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Abstract

Formula 1 (F1) is one of the most competitive categories of motorsport rac-

ing, in which single-seater, high-performance cars compete around a closed

circuit. In F1 events, participating race cars have to complete a defined

number of laps around a closed circuit. The goal for a driver is to finish

each race in the best possible placement consistently.

In addition to driver skills and car performance, the result in F1 competi-

tions is often also determined by the tire strategy adopted by the team. For

this reason, Formula 1 teams invest considerable resources in race outcome

simulation and prediction to supply their race engineers with fast predic-

tions of most likely events.

In this work, we aim to provide an automated way of identifying tire strate-

gies for F1 races by considering the problem of deciding when to perform a

pit-stop and which compound to use as a sequential decision-making prob-

lem. In order to provide recommendations in a reasonable time, we, there-

fore, investigate the application of anytime online planning algorithms to

tackle this problem.

To cope with the stochastic and continuous nature of the problem, we pro-

pose an agent based on an open-loop approach combining both Monte Carlo

sampling and a Temporal Difference (TD) backup operator.

To evaluate the proposed approach, we design a planning environment able

to provide a replica of past F1 races, which we base on a lap time simula-

tor. To this end, we discuss the feasibility of designing and implementing

a regression-based lap time simulator, using publicly available data of past

races.

Finally, exploiting the availability of a fairly complete racing simulator [13],

which we modify to be consistent with a planning application, we conduct

a thorough evaluation of the proposed planner, as well as various anytime

planners from the MCTS literature on a sample of races belonging to the

“Turbo Hybrid era” of F1.
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Estratto in lingua italiana

La Formula 1 (F1) è una delle categorie più competitive nel motorsport, in

cui veicoli monoposto ad altissima performance competono su circuiti chiusi.

Durante gli eventi di F1, le monoposto devono completare un ammontare

di giri attorno ad un circuito nel minor tempo possibile. Alla conclusione

dell’evento, l’ordine di arrivo viene utilizzato per assegnare punti a ciascuno

dei piloti classificati nelle prime dieci posizioni. Pertanto, l’obiettivo per ogni

pilota è quello di concludere la gara con il miglior piazzamento possibile.

Il risultato delle gare di F1 non è determinato solo dall’abilità dei pi-

loti e dalla performance delle monoposto, ma anche dalla strategia di gara

che viene impiegata dalla squadra. La strategia di gara è costituita dal-

l’ordine delle mescole che vengono montate su una monoposto durante la

gara, nonché dal giro a cui vengono montate. La sostituzione delle gomme,

chiamata pit-stop, è obbligatoria e deve avvenire almeno una volta per ogni

pilota durante la gara.

Montare la mescola giusta al momento giusto può permettere di guada-

gnare un vantaggio significativo sugli avversari o, viceversa, se viene adottata

una strategia sbagliata, il tempo perso rispetto ai piloti avversari può essere

considerevole. Per questo motivo, le squadre di F1 investono ingenti risorse

per simulare le situazioni di gara e ottenere predizioni dei risultati più pro-

babili, in modo da poterle fornire ai propri strateghi nel più breve tempo

possibile. Gli strateghi devono spesso reagire a mosse degli avversari e si-

tuazioni di gara inaspettate, pertanto il processo di decisione può rivelarsi

frenetico e la necessità di prendere decisioni in breve tempo può impedire

al gruppo di strategia di considerare tutte le opzioni, o addirittura indurlo

all’errore.

Considerando i fattori appena citati, crediamo che l’utilizzo di uno stru-

mento per il supporto alle decisioni in grado di fornire suggerimenti sulla

strategia di gara molto velocemente possa essere utile a migliorare la qualità

e la competitività delle strategie di gara utilizzate dalle squadre. L’obiettivo

del nostro lavoro è quindi quello di progettare ed implementare un agente
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autonomo in grado di identificare le strategie di gara per la F1, considerando

il problema della decisione se effettuare un pit-stop e quali gomme montare

come un problema di decisione sequenziale.

Per offrire raccomandazioni in un tempo ragionevole, concentriamo la

nostra ricerca sull’applicazione di algoritmi anytime di planning online per

affrontare il problema. Per gestire la natura stocastica e continua del proble-

ma, proponiamo un agente basato su un approccio open-loop che combini sia

il campionamento Monte Carlo che un operatore di backup di tipo Temporal

Difference. Il nostro approccio innovativo si basa sulla modifica dell’algo-

ritmo di MCTS UCT, sfruttando l’operatore di update di Q-Learning [33]

al posto dell’update Monte Carlo al fine di ridurre la varianza nella stima

della funzione di valore per le coppie stato-azione, che, nel problema di iden-

tificazione delle strategie di gara, rappresenta una difficoltà significativa a

causa della alta stocasticità del problema e dell’asimmetria nelle ricompense

cumulative per le azioni. Inoltre, per ridurre la difficoltà nel modellare lo

scenario multi-agente, consideriamo uno scenario a singolo agente in cui i

piloti avversari siano controllati dall’ambiente di pianificazione e seguano

strategie prefissate, ottenute da articoli di opinione sportiva.

Per effettuare una valutazione del nostro approccio utilizziamo un am-

biente di planning di nostra progettazione, basato su un simulatore di tempi

sul giro ed in grado di offrire una replica di gare F1 avvenute negli anni

passati. Analizziamo pertanto la fattibilità di progettazione e realizzazione

di un simulatore dei tempi basato su regressione effettuata su dati pubbli-

camente disponibili delle gare passate, osservandone le criticità.

Infine, sfruttando la disponibilità di un simulatore di gara probabilistico [13]

e modificandone il comportamento per essere consistente con la nostra appli-

cazione, conduciamo un’attenta valutazione dell’algoritmo proposto, insieme

a vari altri planner anytime presenti nella letteratura in ambito MCTS, su

di un campione di gare appartenenti all’“era turbo-ibrida” della F1, mo-

strando che il nostro algoritmo è in grado di superare nella maggior parte

delle gare considerate la performance di baseline basate su strategie reali e

metodi automatici.
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Chapter 1

Introduction

This chapter offers an overview of what will follow during the reading of this

work.

Formula 1 racing

Formula 1 (F1) is one of the most competitive categories of motorsport rac-

ing, in which single-seater, high-performance cars compete around a closed

circuit. In F1 events, participating race cars have to complete a defined num-

ber of laps around a closed circuit. Points are awarded after each race to

the top-ten finishing drivers, and the sum of points obtained by each driver

during the races of a season defines the championship standings. Therefore,

the goal for a driver is to finish each race in the best possible placement

consistently.

The final placement for a driver depends both on his skill and the car’s

performance, as well as the tire strategy employed during the race. In F1,

tire replacement (called pit-stop) must happen at least once for each par-

ticipating car, and the teams choose, among a selection provided by the

tire manufacturer for each race, which tire to fit next. The tire strategy is,

therefore, the sequence of tires used during a race by a driver.

Motivation and goal

In Formula 1, fitting the right set of tires at the right moment can lead to

significant time gains (or losses) over opposing drivers. This effect calls for

strategical planning of the pit-stops by the teams in order to maximize the

advantage over competitors. Formula 1 teams devote many resources to this
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end, having groups of people tasked with finding the best tire strategy, both

prior to and during the race.

The decision-making process often becomes hectic, as, during the race,

the people inside strategy groups need to react to potentially unexpected

scenarios that may present during the race. The need for making decisions in

a short time may prevent the strategy team from considering all the options

or even lead to misjudging the situation and make strategic mistakes. Having

considered these factors, we believe that using a decision support tool able

to provide tire strategy suggestions in a short time during the race would

improve the quality and competitiveness of strategies applied by the teams.

It is, therefore, the goal of this thesis work to devise and implement

an autonomous agent able to provide suggestions on whether to perform a

pit-stop and which tire compound to fit on the car.

Contributions

We investigate the feasibility of applying online planning to the specific

problem of race-strategy identification and propose an innovative open-loop

approach that combines Monte Carlo sampling and Temporal Difference

(TD) updates to identify whether to perform a pit-stop at each race lap and

which tire compound to employ. Our novel approach modifies the MCTS

UCT algorithm, leveraging the Q-learning update in place of the MC one to

reduce variance in the estimation of the state-action value function, which

in the race strategy identification scenario represents a significant issue due

to the high stochasticity of the problem and asymmetry in the return of

actions. Moreover, we reduce the complexity of modeling a multi-agent

planning environment by modeling the problem as a single-agent setting in

which opponents are controlled by the environment and follow plausible pre-

defined strategies extracted from sports opinion articles. Lastly, we perform

an extensive evaluation of different planning algorithms using a simulator

based on [13], which we modify to be consistent with a planning application.

Structure of Thesis

Chapter 2 introduces all the preliminary concepts needed to understand the

content of this work. In Section 2.1 we cover an introduction on Reinforce-

ment Learning, starting from MDP fundamentals and presenting several

methods to solve MDPs. In Section 2.2, we present the fundamentals of

Monte Carlo Tree Search (MCTS) and provide a taxonomy of such meth-
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ods.

Chapter 3 presents the state-of-the-art planning algorithms that may be

applied to our scenario. In Section 3.1 we introduce the most popular MCTS

algorithm, Upper Confidence Bound for Trees (UCT), then continue with

the following sections describing algorithms for tackling continuous state

spaces like Double Progressive Widening, as well as Open Loop Optimistic

Planning. We finally present, starting from Section 3.5, methods that exploit

variations to the backup operator to overcome limits of UCT.

Chapter 4 provides a more detailed description of F1 racing and focuses

on the race strategy identification problem. Section 4.1 introduces the back-

ground needed to understand Formula 1 racing and tire strategies, providing

intuitions on the relevance of applying carefully designed strategies. In Sec-

tion 4.2, instead, we present the formalization we adopt to describe the F1

race strategy problem and discuss the possible issues that may arise when

modeling such a problem.

Chapter 5 presents the approach we used to tackle the race strategy

identification problem and our main contributions. Section 5.1 presents the

approaches we took to build a planning environment modeling the F1 race

strategy problem. We then present, in Section 5.2, our proposed planner,

also giving a quick introduction and providing notation for the open-loop

setting. Finally, in Section 5.3 we discuss alternative rollout policies used to

improve our planner’s performance in the considered setting.

Chapter 6 presents the experimental evaluation results for our proposed

planner and compares them to other planners’ performance in the same

setting.

Chapter 7 contains the conclusions we can draw on our work and high-

lights areas that can be the object of future work.

3
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Chapter 2

Preliminaries

This chapter introduces all necessary knowledge to ease the reading of this

thesis.

2.1 Reinforcement Learning

2.1.1 Introduction

As defined by Sutton and Barto in their book “Reinforcement Learning: An

Introduction” [31], the Reinforcement Learning (RL) problem is “a framing

of the problem of learning from interaction to achieve a goal”.

Following the terminology defined by the authors, we call the decision-

maker the agent and the entity it interacts with, which is constituted by

everything outside the agent, is called the environment. The agent’s goal

is to maximize over time a given function (usually the sum) of a signal

received from the environment as a consequence of its actions, which is

called reward.

Furthermore, actions taken by the agent may change what is called the state

of the environment.

The interaction between the agent and the environment happens in a

discrete-time fashion: at each of a sequence of time steps t = 0, 1, 2, 3, . . .

the agent selects and performs an action At ∈ A(St) based on some rep-

resentation of the state St ∈ S of the environment, then, one step later,

receives a reward Rt+1 ∈ R ⊂ R and observes the new representation of the

state of the environment St+1. S is the set of possible states, also called the

state space, and A(St) is the set of actions available in state St.

Formally, the goal of the action is to maximize its return, which is a

function of the reward sequence collected during the decision-making. In

the simplest case the return is just the sum of the rewards collected, but,



if we want to introduce a connotation of how much an agent values taking

rewards immediately with respect to taking them in the future, the return

can be expressed as the discounted sum of rewards:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . =

∞∑
k=0

γkRt+k+1

where γ ∈ [0, 1] is a parameter called discount factor or discount rate and

regulates how much short-sighted an agent will be: γ = 1 means that the

agent values immediate rewards as much as future rewards, whereas with

γ = 0 would take into account only step-wise rewards.

2.1.2 Markov Decision Processes

Markov Decision Processes, or MDPs, are a way of modeling sequential de-

cision problems, a type of problem in which an agent’s return is determined

by a sequence of actions or decisions taken in an environment, rather than a

single action. Markov Decision Processes are defined for stochastic environ-

ments that are fully observable: the state of the environment is known at

any step, but the transition from a state to another occurs with probability.

Formally, an MDP is defined as a 5-tuple (S,A, P,R, γ) where:

• S is the state space, which is the set of all possible states of the

problem.

• A is the action space, which is the set of all possible actions in the

problem. If the actions number is not fixed for each state, we need an

action set A(s) for each state s ∈ S.

• P : S ×A → ∆S is the transition model, which describes the effect

of each action in each state. Given that Markov Decision Processes

are non-deterministic, the transition model will be a probability dis-

tribution over the state space.

• R(s, a) = E[r|s, a] is the reward function, specifying the expected

return obtained by the agent by performing action a in state s.

• γ ∈ [0, 1] is called the discount factor, which represents how much

an agent considers a reward valuable now with respect to the future.

2.1.3 Properties

A Markov Decision Process is said to be finite if the action space and the

state space are both finite.
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Markov property

In a Markov Decision Process, the Markov property must be satisfied for

both the transition model and the reward function: given states s, s′ ∈ S,

the probability of transitioning to state s′ from state s and observing a re-

ward r must depend only on the current state s and not on the history of

states previously visited by the agent. Recurring to the formal definitions

found in [31], in the general case the response of the environment at time

t + 1 might depend on everything happened up to time t and the environ-

ment’s dynamics can be described by specifying by the complete probability

distribution:

Pr{Rt+1 = r, St+1 = s′|S0, A0, R1, . . . , St−1, At−1, Rt, St, At}, (2.1)

for all r, s′ and all possible values of the past events S0, A0, R1, . . . St−1,

At−1, Rt, St, At. The Markov property is satisfied for a state signal if and

only if 2.1 is equal to

p(s′, r|s, a) = Pr{Rt+1 = r, St+1 = s′|St, At}

for all s′ ∈ S and histories S0, A0, R1, . . . , St−1, At−1, Rt, St, At. If this is the

case, the one-step dynamics of the environment allow to predict the next

state given only the knowledge of current state, regardless of the environ-

ment’s history.

General sequential decision problems do not necessarily enjoy the Markov

Property, and their reward is assumed to depend also on the history of the

environment.

Time horizon

Markov Decision Processes are also characterized by a time horizon, which

may be finite or infinite. If the time horizon of an MDP is finite, it means

that the problem will end after a well-defined number of time steps, and no

more rewards can be collected by the agent. More formally, there is a fixed

time limit N after which

Gh([S0, S1, . . . , SN+k]) = Gh([S0, S1, . . . , SN ])

that is, the return of a state history longer than N steps is the same as if

the history were truncated at N steps.

7



2.1.4 Solving MDPs

A solution to an MDP is represented by a policy, which specifies for each

state a probability distribution over the actions available in such state. Poli-

cies are usually denoted by π, and π(s) represents the distribution specified

by policy π in state s. When a policy is deterministic, π(s) denotes a single

action to be executed in state s.

Each time a policy is executed starting from the initial state s0 of the

environment, due to the stochastic nature of the problem, the sequence of

states visited by the agent may vary. To evaluate a policy, it is therefore

necessary to take the expected value over the return of the possible histories

of the environment generated by following the policy.

