,]) are trivial to compute. Then we build up by computing the subchains of lengths
2,3,...,n. The final answer isn[1,n]. We need to be a little careful in setting up the loops. If a subchain of
length L starts at position, thenj = i + L — 1. Since we wanj < n, this means that+ L — 1 < n, orin

other words; < n — L+ 1. So our loop for runs from 1 ton — L + 1 (in order to keep in bounds). The code

is presented below.

The arrays]i, j] will be explained later. It is used to extract the actual sequence. The running time of the
procedure i (n3). We'll leave this as an exercise in solving sums, but the key is that there are three nested
loops, and each can iterate at mpgimes.

Extracting the final Sequence: Extracting the actual multiplication sequence is a fairly easy extension. The basic
idea is to leave aplit markerindicating what the best split is, that is, the valuecdhat leads to the minimum

Lecture Notes 17 CMSC 451

Chain Matrix Multiplication
Matrix-Chain(array p[1..n]) {

array s[1..n-1,2..n]
for i = 1 to n do mli,i] = 0;
for L = 2 to n do {
for i = 1 to n-L+1 do {
j =i L -1;
m[ij] = INFINITY;
for k =i to j-1 do { /I check all splits
q = mfi, k] + mlk+1, j] + p[i-1]*p[k]*p[]]
it (@ < mfi, j]) {
mi.j] = a;
sfij] = k;

/I initialize
/I L = length of subchain

non o+

}
}

return m[1,n] (final cost) and s (splitting markers);

value ofm[i, j]. We can maintain a parallel arrayi, j] in which we will store the value of providing the
optimal split. For example, suppose thét j| = k. This tells us that the best way to multiply the subchain
A;. ; is to first multiply the subchaim; ;, and then multiply the subchaid, . ;, and finally multiply these

together. Intuitivelys[i, j] tells us what multiplication to perforfast Note that we only need to stoséi, j]
when we have at least two matrices, that ig, if .

The actual multiplication algorithm uses thjg, j] value to determine how to split the current sequence. Assume

that the matrices are stored in an array of matri¢gs.n|, and thats[i, j] is global to this recursive procedure.
The recursive procedure Mult does this computation and below returns a matrix.

Extracting Optimum Sequence
Mult(i, j) {
if (i ==)) /I basis case
return A[i];
else {
k = s[i]
X = Mult(i, k) /I X = AJil...A[K]
Y = Multk+1, j) II'Y = Alk+1]...A[]]
return X*Y;

/I multiply matrices X and Y

In the figure below we show an example. This algorithm is tricky, so it would be a good idea to trace through
this example (and the one given in the text). The initial set of dimension&ate6, 2, 7) meaning that we

are multiplying 4; (5 x 4) times As (4 x 6) times A3 (6 x 2) times A4 (2 x 7). The optimal sequence is
((A1(A2435))Ag).

Lecture 6: Dynamic Programming: Minimum Weight Triangulation

Read: This is not covered in CLRS.

Lecture Notes 18 CMSC 451

Final order

AL Ay Ay Ay

Fig. 9: Chain Matrix Multiplication Example.

Polygons and Triangulations: Let’s consider a geometric problem that outwardly appears to be quite different from
chain-matrix multiplication, but actually has remarkable similarities. We begin with a number of definitions.
Define apolygonto be a piecewise linear closed curve in the plane. In other words, we form a cycle by joining
line segments end to end. The line segments are callexidbsof the polygon and the endpoints are called the
vertices A polygon issimpleif it does not cross itself, that is, if the sides do not intersect one another except
for two consecutive sides sharing a common vertex. A simple polygon subdivides the planeimariits, its
boundaryand itsexterior. A simple polygon is said to beonvexf every interior angle is at most 180 degrees.
Vertices with interior angle equal to 180 degrees are normally allowed, but for this problem we will assume that
no such vertices exist.

Polygon Simple polygon Convex polygon
Fig. 10: Polygons.

Given a convex polygon, we assume that its vertices are labeled in counterclockwis@ordér, . .., v,).
We will assume that indexing of vertices is done modulgovy = v,,. This polygon has sidesv; _1v;.

Given two nonadjacent sidesandv;, wherei < j—1, the line segment;o; is achord (If the polygon is simple

but not convex, we include the additional requirement that the interior of the segment must lie entirely in the
interior of P.) Any chord subdivides the polygon into two polygons;, vit+1, . .., v;), and(v;, vj11,. .., v;).

A triangulation of a convex polygorP is a subdivision of the interior aP into a collection of triangles with
disjoint interiors, whose vertices are drawn from the verticeB oEquivalently, we can define a triangulation

as a maximal séef’ of nonintersecting chords. (In other words, every chord that is riBtimersects the interior

of some chord irl'.) It is easy to see that such a set of chords subdivides the interior of the polygon into a
collection of triangles with pairwise disjoint interiors (and hence the niaiawegulation). It is not hard to prove

(by induction) that every triangulation of ansided polygon consists of — 3 chords and» — 2 triangles.
Triangulations are of interest for a number of reasons. Many geometric algorithm operate by first decomposing
a complex polygonal shape into triangles.

In general, given a convex polygon, there are many possible triangulations. In fact, the number is exponential in
n, the number of sides. Which triangulation is the “best”? There are many criteria that are used depending on
the application. One criterion is to imagine that you must “pay” for the ink you use in drawing the triangulation,
and you want to minimize the amount of ink you use. (This may sound fanciful, but minimizing wire length is an

Lecture Notes 19 CMSC 451

important condition in chip design. Further, this is one of many properties which we could choose to optimize.)
This suggests the following optimization problem:

Minimum-weight convex polygon triangulation: Given a convex polygon determine the triangulation that
minimizes the sum of the perimeters of its triangles. (See Fig. 11.)

A triangulation Lower weight triangulation
Fig. 11: Triangulations of convex polygons, and the minimum weight triangulation.
Given three distinct vertices, v;, v, we define theveightof the associated triangle by the weight function
w(vi, v, vk) = |vivj] + |vjv] + [vkvil,
where|v,;v;| denotes the length of the line segmen;.

Dynamic Programming Solution: Let us consider afn + 1)-sided polygonP = (v, v1,...,v,). Let us assume
that these vertices have been numbered in counterclockwise order. To derive a DP formulation we need to define
a set of subproblems from which we can derive the optimum solutiond Roi < j < n, definet[i, j] to be the
weight of the minimum weight triangulation for the subpolygon that lies to the right of directed chgrdhat
is, the polygon with the counterclockwise vertex sequepggy; 11, . ..,v;). Observe that if we can compute
this quantity for all such andj, then the weight of the minimum weight triangulation of the entire polygon can
be extracted ag0, n]. (As usual, we only compute the minimum weight. But, it is easy to modify the procedure
to extract the actual triangulation.)

As a basis case, we define the weight of the trivial “2-sided polygon” to be zero, implyingihat 1] = 0.

In general, to comput#s, j], consider the subpolygo;, viy1, - . ., v,), wherej > i+ 1. One of the chords of

this polygon is the side;v;. We may split this subpolygon by introducing a triangle whose base is this chord,
and whose third vertex is any vertex, wherei < k < j. This subdivides the polygon into the subpolygons
(Vi, Vig1, - .. vx) @nd (v, V41, - . . vj) Whose minimum weights are already known to ug(ast] andt[k, j].

In addition we should consider the weight of the newly added triadglgy,v;. Thus, we have the following
recursive rule:

i =0 if j=i+1
T ming e (E]i, K] + tE, 5]+ w(viog;)) if j >+ 1.

The final output is the overall minimum weight, whichi§), n]. This is illustrated in Fig. 12

Note that this has almost exactly the same structure as the recursive definition used in the chain matrix multipli-
cation algorithm (except that some indices are different by 1.) The €m#é) algorithm can be applied with
only minor changes.

Relationship to Binary Trees: One explanation behind the similarity of triangulations and the chain matrix multipli-
cation algorithm is to observe that both are fundamentally related to binary trees. In the case of the chain matrix
multiplication, the associated binary tree is the evaluation tree for the multiplication, where the leaves of the
tree correspond to the matrices, and each node of the tree is associated with a product of a sequence of two or
more matrices. To see that there is a similar correspondence here, consjdetan-sided convex polygon
P = (vg,v1,...,v,), and fix one side of the polygon (sayv,;). Now consider a rooted binary tree whose root
node is the triangle containing sidguv,,, whose internal nodes are the nodes of the dual tree, and whose leaves

Lecture Notes 20 CMSC 451

Triangulate
at cost t[k,j]

cost=w(v;,V, V;)

Triangulate
at cost tli.kl

Fig. 12: Triangulations and tree structure.

correspond to the remaining sides of the tree. Observe that partitioning the polygon into triangles is equivalent
to a binary tree witn leaves, and vice versa. This is illustrated in Fig. 13. Note that every triangle is associated
with an internal node of the tree and every edge of the original polygon, except for the distinguished starting
sidetyw,, is associated with a leaf node of the tree.

root
A v \\./1 . root

A
Asm i o o\
Vaep HA
AN -y
Vs A’G’”v'e’ Ar AAA A AA A Ay AcAAy

Fig. 13: Triangulations and tree structure.

Once you see this connection. Then the following two observations follow easily. Observe that the associated
binary tree has leaves, and hence (by standard results on binary trees)l internal nodes. Since each

internal node other than the root has one edge entering it, thene-c2edges between the internal nodes. Each
internal node corresponds to one triangle, and each edge between internal nodes corresponds to one chord of the
triangulation.

Lecture 7: Greedy Algorithms: Activity Selection and Fractional Knapack
Read: Sections 16.1 and 16.2 in CLRS.

Greedy Algorithms: In many optimization algorithms a series of selections need to be made. In dynamic program-
ming we saw one way to make these selections. Namely, the optimal solution is described in a recursive manner,
and then is computed “bottom-up”. Dynamic programming is a powerful technique, but it often leads to algo-
rithms with higher than desired running times. Today we will consider an alternative design technique, called
greedy algorithmsThis method typically leads to simpler and faster algorithms, but it is not as powerful or as
widely applicable as dynamic programming. We will give some examples of problems that can be solved by
greedy algorithms. (Later in the semester, we will see that this technique can be applied to a number of graph
problems as well.) Even when greedy algorithms do not produce the optimal solution, they often provide fast
heuristics (nonoptimal solution strategies), are often used in finding good approximations.

Lecture Notes 21 CMSC 451

Activity Scheduling: Activity schedulingand it is a very simple scheduling problem. We are given aSset

{1,2,...,n} of n activitiesthat are to be scheduled to use some resource, where each activity must be started
at a given start time; and ends at a given finish tim&. For example, these might be lectures that are to be
given in a lecture hall, where the lecture times have been set up in advance, or requests for boats to use a repair
facility while they are in port.

Because there is only one resource, and some start and finish times may overlap (and two lectures cannot be
given in the same room at the same time), not all the requests can be honored. We say that two aatities

Jj arenoninterferingif their start-finish intervals do not overlap, more formally;, f;) N [s;, f;) = 0. (Note

that making the intervalbalf open two consecutive activities are not considered to interfere.) ddtiity
scheduling problerts to select a maximum-size set of mutually noninterfering activities for use of the resource.
(Notice that goal here is maximum number of activities, not maximum utilization. Of course different criteria
could be considered, but the greedy approach may not be optimal in general.)

How do we schedule the largest number of activities on the resource? Intuitively, we do not like long activities,
because they occupy the resource and keep us from honoring other requests. This suggests the following greedy
strategy: repeatedly select the activity with the smallest durafipr ;) and schedule it, provided that it does

not interfere with any previously scheduled activities. Although this seems like a reasonable strategy, this turns
out to be nonoptimal. (See Problem 17.1-4 in CLRS). Sometimes the design of a correct greedy algorithm
requires trying a few different strategies, until hitting on one that works.

Here is a greedy strategy that does work. The intuition is the same. Since we do not like activities that take a
long time, let us select the activity that finishes first and schedule it. Then, we skip all activities that interfere
with this one, and schedule the next one that has the earliest finish time, and so on. To make the selection process
faster, we assume that the activities have been sorted by their finish times, that is,

... < f

Assuming this sorting, the pseudocode for the rest of the algorithm is presented below. The output igithe list
of scheduled activities. The varialppeevholds the index of the most recently scheduled activity at any time, in
order to determine interferences.

Greedy Activity Scheduler

schedule(s[1..n], f[1..n]) { /I given start and finish times
/I we assume f[1..n] already sorted
List A = <1> /I schedule activity 1 first
prev = 1
fori = 2 ton
if (s[i] >= flprev]) { /I no interference?
append i to A; prev = i /I schedule i next
}
return A
}

It is clear that the algorithm is quite simple and efficient. The most costly activity is that of sorting the activities
by finish time, so the total running time &(n log n). Fig. 14 shows an example. Each activity is represented
by its start-finish time interval. Observe that the intervals are sorted by finish time. Event 1 is scheduled first. It
interferes with activity 2 and 3. Then Event 4 is scheduled. It interferes with activity 5 and 6. Finally, activity 7
is scheduled, and it intereferes with the remaining activity. The final outdut is 7}. Note that this is not the

only optimal schedule{2, 4, 7} is also optimal.

Proof of Optimality: Our proof of optimality is based on showing that the first choice made by the algorithm is the

best possible, and then using induction to show that the rest of the choices result in an optimal schedule. Proofs
of optimality for greedy algorithms follow a similar structure. Suppose that you have any nongreedy solution.

Lecture Notes 22 CMSC 451

2
\ 3 | 3
Sched 1; Skip 2,3 4
[4]
5 | = 5
[6] [6]
\ 8 | \ 8 |
Add 7: Add 4:
2 2 Sched 4; Skip 5,6
3 3
Sqhed i Sk
-
5 5
6 6
8 \ 8 |

Fig. 14: An example of the greedy algorithm for activity scheduling. The final sched{ile4s7}.

Show that its cost can be reduced by being “greedier” at some point in the solution. This proof is complicated a
bit by the fact that there may be multiple solutions. Our approach is to show that any schedule that is not greedy
can be made more greedy, without decreasing the number of activities.

Claim: The greedy algorithm gives an optimal solution to the activity scheduling problem.

Proof: Consider any optimal schedul that is not the greedy schedule. We will construct a new optimal
scheduled’ that is in some sense “greedier” than Order the activities in increasing order of finish

time. LetA = (x1,x9,...,2%) be the activities ofA. SinceA is not the same as the greedy schedule,
consider the first activity:; where these two schedules differ. That is, the greedy schedule is of the form
G = (z1,22,...,2j-1,9;,...) Whereg; # z;. (Note thatk > j, since otherwis& would have more

activities than the optimal schedule, which would be a contradiction.) The greedy algorithm selects the
activity with the earliest finish time that does not conflict with any earlier activity. Thus, we knowythat
does not conflict with any earlier activity, and it finishes beteye
Consider the modified “greedier” scheduléthat results by replacing; with g; in the scheduled. (See
Fig. 15.) That is,

A/ = <.Z‘1,.132, ey Lj—15955, L5415 - -, .I‘k->.

Al e | L e
o [] % [---

Fig. 15: Proof of optimality for the greedy schedufe{ 3).

L e [| [Pe]Ps]

This is a feasible schedule. (Singecannot conflict with the earlier activities, and it does not conflict with
later activities, because it finishes befarg) It has the same number of activities Asand therefored’

Lecture Notes 23 CMSC 451

is also optimal. By repeating this process, we will eventually condeirito G, without decreasing the
number of activities. Thereforé; is also optimal.

Fractional Knapsack Problem: The classica(0-1) knapsack problens a famous optimization problem. A thief is
robbing a store, and findsitems which can be taken. Thth item is worthv; dollars and weighs,; pounds,
wherev; andw; are integers. He wants to take as valuable a load as possible, but has a knapsack that can only
carry W total pounds. Which items should he take? (The reason that this is called 0-1 knapsack is that each
item must be left (0) or taken entirely (1). It is not possible to take a fraction of an item or multiple copies of an
item.) This optimization problem arises in industrial packing applications. For example, you may want to ship
some subset of items on a truck of limited capacity.

In contrast, in théractional knapsack problente setup is exactly the same, but the thief is allowed to take any
fraction of an item for a fraction of the weight and a fraction of the value. So, you might think of each object as
being a sack of gold, which you can partially empty out before taking.

The 0-1 knapsack problem is hard to solve, and in fact it is an NP-complete problem (meaning that there
probably doesn't exist an efficient solution). However, there is a very simple and efficient greedy algorithm for
the fractional knapsack problem.

As in the case of the other greedy algorithms we have seen, the idea is to find the right order in which to process
items. Intuitively, it is good to have high value and bad to have high weight. This suggests that we first sort the
items according to some function that is an decreases with value and increases with weight. There are a few
choices that you might try here, but only one works. bet v; /w; denote thezalue-per-pound ratioWe sort

the items in decreasing order pf, and add them in this order. If the item fits, we take it all. At some point
there is an item that does not fit in the remaining space. We take as much of this item as possible, thus filling
the knapsack entirely. This is illustrated in Fig. 16

| Y m Y
35
N 40| $140 30| $90 40($160
60
+ +
— — +
40 —
30 20| $100 20($100
20 + + 20| $100
10 — —
. .) [5]s0 (5] s30 -
knapsack $30 $20 $100 $90 $160 $270 $220 $260
p= 6.0 20 50 30 40
Greedy solution to Greedy solution Optimal solution
Input fractional problem. to 0-1 problem. to 0-1 problem.

Fig. 16: Example for the fractional knapsack problem.

Correctness: It is intuitively easy to see that the greedy algorithm is optimal for the fractional problem. Given a room
with sacks of gold, silver, and bronze, you would obviously take as much gold as possible, then take as much
silver as possible, and then as much bronze as possible. But it would never benefit you to take a little less gold
so that you could replace it with an equal volume of bronze.

More formally, suppose to the contrary that the greedy algorithm is not optimal. This would mean that there is
an alternate selection that is optimal. Sort the items of the alternate selection in decreasing prdaiulesg.
Consider the first itenhon which the two selections differ. By definition, greedy takes a greater amount of item

1 than the alternate (because the greedy always takes as much as it can). Let us say that greedydekes

Lecture Notes 24 CMSC 451

units of objecti than the alternate does. All the subsequent elements of the alternate selection are of lesser value
thanv;. By replacingr units of any such items with units of itemi, we would increase the overall value of the
alternate selection. However, this implies that the alternate selection is not optimal, a contradiction.

Nonoptimality for the 0-1 Knapsack: Next we show that the greedy algorithm is not generally optimal in the 0-1
knapsack problem. Consider the example shown in Fig. 16. If you were to sort the iteimshn you would
first take the items of weight 5, then 20, and then (since the item of weight 40 does not fit) you would settle for
the item of weight 30, for a total value 880 + $100 + $90 = $220. On the other hand, if you had been less
greedy, and ignored the item of weight 5, then you could take the items of weights 20 and 40 for a total value of
$100 + $160 = $260. This feature of “delaying gratification” in order to come up with a better overall solution
is your indication that the greedy solution is not optimal.

Lecture 8: Greedy Algorithms: Huffman Coding
Read: Section 16.3 in CLRS.

Huffman Codes: Huffman codes provide a method of encoding data efficiently. Normally when characters are coded
using standard codes like ASCII, each character is represented by a fixeddedgthordof bits (e.g. 8 bits
per character). Fixed-length codes are popular, because its is very easy to break a string up into its individual
characters, and to access individual characters and substrings by direct indexing. However, fixed-length codes
may not be the most efficient from the perspective of minimizing the total quantity of data.

Consider the following example. Suppose that we want to encode strings over the (rather limited) 4-character
alphabetC' = {q, b, ¢, d}. We could use the following fixed-length code:

Character al b| c| d
Fixed-Length Codeword 00 | 01 | 10 | 11

A string such as “abacdaacac” would be encoded by replacing each of its characters by the corresponding binary
codeword.

a b a ¢ d a a ¢ a ¢
00O 01 00O 10 11 00O 00 10 OO0 10

The final 20-character binary string would be “00010010110000100010".

Now, suppose that you knew the relative probabilities of characters in advance. (This might happen by analyzing
many strings over a long period of time. In applications like data compression, where you want to encode one
file, you can just scan the file and determine the exact frequencies of all the characters.) You can use this
knowledge to encode strings differently. Frequently occurring characters are encoded using fewer bits and less
frequent characters are encoded using more bits. For example, suppose that characters are expected to occur
with the following probabilities. We could desigrvariable-length codevhich would do a better job.

Character a b c d
Probability 0.60| 0.05| 0.30| 0.05
Variable-Length Codeword 0 | 110 10| 111

Notice that there is no requirement that the alphabetical order of character correspond to any sort of ordering
applied to the codewords. Now, the same string would be encoded as follows.

a b a ¢ d a a ¢ a ¢
0O 110 0 10 1112 O O 10 O 10

Lecture Notes 25 CMSC 451

Thus, the resulting 17-character string would be “01100101110010010". Thus, we have achieved a savings of
3 characters, by using this alternative code. More generally, what would be the expected savings for a string of
lengthn? For the 2-bit fixed-length code, the length of the encoded string igjusits. For the variable-length

code, the expected length of a single encoded character is equal to the sum of code lengths times the respective
probabilities of their occurrences. The expected encoded string length is {imes the expected encoded
character length.

n(0.60 - 1+ 0.05-3+0.30 -2+ 0.05-3) = n(0.60 + 0.15+ 0.60 + 0.15) = 1.5n.

Thus, this would represent a 25% savings in expected encoding length. The question that we will consider today
is how to form the best code, assuming that the probabilities of character occurrences are known.

Prefix Codes: One issue that we didn’t consider in the example above is whether we will be atdeddehe string,
once encoded. In fact, this code was chosen quite carefully. Suppose that instead of coding the character ‘a’
as 0, we had encoded it as 1. Now, the encoded string “111” is ambiguous. It might be “d” and it might be
“aaa”. How can we avoid this sort of ambiguity? You might suggest that we add separation markers between
the encoded characters, but this will tend to lengthen the encoding, which is undesirable. Instead, we would like
the code to have the property that it can be uniquely decoded.

Note that in both the variable-length codes given in the example above no codewgnefi af another. This

turns out to be the key property. Observe that if two codewords did share a common prefix—e.g01 and

b — 00101, then when we se@0101 ... how do we know whether the first character of the encoded message

is a or b. Conversely, if no codeword is a prefix of any other, then as soon as we see a codeword appearing as
a prefix in the encoded text, then we know that we may decode this without fear of it matching some longer
codeword. Thus we have the following definition.

Prefix Code: An assignment of codewords to characters so that no codeword is a prefix of any other.

Observe that any binary prefix coding can be described by a binary tree in which the codewords are the leaves
of the tree, and where a left branch means “0” and a right branch means “1”. The code given earlier is shown
in the following figure. The length of a codeword is just its depth in the tree. The code given earlier is a prefix
code, and its corresponding tree is shown in the following figure.

110 111

Fig. 17: Prefix codes.

Decoding a prefix code is simple. We just traverse the tree from root to leaf, letting the input character tell
us which branch to take. On reaching a leaf, we output the corresponding character, and return to the root to
continue the process.

Expected encoding length:Once we know the probabilities of the various characters, we can determine the total
length of the encoded text. Le{x) denote the probability of seeing characterand letdr(z) denote the
length of the codeword (depth in the tree) relative to some prefixitrééhe expected number of bits needed to
encode a text with characters is given in the following formula:

B(T)=nY_ p(z)dr(x).

Lecture Notes 26 CMSC 451

This suggests the following problem:

Optimal Code Generation: Given an alphabet’ and the probabilitieg(x) of occurrence for each character
x € C, compute a prefix cod€ that minimizes the expected length of the encoded bit-sti#i{d;).

Note that the optimal code is not unique. For example, we could have complemented all of the bits in our earlier
code without altering the expected encoded string length. There is a very simple algorithm for finding such a
code. It was invented in the mid 1950's by David Huffman, and is calletlifiman code. By the way, this

code is used by the Unix utilitpack for file compression. (There are better compression methods however. For
example,compress, gzip and many others are based on a more sophisticated method calleentipel-Ziv
coding)

Huffman’s Algorithm: Here is the intuition behind the algorithm. Recall that we are given the occurrence probabil-
ities for the characters. We are going to build the tree up from the leaf level. We will take two chasaatets
y, and “merge” them into a singkuper-charactercalled z, which then replaces andy in the alphabet. The
characterz will have a probability equal to the sum eofandy’s probabilities. Then we continue recursively
building the code on the new alphabet, which has one fewer character. When the process is completed, we know
the code forz, say010. Then, we append a 0 and 1 to this codeword, givigid for 2 and0101 for .

Another way to think of this, is that we mergeandy as the left and right children of a root node called’hen

the subtree for replaces: andy in the list of characters. We repeat this process until only one super-character
remains. The resulting tree is the final prefix tree. Sin@ndy will appear at the bottom of the tree, it seem
most logical to select the two characters with the smallest probabilities to perform the operation on. The result
is Huffman’s algorithm. Itis illustrated in the following figure.

The pseudocode for Huffman’s algorithm is given below. Cetlenote the set of characters. Each character

x € C'is associated with an occurrence probabilityrob. Initially, the characters are all stored irpdority
queueR. Recall that this data structure can be built initially(rin) time, and we can extract the element with

the smallest key iD(logn) time and insert a new element i(logn) time. The objects i) are sorted by
probability. Note that with each execution of the for-loop, the number of items in the queue decreases by one.
So, aftern — 1 iterations, there is exactly one element left in the queue, and this is the root of the final prefix
code tree.

Correctness: The big question that remains is why is this algorithm correct? Recall that the cost of any encoding tree
TisB(T) =), p(x)dr(x). Our approach will be to show that any tree that differs from the one constructed by
Huffman’s algorithm can be converted into one that is equal to Huffman’s tree without increasing its cost. First,
observe that the Huffman tree il binary treg meaning that every internal node has exactly two children. It
would never pay to have an internal node with only one child (since such a node could be deleted), so we may
limit consideration to full binary trees.

Claim: Consider the two charactetsandy with the smallest probabilities. Then there is an optimal code tree
in which these two characters are siblings at the maximum depth in the tree.

Proof: Let T' be any optimal prefix code tree, and teind ¢ be two siblings at the maximum depth of the
tree. Assume without loss of generality théb) < p(c) andp(z) < p(y) (if this is not true, then rename
these characters). Now, singeandy have the two smallest probabilities it follows thdtr) < p(b) and
p(y) < p(e). (In both cases they may be equal.) Becausedc are at the deepest level of the tree we
know thatd(b) > d(x) andd(c) > d(y). (Again, they may be equal.) Thus, we haxé) — p(x) > 0 and
d(b) — d(z) > 0, and hence their product is nonnegative. Now switch the positionsaoflb in the tree,
resulting in a new treg”. This is illustrated in the following figure.

Next let us see how the cost changes as we go ffotn 7”. Almost all the nodes contribute the same
to the expected cost. The only exception are nadasdb. By subtracting the old contributions of these

Lecture Notes 27 CMSC 451

- smallest

Y Y
] ‘a:OS‘ ‘b:48‘ ‘0:07‘ ‘d:l?‘ ‘e:lo‘ ‘f:ls‘

s smallest

. @ (b:48] [d:17] [er20] [f13]
a: 05 c: 07

prese s e smallest

- smallest

- smallest

0000 0001

Fig. 18: Huffman’s Algorithm.

Lecture Notes 28 CMSC 451

Huffman’s Algorithm

Huffman(int n, character C[1..n]) {

Q=C¢C

fori = 1 to n1 {
z = new internal tree node;
zleft = x = Q.extractMin();
z.right = y = Q.extractMin();
z.prob = x.prob + y.prob;
Q.insert(z);

}

/I priority queue

/I extract smallest probabilities

/I z’s probability is their sum
/I insert z into queue

return the last element left in Q as the root;

Cost change =

=(p(b)—p(x))(d(b)-d(x))

<0

4

Cost change =

=(p(c)=p())(d(c)-d(y))
<0

Fig. 19: Correctness of Huffman’s Algorithm.

nodes and adding in the new contributions we have

B(I') = B(T) - p(a)d(x) + p(a)d(b) — p(b)d(s) + p(b)d(z)
= B(T) + pl(a)(d(b) — d(x)) — p(b)(d(b) — d(x))
— B(T) - (p(b) — pla))(d(b) - d(x))
< B(T) becausép(b) - p(x))(d(b) - d(z)) > 0.

Thus the cost does not increase, implying thats an optimal tree. By switching with ¢ we get a new
treeT”, which by a similar argument is also optimal. The final tféesatisfies the statement of the claim.

The above theorem asserts that the first step of Huffman’s algorithm is essentially the proper one to perform.
The complete proof of correctness for Huffman'’s algorithm follows by induction ¢since with each step, we

eliminate exactly one character).

Claim: Huffman’s algorithm produces the optimal prefix code tree.

Proof: The proof is by induction on, the number of characters. For the basis case,1, the tree consists of
a single leaf node, which is obviously optimal.
Assume inductively that when strictly fewer tharcharacters, Huffman’s algorithm is guaranteed to pro-
duce the optimal tree. We want to show it is true with exastlgharacters. Suppose we have exagtly
characters. The previous claim states that we may assume that in the optimal tree, the two characters of
lowest probabilityz andy will be siblings at the lowest level of the tree. Remavandy, replacing them

with a new character whose probability i(z)

= p(x) + p(y). Thusn — 1 characters remain.

Consider any prefix code trdémade with this new set af — 1 characters. We can convert it into a prefix
code treel” for the original set of characters by undoing the previous operation and replawiith =

Lecture Notes

29 CMSC 451

andy (adding a “0” bit forz and a “1” bit fory). The cost of the new tree is

B(T') = B(T)—p(2)d(2) + p(x)(d(z) + 1) + p(y)(d(z) + 1)
= B(T) - (p(=) + p(y))d(z) + (p(z) + p(y))(d(z) + 1)
= B(T)+ (p(x) + p(y))(d(2) + 1 —d(z))
= B(T)+p(z) + p(y).

Since the change in cost depends in no way on the structure of thé' tteeminimize the cost of the
final treeT”’, we need to build the tré€ onn — 1 characters optimally. By induction, this exactly what
Huffman’s algorithm does. Thus the final tree is optimal.

Lecture 9: Graphs: Background and Breadth First Search
Read: Review Sections 22.1 and 22.2 CLR.

Graph Algorithms: We are now beginning a major new section of the course. We will be discussing algorithms for
both directed and undirected graphs. Intuitivel\graphis a collection of vertices or nodes, connected by a
collection of edges. Graphs are extremely important because they are a very flexible mathematical model for
many application problems. Basically, any time you have a set of objects, and there is some “connection” or “re-
lationship” or “interaction” between pairs of objects, a graph is a good way to model this. Examples of graphs in
application includeommunicatiorandtransportation networksVLSl and other sorts dbgic circuits, surface
meshesaised for shape description in computer-aided design and geographic information sysésmdence
constraintsn scheduling systems. The list of application is almost too long to even consider enumerating it.

Most of the problems in computational graph theory that we will consider arise because they are of importance
to one or more of these application areas. Furthermore, many of these problems form the basic building blocks
from which more complex algorithms are then built.

Graphs and Digraphs: Most of you have encountered the notions of directed and undirected graphs in other courses,
so we will give a quick overview here.

Definition: A directed graph(or digraph) G = (V, E) consists of a finite sét’, called theverticesor nodes
and E, a set ofordered pairs called theedgesof G. (Another way of saying this is thdf is a binary
relation onV’.)

Observe thaself-loopsare allowed by this definition. Some definitions of graphs disallow this. Multiple edges
are not permitted (although the eddesw) and(w, v) are distinct).

@ oilile
L N

Digraph Graph

Fig. 20: Digraph and graph example.

Definition: An undirected graphor graph) G = (V, E) consists of a finite sét” of vertices, and a sdf of
unordered pairof distinct vertices, called the edges. (Note that self-loops are not allowed).

Lecture Notes 30 CMSC 451

Note that directed graphs and undirected graphs are different (but similar) objects mathematically. Certain
notions (such as path) are defined for both, but other notions (such as connectivity) may only be defined for one,
or may be defined differently.

We say that vertew is adjacentto vertexw if there is an edg€u,v). In a directed graph, given the edge
e = (u,v), we say that is theorigin of ¢ andwv is thedestinationof e. In undirected graphs andv are the
endpointf the edge. The edgeis incident(meaning that it touches) bothandv.

In a digraph, the number of edges coming out of a vertex is calleduhdegreeof that vertex, and the number
of edges coming in is called the-degree In an undirected graph we just talk about ttegreeof a vertex as
the number of incident edges. By ttegreeof a graph, we usually mean the maximum degree of its vertices.

When discussing the size of a graph, we typically consider both the number of vertices and the number of edges.
The number of vertices is typically written asor V, and the number of edges is writtemasor E or e. Here

are some basic combinatorial facts about graphs and digraphs. We will leave the proofs to you. Given a graph
with V' vertices andt edges then:

In a graph:
Number of edges:0 < E < (}) =n(n—1)/2 € O(n?).
Sum of degrees: > _,, degv) = 2FE.
In a digraph:
Number of edges: 0 < E < n?.
Sum of degrees:) | . in-degv) = > . out-dedv) = E.

veV

Notice that generally the number of edges in a graph may be as large as quadratic in the number of vertices.
However, the large graphs that arise in practice typically have much fewer edges. A graph is saipars&ié

E € O(V), anddenseotherwise. When giving the running times of algorithms, we will usually express it as a
function of bothV and E, so that the performance on sparse and dense graphs will be apparent.

Paths and Cycles: A pathin a graph or digraph is a sequence of verticeg v, . . ., vx) such that(v;_1,v;) is an
edge fori = 1,2, ..., k. Thelengthof the path is the number of edgés,A path issimpleif all vertices and all
the edges are distinct. éycleis a path containing at least one edge and for whick: v;. A cycle issimpleif
its vertices (excepty andvy) are distinct, and all its edges are distinct.

A graph or digraph is said to kecyclicif it contains no simple cycles. An acyclic connected graph is called a
free treeor simplytreefor short. (The term “free” is intended to emphasize the fact that the tree has no root, in
contrast to aooted tree as is usually seen in data structures.) An acyclic undirected graph (which need not be
connected) is a collection of free trees, and is (naturally) calfedest An acyclic digraph is called directed
acyclic graph or DAG for short.

o UL H

Simple Nonsimple Free Tree Forest
cycle cycle

Fig. 21: lllustration of some graph terms.
We say thatw is reachablefrom v if there is a path from: to w. Note that every vertex is reachable from itself
by a trivial path that uses zero edges. An undirected grapbrisectedf every vertex can reach every other

vertex. (Connectivity is a bit messier for digraphs, and we will define it later.) The subsets of mutually reachable
vertices partition the vertices of the graph into disjoint subsets, callecbtimected component§the graph.

Lecture Notes 31 CMSC 451

Representations of Graphs and Digraphs:There are two common ways of representing graphs and digraphs. First
we show how to represent digraphs. Cet= (V, E) be a digraph witlh = |V| and lete = |E|. We will assume
that the vertices of7 are indexed1,2,...,n}.

Adjacency Matrix: An n x n matrix defined forl < v, w < n.

1 if (v,w)eFE
Ay, w] = { 0 otherwise.

If the digraph has weights we can store the weights in the matrix. For examfileudf) € E then

Alv,w] = W(v,w) (the weight on edgév,w)). If (v,w) ¢ E then generallyy/ (v, w) need not be
defined, but often we set it to some “special” value, edfv,w) = —1, or co. (By oo we mean (in
practice) some number which is larger than any allowable weight. In practice, this might be some machine
dependent constant liIRdAXINT.)

Adjacency List: An array Adj[1 .. .n| of pointers where fot < v < n, Adj[v] points to a linked list contain-
ing the vertices which are adjacentidi.e. the vertices that can be reached frofoy a single edge). If
the edges have weights then these weights may also be stored in the linked list elements.

PO~ N
Ok | W

w N
O O |k k=

-3

Fig. 22: Adjacency matrix and adjacency list for digraphs.

Adjacency matrix ~ Adjacency list

We can represent undirected graphs using exactly the same representation, but we will store each edge twice. In
particular, we representing the undirected eflgev} by the two oppositely directed edgés w) and(w, v).

Notice that even though we represent undirected graphs in the same way that we represent digraphs, it is impor-
tant to remember that these two classes of objects are mathematically distinct from one another.

This can cause some complications. For example, suppose you write an algorithm that operates by marking
edges of a graph. You need to be careful when you mark édge) in the representation that you also mark
(w,v), since they are both the same edge in reality. When dealing with adjacency lists, it may not be convenient
to walk down the entire linked list, so it is common to includess linksbetween corresponding edges.

Adj
L 2aa a MELELTIELD
PELR Herpam
3[1]1]o]a] 3 FACTI-LITHELT
LA Y I e R A7

Adjacency matrix ~ Adjacency list (with crosslinks)

Fig. 23: Adjacency matrix and adjacency list for graphs.

