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1. Introduction 

 In the topics of face recognition, face detection, and facial age estimation, 

machine learning plays an important role and is served as the fundamental technique 

in many existing literatures. 

For example, in face recognition, many researchers focus on using dimensionality 

reduction techniques for extracting personal features. The most well-known ones are 

(1) eigenfaces [1], which is based on principal component analysis (PCA,) and (2) 

fisherfaces [2], which is based on linear discriminant analysis (LDA).  

In face detection, the popular and efficient technique based on Adaboost cascade 

structure [3][4], which drastically reduces the detection time while maintains 

comparable accuracy, has made itself available in practical usage. Based on our 

knowledge, this technique is the basis of automatic face focusing in digital cameras. 

Machine learning techniques are also widely used in facial age estimation to extract 

the hardly found features and to build the mapping from the facial features to the 

predicted age. 

 Although machine learning is not the only method in pattern recognition (for 

example, there are still many researches aiming to extract useful features through 

image and video analysis), it could provide some theoretical analysis and practical 

guidelines to refine and improve the recognition performance. In addition, with the 

fast development of technology and the burst usage of Internet, now people can easily 

take, make, and access lots of digital photos and videos either by their own digital 

cameras or from popular on-line photo and video collections such as Flicker [5], 

Facebook [6], and Youtube [7]. Based on the large amount of available data and the 

intrinsic ability to learn knowledge from data, we believe that the machine learning 

techniques will attract much more attention in pattern recognition, data mining, and 

information retrieval. 

 In this tutorial, a brief but broad overview of machine learning is given, both in 

theoretical and practical aspects. In Section 2, we describe what machine learning is 

and its availability. In Section 3, the basic concepts of machine learning are presented, 

including categorization and learning criteria. The principles and effects about the 

learning performance are discussed in Section 4, and several supervised and 

unsupervised learning algorithms are introduced in Sections 5 and 6. In Section 7, a 

general framework of pattern recognition based on machine learning technique is 

provided. Finally, in Section 8, we give a conclusion. 
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2. What is Machine Learning? 

 “Optimizing a performance criterion using example data and past experience”, 

said by E. Alpaydin [8], gives an easy but faithful description about machine learning. 

In machine learning, data plays an indispensable role, and the learning algorithm is 

used to discover and learn knowledge or properties from the data. The quality or 

quantity of the dataset will affect the learning and prediction performance. The 

textbook (have not been published yet) written by Professor Hsuan-Tien Lin, the 

machine learning course instructor in National Taiwan University (NTU), is also titled 

as “Learning from Data”, which emphasizes the importance of data in machine 

learning. Fig. 1 shows an example of two-class dataset. 

 

2.1 Notation of Dataset 

 Before going deeply into machine learning, we first describe the notation of 

dataset, which will be used through the whole section as well as the tutorial. There are 

two general dataset types. One is labeled and the other one is unlabeled: 

 

 Labeled dataset :   ( )

1{ }n d N

nX R  x , ( )

1{ }n N

nY y R    

 Unlabeled dataset : ( )

1{ }n d N

nX R  x  

 

, where X denotes the feature set containing N samples. Each sample is a 

d-dimensional vector ( ) ( ) ( ) ( )

1 2[ , ,......, ]n n n n T

dx x xx and called a feature vector or feature 

sample, while each dimension of a vector is called an attribute, feature, variable, or 

element. Y stands for the label set, recording what label a feature vector corresponds 

to (the color assigned on each point in Fig. 1). In some applications, the label set is 

unobserved or ignored. Another form of labeled dataset is described as

( ) ( )

1{ , }n d n N

nR y R  x , where each ( ) ( ){ , }n n
x y is called a data pair. 

 

2.2 Training Set and Test Set 

 In machine learning, an unknown universal dataset is assumed to exist, which 

contains all the possible data pairs as well as their probability distribution of 
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appearance in the real world. While in real applications, what we observed is only a 

subset of the universal dataset due to the lack of memory or some other unavoidable 

reasons. This acquired dataset is called the training set (training data) and used to 

learn the properties and knowledge of the universal dataset. In general, vectors in the 

training set are assumed independently and identically sampled (i.i.d) from the 

universal dataset. 

 

Fig. 1 An example of two-class dataset is showed, where two measurements of 

each sample are extracted. In this case, each sample is a 2-D vector [9]. 

 

 In machine learning, what we desire is that these learned properties can not only 

explain the training set, but also be used to predict unseen samples or future events. In 

order to examine the performance of learning, another dataset may be reserved for 

testing, called the test set or test data. For example, before final exams, the teacher 

may give students several questions for practice (training set), and the way he judges 

the performances of students is to examine them with another problem set (test set). In 

order to distinguish the training set and the test set when they appear together, we use

train  
and test  

 to denote them, respectively. 

 We have not clearly discussed what kinds of properties can be learned from the 

dataset and how to estimate the learning performance, while the readers can just leave 

it as a black box and go forth. In Fig. 2, an explanation of the three datasets above is 

presented, and the first property a machine can learn in a labeled data set is shown, the 

separating boundary. 
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Fig. 2 An explanation of three labeled datasets. The universal set is assumed to 

exist but unknown, and through the data acquisition process, only a subset of 

universal set is observed and used for training (training set). Two learned separating 

lines (the first example of properties a machine can learn in this tutorial) are shown in 

both the training set and test set. As you can see, these two lines definitely give 100% 

accuracy on the training set, while they may perform differently in the test set (the 

curved line shows higher error rate).  

 

2.3 No Free Lunch Rule 

 If the learned properties (which will be discussed later) can only explain the 

training set but not the test or universal set, then machine learning is infeasible. 

Fortunately, thanks to the Hoeffding inequality [10] presented below, the connection 

between the learned knowledge from the training set and its availability in the test set 

is described in a probabilistic way: 

 
22[ ] 2 .NP e        (1) 

In this inequality, N denotes the size of training set, and   and   describe how the 

leaned properties perform in the training set and the test set. For example, if the 

learned property is a separating boundary, these two quantities usually correspond to 

the classification errors. Finally,  is the tolerance gap between and  . Details of 

the Hoeffding inequality are beyond the scope of this tutorial, and later an extended 

version of the inequality will be discussed. 
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(a)                     (b)                     (c) 

 

Fig. 3 The no free lunch rule for dataset: (a) is the training set we have, and (b), (c) 

are two test sets. As you can see, (c) has different sample distributions from (a) and 

(b), so we cannot expect that the properties learned from (a) to be useful in (c). 

 

 While (1) gives us the confidence on applying machine learning, there are some 

necessary rules to ensure its availability. These rules are called the “no free lunch 

rules” and are defined on both the dataset and the properties to learn. On the dataset, 

the no free lunch rules require the training set and the test set to come from the same 

distribution (same universal set). And on the properties, the no free lunch rules ask the 

users to make assumptions on what property to learn and how to model the property. 

For example, if the separating boundary in a labeled dataset is desired, we also need 

to define the type of the boundary (ex. a straight line or a curve). On the other hand, if 

we want to estimate the probability distribution of an unlabeled dataset, the 

distribution type should also be defined (ex. Gaussian distribution). Fig. 3 illustrates 

the no free lunch rules for dataset. 

 

2.4 Relationships with Other Disciplines 

 Machine learning involves the techniques and basis from both statistics and 

computer science: 

 Statistics: Learning and inference the statistical properties from given data 

 Computer science: Efficient algorithms for optimization, model representation, 

and performance evaluation.  

 

In addition to the importance of data set, machine learning is generally composed of 

the two critical factors, modeling and optimization. Modeling means how to model 

the separating boundary or probability distribution of the given training set, and then 

the optimization techniques are used to seek the best parameters of the chosen model.
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 Machine learning is also related to other disciplines such as artificial neural 

networks, pattern recognition, information retrieval, artificial intelligence, data mining, 

and function approximation, etc. Compared to those areas, machine learning focus 

more on why machine can learn and how to model, optimize, and regularize in order 

to make the best use of the accessible training data. 

 

3. Basic Concepts and Ideals of Machine Learning 

 In this section, more details of machine learning will be presented, including the 

categorization of machine learning and what we can learn, the goals we are seeking, 

the structure of learning process, and the optimization criterion, etc. To begin with, a 

small warming up is given for readers to get clearer why we need to learn. 