As found in [31], the expected return obtained executing a policy π

starting in a state s is given by

vπ(s) = Eπ [Gt | St = s] = Eπ

[ ∞∑
k=0

γtRt+k+1

∣∣∣ St = s

]
(2.2)

where the expectation is with respect to the probability distribution over

state sequences determined by s and π. The function vπ is called state-

value function.

Similarly, the state-action function qπ is defined as

qπ(s, a) = Eπ [Gt | St = s,At = a] = Eπ

[ ∞∑
k=0

γtRt+k+1

∣∣∣ St = s,At = a

]
(2.3)

which gives the expected return for taking action a in state s and then

following policy π during the following state sequence.

An optimal policy, denoted with π∗, is a policy yielding the maximum

expected return. All optimal policies for the same problem share their state-

value function, called optimal state-value function, denoted v∗, and

defined as

v∗(s) = max
π

vπ(s)

for all s ∈ S.

The same holds for the optimal state-action function:

q∗(s, a) = max
π

qπ(s, a)

for all s ∈ S and a ∈ A. The optimal state-action function is denoted with

π∗.

8



2.1.5 Bellman equations

The functions introduced in the previous section are called value functions,

and they all share one attractive property: they satisfy particular recursive

relationships. Equations 2.2 and 2.3 can be rewritten as recursive equations,

obtaining:

vπ(s) =
∑
a∈A

π(a|s)

(
R(s, a) + γ

∑
s′∈S

p(s′|s, a)vπ(s′)

)
(2.4)

and

qπ(s, a) = R(s, a) + γ
∑
s′∈S

p(s′|s, a)
∑
a′∈A

π(a′|s′)qπ(s′, a′) (2.5)

which are the Bellman equations for state-value function and state-action

function, respectively. The Bellman optimality equations for the above func-

tions can be obtained by considering optimal state-value function and state-

action function in equations 2.4 and 2.5 respectively:

v∗(s) =
∑
a∈A

π(a|s)

(
R(s, a) + γ

∑
s′∈S

p(s′|s, a)v∗(s
′)

)

q∗(s, a) = R(s, a) + γ
∑
s′∈S

p(s′|s, a)
∑
a′∈A

π(a′|s′)q∗(s′, a′)

2.1.6 Finding optimal policies

Once the optimal value functions for v and q are available, finding an optimal

policy becomes easy.

Using v∗, it is sufficient to run a greedy one-step search from each state

s over available actions and assign nonzero probability only to those actions

that obtain the maximum for the Bellman equation, which is exactly v∗(s).

If, instead, we use the optimal q function, there is no need to run the one-

step search: all the necessary information is already contained in q∗(s, a).

To obtain an optimal policy, it is sufficient to greedily select for each state

the actions that maximize q∗(s, a).

The interesting property of this approach is that the greedy approach to

build the policy generates optimal policies not only with respect to single-

step decisions, but also in the long run. As the authors state in [31], this

is because the optimal value functions, as defined in equations 2.4 and 2.5

already take into account the reward consequences of all possible future

behavior.

The problem with finding optimal policies based on optimal value func-

tions is that their exact computation requires great amounts of time and
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memory, which make the approach unfeasible for large enough problems or

for time-limited applications.

RL’s online approach to MDP solution is to approximate optimal policies in

a way that spends most of the effort into learning to make good decisions

in frequently encountered states. This means that in less frequent states

RL agents might have poor performance, but due to those states seldom

occurring, the overall solution to the MDP provided by the RL agent policy

will still show good performance.

In the following sections a selection of methods to solve MDPs will be pre-

sented.

2.1.7 Dynamic Programming algorithms

Dynamic Programming (DP) is an optimization method based on Bellman’s

principle of optimality [2]:

An optimal policy has the property that whatever the initial state

and initial decision are, the remaining decisions must constitute

an optimal policy with regard to the state resulting from the first

decision.

This principle can be translated into practice by decomposing a multi-

stage problem into a sequence of simpler subproblems, usually easier to

handle than the whole problem. The solution obtained by applying DP

follows a bottom-up approach, as the simpler subproblems’ solutions are

brought together to solve (possibly) many different larger problems. [26]

Value iteration algorithm

The value iteration algorithm [31] is a Dynamic Programming iterative al-

gorithm that allows to find an optimal policy for MDPs.

The algorithm is based on the state-value Bellman equation and, starting

from an arbitrary initialization of the state-value function for each state, at

each iteration computes a new value for v(s) from its past values, as shown

in figure 2.1.

By applying the update infinitely many times, value iteration is ensured to

converge to the optimal values.

Pseudocode in box 1 describes the value iteraton algorithm.
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Figure 2.1: A visualization of the DP backup, taken from [29].

Policy iteration algorithm

Policy iteration algorithm [31] is also a dynamic programming iterative al-

gorithm for finding optimal policies. The underlying idea is to gradually

improve from an arbitrary initial policy π0 towards π∗, through alternating

policy evaluation and policy improvement steps.

Policy evaluation The policy evaluation step iteratively computes

the values of vπ(s) for all states, in a similar fashion to the value iteration

algorithm. The difference is that policy evaluation updates the values of

vπ(s) only according to actions prescribed by policy π, instead of taking the

maximum value obtained by any action.

Pseudocode in box 2 describes the iterative policy evaluation algorithm.

Algorithm 1 Value iteration algorithm

1: Initialize v(s) to arbitrary values

2: while vt+1(s) 6= vt(s) do . Repeat until v(s) converges

3: for all s ∈ S do

4: for all a ∈ A do

5: q(s, a)←
∑
s
p(s′|s, a) (r(s, a) + γv(s′))

6: end for

7: v(s)← max
a

q(s, a) . Select greedily over q functions

8: end for

9: end while
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Algorithm 2 Policy evaluation algorithm

1: procedure Policy-Evaluation(π)

2: Initialize an array V (s) = 0, for all s ∈ S
3: do . Repeat until V (s) converges

4: ∆← 0

5: for all s ∈ S do

6: v ← V (s)

7: V (s)←
∑

a π(a|s) (R(s, a) + γ
∑

s′ p(s
′|s, a)vπ(s′))

8: ∆← max(∆, |v − V (s)|)
9: end for

10: while ∆ < Θ . Θ is a small positive number

11: return V (s) ≈ vπ
12: end procedure

The value function also represents the fixed point of the Bellman operator

Tπ : Rn → Rn, defined using vector notation as:

TπV = rπ + γPπV

The Bellman operator is equivalent to one iteration (also called bootstrap)

of the dynamic programming algorithm, and its application infinitely many

times causes the estimated value function to converge to the true one for

the current policy π.

Policy improvement The policy improvement step, as the name sug-

gests, iteratively improves the policy. This step is based upon the policy

improvement theorem [31], which states that given a pair of policies π′, π if

for any state s ∈ S holds qπ(s, π′(s)) ≥ vπ(s), then policy π′ is as good as

or better than policy π. That is, it must obtain greater or equal expected

return than policy π from all states s ∈ S. Formally, vπ′(s) ≥ vπ(s).

The actual improvement of the policy is made by greedily selecting for each

state those actions that achieve maximum values for the state-action func-

tion. Formally:

π′(s) = argmax
a

qπ(s, a).

Policy iteration By alternating policy evaluation and policy iteration

steps, it is possible to obtain a monotonically improving policy sequence,

leading after infinitely many steps to the optimal policy for the MDP:

π0
E−→ vπ0

I−→ π1
E−→ vπ1

I−→ π2
E−→ . . .

I−→ π∗
E−→ vπ∗

12



Algorithm 3 Policy iteration algorithm

1: procedure Policy-Iteration

2: for all s ∈ S do . Initialization step

3: Arbitrarily initialize V (s) ∈ R and π(s) ∈ A(S)

4: end for

5: do . Repeat until π converges

6: unchanged← true

7: v ← Policy-Evaluation(π) . Evaluation step

8: for all s ∈ S do . Improvement step

9: a← π(s)

10: for all a ∈ A do

11: q(s, a)←
∑
s
p(s′|s, a) (r(s, a) + γv(s′))

12: end for

13: π(s)← argmax
a

q(s, a) . Select greedily over actions

14: if a 6= π(s) then . Convergence evaluation

15: unchanged← false

16: end if

17: end for

18: while unchanged

19: return V, π

20: end procedure

where
E−→ and

I−→ denote the policy evaluation and policy improvement steps,

respectively.

The complete policy iteration algorithm is described by the pseudocode

in box 3. To keep the pseudocode simple, the check to avoid looping between

equivalently good policies is omitted.

2.1.8 Monte Carlo Methods

Unlike previously presented methods, Monte Carlo (MC) Methods [31] ex-

ploit experience collected by interaction with the environment to estimate

value functions, by considering complete episodes’ returns to learn value

functions. This class of algorithms does not need to have access to a com-

plete model description but only to interact with it to collect sample returns.

The idea underlying Monte Carlo methods is that the state-value and

action-value functions can be estimated through averaging returns for each

state-action pair from episodes sampled by interacting with the environ-

ment.
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Figure 2.2: A visualization of the Monte Carlo backup, taken from [29]. The red trace

represents a complete episode from the root of the search tree to a terminal state,

marked with the green square.

To ensure well-defined returns are available, we adopt the definition of

episodic tasks from [31]. Such definition assumes that experience is divided

into episodes (see figure 2.2) and that all episodes eventually terminate, in-

dependently from the action sequence that is chosen during the episode.

Only after the completion of an episode policies and value estimates may be

updated.

Monte Carlo methods can be considered incremental in the sense that they

learn after each complete episode but cannot be considered online methods

as they cannot learn from partial returns.

Since the return for taking an action in a specific state depends on the

sequence of actions that will be performed subsequently in the same episode,

and since action selection is undergoing learning in all states, the problem

becomes nonstationary from the perspective of the earlier state, as stated

in [31].

The following sections will present a selection of MC methods to deal with

such nonstationarity.

Learning the state-value function

To estimate vπ(s) given a set of episodes obtained by executing policy π and

passing through state s, we can use two Monte Carlo techniques: first-visit

MC and every-visit MC. Each occurrence of a state s in an episode is called

visit, and the difference between the two approaches is in how they consider
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Algorithm 4 First-visit MC for estimating vπ

1: procedure MC-Estimation(π)

2: Arbitrarily initialize V

3: for all s ∈ S do

4: Returns(s)← empty list

5: end for

6: while true do . The procedure never stops

7: Generate an episode using π

8: for all states s appearing in the episode do

9: G← return following the first occurrence of s

10: Returns(s)← Append(Returns(s), G)

11: V (s)← Average(Returns(s))

12: end for

13: end while

14: end procedure

repeatedly visited states in the same episode.

When estimating vπ(s), first-visit MC averages the returns following only

the first visit to s in the episode, whereas every-visit MC estimates vπ(s)

by taking the average over the returns following any occurrence of s. The

pseudocode in box 4, adapted from [31], sketches the functioning of first-visit

MC method for vπ estimation.

Both first-visit and every-visit MC estimations converge quadratically to

the true mean value of vπ(s) as the number of visits to s goes to infinity

[31].

Learning the state-action function

The same methods can be used to estimate the state-action function, which

is useful to enable finding policies if no model of the environment is available.

The difference with state-value function estimation lies in the definition of

visit: in this case we consider state-action pairs rather than only states. We

say that a state-action pair s, a is visited in an episode if state s was visited

and action a was taken in it.

To effectively provide a policy to solve the problem, the value of all the

actions in any state must be estimated. This is not guaranteed to happen

if the policy is deterministic, thus we must assure continual exploration.

A possible way to do this is to use the exploring starts assumption [31],

which states that episodes start in a state-action pair and that every pair has

a nonzero probability of being selected as the start. In the limit of infinite
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Algorithm 5 Monte Carlo ES algorithm

1: procedure MCES

2: Q(s, a)← arbitrary

3: π(s)← arbitrary

4: while true do

5: Choose S0 ∈ S and A0 ∈ A(S0)

6: Generate an episode starting from S0, A0, executing π

7: for all pairs s, a appearing in the episode do . Policy evaluation

8: G← return following the first occurrence of s, a

9: Returns(s)← Append(Returns(s, a), G)

10: Q(s, a)← Average(Returns(s, a))

11: end for

12: for all s in the episode do . Policy improvement

13: π(s) = argmaxaQ(s, a)

14: end for

15: end while

16: end procedure

episodes, the exploring starts assumption ensures that any state is visited

infinite times, leading to convergence of estimated values to their true mean

value.

Monte Carlo Control

Monte Carlo control can be seen as a variation of the policy iteration al-

gorithm, in which policy evaluation and policy improvement alternate after

each episode. The returns collected from the episode are immediately used

to improve the estimates of value functions of the visited states, then the

policy is improved at these states, and a new episode is generated. As in

policy iteration, the policy improvement step is carried out by greedily con-

structing the next policy πk+1 with respect to qπk :

πk+1(s) = argmax
a

qπk(s, a)

A simple algorithm exploiting this kind of process is shown in box 5 and is

called Monte Carlo ES [31], standing for Monte Carlo with Exploring Starts.

The Monte Carlo ES algorithm is an example of on-policy algorithm,

since it updates its value function estimations based on returns collected in

episodes generated by executing the current policy. Off-policy methods,

on the other hand, exploit information collected running a different policy,
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called behavior policy, from the one to be evaluated, which is called target

policy. As the authors state in [31], an advantage of this separation is that

the target policy may be deterministic, while the behavior policy can be

explorative (i.e nondeterministic), thus avoiding the need for the exploring

starts assumption.

Advantages of Monte Carlo methods

Monte Carlo methods present various advantages, among which three are

most relevant.

The first one is that they can learn value functions, and subsequently

policies, from experience obtained through direct interaction with the envi-

ronment. This is particularly useful in those cases in which the model of the

environment is not available.

Another advantage is that Monte Carlo methods do not require boot-

strap, which means they can compute value functions for a state without

building upon other states’ estimates. This can make Monte Carlo meth-

ods attractive for those problems in which one needs the value of a subset

of states: starting from the desired states, one can generate episodes and

average only returns coming from those states of interest.

Lastly, Monte Carlo methods can also learn from simulated experience,

enabling to provide reasonable policies without any interaction with the en-

vironment where the process of learning could be dangerous or even hurtful.

This approach obviously requires a model approximating the behavior of

the environment, but this is simply charged with generating the state tran-

sitions, it does not need to specify the complete probability distribution,

which is instead required in dynamic programming methods.

2.1.9 Temporal Difference learning

Temporal difference learning (TD) [31] constitutes a hybrid approach be-

tween DP and MC methods: like the latter, it is able to learn from direct

experience but, like the former, it can update its estimates before an episode

is complete.

The simplest TD method for estimating the state-value function is TD(0),

which updates the estimates of V (s) at each time-step following the rule

V (St)← V (St) + α [Rt+1 + γV (St+1)− V (St)] ,

where α is a constant step-size parameter and Rt+1 + γV (St+1) is called

the target for the TD update. Figure 2.3 depicts the TD backup update.
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Algorithm 7 Sarsa on-policy TD control algorithm

1: procedure Sarsa

2: for all s ∈ S, a ∈ A do . Initialize Q

3: if s is terminal then

4: Q(s, a)← 0

5: else

6: Q(s, a)← arbitrary

7: end if

8: end for

9: for all episodes do

10: S ← episode starting state

11: π ← policy derived from Q . e.g. ε-greedy

12: A← π(S)

13: while S is not terminal do

14: Take action A; observe reward, R, and next state, S′

15: A′ ← π(S)

16: Q(S,A)← Q(S,A) + α [R+ γQ(S′, A′)−Q(S,A)]

17: S ← S′;A← A′

18: π ← policy derived from Q

19: end while

20: end for

21: end procedure

Since it updates its estimate of V (s) based on a previous estimate, TD(0)

is a bootstrapping method, like DP methods. The procedural form of the

algorithm, adapted from [31], is shown in box 6.