An adjacency matrix required (V%) storage and an adjacency list requiés” + E) storage. Thé/ arises
because there is one entry for each verteXii. Since each list hasut-dedv) entries, when this is summed
over all vertices, the total number of adjacency list record®(&). For sparse graphs the adjacency list
representation is more space efficient.

Lecture Notes 32 CMSC 451

Graph Traversals: There are a number of approaches used for solving problems on graphs. One of the most impor-

tant approaches is based on the notion of systematically visiting all the vertices and edge of a graph. The reason
for this is that these traversals impose a type of tree structure (or generally a forest) on the graph, and trees are
usually much easier to reason about than general graphs.

Breadth-first search: Given an grapltz = (V, E), breadth-first search starts at some source veréed “discovers”
which vertices are reachable frasm Define thedistancebetween a vertex ands to be the minimum number
of edges on a path fromto v. Breadth-first search discovers vertices in increasing order of distance, and hence
can be used as an algorithm for computing shortest paths. At any given time there is a “frontier” of vertices that
have been discovered, but not yet processed. Breadth-first search is named because it visits vertices across the

entire “breadth” of this frontier.

Initially all vertices (except the source) are colored white, meaning that thaynaliscoveredWhen a vertex
has first beemliscoveredit is colored gray (and is part of the frontier). When a gray vertgqasessedthen it

becomes black.

The search makes use ofjaeue a first-in first-out list, where elements are removed in the same order they
are inserted. The first item in the queue (the next to be removed) is callbédldef the queue. We will also
maintain arraysolor[u] which holds the color of vertex (either white, gray or blackyred[u] which points to

the predecessor af (i.e. the vertex who first discovered andd[u], the distance froms to . Only the color

is really needed for the search (in fact it is only necessary to know whether a node is nonwhite). We include all
this information, because some applications of BFS use this additional information.

Breadth-First Search

BFS(G,s) {
for each u in V {
color[u] = white

d[u] = infinity
prediu] = null

}

color[s] = gray

ds] = 0

Q = {s}

while (Q is nonempty) {
u = Q.Dequeue()
for each v in Adjlu] {
if (color[v] == white) {
color[v] = gray
div] = du]+1
predlv] = u
Q.Enqueue(v)
}
}

color[u] = black

/I initialization

/I initialize source s
/I put s in the queue
/I u is the next to visit
/I if neighbor v undiscovered
/I ..mark it discovered
/I ...set its distance

/I ...and its predecessor
/I ..put it in the queue

/I we are done with u

Observe that the predecessor pointers of the BFS search defineeatied tree(an acyclic directed graph in

which the source is the root, and every other node has a unique path to the root). If we reverse these edges we
get a rooted unordered tree calle®BS treefor G. (Note that there are many potential BFS trees for a given
graph, depending on where the search starts, and in what order vertices are placed on the queue.) These edges
of G are calledree edgesnd the remaining edges Gfare calleccross edges

Itis not hard to prove that if is an undirected graph, then cross edges always go between two nodes that are at
most one level apart in the BFS tree. (Can you see why this must be true?) Below is a sketch of a proof that on

Lecture Notes

33 CMSC 451

Fig. 24: Breadth-first search: Example.

terminationd[v] is equal to the distance fromtto v. (See the CLRS for a detailed proof.)

Theorem: Letd(s,v) denote the length (number of edges) on the shortest pathsftom Then, on termination
of the BFS procedurel[v] = §(s,v).

Proof: (Sketch) The proof is by induction on the length of the shortest pathu betthe predecessor ofon
some shortest path fromto v, and among all such vertices the first to be processed by the BFS. Thus,
d(s,v) = d(s,u) + 1. Whenu is processed, we have (by inductiatf)] = (s, u). Sincew is a neighbor
of u, we setd[v] = d[u] + 1. Thus we have

dlv] = dlu]+1 = 6(s,u)+1 = (s,v),
as desired.

Analysis: The running time analysis of BFS is similar to the running time analysis of many graph traversal algorithms.
As done in CLRV = |V|andE = |E|. Observe that the initialization portion requir®gV’) time. The real
meat is in the traversal loop. Since we never visit a vertex twice, the number of times we go through the while
loop is at mostV (exactly V' assuming each vertex is reachable from the source). The number of iterations
through the inner for loop is proportional ttegu) + 1. (The+1 is because even degu) = 0, we need to
spend a constant amount of time to set up the loop.) Summing up over all vertices we have the running time

=V+)) (degu)+1) =V + > degu)+V =2V +2E € OV + E).
ueV ueV

The analysis is essentially the same for directed graphs.

Lecture Notes 34 CMSC 451

Lecture 10: Depth-First Search
Read: Sections 23.2 and 23.3 in CLR.

Depth-First Search: The next traversal algorithm that we will study is calléepth-first searchand it has the nice

property that nontree edges have a good deal of mathematical structure.

Consider the problem of searching a castle for treasure. To solve it you might use the following strategy. As
you enter a room of the castle, paint some graffiti on the wall to remind yourself that you were already there.
Successively travel from room to room as long as you come to a place you haven't already been. When you
return to the same room, try a different door leaving the room (assuming it goes somewhere you haven't already
been). When all doors have been tried in a given room, then backtrack.

Notice that this algorithm is described recursively. In particular, when you enter a new room, you are beginning
a new search. This is the general idea behind depth-first search.

Depth-First Search Algorithm: We assume we are given an directed gr&ps (V, E). The same algorithm works

for undirected graphs (but the resulting structure imposed on the graph is different).

We use four auxiliary arrays. As before we maintain a color for each vertex: white rmadissoveredgray
meansdiscoveredbut not finished processing, and black mefinsshed As before we also store predecessor
pointers, pointing back to the vertex that discovered a given vertex. We will also associate two numbers with
each vertex. These atiene stampsWhen we first discover a vertexstore a counter id[u] and when we are
finished processing a vertex we store a countefli). The purpose of the time stamps will be explained later.
(Note: Do not confuse the discovery tindp] with the distancel[v] from BFS.) The algorithm is shown in code
block below, and illustrated in Fig. 25. As with BFS, DFS induces a tree structure. We will discuss this tree
structure further below.

Depth-First Search

DFS(G) { /I main program
for each u in V { /I initialization
color[u] = white;
pred[u] = null;
}
time = O;
for each u in V
if (color[u] == white) /I found an undiscovered vertex
DFSVisit(u); /I start a new search here
}
DFSVisit(u) { /I start a search at u
color[u] = gray; /Il mark u visited

d[u] = ++time;
for each v in Adj(u) do

if (color[v] == white) { /[if neighbor v undiscovered
pred[v] = u; /I ...set predecessor pointer
DFSVisit(v); Il ..visit v
color[u] = black; /I we're done with u

flu] = ++time;

Analysis: The running time of DFS i®(V + E). This is somewhat harder to see than the BFS analysis, because the

recursive nature of the algorithm obscures things. Normally, recurrences are good ways to analyze recursively

Lecture Notes 35 CMSC 451

DFS(a)

return c
return b

DFS(f)

return g
return f
return a

DFS(d)
DFS(e) p
return e
return f

Fig. 25: Depth-First search tree.

defined algorithms, but it is not true here, because there is no good notion of “size” that we can attach to each
recursive call.

First observe that if we ignore the time spent in the recursive calls, the main DFS procedure®{is time.
Observe that each vertex is visited exactly once in the search, and hence Die¥disit() is made exactly

once for each vertex. We can just analyze each one individually and add up their running times. Ignoring the
time spent in the recursive calls, we can see that each vetar be processed (1 + outdedu)) time. Thus

the total time used in the procedure is

T(V)=V+ > (outdegu) +1) =V + > outdequ) + V =2V + E € O(V + E).
ueV ueV

A similar analysis holds if we consider DFS for undirected graphs.

Tree structure: DFS naturally imposes a tree structure (actually a collection of trees, or a forest) on the structure
of the graph. This is just the recursion tree, where the €dge) arises when processing vertexwe call
DFSVisit(v) for some neighboo. For directed graphs the other edges of the graph can be classified as
follows:

Back edges: (u, v) wherev is a (not necessarily proper) ancestowah the tree. (Thus, a self-loop is consid-
ered to be a back edge).

Forward edges: (u,v) wherev is a proper descendent ofin the tree.

Cross edges:(u, v) whereu andwv are not ancestors or descendents of one another (in fact, the edge may go
between different trees of the forest).

It is not difficult to classify the edges of a DFS tree by analyzing the values of colors of the vertices and/or
considering the time stamps. This is left as an exercise.

With undirected graphs, there are some important differences in the structure of the DFS tree. First, there is
really no distinction between forward and back edges. So, by convention, they are allbzatleddgedy
convention. Furthermore, it can be shown that there can be no cross edges. (Can you see why not?)

Lecture Notes 36 CMSC 451

Time-stamp structure: There is also a nice structure to the time stamps. In CLR this is referred to pardrhesis
structure In particular, the following are easy to observe.

Lemma: (Parenthesis Lemma) Given a digraph= (V, E), and any DFS tree foff and any two vertices
u,v € V.
e u is a descendent efif and only if [d[u], f[u]] C [d[v], f]v]].
e v is an ancestor of if and only if [d[u], f[u]] 2 [d[v], f[v]].
o v is unrelated ta if and only if [d[u], f[u]] and[d[v], f[v]] are disjoint.

[o]~——2

e
i

123456789 1011121314

Fig. 26: Parenthesis Lemma.

Cycles: The time stamps given by DFS allow us to determine a number of things about a graph or digraph. For
example, suppose you are given a graph or digraph. You run DFS. You can determine whether the graph
contains any cycles very easily. We do this with the help of the following two lemmas.

Lemma: Given a digraplG = (V, E), consider any DFS forest 6, and consider any edde, v) € E. If this
edge is a tree, forward, or cross edge, tiier] > f[v]. If the edge is a back edge th¢pu] < f[v].

Proof: For tree, forward, and back edges, the proof follows directly from the parenthesis lemma. (E.g. for a
forward edg€u, v), v is a descendent af, and sa’s start-finish interval is contained withiris, implying
thatv has an earlier finish time.) For a cross edgev) we know that the two time intervals are disjoint.
When we were processing v was not white (otherwiséu, v) would be a tree edge), implying thaivas
started before.. Because the intervals are disjointinust have also finished befote

Lemma: Consider a digrapl = (V, E') and any DFS forest fafz. G has a cycle if and only the DFS forest
has a back edge.

Proof: (<) If there is a back edgéu, v), thenv is an ancestor of,, and by following tree edges fromto u
we get a cycle.
(=) We show the contrapositive. Suppose there are no back edges. By the lemma above, each of the
remaining types of edges, tree, forward, and cross all have the property that they go from vertices with
higher finishing time to vertices with lower finishing time. Thus along any path, finish times decrease
monotonically, implying there can be no cycle.

Beware: No back edges means no cycles. But you should not infer that there is some simple relationship
between thenumberof back edges and theumberof cycles. For example, a DFS tree may only have a single
back edge, and there may anywhere from one up to an exponential number of simple cycles in the graph.

A similar theorem applies to undirected graphs, and is not hard to prove.

Lecture Notes 37 CMSC 451

Lecture 11: Topological Sort and Strong Components
Read: Sects. 22.3-22.5in CLRS.

Directed Acyclic Graph: A directed acyclic graplis often called a DAG for short DAG’s arise in many applications
where there are precedence or ordering constraints. For example, if there are a series of tasks to be performed,
and certain tasks must precede other tasks (e.g. in construction you have to build the first floor before you build
the second floor, but you can do the electrical wiring while you install the windows). In gengrat@dence
constraint graphs a DAG in which vertices are tasks and the efigey) means that task must be completed
before task begins.

A topological sortof a DAG is a linear ordering of the vertices of the DAG such that for each édge, «
appears before in the ordering. Note that in general, there may be many legal topological orders for a given
DAG.

To compute a topological ordering is actually very easy, given DFS. By the previous lemma, for every edge
(u,v) in a DAG, the finish time of: is greater than the finish time of Thus, it suffices to output the vertices

in reverse order of finishing time. To do this we run a (stripped down) DFS, and when each vertex is finished
we add it to the front of a linked list. The final linked list order will be the final topological order. This is given
below.

Topological Sort

TopSort(G) {
for each (u in V) color[u] = white; /I initialize
L = new linked_list; /Il L is an empty linked list
for each (u in V)
if (color[u] == white) TopVisit(u);

return L; /I L gives final order
}
TopVisit(u) { /| start a search at u

color[u] = gray; /I mark u visited

for each (v in Adj(u))

if (color[v] == white) TopVisit(v);

Append u to the front of L; /I on finishing u add to list

}

This is typical example of DFS is used in applications. Observe that the structure is essentially the same as the
basic DFS procedure, but we only include the elements of DFS that are needed for this application.

As an example we consider the DAG presented in CLRS for Professor Bumstead’s order of dressing. Bumstead
lists the precedences in the order in which he puts on his clothes in the morning. We do our depth-first search in
a different order from the one given in CLRS, and so we get a different final ordering. However both orderings
are legitimate, given the precedence constraints. As with depth-first search, the running time of topological sort
isO(V +E).

Strong Components: Next we consider a very important connectivity problem with digraphs. When digraphs are
used in communication and transportation networks, people want to know that there networks are complete in
the sense that from any location it is possible to reach any other location in the digraph. A digsaphady
connectedf for every pair of verticesy, v € V, u can reachy and vice versa.

We would like to write an algorithm that determines whether a digraph is strongly connected. In fact we will
solve a generalization of this problem, of computing$trengly connected componelits strong components

for short) of a digraph. In particular, we partition the vertices of the digraph into subsets such that the induced
subgraph of each subset is strongly connected. (These subsets should be as large as possible, and still have this

Lecture Notes 38 CMSC 451

11/14 15/16

1/10

2/9

12113

3/6‘ belt ‘ 7/8‘ shoes F(,<

T —

Final order: socks, shirt, tie, shorts, pants, shoes, belt, jacket

Fig. 27: Topological sort.

property.) More formally, we say that two verticesandv aremutually reachabléf « and reachy and vice
versa. It is easy to see that mutual reachability is an equivalence relation. This equivalence relation partitions
the vertices into equivalence classes of mutually reachable vertices, and these are the strong components.

Observe that if we merge the vertices in each strong component into a supge vertexand joint two su-
pervertice A, B) if and only if there are vertices € A andv € B such thatu,v) € E, then the resulting
digraph, called theomponent digraphis necessarily acyclic. (Can you see why?) Thus, we may be accurately
refer to it as theomponent DAG

Component DAG
Fig. 28: Strong Components.

The algorithm that we will present is an algorithm designer’s “dream” (and an algorithm student’s nightmare).
It is amazingly simple and efficient, but it is so clever that it is very difficult to even see how it works. We will
give some of the intuition that leads to the algorithm, but will not prove the algorithm’s correctness formally.
See CLRS for a formal proof.

Strong Components and DFS:By way of motivation, consider the DFS of the digraph shown in the following figure
(left). By definition of DFS, when you enter a strong component, every vertex in the component is reachable,
so the DFS does not terminate until all the vertices in the component have been visited. Thus all the vertices
in a strong component must appear in the same tree of the DFS forest. Observe that in the figure each strong
component is just a subtree of the DFS forest. Is it always true for any DFS? Unfortunately the answer is
no. In general, many strong components may appear in the same DFS tree. (See the DFS on the right for a
counterexample.) Does there always exist a way to order the DFS such that it is true? Fortunately, the answer is
yes.

Suppose that you knew the component DAG in advance. (This is ridiculous, because you would need to know
the strong components, and that is the problem we are trying to solve. But humor me for a moment.) Further

Lecture Notes 39 CMSC 451

suppose that you computedeversed topological ordesn the component digraph. That {&, v) is an edge in

the component digraph, thercomesbeforew in this reversed order (not after as it would in a normal topological
ordering). Now, run DFS, but every time you need a new vertex to start the search from, select the next available
vertex according to this reverse topological order of the component digraph.

Here is an informal justification. Clearly once the DFS starts within a given strong component, it must visit
every vertex within the component (and possibly some others) before finishing. If we do not start in reverse
topological, then the search may “leak out” into other strong components, and put them in the same DFS tree.
For example, in the figure below right, when the search is started at vemex only does it visit its component

with b and¢, but the it also visits the other components as well. However, by visiting components in reverse
topological order of the component tree, each search cannot “leak out” into other components, because other
components would have already have been visited earlier in the search.

Fig. 29: Two depth-first searches.

This leaves us with the intuition that if we could somehow order the DFS, so that it hits the strong components
according to a reverse topological order, then we would have an easy algorithm for computing strong compo-
nents. However, we do not know what the component DAG looks like. (After all, we are trying to solve the
strong component problem in the first place). The “trick” behind the strong component algorithm is that we
can find an ordering of the vertices that has essentially the necessary property, without actually computing the
component DAG.

The Plumber’s Algorithm: 1 call this algorithm the plumber’s algorithm (because it avoids leaks). Unfortunately it
is quite difficult to understand why this algorithm works. | will present the algorithm, and refer you to CLRS
for the complete proof. First recall that” (what CLRS callsz7) is the digraph with the same vertex setas
but in which all edges have been reversed in direction. Given an adjacency ligt itds possible to compute
GEin©(V + E) time. (I'll leave this as an exercise.)

Observe that the strongly connected components are not affected by reversing all the digraph’s edgek: If

are mutually reachable if¥, then certainly this is still true i:"*. All that changes is that the component DAG

is completely reversed. The ordering trick is to order the vertic&s atcording to their finish times in a DFS.
Then visit the nodes af/*? in decreasing order of finish times. All the steps of the algorithm are quite easy to
implement, and all operate ia(V + E) time. Here is the algorithm.

Correctness: Why visit vertices in decreasing order of finish times? Why use the reversal digraph? It is difficult
to justify these elements formally. Here is some intuition, though. Recall that the main intent is to visit the

Lecture Notes 40 CMSC 451

Strong Components

StrongComp(G) {
Run DFS(G), computing finish times f[u] for each vertex u;
Compute R = Reverse(G), reversing all edges of G;
Sort the vertices of R (by CountingSort) in decreasing order of f[u];
Run DFS(R) using this order;
Each DFS tree is a strong component;

Initial DFS Reversal with new vertex order Final DFS with components

Fig. 30: Strong Components Algorithm

strong components in a reverse topological order. The question is how to order the vertices so that this is true.
Recall from the topological sorting algorithm, that in a DAG, finish times occur in reverse topological order
(i.e., the first vertex in the topological order is the one with the highest finish time). So, if we wanted to visit
the components in reverse topological order, this suggests that we should visit the vertices in increasing order
of finish time, starting with the lowest finishing time. This is a good starting idea, but it turns out that it doesn’t
work. The reason is that there are many vertices in each strong component, and they all have different finish
times. For example, in the figure above observe that in the first DFS (on the left) the lowest finish time (of 4) is
achieved by vertex, and its strong component is first, not last, in topological order.

It is tempting to give up in frustration at this point. But there is something to notice about the finish times. If
we consider thenaximum finish timén each component, then these are related to the topological order of the
component DAG. In particular, given any strong comporn@ndefine f(C) to be the maximum finish time
among all vertices in this component.

f(C) = max flu].
Lemma: Consider a digraplir = (V, E) and letC andC’ be two distinct strong components. If there is an
(u,v) of G such that, € C'andv € C’, thenf(C') > f(C’).

See the book for a complete proof. Here is a quick sketch. If the DFS €iditst, then the DFS will leak into
C’ (along edggu, v) or some other edge), and then will visit everything(ih before finally returning ta”.
Thus, some vertex af’ will finish later than every vertex af’. On the other hand, suppose tld4tis visited
first. Because there is an edge frarmto C’, we know from the definition of the component DAG that there
cannot be a path frod” to C'. SoC’ will completely finish before we even start Thus all the finish times of
C will be larger than the finish times @f’.

For example, in the previous figure, the maximum finish times for each component are {8, far}), 17 (for
{d,e}), and 12 (for{ f, g, h,i}). The order18,17,12) is a valid topological order for the component digraph.

Lecture Notes 41 CMSC 451

This is a big help. It tells us that if we run DFS and compute finish times, and then run a new DFS in decreasing
order of finish times, we will visit the components in topological order. The problem is that this is not what
we wanted. We wanted @versetopological order for the component DAG. So, the final trick is to reverse

the digraph, by forming=%. This does not change the strong components, but it reverses the edges of the
component graph, and so reverses the topological order, which is exactly what we wanted. In conclusion we
have:

Theorem: Consider a digraplds on which DFS has been run. Sort the vertices by decreasing order of finish
time. Then a DFS of the reversed digragt¥, visits the strong components according to a reversed
topological order of the component DAG 6f°.

Lecture 12: Minimum Spanning Trees and Kruskal’s Algorithm
Read: Chapt 23 in CLRS, up through 23.2.

Minimum Spanning Trees: A common problem in communications networks and circuit design is that of connect-
ing together a set of nodes (communication sites or circuit components) by a network of minimal total length
(where length is the sum of the lengths of connecting wires). We assume that the network is undirected. To
minimize the length of the connecting network, it never pays to have any cycles (since we could break any
cycle without destroying connectivity and decrease the total length). Since the resulting connection graph is
connected, undirected, and acyclic, it isee tree

The computational problem is called tenimum spanning tregroblem (MST for short). More formally, given
a connected, undirected graph= (V, E'), aspanning treés an acyclic subset of edgésC FE that connects
all the vertices together. Assuming that each efdge) of G has a numeric weight or cost,(u, v), (may be
zero or negative) we define the cost of a spanningfréebe the sum of edges in the spanning tree

w(T) = Z w(u, v).

(u,v)€T

A minimum spanning tre@ST) is a spanning tree of minimum weight. Note that the minimum spanning tree
may not be unique, but it is true that if all the edge weights are distinct, then the MST will be distinct (this is a
rather subtle fact, which we will not prove). Fig. 31 shows three spanning trees for the same graph, where the
shaded rectangles indicate the edges in the spanning tree. The one on the left is not a minimum spanning tree,
and the other two are. (An interesting observation is that not only do the edges sum to the same value, but in
fact the same set of edge weights appear in the two MST's. Is this a coincidence? We'll see later.)

Fig. 31: Spanning trees (the middle and right are minimum spanning trees.

Steiner Minimum Trees: Minimum spanning trees are actually mentioned in the U.S. legal code. The reason is
that AT&T was a government supported monopoly at one time, and was responsible for handling all telephone
connections. If a company wanted to connect a collection of installations by an private internal phone system,

Lecture Notes 42 CMSC 451

AT&T was required (by law) to connect them in the minimum cost manner, which is clearly a spanning tree
...orisit?

Some companies discovered that they could actually reduce their connection costs by opening a new bogus
installation. Such an installation served no purpose other than to act as an intermediate point for connections.
An example is shown in Fig. 32. On the left, consider four installations that lie at the cornets:ofl aquare.

Assume that all edge lengths are just Euclidean distances. It is easy to see that the cost of any MST for this
configuration is 3 (as shown on the left). However, if you introduce a new installation at the center, whose
distance to each of the other four pointd js/2. It is now possible to connect these five points with a total cost

of 4/v/2 = 21/2 ~ 2.83. This is better than the MST.

MST SMT

Steiner point

Cost=3 Cost = 2 sqrt(2) = 2.83
Fig. 32: Steiner Minimum tree.

In general, the problem of determining the lowest cost interconnection tree between a given set of nodes, assum-
ing that you are allowed additional nodes (caliginer pointsis called the Steiner minimum treéor SMT

for short). An interesting fact is that although there is a simple greedy algorithm for MST’s (as we will see
below), the SMT problem is much harder, and in fact is NP-hard. (Luckily for AT&T, the US Legal code is
rather ambiguous on the point as to whether the phone company was required to use MST's or SMT’s in making
connections.)

Generic approach: We will present twogreedyalgorithms (Kruskal's and Prim’s algorithms) for computing a min-
imum spanning tree. Recall that greedy algorithmis one that builds a solution by repeated selecting the
cheapest (or generally locally optimal choice) among all options at each stage. An important characteristic of
greedy algorithms is that once they make a choice, they never “unmake” this choice. Before presenting these
algorithms, let us review some basic facts about free trees. They are all quite easy to prove.

Lemma:

o A free tree withn vertices has exactly — 1 edges.
e There exists a unique path between any two vertices of a free tree.

e Adding any edge to a free tree creates a unique cycle. Breakingdge on this cycle restores a free
tree.

Let G = (V, E) be an undirected, connected graph whose edges have numeric edge weights (which may be
positive, negative or zero). The intuition behind the greedy MST algorithms is simple, we maintain a subset of
edgesA, which will initially be empty, and we will add edges one at a time, udtiéquals the MST. We say

that a subsefl C F isviableif A is a subset of edges in some MST. (We cannot say “the” MST, since it is not
necessarily unique.) We say that an edgev) € E — A is safeif AU {(u,v)} is viable. In other words, the
choice(u, v) is a safe choice to add so thatcan still be extended to form an MST. Note thatifis viable it

cannot contain a cycle. A generic greedy algorithm operates by repeatedly addisafeegge to the current
spanning tree. (Note that viability is a property of subsets of edges and safety is a property of a single edge.)

When is an edge safeAVe consider the theoretical issues behind determining whether an edge is safe or 1$bt. Let
be a subset of the verticésC V. A cut(S,V — S) is just a partition of the vertices into two disjoint subsets.
An edge(u, v) crosseghe cut if one endpoint is i and the other is i — S. Given a subset of edges we

Lecture Notes 43 CMSC 451

say that a cutespectsA if no edge inA crosses the cut. It is not hard to see why respecting cuts are important
to this problem. If we have computed a partial MST, and we wish to know which edges can be added that do
notinduce a cycle in the current MST, any edge that crosses a respecting cut is a possible candidate.

An edge ofE' is alight edgecrossing a cut, if among all edges crossing the cut, it has the minimum weight
(the light edge may not be unique if there are duplicate edge weights). Intuition says that since all the edges
that cross a respecting cut do not induce a cycle, then the lightest edge crossing a cut is a natural choice. The
main theorem which drives both algorithms is the following. It essentially says that we can always adgment

by adding the minimum weight edge that crosses a cut which respe¢lisis stated in complete generality, so

that it can be applied to both algorithms.)

MST Lemma: Let G = (V, E) be a connected, undirected graph with real-valued weights on the edges. Let
A be a viable subset df (i.e. a subset of some MST), I€§, V' — S) be any cut that respectt, and let
(u,v) be alight edge crossing this cut. Then the eflge) is safefor A.

Proof: It will simplify the proof to assume that all the edge weights are distinctZLbe any MST forG (see
Fig.). If T contains(u,v) then we are done. Suppose that no MST contéing). We will derive a
contradiction.

A T+ (u,Vv) T=T-(Xy)+ (V)
Fig. 33: Proof of the MST Lemma. Edde, v) is the light edge crossing cuf, V — 5).

Add the edggu,v) to T, thus creating a cycle. Sineeandv are on opposite sides of the cut, and since
any cycle must cross the cut an even number of times, there must be at least one otltergdgel” that
crosses the cut.
The edggx, y) is not in A (because the cut respect. By removing(z, y) we restore a spanning tree,
call it 7’. We have

w(T') = w(T) — w(z,y) + wlu,v).

Since(u, v) is lightest edge crossing the cut, we haveu,v) < w(z,y). Thusw(7’) < w(T). This
contradicts the assumption tHatwas an MST.

Kruskal's Algorithm: Kruskal's algorithm works by attempting to add edges tohi@ increasing order of weight
(lightest edges first). If the next edge does not induce a cycle among the current set of edges, then it is added to
A. If it does, then this edge is passed over, and we consider the next edge in order. Note that as this algorithm
runs, the edges o will induce a forest on the vertices. As the algorithm continues, the trees of this forest are
merged together, until we have a single tree containing all the vertices.

Observe that this strategy leads to a correct algorithm. Why? Consider thé¢wedgéehat Kruskal's algorithm

seeks to add next, and suppose that this edge does not induce a cjcleaéhA’ denote the tree of the forest

A that contains vertex. Consider the cutA’,V — A’). Every edge crossing the cut is notdn and so this

cut respectsl, and(u, v) is the light edge across the cut (because any lighter edge would have been considered
earlier by the algorithm). Thus, by the MST Lemn(a, v) is safe.

Lecture Notes 44 CMSC 451

The only tricky part of the algorithm is how to detect efficiently whether the addition of an edge will create a
cycle in A. We could perform a DFS on subgraph induced by the edgds biit this will take too much time.
We want a fast test that tells us whethesindv are in the same tree of.

This can be done by a data structure (which we have not studied) called the disjoint set Union-Find data structure.
This data structure supports three operations:

Create-Set(): Create a set containing a single item
Find-Set(u): Find the set that contains a given item
Union(u, v): Merge the set containing and the set containinginto a common set.

You are not responsible for knowing how this data structure works (which is described in CLRS). You may
use it as a “black-box”. For our purposes it suffices to know that each of these operations can be performed in
O(logn) time, on a set of size. (The Union-Find data structure is quite interesting, because it can actually
perform a sequence of operations much faster thaw(n log n) time. However we will not go into this here.
O(logn) time is fast enough for its use in Kruskal’s algorithm.)

In Kruskal’s algorithm, the vertices of the graph will be the elements to be stored in the sets, and the sets will be
vertices in each tree of. The setA can be stored as a simple list of edges. The algorithm is shown below, and
an example is shown in Fig. 34.

Kruskal’s Algorithm
Kruskal(G=(V,E),w) {
A=1{ /I initially A is empty
for each (u in V) Create_Set(u) /I create set for each vertex
Sort E in increasing order by weight w
for each ((u,v) from the sorted list) {
if (Find_Set(u) != Find_Set(v)) { // u and v in different trees
Add (u,v) to A
Union(u, V)
}
}

return A

Fig. 34: Kruskal's Algorithm. Each vertex is labeled according to the set that contains it.

Analysis: How long does Kruskal's algorithm take? As usual Welbe the number of vertices ari¢be the number of
edges. Since the graph is connected, we may assumg thal’ — 1. Observe that it take® (F log E) time to

Lecture Notes 45 CMSC 451

sort the edges. The for-loop is iteratEdimes, and each iteration involves a constant number of accesses to the
Union-Find data structure on a collectionidfitems. Thus each access3§V') time, for a total of©(E log V).

Thus the total running time is the sum of these, whicB(§V + E) log V). SinceV is asymptotically no larger
than E, we could write this more simply &(FElog V).

Lecture 13: Prim’s and Baruvka’s Algorithms for MSTs
Read: Chapt 23 in CLRS. Baruvka'’s algorithm is not described in CLRS.

Prim’s Algorithm: Prim’s algorithm is another greedy algorithm for minimum spanning trees. It differs from Kruskal's
algorithm only in how it selects the neséfe edgeo add at each step. Its running time is essentially the same
as Kruskal's algorithmQ((V + E)log V'). There are two reasons for studying Prim’s algorithm. The first is to
show that there is more than one way to solve a problem (an important lesson to learn in algorithm design), and
the second is that Prim’s algorithm looks very much like another greedy algorithm, called Dijkstra’s algorithm,
that we will study for a completely different problem, shortest paths. Thus, not only is Prim’s a different way to
solve the same MST problem, it is also the same way to solve a different problem. (Whatever that means!)

Different ways to grow a tree: Kruskal's algorithm worked by ordering the edges, and inserting them one by one
into the spanning tree, taking care never to introduce a cycle. Intuitively Kruskal's works by merging or splicing
two trees together, until all the vertices are in the same tree.

In contrast, Prim’s algorithm builds the tree up by adding leaves one at a time to the current tree. We start with
a root vertexr (it can beany vertex). At any time, the subset of edgdsorms a single tree (in Kruskal's it
formed a forest). We look to add a single vertex as a leaf to the tree. The process is illustrated in the following
figure.

0
o ©
e
40U
,1:\‘,,,,5,,,,0

Fig. 35: Prim’'s Algorithm.

Observe that if we consider the set of verticesurrently part of the tree, and its complemévit— S), we have

a cut of the graph and the current set of tree edgesspects this cut. Which edge should we add next? The
MST Lemma from the previous lecture tells us that it is safe to adtigheedge In the figure, this is the edge

of weight 4 going to vertex.. Thenw is added to the vertices ¢f, and the cut changes. Note that some edges
that crossed the cut before are no longer crossing it, and others that were not crossing the cut are.

It is easy to see, that the key questions in the efficient implementation of Prim’s algorithm is how to update the
cut efficiently, and how to determine the light edge quickly. To do this, we will make usgobaty queue

data structure. Recall that this is the data structure used in HeapSort. This is a data structure that stores a set of

items, where each item is associated wittegvalue. The priority queue supports three operations.

insert(u, key): Insertu with the key valuekeyin Q.
extractMin (): Extract the item with the minimum key value ¢p.

Lecture Notes 46 CMSC 451

decreaseKeyu, new.key): Decrease the value afs key value tonewkey.

A priority queue can be implemented using the same heap data structure used in heapsort. All of the above
operations can be performeddnlogn) time, wheren is the number of items in the heap.

What do we store in the priority queue? At first you might think that we should store the edges that cross the
cut, since this is what we are removing with each step of the algorithm. The problem is that when a vertex is
moved from one side of the cut to the other, this results in a complicated sequence of updates.

There is a much more elegant solution, and this is what makes Prim’s algorithm so nice. For each vertex in
u € V — S (not part of the current spanning tree) we associatéth a key valuekeyu|, which is the weight

of the lightest edge going from to any vertex inS. We also store ipredu] the end vertex of this edge i.

If there is not edge from to a vertex inV — S, then we set its key value tbco. We will also need to know

which vertices are ity and which are not. We do this by coloring the vertices'inlack.

Here is Prim’s algorithm. The root vertexcan be any vertex i’

Prim’s Algorithm

Prim(G,w,r) {
for each (u in V) { /I initialization
key[u] = +infinity;
color[u] = white;

}
key[r] = 0; /I start at root
pred[r] = nil;
Q = new PriQueue(V); /I put vertices in Q
while (Q.nonEmpty()) { /I until all vertices in MST
u = Q.extractMin(); /I vertex with lightest edge
for each (v in Adju]) {
if ((color[v] == white) && (w(u,v) < key[v])) {
key[v] = w(u,v); /I new lighter edge out of v
Q.decreaseKey(v, key[v]);
pred[v] = u;
}
color[u] = black;
}

[The pred pointers define the MST as an inverted tree rooted at r]

The following figure illustrates Prim’s algorithm. The arrows on edges indicate the predecessor pointers, and
the numeric label in each vertex is the key value.

To analyze Prim’s algorithm, we account for the time spent on each vertex as it is extracted from the priority
queue. It take® (log V') to extract this vertex from the queue. For each incident edge, we spend potentially
O(log V) time decreasing the key of the neighboring vertex. Thus the tifi¥lisg V' + degu) log V') time.

The other steps of the update are constant time. So the overall running time is

T(V,E) = Y (logV +degu)logV) = Y (1+degu))logV
ueV ueVvV
= logV > (1+degu)) = (logV)(V +2E) = O((V + E)logV).
ueV

Sinced is connectedV is asymptotically no greater thdn, so this isO(FE log V). This is exactly the same as
Kruskal’s algorithm.

Lecture Notes 47 CMSC 451

Q:4,8,2,2,2,2 Q:8,8,10,2,? Q:1,2,10,2

Fig. 36: Prim’s Algorithm.

Baruvka’s Algorithm: We have seen two ways (Kruskal’'s and Prim’s algorithms) for solving the MST problem. So,
it may seem like complete overkill to consider yet another algorithm. This one is called Baruvka'’s algorithm.
It is actually the oldest of the three algorithms (invented in 1926, well before the first computers). The reason
for studying this algorithm is that of the three algorithms, it is the easiest to implement on a parallel computer.
Unlike Kruskal’s and Prim’s algorithms, which add edges one at a time, Baruvka’s algorithm adds a whole set
of edges all at once to the MST.

Baruvka’s algorithm is similar to Kruskal's algorithm, in the sense that it works by maintaining a collection
of disconnected trees. Let us call each subtreeraponent Initially, each vertex is by itself in a one-vertex
component. Recall that with each stage of Kruskal’s algorithm, we add the lightest-weight edge that connects
two different components together. To prove Kruskal's algorithm correct, we argued (from the MST Lemma)
that the lightest such edge will Isafeto add to the MST.

In fact, a closer inspection of the proof reveals that the cheapest edge leayicgmponent is always safe.

This suggests a more parallel way to grow the MST. Each component determines the lightest edge that goes
from inside the component to outside the component (we don’t care where). We say that suchleavexitie
component. Note that two components might select the same edge by this process. By the above observation,
all of these edges are safe, so we may add them all at once to tHeo$edges in the MST. As a result, many
components will be merged together into a single component. We then apply DFS to the edgasidéntify

the new components. This process is repeated until only one component remains. A fairly high-level description
of Baruvka'’s algorithm is given below.