 

3.1 Designing versus Learning 

 In daily life, people are easily facing some decisions to make. For example, if the 

sky is cloudy, we may decide to bring an umbrella or not. For a machine to make 

these kinds of choices, the intuitive way is to model the problem into a mathematical 

expression. The mathematical expression could directly be designed from the problem 

background. For instance, the vending machine could use the standards and security 

decorations of currency to detect false money. While in some other problems that we 

can only acquire several measurements and the corresponding labels, but do not know 

the specific relationship among them, learning will be a better way to find the 

underlying connection. 

 Another great illustration to distinguish designing from learning is the image 

compression technique. JPEG, the most widely used image compression standard, 

exploits the block-based DCT to extract the spatial frequencies and then unequally 

quantizes each frequency component to achieve data compression. The success of 

using DCT comes from not only the image properties, but also the human visual 

perception. While without counting the side information, the KL transform 

(Karhunen-Loeve transform), which learns the best projection basis for a given image, 

has been proved to best reduce the redundancy [11]. In many literatures, the 

knowledge acquired from human understandings or the intrinsic factors of problems 

are called the domain knowledge. And the knowledge learned from a given training 

set is called the data-driven knowledge.  

 



9 

 

3.2 The Categorization of Machine Learning 

 There are generally three types of machine learning based on the ongoing 

problem and the given data set, (1) supervised learning, (2) unsupervised learning, 

and (3) reinforcement learning: 

 

 Supervised learning: The training set given for supervised learning is the 

labeled dataset defined in Section 2.1. Supervised learning tries to find the 

relationships between the feature set and the label set, which is the 

knowledge and properties we can learn from labeled dataset. If each feature 

vector x is corresponding to a label 1 2, { , ,......, }cy L L l l l  (c is usually ranged 

from 2 to a hundred), the learning problem is denoted as classification. On the 

other hand, if each feature vector x is corresponding to a real value y R , the 

learning problem is defined as regression problem. The knowledge extracted 

from supervised learning is often utilized for prediction and recognition. 

 

 Unsupervised learning: The training set given for unsupervised leaning is the 

unlabeled dataset also defined in Section 2.1. Unsupervised learning aims at 

clustering [12], probability density estimation, finding association among 

features, and dimensionality reduction [13]. In general, an unsupervised 

algorithm may simultaneously learn more than one properties listed above, and 

the results from unsupervised learning could be further used for supervised 

learning. 

 

 Reinforcement learning: Reinforcement learning is used to solve problems of 

decision making (usually a sequence of decisions), such as robot perception and 

movement, automatic chess player, and automatic vehicle driving. This learning 

category won’t be discussed further in this thesis, and readers could refer to [14] 

for more understanding. 

 

 In addition to these three types, a forth type of machine learning category, 

semi-supervised learning, has attracted increasing attention recently. It is defined 

between supervised and unsupervised learning, contains both labeled and unlabeled 

data, and jointly learns knowledge from them. Figs. 4-6 provide clear comparisons 

among these three types of learning based on nearly the same training set, and the 

dotted lines show the learned knowledge. 
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3.3 The Structure of Learning 

 In this subsection, the structure of machine learning is presented. In order to 

avoid confusion about the variety of unsupervised learning structures, only the 

supervised learning structure is shown. While in later sections, several unsupervised 

learning techniques will still be mentioned and introduced, and important references 

for further reading are listed. An overall illustration of the supervised learning 

structure is given in Fig. 7. Above the horizontal dotted line, an unknown target 

function f (or target distribution) that maps each feature sample in the universal 

dataset to its corresponding label is assumed to exist. And below the dotted line, a 

training set coming from the unknown target function is used to learn or approximate 

the target function. Because there is no idea about the target function or distribution f 

(looks like a linear boundary or a circular boundary?), a hypothesis set H is necessary 

to be defined, which contains several hypotheses h (a mapping function or 

distribution). 

 

  

(a)                                  (b) 

Fig. 4 Supervised learning: (a) presents a three-class labeled dataset, where the 

color shows the corresponding label of each sample. After supervised learning, the 

class-separating boundary could be found as the dotted lines in (b). 

 

Insides the hypothesis set H, the goal of supervised learning is to find the best h, 

called the final hypothesis g, in some sense approximating the target function f. In 

order to do so, we need further define the learning algorithm A, which includes the 

objective function (the function to be optimized for searching g) and the 

optimization methods. The hypothesis set and the objective function jointly model 

the property to learn of the no free lunch rules, as mentioned in Section 2.3. Finally, 

the final hypothesis g is expected to approximate f in some way and used for 

future prediction. Fig. 8 provides an explanation on how hypothesis set works with 

the learning algorithm. 
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(a)                                 (b) 

Fig. 5 Unsupervise learning (clustering): (a) shows the same feature set as above 

while missing the label set. After performing the clustering lagorithm, three 

underlined groups are discovered from the data in (b). Also, users can perform other 

konds of unsupervides learning algorithm to learn different kinds of knowledge (ex. 

Probability distributuion) from the unlabeled dataset. 

 

  

(a)                                 (b) 

Fig. 6 Semi-supervised learning. (a) presents a labeled dataset (with red, green, 

and blue) together with a unlabeled dataset (marked with black). The distribution of 

the unlabeled dataset could guide the position of separating boundary. After learning, 

a different boundary is depicted against the one in Fig. 4. 

 

There are three general requirements for the learning algorithm. First, the 

algorithm should find a stable final hypothesis g for the specific d and N of the 

training set (ex. convergence). Second, it has to search out the correct and optimal g 

defined through the objective function. The last but not the least, the algorithm is 

expected to be efficient. 
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Fig. 7 The overall illustration of supervised learning structure: The part above the 

dotted line is assumed but inaccessible, and the part below the line is trying to 

approximate the unknown target function (f is the true target function and g is the 

learned function). 

 

 

 

Fig. 8 An illustration on hypothesis set and learning algorithm. Take linear 

classifiers as an example, there are five hypothesis classifiers shown in the up-left 

rectangle, and in the up-right one, a two-class training set in shown. Through the 

learning algorithm, the green line is chosen as the most suitable classifier. 
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3.4 What are We Seeking? 

 From the previous subsection, under a fixed hypothesis set H and a learning 

algorithm A, learning from labeled dataset is trying to find g that best approximates 

the unknown f “in some sense”. And in this subsection, the phrase in the quotes is 

explained for both supervised and unsupervised learning: 

 

 Supervised learning: In supervised learning, especially for the classification 

case, the desired goal (also used as the performance evaluation) of learning is to 

find g that has the lowest error rate for classifying data generated from f. The 

definition of classification error rate measured on a hypothesis h is shown as 

below:   

 ( ) ( )

1

11
( ) ( ) ,  

0

N
n n

n

true
E h y h

N false

 
  


 x  (2) 

, where stands for the indicator function. When the error rate (2) is defined on 

the training set, it is named the “in-sample error ( )inE h ”, while the error rate 

calculated on the universal set or more practically the (unknown or reserved) 

test set is named the “out-of-sample error ( )outE h ”. Based on these definitions, 

the desired final hypothesis g is the one that achieves the lowest out-of-sample 

error over the whole hypothesis set: 

 arg min ( ).out
h

g E h  (3) 

While in the learning phase, we can only observe the training set, measure ( )inE h , 

and search g based on the objective function. From the contradiction above, a 

question the readers may ask, “What is the connection among the objective 

function, ( )inE g , and ( )outE g , and what should we optimize in the learning 

phase?” 

 As mentioned in (1), the connection between the learned knowledge from 

the training set and its availability on the test set can be formulated as a 

probability equation. That equation is indeed available when the hypothesis set 

contains only one hypothesis. For more practical hypothesis sets which may 

contain infinite many hypotheses, an extended version of (1) is introduced as: 

 

 ( ) ( ) ( log ), with probability 1 .VC
out in

d
E g E g O N

N
     (4) 
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This inequality is called the VC bound (Vapnik–Chervonenkis bound), where

VCd is the VC dimension used as a measure of model (hypothesis set and 

objective function) complexity, and N is the training set size. The VC bound 

listed here is a simplified version, but provides a valuable relationship between 

( )outE g
 
and ( )inE g : A hypothesis g that can minimize ( )inE h may induce a low

( )outE g . The complete definition of the VC dimension is beyond the scope of 

this tutorial. 

  Based on the VC bound, a supervised learning strategy called empirical 

risk minimization (ERM) is proposed to achieve low ( )outE g
 
by minimizing

( )inE g : 

 arg min ( ).in
h

g E h  (5) 

ERM is probably the most widely-used strategy is supervised learning, and 

( )inE h is the first objective function presented in this tutorial. In fact, an 

objective function can be separated into a loss function and a penalty function. 