Sarsa

Sarsa [31] is an on-policy TD control method which uses the pattern of gener-

alized policy iteration [31]. Sarsa uses TD learning to learn the state-action

function for the current policy, considering transitions from a state-action

pair to another and using the quintuple (St, At, Rt+1, St+1, At+1) performs

the update

Q(St, At)← Q(St, At) + α [Rt+1 + γQ(St+1, At+1)−Q(St, At)]

after each transition. If St+1 is terminal, then Q(St+1, At+1) is defined as

zero.

Box 7 presents the Sarsa control algorithm, adapted from [31].
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Figure 2.3: A visualization of the TD backup, taken from [29].

Algorithm 6 TD(0) algorithm

1: procedure TD(0)(π) . π is the policy to be evaluated

2: for all s ∈ S do

3: V (s)← arbitrary initialization

4: end for

5: for all episodes do

6: S ← episode starting state

7: t← 0

8: while S is not terminal do

9: A← π(S) . Get action prescribed by policy

10: Take action A; observe reward, R, and next state, S′

11: V (S)← V (S) + α [R+ γV (S′)− V (S)]

12: S ← S′

13: end while

14: end for

15: end procedure
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Algorithm 8 Q-learning algorithm (off-policy TD control)

1: procedure Q-learning(α, ε) . α ∈ (0, 1], ε small and > 0

2: for all s ∈ S, a ∈ A(s) do

3: Initialize Q(s, a) arbitrarily, except for Q(terminal, )̇ = 0

4: end for

5: for all episodes do

6: s← episode starting state

7: while s is not terminal do

8: a← π(s) . π is derived from Q (e.g., ε-greedy)

9: Take action a; observe reward, R, and next state, s′

10: Q(s, s)← Q(s, a) + α [R+ γmaxa′ Q(s′, a′)−Q(s, a)]

11: s← s′

12: end while

13: end for

14: end procedure

The authors of [31] report that “Sarsa algorithm has been proved to con-

verge to vπ, in the mean for a constant step-size parameter if it is sufficiently

small, and with probability equal to one if the step-size parameter decreases

according to the usual stochastic approximation condition”.

Q-learning

Q-learning is an off-policy TD control algorithm [33], defined by

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
The goal of the algorithm is to directly approximate the optimal action-value

function q∗, regardless of the policy followed by the agent. The meaning of

the policy in Q-learning is to determine which state-action pairs are to be

visited by the agent, but the only requirement for convergence is that all

pairs continue to be visited over time [31].

Box 8, adapted from [31], presents the pseudocode for the implementation

of Q-learning.

Advantages of TD learning

TD methods present advantages over both DP and MC methods, analyzed

by the authors in [31].

Being able to learn from direct experience, the first and foremost advantage

of TD methods over DP methods is that they do not require a model of the
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environment.

Another obvious advantage over MC methods is that Temporal Difference

methods are naturally suited to online and fully incremental implementa-

tions since they do not need to wait until the end of episodes as Monte

Carlo methods do. This is especially useful in applications with very long

episodes, or whose episodes may never terminate (continuing tasks).

Moreover, TD, unlike some MC methods, does not need discounting episodes

in which experimental actions are taken, since it learns from single transi-

tions disregarding subsequent actions, leading to increased robustness against

slowed learning coming from the discounting.

2.1.10 Eligibility traces based methods

Eligibility traces [31] offer a simple method for credit assignment in sequen-

tial decision making. The intuition behind them is to hold a memory of the

last visited states eligible for the decision-making effects. This approach is

called the backward view of eligibility traces.

TD(λ)

Eligibility traces can be combined with Temporal Difference methods to

obtain the TD(λ) algorithm [31], which is used for predicting the state-

value function. In this section, we focus on the backward view variant of

this algorithm.

In this version of the algorithm, an additional variable called eligibility

trace is associated with each state. The eligibility trace E, in its simplest

form, is defined as {
Et(s) = γλEt−1(s) if s 6= St

Et(s) = γλEt−1(s) + 1 if s = St
.

This kind of eligibility trace is called accumulating trace because it accumu-

lates every time the state is visited, then decays with a factor of λ, which

is called the trace-decay parameter. The eligibility traces act as a mem-

ory and indicate for each state its level of eligibility for undergoing learning

changes due to the occurrence of reinforcing events.

The algorithm uses the TD error, defined for the state-value function as

δt = Rt+1 + γVt(St+1)− Vt(St),

to trigger updates to the state-value functions of all the states that are

eligible following the update rule:

Vt+1(s)← Vt(s) + αδtEt(s), for all s ∈ S
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The algorithm in box 9 presents the complete algorithm for backward view

TD(λ), adapted from [31].

Algorithm 9 TD(λ) algorithm with accumulating traces

1: procedure TD-λ

2: for all s ∈ S do . Initialize V

3: if s is terminal then

4: V (s)← 0

5: else

6: V (s)← arbitrary

7: end if

8: end for

9: for all episodes do

10: E(s)← 0, for all s ∈ S . Initialize eligibility traces

11: S ← episode starting state

12: while S is not terminal do

13: A← π(S)

14: Take action A; observe reward, R, and next state, S′

15: δ = R+ γV (S′)− V (S)

16: E(S)← E(S) + 1 . Update traces

17: for all s ∈ S do

18: V (s)← V (s) + αδE(s)

19: E(s)← γλE(s) . Decay traces

20: end for

21: end while

22: end for

23: end procedure

It is interesting to notice that the parameter λ transforms on its extreme

values the behavior of TD(λ) into that of TD(0) and Monte Carlo prediction.

When λ = 0, all the eligibility traces go to zero except the one for the current

state, reducing to TD(0) behavior. On the other hand, if λ = 1, eligibility

traces never decay, leading to a full episode evaluation like in Monte Carlo

methods.

TD(λ) acts, therefore, as a blend of Monte Carlo and TD methods,

with the λ parameter controlling how much the behavior of the algorithm

is oriented towards complete returns or one-step returns.
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Algorithm 10 Sarsa(λ) control algorithm with accumulating traces

1: procedure Sarsa-λ

2: for all s ∈ S, a ∈ A do . Initialize Q

3: if s is terminal then

4: Q(s, a)← 0

5: else

6: Q(s, a)← arbitrary

7: end if

8: end for

9: for all episodes do

10: E(s, a) = 0, for all s ∈ S, a ∈ A
11: S ← episode starting state

12: π ← policy derived from Q . e.g. ε-greedy

13: A← π(S)

14: while S is not terminal do

15: Take action A; observe reward, R, and next state, S′

16: A′ ← π(S)

17: δ = R+ γQ(S′, A′)−Q(S,A)

18: E(S,A)← E(S,A) + 1 . Update traces

19: for all s ∈ S, a ∈ A do

20: Q(s, a)← Q(s, a) + αδE(s, a)

21: E(s, a)← γλE(s, a) . Decay traces

22: end for

23: S ← S′;A← A′

24: end while

25: end for

26: end procedure

Sarsa(λ)

As in previous sections, we will move to the control algorithm once we

defined the state-value function estimation method.

Sarsa(λ) is an on-policy control algorithm based on the generalized policy

iteration pattern which uses the TD(λ) method to predict state-action value

functions. Unlike TD(λ), though, it requires an eligibility trace for each

state-action pair.

The algorithm, adapted from [31], is shown in box 10.
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2.2 Monte Carlo Tree Search

Monte Carlo tree search (MCTS) [5] is a technique aimed at finding optimal

decisions for MDPs. The method works by taking samples from the deci-

sion space and using the results to build a search tree, whose estimates are

progressively updated through time.

The MCTS process can be divided into four phases:

1. Selection: from the root of the search tree, a selection policy is re-

cursively applied up to reaching an unexpanded leaf node. A node

is expandable if it represents a nonterminal state and has unvisited

children.

2. Expansion: one or more successors to the previously found unex-

panded node are generated according to the actions available in the

node.

3. Simulation: from the newly generated node(s), a simulation (also

called rollout) is run up to a terminal state.

4. Backpropagation: a “back-up” of the rewards collected during the

simulation is performed at the nodes which have been visited in the

trajectory from the root, updating their statistics.

A visualization of the phases of MCTS is provided by figure 2.4.

Figure 2.4: A visualization of the general MCTS algorithm phases, taken from [5].

The result of the overall search of MCTS is the action that taken at

the search tree’s root node, corresponding to the current MDP state, will

lead to its best child. The concept of best child is defined by the specific

implementation, but among the most popular criteria are, as described by

Schadd in [28], based on the work of Chaslot et al. [7]:

• Max child : the root child with highest mean reward is selected.
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• Robust child : the most visited root child is selected.

• Max-robust child : the root child with both highest mean reward and

visit count is selected; if none of the root children satisfy such condi-

tion, the search is resumed and continues until the condition is satis-

fied. [10]

• Secure child : the child maximizing a lower confidence bound is se-

lected.

The general MCTS algorithm is presented in box 11, adapted from [5].

The tree policy is the selection policy in force while visiting already ex-

plored portions of the tree, while the default policy is the rollout policy

used from a leaf state to produce a value estimate. They are represented

by the TreePolicy and DefaultPolicy functions, respectively, in the

algorithm.

2.2.1 Taxonomy

Many dichotomies may be considered when analyzing MCTS algorithms,

based on different properties that each of them shows.

As MCTS is a class of decision-time planning algorithms [31], a first intu-

itive classification can be done by considering their ability to be interrupted

and return an action to be executed at any time during their computation.

Such algorithms are said to be anytime.

Consider a time-limited planning setting, in which the planner must return

its decision at the end of the computation time budget. Anytime algorithms,

like the standard UCT algorithm [18] [17], are able to interrupt the search

at any moment and return the current search tree’s root node statistics.

This is not the case for non-anytime algorithms (see, for instance, OLOP

[6]), which, instead, cannot return any meaningful result before their com-

putation is complete.

Considering, instead, the representation and dynamics of MDPs we can

observe two more classification criteria for MCTS algorithms.

The first classification is connected to the state transition function’s proper-

ties, and we can distinguish between algorithms for deterministic transi-

tions and non-deterministic ones. If transitions in the MDP are stochas-

tic, the algorithm must account for the variability in successor states, given

the same action performed at the parent state node. This can usually be

done either by adding multiple successor nodes (see, for instance, Double

Progressive Widening [9]), or devising a representation such that a single

node can handle the uncertainty on the current state.
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Algorithm 11 General MCTS approach

1: procedure MctsSearch(s0)

2: Create root node v0 from state s0
3: while within computational budget do

4: vl ← TreePolicy(v0)

5: ∆← DefaultPolicy(s(vl))

6: Backup(vl,∆)

7: end while

8: return a(BestChild(v0))

9: end procedure

The latter approach, by adopting the automation terminology, is said to

be open-loop, because the representation of current states used for the

planning is based on the action sequence instead of the actual MDP’s state

representation. This approach contrasts with the so-called closed-loop

approach, which instead considers a planning representation based on se-

quences of state realizations, or trajectories.

Usually, non-deterministic algorithms are able to handle also deterministic

transition settings.

Focusing on the state-space and action-space in the representation of

an MDP, we find that these sets may be either continuous or discrete.

Respectively, algorithms have to deal with an infinite set of states, actions,

or even both at the same time.

The näıve approach to this kind of spaces is to store in the tree all possi-

bilities that are encountered while interacting with the environment. For

long enough episodes, this quickly leads to the intractability of the prob-

lem, requiring, for instance, discretization techniques like Double Progres-

sive Widening [9] to cope with the continuous nature of the problem.

On the implementation side, some algorithms need to be able to set a

specific state in the environment, either to resume the search or to take more

samples from a specific state represented by a node in the tree. This is a rel-

evant point, as not every environment implementation offers this possibility

(see, for instance, the Atari games Gym environments1) and might limit the

applicability of some algorithms.

1https://gym.openai.com/envs/#atari
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Chapter 3

State of the art

This chapter introduces relevant contributions from the existing body of

literature. It presents some popular and well-known algorithms along with

more problem-oriented approaches, specifically in the areas of MCTS, open-

loop planning, and action-value function estimators.

3.1 Upper Confidence Bound for Trees (UCT)

Among the most popular MCTS algorithms, UCT [19] is based on the sim-

ple, yet effective, bandit algorithm UCB-1 [1]. The goal of MCTS is to

estimate the action-value function for actions that are available in the cur-

rent state of the MDP by iteratively building a partial search tree. The

intuition behind UCT is to consider action selection at each node of the tree

as a bandit problem. By applying the UCB-1 algorithm to such a problem,

it is possible to tackle the exploration-exploitation dilemma and focus on

using the search computational budget towards the most promising options,

avoiding building the full search tree for problems in which this may not be

feasible in a reasonable time.

An upper confidence bound is associated with each action:

ut(s, a, d) = Qt(s, a, d) + 2Cp

√
2 lnn

na
, (3.1)

where Qt(s, a, d) is the estimation for the action-value function at time t for

executing action a in state s, when at depth d; n is the number of times

the node corresponding to state s at depth d was visited, whereas na is the

number of times action a was selected; Cp is the exploration constant

and the larger the value, the more uniform the exploration of each level of

the tree will be.



Algorithm 12 Upper Confidence Bound for Trees

1: procedure UctSearch(s0)

2: Create root node v0 from state s0
3: while within computational budget do

4: vl ← TreePolicy(v0)

5: ∆← DefaultPolicy(s(vl))

6: Backup(vl,∆)

7: end while

8: return a(BestChild(v0))

9: end procedure

10: procedure TreePolicy(v)

11: while v not terminal do

12: if v not fully expanded then

13: return Expand(v)

14: else

15: v ← BestChild(v, Cp)

16: end if

17: end while

18: return v

19: end procedure

20: procedure DefaultPolicy(s)

21: while s is non-terminal do

22: choose a ∈ A(s) uniformly at random

23: Generate next state s′

24: s← s′

25: end while

26: return R(s, a)

27: end procedure

28: procedure Expand(v)

29: Choose a ∈ untried actions from A(s(v))

30: Add a new child v′ to v generated by executing a in s(v)

31: return v′

32: end procedure
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33: procedure BestChild(v, c) . C(v) denotes child states of v

34: return argmaxv′∈C(v)
Q(v′)
N(v′) + c

√
2 lnN(v)
N(v′)

35: end procedure

36: procedure Backup(v,∆)

37: while v is not null do

38: N(v)← N(v) + 1

39: Q(v)← Q(v) + ∆(v, p)

40: v ← parent of v

41: end while

42: end procedure

During the selection phase in UCT, the action maximizing the bound in

equation 3.1 is selected. The counts for action and node visits are updated,

together with the Q-function estimates, during the backup phase.

Box 12 presents the pseudocode for UCT algorithm, adapted from [5].

UCT has some relevant properties, both theoretical and practical, which,

combined with the ease of implementation of this algorithm, contribute to

the algorithm’s popularity in the MCTS class.

First, the algorithm’s estimator for the action-value function is consistent,

which means the empirical mean converges to the true value of the mean for

the value function. To this regard, theorem 7 from [20] states

Consider algorithm UCT running on a game tree of depth D,

branching factor K with stochastic payoffs at the leaves. Assume

that the payoffs lie in the interval [0, 1]. Then the bias of the esti-

mated expected payoff, Xn, is O((KD log(n)+KD)/n). Further,

the failure probability at the root converges to zero as the number

of samples grows to infinity.