Baruvka’s Algorithm

Baruvka(G=(V,E), w) {
initialize each vertex to be its own component;
A= {} /I A holds edges of the MST
do {
for (each component C) {
find the lightest edge (u,v) with u in C and v not in C;
add {u,v} to A (unless it is already there);
}
apply DFS to graph H=(V,A), to compute the new components;
} while (there are 2 or more components);
return A; /I return final MST edges

Lecture Notes 48 CMSC 451

There are a number of unspecified details in Baruvka'’s algorithm, which we will not spell out in detail, except to
note that they can be solved®(V + E) time through DFS. First, we may apply DFS, but only traversing the
edges ofd to compute the components. Each DFS tree will correspond to a separate component. We label each
vertex with its component number as part of this process. With these labels it is easy to determine which edges
go between components (since their endpoints have different labels). Then we can traverse each component
again to determine the lightest edge that leaves the component. (In fact, with a little more cleverness, we can do
all this without having to perform two separate DFS'’s.) The algorithm is illustrated in the figure below.

Fig. 37: Baruvka’s Algorithm.

Analysis: How long does Baruvka'’s algorithm take? Observe that because each iteration involves doing a DFS, each
iteration (of the outer do-while loop) can be performe®ifi” + E) time. The question is how many iterations
are required in general? We claim that there are never moreQtiag n) iterations needed. To see why, 1et
denote the number of components at some stage. Each of doenponents, will merge with at least one other
component. Afterwards the number of remaining components could be a low as 1 (if they all merge together),
but never higher tham:/2 (if they merge in pairs). Thus, the number of components decreases by at least
half with each iteration. Since we start withcomponents, this can happen at migst’ time, until only one
component remains. Thus, the total running tim@{gV + F)log V') time. Again, since? is connectedy is
asymptotically no larger thaf, so we can write this more succinctly @$F log V). Thus all three algorithms
have the same asymptotic running time.

Lecture 14: Dijkstra’s Algorithm for Shortest Paths

Read: Chapt 24 in CLRS.

Shortest Paths: Consider the problem of computing shortest paths in a directed graph. We have already seen that
breadth-first search is an(V + E) algorithm for finding shortest paths from a single source vertex to all other
vertices, assuming that the graph has no edge weights. Suppose that the graph has edge weights, and we wish
to compute the shortest paths from a single source vertex to all other vertices in the graph.

By the way, there are other formulations of the shortest path problem. One may want just the shortest path
between a single pair of vertices. Most algorithms for this problem are variants of the single-source algorithm
that we will present. There is also a single sink problem, which can be solved in the transpose digraph (that is,
by reversing the edges). Computing all-pairs shortest paths can be solved by iterating a single-source algorithm
over all vertices, but there are other global methods that are faster.

Think of the vertices as cities, and the weights represent the cost of traveling from one city to another (nonex-
istent edges can be thought of a having infinite cost). When edge weights are present, we difirgghibéa

Lecture Notes 49 CMSC 451

path to be the sum of edge weights along the path. Defindisit@ncebetween two vertices;, andv, 6(u, v) to
be the length of the minimum length path frarmto v. (6(u,w) = 0 by considering path of 0 edges fromto
itself.)

Single Source Shortest PathsThesingle source shortest pagitoblem is as follows. We are given a directed graph
with nonnegativeedge weights? = (V, E) and a distinguishedource vertexs € V. The problem is to
determine the distance from the source vertex to every vertex in the graph.

Itis possible to have graphs with negative edges, but in order for the shortest path to be well defined, we need to
add the requirement that there be no cycles whose total cost is negative (otherwise you make the path infinitely
short by cycling forever through such a cycle). The text discusse8éfiman-Ford algorithmfor finding
shortest paths assuming negative weight edges but no negative-weight cycles are present. We will discuss a
simple greedy algorithm, callddijkstra’s algorithm which assumes there are no negative edge weights.

We will stress the task of computing the minimum distance from the source to each vertex. Computing the
actual path will be a fairly simple extension. As in breadth-first search, for each vertex we will have a pointer
pred|v] which points back to the source. By following the predecessor pointers backwards from any vertex, we
will construct the reversal of the shortest pathito

Shortest Paths and Relaxation: The basic structure of Dijkstra’s algorithm is to maintainestimateof the shortest
path for each vertex, call thigv]. (NOTE: Don't confusei[v] with the d[v] in the DFS algorithm. They are
completely different.) Intuitivelyl[v] will be the length of the shortest pathat the algorithm knows ofrom
s tow. This, value will always greater than or equal to the true shortest path distance foom Initially, we
know of no paths, sdv] = oco. Initially d[s] = 0 and all the othetl[v] values are set too. As the algorithm
goes on, and sees more and more vertices, it attempts to ufjdafer each vertex in the graph, until all the
d[v] values converge to the true shortest distances.

The process by which an estimate is updated is cadlkation Here is how relaxation works. Intuitively, if

you can see that your solution is not yet reached an optimum value, then push it a little closer to the optimum.
In particular, if you discover a path fromto v shorter thani[v], then you need to updat#v]. This notion is
common to many optimization algorithms.

Consider an edge from a vertexo v whose weight isv(u, v). Suppose that we have already computed current
estimates onrl[u] andd[v]. We know that there is a path fromto « of weightd[u]. By taking this path and
following it with the edge(u, v) we get a path te of lengthd[u] 4+ w(u, v). If this path is better than the existing
path of lengthd[v] to v, we should updaté[v] to the valued[u] + w(u,v). This is illustrated in Fig. 38. We
should also remember that the shortest path passes through, which we do by updating’s predecessor

pointer.
u u
D5, v (3-5_
@ relax(u,v) _
Fig. 38: Relaxation.
Relaxing an edge
Relax(u,v) {
if (d[u] + w(u,v) < d[v]) { /I is the path through u shorter?
div] = d[u] + w(u,v) I/l yes, then take it
pred[v] = u /I record that we go through u
}
}

Lecture Notes 50 CMSC 451

Observe that whenever we sBt] to a finite value, there is always evidence of a path of that length. Therefore
d[v] > é(s,v). If d[v] = (s, v), then further relaxations cannot change its value.

It is not hard to see that if we perforRelaxu, v) repeatedly over all edges of the graph, ithel values will
eventually converge to the final true distance value fronThe cleverness of any shortest path algorithm is

to perform the updates in a judicious manner, so the convergence is as fast as possible. In particular, the best
possible would be to order relaxation operations in such a way that each edge is relaxed exactly once. Dijkstra’s
algorithm does exactly this.

Dijkstra’s Algorithm: Dijkstra’s algorithm is based on the notion of performing repeated relaxations. Dijkstra’s
algorithm operates by maintaining a subset of vertiges, V, for which we claim we “know” the true distance,
that isd[v] = d(s,v). Initially S = @, the empty set, and we séfs] = 0 and all others te-co. One by one we
select vertices frony — .S to add toS.

The setS can be implemented using an array of vertex colors. Initially all vertices are white, and we set
colorv] = blackto indicate thav € S.

How do we select which vertex among the verticed’of S to add next toS? Here is where greedy selection
comes in. Dijkstra recognized that the best way in which to perform relaxations is by increasing order of distance
from the source. This way, whenever a relaxation is being performed, it is possible to infer that result of the
relaxation yields the final distance value. To implement this, for each vertexdnV — S, we maintain a
distance estimaté[u]. The greedy thing to do is to take the vertexiof- S for which d[u] is minimum, that

is, take the unprocessed vertex that is closest (by our estimate) &der we will justify why this is the proper
choice.

In order to perform this selection efficiently, we store the vertice® of S in a priority queue(e.g. a heap),
where the key value of each vertexis d[u]. Note the similarity with Prim’s algorithm, although a different

key value is used there. Also recall that if we implement the priority queue using a heap, we can perform the
operationdnsert), Extract Min(), andDecreaseKey(), on a priority queue of size each inO(logn) time.

Each vertex “knows” its location in the priority queue (e.g. has a cross reference link to the priority queue entry),
and each entry in the priority queue “knows” which vertex it represents. It is important when implementing the
priority queue that this cross reference information is updated.

Here is Dijkstra’s algorithm. (Note the remarkable similarity to Prim’s algorithm.) An example is presented in
Fig. 39.

Notice that the coloring is not really used by the algorithm, but it has been included to make the connection with
the correctness proof a little clearer. Because of the similarity between this and Prim’s algorithm, the running
time is the same, namety(Elog V).

Correctness: Recall thatd[v] is the distance value assigned to vertesy Dijkstra’s algorithm, and lei(s, v) denote
the length of the true shortest path fronto v. To see that Dijkstra’s algorithm correctly gives the final true
distances, we need to show th#t] = (s, v) when the algorithm terminates. This is a consequence of the
following lemma, which states that once a vertekas been added t§ (i.e. colored black)d[u] is the true
shortest distance fromto . Since at the end of the algorithm, all vertices ar&jrthen all distance estimates
are correct.

Lemma: When a vertex is added taS, d[u] = (s, u).

Proof: It will simplify the proof conceptually if we assume that all the edge weightsstietly positive (the
general case of nonnegative edges is presented in the text).

Suppose to the contrary that at some point Dijkstra’s algoritishattempts to add a vertexto S for
which d[u] # é(s,u). By our observations about relaxatiaify] is never less thati(s, u), thus we have
d[u] > (s, u). Consider the situation just prior to the insertionofConsider the true shortest path from
stou. Because € S andu € V — S, at some point this path must first jump out$fLet (z, y) be the
edge taken by the path, where= S andy € V — S. (Note that it may be that = s and/ory = u).

Lecture Notes 51 CMSC 451

Dijkstra’s Algorithm
Dijkstra(G,w,s) {

for each (u in V) { /I initialization
dlu] = +infinity
color[u] = white

predfu] = null
}
ds] =0 /I dist to source is 0
Q = new PriQueue(V) /I put all vertices in Q
while (Q.nonEmpty()) { /I until all vertices processed
u = Q.extractMin() /I select u closest to s
for each (v in Adj[u]) {
if (d[u] + w(u,v) < d[v]) { /I Relax(u,v)
dv] = d[u] + w(u,v)
Q.decreaseKey(v, d[v])
pred[v] = u
}
}
color[u] = black
}

[The pred pointers define an “inverted” shortest path tree]

“pred[u] u .

" «----shorter path from
stou?

/'Oy
X dly] > d[u]

Fig. 40: Correctness of Dijkstra’s Algorithm.

Lecture Notes 52 CMSC 451

We argue thay # u. Why? Sincer € S we haved[z] = §(s,z). (Sinceu was the first vertex added to
S which violated this, all prior vertices satisfy this.) Since we applied relaxatianvtben it was added,
we would have set[y] = d[z] + w(z,y) = §(s,y). Thusd[y] is correct, and by hypothesig[u] is not
correct, so they cannot be the same.

Now observe that sincg appears somewhere along the shortest path fraou (but not atu) and all
subsequent edges followingare of positive weight, we hav¥s, y) < d(s, u), and thus

dly] = d(s,y) < (s, u) < dlu).

Thusy would have been added beforew, in contradiction to our assumption thais the next vertex
to be added t&.

Lecture 15: All-Pairs Shortest Paths
Read: Section 25.2 in CLRS.

All-Pairs Shortest Paths: We consider the generalization of the shortest path problem, to computing shortest paths
between all pairs of vertices. Lét = (V, E) be a directed graph with edge weights.(df v) E, is an edge
of G, then the weight of this edge is denotedu, v). Recall that thecostof a path is the sum of edge weights
along the path. Thdistancebetween two vertice§(u, v) is the cost of the minimum cost path between them.
We will allow G to have negative cost edges, but we will not aliéwo have any negative cost cycles.

We consider the problem of determining the cost of the shortest path between all pairs of vertices in a weighted
directed graph. We will present@(n?) algorithm, called theFloyd-Warshall algorithm This algorithm is
based ordynamic programming

For this algorithm, we will assume that the digraph is represented as an adjacency matrix, rather than the more
common adjacency list. Although adjacency lists are generally more efficient for sparse graphs, storing all the
inter-vertex distances will requir@(n?) storage, so the savings is not justified here. Because the algorithm is
matrix-based, we will employ common matrix notation, usingandk to denote vertices rather thanv, and

w as we usually do.

Input Format: The input is am x n matrix w of edge weights, which are based on the edge weights in the digraph.
We letw;; denote the entry in rowand columny of w.

0 if i =j,
Wij = ’LU(’L,]) Ifl#jand(l,j) €F,
+00 if i £ jand(i,j) ¢ E.

Settingw;; = oo if there is no edge, intuitively means that there is no direct link between these two nodes, and
hence the direct cost is infinite. The reason for setting= 0 is that there is always a trivial path of length 0

(using no edges) from any vertex to itself. (Note that in digraphs it is possible to have self-loop edges, and so
w(Z, 1) may generally be nonzero. It cannot be negative, since we assume that there are no negative cost cycles,
and if it is positive, there is no point in using it as part of any shortest path.)

The output will be am x n distance matrixD = d;; whered;; = §(i, j), the shortest path cost from vertex

to j. Recovering the shortest paths will also be an issue. To help us do this, we will also compute an auxiliary
matrix mid[¢, j]. The value ofmidi, j] will be a vertex that is somewhere along the shortest path frtoy.

If the shortest path travels directly frointo j without passing through any other vertices, thad[:, j] will be

set tonull. These intermediate values behave somewhat like the predecessor pointers in Dijkstra’s algorithm, in
order to reconstruct the final shortest pati®if) time.

Lecture Notes 53 CMSC 451

Floyd-Warshall Algorithm: The Floyd-Warshall algorithm dates back to the early 60’s. Warshall was interested
in the weaker question of reachability: determine for each pair of verticasd v, whetheru can reach.
Floyd realized that the same technique could be used to compute shortest paths with only minor variations. The
Floyd-Warshall algorithm runs i®(n?) time.

As with any DP algorithm, the key is reducing a large problem to smaller problems. A natural way of doing this
is by limiting the number of edges of the path, but it turns out that this does not lead to the fastest algorithm (but is
an approach worthy of consideration). The main feature of the Floyd-Warshall algorithm is in finding a the best
formulation for the shortest path subproblem. Rather than limiting the number of edges on the path, they instead
limit the set of vertices through which the path is allowed to pass. In particular, for @pattv,, va, . .., vs)

we say that the vertices, vs, ..., v, are theintermediate verticesf this path. Note that a path consisting of

a single edge has no intermediate vertices.

Formulation: Definedgf) to be the shortest path froirto j such that any intermediate vertices on the path are
chosen from the sdtl, 2, ..., k}.

In other words, we consider a path frano j which either consists of the single ed@ey), or it visits some

intermediate vertices along the way, but these intermediate can only be chosen from{dning. , k}. The
path is free to visit any subset of these vertices, and to do so in any order. For example, in the digraph shown in

the Fig. 41(a), notice how the valuea)ffg changes as varies.

dé%) = INF (no path)

Ay =13 (5,1,6)
d2=9 (526)

(
Al =8 (5326) dic

d¥=6 (54,16)
(a) (b)

Fig. 41: Limiting intermediate vertices. For examﬂgég can go through any combination of the intermediate vertices
{1, 2,3}, of which (5, 3,2, 6) has the lowest cost of 8.

Floyd-Warshall Update Rule: How do we computelgf) assuming that we have already computed the previous ma-
trix d*~1? There are two basic cases, depending on the ways that we might get fromiviertesrtex j,
assuming that the intermediate vertices are chosen fiom . . ., k}:

Don't go through k at all: Then the shortest path froirto j uses only intermediate verticés, ... k — 1}
and hence the length of the shortest pamgjs_”.

Do go through k: First observe that a shortest path does not pass through the same vertex twice, so we can
assume that we pass througtexactly once. (The assumption that there are no negative cost cycles is
being used here.) That is, we go frano &, and then fromk to j. In order for the overall path to be as
short as possible we should take the shortest path frtank, and the shortest path frolto j. Since of

these paths uses intermediate vertices onfjlir2, ..., k — 1}, the length of the path ictgl,j’l) + dfclj.’l).

Lecture Notes 54 CMSC 451

This suggests the following recursive rule (the DP formulation) for compufifig which is illustrated in
Fig. 41(b).

0
) = wy,
= win (df Va0 4 dY) fork 1.

J

The final answer islg‘) because this allows all possible vertices as intermediate vertices. We could write a

recursive program to compuﬂéf) , but this will be prohibitively slow because the same value may be reevaluated
many times. Instead, we compute it by storing the values in a table, and looking the values up as we need them.
Here is the complete algorithm. We have also included mid-vertex poimteds, j] for extracting the final
shortest paths. We will leave the extraction of the shortest path as an exercise.

Floyd-Warshall Algorithm

Floyd_Warshall(int n, int w[l..n, 1..n]) {
array d[1l..n, 1..n]

for i = 1 to n do { /I initialize
for j = 1 to n do {
dfij] = WI[i,j
mid[i,j] = null
}
}
for kK = 1 to n do /I use intermediates {1..k}
fori = 1 to n do /I ..from i
for j = 1 to n do Il ..to j

it (dli,k] + dik,j]) < dfij]) {
dfi,j] = d[i,k] + dk,j] // new shorter path length
mid[i,j] = k /I new path is through k

return d /I matrix of distances

An example of the algorithm’s execution is shown in Fig. 42.

Clearly the algorithm’s running time i©(n?). The space used by the algorithm@gn?). Observe that we
deleted all references to the superscfip} in the code. It is left as an exercise that this does not affect the
correctness of the algorithm. (Hint: The danger is that values may be overwritten and then used later in the same
phase. Consider which entries might be overwritten and then reused, they occurkirarmaicolumnk. It can

be shown that the overwritten values are equal to their original values.)

Lecture 16: NP-Completeness: Languages and NP

Read: Chapt 34 in CLRS, up through section 34.2.

Complexity Theory: At this point of the semester we have been building up your “bag of tricks” for solving algorith-

mic problems. Hopefully when presented with a problem you now have a little better idea of how to go about
solving the problem. What sort of design paradigm should be used (divide-and-conquer, DFS, greedy, dynamic
programming), what sort of data structures might be relevant (trees, heaps, graphs) and what representations
would be best (adjacency list, adjacency matrices), what is the running time of your algorithm.

All of this is fine if it helps you discover an acceptably efficient algorithm to solve your problem. The question
that often arises in practice is that you have tried every trick in the book, and nothing seems to work. Although

Lecture Notes 55 CMSC 451

Fig. 42: Floyd-Warshall Example. Newly updates entries are circled.

CMSC 451

56

Lecture Notes

your algorithm can solve small problems reasonably efficiently ¢e.g. 20) the really large applications that
you want to solve (e.gn = 1,000 or n = 10,000) your algorithm never terminates. When you analyze its
running time, you realize that it is running in exponential time, perhefs or 2", or 2"), or n!, or worse!

Near the end of the 60’s where there was great success in finding efficient solutions to many combinatorial prob-
lems, but there was also a growing list of problems for which there seemed to be no known efficient algorithmic
solutions. People began to wonder whether there was some unknown paradigm that would lead to a solution
to these problems, or perhaps some proof that these problems are inherently hard to solve and no algorithmic
solutions exist that run under exponential time.

Near the end of the 60’s a remarkable discovery was made. Many of these hard problems were interrelated
in the sense that if you could solve any one of them in polynomial time, then you could solve all of them in
polynomial time. This discovery gave rise to the notion of NP-completeness, and created possibly the biggest
open problems in computer science: issANP? We will be studying this concept over the next few lectures.

This area is a radical departure from what we have been doing because the emphasis will change. The goal is
no longer to prove that a problecanbe solved efficiently by presenting an algorithm for it. Instead we will be
trying to show that a problemannotbe solved efficiently. The question is how to do this?

Laying down the rules: We need some way to separate the class of efficiently solvable problems from inefficiently
solvable problems. We will do this by considering problems that can be solved in polynomial time.

When designing algorithms it has been possible for us to be rather informal with various concepts. We have
made use of the fact that an intelligent programmer could fill in any missing details. However, the task of
proving that something cannot be done efficiently must be handled much more carefully, since we do not want
leave any “loopholes” that would allow someone to subvert the rules in an unreasonable way and claim to have
an efficient solution when one does not really exist.

We have measured the running time of algorithms using worst-case complexity, as a funetjdghesize of

the input. We have defined input size variously for different problems, but the bottom line is the number of bits
(or bytes) that it takes to represent the input usingr@agonably efficient encodin®y a reasonably efficient
encoding, we assume that there is not some significantly shorter way of providing the same information. For
example, you could write numbers in unary notatldn11111;, = 100, = 8 rather than binary, but that would

be unacceptably inefficient. You could describe graphs in some highly inefficient way, such as by listing all of
its cycles, but this would also be unacceptable. We will assume that numbers are expressed in binary or some
higher base and graphs are expressed using either adjacency matrices or adjacency lists.

We will usually restrict numeric inputs to be integers (as opposed to calling them “reals”), so that it is clear that
arithmetic can be performed efficiently. We have also assumed that operations on numbers can be performed in
constant time. From now on, we should be more careful and assume that arithmetic operations require at least
as much time as there are bits of precision in the numbers being stored.

Up until now all the algorithms we have seen have had the property that their worst-case running times are
bounded above by sompolynomialin the input sizen. A polynomial time algorithms any algorithm that

runs in timeO(n*) wherek is some constant that is independent:of A problem is said to beolvable in
polynomial timef there is a polynomial time algorithm that solves it.

Some functions that do not “look” like polynomials (such@ér logn)) are bounded above by polynomials
(such a=0(n?)). Some functions that do “look” like polynomials are not. For example, suppose you have an
algorithm which inputs a graph of sizeand an integek and runs inO(n*) time. Is this a polynomial? No,
because: is an input to the problem, so the user is allowed to chdose n, implying that the running time
would beO(n™) which isnot a polynomial inn. The important thing is that the exponent must bmastant
independent of.

Of course, saying that all polynomial time algorithms are “efficient” is untrue. An algorithm whose running
time isO(n'%9) is certainly pretty inefficient. Nonetheless, if an algorithm runs in worse than polynomial time
(e.g.2™), then it is certainly not efficient, except for very small values.of

Lecture Notes 57 CMSC 451

Decision Problems: Many of the problems that we have discussed invalpgmizationof one form or another: find
the shortest path, find the minimum cost spanning tree, find the minimum weight triangulation. For rather tech-
nical reasons, most NP-complete problems that we will discuss will be phrased as decision problems. A problem
is called adecision problenif its output is a simple “yes” or “no” (or you may think of this as True/False, 0/1,
accept/reject).

We will phrase many optimization problems in terms of decision problems. For example, the minimum spanning
tree decision problem might be: Given a weighted gr@nd an integek, doesG have a spanning tree whose
weight is at most?

This may seem like a less interesting formulation of the problem. It does not ask for the weight of the minimum
spanning tree, and it does not even ask for the edges of the spanning tree that achieves this weight. However,
our job will be to show that certain problemeannotbe solved efficiently. If we show that the simple decision
problem cannot be solved efficiently, then the more general optimization problem certainly cannot be solved
efficiently either.

Language Recognition Problems:Observe that a decision problem can also be thought of as a language recognition
problem. We could define a languafje

L ={(G,k) | G has a MST of weight at mot}.

This set consists of pairs, the first element is a graph (e.g. the adjacency matrix encoded as a string) followed
by an integelk encoded as a binary number. At first it may seem strange expressing a graph as a string, but
obviously anything that is represented in a computer is broken down somehow into a string of bits.

When presented with an input strii§, &), the algorithm would answer “yes” {{G, k) € L implying thatG
has a spanning tree of weight at méstind “no” otherwise. In the first case we say that the algorithm “accepts”
the input and otherwise it “rejects” the input.

Given any language, we can ask the question of how hard it is to determine whether a given string is in the
language. For example, in the case of the MST languagee can determine membership easily in polynomial
time. We just store the graph internally, run Kruskal's algorithm, and see whether the final optimal weight is at
mostk. If so we accept, and otherwise we reject.

Definition: Define P to be the set of all languages for which membership can be tested in polynomial time.
(Intuitively, this corresponds to the set of all decisions problems that can be solved in polynomial time.)

Note that languages are sets of strings, and P is a set of languages. P is defined in terms of how hard it is
computationally to recognized membership in the language. A set of languages that is defined in terms of how
hard it is to determine membership is callecenplexity classSince we can compute minimum spanning trees

in polynomial time, we havé € P.

Here is a harder one, though.

M ={(G,k) | G has a simple path of length at ledst

Given a graphG and integerk how would you “recognize” whether it is in the langua§ig? You might try
searching the graph for a simple paths, until finding one of length atitedfsgou find one then you can accept
and terminate. However, if not then you may spend a lot of time searching (especialtyldrge, liken — 1,
and no such path exists). Salis € P? No one knows the answer. In fact, we will show thats NP-complete.

In what follows, we will be introducing a number of classes. We will jump back and forth between the terms
“language” and “decision problems”, but for our purposes they mean the same things. Before giving all the
technical definitions, let us say a bit about what the general classes look like at an intuitive level.

P: This is the set of all decision problems that cansbé/edin polynomial time. We will generally refer to
these problems as being “easy” or “efficiently solvable”. (Although this may be an exaggeration in many
cases.)

Lecture Notes 58 CMSC 451

NP: This is the set of all decision problems that carvbéfiedin polynomial time. (We will give a definition
of this below.) This class contains P as a subset. Thus, it contains a number of easy problems, but it also
contains a number of problems that are believed to be very hard to solve. The term Nfttoean “not
polynomial”. Originally the term meant “nondeterministic polynomial time”. But it is bit more intuitive to
explain the concept from the perspective of verification.

NP-hard: In spite of its name, to say that problem is NP-hard dogsmean that it is hard to solve. Rather
it means that if we could solve this problem in polynomial time, then we could sdivéP problems in
polynomial time. Note that for a problem to be NP hard, it does not have to be in the class NP. Since it
is widely believed that all NP problems are not solvable in polynomial time, it is widely believed that no
NP-hard problem is solvable in polynomial time.

NP-complete: A problem is NP-complete if (1) itis in NP, and (2) it is NP-hard. That is, NPGIPNNP-hard.

The figure below illustrates one way that the sets P, NP, NP-hard, and NP-complete (ifP€look. We
saymightbecause we do not know whether all of these complexity classes are distinct or whether they are all
solvable in polynomial time. There are some problems in the figure that we will not discuss. Grepis
Isomorphismwhich asks whether two graphs are identical up to a renaming of their vertices. It is known that
this problem is in NP, but it is not known to be in P. The other is QBF, which stand@dantified Boolean
Formulas In this problem you are given a boolean formula with quantifigrar{dv) and you want to know
whether the formula is true or false. This problem is beyond the scope of this course, but may be discussed in
an advanced course on complexity theory.

QBF

Harder
No Ham. Cycle

Knapsack
Hamiltonian Cycle
Satisfiability

Graph Isomorphism?

MST
Strong connectivity Easy

One way that things ‘might’ be.
Fig. 43: The (possible) structure of P, NP, and related complexity classes.

Polynomial Time Verification and Certificates: Before talking about the class of NP-complete problems, it is im-
portant to introduce the notion of a verification algorithm. Many language recognition problems that may be
very hard to solve, but they have the property that it is easxtify whether a string is in the language.

Consider the following problem, called tlh&amiltonian cycle problemGiven an undirected grapgh, doesGG

have a cycle that visits every vertex exactly once. (There is a similar problem on directed graphs, and there is
also a version which asks whether there is a path that visits all vertices.) We can describe this problem as a
language recognition problem, where the language is

HC = {(G) | G has a Hamiltonian cycle

where(G) denotes an encoding of a graphas a string. The Hamiltonian cycle problem seems to be much
harder, and there is no known polynomial time algorithm for this problem. For example, the figure below shows
two graphs, one which is Hamiltonian and one which is not.

However, suppose that a graph did have a Hamiltonian cycle. Then it would be a very easy matter for someone
to convince us of this. They would simply say “the cycl€(ig, v7, v1, ..., v13)". We could then inspect the

Lecture Notes 59 CMSC 451

c—0 O0—0O

Nonhamiltonian Hamiltonian

Fig. 44: Hamiltonian cycle.

graph, and check that this is indeed a legal cycle and that it visits all the vertices of the graph exactly once. Thus,
even though we know of no efficient way solvethe Hamiltonian cycle problem, there is a very efficient way

to verify that a given graph is in HC. The given cycle is calledertificate This is some piece of information

which allows us to verify that a given string is in a language.

More formally, given a languagg, and givenz € L, a verification algorithmis an algorithm which given:
and a stringy called thecertificate can verify thatx is in the languagéd. using this certificate as help. ifis
not in L then there is nothing to verify.

Note that not all languages have the property that they are easy to verify. For example, consider the following
languages:

UHC = {(G)| G has a unique Hamiltonian cydle

HC = {(G) | G has no Hamiltonian cycle

Suppose that a graph is in the languag&JHC. What information would someone give us that would allow

us to verify that’ is indeed in the language? They could give us an example of the unique Hamiltonian cycle,
and we could verify that it is a Hamiltonian cycle, but what sort of certificate could they give us to convince us
that this is theonly one? They could give another cycle that is NOT Hamiltonian, but this does not mean that
there is not another cycle somewhere that is Hamiltonian. They could try to list every other cycle ofrlength
but this would not be at all efficient, since there atepossible cycles in general. Thus, it is hard to imagine
that someone could give us some information that would allow us to efficiently convince ourselves that a given
graph is in the language.

The class NP:
Definition: Define NP to be the set of all languages that can be verified by a polynomial time algorithm.

Why is the set called “NP” rather than “VP"? The original term NP stood for “nondeterministic polynomial
time”. This referred to a program running omandeterministic computehat can make guesses. Basically,
such a computer could nondeterministically guess the value of certificate, and then verify that the string is in
the language in polynomial time. We have avoided introducing nondeterminism here. It would be covered in a
course on complexity theory or formal language theory.

Like P, NP is a set of languages based on some complexity measure (the complexity of verification). Observe
that P C NP. In other words, if we can solve a problem in polynomial time, then we can certainly verify
membership in polynomial time. (More formally, we do not even need to see a certificate to solve the problem,
we can solve it in polynomial time anyway).

However it is not known whether 2 NP. It seems unreasonable to think that this should be so. In other words,
just being able to verify that you have a correct solution does not help you in finding the actual solution very
much. Most experts believe that?NP, but no one has a proof of this. Next time we will define the notions of
NP-hard and NP-complete.

Lecture Notes 60 CMSC 451

Lecture 17: NP-Completeness: Reductions

Read: Chapt 34, through Section 34.4.

Summary: Last time we introduced a number of concepts, on the way to defining NP-completeness. In particular,
the following concepts are important.

Decision Problems: are problems for which the answer is either yes or no. NP-complete problems are ex-
pressed as decision problems, and hence can be thought of as language recognition problems, assuming
that the input has been encoded as a stringedé®mdanputs as strings. For example:

HC = {G |G hasaHamiltonian cycle
MST = {(G,z)|G hasaMST of cost at most}.

P: is the class of all decision problems which can be solved in polynomial tine*) for some constart.
For example MSTe P but HC is not known (and suspected not) to be in P.

Certificate: is a piece of evidence that allows us/rifyin polynomial time that a string is in a given language.
For example, suppose that the language is the set of Hamiltonian graphs. To convince someone that a graph
is in this language, we could supply the certificate consisting of a sequence of vertices along the cycle. Itis
easy to access the adjacency matrix to determine that this is a legitimate cgtl@hrerefore HC= NP.

NP: is defined to be the class of all languages that candvéied in polynomial time. Note that since all
languages in P can be solved in polynomial time, they can certainly be verified in polynomial time, so we
have PC NP. However, NP also seems to have some pretty hard problems to solve, such as HC.

Reductions: The class of NP-complete problems consists of a set of decision problems (languages) (a subset of the
class NP) that no one knows how to solve efficiently, but if there were a polynomial time solution for even a
single NP-complete problem, then every problem in NP would be solvable in polynomial time. To establish this,
we need to introduce the concept of a reduction.

Before discussing reductions, let us just consider the following question. Suppose that there are two problems,
H andU. We know (or you strongly believe at least) tHatis hard, that is it cannot be solved in polynomial

time. On the other hand, the complexity&fis unknown but we suspect that it too is hard. We want to prove
thatU cannot be solved in polynomial time. How would we do this? We want to show that

(H ¢P)= (U¢P).
To do this, we could prove the contrapositive,
(UeP)= (H eP).

In other words, to show thaf is not solvable in polynomial time, we will suppose that there is an algorithm that
solvesU in polynomial time, and then derive a contradiction by showing fiiatan be solved in polynomial
time.

How do we do this? Suppose that we have a subroutine that can solve any instance of prafleofynomial
time. Then all we need to do is to show that we can use this subroutine to solve pr@hiepolynomial time.
Thus we have “reduced” problefd to problemU. It is important to note here that this supposed subroutine
is really afantasy We know (or strongly believe) tha cannot be solved in polynomial time, thus we are
essentially proving that the subroutine cannot exist, implying&thaannot be solved in polynomial time. (Be
sure that you understand this, this the basis behind all reductions.)

Example: 3-Colorability and Clique Cover: Let us consider an example to make this clearer. The following prob-
lem is well-known to be NP-complete, and hence it is strongly believed that the problem cannot be solved in
polynomial time.

Lecture Notes 61 CMSC 451

3-coloring (3Col): Given a graph, can each of its vertices be labeled with one of 3 different “colors”, such
that no two adjacent vertices have the same label.

Coloring arises in various patrtitioning problems, where there is a constraint that two objects cannot be assigned
to the same set of the partition. The term “coloring” comes from the original application which was in map
drawing. Two countries that share a common border should be colored with different colors. It is well known
that planar graphs can be colored with 4 colors, and there exists a polynomial time algorithm for this. But
determining whether 3 colors are possible (even for planar graphs) seems to be hard and there is no known
polynomial time algorithm. In the figure below we give two graphs, one is 3-colorable and one is not.

3-colorable Not 3-colorable Clique cover (size = 3)

Fig. 45: 3-coloring and Clique Cover.

The 3Col problem will play the role of the hard probleih which we strongly suspect to not be solvable in
polynomial time. For our unknown problefh, consider the following problem. Given a gragh= (V, E), we
say that a subset of verticds C V forms acliqueif for every pair of verticesi,v € V' (u,v) € E. That s,
the subgraph induced By’ is a complete graph.

Clique Cover (CCov): Given a graphG = (V, E) and an integek, can we partition the vertex set info
subsets of vertice®;, Va, ..., Vi, such that J, V; = V, and that eacly; is a clique ofG.

The clique cover problem arises in applications of clustering. We put an edge between two nodes if they are
similar enough to be clustered in the same group. We want to know whether it is possible to cluster all the
vertices intok groups.

Suppose that you want to solve the CCov problem, but after a while of fruitless effort, you still cannot find
a polynomial time algorithm for the CCov problem. How can you prove that CCov is likely to not have a
polynomial time solution? You know that 3Col is NP-complete, and hence experts believe that BCou
feel that there is some connection between the CCov problem and the 3Col problem. Thus, you want to show
that

(3Col¢ P) = (CCov¢ P),

which you will show by proving the contrapositive

(CCove P) = (3Col e P).

To do this, you assume that you have access to a subrouting GQov Given a grapli and an integek, this
subroutine returns true @& has a clique cover of size and false otherwise, and furthermore, this subroutine
runs in polynomial time. How can we use this “alleged” subroutine to solve the well-known hard 3Col problem?
We want to write a polynomial time subroutine for 3Col, and this subroutine is allowed to call the subroutine
CCoVG, k) for any graphG and any integek.

Both problems involve partitioning the vertices up into groups. The only difference here is that in one problem
the number of cliques is specified as part of the input and in the other the number of color classes is fixed at 3.
In the clique cover problem, for two vertices to be in the same group they must be adjacent to each other. In the
3-coloring problem, for two vertices to be in the same color group, they must not be adjacent. In some sense,
the problems are almost the same, but the requirement adjacent/non-adjacent is exactly reversed.

Lecture Notes 62 CMSC 451

We claim that we cameducethe 3-coloring problem to the clique cover problem as follows. Given a gfaph
for which we want to determine its 3-colorability, output the @& 3) whereG denotes the complement 6t
(That is,G is a graph on the same vertices, butv) is an edge of7 if and only if it is not an edge of:.) We
can then feed the paj7, 3) into a subroutine for clique cover. This is illustrated in the figure below.

3-colorable Coverable by 3 cliques Not 3—colorable Not coverable

Fig. 46: Clique covers in the complement.

Claim: A graphG is 3-colorable if and only if its complement has a clique-cover of size 3. In other words,
G € 3Caol iff (G, 3) € CCov.

Proof: (=) If G 3-colorable, then lety, V2, V3 be the three color classes. We claim that this is a clique cover
of size 3 forG, since ifu andv are distinct vertices iV;, then{u,v} ¢ E(G) (since adjacent vertices

cannot have the same color) which implies thatv} € E(G). Thus every pair of distinct vertices i
are adjacent it-.