The loss function measures the classification error defined on the training set, 

while the penalty function gives each hypothesis a priority. Before Section 4.4, 

the penalty term is set as a constant and can be ignored. There are other kinds of 

supervised learning strategies seeking the minimum ( )outE g based on theorems 

apart from the VC bound and will be mentioned in Section 3.6.  

 For regression problem, the widely-used strategy is to minimize the root 

mean square (RMS) between the predicted label and the ground truth label (the 

label provided by the dataset): 

 
2

( ) ( )

1

1
( ) ( ) .

N
n n

n

E h y h
N 

  x  (6) 

 Unsupervised learning: Apart from supervised learning, the strategies of 

unsupervised learning are very diverse. Some unsupervised learning algorithms 

exploit probabilistic distribution model and find the best distribution parameters 

through maximum likelihood estimation (MLE), maximum a posterior (MAP), 

or a more complicated Bayes methods. On the other hand, algorithms without 

probability models may learn knowledge based on statistical measurement, 

quantization error, variance preserving, or entropy gap, etc. 

 

3.5 The Optimization Criterion for Supervised Learning 

 As mentioned in Section 2.4, modeling and optimization are the two main 

factors of machine learning. The modeling contains the choice of hypothesis set H and 
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the objective function, and optimization is performed to find the final hypothesis g in 

H, which reaches the minimum or maximum of the objective function (if necessary, 

within the user-defined number of iteration). Given a training set, there are indeed 

many kinds of models to choose. In order to avoid confusion, in this section we 

assume the hypothesis set is fixed, and what we want to do is searching g based on the 

selected objective function. In Section 4, we will introduce the methods to choose a 

model for the training set and problem at hand, and in Section 5, the types of 

hypothesis sets and their corresponding objective functions are discussed in more 

detailed.  

 We first focus on the hypothesis set of linear classifiers and show how the 

optimization methods interact with the choices of objective functions. The general 

form of the linear classifier for two-class classification problems ( ( ) [ 1,1]ny   ) is 

formulated as below: 

 
( )( )( ) ( )
nn Th sign c x w x , (7) 

where c is some constant, w is a (d+1)-dimensional vector
0 1[ , ,......, ]T

dw w ww , and

1 2[1, , ,......, ]T

dx x xx  is the extended version of x also with (d+1) dimensions. The 

vector w stands for the classifier parameters, and the additional 1 in x is used to 

compute the offset of the classification line. Based on the goal of ERM introduced in 

Section 3.4, the objective function is the in-sample error term (or say the loss term, 

calculating how many training samples are wrongly predicted) and the optimization 

method is used to find a linear classifier to minimize the objective function. Fig. 9 

shows a linearly-separable training set as well as the corresponding final hypothesis 

g. As you can see, there are many hypotheses that could achieve zero error. 

 

 

Fig. 9 An example of two-class classification problem using linear classfiers, 

where the training set is linearly-separable. 
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Fig. 10 The objective (in-sample error rate) considering only a sample with 
( ) 1ny   based on linear classfiers. The x-axis denotes the inner product of the 

extended feature vector and the parameter vector of the linear classifier. As shown, the 

objective function is non-continuous around 
( )

0
nT w x .   

 

 If we simplify (2) and just look at one sample without normalization, the error 

term will become: 

 ( ) ( ) ( )( ) ( ) .n n nloss g y g  x  (8) 

Fig. 10 shows this one-sample objective function for a sample with ( ) 1ny  . As can be 

seen, the fuction is non-continuous around
( )

0
nTw x and flat in the other ranges, so 

the use of differentiation-based (iterative) optimization methods is nearly out of work. 

For example, if the attained w brings 
( )

0
nT w x  for ( ) 1ny   at the current iteration, 

with zero gradients according to w, the optimization algorithm has no idea to adjust 

the current w towards lower error rate. Fig. 11 illustrates this problem for a 

linear-separable training set. 

 Differentiation-based optimization methods are probably the most widely-used 

optimization techniques in machine learning, especially for objective functions that 

can be directly written as a function form of the traning samples and the classifier or 

regressor parameters w (not always in the vector form). The popular gradient descent, 

stochastic gradeint descent, Newton’s method, coordinate descent, and convex 

optimization are of this optimization category. The differentiation-based methods are 

usually performed in the iterative manner, which may suffer from the local optimal 

problem. Besides, some of them cannot even reach the exact local optimal due to 

convergence concern, where slow updating and small vibration usually occur around 

the exact optimal parameters. Despite these drawbacks, the optimization category is 
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popular because of its intuitive geometrical meaning and usually easy to start with by 

simple caluculus such as the Taylor’s expansion. 

 

 

Fig. 11 Assume at the current iteration, the attained w and one of the desired w are 

shown as the black and the gray dotted lines, the optimization algorithm may have 

no idea on how to adjust w towards its desired quantities. 

 

 The basic concerns to exploit this optimization category are the “differentiability” 

of the objective function and the “continuity” of the parameter space. The objective 

function may have some non-continuous or undifferentiable points, while it should at 

least be in a piecewise differentiable form. In addition to differentiability, we also 

expect that the fuction has non-zero gradients along the path of optimization, and the 

zero gradients only happen at the desired optimal position. As shown in 錯誤! 找不

到參照來源。, the in-sample error rate of linear classifiers is neither continuous nor 

with non-zero gradients along the optimization path. This non-continuous objective 

function may still be solved by some other optimization techniques such as the 

perceptron learning algorithm, the neural evolution, and the genetic algorithm, etc., 

while they are either much more complicated, require more computational time, or are 

only available in certain convergence-guarantee conditions. The objective function 

should not be confused with the classifier or regressor functions. The second term is 

the function for predicting the label of the feature vector, and the first term is the 

function used to find the optimal parameters of classifiers or regressors.  

 To make differentiation-based optimization methods available for ERM in the 

linear classifier case, we need to modify the in-sample error term into some other 

approximation functions that is (piecewise) differentiable and continuous. There are 

many choices of approximation functions (denoted as ( )appE h ), and the only 

constraint on them is made as below: 
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 ( ) ( )app inE h E h  (9) 

, which means the in-sample error is always upper-bounded by the approximation 

function. Based on this modification, the learning goal and procedure for ERM is 

reformulated. The original learning goal aims at finding g which approaches the 

target function f through minimizing ( )outE h . Because of the inaccessibility to the test 

and universal set, the learning phase turns to optimize ( )inE h with g by ERM, and 

expects g to approach g ( *( ) ( )out outE g E g ) through the VC bound introduced in (4). 

Furthermore, due to the difficulty of optimizing ( )inE h , an approximation function 

( )appE h is defined to take place of ( )inE h . Trough searching g which optimizes ( )appE h  

with the constraints defined in (9), we expect the final hypothesis g could achieve low

( )inE g
 
as well as low ( )outE g ( ( ) ( )in inE g E g  and *( ) ( )out outE g E g ). Table 1 

summarizes this important concept and relationship, and 錯誤! 找不到參照來源。 

shows several approximation functions as well as the algorithm names for linear 

classifiers against the in-sample error term (0/1 loss). Similar to 

錯誤! 找不到參照來源。 and 錯誤! 找不到參照來源。, this figure denotes the 

objective function for a single sample with ( ) 1ny  , and for sample with ( ) 1ny   , the 

mirror operation is taken for these fuctions around the origin. The objective function 

for the whole training set ( ( )appE h ) is just the normalized summation of these 

one-sample functions.  

 

Fig. 12 Different objective functions for linear classifiers defined on a sample with
( ) 1ny  . The terms in parentheses are the corresponding algorithm names. 
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Table 1 The supervised learning concept from ERM to the objective functions.  

Original goal: 
Find a final hypothesis g , which approaches the target function 

f through achieving the minimum ( )outE h . 

Given: A labeled training set train . 

Learning 

structure: 

A hypothesis set H, an objective function ( )appE h , and the 

corresponding optimization method  

Term definition: 

* arg min ( )

arg min ( )

arg min ( )

out
h

in
h

app
h

g E h

g E h

g E h







 

Modified goal: 
Find g which optimizes ( )appE h , and use it for further 

application. 

Relationship: 

(a) Small ( )appE g may brings small ( )inE g , through 

錯誤! 找不到參照來源。. 