Moreover, UCT is a trajectory-based algorithm; this means that at each

search iteration, it considers complete sequences of actions built incremen-

tally before performing a backup. Lastly, the UCT algorithm is an anytime

algorithm, meaning that it does not need to know its planning budget and

can be interrupted at any point, returning an action suggestion based on

the current action-value function estimations held at the root.
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3.2 Double Progressive Widening

For problems with high stochasticity in action outcomes, plain MCTS perfor-

mance is heavily limited because low probability outcomes might be added

to the tree and never get visited again, leading to highly biased estimates of

their statistics. Moreover, in continuous state (and possibly action) spaces,

it is impossible to represent the problem without some discretization tech-

nique. Therefore, as shown by Bjarnason et al. in [3], it is beneficial to

adopt some tree width limitation technique to reduce the number of child

nodes in the search tree to accumulate meaningful statistics for them.

Couëtoux and Doghmen propose in their work [9] to apply the Double

Progressive Widening (DPW) technique to Monte Carlo Tree Search.

DPW provides a method to progressively add and limit successor nodes as

a node gets explored more and more. This is done through the definition of

two functions of the number of times an action a has been taken in state s

k = dCnαe (3.2)

and

k′ = dCnaβe, (3.3)

where C, α and β are constants specific to the algorithm, with C > 0, α ∈
(0, 1), β ∈ (0, 1); n is the number of times a state s has been visited, whereas

na is the number of times action a has been taken in such state.

Equation 3.2 represents a limit for the number of actions to be considered

when the action space is continuous. Equation 3.3, on the other hand,

represents the limit to the number of successors a node can have depending

on the number of visits it received.

Whenever the current number of actions or successors to a node is lesser

than their respective bound, the algorithm is allowed to add another action

or successor, respectively.

When applied to UCT, DPW retains UCT’s theoretical properties and

represents a consistent estimator for the action-value function. Moreover,

like UCT, DPW is an anytime and trajectory-based algorithm. Finally,

as this work focuses on a MDP characterized by continuous state space and

discrete actions, we consider an experimental comparison implementation of

DPW leveraging only the bound of equation 3.3 over successor states.

3.3 Open Loop Optimistic Planning

Whereas previously described algorithms were based on a closed-loop ap-

proach, it is possible to devise search-tree-based algorithms exploiting an
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Algorithm 13 Open Loop Optimistic Planning

1: procedure OLOP(n)

2: Let M be the largest integer such that M

⌈
log M

2log 1
γ

⌉
≤ n

3: L←
⌈
log M

2log 1
γ

⌉
4: for all episodes m = 1, 2, . . . ,M do

5: Compute B-values at time m− 1 for sequences of actions ∈ AL

6: Choose the action sequence am ∈ argmaxa∈AL Ba(m− 1)

7: Execute the action sequence and observe the rewards sequence

8: end for

9: return most played action a(n) = argmaxa∈A Ta(M)

10: end procedure

open-loop approach. This is the case for Bubeck and Munos’ Open Loop

Optimistic Planning (OLOP) [6], which was designed to work in a stochastic

and discounted environment, jointly with a limited numerical budget n.

The intuition behind OLOP is to consider the exploration phase of the

planning as a bandit problem having as arms all the possible action se-

quences from the current state to the end of the MDP.

In a UCB-1 fashion, the algorithm assigns to each sequence an upper

confidence bound, defined as:

Ua(m) =
h∑
t=1

(
γtµ̂a1:t(m) + γt

√
2 logM

Ta1:t(m)

)
+
γh+1

1− γ

where 1 < m < M is the index of the current episode, Ta(m) is the

number of times the algorithm has played a sequence of actions beginning

with a, and µ̂a(m) is the empirical average of the rewards for the sequence

a.

Then, a further sharpening of the confidence bounds is applied, obtaining

the B-values:

Ba(m) = inf
1≤h≤L

Ua1:h

The algorithm proceeds at each round by selecting the sequence with the

highest B-value, observes the reward, and updates the B-values. Finally,

when the budget is completely spent, the algorithm returns the most played

action at the root of the search tree.

By considering complete action sequences, OLOP can perform the search

in an open-loop fashion by disregarding the actual states visited by the agent
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Algorithm 14 General structure for Open-Loop Optimistic Planning

1: for all episodes m = 1, 2, . . . ,M do

2: Compute Ua(m− 1) for all a ∈ T
3: Compute Ba(m− 1) for all a ∈ AL

4: Sample a sequence with highest B-value: am ∈ argmaxa inAL Ta(M)

5: end for

6: return the most played sequence a(n) ∈ argmaxa∈AL Ta(M)

while executing the action sequence in the search environment. Interestingly,

only the first action of the sequence that the planner deems optimal at the

current time-step is actually executed in the real environment, and the next

state becomes the root for the following search.

Box 13 presents the pseudocode for OLOP, adapted from [6].

Unlike the previously presented algorithms, UCT and DPW, OLOP

offers theoretical guarantees over simple regret [6]. Moreover, the upper

bounds built by OLOP hold with high probability, whereas UCT bounds

do not hold in practice until the algorithm is in an advanced phase. This

makes OLOP both consistent and provably efficient, whereas UCT is

only consistent.

Unfortunately, since the algorithm considers all the possible action sequences

in the selection phase, its exponential computational complexity makes it

impractical to use for problems with long planning sequences.

Another difference between OLOP and UCT-like algorithms is that OLOP

chooses a full action sequence at each planning iteration, whereas UCT in-

crementally builds the action sequence by taking decisions at each node in

the tree.

A final difference between the algorithms is that OLOP is not anytime

since it needs to know its computational budget to compute the maximum

planning depth, and it cannot return an action suggestion based on inter-

mediate data.

3.4 KL-OLOP

The algorithm devised by Leurent and Maillard, KL-OLOP [23], extends

OLOP by providing tighter upper bounds exploiting the Kullback-Leibler

divergence [21]. The authors argue that the structure of OLOP can be

generalized as shown in box 14, taken from [23]. Notation is the same used

in section 3.3, with the addition of T =
∑L

h=0A
h, which stands for the

look-ahead tree of depth L.
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Based on such generalization, the authors also provide a more general

form for the upper and lower confidence bounds on empirical means of in-

termediate rewards collected by the agent:

Uµa (m) = max

{
q ∈ I : Ta(m)d

(
Sa(m)

Ta(m)
, q

)
≤ f(m)

}

Lµa(m) = min

{
q ∈ I : Ta(m)d

(
Sa(m)

Ta(m)
, q

)
≤ f(m)

}
where I is an interval, d is a divergence on I × I → R+ and f is a non-

decreasing function.

Seen under this framework, the original OLOP algorithm uses a quadratic

divergence dQUAD on I = R and a constant function f4, whose definition is

reported in section 2.3 of [23].

KL-OLOP, instead, uses a different constant function f2, as defined in sec-

tion 2.4 of [23], and the Bernoulli Kullback-Leibler divergence dber
defined on the interval I = [0, 1] as

dBER(p, q) = p log
p

q
+ (1− p) log

1− p
1− q

The constant function f2 is lower than f4 and, combined with dBER, provides

tighter bounds while maintaining the regret bound properties of OLOP in

high probability [23].

The authors motivate their work, particularly the use of a different di-

vergence and constant function, to overcome the practical unfeasibility of

OLOP. In section 2.3 of [23], Leurent and Maillard show that OLOP suffers

from a uniform exploration behavior while the early depths of the tree have

not been explored sufficiently yet. Once they get explored, the algorithm

resumes its intended behavior but the problem persists, getting shifted to

deeper areas of the tree. In practice, this means that OLOP needs to con-

sume large amounts of the computational budget before starting to reduce

its exploratory behavior in favor of exploiting the collected information. The

authors connect this undesired behavior with the Chernoff-Hoeffding bounds

used in OLOP, which, as they state, “start in the Uµa (m) > 1 regime, and can

remain in this regime for a long time, especially in the near-optimal branches

where µ̂a(m) is close to one”. Their proposed bound, instead, guarantees

by construction that Uµa (m) ∈ I = [0, 1], leading to faster convergence of

the algorithm.
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3.5 Power UCT

The work of Dam et al. argues about the learning speed-up obtainable from

the application of the power mean operator applied to MCTS backup [11].

The authors propose a straightforward modification to the classic UCT-1

algorithm leveraging a backup operator based on power mean [24], which

they call Power UCT. The goal of such methodology is to bridge the mean

and maximum estimators, as the authors write, “balancing between the

negatively biased estimate of the average reward and the positively biased

estimate of the maximum reward”.

The authors show that Power UCT satisfies the original UCT theorems

[11] and argue that their work can represent a generalization of such algo-

rithm, exploiting the more general power mean operator. The power mean

backup operator of order p is defined for rewards X ∈ [0, 1] as:

X̄n(p) =

(
K∑
i=1

(
Ti(n)

n

)
X̄p
i,Ti(n)

) 1
p

, (3.4)

where p is an extended real number, n is the total number of visits to a

state node, Ti(n) is the number of times action i ∈ K has been played and

X̄i,Ti(n) is the estimator of the reward obtained playing action i.

In particular, for specific values of p, expression 3.4 yields the arithmetic

mean (p = 1), the geometric mean (p→ 0) or the harmonic mean (p = −1)

[24]. The larger p, the more the backup operator weighs optimistic samples.

The authors prove that by adding the power mean backup operator, the

modified algorithm still retains the theoretical properties of UCT. Moreover,

the authors show on a selection of RL problems that Power UCT can obtain

better performance at the cost of tuning an extra hyperparameter, p. Such

performance is shown to be obtained in the experiments for high values of

p, which shift the backup operator further from the arithmetic mean and

closer to the max operator.

3.6 Q-learning with UCB-Hoeffding

Jin et al. discuss in their work [16] the efficiency of Q-Learning methods

and propose a Q-Learning algorithm with an upper-confidence bound

exploration strategy. The main difference with ε-greedy Q-Learning is in

the update rule, which includes the upper confidence bound in the Q-value:

Qh(s, a)← (1− αt)Q(s, a) + αt[rh(s, a) + Vh+1(s
′) + bt]
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Algorithm 15 Q-Learning with UCB-Hoeffding

1: procedure QL-UCB-H(S,A, H)

2: for all (s, a, h) ∈ S ×A×H do

3: initialize Qh(s, a)← H and Nh(s, a)← 0

4: end for

5: get initial state s1
6: for all steps h = 1, . . . ,H do

7: take action ah ← argmaxa′ Qh(sh, a
′), observe sh+1

8: t = Nh(sh, ah)← Nh(sh, ah) + 1

9: compute bt as in eq. 3.5

10: αt = H+1
H+t

11: Qh(s, a)← (1− αt)Q(s, a) + αt[rh(s, a) + Vh+1(s
′) + bt]

12: Vh(sh) minH,maxa′∈AQh(sh, a
′)

13: end for

14: end procedure

where bt is the upper-confidence bound at t-th time the state-action pair

was visited. The authors define it as:

bt = c

√
H3log(SAT/p)

t
(3.5)

where c is a constant, H is the time horizon of the problem, S and A are

respectively the cardinalities of the state space and action space, and T is

the total number of steps.

Defining the action-value function estimator this way, an ε-greedy selec-

tion is no more necessary, as the confidence bound of an action that has been

selected few times increases as the total number of visits to the parent state

node increases. In fact, the algorithm (detailed in box 15) uses a greedy

selection policy. Moreover, confidence bounds promote exploration at the

start, while they move to progressive exploitation once enough information

on the reward distributions has been collected.

Even if the algorithm proposed by Jin et al. is a Q-learning variation,

their proposed backup operator can be used in the fourth phase of a MCTS

algorithm, as it has been done in this work’s experimental comparison.
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Chapter 4

Race strategy identification

problem

This chapter introduces the necessary background to understand the com-

plexity of determining Formula 1 race strategies, then discusses the difficul-

ties in modeling such a problem as a Markov Decision Process and possible

approaches.

4.1 Formula 1 race strategy

In circuit motorsport events, participating race cars have to complete a

defined amount of laps around a closed circuit. The final order in which

drivers cross the finish line is used to award points, usually to both teams

and drivers.

Formula 1 (F1) is a world championship of motor racing, in which open-

wheel, single-seater race cars compete. In Formula 1, points are currently

awarded after each race to the top-ten finishing drivers and their respective

teams; therefore, each driver’s goal is consistently achieving the best final

placement possible. This final placement does not depend solely on drivers’

skill or car performance but can be significantly influenced by their tire

strategy. In Formula 1, tire replacement is allowed during the race, and

at least two different tire types (also called compounds) must be fitted

across the event, under penalty of disqualification from the race. We call

tire strategy the sequence of compounds fitted on each car, joint with the

number of laps each tire set was used.

The possibility of fitting fresh tires, also called pit-stop, represents one

of the most strategic opportunities in Formula 1, allowing either to become

faster than direct competitors or to overtake them through time gap gains



Season A1 A2 A3 A4 A5 A6 A7

2014 Hard Medium Soft Supersoft - - -

2015 Hard Medium Soft Supersoft - - -

2016 Hard Medium Soft Supersoft Ultrasoft - -

2017 Hard Medium Soft Supersoft Ultrasoft - -

2018 Superhard Hard Medium Soft Supersoft Ultrasoft Hypersoft

2019 - C1 C2 C3 - C4 C5

Table 4.1: Overview of available tire compounds in the seasons 2014 to 2019. Taken

from [15]

instead of passing them on track. The strength of such moves varies from

track to track, with relative compound performance, and with the cars’

performance difference.

As F1 regulations often change quickly, this work focuses on the so-called

“turbo-hybrid era” (2014 - present) cycle. Such a period enjoyed relative tire

regulation stability, with a single change in the approach to tire availability

in 2016.

In 2014 and 2015 only two compounds were available during the race, one

with higher lap-time performance but lower durability (also called “soft”

or “prime” compound) and the other presenting higher durability at the

expense of lap-time performance (also called “hard” or “option”). Since

2016, three compounds have been available at each race. In both periods,

the manufacturer has been choosing and providing to the teams, from a

hardness spectrum, the most suitable compounds for the track, mainly in

relation to the asphalt’s parameters (e.g., temperature and abrasion) and

the subsequent expected life of the tire.

F1 tires vary in their constituent rubber’s hardness, determining dif-

ferent asphalt grip levels and tire degradation speed. In the same condi-

tions, harder tires tend to offer less grip but usually have greater durability,

whereas softer tires offer more grip to the car at the price of reduced dura-

bility. Table 4.1 reports the relative hardness and denomination of Pirelli

tire sets across the years, as seen in [15]. As speed is limited to 80 Km/h

in the pit-lane, depending on the track layout, the cars lose about 20 to 30

seconds on their lap time to perform a pit-stop. This is due to both the

difference of speed between the pit-lane and the main straightaway and the

actual time the car has to be still while the tires are being fitted.

The tradeoff between grip level and tire durability is crucial in race strategy

determination, as higher grip levels make the car faster through corners as

well as in braking and acceleration, whereas increased durability reduces the
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number of pit-stops needed to complete the race distance. In order to devise

a good tire strategy, it is therefore essential to balance the benefit of fitting

fresh tires with the cost of stopping the car to fit them.

Since the driver needs to sacrifice immediate lap-time by performing a pit-

stop to gain performance in the remainder of the race, tire strategy identifica-

tion presents an interesting sequential decision-making problem. Moreover,

finding a good tire strategy represents one of the most important strategical

options available during the race event.