(<=) Suppose= has a clique cover of size 3, denoted V5, V5. Fori € {1,2, 3} give the vertices of/;
colori. We assert that this is a legal coloring fr since if distinct vertices, andv are both inV;, then

{u,v} € E(G) (since they are in a common clique), implying that v} ¢ E((G). Hence, two vertices
with the same color are not adjacent.

Polynomial-time reduction: We now take this intuition of reducing one problem to another through the use of a
subroutine call, and place it on more formal footing. Notice that in the example above, we converted an instance
of the 3-coloring probleniG) into an equivalent instance of the Clique Cover prob(ém3).

Definition: We say that a language (i.e. decision probldim)is polynomial-time reducibléo languagel,
(written L; <p L) if there is a polynomial time computable functignsuch that for alk, x € L if and
only if f(z) € L.

In the previous example we showed that
3Col <p CCov.

In particular we havef (G) = (G, 3). Note that it is easy to complement a graprdfn?) (i.e. polynomial)
time (e.g. flip O’s and 1's in the adjacency matrix). Thus computable in polynomial time.

Intuitively, saying thatl.;, <p L, means that “ifL, is solvable in polynomial time, then so I5.” This is
because a polynomial time subroutine foy could be applied tgf(z) to determine whethef(xz) € Lo, or
equivalently whethet € L,. Thus, in sense of polynomial time computabilify, is “no harder” than’s.

The way in which this is used in NP-completeness is exactly the converse. We usually have strong evidence that
Ly is not solvable in polynomial time, and hence the reduction is effectively equivalent to saying Isifise

not likely to be solvable in polynomial time, thdn is also not likely to be solvable in polynomial time.” Thus,

this is how polynomial time reductions can be used to show that problems are as hard to solve as known difficult
problems.

Lemma: If L1 <p Ly andL, € PthenL; € P.

Lecture Notes 63 CMSC 451

Lemma: If Ly <p Ly andL, ¢ PthenL; ¢ P.
One important fact about reducibility is that it is transitive. In other words
Lemma: If Ly <p Ly andL, <p L3thenL; <p L3.

The reason is that if two function&(z) andg(z) are computable in polynomial time, then their composition
f(g(x)) is computable in polynomial time as well. It should be noted that our text uses the term “reduction”
where most other books use the term “transformation”. The distinction is subtle, but people taking other courses
in complexity theory should be aware of this.

NP-completeness:The set of NP-complete problems are all problems in the complexity class NP, for which it is
known that if any one is solvable in polynomial time, then they all are, and conversely, if any one is not solvable
in polynomial time, then none are. This is made mathematically formal using the notion of polynomial time
reductions.

Definition: A languagel is NP-hardif:
L' <p Lforall L' € NP.

(Note thatL does not need to be in NP.)
Definition: A languagel is NP-completéf:
(1) Le NP and
(2) L is NP-hard.
An alternative (and usually easier way) to show that a problem is NP-complete is to use transitivity.

Lemma: L is NP-complete if

(1) L e NP and
(2) L' <p L for some known NP-complete languafje

The reason is that all” € N P are reducible td.’ (sinceL’ is NP-complete and hence NP-hard) and hence by
transitivity L is reducible tal, implying thatL is NP-hard.

This gives us a way to prove that problems are NP-complete, once we knoangatoblem is NP-complete.
Unfortunately, it appears to be almost impossible to prove that one problem is NP-complete, because the defini-
tion says that we have to be able to redageryproblem in NP to this problem. There are infinitely many such
problems, so how can we ever hope to do this? We will talk about this next time with Cook’s theorem. Cook
showed that there is one problem called SAT (short for boolean satisfiability) that is NP-complete. To prove a
second problem is NP-complete, all we need to do is to show that our problem is in NP (and hence it is reducible
to SAT), and then to show that we can reduce SAT (or generally some known NPC problem) to our problem. It
follows that our problem is equivalent to SAT (with respect to solvability in polynomial time). This is illustrated

in the figure below.

Lecture 18: Cook’s Theorem, 3SAT, and Independent Set

Read: Chapter 34, through 34.5. The reduction given here is similar, but not the same as the reduction given in the
text.

Recap: So far we introduced the definitions of NP-completeness. Recall that we mentioned the following topics:

P: is the set of decision problems (or languages) that are solvable in polynomial time.
NP: is the set of decision problems (or languages) that can be verified in polynomial time,

Lecture Notes 64 CMSC 451

-‘Your problem -
Your reduction
Known NPC -

SAT NPC NPC
\ NP NP N NP
P P P
Proving a problem is in NP Proving a problem is NP-hard Resulting structure

Fig. 47: Structure of NPC and reductions.

Polynomial reduction: L; <p L, means that there is a polynomial time computable funcficsuch that
x € Ly ifand only if f(z) € Lo. A more intuitive to think about this, is that if we had a subroutine to
solve L, in polynomial time, then we could use it to solig in polynomial time.

Polynomial reductions are transitive, that isLif <p L, andLy <p L3, thenL; <p Lg.

NP-Hard: L is NP-hard if forallL’ € NP, L’ <p L. Thus, if we could solvd. in polynomial time, we could
solve all NP problems in polynomial time.

NP-Complete: L is NP-complete if (1)L € NP and (2)L is NP-hard.

The importance of NP-complete problems should now be clear. If any NP-complete problems (and generally
any NP-hard problem) is solvable in polynomial time, then every NP-complete problem (and in fact every
problem in NP) is also solvable in polynomial time. Conversely, if we can prove that any NP-complete problem
(and generally any problem in NP) cannot be solved in polynomial time, then every NP-complete problem (and
generally every NP-hard problem) cannot be solved in polynomial time. Thus all NP-complete problems are
equivalent to one another (in that they are either all solvable in polynomial time, or none are).

An alternative way to show that a problem is NP-complete is to use transitivityrof

Lemma: L is NP-complete if

(1) Le NP and
(2) L’ <p L for some NP-complete languadé.

Note: The knownNP-complete probleni’ is reduced to theandidateNP-complete probleni. Keep this
order in mind.

Cook’s Theorem: Unfortunately, to use this lemma, we need to hat/&east oneNP-complete problem to start the
ball rolling. Stephen Cook showed that such a problem existed. Cook’s theorem is quite complicated to prove,
but we'll try to give a brief intuitive argument as to why such a problem might exist.

For a problem to be in NP, it must have an efficient verification procedure. Thus virtually all NP problems can
be stated in the form, “does there exigfssuch thatP(X)”, where X is some structure (e.g. a set, a path, a
partition, an assignment, etc.) ai{X) is some property thak must satisfy (e.g. the set of objects must fill

the knapsack, or the path must visit every vertex, or you may use atknoaddrs and no two adjacent vertices
can have the same color). In showing that such a problem is in NP, the certificate consists okgiaimgj the
verification involves testing tha®(X') holds.

In general, any seX can be described by choosing a set of objects, which in turn can be described as choosing
the values of some boolean variables. Similarly, the prop@(tY) that you need to satisfy, can be described as
a boolean formula. Stephen Cook was looking forrttestgeneral possible property he could, since this should
represent thdaardestproblem in NP to solve. He reasoned that computers (which represent the most general

Lecture Notes 65 CMSC 451

type of computational devices known) could be described entirely in terms of boolean circuits, and hence in
terms of boolean formulas. If any problem were hard to solve, it would be one in uhishan assignment of
boolean values (true/false, 0/1) afrdX') could be any boolean formula. This suggests the following problem,
called theboolean satisfiability problem

SAT: Given a boolean formula, is there some way to assign truth values (0/1, true/false) to the variables of the
formula, so that the formula evaluates to true?

A boolean formula is a logical formula which consists of variablgsand the logical operationsmeaning the
negationof x, boolean-or(z v y) andboolean-andx A y). Given a boolean formula, we say that itsatisfiable

if there is a way to assign truth values (0 or 1) to the variables such that the final result is 1. (As opposed to the
case where no matter how you assign truth values the result is always 0.)

For example,
(1 A (22 VE3)) A ((T2 AT3) VT1)

is satisfiable, by the assignment= 1, 25 = 0, z3 = 0 On the other hand,
(T1 V (xa Axs)) A (21 V (T2 AT3)) A (22 V 23) A (T2 V T3)

is not satisfiable. (Observe that the last two clauses imply that ongaridz; must be true and the other must
be false. This implies that neither of the subclauses invol¥ingndz in the first two clauses can be satisfied,
butz, cannot be set to satisfy them either.)

Cook’s Theorem: SAT is NP complete.

We will not prove this theorem. The proof would take about a full lecture (not counting the week or so of
background on Turing machines). In fact, it turns out that a even more restricted version of the satisfiability
problem is NP-complete. Ateral is a variable or its negation or Z. A formula is in3-conjunctive normal
form (3-CNF) if it is the boolean-and of clauses where each clause is the boolean-or of exactly 3 literals. For
example

(£1 Voo VT3) A (T1 VasVag) A(xa VI VIy)

is in 3-CNF form.3SATis the problem of determining whether a formula in 3-CNF is satisfiable. It turns out that
it is possible to modify the proof of Cook’s theorem to show that the more restricted 3SAT is also NP-complete.

As an aside, note that if we replace the 3 in 3SAT with a 2, then everything changes. If a boolean formula is
given in 2SAT, then it is possible to determine its satisfiability in polynomial time. Thus, even a seemingly small
change can be the difference between an efficient algorithm and none.

NP-completeness proofs:Now that we know that 3SAT is NP-complete, we can use this fact to prove that other
problems are NP-complete. We will start with the independent set problem.

Independent Set (IS): Given an undirected grapfi = (V, E') and an integek doesG contain a subsét’ of
k vertices such that no two vertices¥ are adjacent to one another.

For example, the graph shown in the figure below has an independent set (shown with shaded nodes) of size
4. The independent set problem arises when there is some sort of selection problem, but there are mutual
restrictions pairs that cannot both be selected. (For example, you want to invite as many of your friends to your
party, but many pairs do not get along, represented by edges between them, and you do not want to invite two
enemies.)

Note that if a graph has an independent set of sjzéen it has an independent set of all smaller sizes. So the
corresponding optimization problem would be to find an independent set of the largest size in a graph. Often
the vertices have weights, so we might talk about the problem of computing the independent set with the largest
total weight. However, since we want to show that the problem is hard to solve, we will consider the simplest
version of the problem.

Lecture Notes 66 CMSC 451

Fig. 48: Independent Set.

Claim: IS is NP-complete.

The proof involves two parts. First, we need to show that ISP. The certificate consists of thevertices of
V'. We simply verify that for each pair of vertex v € V', there is no edge between them. Clearly this can be
done in polynomial time, by an inspection of the adjacency matrix.

boolean formula

i (in 3-CNF) graph and integer
. [3sAT '
1
i NS
G,k yes
¢ (GK ye
>

polynomial time computable
Fig. 49: Reduction of 3-SAT to IS.

Secondly, we need to establish that IS is NP-hard, which can be done by showing that some known NP-complete
problem (3SAT) is polynomial-time reducible to IS, that is, 3SAF |IS. Let F' be a boolean formula in 3-CNF

form (the boolean-and of clauses, each of which is the boolean-or of 3 literals). We wish to find a polynomial
time computable functiorf that mapsF' into a input for the IS problem, a gragh and integerk. That is,

f(F) = (G, k), such thatF is satisfiable if and only iz has an independent set of sizeThis will mean that

if we can solve the independent set problemdbandk in polynomial time, then we would be able to solve

3SAT in polynomial time.

An important aspect to reductions is that we do not attempt to solve the satisfiability problem. (Remember: It
is NP-complete, and there is not likely to be any polynomial time solution.) So the fungtionst operate
without knowledge of whetheF is satisfiable. The idea is toanslatethe similar elements of the satisfiable
problem to corresponding elements of the independent set problem.

What is to be selected?
3SAT: Which variables are assigned to be true. Equivalently, which literals are assigned true.
IS: Which vertices are to be placed¥.
Requirements:
3SAT: Each clause must contain at least one literal whose value it true.
IS: V' must contain at leagt vertices.
Restrictions:
3SAT: If z; is assigned true, thery must be false, and vice versa.

Lecture Notes 67 CMSC 451

IS: If uis selected to be i/, andv is a neighbor of:, thenv cannot be iri/”’.

We want a functionf, which given any 3-CNF boolean formul, converts it into a paifG, k) such that the

above elements are translated properly. Our strategy will be to create one vertex for each literal that appears
within each clause. (Thus, if there areclauses int", there will be3m vertices inG.) The vertices are grouped

into clause clustersone for each clause. Selecting a true literal from some clause corresponds to selecting a
vertex to add td/’’. We setk to the number of clauses. This forces the independent set to pick one vertex
from each clause, thus, one literal from each clause is true. In order to keep the IS subroutine from selecting
two literals from some clause (and hence none from some other), we will connect all the vertices in each clause
cluster to each other. To keep the IS subroutine from selecting both a literal and its complement, we will put an
edge between each literal and its complement. This enforces the condition that if a literal is put in the IS (set to
true) then its complement literal cannot also be true. A formal description of the reduction is given below. The
input is a boolean formul&’ in 3-CNF, and the output is a graghand integelk.

3SAT to IS Reduction
k < number of clauses if";
for each claus€’ in F
create alause clusteof 3 vertices from the literals af’;
for each clause clustét, z2, x3)
create an edger;, «;) between all pairs of vertices in the cluster;
for each vertex;
create edges between and all its complement verticas;
return (G, k);

Given any reasonable encodingfofit is an easy programming exercise to cred@ay as an adjacency matrix)
in polynomial time. We claim thak’ is satisfiable if and only it7 has an independent set of size

Example: Suppose that we are given the 3-CNF formula:
(331 V To \/53) A (51 V o \/$3) A\ (fl V o \/fg) A\ (.131 V o \/.1?3).

The reduction produces the graph shown in the following figure and:sets.

X1 X2 X3 X1 X X3
X1 X1 X1 X
X2) X2 X2
X3 X3 X3 X3
X Xo X3 X1 Xo X3
The reduction Correctness (x1=x2=1. x3=0)

Flg 50: 3SAT to IS Reduction fqﬁfl VZoV Tg) A (fl VxoV xg) AN (fl V g \/fg) A (.’El VZyV .’L’g)
In our example, the formula is satisfied by the assignment 1, zo = 1, andz3 = 0. Note that the literak,

satisfies the first and last clausesg,satisfies the second, amg satifies the third. Observe that by selecting the
corresponding vertices from the clusters, we get an independent set f-siZe

Lecture Notes 68 CMSC 451

Correctness Proof: We claim thatF' is satisfiable if and only i7 has an independent set of sizdf F is satisfiable,
then each of thé clauses ofF' must have at least one true literal. Llét denote the corresponding vertices
from each of the clause clusters (one from each cluster). Because we take vertices from each cluster, there are
no inter-cluster edges between them, and because we cannot set a variable and its complement to both be true,
there can be no edge of the fofm;, T;) between the vertices &f'. Thus,V’ is an independent set of size

Conversely, ifG' has an independent gét of sizek. First observe that we must select a vertex from each clause
cluster, because there drelusters, and we cannot take two vertices from the same cluster (because they are all
interconnected). Consider the assignment in which we set all of these literals to 1. This assignment is logically
consistent, because we cannot have two vertices labelaadz; in the same cluster. Finally the transformation
clearly runs in polynomial time. This completes the NP-completeness proof.

Observe that our reduction did not attempt to solve the IS problem nor to solve the 3SAT. Also observe that
the reduction hadho knowledgeof the solution to either problem. (We did not assume that the formula was
satisfiable, nor did we assume we knew which variables to set to 1.) This is because computing these things
would require exponential time (by the best known algorithms). Instead the reduction sranpdiatedthe

input from one problem into an equivalent input to the other problem, while preserving the critical elements to
each problem.

Lecture 19: Clique, Vertex Cover, and Dominating Set
Read: Chapt 34 (up through 34.5). The dominating set proof is not given in our text.

Recap: Last time we gave a reduction from 3SAT (satisfiability of boolean formulas in 3-CNF form) to IS (indepen-
dent set in graphs). Today we give a few more examples of reductions. Recall that to show that a problem is
NP-complete we need to show (1) that the problem is in NP (i.e. we can verify when an input is in the language),
and (2) that the problem is NP-hard, by showing that some known NP-complete problem can be reduced to this
problem (there is a polynomial time function that transforms an input for one problem into an equivalent input
for the other problem).

Some Easy Reductions:We consider some closely related NP-complete problems next.

Clique (CLIQUE): Theclique problemis: given an undirected graphi = (V, F) and an integek, doesG
have a subsét” of & vertices such that for each distingtv € V’, {u,v} € E. In other words, doe&
have ak vertex subset whose induced subgraph is complete.

Vertex Cover (VC): A vertex covein an undirected grapfi = (V, E) is a subset of verticdg’ C V' such that
every edge inG has at least one endpoint W. Thevertex cover problenvVC) is: given an undirected
graphG and an integek, doesG have a vertex cover of siZe?

Dominating Set (DS): A dominating sein a graphGG = (V, E) is a subset of verticéig’ such that every vertex
in the graph is either ifY” or is adjacent to some vertex /. Thedominating set problefDS) is: given
agraphG = (V, E') and an integek, doesG have a dominating set of siz&

Don’t confuse the clique (CLIQUE) problem with the clique-cover (CC) problem that we discussed in an earlier
lecture. The clique problem seeks to find a single clique of/siamd the clique-cover problem seeks to partition
the vertices intd: groups, each of which is a clique.

We have discussed the facts that cliques are of interest in applications dealing with clustering. The vertex cover
problem arises in various servicing applications. For example, you have a compute network and a program that
checks the integrity of the communication links. To save the space of installing the program on every computer
in the network, it suffices to install it on all the computers forming a vertex cover. From these nodes all the
links can be tested. Dominating set is useful in facility location problems. For example, suppose we want to
select where to place a set of fire stations such that every house in the city is within 2 minutes of the nearest

Lecture Notes 69 CMSC 451

fire station. We create a graph in which two locations are adjacent if they are within 2 minutes of each other. A
minimum sized dominating set will be a minimum set of locations such that every other location is reachable
within 2 minutes from one of these sites.

The CLIQUE problem is obviously closely related to the independent set problem (IS): Given afdags it
have ak vertex subset that is completalysconnectedlit is not quite as clear that the vertex cover problem is
related. However, the following lemma makes this connection clear as well.

G G G
V' is CLIQUE of iff V'is an IS of iff V-V'is a VC of
sizekin G sizekin G size n—kin G

Fig. 51: Clique, Independent set, and Vertex Cover.

Lemma: Given an undirected grapghl = (V, E') with n vertices and a subs&t C V of sizek. The following
are equivalent:
(i) V'is aclique of size: for the complement.
(i) V’is anindependent set of sizdor G.
(i) V —V'is avertex cover of size — k for G.
Proof:
(i) = (ii): If V' is a clique forG, then for eachs,v € V', {u,v} is an edge o7 implying that{u, v} is
not an edge of7, implying thatlV’ is an independent set f6t.
(i) = (iii)): If V'is anindependent set faf, then for eachi, v € V’, {u, v} is not an edge of7, implying
that every edge i67 is incident to a vertex iV — V’, implying thatV — V" is a VC forG.
(iii) = (i): If V—V"'is avertex cover fot7, then for anyu, v € V' there is no edgéu, v} in G, implying
that there is an edgl, v} in G, implying thatV’ is a clique inG. V" is an independent set f6r.

Thus, if we had an algorithm for solving any one of these problems, we could easily translate it into an algorithm
for the others. In particular, we have the following.
Theorem: CLIQUE is NP-complete.

CLIQUE € NP: The certificate consists of thHevertices in the clique. Given such a certificate we can easily
verify in polynomial time that all pairs of vertices in the set are adjacent.

IS <p CLIQUE: We want to show that given an instance of the IS prob{éhk), we can produce an equiv-
alent instance of the CLIQUE problem in polynomial time. The reduction functiomputsG andk, and

outputs the pai(G, k). Clearly this can be done in polynomial time. By the above lemma, this instance is
equivalent.

Theorem: VC is NP-complete.

VC € NP: The certificate consists of thevertices in the vertex cover. Given such a certificate we can easily
verify in polynomial time that every edge is incident to one of these vertices.

Lecture Notes 70 CMSC 451

IS <p VC: We want to show that given an instance of the IS prob{émk), we can produce an equivalent
instance of the VC problem in polynomial time. The reduction funcfidnputsG andk, computes the
number of verticesy, and then outputéG, n — k). Clearly this can be done in polynomial time. By the
lemma above, these instances are equivalent.

Note: Note that in each of the above reductions, the reduction function did not know witethas an inde-
pendent set or not. It must run in polynomial time, and IS is an NP-complete problem. So it does not have time
to determine whethea® has an independent set or which vertices are in the set.

Dominating Set: As with vertex cover, dominating set is an example of a graph covering problem. Here the condition
is a little different, each vertex is adjacent to the members of the dominating set, as opposed to each edge being
incident to each member of the dominating set. Obviousl; i§ connected and has a vertex cover of gize
then it has a dominating set of sizgthe same set of vertices), but the converse is not necessarily true. However
the similarity suggests that if VC in NP-complete, then DS is likely to be NP-complete as well. The main result
of this section is just this.

Theorem: DS is NP-complete.

As usual the proof has two parts. First we show thatdDSP. The certificate just consists of the subigéin
the dominating set. In polynomial time we can determine whether every vertekXisinis adjacent to a vertex
inV’.

Reducing Vertex Cover to Dominating Set: Next we show that an existing NP-complete problem is reducible to
dominating set. We choose vertex cover and show that4CDS. We want a polynomial time function,
which given an instance of the vertex cover problg k), produces an instan¢é!’, k') of the dominating set
problem, such that has a vertex cover of sizeif and only if G’ has a dominating set of sié.

How to we translate between these problems? The key difference is the condition. In VC: “every edge is incident
toavertexin/’". In DS: “every vertex is either iV’ or is adjacent to a vertex ivi’”. Thus the translation must
somehow map the notion of “incident” to “adjacent”. Because incidence is a property of edges, and adjacency
is a property of vertices, this suggests that the reduction function maps edgastofvertices inG’, such that

an incident edge id7 is mapped to an adjacent vertexG.

This suggests the following idea (which does not quite work). We will insert a vertex into the middle of each
edge of the graph. In other words, for each efigev}, we will create a nevepecial vertexcalledw,,,,, and
replace the edgéu, v} with the two edgegu, w,,, } and{v, w,,}. The fact that: was incident to edgéu, v}

has now been replaced with the fact thas adjacent to the corresponding vertey,. We still need to dominate

the neighbow. To do this, we will leave the edde:, v} in the graph as well. Le®’ be the resulting graph.

This is still not quite correct though. Define &olated vertexo be one that is incident to no edges.ulfs
isolated it can only be dominated if it is included in the dominating set. Since it is not incident to any edges, it
does not need to be in the vertex cover. gdenote the isolated vertices@ and letl denote the number of
isolated vertices. The number of vertices to request for the dominating set wkill-bé: + I.

Now we can give the complete reduction. Given the p&irk) for the VC problem, we create a graph as
follows. Initially G’ = G. For each edgéu, v} in G we create a new vertex,, in G’ and add edgegu, w.,, }
and{v,w,,} in G'. Let I denote the number of isolated vertices andiset k + I. Output(G’,k’). This
reduction illustrated in the following figure. Note that every step can be performed in polynomial time.

Correctness of the Reduction: To establish the correctness of the reduction, we need to showthas a vertex
cover of sizek if and only if G’ has a dominating set of siZzé. First we argue that it’’ is a vertex cover fo6,
thenV"” =V’ UV} is a dominating set fof?’. Observe that

V' =V UV <k+T=Fk.

Note that|V’ U V;| might be of size less thain+ I, if there are any isolated vertices ¥1. If so, we can add
any vertices we like to make the size equakto

Lecture Notes 71 CMSC 451

O

k=3+1=4

M*@

Fig. 52: Dominating set reduction.

To see thal’” is a dominating set, first observe that all the isolated vertices &€ end so they are dominated.
Second, each of the special vertiees, in G’ corresponds to an edde, v} in G implying that either: or v is
in the vertex covel’’. Thusw,, is dominated by the same vertexlitf Finally, each of the nonisolated original
verticesv is incident to at least one edge@h and hence either it is iii’ or else all of its neighbors are Irt'. In
either casey is either inV’”” or adjacent to a vertex ili”’. This is shown in the top part of the following figure.

O @)
vertex cover for G dominating set for G’
@) @) O
dominating set for G’ using original vertices vertex cover for G

Fig. 53: Correctness of the VC to DS reduction (where 3 andl = 1).

Conversely, we claim that i’ has a dominating sét” of sizek’ = k + I thenG has a vertex covey” of
sizek. Note that alll isolated vertices ofs’ must be in the dominating set. First, it = V' — V; be the
remainingk vertices. We might try to claim something liké"’ is a vertex cover foG. But this will not
necessarily work, becaus€”’ may have vertices that are not part of the original gréph

However, we claim that we never need to use any of the newly created special verfic&s im particular,

if some vertexw,, € V", then modifyV"”" by replacingw,,, with u. (We could have just as easily replaced
it with v.) Observe that the vertex,,,, is adjacent to only, andw, so it dominates itself and these other two
vertices. By using: instead, we still dominate, v, andw,,, (because: has edges going teandw,,,). Thus
by replacingw,, ., with « we dominate the same vertices (and potentially more) W etenote the resulting set
after this modification. (This is shown in the lower middle part of the figure.)

We claim thatV”’ is a vertex cover foiG. If, to the contrary there were an edde, v} of G that was not
covered (neither: nor v was inV’) then the special vertex,,,, would not be adjacent to any vertex Bf’ in
G’, contradicting the hypothesis thét’ was a dominating set far’.

Lecture Notes 72 CMSC 451

Lecture 20: Subset Sum
Read: Sections 34.5.5 in CLR.

Subset Sum: The Subset Sum problem (SS) is the following. Given a finit&s#ftpositive integers = {wy, wa, ..., w,}
and atarget value ¢, we want to know whether there exists a sul&ef S that sums exactly ta

This problem is a simplified version of the 0-1 Knapsack problem, presented as a decision problem. Recall
that in the 0-1 Knapsack problem, we are given a collection of objects, each with an associatedovaight
associated value;. We are given a knapsack of capadity. The objective is to take as many objects as can fit

in the knapsack’s capacity so as to maximize the value. (In the fractional knapsack we could take a portion of
an object. In the 0-1 Knapsack we either take an object entirely or leave it.) In the simplest version, suppose
that the value is the same as the weight= w;. (This would occur for example if all the objects were made of

the same material, say, gold.) Then, the best we could hope to achieve would be to fill the knapsack entirely. By
settingt = W, we see that the subset sum problem is equivalent to this simplified version of the 0-1 Knapsack
problem. It follows that if we can show that this simpler version is NP-complete, then certainly the more general
0-1 Knapsack problem (stated as a decision problem) is also NP-complete.

Consider the following example.
S =1{3,6,9,12,15,23,32} and ¢t=33.
The subsef’ = {6,12,15} sums tat = 33, so the answer in this case is yest # 34 the answer would be no.

Dynamic Programming Solution: There is a dynamic programming algorithm which solves the Subset Sum prob-
leminO(n - t) time?

The quantityn - ¢ is a polynomial function ofi. This would seem to imply that the Subset Sum problem is in P.

But there is a important catch. Recall that in all NP-complete problems we assume (1) running time is measured
as a function of input size (hnumber of bits) and (2) inputs must be encoded in a reasonable succinct manner. Let
us assume that the numbersandt are allb-bit numbers represented in base 2, using the fewest number of bits
possible. Then the input size @¥(nb). The value oft may be as large &°. So the resulting algorithm has a
running time ofO(n2%). This is polynomial iz, but exponential ih. Thus, this running time is not polynomial

as a function of the input size.

Note that an important consequence of this observation is that the SS problem is not hard when the numbers
involved are small. If the numbers involved are of a fixed number of bits (a constant independgnthain

the problem is solvable in polynomial time. However, we will show that in the general case, this problem is
NP-complete.

SS is NP-complete:The proof that Subset Sum (SS) is NP-complete involves the usual two elements.

(i) SSe NP.
(i) Some known NP-complete problem is reducible to SS. In particular, we will show that Vertex Cover (VC)
is reducible to SS, that is, VE p SS.

To show that SS is in NP, we need to give a verification procedure. Givandt, the certificate is just the
indices of the numbers that form the subSét We can add twa-bit numbers together i®(b) time. So, in
polynomial time we can compute the sum of elementS’irand verify that this sum equals

For the remainder of the proof we show how to reduce vertex cover to subset sum. We want a polynomial time
computable functiorf that maps an instance of the vertex cover (a gi@@nd integefk) to an instance of the
subset sum problem (a set of integérand target integet) such thatG has a vertex cover of sizeif and only

if S has a subset summingtoThus, if subset sum were solvable in polynomial time, so would vertex cover.

2We will leave this as an exercise, but the formulation is,0fof + < n and0 < ¢/ < ¢, S[i,t'] = 1if there is a subset ofwi, w2, ..., w;}
that sums ta’, and 0 otherwise. Thih row of this table can be computedd(t) time, given the contents of thg — 1)-st row.

Lecture Notes 73 CMSC 451

How can we encode the notion of selecting a subset of vertices that cover all the edges to that of selecting a
subset of numbers that sumstf In the vertex cover problem we are selecting vertices, and in the subset sum
problem we are selecting numbers, so it seems logical that the reduction should map vertices into numbers. The
constraint that these vertices should cover all the edges must be mapped to the constraint that the sum of the
numbers should equal the target value.

An Initial Approach: Here is an idea, which does not work, but gives a sense of how to proceed. desiote the
number of edges in the graph. First number the edges of the graph from 1 tlEoligien represent each vertex
v; as ank-element bit vector, where thieth bit from the left is set to 1 if and only if the edgg is incident
to vertexv;. (Another way to think of this is that these bit vectors form the rows dhaidence matriXor the
graph.) An example is shown below, in whigh= 3.

e,€e,e;€e,€56e5€;6€q

VV{10000©O0O0OTOQ0
V111100000
V{001 10001
VVi{oooo11 11
V.|0000OO0OOOT1OQ0
V{01 000100
V] 00011000

Fig. 54: Encoding a graph as a collection of bit vectors.

Now, suppose we take any subset of vertices and form the logical-or of the corresponding bit vectors. If the
subset is a vertex cover, then every edge will be covered by at least one of these vertices, and so the logical-or
will be a bit vector of all 1's,1111...1. Conversely, if the logical-or is a bit vector of 1's, then each edge has
been covered by some vertex, implying that the vertices form a vertex cover. (Later we will consider how to
encode the fact that there only allowkdertices in the cover.)

e,€e,e;€e,€5e5€;6€q

S o< o< oS o< < <

PO O O O O Kk K
PO P, O O O KL O
PO O O O B B O
k|l O O O L O O
|k O O B O O O
O »r O P O O O
O O F»r B O O O
RO O O B P O O

—
I

V. v V3V V4

Fig. 55: The logical-or of a vertex cover equalsl1. .. 1.

Since bit vectors can be thought of as just a way of representing numbers in binary, this is starting to feel more
like the subset sum problem. The target would be the number whose bit vector is all 1's. There are a number of
problems, however. First, logical-or is not the same as addition. For example, if both of the endpoints of some
edge are in the vertex cover, then its value in the corresponding column would be 2, not 1. Second, we have
no way of controlling how many vertices go into the vertex cover. (We could just take the logical-or of all the
vertices, and then the logical-or would certainly be a bit vectors of 1's.)

Lecture Notes 74 CMSC 451

There are two ways in which addition differs significantly from logical-or. The first is the issue of carries. For
example, tha 101 v 0011 = 1111, but in binary1101 4+ 0011 = 1000. To fix this, we recognize that we do

not have to use a binary (base-2) representation. In fact, we can assume any base system we want. Observe that
each column of the incidence matrix has at most two 1's in any column, because each edge is incident to at most
two vertices. Thus, if use any base that is at least as large as base 3, we will never generate a carry to the next
position. In fact we will use base 4 (for reasons to be seen below). Note that the base of the number system is
just for own convenience of notation. Once the numbers have been formed, they will be converted into whatever
form our machine assumes for its input representation, e.g. decimal or binary.

The second difference between logical-or and addition is that an edge may generally be covered either once or
twice in the vertex cover. So, the final sum of these numbers will be a number consisting of 1 and 2 digits, e.g.
1211...112. This does not provide us with a unique target valu&/e know that no digit of our sum can be a

zero. To fix this problem, we will create a setBfadditionalslack valuesFor1 < i < F, theith slack value

will consist of all 0’s, except for a single 1-digit in thigh position, e.9.00000100000. Our target will be the
number2222...222 (all 2's). To see why this works, observe that from the numbers of our vertex cover, we
will get a sum consisting of 1's and 2’s. For each position where there is a 1, we can supplement this value by
adding in the corresponding slack value. Thus we can boost any value consisting of 1's and 2's to all 2's. On the
other hand, note that if there are any 0 values in the final sum, we will not have enough slack values to convert
this into a 2.

There is one last issue. We are only allowed to place énlgrtices in the vertex cover. We will handle this by
adding an additional column. For each number arising from a vertex, we widl punthis additional column.
For each slack variable we will put a 0. In the target, we will require that this column sum to thekyahes
size of the vertex cover. Thus, to form the desired sum, we must select ekadttiie vertex values. Note that
since we only have a base-4 representation, there might be carries out of this last collirrndif But since
this is the last column, it will not affect any of the other aspects of the construction.

The Final Reduction: Here is the final reduction, given the graph= (V, E) and integerk for the vertex cover
problem.

(1) Create a set af vertex valuesgy, xo, . .., x, using base-4 notation. The valugis equal a 1 followed
by a sequence df base-4 digits. Thg-th digit is a 1 if edge; is incident to vertex; and 0 otherwise.

(2) CreateL slack valuesy, ys, - . ., yg, Wherey; is a 0 followed byFE base-4 digits. Théth digit of y; is 1
and all others are 0.

(3) Lett be the base-4 number whose first digiti@his may actually span multiple base-4 digits), and whose
remainingF digits are all 2.

(4) Convert ther;’s, they;’s, andt into whatever base notation is used for the subset sum problem (e.g. base
10). Output the set = {z1,...,2n,¥1,...,yr} andt.

Observe that this can be done in polynomial time)ii¥z?), in fact. The construction is illustrated in Fig. 56.

Correctness: We claim thatG has a vertex cover of sizeif and only if S has a subset that sums#olf G has a
vertex coverV’ of sizek, then we take the vertex values corresponding to the vertices &f, and for each
edge that is covered only once ¥, we take the corresponding slack variable. It follows from the comments
made earlier that the lower-ordér digits of the resulting sum will be of the for222 . .. 2 and because there
arek elements id/’, the leftmost digit of the sum will b&. Thus, the resulting subset sumsto

Conversely, ifS has a subset’ that sums ta then we assert that it must select exadtlyalues from among

the vertex values, since the first digit must sunktoWVe claim that these verticd$’ form a vertex cover. In
particular, no edge can be left uncoverediby since (because there are no carries) the corresponding column
would be 0 in the sum of vertex values. Thus, no matter what slack values we add, the resulting digit position
could not be equal to 2, and so this cannot be a solution to the subset sum problem.

Lecture Notes 75 CMSC 451

€, €, €; €, € € €; €

3 0

=) g

[1+] =

> ©

% >

() X

+ (&)

S

) qla

> n
O O 4 «+4 O O OO0 O O O O o o «
O O O 4 4 O OO O O O o o +H o
O O O 4 O 4 OO0 O O O O 4 O o
O O O 4 O O 40 O O O + O O o
O O 4 O O O 1|0 O O 4 O o o o
O 4 4 O O O OO0 O «+« O O O o o
O 4« O O O 4 OO0 1 O O O O o o
- <4 O O O O Ol O O O O O O o
T 4 4 4 4 4 4 O O O O O O O o
S N M & W O I~ 4 N_ OO < _OD_©O©_~_0
X X X X X x x SNV

3 22 2 2 2 2 22

t

=3)

vertex cover size (k

Fig. 56: Vertex cover to subset sum reduction.

€16, €364 € € €7 €3
111 0 0 0 0 0 0 O
111 1 12 0 0 0 0 O
110 0 1 1 0 0 0 1
110 0 0 0 1 1 1 1
110 0 0 0O OO 1 O
110 1 0 0 01 0 O
110 0 011 0 O O
01 0 0O0O0O0OTUO0OTOO
0O 01 00 0 O 0O
0O 0010 O0O0O0TDO
0O 00O 1O0O0O0TO0
0O 00 0O 0O 1 000
0O 00 0O OO0 1 00O
0O 00O O0OOOTUOTI1O0
0O 0 0 0 0 O0 OO0 1
3 2 2 2 2 2 2 2 2

Vertex values

(take those in vertex cover)

Slack values

(take one for each edge that has

only one endpoint in the cover)

1

~

(%]

4

5

6

7

X
X
X
X
X
X
X

1

y

Y,

Y,

Ya
Ys
Yo

Y7

Ye

t

vertex cover size

Fig. 57: Correctness of the reduction.