(b) Small ( )inE g has probability relationship to achieve small 

( )outE g , through the VC bound introduced in (4). 

(c) We expect
*g g f  through *( ) ( )out outE g E g based on 

the above two relationships. 

 

Table 2 Several hypothesis set types as well as the corresponding objective 

functions and optimization techniques. 

Hypothesis type Objective function Optimization technique 

Linear classifier 

0/1 loss 

hinge loss 

one- and two-side square error 

perceptron learning (PLA) 

convex optimization 

(stochastic) gradient descent 

Decision tree 
Gini index 

Entropy 

Divide and conquer 

Brute-force search 

Generative 

classifier 

Maximum a posterior (MAP) 

Maximum likelihood (MLE) 

(stochastic) gradient descent 

Expectation maximization (EM) 

Linear regressor Square error Closed form (pseudo inverse) 
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Square error with regularization (stochastic) gradient descent 

 

 

In addition to the linear classifiers, there are still many kinds of hypothesis sets 

as well as different objective functions and optimization techniques (as listed in  

Table 2) for supervised learning on a given training set. To be noticed, both the 

hypothesis set types and the corresponding objective functions affect the VC 

dimension introduced in (4) for model complexity measurement. And even based on 

the same hypothesis set, different objective functions may result in different final 

hypothesis g. 

 

3.6 The Strategies of Supervised Learning 

 In this subsection, we discuss the other supervised learning strategies, their 

learning structures and assumptions, and the comparison and relationship with the 

ERM strategy. Only the classification problem is discussed, while these strategies can 

be extended into the regression problems by considering continuous labels. 

 There are generally two strategies of classifiers, the one-shot (discriminant), 

and the two-stage (probabilistic) strategies. The one-shot (discriminant) strategy 

aims at finding a function that directly maps the feature vector to the label, which is 

usually optimized through the idea of ERM and its approximated versions. On the 

other hand, the two-stage strategy exploits probabilistic methods and can be further 

divided into two groups, the discriminative and generative models. The 

discriminative model tries to model the classifier as a conditional probability 

distribution (CPD) given the feature vector, while the generative model utilizes an 

extended version, modeling the classifier as several CPDs given each label as well as 

a prior probability distribution of labels.  

 The basic idea behind the two-stage strategy is the assumption that the training 

set is coming from a probability distribution. There are many kinds of parametric 

probability models as well as semi- or non-parametric probability models, and in 

practice, the users are asked to select a model based on their knowledge and the 

trade-off between complexity and learning efficiency. During the learning phase, the 

two-stage strategy searches the parameter set   of the selected probability 

distribution model which best describes the observed training set based on MAP, 

MLE, or even the Bayes methods, while the one-shot strategy tries to find a final 
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hypothesis g from the hypothesis set H. Table 3 lists both the classifier modeling and 

the optimization criteria, and Fig. 13 illustrates the different learning structures of 

these two strategies. 

 Compared to the one-shot strategy which only outputs the predicted label, the 

two-stage strategy comes up with a soft decision, the probability of each label given a 

feature vector. The generative model further discovers the joint distribution between 

feature vectors and labels, and provides a unified framework for supervised, 

semi-supervised, and unsupervised learning. Although the two-stage strategy seems to 

extract more information from the training set, the strong assumption, the training 

samples come from a user-defined probability distribution model, may misleads the 

learning process if the assumption is wrong, and results in a poor model. Besides, the 

optimization of a flexible probability distribution model is usually highly complicated 

and requires much more computational time and resources. In Table 4, a general 

comparison and illustration of the one-shot and two-stage strategies is presented. In 

this tutorial, we focus more on the one-shot strategy, and readers who are interested in 

the two-stage strategy can referred to several excellent published books [9][15]. To be 

noticed, although the two strategies are different through what they are seeking during 

the learning phase, in the testing phase, both of them are measured by the 

classification error for performance evaluation. 

 

      

:  ( ) ( )Goal g x f x               
*:  best Goal   

(a)                                  (b) 

Fig. 13 The learning structures of the one-shot and two-stage strategies: (a) The 

one-shot strategy, and (b) the two-shot strategy, where  is the parameter set of the 

selected probability distribution model.  
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Table 3 The classifier modeling and optimization criteria for these two strategies. 

Classifier type Classifier modeling Optimization criterion 

One-shot 

(discriminant) 

* ( )y f x  
( ) ( )

1

1
arg min ( )

N
n n

h
n

g y h
N 

  x  

Two-stage 

(discriminative) 

* arg max ( | )
y

y P y x  * arg max ( | ; )P Y X


   

Two-stage 

(generative) 

* arg max ( | )

( | ) ( )
    arg max

( )

y

y

y P y

P y P y

P





x

x

x

 
* arg max ( , ; )P X Y


   

 

Table 4 Comparisons of the one-shot and two-stage strategies from several aspects. 

Category One-shot Two-stage 

Model Discriminant Discriminative, Generative 

Advantage 

 Fewer assumptions 

 Model: direct towards the 

classification goal 

 Optimization: direct 

towards low error rate 

 More flexible 

 More discovery power 

 Provide uncertainty 

 Domain knowledge is easily 

included 

Disadvantage No probabilistic information 
 More assumption 

 Computational complexity 

Usage Usually supervised learning Supervised and unsupervised 

Symbolic 

classifiers 

Adaboost 

support vector machines (SVM), 

multilayer perceptrons (MLP) 

Gaussian discriminant analysis, 

Hidden Markov model (HMM), 

Naïve Bayes 

 

4. Principles and Effects of Machine Learning 

 In previous two sections, the definition of machine learning as well as the 

optimization and categorization has been mentioned, and in this section, more 
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practical issues will be introduced and discussed, especially for classification 

problems. At the beginning, the VC bound is revisited and explained in more detail, 

and three effects based on it are introduced. Then, How to select and modify a model 

(hypothesis set + objective function) for the training set and problem at hand is 

discussed. Three principles which we should keep in mind when considering a 

machine learning problem are coming later, and finally we take a fist glance on some 

practical issues.  

4.1 The VC Bound and Generalization Error 

 The basic while probably the most important theory of ERM learning strategy is 

the VC (Vapnik–Chervonenkis) bound, where it builds a bridge between what we 

learn in the training set and how it performs in the test set. The VC bound could also 

be extended into other supervised strategies as well as unsupervised learning tasks by 

changing the two “error rates” of the training set and the test set into other quantities 

or properties we are interested in, such as the probability distribution, etc. The 

simplified VC bound is revisited as below (in the big O notation): 

 ( ) ( ) ( log ), with probability 1VC
out in

d
E g E g O N

N
     (10) 

, where VCd
 
is the VC dimension used as a measure of model (hypothesis set H and 

objective function) complexity, and N is the training set size, and the definitions of 

Ein(g) and Eout(g) were illustrated in (2). Any combination of hypothesis sets and 

objective functions has its specific VCd , and the VC bound serves as an estimate on 

how the learned g from the selected model will perform in the test or universal set. 

The term, ( log )VCd
O N

N
, could be explained as the upper bound of the 

generalization gap between ( )inE g
 
and ( )outE g . The details of the VC dimension 

dvc are beyond the scope of this tutorial, while we can think of it as the power of 

models. For example, nonlinear classifiers have higher VC dimension than linear 

classifiers because they could generate more flexible classification boundaries and 

achieve lower in-sample error rates. The VC bound is also called the “generalization 

error or performance”, which emphasizes more on how the learned properties perform 

on the test set. Sometimes, these two terms are just referred to the generalization gap, 

while in this thesis, we prefer the first version.  

 Given a training set (N and d fixed), the general relations between the VC 

dimension and terms in the VC bound are formulated as follows: 

 ( )VC ind E g 
 
  (11) 
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 ( log ) .VC
VC

d
d O N

N
   (12) 

From the VC bound, we know that the desired quantity to be minimized, ( )outE g , is 

dependent on both the terms in (11), (12), which means even ( )inE g is small, an 

additional term ( log )VCd
O N

N
should also be kept small to ensure a small bound of 

( )outE g . Unfortunately, by changing the elements (hypothesis sets, objective 

functions, and the optimization methods) in learning structures as well as changing

VCd to reduce one term in the VC bound, the other term will increase, and we don’t 

know how ( )inE g will vary. 