There are four typical tire-related strategic options in formula 1, whose

viability depends on car performance and time gaps between the considered

driver and his direct competitors.

The first one is to differentiate the base tire strategy with respect to com-

petitors. Each team, before the race, plans several alternative strategies cor-

responding to as many race scenarios. These scenarios account for different

factors, including the actual tire degradation rate, closeness with competi-

tors and their compound choices, the possibility of rain, and even accidents

on the track. The best-fitting strategy plan is chosen during the race con-

sidering decision support systems’ predictions and guesses on other teams’

strategies, sometimes trying to bet on a particular scenario (unlikely as it

may be) that other teams are not covering. If these extreme scenarios come

true, the team usually finds itself in an advantageous position that might

make up for the lack of car performance in that race event.

When considering teams with similar performance, they are expected to

make similar tire strategy choices. When this does not happen, it is usually

mainly related to the joint tire-car performance: with a specific compound,

a team might have a better speed-durability tradeoff than others. For in-

stance, this was the case from 2017 on for Mercedes, whose car had strong

race pace performance with medium-hardness compounds, which, coupled

with good stint durability, allowed them to be (almost) as fast as competi-

tors on softer tires and to suffer less from tire degradation issues.

Another difference in strategy choices may be found in the order of com-

pounds used, whose motivation will be explained through an example. Imag-

ine, for instance, a one-stop strategy based only on two compounds: a hard

and a soft one. Teams might decide either to have a faster getaway at the

start of the race, opting to use the softer compound first, then switching to

the harder compound to complete the race. Considering the fact that there

is no refueling in F1, tires are most stressed by the weight of the car at the

start of the race, when almost all the embarked fuel mass is still unburned.

The aforementioned strategy would then allow a fast start, but the softer

compound would degrade faster than if it was fitted later in the race, leading
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to a shorter stint duration. The opposite strategy (harder compound at the

start, then pitting for the softer compound) would allow to resist the fuel-

induced tire degradation better but would yield slow lap times in the first

stint, especially at the start of the race. In this scenario, the team would

hope to make up for the lost time in the final stint, being able to rely on

a lighter car and on using the faster compound for longer due to the lower

fuel mass remaining.

In this example, there is no clear winner between the two strategies: it

largely depends on the track’s features and the specific car’s performance

whether it would be better to have a fast start or a charging final part of

the race.

The other two strategic options - undercut and overcut - are the oppo-

site of each other. These are played when following a driver that is difficult

to overtake on track due to the track’s narrowness or to their sheer perfor-

mance.

To perform an undercut, the pursuing driver attempts to stop before the

driver that precedes him, taking advantage of the fresh tires to gain a signif-

icant amount of time in the out-lap (the lap that follows the pit-stop) due

to the pace difference between the worn tire and the fresh one. When the

driver in front stops, he will find himself behind the driver who performed

the undercut tactic if he did not have a sufficient gap to defend from the

undercut. Figure 4.1 shows the phases of the undercut tactic.

Figure 4.2, instead, reports an analysis of race pace for some of 2010, 2016,

and 2017 compounds on the Barcelona-Catalunya track. The crossover point

in the graph shows when a harder but fresh compound will become faster

than a worn, softer one, which is the key to performing undercut.

On the other hand, overcut acts on the opposite: the driver waits for

his rival to perform his pit-stop, then pits a lap or more later. This tactic is

seldom seen in modern Formula 1 as Pirelli tires are characterized by a high

degradation rate, and the faster driver is usually the pitting first to fit fresh

tires. However, on circuits with low degradation and cool temperatures,

which makes the warm-up of fresh tires more complicated, the overcut can

be used. The overcut tactic works when the driver manages to put in a

really good lap just before stopping, while the rival struggles to get up to

speed on his out-lap, meaning that the driver can emerge in front after the

pit-stop.

A final strategy to be mentioned is going long: when the leading driver

stops, the pursuer will extend his own stint on the current compound, know-

ing (or sometimes hoping) that performance is not expected to drop soon for

the current tires and the other driver will not be matching his pace, allowing
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(a)

(b)

(c)

(d)

(e)

Figure 4.1: An undercut maneuver example. In subfigure (a) the red car is close enough

to the blue car to try an undercut maneuver, which starts with pitting early, as shown

in subfigure (b). Subfigure (c) shows the situation when the red car emerges from the

pit-lane. The red car can exploit fresh tires to gain time against the blue car, which will

eventually perform a pit-stop as depicted in figure (d). Finally, if the red car has gained

enough time on the blue car, it will stay in front when the blue car emerges from the

pit-lane. 41



Figure 4.2: Comparison between different compounds’ performance over time at

Barcelona-Catalunya track. Taken from f1metrics’ 2017 pre-season analysis [25]
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to close the gap and re-join the track after his own pit-stop in front of the

opponent.

Further strategic options may arise during a Full-Course Yellow flag

(FCY). When exposed by the marshals, a simple yellow flag forbids over-

taking, and drivers are required to lift the throttle pedal only in the affected

track sector, whereas FCYs affect the whole track. An FCY is usually trig-

gered by accidents on the track that force the race stewards to order the

drivers to reduce their speed to maintain safety on the racecourse.

There are two types of FCY, Safety Car (SC) and Virtual Safety Car

(VSC), which both correspond to a delta with respect to a target lap, set

by the stewards before each race, that drivers must respect.

VSC is a digital safety measure, which requires drivers to autonomously in-

crease their lap times to 140% of a reference lap. SC, instead, is a physical

car that is sent on track to be followed by the drivers. Usually, the lap times

of drivers behind the Safety Car increase to around 160% of the reference

lap time.

Because all drivers are slowed down, a pit-stop may become particularly

appealing as the time lost to change tires reduces during an FCY. This hap-

pens because the FCY deployment lowers the speed difference between the

main straight and the pit-lane, thus reducing the amount of time lost with

respect to competitors when performing the pit-stop.

In order to attain meaningful behavior in this setting, an autonomous

agent for race strategy identification needs to take into account the factors

discussed above, most notably tire compounds, their degradation, and FCYs.

Moreover, taking into account these variables is also crucial to race time

simulators designed for this setting in order to be able to provide a most

realistic race simulation.

4.2 Problem representation

In Formula 1, pit-stops can be performed once per lap when the driver is

about to complete his lap. To model the problem, we adopt in this work an

MDP representation.

One issue in identifying a suitable time-discrete representation for the MDP

lies in the fact that the race strategy problem is time-continuous: time gaps

form between each driver pair as the race unfolds, and, as they can enter

the pit-lane only at the end of the lap, they will perform the pit-stops in

different time moments even if they are in the same lap. For instance, two

drivers separated by a 15s gap performing a pit-stop in the same lap will

start their pit-stop action 15s apart.
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By considering the problem as a Sequential Decision Process, the time-

continuous nature of the problem becomes tractable. Specifically, in this

work, each time-step represents a single lap, and at each lap, the teams

need to decide if they want to stop their drivers and which compound to fit.

For the race strategy determination problem, the first and easiest element

of the MDP to define is the action space: we consider as many pit-stop

actions as the compounds available to the driver, with each of these actions

representing a pit-stop to fit the respective compound, plus a “stay on track”

action.

Instead, the state space is harder to model for this problem, as many

factors have to be taken into account to identify racing situations uniquely.

The following features have been selected to describe the state of the race

in the most compact way:

• remaining laps: the state records how many laps in the race remain

to be completed.

• driver ranking: this feature represents the position that the driver

holds at the start of the lap. It can be replaced by the cumulative

race time: the driver with the lowest cumulative time is the leading

driver, whereas the driver with the highest cumulative time is in the

last position.

• current tire-set: the compound each driver is currently using.

• current tire-set age: in this work, degradation is modeled as a

function of the number of laps a tire set has been used. Such modeling

is beneficial because it is challenging to retrieve from the publicly

available data [12] a precise tire degradation metric without knowing

the asphalt abrasion level, the remaining fuel mass at each lap, and

whether a driver is pushing or trying to save the tires (figure 4.3).

• exposed flags: the state stores if an FCY (be it a Safety Car or VSC)

is currently deployed. Optionally also red flags (which interrupt the

race) could be considered.

• tire change rule already satisfied: the state stores if each driver

has already changed at least one compound. As previously stated, this

constraint is prescribed by F1 regulations and results in disqualifica-

tion from the race if not satisfied before the event ends.

• remaining tire-sets: the state includes information on how many

tire-sets for each remaining compound a driver has left. By combin-
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Figure 4.3: Compared lap times on the same compound when a driver is pushing or

conserving tires. Taken from f1metrics’ 2017 pre-season analysis [25]

ing this feature with the previous one, there is no need to store past

compounds to identify a state uniquely.

• retired driver: the state contains a boolean feature representing if a

driver is no longer participating in the race.

This MDP representation’s reward can be constituted by lap times ob-

tained by the controlled drivers, with a negative sign. As RL agents act

as cumulative reward maximizers, a negative lap time reward will reinforce

behavior that aims to minimize the cumulative race time.

Alternatively, the reward can be scaled in the range [0, 1] by applying the

formula:

rt = 1−
min(tlap, tmax)

tmax
(4.1)

where tmax is a reference lap time, which in this work is assumed to be 300

seconds. This assumption aims to obtain a reference time larger than the

record lap time on the longest circuit in the F1 calendar, Spa-Francorchamps,

and large enough to avoid clipping slow or FCY lap times. This circuit’s

record lap time is 1:46.286 (106.286s), which, corrected by the Safety Car

delta, yields 170.058s as a possible FCY target lap and leaves a large margin

for slower laps.

With this scaling, the reward is larger when the lap time is lower and vice-

versa: maximizing the cumulative sum of the reward defined in equation 4.1

leads to the minimization of the cumulative race time, as higher rewards

correspond to shorter lap times.
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A good policy for the MDP should balance the cost of performing a pit-

stop with the time gained by fitting fresh tires, obtaining a minimal total

race time. On the other hand, this kind of behavior may lead to effects that

are not modeled by the reward: an agent may perform pit-stop actions to

minimize their race time but by doing so might either get stuck behind other

drivers or allow competitors to overtake it when he is in the pit-lane, which

otherwise might not have happened if it decided to stay on track. This

kind of effect would correspond to the agent losing positions (and therefore

championship points) in the final ranking, even if it did successfully minimize

its total race time. A more principled approach would be to employ a reward

function that weighs two different objectives, minimizing time and gaining

positions, but accurately weighing these two contributions would not be

straightforward and is beyond the scope of this work.

As an additional challenge, policies for the race strategy problem have

a peculiar structure: most of the time, the agent should take the “stay on

track action” and act differently only on few laps. This is because the time

lost in a pit-stop is significant with respect to the time gained in single laps

by using the fresh tires: typical human-designed strategies from 2017 on

have just one or two pit-stops, whereas in 2015 and 2016, three or even four-

stop races were possible due to a larger gap in performance between fresh

and used tires, as can be seen by the degradation curves in figure 4.2.

An additional difficulty of this problem is that, at each lap, 20 drivers

take actions almost simultaneously and with different goals. In the real-

world setting, the race strategy engineers can clearly identify their competi-

tors and devise or adapt strategies against their adversaries.

To allow an agent to do the same in an MDP framework, it is necessary to

model the behavior of adversaries. There are two typical approaches to such

modeling: either the other drivers are considered part of the environment, or

they are considered autonomous agents. In the first case, other drivers will

follow pre-defined behaviors, responding to or even ignoring actions from

the agent representing the driver of interest. With the second approach,

instead, other drivers are allowed to perform planning to determine their

strategies, possibly using different planning algorithms than the one used

by the agent of interest. Once the environment receives actions for all the

drivers, it will transition to the next lap executing these actions.

When using the MDP representation, the agent needs to be able to provide

a decision within some time margin before the driver passes the pit-lane

entry; otherwise, he would not have time to react and enter the pit-lane for

a pit-stop.

On the computational side, the setting presents a final difficulty: de-
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pending on the length of the track, F1 lap times are typically between one

and two minutes, which means that the agent must be able to output a sug-

gestion with a small computational budget. The use of anytime algorithms,

like UCT, is particularly suited to this class of problems, ensuring to be able

to receive a suggestion from the algorithm in the desired time frame.
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Chapter 5

Open Loop Planning for

Race Strategy

This chapter presents all the components and techniques constituting the

solution devised to tackle the race strategy identification problem.

First, the simulation environment in which the planning occurs is presented;

then, in the following section, the planning algorithm and the intuition be-

hind it are explained. In the final section, the rollout policies used to provide

a meaningful simulation of the race during the planning phase are described.

5.1 Simulation environment

In this work, we build a race simulation environment, starting from the sim-

ulator described in [13] and adopting some modifications to make it com-

patible with our planning setting.

5.1.1 Regression model for lap time prediction

To build a model for lap times prediction, we first investigate a supervised

learning approach. We construct a dataset starting from publicly available

data collected from multiple sources, on which we fit multiple regression

models. We use the Ergast API1 to collect most of the data, while data

on the tires used during the race is collected from the RaceFans2 website

through an automated web scraper. Finally, since the data is not publicly

available from the previously mentioned sources, we estimate the presence

of an SC or VSC from data.

1https://ergast.com/mrd/
2https://www.racefans.net/

https://ergast.com/mrd/
https://www.racefans.net/


Dataset

The dataset contains 131527 rows, each one representing a lap of a driver

during a specific race. The data ranges from 2014 to 2019 full championships,

representing the so-called “Turbo-Hybrid” era of F1.

The dataset contains the following features:

• race id: represents the unique identifier of the race

• circuit id: a unique identifier for the circuit.

• year: the year the considered race happened.

• round: the race’s ordinal identifier in the championship’s race events

calendar.

• race length: the total number of laps to be completed in the race.

• driver id: represents the unique identifier of the driver.

• lap: is the current lap for the considered driver.

• position: is the position held by the considered driver at the beginning

of the considered lap.

• milliseconds: at lap l represents the time spent to complete the pre-

vious lap l− 1, expressed in milliseconds. For the first lap, the feature

has a value of 0.

• pit-stop count: represents how many pit-stops the driver has per-

formed.

• pit-stop milliseconds: if a pit-stop has been performed in this lap,

this feature contains the time spent in the pit-lane, expressed in mil-

liseconds

• pit-stop: this feature represents if the driver is entering or exiting

the pit-lane in the current lap. It takes the value of -1 if the driver is

entering the pit-lane, 1 if he is exiting it, and 0 if no pit-stop is being

performed in the current lap.

• R: this feature represents a performance rating for the driver-car pair,

computed on the previous and current season data, up to the previous

race.

R = Rteam +Rdriver
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For both the driver and the team, the formula for computing the par-

tial contribution is:

Rteam/driver =

∑N−1
i=0 e−i · xi∑N
j=1 e

−i
+

∑M
j=1 yj

M
e−N ,

where N is the number of races from the beginning of the season up

to the race previous to the current one (so N = 0 for the first race

of the season), M is the number of races in the previous season, xi
is the number of points earned in the i-th race of the current season,

and yi is the amount of points earned in the i-th race of the past

season. The variables x and y contain the points scored by either the

driver or the team, depending on if R is computed for the driver or

the team, respectively. In the first term, e−i is used to weigh the race

results, giving more importance to the more recent races with respect

to less recent ones. The second term, instead, is the product of the

mean of scored points in the past season with a weight, e−N , which

reduces the previous season’s contribution to the rating as more races

of the current season are completed. Notice that the first summation

is computed by going backward starting from the current race, so x0
is the race just before the current one, x1 is the second race before the

current one, until the first race of the season. In the worst case, the

feature has a value of 0 with neither the driver nor the team having

scored any point in the two seasons. On the other hand, the maximum

value of R is achieved when in all the considered races the driver wins

(scoring 25 points per race) and his teammate finishes second (scoring

20 points per race), yielding a maximum value of (25 + 45) · (1 + e−N ).