CMSC 451

76

Lecture Notes

It is worth noting again that in this reduction, we needed to have large numbers. For example, the target value
is at least as large a$’ > 4" (wheren is the number of vertices i&). In our dynamic programming solution
W = t, so the DP algorithm would run i2(n4™) time, which is not polynomial time.

Lecture 21: Approximation Algorithms: VC and TSP

Read: Chapt 35 (up through 35.2) in CLRS.

Coping with NP-completeness:With NP-completeness we have seen that there are many important optimization
problems that are likely to be quite hard to solve exactly. Since these are important problems, we cannot simply
give up at this point, since people do need solutions to these problems. How do we cope with NP-completeness:

Use brute-force search: Even on the fastest parallel computers this approach is viable only for the smallest
instances of these problems.

Heuristics: A heuristicis a strategy for producing a valid solution, but there are no guarantees how close it is
to optimal. This is worthwhile if all else fails, or if lack of optimality is not really an issue.

General Search Methods: There are a number of very powerful techniques for solving general combinatorial
optimization problems that have been developed in the areas of Al and operations research. These go under
names such asranch-and-boundA*-search simulated annealingandgenetic algorithms The perfor-
mance of these approaches varies considerably from one problem to problem and instance to instance. But
in some cases they can perform quite well.

Approximation Algorithms: This is an algorithm that runs in polynomial time (ideally), and produces a solu-
tion that is within a guaranteed factor of the optimum solution.

Performance Bounds: Most NP-complete problems have been stated as decision problems for theoretical reasons.
However underlying most of these problems is a natural optimization problem. For example, the TSP optimiza-
tion problem is to find the simple cycle of minimum cost in a digraph, the VC optimization problem is to find
the vertex cover of minimum size, the clique optimization problem is to find the clique of maximum size. Note
that sometimes we are minimizing and sometimes we are maximizing. An approximation algorithm is one that
returns a legitimate answer, but not necessarily one of the smallest size.

How do we measure how good an approximation algorithm is? We defimattbdooundof an approximation
algorithm as follows. Given an instanéeof our problem, letC(I) be the cost of the solution produced by our
approximation algorithm, and I€t*(I) be the optimal solution. We will assume that costs are strictly positive
values. For a minimization problem we wagi{/)/C*(I) to be small, and for a maximization problem we want
C*(I)/C(I) to be small. For any input size, we say that the approximation algorithm achiexes bound

p(n), ifforall I, |I| = n we have
c(I) C*(I)
max (C*(I)’)) < pln).

Observe thap(n) is always greater than or equal to 1, and it is equal to 1 if and only if the approximate solution
is the true optimum solution.

Some NP-complete problems can be approximated arbitrarily closely. Such an algorithm is given both the input,
and a real value > 0, and returns an answer whose ratio bound is at ifioste). Such an algorithm is called

a polynomial time approximation scher@ PTASfor short). The running time is a function of bothande.

As e approaches 0, the running time increases beyond polynomial time. For example, the running time might be
O(nl1/€1). If the running time depends only on a polynomial functiori ¢f then it is called dully polynomial-

time approximation schem€&or example, a running time liké((1/¢)?n3) would be such an example, whereas
O(n'/¢) andO(2(1/)n) are not.

Although NP-complete problems are equivalent with respect to whether they can be solved exactly in polynomial
time in the worst case, their approximability varies considerably.

Lecture Notes 7 CMSC 451

e For some NP-complete problems, it is very unlikely that any approximation algorithm exists. For example,
if the graph TSP problem had an approximation algorithm with a ratio bound of any value less:than
then P= NP.

e Many NP-complete can be approximated, but the ratio bound is a (slow growing) function B6r
example, the set cover problem (a generalization of the vertex cover problem), can be approximated to
within a factor ofln n. We will not discuss this algorithm, but it is covered in CLRS.

e Some NP-complete problems can be approximated to within a fixed constant factor. We will discuss two
examples below.

e Some NP-complete problems have PTAS'’s. One example is the subset problem (which we haven't dis-
cussed, but is described in CLRS) and the Euclidean TSP problem.

In fact, much like NP-complete problems, there are collections of problems which are “believed” to be hard to
approximate and are equivalent in the sense that if any one can be approximated in polynomial time then they
all can be. This class is callddax-SNP completeWe will not discuss this further. Suffice it to say that the

topic of approximation algorithms would fill another course.

Vertex Cover: We begin by showing that there is an approximation algorithm for vertex cover with a ratio bound of 2,
that is, this algorithm will be guaranteed to find a vertex cover whose size is at most twice that of the optimum.
Recall that a vertex cover is a subset of vertices such that every edge in the graph is incident to at least one of
these vertices. Theertex cover optimization probleisto find a vertex cover of minimum size.

How does one go about finding an approximation algorithm. The first approach is to try something that seems
like a “reasonably” good strategy,teeuristic It turns out that many simple heuristics, when not optimal, can
often be proved to be close to optimal.

Here is an very simple algorithm, that guarantees an approximation within a factor of 2 for the vertex cover
problem. It is based on the following observation. Consider an arbitrary @dgg in the graph. One of its

two verticesmustbe in the cover, but we do not know which one. The idea of this heuristic is to simply put
bothvertices into the vertex cover. (You cannot get much stupider than this!) Then we remove all edges that are
incident tou andwv (since they are now all covered), and recurse on the remaining edges. For every one vertex
that must be in the cover, we put two into our cover, so it is easy to see that the cover we generate is at most
twice the size of the optimum cover. The approximation is given in the figure below. Here is a more formal
proof of its approximation bound.

% E—H-ve @ De ® O

G and opt VC The 2-for-1 Heuristic

Fig. 58: The 2-for-1 heuristic for vertex cover.

Claim: ApproxVC yields a factor-2 approximation for Vertex Cover.

Proof: Consider the sef' output by ApproxVC. LeCC* be the optimum VC. Le#l be the set of edges selected
by the line marked with “(*)” in the figure. Observe that the size’bis exactly2| A| because we add two
vertices for each such edge. However note that in the optimum VC one of these two vertices must have
been added to the VC, and thus the siz€'dfis at leas{A|. Thus we have:

C]
<2.
[

g:
2

Al<icr] =

Lecture Notes 78 CMSC 451

2-for-1 Approximation for VC

ApproxVC {
C = empty-set
while (E is nonempty) do {
* let (u,v) be any edge of E
add both u and v to C
remove from E all edges incident to either u or v

}

return C;

This proof illustrates one of the main features of the analysis of any approximation algorithm. Namely, that we
need some way of finding a bound on the optimal solution. (For minimization problems we want a lower bound,
for maximization problems an upper bound.) The bound should be related to something that we can compute in
polynomial time. In this case, the bound is related to the set of edgedich form a maximal independent set

of edges.

The Greedy Heuristic: It seems that there is a very simple way to improve the 2-for-1 heuristic. This algorithm
simply selects any edge, and adds both vertices to the cover. Instead, why not concentrate instead on vertices of
high degree, since a vertex of high degree covers the maximum number of edges. This is greedy strategy. We
saw in the minimum spanning tree and shortest path problems that greedy strategies were optimal.

Here is the greedy heuristic. Select the vertex with the maximum degree. Put this vertex in the cover. Then
delete all the edges that are incident to this vertex (since they have been covered). Repeat the algorithm on the
remaining graph, until no more edges remain. This algorithm is illustrated in the figure below.

® DG @ ©

O——0 O—@-0 0 @ O
G and opt VC The Greedy Heuristic

Fig. 59: The greedy heuristic for vertex cover.

Greedy Approximation for VC

GreedyVC(G=(V,E)) {
C = empty-set;
while (E is nonempty) do {
let u be the vertex of maximum degree in G;
add u to C;
remove from E all edges incident to u;

}

return C;

It is interesting to note that on the example shown in the figure, the greedy heuristic actually succeeds in find-
ing the optimum vertex cover. Can we prove that the greedy heuristic always outperforms the stupid 2-for-1
heuristic? The surprising answer is an emphatic “no”. In fact, it can be shown that the greedy heuristic does
not even have a constant performance bound. That is, it can perform arbitrarily poorly compared to the optimal
algorithm. It can be shown that the ratio bound grow®#éeg n), wheren is the number of vertices. (We leave

Lecture Notes 79 CMSC 451

this as a moderately difficult exercise.) However, it should also be pointed out that the vertex cover constructed
by the greedy heuristic is (for typical graphs) smaller than that one computed by the 2-for-1 heuristic, so it would
probably be wise to run both algorithms and take the better of the two.

Traveling Salesman Problem: In the Traveling Salesperson Problem (TSP) we are given a complete undirected
graph with nonnegative edge weights, and we want to find a cycle that visits all vertices and is of minimum
cost. Letc(u, v) denote the weight on edde, v). Given a set of edged forming a tour we define(A) to be
the sum of edge weights iA. Last time we mentioned that TSP (posed as a decision problem) is NP-complete.

For many of the applications of TSP, the problem satisfies something callétbiigle inequality Intuitively,
this says that the direct path fromto w, is never longer than an indirect path. More formally, foralh, w € V

c(u,w) < e(u,v) + (v, w).

There are many examples of graphs that satisfy the triangle inequality. For example, given any weighted graph,
if we definec(u,v) to be the shortest path length betweemnd v (computed, say by the Floyd-Warshall
algorithm), then it will satisfy the triangle inequality. Another example is if we are given a set of points in
the plane, and define a complete graph on these points, where) is defined to be the Euclidean distance
between these points, then the triangle inequality is also satisfied.

When the underlying cost function satisfies the triangle inequality there is an approximation algorithm for TSP
with a ratio-bound of 2. (In fact, there is a slightly more complex version of this algorithm that has a ratio bound
of 1.5, but we will not discuss it.) Thus, although this algorithm does not produce an optimal tour, the tour that
it produces cannot be worse than twice the cost of the optimal tour.

The key insight is to observe that a TSP with one edge removed is a spanning tree. However it is not necessarily
a minimum spanning tree. Therefore, the cost of the minimum TSP tour is at least as large as the cost of the
MST. We can compute MST's efficiently, using, for example, either Kruskal's or Prim’s algorithm. If we can
find some way to convert the MST into a TSP tour while increasing its cost by at most a constant factor, then
we will have an approximation for TSP. We shall see that if the edge weights satisfy the triangle inequality, then
this is possible.

Here is how the algorithm works. Given any free tree there is a tour of the tree calléceaaround tourthat
traverses the edges of the tree twice, once in each direction. The figure below shows an example of this.

— start start
Z)a / LR ’ %
MST Twice—around tour Shortcut tour Optimum tour

Fig. 60: TSP Approximation.

This path is not simple because it revisits vertices, but we can make it simgledtycutting that is, we skip

over previously visited vertices. Notice that the final order in which vertices are visited using the short-cuts is
exactly the same as a preorder traversal of the MST. (In fact, any subsequence of the twice-around tour which
visits each vertex exactly once will suffice.) The triangle inequality assures us that the path length will not
increase when we take short-cuts.

Claim: Approx-TSP has a ratio bound of 2.

Proof: Let H denote the tour produced by this algorithm andiétbe the optimum tour. Léf be the minimum
spanning tree. As we said before, since we can remove any eddgé afsulting in a spanning tree, and

Lecture Notes 80 CMSC 451

TSP Approximation

ApproxTSP(G=(V,E)) {
T = minimum spanning tree for G
r = any vertex
L = list of vertices visited by a preorder walk ot T
starting with r
return L

sinceT is the minimum cost spanning tree we have
e(T) < c(H™).

Now observe that the twice around tourBfhas cosRc¢(T), since every edge iff’ is hit twice. By the
triangle inequality, when we short-cut an edgdao form H we do not increase the cost of the tour, and
so we have

Combining these we have

Lecture 22: The k-Center Approximation

Read: Today's material is not covered in CLR.

Facility Location: Imagine that Blockbuster Video wants to open a 50 stores in some city. The company asks you to
determine the best locations for these stores. The condition is that you are to minimize the maximum distance
that any resident of the city must drive in order to arrive at the nearest store.

If we model the road network of the city as an undirected graph whose edge weights are the distances between
intersections, then this is an instance oftheenter problemin thek-center problem we are given an undirected
graphG = (V, E') with nonnegative edge weights, and we are given an integ&he problem is to compute

a subset ok verticesC C V, calledcenters such that the maximum distance between any vertéx and its

nearest center i@ is minimized. (The optimization problem seeks to minimize the maximum distance and the
decision problem just asks whether there exists a set of centers that are within a given distance.)

More formally, letG = (V, E) denote the graph, and let(«, v) denote the weight of edde:, v). (w(u,v) =

w(v,u) because is undirected.) We assume that all edge weights are nonnegative. For each pair of vertices,
u,v € V, letd(u,v) = d(u,v) denote thedistancebetweeru to v, that is, the length of the shortest path from

u tov. (Note that the shortest path distance satisfies the triangle inequality. This will be used in our proof.)

Consider a subs&t C V of vertices, thecenters For each vertex € V we can associate it with its nearest
center inC. (This is the nearest Blockbuster store to your house). For each egnterC we define its
neighborhoodo be the subset of vertices for whichis the closest center. (These are the houses that are closest
to this center. See Fig. 61.) More formally, define:

Vie) = {veV]d,cg) <d,c), fori#j}.
Let us assume for simplicity that there are no ties for the distances to the closest center (or that any such ties have

been broken arbitrarily). The¥i(c1), V(ca), ..., V(cx) forms apartition of the vertex set ofz. Thebottleneck
distanceassociated with each center is the distance to its farthest veriéjn, that is,

D(c;) = ,nax d(v, ¢;).

Lecture Notes 81 CMSC 451

Input graph (k=3) Optimumum Cost = 7

Fig. 61: Thek-center problem with optimum centersand neighborhood set$(c;).

Finally, we define the overaliottleneck distanc® be

D(C) = D(c;).

(€) = max D(c;)

This is the maximum distance of any vertex from its nearest center. This distance is critical because it represents
the customer that must travel farthest to get to the nearest facilitpottieneck vertexGiven this notation, we

can now formally define the problem.

k-center problem: Given a weighted undirected gragh = (V, E), and an integek < |V|, find a subset
C C V of sizek such thatD(C) is minimized.

The decision-problem formulation of tkecenter problem is NP-complete (reduction from dominating set). A
brute force solution to this problem would involve enumeratingzadlement of subsets df, and computing

D(C) for each one. However, letting = V| andk, the number of possible subsets(J§ = ©(n*). If k is

a function ofn (which is reasonable), then this an exponential number of subsets. Given that the problem is
NP-complete, it is highly unlikely that a significantly more efficient exact algorithm exists in the worst-case. We
will show that there does exist an efficient approximation algorithm for the problem.

Greedy Approximation Algorithm: Our approximation algorithm is based on a simple greedy algorithm that pro-

duces a bottleneck distané(C') that is not more than twice the optimum bottleneck distance. We begin by
letting the first center; be anyvertex in the graph (the lower left vertex, say, in the figure below). Compute

the distances between this vertex and all the other vertices in the graph (Fig. 62(b)). Consider the vertex that is
farthest from this center (the upper right vertex at distance 23 in the figure). This the bottleneck veftg¥.for

We would like to select the next center so as to reduce this distance. So let us just make it the next center, called
c2. Then again we compute the distances from each vertex in the graphclogbeof ¢; andes. (See Fig. 62(c)

where dashed lines indicate which vertices are closer to which center). Again we consider the bottleneck vertex
for the current centere;, co}. We place the next center at this vertex (see Fig. 62(d)). Again we compute the
distances from each vertex to its nearest center. Repeat this uktitetiters have been selected. In Fig. 62(d),

the final three greedy centers are shaded, and the final bottleneck distance is 11.

Although the greedy approach has a certain intuitive appeal (because it attempts to find the vertex that gives the
bottleneck distance, and then puts a center right on this vertex), it is not optimal. In the example shown in the

figure, the optimum solution (shown on the right) has a bottleneck cost of 9, which beats the 11 that the greedy

algorithm gave.

Here is a summary of the algorithm. For each vettebet d[u] denote the distance to the nearest center.

We know from Dijkstra’s algorithm how to compute the shortest path from a single source to all other vertices
in the graph. One way to solve the distance computation step above would be to invoke Dijkstra’s algorithm
times. But there is an easier way. We can modify Dijkstra’s algorithm to operatmaliple sourcealgorithm.

In particular, in the initialization of Dijkstra’s single source algorithm, it sét§ = 0 andpreds] = null. In

Lecture Notes 82 CMSC 451

Greedy Cost =11

Fig. 62: Greedy approximation tecenter.

Greedy Approximation fok-center

KCenterApprox(G, k) {
C = empty_set
for each u in V do
d[u] = INFINITY
for i = 1 to k do { /I main loop

Find the vertex u such that d[u] is maximum
Add u to C /Il u is the current bottleneck vertex

/I update distances
Compute the distance from each vertex v to its closest
vertex in C, denoted d[v]

/I initialize distances

}
return C /I final centers

Lecture Notes 83 CMSC 451

the modified multiple source version, we do this &irthe vertices of”. The final greedy algorithm involves
running Dijkstra’s algorithni: times (once for each time through the for-loop). Recall that the running time of
Dijkstra’s algorithm isO((V + E)log V). Under the reasonable assumption that V, this isO(Elog V).
Thus, the overall running time @(kFE log V).

Approximation Bound: How bad could greedy be? We will argue that it has a ratio bound of 2. To see that we can
get a factor of 2, consider a setoft 1 vertices arranged in a linear graph, in which all edges are of weight 1.
The greedy algorithm might pick any initial vertex that it likes. Suppose it picks the leftmost vertex. Then the
maximum (bottleneck) distance is the distance to the rightmost vertex whichfisve had instead chosen the
vertex in the middle, then the maximum distance would only. i which is better by a factor of 2.

Greedy O—O—O—O-0O-0O-0O-0O-0O-0O-0O Cost=n

Opt O—CO—O—0O—-0O—-0-0O-O-0O-0—0 Cost=n/2
Fig. 63: Worst-case for greedy.

We want to show that this approximation algorithm always produces a final distyd¢ethat is within a factor
of 2 of the distance of the optimal solution.

LetO = {01,049, ..., 0%} denote the centers of the optimal solution (shown as black dots in Fig. 64, and the lines
show the partition into the neighborhoods for each of these points)Dtet D(O) be the optimal bottleneck
distance.

LetG = {q1,92,-.-,9x} be the centers found by the greedy approximation (shown as white dots in the figure

below). Also, letg; 11 denote the next center thabuld havebeen added next, that is, the bottleneck vertex for
G. Let D(G) denote the bottleneck distance f6r Notice that the distance frog), ;1 to its nearest center is
equalD(G). The proof involves a simple application of the pigeon-hole principal.

Fig. 64: Analysis of the greedy heuristic fbr= 5. The greedy centers are given as white dots and the optimal centers
as black dots. The regions represent the neighborhood’set$ for the optimal centers.

Theorem: The greedy approximation has a ratio bound of 2, thd(&')/D* < 2.

Proof: LetG' = {¢1,92,---, 0k, gr+1} b€ the(k + 1)-element set consisting of the greedy centers together
with the next greedy centey..; First observe that for # j, d(g;, g;) > D(G). This follows as a result of
our greedy selection strategy. As each center is selected, it is selected to be at the maximum (bottleneck)
distance from all the previous centers. As we add more centers, the maximum distance between any pair
of centers decreases. Since the final bottleneck distari@éGg, all the centers are at least this far apart
from one another.

Lecture Notes 84 CMSC 451

Eachg; € G’ is associated with its closest center in the optimal solution, that is, each beloWgs, {0
for somem. Because there avecenters inD, andk + 1 elements in’, it follows from the pigeon-hole
principal, that at least two centers @f are in the same sé&f(o,,,) for somem. (In the figure, the greedy
centersy, andgs are both inl’(o2)). Let these be denoted andg;.

Since D* is the bottleneck distance f@?, we know that the distance from to oy, is of length at most
D* and similarly the distance fromy, to g; is at mostD*. By concatenating these two paths, it follows
that there exists a path of leng®th* from g; to g;, and hence we haw¥g;, g;) < 2D*. But from the
comments above we hadgg;, g;) > D(G). Therefore,

D(G) < d(gi,9;5) < 2D,

from which the desired ratio follows.

Lecture 23: Approximations: Set Cover and Bin Packing
Read: Set cover is covered in Chapt 35.3. Bin packing is covered as an exercise in CLRS.

Set Cover: The set cover problem is a very important optimization problem. You are given g ¥afr) where
X = {z1,29,..., 2y} is afinite set (a domain of elements) afid= {57, 5,,...,S,} is a family of subsets
of X, such that every element &f belongs to at least one set Bf

Consider a subset C F. (This is a collection of sets oveX.) We say thatC' coversthe domain if every
element ofX is in some set of’, that is

S;eC

The problem is to find the minimum-sized subégbf F' that coversX. Consider the example shown below.
The optimum set cover consists of the three $6tg5 .54, S5}

Sy ° ° °
o‘o o‘
o‘o .‘Sz

56[° °)

- J

Fig. 65: Set cover.

Set cover can be applied to a number of applications. For example, suppose you want to set up security cameras
to cover a large art gallery. From each possible camera position, you can see a certain subset of the paintings.
Each such subset of paintings is a set in your system. You want to put up the fewest cameras to see all the
paintings.

Complexity of Set Cover: We have seen special cases of the set cover problems that are NP-complete. For example,
vertex cover is a type of set cover problem. The domain to be covered are the edges, and each vertex covers the
subset of incident edges. Thus, the decision-problem formulation of set cover (“does there exist a set cover of
size at most?") is NP-complete as well.

There is a factor-2 approximation for the vertex cover problem, but it cannot be applied to generate a factor-
2 approximation for set cover. In particular, the VC approximation relies on the fact that each element of the
domain (an edge) is in exactly 2 sets (one for each of its endpoints). Unfortunately, this is not true for the general

Lecture Notes 85 CMSC 451

set cover problem. In fact, it is known that there is no constant factor approximation to the set cover problem,
unless P= NP. This is unfortunate, because set cover is one of the most powerful NP-complete problems.

Today we will show that there is a reasonable approximation algorithngréezly heuristicwhich achieves
an approximation bound dfim, wherem = |X|, the size of the underlying domain. (The book proves a
somewhat stronger result, that the approximation factdn of’ wherem' < m is the size of the largest set in
F. However, their proof is more complicated.)

Greedy Set Cover: A simple greedy approach to set cover works by at each stage selecting the set that covers the
greatest number of “uncovered” elements.

Greedy Set Cover
Greedy-Set-Cover(X, F) {

Uu=X /' U are the items to be covered
C = empty /I C will be the sets in the cover
while (U is nonempty) { /I there is someone left to cover

select S in F that covers the most elements of U

add S to C

u=uU-S
}
return C

For the example given earlier the greedy-set cover algorithm would sglgsince it covers 6 out of 12 ele-
ments), thenSg (since it covers 3 out of the remaining 6), thés (since it covers 2 of the remaining 3) and
finally S3. Thus, it would return a set cover of size 4, whereas the optimal set cover has size 3.

What is the approximation factor? The problem with the greedy set cover algorithm is that it can be “fooled” into
picking the wrong set, over and over again. Consider the following example. The optimal set cover consists of
setsS; and.Sg, each of size 16. Initially all three sefs, S5, and.Ss have 16 elements. If ties are broken in the
worst possible way, the greedy algorithm will first select $gtsWe remove all the covered elements. N8y
S5 and S all cover 8 of the remaining elements. Again, if we choose posdys chosen. The pattern repeats,
choosingSs (size 4),59, (size 2) and finallyS; andSg (each of size 1).

Thus, the optimum cover consisted of two sets, but we picked rodghly wherem = | X|, for a ratio bound
of (Igm)/2. (Recall thelg denotes logarithm base 2.) There were many cases where ties were broken badly
here, but it is possible to redesign the example such that there are no ties and yet the algorithm has essentially
the same ratio bound.

$4S3 S2 Sl

SS[oooooooooooooooo Optimum: {S5, S6}

SG[oooooooooooooooo Greedy: {S1, S2, S3, S4, S5, S6}

A

Fig. 66: An example in which the Greedy Set cover performs poorly.

However we will show that the greedy set cover heuristic nevers performs worse than a fdatot. ofNote
that this is natural log, not base 2.)

Before giving the proof, we need one important mathematical inequality.

(1) <
1—-) <-.
C (&

wheree is the base of the natural logarithm.

Lemma: Forallec > 0,

Lecture Notes 86 CMSC 451

Proof: We use the fact that for alt, 1 + = < ¢*. (The two functions are equal whan= 0.) Now, if we
substitute—1/c for = we have(1 — 1/c) < e~'/¢, and if we raise both sides to tiath power, we have the
desired result.

The theorem of the approximation bound for bin packing proven here is a bit weaker from the one in CLRS, but
| think it is easier to understand.

Theorem: Greedy set cover has the ratio bound of at nost wherem = | X|.

Proof: Let ¢ denote the size of the optimum set cover, and ldenote the size of the greedy set cover minus 1.
We will show thatg/c < lnm. (This is not quite what we wanted, but we are correct to within 1 set.)
Initially, there aremy = m elements left to be covered. We know that there is a cover ofs{tee
optimal cover) and therefore by the pigeonhole principle, there must be at least one set that covers at least
mg/c elements. (Since otherwise, if every set covered lessthgft elements, then no collection of
sets could cover allny elements.) Since the greedy algorithm selects the largest set, it will select a set
that covers at least this many elements. The number of elements that remain to be covered is at most
my =mg —mg/c=mp(l —1/c).
Applying the argument again, we know that we can cover theselements with a cover of size(the
optimal cover), and hence there exists a subset that covers atilgaselements, leaving at most, =
my(1 —1/c) = mo(1 — 1/c)? elements remaining.
If we apply this argumeny times, each time we succeed in covering at least a fractigh of1/c) of the
remaining elements. Then the number of elements that remain is uncoveregsetemhave been chosen
by the greedy algorithm is at most, = mo(1 — 1/c)9.
How long can this go on? Consider the largest valug sich that after removing all but the last set of the
greedy cover, we still have some element remaining to be covered. Thus, we are interested in the largest

value ofg such that
1 g
1<m (1 —) .
C

We can rewrite this as

By the inequality above we have

1 g/c
1§m{—} .
e

Now, if we multiply by e?/¢ and take natural logs we get thasatisfies:

e9c <m = g<lnm.

c

This completes the proof.

Even though the greedy set cover has this relatively bad ratio bound, it seems to perform reasonably well in
practice. Thus, the example shown above in which the approximation bodiadis /2 is not “typical” of set
cover instances.

Bin Packing: Bin packing is another well-known NP-complete problem, which is a variant of the knapsack problem.
We are given a set of objects, where; denotes thaizeof theith object. It will simplify the presentation to
assume thal < s; < 1. We want to put these objects into a set of bins. Each bin can hold a subset of objects
whose total size is at most 1. The problem is to partition the objects among the bins so as to use the fewest
possible bins. (Note that if your bin size is not 1, then you can reduce the problem into this form by simply
dividing all sizes by the size of the bin.)

Lecture Notes 87 CMSC 451

Bin packing arises in many applications. Many of these applications involve not only the size of the object but
their geometric shape as well. For example, these include packing boxes into a truck, or cutting the maximum
number of pieces of certain shapes out of a piece of sheet metal. However, even if we ignore the geometry,
and just consider the sizes of the objects, the decision problem is still NP-complete. (The reduction is from the
knapsack problem.)

Here is a simple heuristic algorithm for the bin packing problem, calledittefit heuristic We start with an
unlimited number of empty bins. We take each object in turn, and find the first bin that has space to hold this
object. We put this object in this bin. The algorithm is illustrated in the figure below. We claim that first-fit uses
at most twice as many bins as the optimum, that is, if the optimal solutiorbtidéss, and first-fit uses bins,

then

bre
— < 2.
b =

R

S
= s % [
.
.
.

Fig. 67: First-fit Heuristic.

Theorem: The first-fit heuristic achieves a ratio bound of 2.

Proof: Consider an instancsy, .. ., s, } of the bin packing problem. Lef =)", s, denote the sum of all the
object sizes. Let* denote the optimal number of bins, alyddenote the number of bins used by first-fit.
First observe thai* > S. This is true, since no bin can hold a total capacity of more than 1 unit, and even
if we were to fill each bin exactly to its capacity, we would need at I8dsins. (In fact, since the number
of bins is an integer, we would need at leaS bins.)
Next, we claim thaty < 2S. To see this, let; denote the total size of the objects that first-fit puts into
bini. Consider bing andi + 1 filled by first-fit. Assume that indexing is cyclical, soiifs the last index
(¢ = bg) theni + 1 = 1. We claim that; + ¢;41 > 1. If not, then the contents of binsand: + 1 could
both be put into the same bin, and hence first-fit would never have started to fill the second bin, preferring
to keep everything in the first bin. Thus we have:

bt

> (ti+tip1) > by

i=1
But this sum adds up all the elements twice, so it has a total val®S of Thus we havesS > by.
Combining this with the fact thdt* > S we have
by <28 < 20",
implying thatbg/b* < 2, as desired.

There are in fact a number of other heuristics for bin packing. Another exambésidit which attempts to

put the object into the bin in which it fits most closely with the available space (assuming that there is sufficient
available space). There is also a variant of first-fit, cdfilest fit decreasingin which the objects are first sorted

in decreasing order of size. (This makes intuitive sense, because it is best to first load the big items, and then try
to squeeze the smaller objects into the remaining space.)

Lecture Notes 88 CMSC 451

A more careful proof establishes that first fit has a approximation ratio that is a bit smaller than 2, and in fact
17/10 is possible. Best fit has a very similar bound. First fit decreasing has a significantly better bound of
11/9 =1.222....

Lecture 24: Final Review

Overview: This semester we have discussed general approaches to algorithm design. The intent has been to investi-
gate basic algorithm design paradigms: dynamic programming, greedy algorithms, depth-first search, etc. And
to consider how these techniques can be applied on a number of well-defined problems. We have also discussed
the class NP-completeness, of problems that believed to be very hard to solve, and finally some examples of
approximation algorithms.

How to use this information: In some sense, the algorithms you have learned here are rarely immediately applicable
to your later work (unless you go on to be an algorithm designer) because real world problems are always
messier than these simple abstract problems. However, there are some important lessons to take out of this
class.

Develop a clean mathematical model:Most real-world problems are messy. An important first step in solving
any problem is to produce a simple and clean mathematical formulation. For example, this might involve
describing the problem as an optimization problem on graphs, sets, or strings. If you cannot clearly
describe what your algorithm is supposed to do, it is very difficult to know when you have succeeded.

Create good rough designs:Before jumping in and starting coding, it is important to begin with a good rough
design. If your rough design is based on a bad paradigm (e.g. exhaustive enumeration, when depth-first
search could have been applied) then no amount of additional tuning and refining will save this bad design.

Prove your algorithm correct: Many times you come up with an idea that seems promising, only to find out
later (after a lot of coding and testing) that it does not work. Prove that your algorithm is correct before
coding. Writing proofs is not always easy, but it may save you a few weeks of wasted programming time.
If you cannot see why it is correct, chances are that it is not correct at all.

Can it be improved?: Once you have a solution, try to come up with a better one. Is there some reason why a
better algorithm does not exist? (That is, can you establish a lower bound?) If your solution is exponential
time, then maybe your problem is NP-hard.

Prototype to generate better designsWe have attempted to analyze algorithms from an asymptotic perspec-
tive, which hides many of details of the running time (e.g. constant factors), but give a general perspective
for separating good designs from bad ones. After you have isolated the good designs, then it is time to start
prototyping and doing empirical tests to establish the real constant factors. A good profiling tool can tell
you which subroutines are taking the most time, and those are the ones you should work on improving.

Still too slow?: If your problem has an unacceptably high execution time, you might consider an approximation
algorithm. The world is full of heuristics, both good and bad. You should develop a good heuristic, and if
possible, prove a ratio bound for your algorithm. If you cannot prove a ratio bound, run many experiments
to see how good the actual performance is.

There is still much more to be learned about algorithm design, but we have covered a great deal of the basic
material. One direction is to specialize in some particular area, e.g. string pattern matching, computational
geometry, parallel algorithms, randomized algorithms, or approximation algorithms. It would be easy to devote

an entire semester to any one of these topics.

Another direction is to gain a better understanding of average-case analysis, which we have largely ignored.
Still another direction might be to study numerical algorithms (as covered in a course on numerical analysis),
or to consider general search strategies such as simulated annealing. Finally, an emerging area is the study of
algorithm engineering, which considers how to design algorithms that are both efficient in a practical sense, as
well as a theoretical sense.

Lecture Notes 89 CMSC 451

Material for the final exam:

Old Material: Know general results, but | will not ask too many detailed questions. Do not forget DFS and
DP. You will likely an algorithm design problem that will involve one of these two techniques.

All-Pairs Shortest paths: (Chapt 25.2.)
Floyd-Warshall Algorithm: All-pairs shortest paths, arbitrary edge weights (no negative cost cycles).
Running timeO(V3).
NP-completeness:(Chapt 34.)
Basic concepts:Decision problems, polynomial time, the class P, certificates and the class NP, polynomial
time reductions.
NP-completeness reductionsYou are responsible for knowing the following reductions.
3-coloring to clique cover.
e 3SAT to Independent Set (IS).
Independent Set to Vertex Cover and Clique.
e \ertex Cover to Dominating Set.
e Vertex Cover to Subset Sum.

It is also a good idea to understand all the reductions that were used in the homework solutions, since
modifications of these will likely appear on the final.

NP-complete reductions can be challenging. If you cannot see how to solve the problem, here are some
suggestions for maximizing partial credit.

All NP-complete proofs have a very specific form. Explain that you know the template, and try to fill in as
many aspects as possible. Suppose that you want to prove that some pildéiP-complete.
e B € NP. This almost always easy, so don’t blow it. This basically involves specifying the certificate.
The certificate is almost always the thing that the problem is asking you to find.

e For some known NP-complete probletn A <p B. This means that you want to find a polynomial
time function f that maps an instance of to an instance o3. (Make sure to get the direction
correct!)

e Show the correctness of your reduction, by showingthatA if and only if f(x) € B. First suppose
that you have a solution te and show how to map this to a solution ffz). Then suppose that you
have a solution tg'(x) and show how to map this to a solution far

If you cannot figure out whaf is, at least tell me what you would likéto do. Explain which elements
of problemA will likely map to which elements of proble®. Remember that you are trying to translate
the elements of one problem into the common elements of the other problem.

| try to make at least one reduction on the exam similar to one that you have seen before, so make sure that
understand the ones that we have done either in class or on homework problems.
Approximation Algorithms: (Chapt. 35, up through 35.2.)

Vertex cover: Ratio bound of 2.

TSP with triangle inequality: Ratio bound of 2.

Set Cover: Ratio bound oinm, wherem = | X|.

Bin packing: Ratio bound of 2.

k-center: Ratio bound of 2.

Many approximation algorithms are simple. (Most are based on simple greedy heuristics.) The key to
proving many ratio bounds is first coming up with a lower bound on the optimal solution (e.gt TSP

MST). Next, provide an upper bound on the cost of your heuristic relative to this same quantity (e.g., the
shortcut twice-around tour for the MST is at most twice the MST cost).

Lecture Notes 90 CMSC 451

Supplemental Lecture 1: Asymptotics

Read: Chapters 2-3 in CLRS.

Asymptotics: The formulas that are derived for the running times of program may often be quite complex. When
designing algorithms, the main purpose of the analysis is to get a sense for the trend in the algorithm’s running
time. (An exact analysis is probably best done by implementing the algorithm and measuring CPU seconds.) We
would like a simple way of representing complex functions, which captures the essential growth rate properties.
This is the purpose aisymptotics

Asymptotic analysis is based on two simplifying assumptions, which hold in most (but not all) cases. But it is
important to understand these assumptions and the limitations of asymptotic analysis.

Large input sizes: We are most interested in how the running time grows for large values of

Ignore constant factors: The actual running time of the program depends on various constant factors in the im-

plementation (coding tricks, optimizations in compilation, speed of the underlying hardware, etc). There-
fore, we will ignore constant factors.

The justification for considering largeis that ifn is small, then almost any algorithm is fast enough. People are
most concerned about running times for large inputs. For the most part, these assumptions are reasonable when
making comparisons between functions that have significantly different behaviors. For example, suppose we
have two programs, one whose running tim&'ign) = n* and another whose running timeZis(n) = 100n.