 In addition to VCd , which strongly depends on the selected model, ( )inE g and 

( log )VCd
O N

N
are also affected by the training set characteristics, such as N and d: 

 ( log )VCd
N O N

N
   (13) 

 ( log )VC
VC

d
d d O N

N
    (14) 

 ( )VC ind d E g    (15) 

, where d is the dimensionality of feature vectors. The more samples the training set 

contains, the higher credibility the properties learned from it. Besides, the feature 

dimensionality has some positive connection with the VC dimension VCd . Different 

feature dimensionalities will result in hypothesis sets with different dimensionalities 

or numbers of parameters, which indicates the change in model complexity. So when 

d increases, ( )inE g decreases, while ( log )VCd
O N

N
will become larger. Later some 

illustrations are shown to give the readers more details. 

 

4.2 Three Learning Effects 

 In Table 1, based on a specific model and a given training set, the concept of 

minimizing the objective function by g in the learning process and its relation to

( )outE g is presented. And in this subsection, we will change the elements in the 

learning structure and see how it works on ( )outE g . Besides, the connection between 

the training set characteristics and ( )outE g will also be discussed. 

 There are three general effects based on either the VC dimension VCd or the 

training set characteristics (ex. N and d): over-fitting versus under-fitting, bias versus 
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variance, and the learning curve. 

 

 Over-fitting versus under-fitting (fixed N): As shown in Fig. 14, this effect 

illustrates the relation between VCd , model complexity, ( )inE g , and ( )outE g . 

Given a training set, if a too-easy model is used for learning, then both ( )inE g

and ( )outE g will be really high, which is called “under-fitting”. On the other hand, 

if a over-complicated model is exploited, although a really small ( )inE g could 

probably be achieved, ( )outE g will still be high due to a large ( log )VCd
O N

N
, 

which is called “over-fitting”. Based on this effect and observation, selecting a 

suitable model as well as a moderate VCd plays an important role in machine 

learning. The VC dimension VCd could be controlled by the type of hypothesis set, 

the objective function, and the feature dimensionality. Although the feature 

dimensionality d is given by the training set, several operations could be 

performed to reduce or increase it when feeding the training set into the learning 

structure (which will be further discussed in later sections). 

 

Fig. 14 The under-fitting versus over-fitting effect. 

 

 Bias versus variance (fixed N): As shown in Fig. 15, the bias versus variance 

effect has a similar curve as the under-fitting versus over-fitting curve shown in 
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Fig. 14, while the explanation is different and it focuses more on statistics and 

regression analysis. Bias means the ability to fit the training set (the smaller the 

better), where stronger assumptions on the training set will result in a larger bias. 

For example, the bias of using linear classifiers is bigger than the bias of using 

nonlinear classifiers, because the set of nonlinear classifiers contains the set of 

linear classifiers and seems to be more general. On the other hand, the variance 

term means the variation of the final hypotheses when different training sets 

coming from the same universal set are given. 

 Now let me take a revisiting to the Hoeffding inequality and the VC bound 

mentioned in (1) and (10). The readers may have questions why there is a 

“probability” term in these two inequalities, and the reason comes from the 

quality of the training set. The desired goal of machine learning is to find the 

properties of the universal set, while the only thing we observe during learning is 

the training set. There exists an uncertainty that how representative the training 

set is for the universal set, and the probability term stands for the chance that a 

poor training set is observed. 

 

 

Fig. 15 The bias versus variance effect. 

 

 As the definitions of bias and variance go, a low bias model has strong 

abilities to fit the training set and reach low ( )inE g as mentioned in (2) and (6). If 

the training set is representative, the final hypothesis g will be really closed to 

the target function f, while if the training set is poor, g can be really dissimilar 
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from f. These effects result in a large variance for a low bias model. In contrary, a 

high bias model has poor abilities to fit the training data, while the variance 

among the final hypotheses based on different training sets is small due to 

limited variation in the hypothesis sets. For statisticians and regression analysis, 

the balance between bias and variance is the key to judge the learning 

performance, and the relationship between VCd and the bias versus variance effect 

is illustrated in Fig. 15. Although the shape of bias and variance looks really 

similar to ( )inE g and ( log )VCd
O N

N
, there is no strong yet direct relationship 

among them. 

 

 

Fig. 16 The learning curve effect. 

 

 If we focus on the learning performance at a single sample x which is not 

necessary in the training set X, and assume that the universal set is a probability 

distribution where each possible feature vector is mapped to each possible label 

through a target probability distribution ( | )f y x (frequently used in regression 

analysis), then the equation combining bias and variance can be formulated as 

below: 
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2

2

2 2

2

2 2

( ( ))

( ( ) ( ) ( ))

( ( )) ( ( ) ( ))

var( ) ( ( ) [ ( )] [ ( )] ( ))

var( ) ( ( ) [ ( )]) ( [ ( )] ( ))

va

X f

X f f f

X f f f f

X f X X

X f X X X

E E y g

E E y E y E y g

E E y E y E E y g

E y E y E g E g g

y E E y E g E E g g

    

       

           

      

          



x

x

x

x x x

x x x

2r( ) ( ( ) [ ( )]) var( ( ))

var( ) bias( ( )) var( ( )) 

f Xy E y E g g

y g g

  

  

x x

x x

 (16) 

, where
fE means the expectation over the target distribution given x, and XE is 

the expectation over all possible training set (maybe poor or representative). The 

first term in the last row shows the intrinsic data variation coming from the target 

distribution f, and the two following terms stand for the bias and variance of the 

selected hypothesis set as well the objective function. 

 

 Learning curve (fixed VCd ): The learning curve shown in Fig. 16 looks very 

different from the previous two figures, and the relationship considering in this 

effect is between the VC bound and the training set size N. As mentioned earlier 

in (13), when N increases, ( log )VCd
O N

N
decreases, and the learning curve 

mentioned here will show how N affects ( )inE g and ( )outE g . When the data size is 

very small, a selected model has the chance to achieve extremely low ( )inE g , for 

example, if only two different 2-D features are included in the training set, then 

no matter what their labels are, linear classifiers could attain ( ) 0inE g  . While 

with N increasing, there will be more and more training samples that the selected 

model can’t handle and results in wrong predictions. But surprisingly, the 

increasing speed of ( )inE g is lower than the decreasing speed of generalization 

gap along N, which means increasing N generally improve the learning 

performance. 

 

To summarize the three effects introduced above, we found that the selection of model 

is one of the most important parts in machine learning. A suitable model not only 

reaches an acceptable ( )inE g but also limits the generalization gap as well as 

( log )VCd
O N

N
. An over-complicated model with an extremely low ( )inE g may cause 



29 

 

“over-fitting” effect while a too-easy model with an extremely small ( log )VCd
O N

N
 

may result in “under-fitting” effect. These two cases both degrade the learning 

performance ( )outE g . Besides, when the model and feature dimensionality are fixed, 

increasing the size of the training set generally improves ( )outE g . Furthermore, when 

judging if a model is complicated or not for a given problem, not only VCd but also N 

should be considered. Table 5 lists these important concepts based on VC bound. 

 Now we revise the learning process to a more generalized procedure. As 

summarized in Table 1, given a fixed model with its fixed VCd , the objective function 

is minimized over the training set and the attained final hypothesis g is expected to 

induce low ( )outE g through the VC bound relationship and used for further application. 

And if there are many possible models and a fixed training set at hand, “model 

selection” is a necessary and important step during learning, which aims at searching 

the best model with the lowest generalization error. To be noticed, we cannot 

perform model selection based on ( )inE g or ( )appE g , because now each model has its 

specific VCd . Unfortunately again, the only term we can measure during learning is

( )inE g , with the test set preserved and ( log )VCd
O N

N
nearly unachievable (just as the 

upper bound and VCd is usually hard to define). In fact, ( log )VCd
O N

N
often serves as a 

theoretical adjustment and is used just as a guideline in model selection. Furthermore, 

not only the VC dimension affects the performance of learning, but different 

hypothesis types and different objective functions having their specific learning 

properties would discover various aspects of knowledge and result in different 

performances for the given problem, even if they are of the same VC dimension

VCd . According to these diversities of models, a more practical method for selecting 

suitable models is of high demand. In the next two subsections, several popular 

methods for generating model diversities and performing model selection are 

introduced and discussed. 

 

Table 5 Important concepts based on VC bound 

Problem Modification 

( )inE g
 

is high 
VCd   

small ( )inE g , high ( log )VCd
O N

N
 VCd  or N   
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Practical usage of VCd for a given N 

 To maintain a same ( log )VCd
O N

N
,when 

VCd increases, N also increases. 