• FCY: this feature expresses if the current lap time is affected by a

Safety Car or Virtual Safety Car. It has been estimated from data by

flagging as FCY-affected those laps (excluding the starting lap) whose

average lap time over all drivers was at least 120% of the average lap

time computed over all drivers and the entire race.

• rainy race: this feature is a flag expressing if the race has been im-

pacted by rain. This feature has been extracted from a wet race list

found on a Reddit post3, then checked by hand.

• battle: is a flag representing if a driver is currently involved in a battle

with another driver. We considered a pair of drivers in a battle if their

gap was less than two seconds.

3https://www.reddit.com/r/formula1/comments/g0plkr/list_of_wet_weather_

races_and_wins_by_driver/

51

https://www.reddit.com/r/formula1/comments/g0plkr/list_of_wet_weather_races_and_wins_by_driver/
https://www.reddit.com/r/formula1/comments/g0plkr/list_of_wet_weather_races_and_wins_by_driver/


• next lap time: at lap l is the time spent by the driver to complete

it, expressed in milliseconds. It represents the target value for the

regression model.

• fitted tire: the tire compound currently fitted on the car.

• tire age: the number of laps a tire-set has been fitted in the race.

The feature acts as proxy for tire degradation measurement, which is

otherwise impossible to estimate directly from the publicly available

data. We assume all tire-sets are fitted fresh, as no public information

is available about the tires’ previous usage during qualifying sessions.

• starting position: is the position of the grid in which the driver

starts the race. This feature is useful mainly for the first lap’s time

prediction.

• qualifying time: is the best lap time obtained by the driver through

the qualifying sessions.

• pole position lap time: the lap time of the driver who qualified in

pole position.

• cumulative race time: the driver’s total race time at the beginning

of the current lap.

• gap from the car in front: as the name suggests, this feature tracks

the time gap from the driver preceding the considered driver. It is set

to 0 if the driver is leading the race

• gap from the following car: as the previous feature, this feature

tracks the time gap between the considered driver and the car that

follows him. If the driver is in the last position, this feature is set to

0.

• lap time of the car in front: at lap l represents the time spent by

the preceding driver to complete the previous lap l − 1, expressed in

milliseconds. It is set to 0 if the considered driver is leading the race.

• lap time of the following car: at lap l represents the time spent

by the following driver to complete the previous lap l−1, expressed in

milliseconds. It is set to 0 if the considered driver is last in the race.

• delta gap car in front: at lap l is computed as the difference between

the gap with the car in front at lap l − 1 and lap l − 2, expressed in
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milliseconds. It is set to 0 if the considered driver is leading the race.

The feature captures if the considered driver is closing or losing ground

to the driver in front.

• delta gap following car: at lap l is computed as the difference

between the gap with the following car at lap l − 1 and lap l − 2,

expressed in milliseconds. It is set to 0 if the considered driver is last

in the race. The feature captures if the chasing driver is closing or

losing ground to the considered driver.

• DRS: after the second lap of the race, if the driver is within a one-

second gap from the car in front and no FCY is currently active, he

can use DRS and the feature assumes the true value, otherwise false.

• previous milliseconds: at lap l represents the lap time spent by

the driver to complete lap l − 2 the previous lap’s time, expressed in

milliseconds.

• previous milliseconds delta: at lap l represents the difference be-

tween the lap time at time l − 1 and l − 2. the goal of this feature is

to capture a possible improvement or worsening trend for lap times.

• tires gentleness: is a constant feature, specific to each driver, repre-

senting how much a driver can extend his stint on the same compound

with respect to the average stint on the same compound in the same

race. For driver d, the feature is computed from data, excluding safety

car laps and rainy races, as the ratio of the mean stint length for the

driver and the mean stint length of all drivers.

• lap constance: is a constant feature, specific for each driver, which

captures how much a driver can maintain lap times similar to each

other, with respect to the average case. To compute it, for each driver,

we first compute the standard deviation for the lap times in each race,

then average it.

• wet qualifying: this feature represents if the qualifying event was

held in wet conditions. The feature has been estimated from data,

comparing race lap times with the pole-position time. As qualifying

times represent (not considering mistakes) the fastest times each car

can set on the track, if the race lap times are lower than the pole-

position time, the qualifying was certainly held on a wet track.

We discard from our dataset (allegedly) suspended races by using a lap-

time threshold approach. Furthermore, we also discard rainy races and races
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in which the qualifying was held in wet conditions, using the related dataset

features. The final laps of each race are discarded as well since there is

no need to predict any time when the race ends. Finally, we discard rows

corresponding to each race’s first lap since, having a high lap-time value

caused by several battles among nearby drivers, they represent outliers to

the dataset. Moreover, performing pit-stops in the first laps of the race is

not relevant unless accidents or weather changes happen, so we can afford

to start the simulation later.

After eliminating the rows listed before, we obtain a reduced dataset

composed of 109865 rows. The dataset has then been split into three differ-

ent sub-datasets, each one identified by the racing situation:

• Regular laps: no safety car, the driver is not entering nor exiting the

pits. It contains 98989 rows.

• Safety laps: safety car has been deployed, but the driver is not en-

tering nor exiting the pits. It contains 4965 rows.

• Pit laps: the driver is either entering or exiting the pits, regardless

of whether the safety car is on track or not. It contains 5811 rows.

Regression models

To tackle the lap time prediction problem, we evaluate multiple regression

models. We describe the training and testing datasets, provide a quick

overview of the algorithms, and finally present the best-performing archi-

tecture and results.

As a simple baseline, linear regression is evaluated first but, as ex-

pected, does not provide accurate results, with a mean average error of more

than 0.8s over the regular laps test set. To try and obtain more accurate

predictions, we evaluate both random forest [4] and XGBoost-based [8]

regression models. As a bonus, the former is also useful to provide a feature

ranking during the feature engineering phase for the dataset. Finally, we

evaluate a regressor based on Neural Networks, but it does not provide a

performance improvement with respect to the other models.

When placed into an environment requiring thousands of samples, the

model prediction time is critical. Considering this factor, we decide to deploy

the XGBoost model into the environment, which ranked second-best (by a

small margin) in prediction performance but provided an advantage of an

order of magnitude in prediction time.
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Training procedure and results

We train three XGBoost models, one for each of the datasets we described

before. We split each dataset into a training and testing set, following a

canonical 80-20 split approach. The model’s regression target is the differ-

ence between the current lap time and the pole position qualifying time.

We then normalize both the input and target data using a Min-Max scaling

procedure:

x′ =
x−min(x)

max(x)−min(x)

To allow quick prototyping of the race strategy environment, we train the

models with the default parameters provided by the Python module XG-

Boost4.

The results we obtained on the training and testing set are reported in

figure 5.1. The left-hand side figures show the target-prediction scattering

for the test sets of each dataset, with points closer to the bisector line indi-

cating a better prediction performance. Note that the axis scale is different

among the graphs, and, especially in the second and third row, the absolute

error of the model is significant even if the distance from the line appears

small in the plot. The right-hand figures, instead, compare the fitted distri-

bution of the target data (labeled gt) against the predictions’ distribution.

Table 5.1 reports the performance of the models on both training and

testing sets. Considering data from both this table and figure 5.1, it is

clear that the “safety” model exhibits a larger prediction error due to the

variance of predicted data, whereas the “pit” model seems to suffer from

outlier predicted data. Moreover, both the “pit” and “safety” models show

a significant increase in prediction error when comparing the train and test

set, as opposed to the “regular” model. The more considerable step in

prediction error can be attributed to two main factors: first, the number

of samples for the training datasets is scarce, inducing the model to overfit

them, and secondly, the target data is bimodal, as opposed to the unimodal

“regular” dataset.

Considerations

Despite the results obtained by the “regular” model in the test set, we

observed that the model prediction quality rapidly degrades when fed se-

quentially with its own predicted data, as is the case for our race strategy

environment. We analyzed the lap time difference between the fastest and

4https://xgboost.readthedocs.io/en/latest/
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Figure 5.1: Scatter plots and distributions for the ground truth and predicted values of

the XGBoost regression models.

Dataset Train Error [ms] Test Error [ms]

regular 393.08 449.34

pit 483.81 1635.06

safety 1691.17 6421.07

Table 5.1: Mean Absolute Error (MAE), expressed in milliseconds, for the three XG-

Boost regression models.
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slowest cars on track at each lap and observed that the delta for “regular”

laps in some races went over 30s. In contrast, consulting F1.com’s race pace

analysis articles for the affected races and further analyzing our dataset, we

discovered that a typical delta between such cars should be approximately

between 2 and 5 seconds, depending on the relative tire compounds fitted

on the cars.

Moreover, we observed from the simulation logs that the cars could not keep

somewhat constant lap times throughout the race, spanning over ten sec-

onds in some cases. In real F1 races, during a stint, consecutive lap-times

for the same driver tend to be almost constant and differ (depending on his

skill) by few tenths of seconds, under the assumption of excluding errors,

pit-stops, and FCY situations. Therefore, the resulting environment does

not penalize correctly unwise strategies (for instance, performing a pit-stop

more than 5 times) due to the randomness of lap time predictions happen-

ing among all participants. Furthermore, in some cases, this causes (as an

extreme example) drivers starting last to win the race and drivers starting

first to get somewhere around 15th place.

These unsatisfactory results led us to consider a different approach to

the environment’s transition model. In order to obtain a consistent lap time

simulation and ease the interpretation of results, we resort to a probabilistic

lap-time description with clearly defined time contributes.

5.1.2 Race time simulator

The simulator from [13] provides a parameterized and probabilistic descrip-

tion of the race allowing control over probabilistic race events such as acci-

dents, Safety Cars (SC), or Virtual Safety Cars (VSC). Each of the simula-

tor’s internal events relies on probabilistic models, whose parameters have

been optimized to provide a plausible replica of past races, using publicly

available data [13] on tire strategy and events. Since the decision space is

whether to perform a pit-stop on each lap, a lap-by-lap simulator allows us

to model temporal transitions between states in an MDP setting.

Lap time computation

The race is modeled using a lap-by-lap approach, as shown in figure 5.2, in

which the race time of each driver in the simulation is computed at each

lap. The single-lap time tlap is computed by the simulator by summing time
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Figure 5.2: The racing simulator’s original workflow, taken from [13]

malus contributions to a fast reference lap

tlap(l) = tbase + ttire(atire, ctire) + tfuel(l) + tcar

+ tdriver + tgrid(l) + tpit,inlap/outlap(l),

where:

• tbase is a reference lap time representing a perfect lap set by the fastest

car on ideal fuel and tire conditions. In the simulator, such lap is mod-

eled by taking the fastest qualifying lap time, as, during the qualifying

session, the cars run on fresh tires and embark on just enough fuel to

complete the flying lap and return to the pit-lane.

• ttire models lap time loss due to tire wear. Racing tires behavior, as

the authors report in [13], goes through different performance phases.

First, the tire needs to warm-up, then reaches a short peak perfor-

mance phase, followed by an almost constant decay in lap time perfor-

mance before the tire completely degrades at the end of its life span.

In the simulator, this behavior is simplified using a parameterized lin-

ear model, which is a function of the age atire and the tire compound

ctire:

ttire,lin(atire, ctire) · k2,lin(ctire) + k3(ctire),

where k2,lin and k3 are constants estimated for each driver and each

race, as they vary significantly with track features, driving style, and

vehicle balance. Quadratic and cubic models are also provided with

the simulator but proved to be unreliable when applied to strategies

diverging from the real ones.
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• tfuel represents lap time loss due to the embarked fuel weight. With

respect to the ideal qualifying conditions, a Formula 1 car performs

significantly worse at the start of the race due to the embarked fuel

mass required to cover the race distance. As the race unfolds, the fuel

gets burned, and the car becomes progressively lighter and, therefore,

faster. The simulator models this effect with a simple linear model,

disregarding uneven fuel consumption between different laps:

tfuel(l) = (mfuel,tot −mfuel,consumed(l)) · stlap,mass,

where stlap,mass is the lap time loss per kg of fuel embarked.

• tcar and tgrid are the lap time losses due to car performance and drivers’

different abilities. The simulation treats them as constant offsets, es-

timated from qualifying sessions or previous races.

• tgrid models the time lost by drivers in different grid positions since

cars at the end of the grid are further away from the starting line and

need to cover more distance. Furthermore, this time contribution also

models the fact that, since drivers are starting from a standstill, the

first lap is slower than other laps.

tgrid = pgrid · tperGridPos + tfirstlap

Obviously, this contribution reduces to zero for laps other than the

first one.

• tpit,inlap/outlap is the time loss due to pit stops, in-laps, and out-laps.

An in-lap is the lap before a pit-stop is performed, with the driver

entering the pit-lane to fit fresh tires. The out-lap is the lap in which

the driver exits the pit-lane and needs to warm up the newly fitted

tires. As the time is taken at the finish line, which is located slightly

after the pit-lane entrance, the cars need to have already slowed down

to 80 km/h (pit-lane speed limit), and the in-lap time is affected by a

few seconds. The out-lap time, instead, is more significantly affected

because the driver needs to wait in a standstill while the tires are fitted

and drive out of a longer pit-lane section before rejoining the track.

These contributions vary with the track layout, and the pit-stop time

is computed for each team from previous races’ data.

Apart from tbase, all the contributions can be considered stochastic, sampling

them from probabilistic models fitted by the authors on previous race data.
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The cumulative race time for lap k is computed by the simulator as

the sum of single-lap times plus the time lost by the driver in overtaking

maneuvers:

trace,l =

k∑
l=1

tlap(l) + tovertaking(l) (5.1)

, with

tovertaking = tDRSeffect + tovertake,win/lose (5.2)

In equation 5.2, tDRSeffect is a bonus on the lap time given by the Drag

Reduction System (DRS), which can be activated in Formula 1 only when the

pursuing driver has a gap of less than 1s from the driver in front. The system

makes the car faster on the straight, thus reducing the overall lap time.

tovertake,win/lose, instead, is a malus applied to both the winner (tovertake,win)

and the loser (tovertake,lose) in the overtaking maneuver. Both drivers lose

time while fighting for an overtake since their racing lines differ from the

time-optimal racing line when they are in a position fight.

The overtaking happens when the comparison of the cumulative race time

of two drivers, provided by equation 5.1, provides a gap smaller than a time

tgap,overtake, defined for each track.

Further details on the various time contributions are reported in [14],

whereas a detailed description of the probabilistic models and the dataset

used to fit them can be found in [13].

Racing events

The simulator also allows considering driver retirements and Full-Course

Yellow (FCY) flag events. As we do not model retirements during this thesis

work, the simulator’s functioning in such cases is not presented here but can

be found in [13]. It is still useful, in order to enable a better comprehension

of the race simulation, to present how Safety Car and Virtual Safety Car

events are handled in the simulator.

The simulator accepts as input a list of events, whose start and ending

moments can be represented either by race progress expressed in laps (for

instance, from lap 35 to lap 37) or by a specific time moment expressed in

seconds from the start of the race (for instance, the safety car enters the

track after 45 minutes of racing). Since events need to happen at the same

time for each driver, indicating their starting moment through lap progress

may potentially cause conflicts for lapped drivers. Lapped drivers are those

drivers who get overtaken by the race leader, falling one or more laps behind.