(The latter algorithm may be faster because it uses a more sophisticated and complex algorithm, and the added
sophistication results in a larger constant factor.) For sm#dl.g.,n < 10) the first algorithm is the faster of

the two. But as: becomes larger the relative differences in running time become much greater. Assuming one
million operations per second.

n | Ti(n) T3(n) T1(n)/Tz(n)

10 | 0.001 sec| 0.001 sec 1
100 | 1sec 0.01 sec 100
1000 | 17 min 0.1 sec 10,000
10,000| 11.6 days| 1 sec 1,000,000

The clear lesson is that as input sizes grow, the performance of the asymptotically poorer algorithm degrades
much more rapidly.

These assumptions are not always reasonable. For example, in any particular applidatefixed value. It

may be the case that one function is smaller than another asymptotically, but for your valuae@tsymptot-
ically larger value is fine. Most of the algorithms that we will study this semester will have both low constants
and low asymptotic running times, so we will not need to worry about these issues.

Asymptotic Notation: To represent the running times of algorithms in a simpler form, weasgeptotic notation
which essentially represents a function by its fastest growing term and ignores constant factors. For example,
suppose we have an algorithm whose (exact) worst-case running time is given by the following formula:

T(n) = 13n® + 5n® — 17n + 16.

As n becomes large, thE3n3 term dominates the others. By ignoring constant factors, we might say that the
running time grows “on the order of#i?, which will will express mathematically a&(n) € ©(n?). This
intuitive definition is fine for informal use. Let us consider how to make this idea mathematically formal.

Definition: Given any functiory(n), we define®(g(n)) to be a set of functions:

©(g(n)) ={f(n) | there exist strictly positive constants, cz, andn, such that
0 <c19(n) < f(n) < cog(n) foralln > ng}.

Lecture Notes 91 CMSC 451

Let’s dissect this definition. Intuitively, what we want to say witf(#) € ©(g(n))" is that f(n) andg(n) are
asymptotically equivaleniThis means that they have essentially the same growth rates fonlaFge example,
functions such as

dn?, (8n* +2n—-3), (n?/5++/n—10logn), and n(n—3)

are all intuitively asymptotically equivalent, since madecomes large, the dominant (fastest growing) term is
some constant times?. In other words, they all growuadraticallyin ». The portion of the definition that
allows us to select; andc; is essentially saying “the constants do not matter because you may;parid

c2 however you like to satisfy these conditions.” The portion of the definition that allows us to sgléxt
essentially saying “we are only interested in largsince you only have to satisfy the condition foralbigger
thanng, and you may make, as big a constant as you like.”

An example: Consider the functiorf(n) = 8n? + 2n — 3. Our informal rule of keeping the largest term and
throwing away the constants suggests that) € ©(n?) (since f grows quadratically). Let's see why the
formal definition bears out this informal observation.

We need to show two things: first, thatn) does grows asymptotically at least as fashAsand second, that
f(n) grows no faster asymptotically thard. We’'ll do both very carefully.

Lower bound: f(n) grows asymptotically at least as fast@& This is established by the portion of the
definition that reads: (paraphrasing): “there exist positive constar@sdn, such thatf(n) > ¢;n? for
all n > ny.” Consider the following (almost correct) reasoning:

f(n) =8n®+2n—3>8n*—3="Tn"+ (n* —3) > Tn® = T’

Thus, if we setc; = 7, then we are done. But in the above reasoning we have implicitly made the
assumptions that» > 0 andn? — 3 > 0. These are not true for all, but they are true for all sufficiently
largen. In particular, ifn > /3, then both are true. So let us selegt = /3, and now we have
f(n) > cin?, for alln > ng, which is what we need.

Upper bound: f(n) grows asymptotically no faster tha: This is established by the portion of the definition
that reads “there exist positive constantsandng, such thatf(n) < can? for all n > ny.” Consider the
following reasoning (which is almost correct):

f(n) =8n%+2n — 3 < 8n? + 2n < 8n? 4 2n? = 10n°.

This means that if we let; = 10, then we are done. We have implicitly made the assumption that
2n < 2n2. This is not true for alh, but it is true for alln > 1. So, let us seleciy, = 1, and now we have
f(n) < con? for all n > ng, which is what we need.

From the lower bound, we have, > /3 and from the upper bound we hawg > 1, and so combining these
we letng be the larger of the twaz, = v/3. Thus, in conclusion, if we let; = 7, ¢, = 10, andng = v/3, then
we have

0 <c1g(n) < f(n) < cag(n) forall n > ng,

and this is exactly what the definition requires. Since we have shown (by construction) the existence of con-
stantscy, ¢, andng, we have established th#fn) € n%. (Whew! That was a lot more work than just the
informal notion of throwing away constants and keeping the largest term, but it shows how this informal notion
is implemented formally in the definition.)

Now let’s show whyf () is not in some other asymptotic class. First, let's show fita) ¢ ©(n). If this were

true, then we would have to satisfy both the upper and lower bounds. It turns out that the lower bound is satisfied
(becausef(n) grows at least as fast asymptoticallyrgs But the upper bound is false. In particular, the upper
bound requires us to show “there exist positive constanendng, such thatf(n) < con foralln > ng.”
Informally, we know that as becomes large enougtin) = 8n? + 2n — 3 will eventually exceed,n no matter

Lecture Notes 92 CMSC 451

how large we make. (since f(n) is growing quadratically andsn is only growing linearly). To show this
formally, suppose towards a contradiction that constangndn, did exist, such thaén? + 2n — 3 < cyn for
all n > ng. Since this is true for all sufficiently largethen it must be true in the limit astends to infinity. If
we divide both side by we have:

n— oo

3
lim (8n+2— —> < ca.
n

It is easy to see that in the limit the left side tendsxto and so no matter how largg is, this statement is
violated. This means thgt(n) ¢ ©(n).

Let's show thatf(n) ¢ ©(n3). Here the idea will be to violate the lower bound: “there exist positive constants
¢1 andnyg, such thatf(n) > ¢;n? for alln > ng.” Informally this is true becausg(n) is growing quadratically,

and eventually any cubic function will exceed it. To show this formally, suppose towards a contradiction that
constants; andny did exist, such thadn? +2n — 3 > ¢;n? for all n > ng. Since this is true for all sufficiently
largen then it must be true in the limit astends to infinity. If we divide both side by® we have:

I 8 2 3 S
1m —+—2—$ > Cq.

n— o0 n n

It is easy to see that in the limit the left side tends to 0, and so the only way to satisfy this requirement is to set
¢1 = 0, but by hypothesis; is positive. This means thgt(n) ¢ O(n?).

O-notation and Q2-notation: We have seen that the definition®fnotation relies on proving both a lower and upper
asymptotic bound. Sometimes we are only interested in proving one bound or the othéxnbletion allows
us to state asymptotic upper bounds and®heotation allows us to state asymptotic lower bounds.

Definition: Given any functiory(n),

O(g(n)) ={f(n) | there exist positive constant@ndn, such that
0 < f(n) < cg(n)foralln > ng}.

Definition: Given any functiory(n),

Q(g(n)) ={f(n) | there exist positive constant@andn, such that
0 <cg(n) < f(n)foralln > no}.

Compare this with the definition &d. You will see thatO-notation only enforces the upper bound of the
definition, andQ2-notation only enforces the lower bound. Also observe fhat) € O(g(n)) if and only if
f(n) € O(g(n)) and f(n) € Q(g(n)). Intuitively, f(n) € O(g(n)) means thajf (n) grows asymptotically at
the same rate or slower thafrn). Whereasf(n) € O(g(n)) means thaf (n) grows asymptotically at the same
rate or faster thap(n).

For examplef(n) = 3n? + 4n € O(n?) butitis not inO(n) or ©(n?). But f(n) € O(n?) and inO(n?) but
notinO(n). Finally, f(n) € Q2(n?) and inQ2(n) but not inQ(n?).

The Limit Rule for ©: The previous examples which used limits suggest alternative way of showing(thatc
©(g(n)).

Limit Rule for ©-notation: Given positive functiong’(n) andg(n), if
. f(n)
lim —= =¢,
n—o g(n)

for some constant > 0 (strictly positive but not infinity), therf (n) € ©(g(n)).

Lecture Notes 93 CMSC 451

Limit Rule for O-notation: Given positive functiong (n) andg(n), if

lingoM =c,

g(n)
for some constant > 0 (nonnegative but not infinite), thef(n) € O(g(n)).
Limit Rule for Q-notation: Given positive functiong'(n) andg(n), if

lim M#O

n—o0 g(n)
(either a strictly positive constant or infinity) theiin) € Q(g(n)).

This limit rule can be applied in almost every instance (that | know of) where the formal definition can be used,
and it is almost always easier to apply than the formal definition. The only exceptions that | know of are strange
instances where the limit does not exist (ef(n) = n{1*s")) But since most running times are fairly
well-behaved functions this is rarely a problem.

For example, recall the functiofiin) = 8n? + 2n — 3. To show thatf(n) € ©(n?) we letg(n) = n* and
compute the limit. We have

2420 — 2
fim ST s 23 g

n—oo n2 n—oo n ’]7,2

(since the two fractional terms tend to O in the limit). Since 8 is a nonzero constant, it followg(ihat
©(g(n)).

You may recall the important rules from calculus for evaluating limits. (If not, dredge out your calculus book to
remember.) Most of the rules are pretty self evident (e.g., the limit of a finite sum is the sum of the individual
limits). One important rule to remember is the following:

L'H opital's rule: If f(n) andg(n) both approach 0 or both approashin the limit, then
!
f) _ L P

we g(n) ~ nvee g'(n)’

wheref’(n) andg’(n) denote the derivatives gfandg relative ton.

Exponentials and Logarithms: Exponentials and logarithms are very important in analyzing algorithms. The fol-
lowing are nice to keep in mind. The terminololyy n meanglgn)®.

Lemma: Given any positive constanés> 1, b, andc:

b b
..n . lg’n
lim — =0 lim g
n—oo q" n—oo nNC°

=0.

We won't prove these, but they can be shown by taking appropriate powers, and then applyipgdlsirule.
The important bottom line is that polynomials always grow more slowly than exponentials whose base is greater
than 1. For example:

n°% e 0(2").

For this reason, we will try to avoid exponential running times at all costs. Conversely, logarithmic powers
(sometimes callegolylogarithmic functionsgrow more slowly than any polynomial. For example:

1g°n € O(n).

Lecture Notes 94 CMSC 451

For this reason, we will usually be happy to allow any number of additional logarithmic factors, if it means
avoiding any additional powers af

At this point, it should be mentioned that these last observations are really asymptotic results. They are true
in the limit for largen, but you should be careful just how high the crossover point is. For example, by my
calculations]g®® n < n only for n > 26990 (which is much larger than input size you'll ever see). Thus, you
should take this with a grain of salt. But, for small powers of logarithms, this applies to all reasonably large
input sizes. For examplg? n < n for all n > 16.

Asymptotic Intuition: To get a intuitive feeling for what common asymptotic running times map into in terms of
practical usage, here is a little list.

e O(1): Constant time; you can’t beat it!

e O(logn): This is typically the speed that most efficient data structures operate in for a single access. (E.g.,
inserting a key into a balanced binary tree.) Also it is the time to find an object in a sorted list of tength
by binary search.

e O(n): This is about the fastest that an algorithm can run, given that you@éegtime just to read in all
the data.

e O(nlogn): This is the running time of the best sorting algorithms. Since many problems require sorting
the inputs, this is still considered quite efficient.

e O(n?),0(n?),..... Polynomial time. These running times are acceptable either when the exponent is
small or when the data size is not too large (e.gs 1, 000).

e O(2™),0(3™): Exponential time. This is only acceptable when either (1) your know that you inputs will
be of very small size (e.gr < 50), or (2) you know that this is a worst-case running time that will rarely
occur in practical instances. In case (2), it would be a good idea to try to get a more accurate average case
analysis.

e O(n!),O(n™): Acceptable only for really small inputs (e.g.< 20).

Are their even bigger functions? Definitely! For example, if you want to see a function that grows inconceivably
fast, look up the definition oAckerman'’s functioin our text.

Max Dominance Revisited: Returning to our Max Dominance algorithms, recall that one had a running time of
T1(n) = n? and the other had a running timeBf(n) = nlogn + n(n — 1)/2. Expanding the latter function
and grouping terms in order of their growth rate we have

n? n
Ts(n) = > +nlogn — 5

We will leave it as an easy exercise to show that bbthn) and T»(n) are ©(n?). Although the second
algorithm is twice as fast for large (because of the/2 factor multiplying then? term), this does not represent
a significant improvement.

Supplemental Lecture 2: Max Dominance

Read: Review Chapters 1-4 in CLRS.

Faster Algorithm for Max-Dominance: Recall the max-dominance problem from the last two lectures. So far we
have introduced a simple brute-force algorithm that ra@{n?) time, which operated by comparing all pairs
of points. Last time we considered a slight improvement, which sorted the points byrtbeordinate, and
then compared each point against the subsequent points in the sorted order. However, this improvement, only
improved matters by a constant factor. The question we consider today is whether there is an approach that is
significantly better.

Lecture Notes 95 CMSC 451

A Major Improvement: The problem with the previous algorithm is that, even though we have cut the number of
comparisons roughly in half, each point is still making lots of comparisons. Can we save time by making only
one comparison for each point? The inner while loop is testing to see wiathpoint that followsP[:] in the
sorted list has a largercoordinate. This suggests, that if we knew which point amBfig+ 1,. .., n] had the
maximumy-coordinate, we could just test against that point.

How can we do this? Here is a simple observation. For any set of points, the point with the mamum
coordinate is the maximal point with the smallestoordiante. This suggests that we can sweep the points
backwards, from right to left. We keep track of the indeaf the most recently seen maximal point. (Initially
the rightmost point is maximal.) When we encounter the pBia, it is maximal if and only ifP[i].y > P[j].y.

This suggests the following algorithm.

Max Dominance: Sort and Reverse Scan

MaxDom3(P, n) {
Sort P in ascending order by x-coordinate;

output P[n]; /I last point is always maximal
j=n
for i = n-1 downto 1 {
if (Plil.y >= P[jl.y) { /I is P[i] maximal?
output PJil; /I yes..output it

i = /I P[i] has the largest y so far

The running time of the for-loop is obviousty(n), because there is just a single loop that is executedl
times, and the code inside takes constant time. The total running time is dominated®{ntlug ») sorting
time, for a total ofO(n log n) time.

How much of an improvement is this? Probably the most accurate way to find out would be to code the two up,
and compare their running times. But just to get a feeling, let’s look at the ratio of the running times, ignoring

constant factors:

n2 n

nlgn - lgn
(I use the notationg n to denote the logarithm base12,n to denote the natural logarithm (baseandlogn
when | do not care about the base. Note that a change in base only affects the value of a logarithm function by
a constant amount, so inside@#fnotation, we will usually just writéog n.)

For relatively small values of (e.g. less than 100), both algorithms are probably running fast enough that the
difference will be practically negligible. (Rule 1 of algorithm optimization: Don’t optimize code that is already
fast enough.) On larger inputs, say— 1, 000, the ratio ofn to log n is aboutl000/10 = 100, so there is a 100-

to-1 ratio in running times. Of course, we would need to factor in constant factors, but since we are not using
any really complex data structures, it is hard to imagine that the constant factors will differ by more than, say,
10. For even larger inputs, say,= 1,000, 000, we are looking at a ratio of roughly, 000, 000/20 = 50, 000.

This is quite a significant difference, irrespective of the constant factors.

Divide and Conquer Approach: One problem with the previous algorithm is that it relies on sorting. This is nice
and clean (since it is usually easy to get good code for sorting without troubling yourself to write your own).
However, if you really wanted to squeeze the most efficiency out of your code, you might consider whether you
can solve this problem without invoking a sorting algorithm.

One of the basic maxims of algorithm design is to first approach any problem using one of the standard algorithm
design paradigms, e.g. divide and conquer, dynamic programming, greedy algorithms, depth-first search. We
will talk more about these methods as the semester continues. For this problem, divide-and-conquer is a natural
method to choose. What is this paradigm?

Lecture Notes 96 CMSC 451

Divide: Divide the problem into two subproblems (ideally of approximately equal sizes),
Conquer: Solve each subproblem recursively, and
Combine: Combine the solutions to the two subproblems into a global solution.

How shall we divide the problem? | can think of a couple of ways. One is similar toMergeSortoperates.

Just take the array of poinf3[1..n], and split into two subarrays of equal si#gl..n/2] and P[n/2 + 1..n].
Because we do not sort the points, there is no particular relationship between the points in one side of the list
from the other.

Another approach, which is more reminiscentfickSortis to select a random element from the list, called a
pivot, 2z = P[r], wherer is a random integer in the range from Litcand then partition the list into two sublists,
those elements whosecoordinates are less than or equaktand those that greater than This will not be
guaranteed to split the list into two equal parts, but on average it can be shown that it does a pretty good job.

Let’s consider the first method. (The quicksort method will also work, but leads to a tougher analysis.) Here is
more concrete outline. We will describe the algorithm at a very high level. The input will be a point array, and
a point array will be returned. The key ingredient is a function that takes the maxima of two sets, and merges
them into an overall set of maxima.

Max Dominance: Divide-and-Conquer

MaxDom4(P, n) {

if (n == 1) return {P[1]}; /I one point is trivially maximal
m = n/2; /I midpoint of list

M1 = MaxDom4(P[1..m], m); /I solve for first half

M2 = MaxDom4(P[m+1..n], n-m); /I solve for second half
return MaxMerge(M1, M2); /I merge the results

The general process is illustrated below.

The main question is how the procediMiex Merge() is implemented, because it does all the work. Let us
assume that it returns a list of pointsdarted orderaccording tor-coordinates of the maximal points. Observe
that if a point is to be maximal overall, then it must be maximal in one of the two sublists. However, just
because a point is maximal in some list, does not imply that it is globally maximal. (Considerpdif} in

the example.) However, if it dominates all the points of the other sublist, then we can assert that it is maximal.

| will describe the procedure at a very high level. It operates by walking through each of the two sorted lists of
maximal points. It maintains two pointers, one pointing to the next unprocessed item in each list. Think of these
asfingers Take the finger pointing to the point with the smaltecoordinate. If itsy-coordinate is larger than
they-coordinate of the point under the other finger, then this point is maximal, and is copied to the next position
of the result list. Otherwise it is not copied. In either case, we move to the next point in the same list, and repeat
the process. The result list is returned.

The details will be left as an exercise. Observe that because we spend a constant amount of time processing each
point (either copying it to the result list or skipping over it) the total execution time of this procediie}s

Recurrences: How do we analyze recursive procedures like this one? If there is a simple pattern to the sizes of
the recursive calls, then the best way is usually by setting igg@rence that is, a function which is defined
recursively in terms of itself.

We break the problem into two subproblems of size roughly (we will say exactlyn/2 for simplicity), and
the additional overhead of merging the solution®{s:). We will ignore constant factors, writing(n) just as
n, giving:

Tn) = 1 if n=1,
2r(n/2)+n ifn>1.

g
2
!

Lecture Notes 97 CMSC 451

14, ° (2114) 14”, (2!14)
o(7,23) o (7,13)
121 0 (12,12) 12 (12,12)
° 9,10 ° 9,10)
10+ (4,11) (5,10) o (14,10) 10+ (4,11) (7,) 0 (14,10)
ol | | i
o e (15,7) o . e (15,7)
61 (7,7) 61 (7,7) |
4\ (11,5) o (16,4) 4L (11,5) o (16,4
2+ 5) (13,3) 2+ 5) (13,3) §
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Input and initial partition. Solutions to subproblems.
14 (2,14)
(7,13)
12 ‘ (12,12)
© (9,10
10+ (4,11) _,,(,,) (14,10)
gl s
O (15,7)
6” (717)
O
4 (11,5) (16,4)
[)
2 T .(5’1) (13!3)
2 4 6 8 10 12 14 16

Merged solution.

Fig. 68: Divide and conquer approach.

Lecture Notes

98 CMSC 451

Solving Recurrences by The Master Theorem:There are a number of methods for solving the sort of recurrences
that show up in divide-and-conquer algorithms. The easiest method is to apphasiter Theorenthat is given
in CLRS. Here is a slightly more restrictive version, but adequate for a lot of instances. See CLRS for the more
complete version of the Master Theorem and its proof.

Theorem: (Simplified Master Theorem) Let > 1, b > 1 be constants and 18t(n) be the recurrence
T(n) = aT(n/b) + enk,

defined forn > 0.

Case (1): a > b* thenT'(n) is ©(n'o8s ¢).

Case (2): a = b* thenT'(n) is ©(n* logn).

Case (3): a < b* thenT'(n) is ©(n*).
Using this version of the Master Theorem we can see that in our recurgeac b = 2, andk = 1, soa = b*
and case (2) applies. Thiign) is ©(nlogn).

There many recurrences that cannot be put into this form. For example, the following recurrence is quite
common:T'(n) = 2T(n/2) + nlogn. This solves td'(n) = ©(n log® n), but the Master Theorem (either this
form or the one in CLRS will not tell you this.) For such recurrences, other methods are needed.

Expansion: A more basic method for solving recurrences is thagxgdansion(which CLRS callsteration). This is
a rather painstaking process of repeatedly applying the definition of the recurrence until (hopefully) a simple
pattern emerges. This pattern usually results in a summation that is easy to solve. If you look at the proof in
CLRS for the Master Theorem, it is actually based on expansion.

Let us consider applying this to the following recurrence. We assume fisa power of 3.

T1) = 1
QT(g)—i—n ifn>1

=
S5
I

First we expand the recurrence into a summation, until seeing the general pattern emerge.

n

3

T(n) 2T (5) +n

GG) (0 F) G 5)
n k-1 2in k—1
= 2T (37:)+Z 5 = 2°T (3—k)+n2(2/3)1
i=0 Pt

The parametek is the number of expansions (not to be confused with the valievs# introduced earlier on
the overhead). We want to know how many expansions are needed to arrive at the basis case. To do this we set
n/(3F) = 1, meaning thak = log, n. Substituting this in and using the identit{fe? = v'°8 @ we have:

logz n—1 logz n—1
T(n) = 298 "T(1)+n > (2/3) =240 Y (2/3)"
i=0 =0

Lecture Notes 99 CMSC 451

Next, we can apply the formula for the geometric series and simplify to get:

1—(2/3)l8sm

T _ logs 2
(n) n +n =23
— n10g32 + 3n(1 _ (2/3)10g3n) _ nlog3 2 + STL(l _ n10g3(2/3))
— n10g3 2 + 371(1 _ n(log3 2)—1) — nlogs 2 +3n— 3nlog3 2

= 3n—2nl°8s?,
Sincelog; 2 = 0.631 < 1, T'(n) is dominated by thén term asymptotically, and so it @(n).

Induction and Constructive Induction: Another technique for solving recurrences (and this works for summations
as well) is to guess the solution, or the general form of the solution, and then attempt to verify its correctness
through induction. Sometimes there are parameters whose values you do not know. This is fine. In the course
of the induction proof, you will usually find out what these values must be. We will consider a famous example,
that of theFibonacci numbers

Frb = 0
R =1
F, = F,_1+F,_o forn > 2.

The Fibonacci numbers arise in data structure design. If you study AVL (height balanced) trees in data structures,
you will learn that the minimum-sized AVL trees are produced by the recursive construction given below. Let
L(4) denote the number of leaves in the minimum-sized AVL tree of heigfib construct a minimum-sized

AVL tree of heighti, you create a root node whose children consist of a minimum-sized AVL tree of heights

i — 1 andi — 2. Thus the number of leaves obelyf)) = L(1) =1, L(i) = L(: — 1) + L(i — 2). Itis easy to

see thatl (i) = Fj11.

LO)=1 L(1)=1 L(=2 L(3)=3 L(4)=5

TR,

Fig. 69: Minimum-sized AVL trees.

If you expand the Fibonacci series for a number of terms, you will observéthappears to grow exponentially,
but not as fast a&”. It is tempting to conjecture thdt, < ¢"~!, for some real parametex wherel < ¢ < 2.
We can use induction to prove this and derive a bound.on

Lemma: For all integers: > 1, F,, < ¢~ for some constant, 1 < ¢ < 2.
Proof: We will try to derive the tightest bound we can on the value.of

Basis: For the basis cases we considet 1. Observe thaf; = 1 < ¢°, as desired.

Induction step: For the induction step, let us assume that < ¢™~! wheneverl < m < n. Using this
induction hypothesige will show that the lemma holds feritself, whenevern > 2.
Sincen > 2, we havel,, = F,,_1 + F,,_o. Now, sincen — 1 andn — 2 are both strictly less tham,
we can apply the induction hypothesis, from which we have

F,<¢" 2 +¢" % = ¢" (1 + ¢).

Lecture Notes 100 CMSC 451

We want to show that this is at magt—! (for a suitable choice af). Clearly this will be true if and
only if (1 + ¢) < ¢2. This is not true for all values af (for example it is not true whes = 1 but it

is true whenp = 2.)

At the critical value ofp this inequality will be an equality, implying that we want to find the roots of
the equation

> —¢p—1=0.

By the quadratic formula we have

1+£V1+4 1+£45
5 = .

¢ = 9

Sincev/5 ~ 2.24, observe that one of the roots is negative, and hence would not be a possible
candidate fors. The positive root is

145
b = +2‘[~ 1.618.

There is a very subtle bug in the preceding proof. Can you spot it? The error occurs in the-eadeHere
we claim thatF, = Fy 4+ F, and then we apply the induction hypothesis to bBttand Fy. But the induction
hypothesis only applies fon. > 1, and hence cannot be appliedAg! To fix it we could includeF; as part of
the basis case as well.

Notice not only did we prove the lemma by induction, but we actually determined the vaduerloith makes
the lemma true. This is why this method is caltsmhstructive induction

By the way, the value = %(1 ++/5) is a famous constant in mathematics, architecture and art. It goflden
ratio. Two numbersA and B satisfy the golden ratio if
A _A+B
B A

It is easy to verify thatd = ¢ and B = 1 satisfies this condition. This proportion occurs throughout the world
of art and architecture.

Supplemental Lecture 3: Recurrences and Generating Functions

Read: This material is not covered in CLR. There a good description of generating functions in D. E. KhatAst
of Computer Programming, Vol 1

Generating Functions: The method of constructive induction provided a way to get a boun#,giut we did not
get an exact answer, and we had to generate a good guess before we were even able to start.

Let us consider an approach to determine an exact representatign which requires no guesswork. This
method is based on a very elegant concept, caligeh&rating functionConsider any infinite sequence:

ag, a1,0A2, 03, . ..

If we would like to “encode” this sequence succinctly, we could define a polynomial function such that these
are the coefficients of the function:

G(z) = ao +arz+asz® +aszz®+...

This is called thggenerating functioof the sequence. What i€ It is just a symbolic variable. We will (almost)
never assign it a specific value. Thus, every infinite sequence of numbers has a corresponding generating func-
tion, and vice versa. What is the advantage of this representation? It turns out that we can perform arithmetic

Lecture Notes 101 CMSC 451

transformations on these functions (e.g., adding them, multiplying them, differentiating them) and this has a
corresponding effect on the underlying transformations. It turns out that some nicely-structured sequences (like
the Fibonacci numbers, and many sequences arising from linear recurrences) have generating functions that are
easy to write down and manipulate.

Let’s consider the generating function for the Fibonacci numbers:

G(2) = Fo+Fiz+ Fo2® + F32® + ...
24224223 4+32 +52° + ...
The trick in dealing with generating functions is to figure out how various manipulations of the generating

function to generate algebraically equivalent forms. For example, notice that if we multiply the generating
function by a factor ot, this has the effect of shifting the sequence to the right:

G(Z) = FO + Flz + F222 + F323 + F4Z4 +
2G(z) = Foz + F22 + R + Ft +
22G(z) = 2?2 + F23 + Bt +

Now, let’s try the following manipulation. Comput&(z) — 2G(z) — 22G(z), and see what we get

(1—2—22)G(2) = .F()-F(Fl—E))Z+(F2—F1—E])22+(F3—F2—F1)213
++(F17F1_1 7F¢_2)Zi+...
= Z.

Observe that every term except the second is equal to zero by the definifton(@he particular manipulation
we picked was chosen to cause this cancellation to occur.) From this we may conclude that

z
1—2—22

G(2)

So, now we have an alternative representation for the Fibonacci numbers, as the coefficients of this function if
expanded as a power series. So what good is this? The main goal is to get at the coefficients of its power series
expansion. There are certain common tricks that people use to manipulate generating functions.

The first is to observe that there are some functions for which it is very easy to get an power series expansion.
For example, the following is a simple consequence of the formula for the geometric sebiesclk 1 then

> =i

Settingz = ¢, we have

1
— =14z +22+234...
1—-2
(In other words] /(1 — z) is the generating function for the sequeritgl, 1, .. .). In general, given an constant
a we have)
=1+4az+a?22+a®2° +...
1—az

is the generating function fdi, a, a?, a3, . ..). It would be great if we could modify our generating function to
be in the form ofl /(1 — az) for some constant, since then we could then extract the coefficients of the power
series easily.

In order to do this, we would like to rewrite the generating function in the following form:

Glz) = z _ A B

Jr
1—2—22 1l—az 1-—0b2

Lecture Notes 102 CMSC 451

for someA, B, a, b. We will skip the steps in doing this, but it is not hard to verify the root§lof az)(1 — bz)

(which arel/a and1/b) must be equal to the roots of— z — 22. We can then solve far andb by taking the
reciprocals of the roots of this quadratic. Then by some simple algebra we can plug these values in and solve
for A and B yielding:

R (0 VAV Il VAV NS S G SRS U
Glz) = 1—2z—22 <l—¢z+ 1—(]3) N \/5<1—¢z 1_¢§>’

where¢ = (1 +v/5)/2 and$ = (1 — v/5)/2. (In particular, to determingl, multiply the equation by — ¢z,
and then consider what happens whena 1/¢. A similar trick can be applied to g&. In general, this is called
the method opatrtial fractions)

Now we are in good shape, because we can extract the coefficients for these two fractions from the above
function. From this we have the following:

G(z) = \}5(1 + ¢z + ¢%? 4+
-1 + —¢z + —¢222 + ...)

Combining terms we have

Glz) = % > (¢ - 90

We can now read off the coefficients easily. In particular it follows that

1
V5
This is an exact result, and no guesswork was needed. The only parts that involved some cleverness (beyond the
invention of generating functions) was (1) coming up with the simple closed form formui(forby taking

appropriate differences and applying the rule for the recurrence, and (2) applying the method of partial fractions
to get the generating function into one for which we could easily read off the final coefficients.

F, = (¢n _an)’

This is a rather remarkable, because it says that we can express the ijetgethe sum of two powers of to
irrational numbers andg?). You might try this for a few specific values ofto see why this is true. By the way,
when you observe that < 1, it is clear that the first term is the dominant one. Thus we have, for large enough
n, F,, = ¢ /+/5, rounded to the nearest integer.

Supplemental Lecture 4: Medians and Selection
Read: Chapter 9 of CLRS.

Selection: We have discussed recurrences and the divide-and-conquer method of solving problems. Today we will
give a rather surprising (and very tricky) algorithm which shows the power of these techniques.

The problem that we will consider is very easy to state, but surprisingly difficult to solve optimally. Suppose
that you are given a set eof numbers. Define theank of an element to be one plus the number of elements
that are smaller than this element. Since duplicate elements make our life more complex (by creating multiple
elements of the same rank), we will make the simplifying assumption that all the elements are distinct for now.
It will be easy to get around this assumption later. Thus, the rank of an element is its final position if the set is
sorted. The minimum is of rank 1 and the maximum is of rank

Of particular interest in statistics is tineedian If n is odd then the median is defined to be the element of rank
(n+ 1)/2. Whenn is even there are two natural choices, namely the elements of ngkend(n/2) + 1. In

Lecture Notes 103 CMSC 451

statistics it is common to return the average of these two elements. We will define the median to be either of
these elements.

Medians are useful as measures of tkeatral tendencyf a set, especially when the distribution of values is
highly skewed. For example, the median income in a community is likely to be more meaningful measure of
the central tendency than the average is, since if Bill Gates lives in your community then his gigantic income
may significantly bias the average, whereas it cannot have a significant influence on the median. They are also
useful, since in divide-and-conquer applications, it is often desirable to partition a set about its median value,
into two sets of roughly equal size. Today we will focus on the following generalization, callexklbetion

problem

Selection: Given a setd of n distinct numbers and an integerl < k£ < n, output the element ol of rankk.

The selection problem can easily be solvedifr log n) time, simply by sorting the numbers df, and then
returning A[k]. The question is whether it is possible to do better. In particular, is it possible to solve this
problem in©(n) time? We will see that the answer is yes, and the solution is far from obvious.

The Sieve Technique: The reason for introducing this algorithm is that it illustrates a very important special case of
divide-and-conquer, which | call theieve techniqueWe think of divide-and-conquer as breaking the problem
into a small number of smaller subproblems, which are then solved recursively. The sieve technique is a special
case, where the number of subproblems is just 1.

The sieve technique works in phases as follows. It applies to problems where we are interested in finding a
single item from a larger set of items. We do not know which item is of interest, however after doing some
amount of analysis of the data, taking fagn*) time, for some constarit, we find that we do not know what

the desired item is, but we can identify a large enough number of elementatiraitbe the desired value, and

can be eliminated from further consideration. In particular “large enough” means that the number of items is
at least some fixed constant fractionrofe.g. n/2, n/3, 0.0001n). Then we solve the problem recursively on
whatever items remain. Each of the resulting recursive solutions then do the same thing, eliminating a constant
fraction of the remaining set.

Applying the Sieve to Selection:To see more concretely how the sieve technique works, let us apply it to the selec-
tion problem. Recall that we are given an arr&jl..n| and an integek, and want to find thé-th smallest
element ofA. Since the algorithm will be applied inductively, we will assume that we are given a subarray
Alp..r] as we did in MergeSort, and we want to find ttte smallest item (wherg < r — p + 1). The initial
call will be to the entire arrayl[1..n].

There are two principal algorithms for solving the selection problem, but they differ only in one step, which
involves judiciously choosing an item from the array, calledgivet elementwhich we will denote by:. Later

we will see how to choose, but for now just think of it as a random element.4f We then partitionA into

three partsA[q] contains the element, subarrayA[p..q — 1] will contain all the elements that are less than
andA[g+1..r], will contain all the element that are greater tharfRecall that we assumed that all the elements
are distinct.) Within each subarray, the items may appear in any order. This is illustrated below.

It is easy to see that the rank of the piwois ¢ — p + 1 in A[p..r]. LetzRank = ¢ — p+ 1. If k = zRank, then
the pivot is thekth smallest, and we may just return it.df< zRank, then we know that we need to recursively
search inA[p..¢— 1] and ifk > zRank then we need to recursively seardfy+1..r]. In this latter case we have
eliminatedg smaller elements, so we want to find the element of rarkg. Here is the complete pseudocode.

Notice that this algorithm satisfies the basic form of a sieve algorithm. It analyzes the data (by choosing the pivot
element and partitioning) and it eliminates some part of the data set, and recurses on the reét \igmk

then we get lucky and eliminate everything. Otherwise we either eliminate the pivot and the right subarray or
the pivot and the left subarray.

We will discuss the details of choosing the pivot and partitioning later, but assume for now that they both take
O(n) time. The question that remains is how many elements did we succeed in eliminatingstiiie largest

Lecture Notes 104 CMSC 451

pivot

p r
[5]9]2[6]4]1]3]7] Before partitioing

p q r
[3[1]2]4]6][9]5]7] After partitioing

X
Alp..q-1] <x
Alg+l..r] > x
(5] (3]
9] 1]
2 2
6 4 | x_rnk=4
@ |5 o] o] B _F
B 9 E 6
3 5 5 7 | x_rnk=3 - |
z z / x_rnk=2 (DONE!)
Initial Partition Recurse Partition Recurse Partition
(k=6) (pivot=4) (k=6-4=2) (pivot=7) (k=2) (pivot = 6)
Fig. 70: Selection Algorithm.
Selection by the Sieve Technique
Select(array A, int p, int r, int k) { /I return kth smallest of A[p..r]
if (p == 1) return Alp] /I only 1 item left, return it
else {
X = ChoosePivot(A, p, 1) /I choose the pivot element
g = Partition(A, p, 1, X) /I partition <A[p..q-1], x, A[q+1..r]>
xRank = q-p +1 /I rank of the pivot
if (k == xRank) return x /I the pivot is the kth smallest
else if (k < xRank)
return Select(A, p, g-1, k) /I select from left subarray
else
return Select(A, g+1, r, k-xRank)// select from right subarray
}

Lecture Notes 105 CMSC 451

or smallest element in the array, then we may only succeed in eliminating one element with each phase. In fact,
if x is one of the smallest elements 4for one of the largest, then we get into trouble, because we may only
eliminate it and the few smaller or larger elementsdofideally 2 should have a rank that is neither too large

nor too small.

Let us suppose for now (optimistically) that we are able to design the proc&haese _Pivot in such a
way that is eliminates exactly half the array with each phase, meaning that we recurse on the rem&ining
elements. This would lead to the following recurrence.