 10 VCN d
 
usually performs well 

 

4.3 Feature Transform 

 Before further introduction, we expect the readers to catch the meaning, why we 

need model selection. As a matter of fact in classification, unless there is a feature 

vector mapping to more than one label in the training set, we can always find a 

machine learning structure to achieve ( ) 0inE g  , such as the well-known decision 

trees. While, with a probably uncontrolled ( log )VCd
O N

N
, there is no guarantee that 

this model could bring a low ( )outE g . 

 As mentioned in the previous subsection, given a training set, we are willing to 

find the model which could extract important knowledge, avoids over-fitting and 

under-fitting, and results in the best learning performance for the ongoing problem. 

Afore model selection, we need to know how achieve different models as well as 

different model complexities. There are generally three methods to reaches this goal: 

 

 Hypothesis set types and objective functions (Type I): Different hypothesis set 

types (ex. KNN, decision trees, and linear classifiers) result in different models. 

Furthermore, even in the same class such as linear classifiers, different objective 

functions (ex. square error and hinge loss) come up with different learning 

performances. 

 

 Model parameter (Type II): Even under the same hypothesis set type and 

objective function, there are still some free parameters to adjust the hypothesis 

set. For example, in KNN (K-nearest neighbors), different selections of K may 

result in different learning performances. The use of SVM and multi-layer 

perceptron also requires users to set some parameters before execution. 

Generally, these parameters have connections with model complexity and VCd . 

 

 Feature transform (Type III): The last but not the least, changing the 

dimensionality of feature vectors will result in different VCd of the model. There 

are a bunch of methods to modify the feature vector dimensionality, and the 

general framework is formulated by basis functions: 
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 1 2( ) [ ( ), ( ),......, ( )]T

d  


 x x x x  (17) 

, where ( ) x denotes a feature transform consist of a set of basis functions 

1{ ( )} , ( ) :
d d

j j j R R 

 x x x . For example, the 2
nd

-order (quadratic) transform 

performed on a 2-dimensional input can be modeled as: 

 

 2 2

2 1 2 1 1 2 2( ) [1, , , , , ]Tx x x x x x x  (18) 

, where the added “1” is for offset when using linear classifiers as in (7). Table 6 

and Table 7 list several useful feature transforms and their definitions, and as you 

can see, we can always perform feature transform before feeding feature vectors 

into the learning machine. In addition to these kinds of “geometry- or 

mathematics-driven” feature transforms, there are also “data-driven” feature 

transforms defining their basis functions form learning (ex. PCA and LDA) and 

“knowledge-driven” feature transforms based on the characteristics of problems 

(ex. DCT and DFT). We will mention these transforms in later sections. 

 

Based on these three methods for achieving different models as well as different 

model complexities, now we can generate several models and perform model 

selection to choose the best model among them. 

 

Table 6 The definition of feature transform and its usage 

Definition 

: ddR R  x  

1 2( ) [ ( ), ( ),......, ( )]T

d  


 x x x x  

Usage 

 

Change the dimensionality of feature vectors to result in different VCd , 

which will affect both ( )inE g
 
and ( log )VCd

O N
N

. 

Example Linear classifier: ( ) ( )

1

( ( )) ( ( )) ( ( ))
d

n T n

i i

i

h sign sign w




    x w x x  

 

Table 7 Useful feature transforms on a 2-dimensional feature vector, which could be 

further extended in to arbitrary dimensionality 

Feature transform The transform formula 
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Decision stump ( ) [1, ] ,  where 1T

S jx j d   x  

1
st
-order 1 1 2( ) [1, , ]Tx x x  

2
nd

-order (quadratic) 
2 2

2 1 2 1 1 2 2( ) [1, , , , , ]Tx x x x x x x  

3
rd

-order (cubic) 
2 2 3 2 2 3

3 1 2 1 1 2 2 1 1 2 1 2 2( ) [1, , , , , , , , , ]Tx x x x x x x x x x x x x  

 

 

4.4 Model Selection 

 Model selection is performed to find the best model which could extract 

important knowledge, avoids over-fitting and under-fitting, and results in the best 

learning performance for the ongoing problem. There are generally two popular 

methods toward this goal: regularization and validation [8]. 

 

 Regularization: Regularization is performed to balance ( )inE g
 
and model 

complexity. In the previous two subsections, VCd
 
is defined over the hypothesis 

set and objective function for model complexity measurement. As a matter of 

fact, each hypothesis has its own hypothesis complexity and classification power. 

For example, a nonlinear hypothesis set (used in nonlinear classifiers) contains 

the linear hypothesis as a subset, which means we can also find a linear 

separating boundary (hyperplane) based on the nonlinear classifiers. From the 

perspective of machine learning, a nonlinear boundary (ex. curves or circles) has 

higher classification power, higher complexity, while higher risk of over-fitting 

than a line boundary. To search the hypothesis which minimizes inE
 
(or 

appE ) 

and the hypothesis complexity jointly, the regularization method is introduced 

and formulated as: 

 

 ( ) ( ) ( )obj appE h E h h   (19) 

, where the ( )h  term is used to penalty hypothesis h with higher complexity 

and ( )objE h
 
denotes the objective function to be minimized. As introduced in 

Section 3.4, the objective function is composed of a loss function as well as other 
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pursuits, such as the penalty function ( )h , and the approximation functions 

introduced in Section 3.5 are indeed loss functions because they are defined for 

measuring classification error of the training set. In fact, regularization searches 

the best hypothesis insides a hypothesis set, not among several hypothesis sets. 

Several widely used penalty functions and the corresponding objective functions 

are list in Table 8, where is the model parameter (Type II defined in Section 3.3) 

used to balance classification error of the training set and the penalty term. The 

reason why “objective function could affect model complexity as well as VCd “ is 

because the penalty function introduced inside has abilities to control them. 

 

Table 8 Several widely used penalty functions in machine learning 

Penalty function name The formula 

Hard limitation ( 0L ) 
( ) ( ) 0obj app i

i

E h E h w    

1L minimization 
( ) ( )obj app i

i

E h E h w    

2L minimization 
21

( ) ( )
2

obj app i

i

E h E h w    

 

Table 9 The general validation procedure in practice 

Before 

learning 

(1) M different models:
1{ , }M

m m mH A 
 

(2) A training set: train base val 
  

(for base and validation) 

(3) ( ) ( , )m

obj baseE is the objective function of model m measured on base  

(4) ( )ValE is the classification error measured on val  

Training 

for 1:m M  

    find ( )arg min ( , )
m

m

m obj m base
h

g E h  

end 

(Find the final hypothesis for each model m) 

Validation 

Find the model l that arg min ( )Val m
m

l E g   

(Run these M final hypotheses on the validation set, and select the model 

with the lowest validation error.)   
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Retrain 
find ( )arg min ( , )

l

l

l obj l train
h

g E h , and used it for prediction 

(Retrain the selected model on the whole training set) 

 

 Validation: In contrast to regularization, validation does select model from 

different hypothesis sets and different objective functions. Indeed, we can view a 

hypothesis set with different model parameter   as different models in 

validation. The validation exploits the idea of finding the best model based on

( )outE g , where the training set is separated into a “base set” and a “validation set” 

(The base set contains N-K samples and the validation set contains K samples). 

During learning, each model is only trained on the base set to find its final 

hypothesis g, and these fixed final hypotheses are further tested on the validation  

Table 10 Different kinds of validation strategies 

Validation type The formula 

One-shot As mentioned in Table 9 

Multi-shot 

for 1:v V  

(a) randomly generate base and val  

(b) perform the training step as in Table 9 

(c) record ( , )Val mE g v , where ( , )Val mE g v defines the validation 

error of model m in round v 

end 

Find the model l that, 
1

1
arg min ( , )

V

Val m
m

v

l E g v
V 

  , then retrain 

Cross 

Uniformly cut train  
into V folds (3 10V  in practice, a 5-fold 

CV is also called a 4-1 fold CV) 

for 1:v V  

(a) the fold v as the validation set and the others as the base set 

(b) perform steps 2 and 3 in the for loop of the multi-shot 

validation 

end 

Find the model l that, 
1

1
arg min ( , )

V

Val m
m

v

l E g v
V 

  , then retrain 

Leave-one-out 

for 1:n N  

(a) Use sample n as the validation set and the others N-1 

samples as the base set 

(b) perform steps 2 and 3 in the for loop of the multi-shot 
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validation 

end 

Find the model l that, 
1

1
arg min ( , )

N

Val m
m

n

l E g n
N 

  , then retrain 

 

set. The model with the best g (achieving the lowest classification error ( )ValE g ) is 

selected as the winner model for the ongoing problem and expected to perform well 

on unseen data. Table 9 describes this procedure in more detailed. There are generally 

four kinds of validation strategies: One shot validation, multi-shot validation, cross 

validation (CV), and leave-one-out (LOO) validation, as listed in Table 10. Besides 

the LOO and the cross validation, the other two strategies have

" (10% ~ 40%) "K N  in practice. The availability of validation is based on some 

theoretical proofs, which is beyond the scope of this thesis. In recent pattern 

recognition researches, validation is the most popular methods for performance 

comparison. 