Considering a specific moment of the race, lapped drivers have completed
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fewer laps but have been participating in the event for the same time as

other drivers. Therefore, indicating the starting and ending race time for

each event represents a sounder approach: the simulator converts events

from race progress to race time by using a pre-simulation of the race time,

then at each lap, after computing each driver’s race time, checks if the driver

needs to be slowed down due to FCYs.

5.1.3 Racing environment for MDP modeling

On top of the racing simulator described in the previous section, we design

an environment representing the complete MDP for the race strategy iden-

tification problem. Like the simulator, the environment represents the race

with a lap-by-lap approach, accepting, at each time-step, actions for one or

more controlled drivers and returning the lap time achieved by following the

action. In the environment, actions represent either performing a pit-stop

to fit one of the compounds available in the race or a “stay on track action”.

Moreover, pit-stop actions are distinct for each compound.

On top of this simple framework, the environment ensures, mostly by mod-

ifying actions available at each time-step, that constraints related to the

F1 race strategy problem are satisfied. This approach allows keeping the

implementation of the agent simple, as long as the environment can inform

the agent of the actions available in each state. The constraints that were

considered in the implementation are as follows:

• The planning starts at a defined race lap, whereas before that lap, the

agent-controlled drivers take actions according to the strategy used in

the real race. This behavior models the fact that, unless accidents or

sudden weather changes, a pit-stop is not required in the first laps of

a race.

• When controlled by an agent, a driver cannot perform more than two

pit-stops in a single race. One extra pit-stop is allowed each time an

FCY is deployed, but only while the FCY stays active on track. This

constraint is reasonable as most of the considered period’s races could

have been completed with at most two pit stops unless accidents or

weather changes.

• After performing a pit-stop, a driver cannot perform another pit-stop

before five more laps have passed. For instance, if a driver pits at lap

18, he will be unable to pit again until lap 24. Since this is a reasonable

behavior even in real racing (all compounds typically last more than
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ten laps), it is enforced in our environment to reduce the planning

complexity and variance in the returns for the pit-stop actions.

• Each driver can choose fresh tires from a finite number of tire sets for

each compound. In real races, each team reserves a specific number

of tire-sets for each compound to the race. As such data is not easily

obtainable for historic races, we assumed all drivers in the environment

have tire availabilities as reported in table 5.2.

• As per F1 regulations, drivers must change at least one compound

type during the race. If this does not happen, the environment forces

the offending driver(s) to perform a pit-stop at the race’s penultimate

lap to satisfy such rule and avoid awarding penalties.

Available compounds Soft Medium Hard

3 2 2 1

2 3 - 2

Table 5.2: Default tire availabilities for the race simulation environment. Note that the

names of the columns refer only to the relative hardness of the available compounds

and do not stand for the actual compounds with that name.

After actions for all controlled drivers are received, the computation of

lap times is tasked to the race simulator [13].

5.1.4 Race simulator modifications

Slight modifications have been applied to the simulator from [13] to allow

a high-level control of the drivers’ strategy. Ordinarily, the race simulator

would load strategies for all drivers from a configuration file and then run

a simulation of the full event with fixed strategies. In order to comply with

our planning simulation requirements, this behavior needs to be extended

to support both manual lap-by-lap simulation and lap-by-lap strategy spec-

ification for controlled drivers.

In order to reach this goal, we first add a step function to the simulator,

allowing the simulation environment to progress the simulation in the race

simulator by one lap. Then, considering that the planning process starts

from a specific lap and proceeds incrementally, we implement a function to

clear future strategy data for the desired driver and added the possibility to

specify a pit-stop for the next lap in the step function.
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Secondly, since it is clear that the simulation of FCY events is crucial to

obtain useful recommendations from the agent within this context, we mod-

ify how the Full Course Yellow (FCY) events are generated and handled. In

its original implementation, the simulator handles the generation of random

events according to real race data, which are stored inside the simulator

itself and loaded at the beginning of each simulation. From the planning

agent’s point of view, even though this information is not included in the

state, in different simulations of the same race performed during planning

the events would always occur at the same time, consistently. This would

mean that the planner would be able to “predict the future” and prepare for

the events beforehand. Therefore, we modify the behavior either to generate

events during the race either with a stochastic model or to add the real race’s

events only at runtime. In particular, we allow the simulator to accept new

FCY events to be added at runtime one lap after they have been requested.

This way, we ensure that FCYs in Monte-Carlo simulations appear only

when they would be stochastic events in the race. The duration of the FCY

event can either be pre-specified, assuming a human operator evaluates the

race situation and enters the expected duration into the system, or it can

be generated at random, to simulate multiple scenarios during the search.

5.2 Open-Loop Planning for Race Strategy

In this work, we employ an open-loop approach to tackle the race strategy

problem, searching at every lap of the race for the best race strategy to use

for the rest of the race. We favor the open-loop strategy over the alterna-

tive progressive-widening (PW) [9] because of the additional memory load

required to employ PW, stemming from the copy of the internal state of the

simulator to each node of the search tree. As the simulator tracks numerous

variables for each driver and additional ones for the race, if a full copy of the

simulator state is performed at each node, the memory requirements quickly

grow for deep enough trees. An approach to tackle this problem would be

building a compacted representation of the simulator state, but that proved

to be cumbersome in practice and is outside the scope of this work.

5.2.1 Open Loop Planning

In the open-loop setting, the problem is shifted from finding the optimal

policy (mapping from states to actions) to finding the optimal sequence of

actions to perform starting from the current state, regardless of the interme-

diate states visited, and instead averaging between them. Clearly, when the
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MDP transitions are deterministic, the open-loop and closed-loop settings

are equivalent.

More specifically, given a starting state s ∈ S and a sequence of actions

τ = (a0, a1, . . . , am), ai ∈ A, the value of the sequence τ starting from the

state s is defined as:

VOL(s, τ) = E

[
m∑
t=0

γtrt

∣∣∣ s0 = s, at ∈ τ

]
.

We note that τ can be an infinite sequence if γ < 1. Accordingly, the open-

loop optimal value is given by maximizing over the sequences of actions:

V ∗OL(s) = max
τ

VOL(s, τ).

We also define the open-loop action-value of a state-action pair, (s, a), as the

maximizer over the possible action sequences τ that start with a, denoted

with τa:

Q∗OL(s, a) = max
τa

VOL(s, τa).

Since Q∗OL(s, a) < Q∗(s, a), planning in an open-loop setting leads to a loss

of performance, but it simplifies the planning problem by limiting the size

of the search-tree and may be beneficial in applications with small search

budgets.

5.2.2 Proposed algorithm

Our algorithm formalization starts from an open-loop setting of UCT. In

this work, T denotes a planning tree and Nd,i denotes the i-th node at

depth d ≥ 0 for i ∈ N. N0,0 contains a single state, s0 ∈ S, from which the

agents start performing the planning. Nodes Nd,i, with d > 0, at deeper

levels of the tree, represent the distribution of states given the sequence of

actions from the root of the tree to Nd,i. More specifically, given a sequence

of d actions, τd,i = (a1, a2, . . . , ad), this sequence identifies exactly the node

Nd,i in the tree T , representing the distribution of states s ∈ S reachable by

executing the sequence of actions τd,i starting from the root state s0. The

value of a node Nd,i is defined as

V (Nd,i) = Es∼P(·|s0,τd,i) [V ∗OL(s)] ,

and the value of an action a ∈ A in a node as

Q (Nd,i, a) = Es∼P(·|s0,τd,i) [Q∗OL(s, a)]

= Es∼P(·|s0,τd,i) [r(s, a)] + γV (Nd+1,j) ,
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where τd+1,j = (τd,i|a) is the sequence of action derived from concatenating

τd,i with a and Nd+1,j is the corresponding node in the tree.

The goal of the proposed planner is to estimate the open-loop values

of the actions in the root of the tree by employing a UCT-like tree policy,

which considers action selection at each node as a separate bandit problem

and selects the action that optimizes an upper bound for Q values of the

actions in the node.

The second modification that is added to the standard UCT scheme is

the tree back-up strategy. UCT employs MC updates recursively up the

tree after receiving the leaf-value estimates from the rollout policy. Since

the rollout policy is suboptimal by definition (if an optimal policy for rollout

were available, planning would not be necessary) and the selection policy

in the tree includes the exploration and exploitation of intermediate value

estimates, the back-up values include the evaluation of suboptimal policies,

which change with each search iteration. This usually makes the value esti-

mates in the tree very noisy, which is a problem in the race strategy problem

as the margins for selecting a good pit-stop strategy are small compared to

the race duration. For this reason, a TD operator is employed, namely the

Q-learning operator [34] as follows:

Qt (Nd,i, a) = (1− αt)Qt (Nd,i, a) + αt

(
rt + γmax

a′
Qt
(
Nd+1,j , a

′)) , (5.3)

where rt is the reward observed in the current search pass at node Nd,i and

αt is the learning rate. In our algorithm, we apply a modified max operator:

when all the children of a node have not been explored yet, for the Q-learning

update of Equation 5.3, the max operator is applied considering only the

visited nodes, disregarding the unexplored actions’ Q value initialization.

As the application of TD updates in a MCTS setting has been studied

in the literature, we include a comparison with other TD update strategies

[32, 11] in the experimental setting.

Box 16 shows the pseudocode of the planner employed. At each lap in the

race, multiple iterations of planning are performed until the planning budget

is reached. At each search iteration, the UCB selection at each node of the

tree is performed until a leaf-node is reached, then a rollout is performed

using one of the rollout policies discussed in section 5.3. The rollout allows

building an initial (noisy) estimation of the node value. Next, QL updates

are recursively employed up the tree, updating the node and action values

and counts. This means that the initial noisy back-up value given by the

rollout, even though it is stored in the leaf node, might not make its way up

to the root, since at each node the max operator is employed to define the
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Algorithm 16 Q-Learning Open Loop Planning

1: procedure OLSearch(s0)

2: Create root node N0,0 from state s0
3: while within computational budget do

4: Nd,i, s← TreePolicy(N0,0)

5: V (Nd,i)← Rollout(Nd,i, s)
6: Backup(Nd,i)
7: end while

8: return BestChild(N0,0)

9: end procedure

10: procedure TreePolicy(N )

11: while N not terminal do

12: if N not fully expanded then

13: return Expand(N )

14: else

15: N ← BestChild(N , Cp)
16: end if

17: end while

18: return N
19: end procedure

20: procedure Rollout(N , s)

21: ∆← 0

22: while s is non-terminal do

23: Choose a ∈ A(s) according to rollout strategy

24: Generate next state s′ and reward r

25: ∆← γ∆ + r

26: s← s′

27: end while

28: return ∆

29: end procedure
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Algorithm 17 Q-Learning Open Loop Planning

30: procedure Expand(N )

31: Choose a ∈ untried actions from N
32: s← SimulateUntil(N )

33: Execute a in s generating s′ and r

34: Add a new child N ′ to N
35: N ′.n← 0

36: N ′.r = r . Store the reward obtained during first visit

37: return N ′, s′

38: end procedure

39: procedure BestChild(N , c)
40: C(N ) denotes children nodes of N
41: C(N , a) denotes the child of N corresponding to action a

42: return argmaxaQ(N , a) + c
√

2 lnN .n
C(N ,a).n

43: end procedure

44: procedure Backup(N , V )

45: C ′(N ) denotes explored children nodes of N
46: N ′ ← parent of N
47: N .n← N .n+ 1

48: while N ′ is not null do

49: if N is leaf then

50: ∆← V

51: else

52: ∆← maxa′∈C′(N )Q(N , a′)
53: end if

54:
Q(N ′, a)← Q(N ′, a) +

α(N ′.r + γ∆−Q(N ′, a))

55: N ′.n← N ′.n+ 1

56: N ← N ′

57: N ′ ← parent of N
58: end while

59: end procedure
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target value, as shown in the BACKUP procedure.

We omit the SIMULATEUNTIL procedure’s implementation because it is

trivial, but we shortly describe it. This procedure takes as input a node of

the search tree and simulates all the transitions from the root state to the

input node by executing the sequence of actions that identify that node. In

the end, it returns the state of the environment resulting from the sequence

execution, which is used later as a starting point for the rollout.

5.3 Rollout Policies

In the race strategy problem, during the planning phase, it is not desirable

for an agent to be “clairvoyant” over the adversaries’ strategies. Therefore,

the possibility of specifying a planning configuration for the simulator to use

when performing the tree search is needed to satisfy such constraint. In the

experimental setting of this work, the goal was implemented by considering

all drivers as controlled by the planner and applying a rollout policy (also

called default strategy) for the opposing drivers. The rollout policy is a

crucial component of MCTS-like algorithms, as it provides an initial estimate

for the value of leaf nodes, which is then used during the back-up phase of

such algorithms. Using a random policy would generate extremely noisy

value estimates in the tree nodes; therefore, careful consideration of the

rollout is needed.

The classic rollout policy used in MCTS algorithms is a random pol-

icy, choosing with an equal probability between actions at each time step.

Since good policies for the race strategy problem have the structure dis-

cussed at the end of section 4.2, the random policy yields poor performance

and doesn’t provide meaningful information for the nodes’ value initializa-

tion. To obtain more reasonable rollout estimates, we adopt an informed ap-

proach, building two rollout policies that better approximate human strate-

gies.

The first approach we consider is a simple stochastic strategy: the driver,

at each lap, has a 0.9 probability of staying on the track and a 0.1 probability

of making a pit stop by randomly choosing one of the compounds available.

As the strategies provided by this simple baseline are, for the most part,

unreasonable for both the track situation and the tire degradation status in

the simulator, a more realistic strategy definition is needed.

The second approach we explore focuses on leveraging the predicted race

strategies publicly available in sports articles (see table 5.3) taken from the
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Figure 5.3: A sample of strategies predicted by Pirelli for the 2018 Italian GP, taken

from https: // twitter. com/ pirellisport/ status/ 1036169705634054144

Season Track Source

2015 Japan https://www.espn.co.uk/f1/story/_/id/13768566/japanese-grand-prix-strategy-briefing

2016 Japan https://www.espn.co.uk/f1/story/_/id/17750221/japanese-grand-prix-strategy-guide

2017 Australia https://www.espn.com/f1/story/_/id/19005027/australian-grand-prix-race-strategy-guide

2017 Spain https://www.espn.co.uk/f1/story/_/id/19379342/spanish-grand-prix-strategy-guide

2017 Austria https://www.espn.com/f1/story/_/id/27087391/austrian-grand-prix-strategy-guide

2017 Belgium https://www.espn.com/f1/story/_/id/20473131/belgian-grand-prix-strategy-guide

2017 Russia https://www.espn.com/f1/story/_/id/19273668/russian-grand-prix-strategy-guide

2018 China https://www.espn.com.au/f1/story/_/id/23177650/chinese-grand-prix-strategy-guide

2018 Italy https://www.espn.com/f1/story/_/id/24553859/italian-grand-prix-strategy-guide

2018 Brazil https://www.espn.com/f1/story/_/id/25242197/brazilian-grand-prix-strategy-guide-race-pace

Table 5.3: ESPN source articles used for building fictitious tire durabilities.

motorsport opinion website ESPN.5

Since the Monte-Carlo agents explore different and sometimes unreason-

able strategic options, it would have been hard to automatically identify and

re-map the agent’s strategy to one of the predicted ones. To be indepen-

dent of such mapping, we compute a reasonable amount of laps that each

compound would last in a specific race, named tire durability, for each

compound allowed in the race. Figure 5.3 shows an example of the manu-

facturer’s predicted strategies, proposing different options to cover the race

distance. Note that the same compound can be used in stints of different

lengths, depending on the sequence of tires included in the strategy and the

position of the stint in the sequence. This may be due to the fact that, in the

5https://www.espn.com/f1
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real world, tire degradation is higher in the early stages of the race since less

rubber has been deposited on the asphalt, and the cars have more weight

due to the almost entirely unburned fuel mass. In practice, this means that

the same compound will last longer if fitted towards the end of the race,

being less stressed during its working period. Furthermore, a compound

usually wears out faster if the driver pushes for faster lap times, leading to

a shorter stint duration.