1 if n =1,
T(n) = { T(n/2) +n otherwise.

We can solve this either by expansion (iteration) or the Master Theorem. If we expand this recurrence level by
level we see that we get the summation

n n . n <1
T = — — e < -— = - .
() =ntg+g+ —Z%Ql "22

Recall the formula for the infinite geometric series. For arsyich thafc| < 1, >°:° ¢! = 1/(1 — ¢). Using
this we have
T(n) < 2n € O(n).

(This only proves the upper bound on the running time, but it is easy to see that it takes gf{leatstne, so
the total running time i©(n).)

This is a bit counterintuitive. Normally you would think that in order to desigih(a) time algorithm you could

only make a single, or perhaps a constant number of passes over the data set. In this algorithm we make many
passes (it could be as manylgs:). However, because we eliminate a constant fraction of elements with each
phase, we get this convergent geometric series in the analysis, which shows that the total running time is indeed
linear inn. This lesson is well worth remembering. It is often possible to achieve running times in ways that
you would not expect.

Note that the assumption of eliminating half was not critical. If we eliminated even one per cent, then the
recurrence would have be&f{n) = T'(99n/100) + n, and we would have gotten a geometric series involving
99/100, which is still less than 1, implying a convergent series. Eliminaéingconstant fraction would have
been good enough.

Choosing the Pivot: There are two issues that we have left unresolved. The first is how to choose the pivot element,
and the second is how to partition the array. Both need to be solvedriin time. The second problem is a
rather easy programming exercise. Later, when we discuss QuickSort, we will discuss partitioning in detail.

For the rest of the lecture, let's concentrate on how to choose the pivot. Recall that before we said that we might
think of the pivot as a random element&f Actually this is not such a bad idea. Let’s see why.

The key is that we want the procedure to eliminate at least some constant fraction of the array after each parti-
tioning step. Let's consider the top of the recurrence, when we are diflem]. Suppose that the pivatturns

out to be of rankg in the array. The partitioning algorithm will split the array infdl..q — 1] < z, A[q] = =
andAlg + 1..n] > z. If kK = ¢, then we are done. Otherwise, we need to search one of the two subarrays. They
are of sizes; — 1 andn — ¢, respectively. The subarray that contains tie smallest element will generally
depend on what is, so in the worst casé, will be chosen so that we have to recurse on the larger of the two
subarrays. Thus if > n/2, then we may have to recurse on the left subarray ofgizé, and if¢ < n/2, then

we may have to recurse on the right subarray of gsizeg. In either case, we are in troublegifs very small, or

if ¢ is very large.

If we could selecty so that it is roughly of middle rank, then we will be in good shape. For example, if
n/4 < g < 3n/4, then the larger subarray will never be larger tBari4. Earlier we said that we might think

of the pivot as a random element of the arrfyActually this works pretty well in practice. The reason is that

Lecture Notes 106 CMSC 451

roughly half of the elements lie between rankst and3n/4, so picking a random element as the pivot will
succeed about half the time to eliminate at legst. Of course, we might be continuously unlucky, but a careful
analysis will show that the expected running time is €i(). We will return to this later.

Instead, we will describe a rather complicated method for computing a pivot element that achieves the desired
properties. Recall that we are given an ared}..n], and we want to compute an elementvhose rank is
(roughly) betweem /4 and3n/4. We will have to describe this algorithm at a very high level, since the details
are rather involved. Here is the description for Seleiebt:

Groups of 5: Partition A into groups of 5 elements, e.g[1..5], A[6..10], A[11..15], etc. There will be exactly
m = [n/5] such groups (the last one might have fewer than 5 elements). This can easily be @g¢n¢ in
time.

Group medians: Compute the median of each group of 5. There wilhbgroup medians. We do not need an
intelligent algorithm to do this, since each group has only a constant number of elements. For example, we
could just BubbleSort each group and take the middle element. Each wilbtgiRetime, and repeating
this [n/5] times will give a total running time o®(n). Copy the group medians to a new aridy

Median of medians: Compute the median of the group medians. For this, we will have to call the selection
algorithm recursively orB, e.g. Select(B, 1, m, k) , wherem = [n/5], andk = |(m +1)/2].
Let x be this median of medians. Retutras the desired pivot.

The algorithm is illustrated in the figure below. To establish the correctness of this procedure, we need to argue
thatz satisfies the desired rank properties.

(6] [2] [3] [5]) [8] [1] [1q]

(6] [30] [63] [34] [8] [55] [39)
Group Get group medians
(8] [3] [6] [2] [5] [11] [1]
|[19] [23] [24) [30] [34] [39] [41]]

Get median of medians
(Sorting of group medians is not really performed)

Fig. 71: Choosing the Pivot. 30 is the final pivot.

Lemma: The element: is of rank at least/4 and at mos8n/4 in A.

Proof: We will show thatz is of rank at least/4. The other part of the proof is essentially symmetrical. To
do this, we need to show that there are at legdtelements that are less than or equaktdrhis is a bit
complicated, due to the floor and ceiling arithmetic, so to simplify things we will assume thavenly
divisible by 5. Consider the groups shown in the tabular form above. Observe that at least half of the group
medians are less than or equahto(Becauser is their median.) And for each group median, there are
three elements that are less than or equal to this median within its group (because it is the median of its

Lecture Notes 107 CMSC 451

group). Therefore, there are at le@étn/5)/2 = 3n/10 > n/4 elements that are less than or equat to
in the entire array.

Analysis: The last order of business is to analyze the running time of the overall algorithm. We achieved the main
goal, namely that of eliminating a constant fraction (at lega) of the remaining list at each stage of the
algorithm. The recursive call iSelect() will be made to list no larger thaBn/4. However, in order
to achieve this, withirbelect _Pivot() we needed to make a recursive callSelect() on an arrayB
consisting of n/5] elements. Everything else took orf(n) time. As usual, we will ignore floors and ceilings,
and write the©(n) asn for concreteness. The running time is

1 if n=1,
T(n) < { T(n/5) + T(3n/4) +n otherwise.

This is a very strange recurrence because it involves a mixture of different fractighsad 3n/4). This
mixture will make it impossible to use the Master Theorem, and difficult to apply iteration. However, this is a
good place to apply constructive induction. We know we want an algorithm that ringintime.

Theorem: There is a constart such thatl'(n) < cn.
Proof: (by strong induction om)

Basis: (n = 1) In this case we hav&(n) = 1, and sal'(n) < ¢n as long ag: > 1.

Step: We assume thaf(n’) < ¢n’ for all n” < n. We will then show thaf'(n) < ¢n. By definition we
have
T(n)=T(n/5) +T(3n/4) + n.

Sincen/5 and3n /4 are both less than, we can apply the induction hypothesis, giving

T(n) < cﬁ+63—n+n:cn<l+§>+n
- 5 4 5 4
19 19¢
= crz§6 +n =n (_éff + 1) .

This last expression will b& cn, provided that we seleetsuch that > (19¢/20) + 1. Solving for
c we see that this is true provided that 20.

Combining the constraints that> 1, andec > 20, we see that by letting = 20, we are done.

A natural question is why did we pick groups of 5? If you look at the proof above, you will see that it works for
any value that is strictly greater than 4. (You might try it replacing the 5 with 3, 4, or 6 and see what happens.)

Supplemental Lecture 5: Analysis of BucketSort

Probabilistic Analysis of BucketSort: We begin with a quick-and-dirty analysis of bucketsort. Since there.are
buckets, and the items fall uniformly between them, we would expect a constant number of items per bucket.
Thus, the expected insertion time for each bucket is only a constant. Therefore the expected running time of
the algorithm is©(n). This quick-and-dirty analysis is probably good enough to convince yourself of this
algorithm’s basic efficiency. A careful analysis involves understanding a bit about probabilistic analyses of
algorithms. Since we haven't done any probabilistic analyses yet, let’s try doing this one. (This one is rather

typical.)
The first thing to do in a probabilistic analysis is to define a random variable that describes the essential quantity
that determines the execution time discrete random variablean be thought of as variable that takes on some

Lecture Notes 108 CMSC 451

set of discrete values with certain probabilities. More formally, it is a function that maps some some discrete
sample space (the set of possible values) onto the reals (the probabilitie8)<Fox n — 1, let X; denote the
random variable that indicates the number of elements assigneditthtiecket.

Since the distribution is uniform, all of the random variabléshave the same probability distribution, so we

may as well talk about a single random varialde which will work for any bucket. Since we are using a
quadratic time algorithm to sort the elements of each bucket, we are interested in the expected sorting time,
which is©(X?). So this leads to the key question, what is the expected valXe oflenotedz[X 2].

Because the elements are assumed to be uniformly distributed, each element has an equal probability of going
into any bucket, or in particular, it has a probabilityzof= 1/n of going into theith bucket. So how many items

do we expect will wind up in bucké®? We can analyze this by thinking of each elemem af being represented

by a coin flip (with a biased coin, which has a different probability of heads and tails). With probab#ity/n

the number goes into buckgtwhich we will interpret as the coin coming up heads. With probabllity 1/n

the item goes into some other bucket, which we will interpret as the coin coming up tails. Since we assume
that the elements of are independent of each othdf,is just the total number of heads we see after making

tosses with this (biased) coin.

The number of times that a heads event occurs, giverdependent trials in which each trial has two possible
outcomes is a well-studied problem in probability theory. Such trials are ®detbulli trials (named after the
Swiss mathematician James Bernoulli)p s the probability of getting a head, then the probability of getting
heads im tosses is given by the following important formula

P(X =k) = (Z)pk(l —p)nk where (Z) = k'(nnlk)'

Although this looks messy, it is not too hard to see where it comes from. Basj¢allythe probability of

tossingk heads,(1 — p)"~* is the probability of tossing — tails, and(Z) is the total number of different
ways that thek heads could be distributed among th&osses. This probability distribution (as a functiorkof

for a givenn andp) is called thebinomial distribution and is denoted(k; n, p).

If you consult a standard textbook on probability and statistics, then you will see the two important facts that we
need to know about the binomial distribution. Namely, that its mean @[and its varianc&ar[X] are

E[X]=np and Var[X]= E[X?] - E?[X]=np(l —p).

We want to determiné’[X 2]. By the above formulas and the fact tipat 1/n we can derive this as

E[X?] = Var[X] + E2[X] = np(1—p) + (np)® = %(1— %) + (%)2 = 2_%.

Thus, for large: the time to insert the items into any one of the linked lists is a just shade less than 2. Summing
up over alln buckets, gives a total running time 6f(2n) = ©(n). This is exactly what our quick-and-dirty
analysis gave us, but now we know it is true with confidence.

Supplemental Lecture 6: Long Integer Multiplication

Read: This material on integer multiplication is not covered in CLRS.

Long Integer Multiplication: The following little algorithm shows a bit more about the surprising applications of

divide-and-conquer. The problem that we want to consider is how to perform arithmetic on long integers, and
multiplication in particular. The reason for doing arithmetic on long numbers stems from cryptography. Most
techniques for encryption are based on number-theoretic techniques. For example, the character string to be
encrypted is converted into a sequence of numbers, and encryption keys are stored as long integers. Efficient

Lecture Notes 109 CMSC 451

encryption and decryption depends on being able to perform arithmetic on long numbers, typically containing
hundreds of digits.

Addition and subtraction on large numbers is relatively easy.i$fthe number of digits, then these algorithms
run in ©(n) time. (Go back and analyze your solution to the problem on Homework 1). But the standard
algorithm for multiplication runs if®(n?) time, which can be quite costly when lots of long multiplications are
needed.

This raises the question of whether there is a more efficient way to multiply two very large numbers. It would
seem surprising if there were, since for centuries people have used the same algorithm that we all learn in grade
school. In fact, we will see that it is possible.

Divide-and-Conquer Algorithm: We know the basic grade-school algorithm for multiplication. We normally think
of this algorithm as applying on a digit-by-digit basis, but if we partitionradigit number into two “super
digits” with roughlyn /2 each into longer sequences, the same multiplication rule still applies.

<-—n/2—==—n/2—

Low [x | A
x|y |z | B
[wz [xz |
Cwy [x|
[wy [wz+xy[xz | Product

Fig. 72: Long integer multiplication.

To avoid complicating things with floors and ceilings, let’s just assume that the number ofrdigjigspower of

2. Let A andB be the two numbers to multiply. Let[0] denote the least significant digit and Jtn — 1] denote

the most significant digit ofl. Because of the way we write numbers, it is more natural to think of the elements
of A as being indexed in decreasing order from left to righttas — 1..0] rather than the usual[0..n — 1].

Letm = n/2. Let
w = A[n—1.m] z = Am-1.0] and
y = Bln—1.m) z = B[m-1.0].

If we think of w, z, y andz asn/2 digit numbers, we can expregsand B as

A = w-10"+x
B = y-10m+ 2,

and their product is

mult(A, B) = mult(w, y)10*™ + (mult(w, z) + mult(x, y))10™ + mult(z, 2).

The operation of multiplying by0™ should be thought of as simply shifting the number ovenbgositions to

the right, and so is not really a multiplication. Observe that all the additions involve numbers involving roughly
n/2 digits, and so they tak®(n) time each. Thus, we can express the multiplication of two long integers as the
result of four products on integers of roughly half the length of the original, and a constant number of additions
and shifts, each takin@(n) time. This suggests that if we were to implement this algorithm, its running time
would be given by the following recurrence

Tin) — 1 ifn=1,
(n) = 4T (n/2) +n otherwise.

Lecture Notes 110 CMSC 451

If we apply the Master Theorem, we see that 4, b = 2, k = 1, anda > b*, implying that Case 1 holds and
the running time i (n'84) = ©(n?). Unfortunately, this is no better than the standard algorithm.

Faster Divide-and-Conquer Algorithm: Even though the above exercise appears to have gotten us nowhere, it ac-
tually has given us an important insight. It shows that the critical element is the number of multiplications on
numbers of sizex/2. The number of additions (as long as it is a constant) does not affect the running time. So,
if we could find a way to arrive at the same result algebraically, but by trading off multiplications in favor of
additions, then we would have a more efficient algorithm. (Of course, we cannot simulate multiplication through
repeated additions, since the number of additions must be a constant, independgnt of

The key turns out to be a algebraic “trick”. The quantities that we need to compute aravy, D = zz,

andE = (wz + xy). Above, it took us four multiplications to compute these. However, observe that if instead
we compute the following quantities, we can get everything we want, using only three multiplications (but with
more additions and subtractions).

C = multlw,y)
D = mult(z,z)
E = mut(w+z),y+2)—-C—-D = (wy+wz+ay+zz) —wy —zz = (wz + ay).

Finally we have
mult(A, B) = C - 10*™ + E - 10™ + D.

Altogether we perform 3 multiplications, 4 additions, and 2 subtractions all of numbersuwgdtdigitis. We
still need to shift the terms into their proper final positions. The additions, subtractions, and shifgytake
time in total. So the total running time is given by the recurrence:

T(n) = 1 ifn=1,
"= 3T(n/2) +n otherwise.

Now when we apply the Master Theorem, we have- 3, b = 2 andk = 1, yieldingT(n) € O(n'83) ~
@(n1.585)_

Is this really an improvement? This algorithm carries a larger constant factor because of the overhead of recur-
sion and the additional arithmetic operations. But asymptotics says that iirge enough, then this algorithm

will be superior. For example, if we assume that the clever algorithm has overheads that are 5 times greater
than the simple algorithm (e.gn!-5%° versusn?) then this algorithm beats the simple algorithm for> 50.

If the overhead was 10 times larger, then the crossover would occurfo260. Although this may seem like

a very large number, recall that in cryptogrphy applications, encryption keys of this length and longer are quite
reasonable.

Supplemental Lecture 7: Dynamic Programming: 0—1 Knapsack Problem

Read: The introduction to Chapter 16 in CLR. The material on the Knapsack Problem is not presented in our text, but
is briefly discussed in Section 17.2.

0-1 Knapsack Problem: Imagine that a burglar breaks into a museum and finitlsms. Letv; denote the value of the
i-th item, and letw; denote the weight of theth item. The burglar carries a knapsack capable of holding total
weightW. The burglar wishes to carry away the most valuable subset items subject to the weight constraint.

For example, a burglar would rather steal diamonds before gold because the value per pound is better. But he
would rather steal gold before lead for the same reason. We assume that the burglar cannot take a fraction of an
object, so he/she must make a decision to take the object entirely or leave it behind. (There is a version of the

Lecture Notes 111 CMSC 451

problem where the burglar can take a fraction of an object for a fraction of the value and weight. This is much
easier to solve.)

More formally, given(vy, ve,...,v,) and (wi,wy...,w,), andW > 0, we wish to determine the subset
T C{1,2,...,n} (of objects to “take”) that maximizes

E Vi,

ieT

ieT

subject to

Let us assume that the's, w;’s andW are all positive integers. It turns out that this problem is NP-complete,
and so we cannot really hope to find an efficient solution. However if we make the same sort of assumption that
we made in counting sort, we can come up with an efficient solution.

We assume that the;’s are small integers, and th#it itself is a small integer. We show that this problem
can be solved i(nWW) time. (Note that this is not very good W is a large integer. But if we truncate our
numbers to lower precision, this gives a reasonable approximation algorithm.)

Here is how we solve the problem. We construct an aif@y,.n,0..W]. Forl < i < n,and0 < j < W, the
entryV [, j] we will store the maximum value of any subset of objgdt=, . . ., ¢} that can fit into a knapsack of
weightj. If we can compute all the entries of this array, then the array énfmy 7] will contain the maximum
value of alln objects that can fit into the entire knapsack of weight

To compute the entries of the arr&ywe will imply an inductive approach. As a basis, observe 1t j] = 0
for 0 < j < W since if we have no items then we have no value. We consider two cases:

Leave objecti: If we choose to not take objeétthen the optimal value will come about by considering how
to fill a knapsack of sizg with the remaining object§l, 2, ... i — 1}. Thisis justV[i — 1, j].
Take objecti: If we take objecti, then we gain a value af; but have used up; of our capacity. With the

remainingj —w; capacity in the knapsack, we can fill it in the best possible way with objécts ... i —
1}. Thisisv; + Vi — 1, — w;]. This is only possible ifv; < j.

Since these are the only two possibilities, we can see that we have the following rule for constructing the array
V. The ranges onandj arei € [0..n] andj € [0..W].

v[o,j] = 0
Viig] = V[i—1,j] if w; > j
BT max(VI[i— 1,5, v + V[i—1,j —wi]) ifw; <j

The first line states that if there are no objects, then there is no value, irrespectiveTdfe second line
implements the rule above.

It is very easy to take these rules an produce an algorithm that computes the maximum value for the knapsack
in time proportional to the size of the array, whichQ$(n + 1)(W + 1)) = O(nW). The algorithm is given
below.

An example is shown in the figure below. The final outpuVig, W] = V[4,10] = 90. This reflects the
selection of items 2 and 4, of values $40 and $50, respectively and weighis< 10.

The only missing detail is what items should we select to achieve the maximum. We will leave this as an
exercise. They key is to record for each eritffi, j] in the matrix whether we got this entry by taking thk
item or leaving it. With this information, it is possible to reconstruct the optimum knapsack contents.

Lecture Notes 112 CMSC 451

0-1 Knapsack Problem

KnapSack(v[1..n], w[1..n], n, W) {
allocate V[0..n][0..W];

for j = 0 to W do V[0, j] = 0; /I initialization
for i = 1 to n do {
for j = 0 to W do {
leave_val = VI[i-1, j]; /I total value if we leave i
if (>= w[i]) /I enough capacity to take i
take_val = V[i] + V[i-1, j - w[i]]; // total value if we take i
else
take_val = -INFINITY; /I cannot take i
V[i,j] = max(leave_val, take_val); /I final value is max
}
}

return V[n, WJ;

Values of the objects ard0, 40, 30, 50).
Weights of the objects arg, 4, 6, 3).

Capacity— | j=0 1 2 3 4 5 6 7 8 9 10
ltem | Value | Weight 0o 0o o 0o 0o o 0 0o o o0 o
1 10 5 0 0 0O 0 O 10 10 10 10 10 10
2 40 4 0O 0 0O O 40 40 40 40 40 50 50
3 30 6 0O 0 0O O 40 40 40 40 40 50 79
4 50 3 0O 0 0O 50 50 50 50 90 90 90 9p

Final result isV'[4, 10] = 90 (for taking items 2 and 4).

Fig. 73: 0—1 Knapsack Example.

Lecture Notes 113 CMSC 451

Supplemental Lecture 8: Dynamic Programming: Memoization

Read: Section 15.3 of CLRS.

Recursive Implementation: We have described dynamic programming as a method that involves the “bottom-up”
computation of a table. However, the recursive formulations that we have derived have been set up in a “top-
down” manner. Must the computation proceed bottom-up? Consider the following recursive implementation of
the chain-matrix multiplication algorithm. The c&kc-Matrix-Chain(p, i, j) computes and returns
the value ofin[i, j]. The initial call isRec-Matrix-Chain(p, 1, n) . We only consider the cost here.

Recursive Chain Matrix Multiplication

Rec-Matrix-Chain(array p, int i, int j) {

if (i ==1]) mfij = 0; Il basis case
else {

mfij] = INFINITY; /I initialize

for k = i to j-1 do { /I try all splits

cost = Rec-Matrix-Chain(p, i, k) +
Rec-Matrix-Chain(p, k+1, j) + p[i-1]*p[KI*p[;
if (cost < m[i,j) mli,j] = cost; /I update if better
}
}

return mli,j]; /I return final cost

(Note that the tablen[1..n, 1..n] is not really needed. We show it just to make the connection with the earlier
version clearer.) This version of the procedure certainly looks much simpler, and more closely resembles the
recursive formulation that we gave previously for this problem. So, what is wrong with this?

The answer is the running time is much higher thanée?) algorithm that we gave before. In fact, we will
see that its running time Exponentiain n. This is unacceptably slow.

LetT'(n) denote the running time of this algorithm on a sequence of matrices of len{that is,n = j—i+1.)
If i = j then we have a sequence of length 1, and the tin@(ig. Otherwise, we d@®(1) work and then
consider all possible ways of splitting the sequence of lengtito two sequences, one of lendtland the other
of lengthn — k, and invoke the procedure recursively on each one. So we get the following recurrence, defined
for n > 1. (We have replaced th@(1)’s with the constant 1.)
1 ifn=1,

TO = STk tnas
Claim: T'(n) > 271,
Proof: The proof is by induction om. Clearly this is true fom = 1, sinceT(1) = 1 = 2°. In general, for

n > 2, the induction hypothesis is that(m) > 2™~ for all m < n. Using this we have

n—1 n—1
T(n) = 14> (T(k)+T(n—k) > 1+ T(k)

k=1 k=1
n—1 n—2

> 14y 2 =14y 2k
k=1 k=0

= 1+@2vt—1) = 2"

In the first line we simply ignored tHE(n— k&) term, in the second line we applied the induction hypothesis,

and in the last line we applied the formula for the geometric series.

Lecture Notes 114 CMSC 451

Why is this so much worse than the dynamic programming version? If you “unravel” the recursive calls on a
reasonably long example, you will see that the procedure is called repeatedly with the same arguments. The
bottom-up version evaluates each entry exactly once.

Memoization: Is it possible to retain the nice top-down structure of the recursive solution, while keeping the same
O(n?) efficiency of the bottom-up version? The answer is yes, through a technique wefadization Here
is the idea. Let's reconsider the functiBec-Matrix-Chain() given above. It's job is to compute][i, j],
and return its value. As noted above, the main problem with the procedure is that it recomputes the same entries
over and over. So, we will fix this by allowing the procedure to compute each entry exactly once. One way to
do this is to initialize every entry to somgpecial valuge.g. UNDEFINED). Once an entries value has been
computed, it is never recomputed.

Memoized Chain Matrix Multiplication

Mem-Matrix-Chain(array p, int i, int j) {

if (m[i,j] '= UNDEFINED) return m([i,jJ; /I already defined
else if (i == j) mli,j] = 0; /I basis case
else {

m[i,j] = INFINITY; /I initialize

for k = i to j-1 do { /I try all splits

cost = Mem-Matrix-Chain(p, i, k) +
Mem-Matrix-Chain(p, k+1, j) + p[i-1]*p[k]*p[i];
if (cost < m[i,j]) m[i,j] = cost; /I update if better
}
}

return mli,jJ; /I return final cost

This version runs irO(n?) time. Intuitively, this is because each of thgn?) table entries is only computed
once, and the work needed to compute one table entry (most of it in the for-loop) is abfmgst

Memoization is not usually used in practice, since it is generally slower than the bottom-up method. However,

in some DP problems, many of the table entries are simply not needed, and so bottom-up computation may
compute entries that are never needed. In these cases memoization may be a good idea. If you have know that
most of the table will not be needed, here is a way to save space. Rather than storing the whole table explicitly
as an array, you can store the “defined” entries of the table in a hash table, using the indéex pas the hash

key. (See Chapter 11 in CLRS for more information on hashing.)

Supplemental Lecture 9: Articulation Points and Biconnectivity
Read: This material is not covered in CLR (except as Problem 23-2).

Articulation Points and Biconnected Graphs: Today we discuss another application of DFS, this time to a problem
on undirected graphs. Lét = (V, E) be aconnectedundirected graph. Consider the following definitions.

Articulation Point (or Cut Vertex): Is any vertex whose removal (together with the removal of any incident
edges) results in a disconnected graph.
Bridge: Is an edge whose removal results in a disconnected graph.

Biconnected: A graph isbiconnectedf it contains no articulation points. (In general a grapk4sonnected, if
k vertices must be removed to disconnect the graph.)

Biconnected graphs and articulation points are of great interest in the design of network algorithms, because
these are the “critical” points, whose failure will result in the network becoming disconnected.

Lecture Notes 115 CMSC 451

@—© @O
S

e @ Q ArFicuIation point ° e @ Eéﬁ;gsg;etg
== Bridge
R0 O

Fig. 74: Articulation Points and Bridges

Last time we observed that the notion of mutual reachability partitioned the vertices of a digraph into equivalence
classes. We would like to do the same thing here. We say that two edgede, are cocyclicif eithere; = ey

or if there is a simple cycle that contains both edges. It is not too hard to verify that this defines an equivalence
relation on the edges of a graph. Notice that if two edges are cocyclic, then there are essentially two different
ways of getting from one edge to the other (by going around the the cycle each way).

Biconnected components:The biconnected components of a graph are the equivalence classes of the cocylicity
relation.

Notice that unlike strongly connected components of a digraph (which form a partition of the vertex set) the
biconnected components of a graph form a partition of the edge set. You might think for a while why this is so.

We give an algorithm for computing articulation points. An algorithm for computing bridges is simple modifi-
cation to this procedure.

Articulation Points and DFS: In order to determine the articulation points of an undirected graph, we will call depth-
first search, and use the tree structure provided by the search to aid us. In particular, let us ask ourselves if a
vertexw is an articulation point, how would we know it by its structure in the DFS tree?

We assume that is connected (if not, we can apply this algorithm to each individual connected component).
So we assume is only one tree in the DFS forest. Bec@usaindirected, the DFS tree has a simpler structure.
First off, we cannot distinguish between forward edges and back edges, and we just call them back edges. Also,
there are no cross edges. (You should take a moment to convince yourself why this is true.)

For now, let us consider the typical case of a venriexherew is not a leaf and: is not the root. Let’s let

v1, V9, ...,V be the children ofi.. For each child there is a subtree of the DFS tree rooted at this child. If for
some child, there is no back edge going to a proper ancestortben if we were to removae, this subtree
would become disconnected from the rest of the graph, and heiscan articulation point. On the other hand,

if every one of the subtrees rooted at the children ¢fave back edges to proper ancestors athen if u is
removed, the graph remains connected (the backedges hold everything together). This leads to the following.

Observation 1: An internal vertexu of the DFS tree (other than the root) is an articulation point if and only
there exists a subtree rooted at a child:sfuch that there is nho back edge from any vertex in this subtree
to a proper ancestor af

Please check this condition carefully to see that you understand it. In particular, notice that the condition for
whetheru is an articulation point depends on a test applied to its children. This is the most common source of
confusion for this algorithm.

What about the leaves? dfis a leaf, can it be an articulation point? Answer: No, because when you delete a
leaf from a tree, the rest of the tree remains connected, thus even ignoring the back edges, the graph is connected
after the deletion of a leaf from the DFS tree.

Lecture Notes 116 CMSC 451

Fig. 75: Articulation Points and DFS

Observation 2: A leaf of the DFS tree is never an articulation point. Note that this is completely consistent
with Observation 1, since a leaf will not have any subtrees in the DFS tree, so we can delete the word
“internal” from Observation 1.

What about the root? Since there are no cross edges between the subtrees of the root if the root has two or more
children then it is an articulation point (since its removal separates these two subtrees). On the other hand, if
the root has only a single child, then (as in the case of leaves) its removal does not disconnect the DFS tree, and
hence cannot disconnect the graph in general.

Observation 3: The root of the DFS is an articulation point if and only if it has two or more children.

Articulation Points by DFS: Observations 1, 2, and 3 provide us with a structural characterization of which vertices

in the DFS tree are articulation points. How can we design an algorithm which tests these conditions? Checking
that the root has multiple children is an easy exercise. Checking Observation 1 is the hardest, but we will exploit
the structure of the DFS tree to help us.

The basic thing we need to check for is whether there is a back edge from some subtree to an ancestor of a given
vertex. How can we do this? It would be too expensive to keep track of all the back edges from each subtree
(because there may Ii%e) back edges. A simpler scheme is to keep track of back edge that goes highest in the
tree (in the sense of going closest to the root). If any back edge goes to an ancestbiobne will.

How do we know how close a back edge goes to the root? As we travehfromvards the root, observe that
the discovery times of these ancestors @fet smaller and smaller (the root having the smallest discovery time
of 1). So we keep track of the back edgew) that has the smallest value dffw].

Low: DefineLow[u] to be the minimum ofl[u] and
{d[w] | where(v, w) is a back edge andis a descendent af}.

The term “descendent” is used in the nonstrict sense, thanigy be equal ta. Intuitively, Lowju] is the
highest (closest to the root) that you can get in the tree by taking any one backedge from eitlagty

of its descendents. (Beware of this notation: “Low” means low discovery time, not low in the tree. In fact
Low[u] tends to be “high” in the tree, in the sense of being close to the root.)

To computeLow[u] we use the following simple rules: Suppose that we are performing DFS on the vertex

Initialization: Low[u] = d[u].
Back edge(u, v): Lowju] = min(Lowlu],d[v]). Explanation: We have detected a new back edge coming out
of u. If this goes to a lowetl value than the previous back edge then make this the new low.

Tree edge(u, v): Lowju] = min(Lowfu], Low[v]). Explanation: Since is in the subtree rooted atany single
back edge leaving the tree rootedvds a single back edge for the tree rooted.at

Lecture Notes 117 CMSC 451

Observe that onckow{u] is computed for all vertices, we can test whether a given nonroot verteis an
articulation point by Observation 1 as follows:is an articulation point if and only if it has a childin the
DFS tree for whichLow{v] > d[u] (since if there were a back edge from eithesr one of its descendents to an
ancestor ob then we would haveow[v] < d[u]).

The Final Algorithm: There is one subtlety that we must watch for in designing the algorithm (in particular this is
true for any DFS on undirected graphs). When processing a verte need to know when a given edge v)
is a back edge. How do we do this? An almost correct answer is to test whetheslored gray (since all gray
vertices are ancestors of the current vertex). This is not quite correct becauagebe the parent afin the DFS
tree and we are just seeing the “other side” of the tree edge betwaed (recalling that in constructing the
adjacency list of an undirected graph we create two directed edges for each undirected edge). To test correctly
for a back edge we use the predecessor pointer to check thabt the parent of. in the DFS tree.

The complete algorithm for computing articulation points is given below. The main procedure for DFS is the
same as before, except that it calls the following routine ratherBtre8visit()

Articulation Points

ArtPt(u) {
color[u] = gray
Low[u] = d[u] = ++time
for each (v in Adj(u)) {

if (color[v] == white) { /I (uv) is a tree edge
pred[v] = u
ArtPt(v)
Low[u] = min(Low[u], Low[v]) // update Low[u]
if (pred[u] == NULL) { /I root: apply Observation 3

if (this is u’s second child)
Add u to set of articulation points

}
else if (Low[v] >= d[u]) { /I internal node: apply Observation 1
Add u to set of articulation points
}
}
else if (v != predu]) { /I (u,v) is a back edge
Low[u] = min(Low[u], d[v]) /I update L[u]
}

An example is shown in the following figure. As with all DFS-based algorithms, the running tigis- e).

There are some interesting problems that we still have not discussed. We did not discuss how to compute the
bridges of a graph. This can be done by a small modification of the algorithm above. We'll leave it as an
exercise. (Notice that ifu, v} is a bridge then it does not follow thatandv are both articulation points.)
Another question is how to determine which edges are in the biconnected components. A hint here is to store
the edges in a stack as you go through the DFS search. When you come to an articulation point, you can show
that all the edges in the biconnected component will be consecutive in the stack.

Supplemental Lecture 10: Bellman-Ford Shortest Paths

Read: Section 24.1 in CLRS.

Bellman-Ford Algorithm: We saw that Dijkstra’s algorithm can solve the single-source shortest path problem, under
the assumption that the edge weights are nonnegative. We also saw that shortest paths are undefined if you

Lecture Notes 118 CMSC 451

Fig. 76: Articulation Points.

have cycles of total negative cost. What if you have negative edge weights, but no negative cost cycles? We
shall present the Bellman-Ford algorithm, which solves this problem. This algorithm is slower that Dijkstra’s
algorithm, running in©(V E) time. In our version we will assume that there are no negative cost cycles. The
one presented in CLRS actually contains a bit of code that checks for this. (Check it out.)

Recall that we are given a graph= (V, E') with numeric edge weights,(u, v). Like Dijkstra’s algorithm, the
Bellman-Ford algorithm is based on performing repeated relaxations. (Recall that relaxation updates shortest
path information along a single edge. It was described in our discussion of Dijkstra’s algorithm.) Dijkstra’s
algorithm was based on the idea of organizing the relaxations in the best possible manner, namely in increasing
order of distance. Once relaxation is applied to an edge, it need never be relaxed again. This trick doesn't seem
to work when dealing with graphs with negative edge weights. Instead, the Bellman-Ford algorithm simply
applies a relaxation t@veryedge in the graph, and repeats this- 1 times.

Bellman-Ford Algorithm

BellmanFord(G,w,s) {
for each (u in V) { /I standard initialization
d[u] = +infinity
predfu] = null

}
ds] = 0
fori = 1 to V-1 { /I repeat V-1 times
for each (u,v) in E { /I relax along each edge
Relax(u,v)
}
}

The©(V E) running time is pretty obvious, since there are two main nested loops, one iteratédimes and
the other iterated’ times. The interesting question is how and why it works.

Correctness of Bellman-Ford: | like to think of the Bellman-Ford as a sort of “BubbleSort analogue” for shortest
paths, in the sense that shortest path information is propagated sequentially along each shortest path in the graph.
Consider any shortest path frasto some other vertex: (vg,v1,...,v,) wherevy = s andv,, = u. Since a
shortest path will never visit the same vertex twice, we know thatl” — 1, and hence the path consists of at
mostV — 1 edges. Since this is a shortest path we hyev;) (the true shortest path cost fronto v;) satisfies

0(s,v5) = 0(s,v5-1) + w(vi—1,v;).

Lecture Notes 119 CMSC 451

8
@<e @ © ¢ O
Initial configuration After 1st relaxation After 2nd relaxation After 3rd relaxation
phase phase phase

Fig. 77: Bellman-Ford Algorithm.

We assert that after thieh pass of the “for” loop thatd[v;] = d(s, v;). The proof is by induction on Observe
that after the initialization (pass 0) we ha¥fe;] = d[s] = 0. In general, prior to théth pass through the loop,
the induction hypothesis tells us thét; 1] = 6(s, v;—1). After theith pass through the loop, we have done a
relaxation on the edge;_1, v;) (since we do relaxations along all the edges). Thus afteitlhgass we have

d[’Uz] § d[Ui_l] + w(vi_l, ’Ui) = (S(S,’Ui_l) + w(vi_l,vi) = (S(S,Uz)
Recall from Dijkstra’s algorithm thaf[v;] is never less thafi(s, v;) (since each time we do a relaxation there
exists a path that witnesses its value). Thils;] is in fact equal td(s, v;), completing the induction proof.

In summary, aftei passes through the for loop, all vertices thatiaeelges away (along the shortest path tree)
from the source have the correct distance values storéfljn Thus, after th&V — 1)st iteration of the for
loop, all vertices: have the correct distance values stored]ir.

Supplemental Lecture 11: Network Flows and Matching
Read: Chapt 27 in CLR.

Maximum Flow: The Max Flow problem is one of the basic problems of algorithm design. Intuitively we can think
of a flow network as a directed graph in which fluid is flowing along the edges of the graph. Each edge has
certain maximum capacity that it can carry. The idea is to find out how much flow we can push from one point
to another.