 

4.5 Three Learning Principles 

 From the previous two subsections, how to generate several models and select 

the best one among them are discussed, and in this subsection, three principles that the 

machine learning users should keep in mind in order to prevent poor performance are 

introduced: 

 

 Occam’s razor: The simplest model that fits the data is also the most plausible, 

which means if two models could achieve the same expected ( )inE g , then the 

simpler one is the suitable model.  

 

 Sampling bias: If the sampling data is sampled in a biased way, then learning 

will produce a similarly biased outcome. For example, if an examination of  

              “how Internet affects your life?”             

is performed on-line, the statistical result has risk to over-estimate the goodness 

of Internet because people who don’t like to use Internet are likely to miss this 

test. 

 

 Data snooping: If a data set has affected any step in the learning process, it 

cannot be fully trusted in assessing the outcome. During learning, the hypothesis 

g which best fits the training data through minimizing the objective function is 
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selected, and during testing, we test how this learned hypothesis could be 

generalized in the test data. The reason why there exists a generalization gap is 

because the learned hypothesis g is biased by and may over-fit to the training 

data. But if a data set both affects the learning and test phase, we cannot 

correctly detect the generalization gap and will over-estimate the performance of 

the model. 

 

4.6 Practical Usage: The First Glance 

 In this subsection, we take a first glance on some issues in practical usage, 

especially for dataset processing. As mentioned in the before sections, we make no 

assumption if the training data is sampled from the universal set with or without noise, 

while in practical case, noise can be easily generated during the data acquisition 

process. When facing noisy data, some preprocessing steps such as noise reduction 

and outlier deletion are required to perform [16], and these steps are often designed 

according to the domain knowledge. Besides, the regularization process is 

experimented to find a suitable final hypothesis g in noisy data which has better 

generalization performance than just minimizing the loss function. The reason is that 

a more complicated hypothesis or model has higher ability to fit not only the training 

data but also the noise, so a penalty term on the hypothesis complexity could guide 

the learning algorithm to find the final hypothesis g with less possibility to over-fit the 

noise. 

 Another frequently faced problem is the missing of data [17], which means each 

d-dimensional feature vector in both training and test set may have several elements 

lost. This problem generally occurs in data collection process, especially when data 

comes from questionnaire or survey where people may ignore some questions they 

don’t want to answer. Some machine learning techniques are capable of dealing with 

this problem, for example, decision tree usually generates braches based on one 

feature element, so elements with missing values are prevented to be used when 

building a decision tree. Probabilistic graphical models [15] (a framework for 

generative models) can also handle this problem by viewing missing elements as 

unobserved values and perform learning and inference through marginalization over 

these elements. 

 For machine learning techniques which cannot work with missing data, data 

imputation [17] is necessary as a preprocessing step. Data imputation is to fill in these 

missing elements with values, and there are some simple methods such as filling in 

values with element means over the whole training set, finding the nearest neighbor in 
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the training set then fill in the missing elements with the corresponding values in this 

neighbor, and replacing missing elements with random values according to the 

distribution of these elements. In the missing data survey proposed by J. Schafer et al. 

[17], maximum likelihood (ML) and Bayesian multiple imputation (MI) are two 

highly recommended techniques towards this problem. 

 In recent machine learning competition such as KDD Cup 2009 [18], the 

provided data commonly contains high noise and a large portion of missing values. 

For extended understanding, the readers could referred to papers of KDD Cup 2009 

[19][20][21]. 

 

 

 

5. Techniques of Supervised Learning 

 The previous two sections see machine learning as a tool or a concept and 

discuss its categorization, basic ideas, effects, and some practical aspects, and from 

this section on, we start to introduce machine learning techniques, including 

supervised and unsupervised learning. Categorization will be defined for each 

learning task, and some outstanding or widely-used techniques are described in more 

details.  

 In this section, we focus on supervised learning. The overview and 

categorization are provided in Section 5.1, and later the linear models are described in 

more detailed in Section 5.2. In Section 5.3, a broad summary and conclusion is 

given. 

 

5.1 Supervised Learning Overview 

 In this thesis, four categories of supervised learning based on different 

hypothesis set types are considered, including linear models, non-parametric 

models, non- metric models and parametric models. This categorization method is 

also used in the book chapters of [8], while the order is permuted in this section. The 

aggregation method which aims at combining several models together can further 

improve the learning performance and has been widely applied in machine learning 

contests. To be noticed, many hypothesis types can handle both classification and 

regression problems, so we don’t separate these two tasks into two sections. The 

categorization strategy is described as below, and Table 11 lists the categorization as 

well as some important techniques of each category: 
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 Linear model: The classifier which can be formulated as: 

 
( )( )( ) ( )
nn Th signx w x , or (20) 

 ( ) ( )

1

( ( )) ( ( )) ( ( ))
d

n T n

i i

i

h sign sign w




    x w x x  (21) 

or built on blocks of these forms is categorized as a linear classifier, where w is 

a (d+1)-dimensional parameter vector
0 1[ , ,......, ]T

dw w ww ,

1 2[1, , ,......, ]T

dx x xx is the extended version of x also with (d+1) dimensions, 

and ( ) x stands for a feature transform consist of a set of basis functions 

1{ ( )} , ( ) :
d d

j j j R R 

 x x x . For regression problems, the (.)sign function is 

replaced by other continuous functions. 

 

 Parametric model: For clear description of the four categories, the parametric 

model is introduced before the other two methods. A model is called “parametric” 

as it is built on well-defined probabilistic distribution model, which means 

when the parameters of the distribution model is learned from the training set, 

we could discard the training set and only reserve these parameters for testing 

and prediction. Generally speaking, when the type of probabilistic model is set, 

no matter how many samples are in the training set, if the number of parameters 

(values the model needs to remember) doesn’t change, then the model is called a 

parametric model. 

 

 Non-parametric model: The non-parametric model is also built on the idea of 

probability. While compared to the parametric model, it makes no assumption on 

the density or distribution type of the training and universal set, but assumes that 

similar feature vectors have similar labels. Based on this idea, for a new coming 

feature sample, the model finds the similar feature samples (instances) in the 

training set using a suitable measure and interpolates from them to determine the 

final output label. In fact, there is nearly no learning process for non-parametric 

learning, and all the training set are preserved for prediction purpose, which 

means the number of values the model needs to remember depends on the 

number of training samples. Non-parametric model is also called instance-based, 

memory- based, or lazy learning method. 



39 

 

 

 Non-metric model: For the previous three categories, each element of feature 

vector is assumed to contain comparable information, for example, 10 is closer 

to 8 than to 2. While suppose a supervised learning problem involves nominal 

data, where features are discrete and without any natural notion of similarity 

metric or even ordering, the previous three methods might be out of function. 

For example, if a feature contains three kinds of possibilities, red, blue, and 

green, then there is merely no clear notion of similarity among them. For this 

nominal case, the non-metric model is a suitable choice for learning, which can 

depend or not depends on the feature metric to build the model.  

 

 Readers might also have questions on what the relationship between the one-shot 

/ two-stage strategies mentioned in Section 3.6 and the four categories defined in this 

section is. In Sec. 3.6, we discussed about what information a classifier (regressor) 

can provide as well as the optimization criteria during learning, while in this section, 

these four categories are defined based on their basic ideas on the hypothesis set types. 

Indeed, a linear classifier which is usually categorized as a one-shot method can also 

be modified into a probabilistic version based on some probabilistic model 

assumption, which means each category in this section may contains both one-shot 

and two-shot classifiers (regressors). As a consequence, the one-shot and two-shot 

strategies are not explicitly mentioned in this section. 