To compute tire durability, we first average the duration for stints with

uncertain duration, then we average the duration of stints on the same com-

pound (but belonging to different strategies). However, after applying the

second averaging, some of the original strategies are no longer obtainable:

one or more compounds would reduce their maximum durability and there-

fore leave a part of the race uncovered, requiring a further pit stop. To

address this problem, we extend the durability of the hardest compounds to

cover the missing laps, relying on the empirical observation that they show

a slower lap-time degradation than the softer ones and, therefore, extend-

ing a stint for a few laps would have less impact than doing so on a softer

compound.

The rollout policy that takes advantage of these durabilities works as

follows. When the current tire set has reached its expected duration, the

pit stop is performed with a probability of 0.9, or the decision is deferred by

one lap with a probability of 0.1. The choice of the next compound to use

is deterministic: if there are any compounds whose durability would cover

the remainder of the race, the policy suggests fitting the softest one among

them. If there is no such compound, the softest compound available is fitted

instead. Finally, to meet F1 regulations, the policy ensures that each driver

switches to a different compound at their first pit stop.
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Chapter 6

Experimental setting and

results

Our experiments focus on a specific driver, Sebastian Vettel, and on a spe-

cific time frame, from 2015 to 2018. This decision is backed up by the fact

that Vettel, who was driving for Scuderia Ferrari at the time, was a close

contender for the championship title in 2017 and 2018 and had a good per-

formance in the remaining years. Furthermore, we can recall that Scuderia

Ferrari made some strategic mistakes in some races during this period, so the

goal of our experiments for these races is to check if an online planning agent

would avoid them. As the race simulator presents some deviations from the

historical data, we simulate each race 1000 times and average each driver’s

final race time to generate the baseline performance of the true strategies

employed by the drivers.

In our work, only dry races are considered due to missing data, which

would be necessary to simulate wet conditions correctly. For instance, track

surface wetness and the related grip level [13] at each lap are crucial to

predict meaningful lap times in a simulated race.

For our experiments, we select a sample of 9 races among those where the

average gap between Vettel and the driver in front was less than 10 seconds

(see Table 6.1). This selection criterion is aimed at finding races in which,

with better strategic decisions, it would have been possible to bring the

driver to the front. As the authors are Ferrari fans, we add the 2017 Spanish

GP race to the race list, as it hosted a spectacular battle between Hamilton

and Vettel, and we feel that the Scuderia’s strategy could have been stronger

on that event, bringing the number of considered competitions to 10.

For each race, we perform 100 experiments with each of the following

planners: Sarsa UCT [32], Open-Loop UCT [22], PowerUCT [11], and our



Season Track Laps SC VSC

2015 Japan 53 No No

2016 Japan 53 No No

2017 Australia 58 No No

2017 Spain 66 No Yes

2017 Austria 71 No No

2017 Belgium 44 Yes No

2017 Russia 53 No Yes

2018 China 56 Yes No

2018 Italy 53 Yes No

2018 Brazil 71 No No

Table 6.1: List of the races used for evaluating planners’ performance in the experi-

ments. The laps column reports the real number of laps for each race

agent Q-learning OL UCT. In fact, we also considered an evaluation of a

PW-UCT algorithm for the evaluation campaign, but the implementation

quickly ran out of memory during the tree search, even for small search

budgets. Furthermore, we perform the same amount of experiments using

VSE [15], a neural-network-based agent designed specifically for automated

F1 pit-stop decisions.

For our QL OL-UCT, we employ an exponentially decaying learning rate,

computed as

α =
1

b+Na
,

where a and b are constant parameters controlling the schedule curve shape,

and N is the number of visits to the node which is currently updated.

We start the strategy planning from lap 8 and set the discount factor γ to 1

to make the agent focus on the cumulative reward, as, in F1 racing, points

are awarded based on the final standing. The computational budget of our

experimental setting represents the maximum number of samples that the

agent can take from the environment. We set the computational budget to

10,000 samples. The time horizon for the problem is variable between each

race, as it corresponds to the total number of laps prescribed for each racing

event minus the starting lap. Table 6.1 reports the selected races and the

respective number of prescribed laps.

We tune each planner’s hyperparameters on the 2017 Australian GP

race, running the Bayesian optimization framework Mango [27] for 30 opti-

mization iterations and employed the same hyper-parameters in each race.
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Sarsa UCT Power UCT OL UCT QL-OL UCT

c = 30 c = 4.7 c = 30 c = 50

λ = 0.1 p = 150 a = 0.2

b = 1

Table 6.2: Hyperparameters used for each planner.

The hyper-parameters assignments for each planner are reported in table

6.2

We consider the 2017 Australian GP a suitable choice for hyperparameter

tuning because of two main factors. First, the real race was a close fight

between Vettel and Hamilton, which ultimately Vettel won. Secondly, we

select this race because it had no accidents and no subsequent FCYs so that

the optimizer would not look for parameters correlated to specific racing

situations.

Table 6.3 reports the results for our experiments, comparing the undis-

counted cumulative return for both the planners mentioned at the beginning

of this section and two baselines. The ESPN baseline value is obtained by

applying the default strategy prescribed by the environment, whereas the

true baseline corresponds to the result obtained by applying the strategy

used by the driver in the real race. We show in bold the best planner (be-

tween the UCT variants) in each race, but only when the difference between

the best and second-best satisfies a statistical significance test. We do not

have a best-performing planner only for the China 2018 race since the per-

formance of QL-OL UCT and SARSA UCT are close when compared to

their confidence interval. Moreover, with the symbol ∗, we denote the best

strategy between planners and baselines (with statistical significance).

The results we obtained show that our proposed planning algorithm per-

Season Track ESPN True VSE Sarsa UCT Power UCT OL UCT QL-OL UCT Ranking Gain

2015 Japan 4576.01±1.0 4577.52±1.0 4575.34±1.3 4575.36±1.2 4583.25±2.4 4577.99±1.1 4570.35±1.0* 0.4

2016 Japan 4507.85±1.0 4507.54±0.7 4549.01±1.3 4508.90±0.8 4524.45±1.2 4519.03±1.3 4505.35±0.9* 0.1

2017 Australia 4470.39±1.7 4466.22±1.9 4477.29±1.3 4466.56±2.9 4474.12±2.2 4479.90±2.2 4459.71±2.4* -1.3

2017 Spain 5202.42±1.4 5209.89±1.3 5207.94±1.1 5196.38±2.1 5200.83±2.0 5211.05±1.1 5188.05±1.3* 0.1

2017 Austria 4525.88±1.2 4430.84±1.7* 4491.66±1.9 4476.43±2.8 4444.38±2.4 4484.14±1.8 4465.85±2.9 -2.4

2017 Belgium 4265.4±0.7 4256.44±1.0 4236.0±0.6* 4255.98±0.7 4259.52±0.7 4260.24±1.0 4246.09±0.7 2.9

2017 Russia 4419.98±1.3 4412.87±1.2* 4428.62±2.4 4425.10±2.1 4437.00±1.3 4430.93±1.7 4421.54±1.3 0.0

2018 China 5140.7±0.9 5134.01±1.0 5095.34±2.0* 5099.33±1.5 5128.63±0.9 5113.31±2.6 5098.93±1.5 4.2

2018 Italy 3909.37±1.9 3898.38±1.9* 3943.95±1.9 3907.22±1.4 3918.42±1.3 3911.24±1.3 3903.67±1.5 -0.3

2018 Brazil 4678.24±2.1* 4700.36±2.1 4711.61±1.7 4692.7±3.1 4699.25±1.7 4706.94±1.5 4686.32±2.9 2.0

Table 6.3: Cumulative return comparison for the experimental setting, lower is better.

Bold stands for best performance among planners, star stands for best overall race time.
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forms better in most races than other planners. Furthermore, the planner

is able to improve the average race times on most occasions with respect to

the real strategy performed by the drivers. All planners fail to do so in three

races: Italy 2018, Russia 2017, and Austria 2017. In particular, the Austria

2017 race shows the larger gap between real strategy and planner perfor-

mance. Our a-posteriori analysis found that the predicted ESPN strategy

was highly inconsistent with the real strategies applied during the race: the

article considered more tire wear than in the race, almost halving some of

the durability of the compounds. Therefore, we attribute this performance

loss to the suboptimality of the rollout policy, which can be addressed by

increasing the computational budget: in this specific race, the performance

of our proposed algorithm improved by around 10 seconds by increasing the

computational budget to 100,000, whereas a parameter tuning for the race

did not provide significant performance gains.

Since Austria 2017 represents a particularly difficult problem for the

evaluated planners, we also deploy provably efficient algorithms, specifically

OLOP and KL-OLOP, with a budget of 10,000 to assess their performance.

The results obtained by these planners are in line with those of QL-OL

UCT but the computational time is significantly higher. We, therefore, do

not extend the evaluation campaign to other races or to higher budget,

since these algorithms are not anytime and wouldn’t allow any practical

application with meaningful budgets.

In figure 6.1, we show return as a function of the employed search budget

in the races in which our planner did not obtain the best performance.

It is evident from the plots that the planner benefits from the increasing

budget but is still not able to match the performance of the real strategy.

This is especially evident for the Austria 2017 race, where the gap to the

real strategy remains around 25s even with a budget of 100.000. Higher

budget amounts than those reported in the figure could have allowed further

improvement of the performance, but have not been considered because the

computation time would have become unreasonable on our infrastructure.

A final remark is that, in most of the considered races, autonomous

agents are able to improve or maintain the final position of the real driver.

The last column, labeled Ranking Gain shows the average ranking improve-

ment achieved by our planner compared to the position achieved by the

true race strategies of the race. An interesting case where this does not

happen is represented by the 2017 Australian GP, in which our proposed

algorithm is able to improve the cumulative race time but loses positions in

the final placement. This is most likely an artifact generated by the reward

structure: since the reward promotes behaviors that minimize the cumula-
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Figure 6.1: Race time as a function of computational budget for Austria 2017, Russia

2017, and Italy 2018 races, lower is better. The plot shows mean and 95% confidence

interval for different budget values. The red dashed line represents the baseline for the

return obtained by applying in the environment the real strategy of Vettel.
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tive race time, the agent does not consider penalizing to take actions that

allow its competitors to overtake it, as long as this allows to maximize the

reward, suggesting the need for a carefully thought-out reward function that

incentivizes fast laps and position gains, while still providing a dense reward

signal to the agent.
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Chapter 7

Conclusions

Summary

In this work, we investigated how MCTS algorithms can be used to design an

automatic race strategy identification system. We employed an open-loop

search strategy to tackle the large, continuous, stochastic state transition

model and employed TD updates to address the high variance of the re-

turns observed in the search tree. We empirically demonstrated, adapting

a racing simulator to our needs, that open-loop planning can be used to

improve the performance of hand-crafted race strategies, represented by the

ESPN rollout policies employed during the search. We believe that online-

planning algorithms can be a resourceful tool, able to provide race strategy

recommendations to the strategists of Formula 1 teams during the race, es-

pecially when race situations differ from the predictions made before the

race.

Nevertheless, we observe that the performance of planners strongly depends

on the rollout policies employed, as they are used for initial evaluations of

the tree nodes, and therefore affect the regions of the tree explored during

the search. This can, in turn, be tackled with higher search budgets.

Limitations

Despite the encouraging results we obtained in the experimental settings, our

work still presents some limitations. First, to be useful in a real application

scenario, our system needs to be able to return good recommendations in a

given time frame. With the actual implementation, we consider as budget

a maximum number of interactions with the planning environment, but a

straightforward modification could be made to implement a time constraint.



Second, our system heavily relies on the racing simulator presented in [13]

which, in turn, is currently able to simulate with reasonable accuracy only

dry races included in the 2014-2019 time span, whereas new races’ parame-

ters need to be estimated from scratch.

Third, the reward function we employ in our MDP representation does not

account for ranking gains or losses with each action performed by the plan-

ner, thus leading to, in specific races, the agent losing positions by allowing

opponents to overtake it when performing a pit-stop.

Fourth, many assumptions were made in our work to simplify the search

space, which may not hold true in all races. For instance, the constraint

on the maximum number of pit stops may not hold in races in which the

weather suddenly changes or the driver experiences tire punctures or acci-

dents.

Finally, many fundamental racing interactions are coarsely modeled by the

simulator or not modeled at all. Traffic, overtaking, and retirements are

some examples of partially modeled elements in the simulator. An exam-

ple of an unmodeled element is, instead, tire degradation variability when

pushing lap times or saving tires.

Future Work

Several future extensions of this work are possible. First, to decrease search

times and to allow generalization across races, we can employ an AlphaZero

[30] planning strategy, where function approximators are used to give an ini-

tial bias to the actions to explore in the tree and to evaluate the leaf nodes.

The extension of this algorithm to an open-loop setting is not straightfor-

ward and can present an interesting research problem.

Second, a multi-agent framework can be employed to model situations where

the controlled driver is “dueling” with other drivers. In this case, the dueling

driver would not be considered as part of the environment but as a separate

agent. In this setting, multi-player (double in the simple case of one rival)

MCTS could be employed, allowing the agent to consider the adversarial

behavior of the opponent. Finally, Inverse Reinforcement Learning (IRL)

can be employed to produce better reward functions that also consider the

ranking gains, apart from the lap-times as a reward signal. This way, we

could obtain a dense reward signal that also captures the true objective of

gaining positions in the final placement.
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ning. In Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou,

editors, Machine Learning: ECML 2006, pages 282–293, Berlin, Hei-

delberg, 2006. Springer Berlin Heidelberg.

[19] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo plan-
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Réveillac, editor, Optimization Tools for Logistics, pages 55 – 75. Else-

vier, 2015.

[27] Sandeep Singh Sandha, Mohit Aggarwal, Igor Fedorov, and Mani Sri-

vastava. Mango: A python library for parallel hyperparameter tuning.

In ICASSP 2020-2020 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 3987–3991. IEEE, 2020.

[28] Frederik Schadd. Monte-carlo search techniques in the modern board

game thurn and taxis. 2009.

[29] David Silver. Lectures on reinforcement learning. url: https://www.

davidsilver.uk/teaching/, 2015.

[30] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis

Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre,

Dharshan Kumaran, Thore Graepel, Timothy P. Lillicrap, Karen

Simonyan, and Demis Hassabis. Mastering chess and shogi by

self-play with a general reinforcement learning algorithm. CoRR,

abs/1712.01815, 2017.

[31] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An

Introduction. The MIT Press, second edition, 2018.

[32] Tom Vodopivec, Spyridon Samothrakis, and Branko Šter. On monte
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Acronyms

DP Dynamic Programming.

DPW Double Progressive Widening.

DRS Drag Reduction System.

F1 Formula 1.

FCY Full-Course Yellow.

MC Monte Carlo.

MCTS Monte Carlo Tree Search.

MDP Markov Decision Process.

OLOP Open Loop Optimistic Planning.

RL Reinforcement Learning.

SC Safety Car.

TD Temporal Difference.

UCB-1 Upper Confidence Bound.

UCT Upper Confidence Bound for Trees.

VSC Virtual Safety Car.
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