The max flow problem has applications in areas like transportation, routing in networks. It is the simplest
problem in a line of many important problems having to do with the movement of commaodities through a
network. These are often studied in business schools, and operations research.

Flow Networks: A flow networkG = (V, E) is a directed graph in which each edgev) € E has a nonegative
capacityc(u,v) > 0. If (u,v) ¢ E we model this by setting(u,v) = 0. There are two special vertices: a
sources, and asinkt. We assume that every vertex lies on some path from the source to the sink (for otherwise
the vertex is of no use to us). (This implies that the digraph is connected, anddenee- 1.)

A flow is a real valued function on pairs of vertices,: V x V' — R which satisfies the following three
properties:
Capacity Constraint: For allu,v € V, f(u,v) < ¢(u,v).

Skew Symmetry: For allu,v € V, f(u,v) = —f(v,u). (In other words, we can think of backwards flow as
negative flow. This is primarily for making algebraic analysis easier.)

Flow conservation: For allu € V' — {s,t}, we have

Z flu,v) =0.

veV

Lecture Notes 120 CMSC 451

(Given skew symmetry, this is equivalent to saying, flow-in = flow-out.) Note that flow conservation
does NOT apply to the source and sink, since we think of ourselves as pumping flow fmim Flow
conservation means that no flow is lost anywhere else in the network, thus the flowsowillofqual the

flow into ¢.

The quantityf(u, v) is called thenet flowfrom « to v. The totalvalueof the flow f is defined as

1F1=" f(s,0)

veV

i.e. the flow out ofs. It turns out that this is also equal Yo, ., f(v,), the flow intot. We will show this later.

The maximum-flow problens, given a flow network, and source and sink vertiseand¢, find the flow of
maximum value frons to ¢.

Example: Page 581 of CLR.

Multi-source, multi-sink flow problems: It may seem overly restrictive to require that there is only a single source
and a single sink vertex. Many flow problems have situations in which many source veitiees . ., s, and
many sink vertices,, o, ...,¢;. This can easily be modelled by just adding a spesiglersources’ and a
supersinkt’, and attaching’ to all thes; and attach all the; to ¢’. We let these edges have infinite capacity.
Now by pushing the maximum flow fromi to ¢’ we are effectively producing the maximum flow from all the
s; to all thet;’s.

Note that we don’t care which flow from one source goes to another sink. If you require that the flow from
sourcel goes ONLY to sinki, then you have a tougher problem called mglti-commodity flow problem

Set Notation: Sometimes rather than talking about the flow from a vertéa a vertexv, we want to talk about the
flow from a SET of verticesy to another SET of verticeg. To do this we extend the definition ¢fto sets by
defining

FXY)=)) yeYf(zy)
zeX
Using this notation we can define flow balance for a vettewore succintly by just writingf (v, V') = 0. One
important special case of this concept is whérandY define acut (i.e. a partition of the vertex set into two
disjoint subsetsX C V andY = V — X). In this casef(X,Y’) can be thought of as the net amount of flow
crossing over the cut.

From simple manipulations of the definition of flow we can prove the following facts.

Lemma:
(i) f(X,X)=0.

(i) f(X,Y)=—f(¥,X).
(i) If XNY =0thenf(XUY,Z) = f(X,2)+ f(Y,Z)andf(Z, X UY) = f(Z,X) + f(Z,Y).

Ford-Fulkerson Method: The most basic concept on which all network-flow algorithms work is the noti@ugf
menting flows The idea is to start with a flow of size zero, and then incrementally make the flow larger and
larger by finding a path along which we can push more flow. A path in the networkstomalong which more
flow can be pushed is called angmenting pathThis idea is given by the most simple method for computing
network flows, called the Ford-Fulkerson method.

Almost all network flow algorithms are based on this simple idea. They only differ in how they decide which
path or paths along which to push flow. We will prove that when it is impossible to “push” any more flow
through the network, we have reached the maximum possible flow (i.e. a locally maximum flow is globally
maximum).

Lecture Notes 121 CMSC 451

Ford-Fulkerson Network Flow

FordFulkerson(G, s, t) {
initialize flow f to O;
while (there exists an augmenting path p) {
augment the flow along p;

}

output the final flow f;

Residual Network: To define the notion of an augmenting path, we first define the notion of a residual network. Given
a flow networkG and a flowf, define theesidual capacityf a pairu, v € V to becy(u, v) = c(u, v) — f(u,v).
Because of the capacity constraiai(u, v) > 0. Observe that it;(u, v) > 0 then it is possible to push more
flow through the edgéu, v). Otherwise we say that the edgesaturated

Theresidual networks the directed grapty'y with the same vertex set &sbut whose edges are the paits v)
such that(u,v) > 0. Each edge in the residual network is weighted with its residual capacity.

Example: Page 589 of CLR.

Lemma: Let f be a flow inG and letf’ be a flow inG¢. Then(f + f’) (defined(f + f')(u,v) = f(u,v) +
f'(u,v))is aflow inG. The value of the flow i$f| + | f/|.

Proof: Basically the residual network tells us how much additional flow we can push th@udhis implies
that f + f’ never exceeds the overall edge capacitie§.oThe other rules for flows are easy to verify.

Augmenting Paths: An augmenting pathis a simple path frons to ¢ in Gy. Theresidual capacityof the path is
the MINIMUM capacity of any edge on the path. It is denotgdp). Observe that by pushing (p) units of
flow along each edge of the path, we get a flowGip, and hence we can use this to augment the floé.in
(Remember that when defining this flow that whenever we push) units of flow along any edgéu, v) of p,
we have to push-c;(p) units of flow along the reverse edge, u) to maintain skew-symmetry. Since every
edge of the residual network has a strictly positive weight, the resulting flow is strictly larger than the current
flow for G.

In order to determine whether there exists an augmenting pathsftoris an easy problem. First we construct

the residual network, and then we run DFS or BFS on the residual network startingf #te search reaches

t then we know that a path exists (and can follow the predecessor pointers backwards to reconstruct it). Since
DFS and BFS tak®(n + ¢) time, and it can be shown that the residual network®as+ ¢) size, the running

time of Ford-Fulkerson is basically

O((n + e)(number of augmenting staggs

Later we will analyze the latter quantity.

Correctness: To establish the correctness of the Ford-Fulkerson algorithm we need to delve more deeply into the
theory of flows and cuts in networks. @ut, (S,T), in a flow network is a partition of the vertex set into two
disjoint subsets$ and7" such thats € S andt € T'. We define the flow across the cut&s5, '), and we define
the capcity of the cut ag.S, T'). Note that in computing (S, T') flows fromT to S are counted negatively (by
skew-symmetry), and in computingS, ') we ONLY count constraints on edges leading fr6rto T ignoring
those fromI" to S).

Lemma: The amount of flow across any cut in the network is equafto

Lecture Notes 122 CMSC 451

Proof:

fF(8,T) = f(5V)—[f(559)
= f(5V)
= fls,V)+[(S=sV)
= [f(sV)
£l

(The fact thatf (S — s, V') = 0 comes from flow conservatiory.(u, V') = 0 for all » other thans andt,
and sinceS — s is formed of such vertices the sum of their flows will be zero also.)

Corollary: The value of any flow is bounded from above by the capacity of any cut. (i.e. Maximumflow
Minimum cut).

Proof: You cannot push any more flow through a cut than its capacity.

The correctness of the Ford-Fulkerson method is based on the following theorem, called the Max-Flow, Min-Cut
Theorem. It basically states that in any flow network the minimum capacity cut acts like a bottleneck to limit
the maximum amount of flow. Ford-Fulkerson algorithm terminates when it finds this bottleneck, and hence it
finds the minimum cut and maximum flow.

Max-Flow Min-Cut Theorem: The following three conditions are equivalent.

(i) fisamaximum flow inG,
(i) The residual networkz ; contains no augmenting paths,
(i) |f] =¢(S,T) for some cul(S,T) of G.

Proof: (i) = (ii): If fis a max flow and there were an augmenting patf¥ jn then by pushing flow along this
path we would have a larger flow, a contradiction.
(i) = (iii): If there are no augmenting paths themmndt are not connected in the residual network. Let
S be those vertices reachable fronin the residual network and 16t be the rest.(S,T) forms a cut.
Because each edge crossing the cut must be saturated with flow, it follows that the flow across the cut
equals the capacity of the cut, thyd = ¢(S,T).
(iif) = (i): Since the flow is never bigger than the capacity of any cut, if the flow equals the capacity of
some cut, then it must be maximum (and this cut must be minimum).

Analysis of the Ford-Fulkerson method: The problem with the Ford-Fulkerson algorithm is that depending on how
it picks augmenting paths, it may spend an inordinate amount of time arriving a the final maximum flow. Con-
sider the following example (from page 596 in CLR). If the algorithm were smart enough to send flow along
the edges of weight 1,000,000, the algorithm would terminate in two augmenting steps. However, if the algo-
rithm were to try to augment using the middle edge, it will continuously improve the flow by only a single unit.
2,000,000 augmenting will be needed before we get the final flow. In general, Ford-Fulkerson can take time
O((n+e)|f*|) wheref* is the maximum flow.

An Improvement: We have shown that if the augmenting path was chosen in a bad way the algorithm could run for a
very long time before converging on the final flow. It seems (from the example we showed) that a more logical
way to push flow is to select the augmenting path which holds the maximum amount of flow. Computing this
path is equivalent to determining the path of maximum capacity fsdmt¢ in the residual network. (This is
exactly the same as the beer transport problem given on the last exam.) It is not known how fast this method
works in the worst case, but there is another simple strategy that is guaranteed to give good bounds (in terms of
n ande).

Lecture Notes 123 CMSC 451

Edmonds-Karp Algorithm: The Edmonds-Karp algorithm is Ford-Fulkerson, with one little change. When finding
the augmenting path, we use Breadth-First search in the residual network, starting at the sandcaus we
find the shortest augmenting path (where the length of the path is the number of edges on the path). We claim
that this choice is particularly nice in that, if we do so, the number of flow augmentations needed will be at most
O(e - n). Since each augmentation tak@&» + e) time to compute using BFS, the overall running time will be
O((n + e)e - n) = O(n%e + €2n) € O(e?n) (under the reasonable assumption that n). (The best known
algorithm is essentiallp (e - nlogn).

The fact that Edmonds-Karp us€gen) augmentations is based on the following observations.

Observation: If the edge(u, v) is an edge on the minimum length augmenting path feoto ¢ in G, then
dr(s,v) =0ds(s,u) + 1.

Proof: This is a simple property of shortest paths. Since there is an edgesftom, §;(s,v) < d,(s,u) + 1,
and ifé;(s,v) < (s, u) + 1 thenu would not be on the shortest path frano v, and hencgu, v) is not
on any shortest path.

Lemma: Foreachvertex € V—{s,t}, letd(s,u) be the distance function froato u in the residual network
Gy. Then as we peform augmentations by the Edmonds-Karp algorithm the vadyésof:) increases
monotonically with each flow augmentation.

Proof: (Messy, but not too complicated. See the text.)

Theorem: The Edmonds-Karp algorithm makes at mOstk. - ¢) augmentations.

Proof: An edge in the augmenting pathastical if the residual capacity of the path equals the residual capacity
of this edge. In other words, after augmentation the critical edge becomes saturated, and disappears from
the residual graph.
How many times can an edge become critical before the algorithm terminates? Observe that when the
edge(u, v) is critical it lies on the shortest augmenting path, implying thas, v) = 67(s,u) + 1. After
this it disappears from the residual graph. In order to reappear, it must be that we reduce flow on this edge,
i.e. we push flow along the reverse edgeu). For this to be the case we have (at some later ffow
ds(s,u) = d4(s,v) + 1. Thus we have:

dp(s,u) = dp(s,v)+1

dr(s,v) +1 since dists increase with time
(0p(s,u)+1)+1

d¢(s,u) + 2.

Y]

Thus, between the time that an edge becomes critical, its tail vertex increases in distance from the source
by two. This can only happeny 2 times, since no vertex can be further thaffom the source. Thus, each

edge can become critical at m@s{n) times, there aré(e) edges, hence afté}(ne) augmentations, the
algorithm must terminate.

In summary, the Edmonds-Karp algorithm makes at mitiste) augmentations and runs @(ne?) time.

Maximum Matching: One of the important elements of network flow is that it is a very general algorithm which is
capable of solving many problems. (An example is problem 3 in the homework.) We will give another example
here.

Consider the following problem, you are running a dating service and there are a set df amha set of
womenR. Using a questionaire you establish which men are compatible which which women. Your task is
to pair up as many compatible pairs of men and women as possible, subject to the constraint that each man is
paired with at most one woman, and vice versa. (It may be that some men are not paired with any woman.)

This problem is modelled by giving an undirected graph whose vertex $étss. U R and whose edge set
consists of pairgu,v), v € L, v € R such thatu andv are compatible. The problem is to findhaatching

Lecture Notes 124 CMSC 451

that is a subset of edgég such that for each € V, there is at most one edge df incident tov. The desired
matching is the one that has the maximum number of edges, and is call@ximum matching

Example: See page 601 in CLR.

The resulting undirected graph has the property that its vertex set can be divided into two groups such that all
its edges go from one group to the other (never within a group, unless the dating service is located on Dupont
Circle). This problem is called thraaximum bipartite matching problem

Reduction to Network Flow: We claim that if you have an algorithm for solving the network flow problem, then you
can use this algorithm to solve the maximum bipartite matching problem. (Note that this idea does not work for
general undirected graphs.)

Construct a flow networks’ = (V’/, E’) as follows. Lets and¢ be two new vertices and &' = V U {s,t}.
E' ={(s,u)lue L} U{(v,t)lv e R} U{(u,v)|(u,v) € E}.

Set the capacity of all edges in this network to 1.
Example: See page 602 in CLR.

Now, compute the maximum flow i&’. Although in general it can be that flows are real numbers, observe that
the Ford-Fulkerson algorithm will only assign integer value flows to the edges (and this is true of all existing
network flow algorithms).

Since each vertex ik has exactly 1 incoming edge, it can have flow along at most 1 outgoing edge, and since
each vertex inR has exactly 1 outgoing edge, it can have flow along at most 1 incoming edge. Thus fetting
denote the maximum flow, we can define a matching

M = {(u,v)|lu € L, v € R, f(u,v) > 0}.

We claim that this matching is maximum because for every matching there is a corresponding flow of equal
value, and for every (integer) flow there is a matching of equal value. Thus by maximizing one we maximize
the other.

Supplemental Lecture 12: Hamiltonian Path
Read: The reduction we present for Hamiltonian Path is completely different from the one in Chapt 36.5.4 of CLR.

Hamiltonian Cycle: Today we consider a collection of problems related to finding paths in graphs and digraphs.
Recall that given a graph (or digraph)Hamiltonian cyclds a simple cycle that visits every vertex in the graph
(exactly once). AHamiltonian pathis a simple path that visits every vertex in the graph (exactly once). The
Hamiltonian cycle (HC) and Hamiltonian path (HP) problems ask whether a given graph (or digraph) has such
a cycle or path, respectively. There are four variations of these problems depending on whether the graph is
directed or undirected, and depending on whether you want a path or a cycle, but all of these problems are
NP-complete.

An important related problem is the traveling salesman problem (TSP). Given a complete graph (or digraph)
with integer edge weights, determine the cycle of minimum weight that visits all the vertices. Since the graph
is complete, such a cycle will always exist. The decision problem formulation is, given a complete weighted
graphG, and integerX, does there exist a Hamiltonian cycle of total weight at m68t Today we will prove

that Hamiltonian Cycle is NP-complete. We will leave TSP as an easy exercise. (It is done in Section 36.5.5 in
CLR))

Lecture Notes 125 CMSC 451

Component Design: Up to now, most of the reductions that we have seen (for Clique, VC, and DS in particular) are
of a relatively simple variety. They are sometimes caltexhl replacementeductions, because they operate by
making some local change throughout the graph.

We will present a much more complex style of reduction for the Hamiltonian path problem on directed graphs.
This type of reduction is called@mponent desigreduction, because it involves designing special subgraphs,
sometimes calledomponentsr gadgetqalso calledvidgetd. whose job it is to enforce a particular constraint.
Very complex reductions may involve the creation of many gadgets. This one involves the construction of only
one. (See CLR’s presentation of HP for other examples of gadgets.)

The gadget that we will use in the directed Hamiltonian path reduction, call#dRxgadgetis shown in the

figure below. It consists of three incoming edges labéleth, i3 and three outgoing edges, labelgdo,, o3. It

was designed so it satisfied the following property, which you can verify. Intuitively it says that if you enter the
gadget on any subset of 1, 2 or 3 input edges, then there is a way to get through the gadget and hit every vertex
exactly once, and in doing so each path must end on the corresponding output edge.

Claim: Given the DHP-gadget:

e For any subset of input edges, there exists a set of paths which join each input edger i3 to
its respective output edgs, o2, Or o3 such that together these paths visit every vertex in the gadget
exactly once.

e Any subset of paths that start on the input edges and end on the output edges, and visit all the vertices
of the gadget exactly once, must join corresponding inputs to corresponding outputs. (In other words,
a path that starts on inpit must exit on outpud, .)

The proof is not hard, but involves a careful inspection of the gadget. It is probably easiest to see this on your
own, by starting with one, two, or three input paths, and attempting to get through the gadget without skipping
vertex and without visiting any vertex twice. To see whether you really understand the gadget, answer the
question of why there are 6 groups of triples. Would some other number work?

DHP is NP-complete: This gadget is an essential part of our proof that the directed Hamiltonian path problem is
NP-complete.

Theorem: The directed Hamiltonian Path problem is NP-complete.

Proof: DHP € NP: The certificate consists of the sequence of vertices (or edges) in the path. It is an easy
matter to check that the path visits every vertex exactly once.

3SAT <p DHP: This will be the subject of the rest of this section.

Let us consider the similar elements between the two problems. In 3SAT we are selecting a truth assignment
for the variables of the formula. In DHP, we are deciding which edges will be a part of the path. In 3SAT there
must be at least one true literal for each clause. In DHP, each vertex must be visited exactly once.

We are given a boolean formulain 3-CNF form (three literals per clause). We will convert this formula into
adigraph. Letrq, xo, . . ., z,, denote the variables appearingfin We will construct one DHP-gadget for each
clause in the formula. The inputs and outputs of each gadget correspond to the literals appearing in this clause.
Thus, the clausérs V x5 V Tg) would generate a clause gadget with inputs labgled 5, andzs, and the same
outputs.

The general structure of the digraph will consist of a series vertices, one for each variable. Each of these vertices
will have two outgoing paths, one takenuf is set to true and one if; is set to false. Each of these paths will

then pass through some number of DHP-gadgets. The true path fall pass through all the clause gadgets

for clauses in whiche; appears, and the false path will pass through all the gadgets for clauses inZyhich
appears. (The order in which the path passes through the gadgets is unimportant.) When the patteéor
passed through their last gadgets, then they are joined to the next variable wertexThis is illustrated in

the following figure. (The figure only shows a portion of the construction. There will be paths coming into

Lecture Notes 126 CMSC 451

Gadget What it looks like inside

iy 0, iy 0,
iy o, iy ‘\ ‘\ ‘\ ‘\ ‘\ ‘\ o,
i3 05 i3 0,

Path with 1 entry
i 0, i 0,

S PN S A
) o Wl SV S

Path with 2 entries
i 0, iy 0,

i o, 3l N T D T
i3 03 i3y~ _/ S >// 03

Path with 3 entries

iy 0, i1 0,
iz 9, b "‘»02
i3 03 i3 L L L L L 0

Fig. 78: DHP-Gadget and examples of path traversals.

Lecture Notes 127 CMSC 451

these same gadgets from other variables as well.) We add one final vgri@xd the last variable’s paths are
connected te.. (If we wanted to reduce to Hamiltonian cycle, rather than Hamiltonian path, we couldjoin

back tox;.)
X /TN
X/] X X
_ ‘-<+1
i — _
. . - Xi X
.] R A

Fig. 79: General structure of reduction from 3SAT to DHP.

Note that for each variable, the Hamiltonian path must either use the true path or the false path, but it cannot use
both. If we choose the true path foy to be in the Hamiltonian path, then we will have at least one path passing
through each of the gadgets whose corresponding clause comtaesd if we chose the false path, then we

will have at least one path passing through each gadget for

For example, consider the following boolean formula in 3-CNF. The construction yields the digraph shown in
the following figure.

(Tl \/"L'Q\/l'g)/\(iCl \/fz\/fg)/\((EQ\/Tl \/Tg)/\(.’lll \/xg\/fz).

path starts here

to X3
= to Xo

A

e

=10 X3

to X2

Fig. 80: Example of the 3SAT to DHP reduction.

The Reduction: Let us give a more formal description of the reduction. Recall that we are given a boolean férmula
in 3-CNF. We create a digraphi as follows. For each variable appearing inF', we create avariable vertex
namedz;. We also create a vertex named (the ending vertex). For each clauseve create a DHP-gadget
whose inputs and outputs are labeled with the three literals(@he order is unimportant, as long as each input
and its corresponding output are labeled the same.)

We join these vertices with the gadgets as follows. For each vatigpbt®nsider all the clauses, cs, . . ., ¢ in

whichz; appears as a literal (uncomplemented). Jgihy an edge to the input labeled with in the gadget for

c1, and in general join the the output of gadggetabeledz; with the input of gadget; ., with this same label.

Finally, join the output of the last gadget to the next vertex variable; ;. (If this is the last variable, then

joinit to z. instead.) The resulting chain of edges is calledttbe pathfor variablex;. Form a second chain

in exactly the same way, but this time joining the gadgets for the clauses in Whighpears. This is called

the false pathfor x;. The resulting digraph is the output of the reduction. Observe that the entire construction
can be performed in polynomial time, by simply inspecting the formula, creating the appropriate vertices, and
adding the appropriate edges to the digraph. The following lemma establishes the correctness of this reduction.

Lemma: The boolean formuld’ is satisfiable if and only if the digrapti produced by the above reduction has
a Hamiltonian path.

Lecture Notes 128 CMSC 451

Start here

o7
X]_./ ; to X3
X1 /%2 XL tox
T X2) 2
X2 e i X3 X3 L Xe
X3.'>\)
A satisfying assignment hits all gadgets
Start here
to X3
\X2 :
X1 : X
/X3 €
to Xo

A nonsatisfying assignment misses some gadgets

Fig. 81: Correctness of the 3SAT to DHP reduction. The upper figure shows the Hamiltonian path resulting from the
satisfying assignment;; = 1, o = 1, 3 = 0, and the lower figure shows the non-Hamiltonian path resulting from
the nonsatisfying assignmenf = 0, x5 = 1, 3 = 0.

Proof: We need to prove both the “only if” and the “if".

=-: Suppose thaf’ has a satisfying assignment. We claim tGdbas a Hamiltonian path. This path will start at
the variable vertex:, then will travel along either the true path or false pathufprdepending on whether
it is 1 or 0, respectively, in the assignment, and then it will continue withthenzs, and so on, until
reachingr.. Such a path will visit each variable vertex exactly once.
Because this is a satisfying assignment, we know that for each clause, either 1, 2, or 3 of its literals
will be true. This means that for each clause, either 1, 2, or 3, paths will attempt to travel through the
corresponding gadget. However, we have argued in the above claim that in this case it is possible to visit
every vertex in the gadget exactly once. Thus every vertex in the graph is visited exactly once, implying
thatG has a Hamiltonian path.

<: Suppose that: has a Hamiltonian path. We assert that the form of the path must be essentially the same as
the one described in the previous part of this proof. In particular, the path must visit the variable vertices
in increasing order from; until z., because of the way in which these vertices are joined together.

Also observe that for each variable vertex, the path will proceed along either the true path or the false path.
If it proceeds along the true path, set the corresponding variable to 1 and otherwise set it to 0. We will
show that the resulting assignment is a satisfying assignmeit.for

Any Hamiltonian path must visit all the vertices in every gadget. By the above claim about DHP-gadgets,
if a path visits all the vertices and enters along input edge then it must exit along the corresponding output
edge. Therefore, once the Hamiltonian path starts along the true or false path for some variable, it must
remain on edges with the same label. That is, if the path starts along the true pathifanust travel
through all the gadgets with the label until arriving at the variable vertex far, ;. If it starts along the

false path, then it must travel through all gadgets with the lahel

Since all the gadgets are visited and the paths must remain true to their initial assignments, it follows that
for each corresponding clause, at least one (and possibly 2 or three) of the literals must be true. Therefore,
this is a satisfying assignment.

Lecture Notes 129 CMSC 451

Supplemental Lecture 13: Subset Sum Approximation

Read: Section 37.4 in CLR.

Polynomial Approximation Schemes: Last time we saw that for some NP-complete problems, it is possible to ap-
proximate the problem to within a fixed constant ratio bound. For example, the approximation algorithm pro-
duces an answer that is within a factor of 2 of the optimal solution. However, in practice, people would like to
the control the precision of the approximation. This is done by specifying a paramet@ms part of the input
to the approximation algorithm, and requiring that the algorithm produce an answer that is wigtitie
error of € of the optimal solution. It is understood thatatends to 0, the running time of the algorithm will
increase. Such an algorithm is calleda@ynomial approximation scheme

For example, the running time of the algorithm might®@(*/<)n?). Itis easy to see that in such cases the user
pays a big penalty in running time as a functioreofFor example, to produce a 1% error, the “constant” factor
would be2!% which would be around 4 quadrillion centuries on your 100 Mhz Pentiunfill polynomial
approximation schemes one in which the running time is polynomial in bothand1/e. For example, a
running time ofO((n/€)?) would satisfy this condition. In such cases, reasonably accurate approximations are
computationally feasible.

Unfortunately, there are very few NP-complete problems with fully polynomial approximation schemes. In fact,
recently there has been strong evidence that many NP-complete problems do not have polynomial approximation
schemes (fully or otherwise). Today we will study one that does.

Subset Sum: Recall that in the subset sum problem we are given & s#tpositive integer§z,, 2, ...,z,} and a
target value, and we are asked whether there exists a sufyset S that sums exactly to. The optimization
problem is to determine the subset whose sum is as large as possible but not larger than

This problem is basic to many packing problems, and is indirectly related to processor scheduling problems that
arise in operating systems as well. Suppose we are also @ivea < 1. Let z* < t denote the optimum sum.
The approximation problem is to return a value ¢ such that

z>2"(1—¢).

If we think of this as a knapsack problem, we want our knapsack to be within a fadtbr-of) of being as full
as possible. So, if = 0.1, then the knapsack should be at least 90% as full as the best possible.

What do we mean by polynomial time here? Recall that the running time should be polynomial in the size of
the input length. Obviously is part of the input length. Butand the numbers; could also be huge binary
numbers. Normally we just assume that a binary number can fit into a word of our computer, and do not count
their length. In this case we will to be on the safe side. ClearbguiresO(log t) digits to be store in the input.

We will take the input size to be + log .

Intuitively it is not hard to believe that it should be possible to determine whether we can fill the knapsack to
within 90% of optimal. After all, we are used to solving similar sorts of packing problems all the time in real
life. But the mental heuristics that we apply to these problems are not necessarily easy to convert into efficient
algorithms. Our intuition tells us that we can afford to be a little “sloppy” in keeping track of exactly full the
knapsack is at any point. The valueedé€lls us just how sloppy we can be. Our approximation will do something
similar. First we consider an exponential time algorithm, and then convert it into an approximation algorithm.

Exponential Time Algorithm: This algorithm is a variation of the dynamic programming solution we gave for the
knapsack problem. Recall that there we used an 2-dimensional array to keep track of whether we could fill a
knapsack of a given capacity with the fiisbbjects. We will do something similar here. As before, we will
concentrate on the question of which sums are possible, but determining the subsets that give these sums will
not be hard.

Let L; denote a list of integers that contains the sums dt’adubsets of z1, x5, . .., z;} (including the empty
set whose sum is 0). For example, for the §et4,6} the corresponding list of sums contaifts 1, 4, 5(=

Lecture Notes 130 CMSC 451

1+4),6,7(=1+6),10(= 4+ 6),11(= 1+ 4 + 6)). Note thatZ, can have as many & elements, but may
have fewer, since some subsets may have the same sum.

There are two things we will want to do for efficiency. (1) Remove any duplicates frgrand (2) only keep

sums that are less than or equalttoLet us suppose that we a procediergeLists(L1, L2) which

merges two sorted lists, and returns a sorted lists with all duplicates removed. This is essentially the procedure
used in MergeSort but with the added duplicate element test. As a bit of notatidhHet denote the list
resulting by adding the numberto every element of lisL. Thus(1,4,6) + 3 = (4,7,9). This gives the
following procedure for the subset sum problem.

Exact Subset Sum

Exact_SS(x[1..n], t) {
L = <0>;
for i = 1 to n do {
L = MergeLists(L, L+x]i]);
remove for L all elements greater than ft;

}

return largest element in L;

For example, ifS = {1, 4,6} andt = 8 then the successive lists would be

Ly = (0)

Ly = (0)uU{0+1)=10,1)

Ly = (0,1)U{0+4,1+4)=(0,1,4,5)

Ly = (0,1,4,5)U(0+6,1+6,4+6,5+6) = (0,1,4,5,6,7,10,11).

The last list would have the elements 10 and 11 removed, and the final answer would be 7. The algorithm runs
in Q(2™) time in the worst case, because this is the number of sums that are generated if there are no duplicates,
and no items are removed.

Approximation Algorithm: To convert this into an approximation algorithm, we will introduce a “trim” the lists to
decrease their sizes. The idea is that if thellistontains two numbers that are very close to one another, e.g.
91,048 and91, 050, then we should not need to keep both of these numbers in the list. One of them is good
enough for future approximations. This will reduce the size of the lists that the algorithm needs to maintain.
But, how much trimming can we allow and still keep our approximation bound? Furthermore, will we be able
to reduce the list sizes from exponential to polynomial?

The answer to both these questions is yes, provided you apply a proper way of trimming the lists. We will trim
elements whose values are sufficiently close to each other. But we should define close in manner that is relative
to the sizes of the numbers involved. The trimming must also deperd\&k select = e/n. (Why? We will

see later that this is the value that makes everything work out in the end.) Notethat< 1. Assume that the
elements of_ are sorted. We walk through the list. Letlenote the last untrimmed elementlinand lety > =

be the next element to be considered. If

then we trimy from the list. Equivalently, this means that the final trimmed list cannot contain two yadue
z such that
(1-dy<z<y.

We can think ofz asrepresentingy in the list.
For example, gived = 0.1 and given the list

L =(10,11,12,15,20,21,22, 23, 24, 29),

Lecture Notes 131 CMSC 451

the trimmed listZ’ will consist of
L' = (10,12, 15,20, 23, 29).

Another way to visualize trimming is to break the interval from¢] into a set ofbucketsof exponentially
increasing size. Let = 1/(1—§). Note thatd > 1. Consider the intervald, d|, [d, d?], [d?, d®], ..., [d*~!, d¥]
whered® > t. If z < y are in the same intervéd:—!, d‘] then
_ i 7i—1
y—z _ d —d 1

: =1-—-=04.
y o dt d

Thus, we cannot have more than one item within each bucket. We can think of trimming as a way of enforcing
the condition that items in our lists are not relatively too close to one another, by enforcing the condition that no
bucket has more than one item.

12 4 8 16
L ‘ ‘.‘04 ‘.. ‘ [X] ‘ o0 .‘. [‘
L' (el [o [[o o |

Fig. 82: Trimming Lists for Approximate Subset Sum.

Claim: The number of distinct items in a trimmed listG¥ (n log t)/¢), which is polynomial in input size and
1/e.

Proof: We know that each pair of consecutive elements in a trimmed list differ by a ratio of atdeast
1/(1 = §) > 1. Let k denote the number of elements in the trimmed list, ignoring the element of value 0.
Thus, the smallest nonzero value and maximum value in the the trimmed list differ by a ratio of at least
d*=1. Since the smallest (nonzero) element is at least as large as 1, and the largest is no latgérehan
it follows thatd*~! < t/1 = t. Taking the natural log of both sides we hg#e- 1) Ind < Int. Using the
facts thaty = ¢/n and the log identity thain(1 + x) < z, we have

Int Int
k-1 < — = ————
~ Ind —1In(1 —9)
Int nilnt
< —_ =
- 9 €

K — O (nlogt) .
€

Observe that the input size is at least as large @since there are numbers) and at least as largd@st
(since it takedog t digits to write dowrt on the input). Thus, this function is polynomial in the input size
andl/e.

The approximation algorithm operates as before, but in addition we call the proda@uaregiven below.

For example, consider the sgt= {104, 102,201,101} and¢ = 308 ande = 0.20. We haved = ¢/4 = 0.05.
Here is a summary of the algorithm’s execution.

Lecture Notes 132 CMSC 451

Approximate Subset Sum

Trim(L, delta) {
let the elements of L be denoted y[1..m];

L' = <y[1]>; /I start with first item
last = y[1]; /I last item to be added
for i = 2 to m do {
if (last < (1-delta) yJi]) { /I different enough?
append y[i] to end of L’
last = yJi];
}
}
}
Approx_SS(x[1..n], t, eps) {
delta = eps/n; /I approx factor
L = <0>; /Il empty sum = 0
for i = 1 to n do {
L = MergeLists(L, L+x[i]); /I add in next item
L = Trim(L, delta); /I trim away "near" duplicates
remove for L all elements greater than t;
}
return largest element in L;
}

init: Ly = <0>
merge: L; = (0,104)
trim: Ly = (0,104)
remove: L; = (0,104)
merge: Lo = (0,102,104,206)
tim: Ly = (0,102,206)
remove: Lo = (0,102,206)
merge: L3 = (0,102,201,206,303,407)
tim: Ly = (0,102,201,303,407)
remove: Lz = (0,102,201,303)
merge: Ly = (0,101,102,201,203,302,303,404)
tim: Ly = (0,101,201,302,404)
remove: Ly = (0,101,201,302)

The final output is 302. The optimum 37 = 104 + 102 + 101. So our actual relative error in this case is
within 2%.

The running time of the procedure@¥n|L|) which isO(n? Int/¢) by the earlier claim.

Lecture Notes 133 CMSC 451

Approximation Analysis: The final question is why the algorithm achieves an relative error of at mogtr the
optimum solution. Let"* denote the optimum (largest) subset sum an&lelenote the value returned by the
algorithm. We want to show that is not too much smaller thari*, that is,

Y>Y*(1-—e).

Our proof will make use of an important inequality from real analysis.

Lemma: Forn > 0 anda real numbers,
(1+a) < (14+2) <en.
n

Recall that our intuition was that we would allow a relative erros of at each stage of the algorithm. Since the
algorithm has: stages, then the total relative error should be (obviously?)n) = e. The catch is that these

are relative, not absolute errors. These errors to not accumulate additively, but rather by multiplication. So we
need to be more careful.

Let L} denote the-th list in the exponential time (optimal) solution and Igtdenote the-th list in the approx-

imate algorithm. We claim that for eaghe L} there exists a representative itene L; whose relative error

from y that satisfies 4
(I—e/n)fy<z<y.

The proof of the claim is by induction on Initially Lo = L§ = (0), and so there is no error. Suppose by
induction that the above equation holds for each itemjin,. Consider an element<c L;_,. We know that

y will generate two elements ih}: y andy + z;. We want to argue that there will be a representative that is
“close” to each of these items.

By our induction hypothesis, there is a representative elemignf; _; such that
(1-¢/m)i ly<z<y.

When we apply our algorithm, we will form two new items to add (initially)tg z andz + x;. Observe that
by addingz; to the inequality above and a little simplification we get

(1—¢/n) Yy +x) <z4a; <y+

zy
* ||
HRgRT e TeiT e e oo
*Lia R
* O .
S el Teo el oo te ooo
*L; I |
| Zy y Zu y+Xi
z Z+X;

Fig. 83: Subset sum approximation analysis.

The itemsz andz + x; might not appear irl.; because they may be trimmed. L&tandz" be their respective
representatives. Thus/, andz" are elements of;. We have

(1—¢/n)z

<z
1—¢e/n)(z4+x;) <2

! z

<

Lecture Notes 134 CMSC 451

Combining these with the inequalities above we have
!

g el < (- e/m)'y
(1= e/ (1= e/m)ly +2) < (1= e/n)'(y+2)

Y

<z <
<zZ'< z4uy.

Sincez andz” are inL; this is the desired result. This ends the proof of the claim.

Using our claim, and the fact th&t* (the optimum answer) is the largest elementffandY” (the approximate

answer) is the largest elementbf we have
(I—¢/n)"Y*"<Y <Y".

This is not quite what we wanted. We wanted to show lhat €)Y™* < Y. To complete the proof, we observe

from the lemma above (setting= —e¢) that
€ n
—e) < — =) .
(=€) < (1 n)

This completes the approximate analysis.

Lecture Notes 135 CMSC 451