 

Table 11 Overview and categorization of supervised learning techniques 

Category Important methods 

Linear model 

 Perceptron, Multi-layer perceptron(MLP) 

 Support vector machine (SVM) (free on-line, LIBSVM) 

 Support vector regression (SVR) (LIBSVM) 

 Linear regressor, Rigid regression 

 Logistic regression (LIBLINEAR) 

Non-parametric 

model 

 K-nearest neighbors 

 Kernel density estimation 

 Kernel regression ,Local regression 

Non-metric model  Classification and regression tree (CART), decision tree 

Parametric model 

 Naïve Bayes 

 Gaussian discriminant analysis (GDA) (free on-line) 

 Hidden Markov models (HMM) 

 Probabilistic graphical models 
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Mixed method 

 Bagging (bootstrap + aggregation) 

 Adaboost 

 Random forest (code is available in Matlab2010) 

 

5.2 Linear Model (Numerical Functions) 

 As described in the previous subsection, a linear model could be characterized by 

the parametric vector w. And from Section 3.4 and 3.5, we have known that the 

original objective function for ERM learning strategy is to minimize the in-sample 

error of classification. Because it is a non-continuous function, several approximated 

loss functions are proposed to simplify the optimization procedure. In this subsection, 

we describe these approximated loss functions in more detailed and provide either 

pseudocode or useful toolbox of each method, including perceptron learning 

algorithm (PLA), Adaline, support vector machine (SVM). On the other hand, for 

regression problem, the most widely-used idea is the mean square error (MSE), and 

three popular regressors, linear regression, rigid regression, and support vector 

regression (SVR) are introduced. For convenience, the notation in 

錯誤! 找不到參照來源。 is preferred. Besides, in the classification case, only the 

two-class problem ( ( ) [ 1,1]ny   ) is discussed, and its extension to multi-class will be 

introduced at the end of this subsection. 

 

Table 12  The perceptron learning 

Presetting: 

 Training set: ( )

1{ }n d N

nX R  x , ( )

1{ }n N

nY y R   , ( ) [ 1,1]ny    

 The loss function of each training sample is       

    
 

( )( ) ( )
nn Ty sign w x    -> 1    

( )( ) ( )
nn Ty sign w x    -> 0   

 Preset (1)w , usually assume (d+1)-dimensional zero vector. 

 ( 1)th w
is the hypothesis with parameter vector ( 1)t w  

Learning: 
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( )( ) ( ) ( ) ( )

( )

( )( )

( 1)

( 1)

for 1:

        randomly pick a { , } where ( ) ( ( ) )

        ( 1) ( )

        if ( ) 0

                ,  break

        end

end

nn n n T n

t

nn

in t

t

t

y h sign t y

t t y

E h

g h





 

 

  





w

w

w

x x w x

w w x

 

  

5.2.1 Perceptron Learning Algorithm (PLA) - Classification 

 Given a two-class training set, the perceptron learning algorithm (PLA) directly 

seeks w that results in zero in-sample error without any approximation function. This 

algorithm is iteratively updating the parameter vector until zero in-sample error is 

achieved, and the pseudocode is provided in Table 12. 

If the training set is linear separable, this algorithm is proved to reach a w with 

zero in-sample error in limited iterations, while for non-linear-separable cases, PLA 

won’t converge and the updated hypothesis has no guarantee to reach lower in-sample 

error than the previous hypotheses. To solve this problem, a modified PLA algorithm 

called the pocket algorithm is proposed and summarized in Table 13. 

 

Table 13 The pocket algorithm 

Presetting: 

 The presetting of PLA in Table 12 is included 

 The maximum number of iterations T 

 A buffer * (1)w w  

Learning: 

Key process 
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*

*

( )( ) ( ) ( ) ( )

( )

( )( )

( 1)

*

for 1:

        randomly pick a { , } where ( ) ( ( ) )

        ( 1) ( )

        if ( ) ( )

                ( 1)

        end

        if ( ) 0

nn n n T n

t

nn

in t in

in

t T

y h sign t y

t t y

E h E h

t

E h





 

  



 



w

w w

w

x x w x

w w x

w w

*

 or 

                ,  break

        end

end

t T

g h




w

 

 

The pocket algorithm can find the best hypothesis which reaches the minimum 

in-sample error in T iterations, while for a non-linear-separable training set, there is no 

guarantee that within how large T a plausibly low in-sample error could be achieved. 

Besides, because linear classifiers can only generate linear classification boundaries, 

the pocket algorithm still cannot solve non-linear-separable training set very well, 

especially when the class boundary of the training set is far away from a line. To solve 

this problem, we show in the next subsection that performing feature transform can 

make the linear classifier available for non-linear boundary cases. 

 

5.2.2 From Linear to Nonlinear 

 As mentioned in Section 4.3, the feature transform shown as below can change 

the input dimensionality d into d : 

 1 2( ) [ ( ), ( ),......, ( )] .T

d  


 x x x x  (22) 

Based on this transformed feature vectors, a linear classifier with d -dimensional 

parameter vector w can be trained using the same learning algorithm. The feature 

transform provides the ability that a non-linear-separable training set in the original 

d-dimensional feature space may become a linear-separable training set in the 

transformed d -dimensional feature space. Then, a linear classifier trained in the 

transformed feature space could find the perfect separating boundary. In Fig. 17, a 

training set that can be separated by a circle 2 2

1 2 1x x 
 
is presented. If the linear 

classifier is performed without feature transform, the achieved final hypothesis 

1 2( 0)sign x x  (gray dotted line) seems far away from the separating boundary. Now 

Extra process 
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with the 2
nd

-order feature transform introduced in Table 7: 

 2 2

2 1 2 1 1 2 2( ) [1, , , , , ]Tx x x x x x x  (23) 

, the final hypothesis with  1 0 0 -1 0 -1=w (black dotted line) could be achieved by 

PLA, which reaches zero in-sample error. 

 

 

Fig. 17 A non-linear separable training set which could be separated by a linear 

classifier with feature transform. The gray dotted line is the achieved classifier with 

no feature transform (1
st
-order), while the black dotted line is the one with the 

2
nd

-order feature transform. 

 

 The feature transform does bring linear classifiers into nonlinear-separable cases, 

while what feature transform should be used is yet a problem. A higher-order feature 

transform has a bigger chance to achieve linear-separable boundary, while it may 

cause over-fitting problem. On the other hand, if the transformed training set is still 

not linear-separable, the pocket algorithm has no guarantee to achieve a plausibly low 

in-sample error in T iterations because the updating rule of PLA doesn’t ensure 

monotonic decreasing of in-sample error. In order to speed-up the learning of linear 

classifiers and confirm its stability, modification on the non-continuous objective 

function to make other optimization methods available is required. 

 

Table 14 The Adaline algorithm 

Presetting: 

 Training set: ( )

1{ }n d N

nX R  x , ( )

1{ }n N

nY y R   , ( ) [ 1,1]ny    

 The loss function of a sample is shown in (24), and the objective function of the 
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training set is defined as:
( ) ( )( ) 2 ( )

1

1
( ) ( ) ( ) 1

N
n nn T n T

app

n

E h y y
N 

  w w x w x  

 Preset (1)w , usually assume (d+1)-dimensional zero vector. 

 The maximum number of iterations T 

 Preset the learning step  , ex. 0.01   

Learning: 

( ) ( )

( )( )

( ) ( )( )

( 1)

for 1:

        randomly pick a { , }

        if ( ( ) ) 1

                ( 1) ( ) ( ( ) )

        end

end

n n

nn T

n nn T

T

t T

y

y t

t t y t

g h









   

 w

x

w x

w w w x x

 

(The learning process is derived from Fig. 12 and Table 16) 

 

5.2.3 Adaptive Perceptron Learning Algorithm- Classification 

  From this subsection on, several approximated loss functions as well as their 

optimization procedures and methods will be introduced. The first approximated loss 

function is a variant of the so-called Adaline (Adaptive linear neuron) algorithm for 

perceptron learning. The loss function of each sample is modified as: 

 

 

( ) ( )( ) 2 ( )
( ) ( ) ,  if ( ) 1

( )
0,  otherwise

n nn T n T
n y y

loss h
  

 


w

w x w x
 (24) 

, which is both continuous and differential at any w with a given data pair, so 

Table 15 Concept of gradient descent 

Presetting: 

 Assume a function ( )E w is to be minimized, w is k-dimensional 

 * arg( ( ) 0)E  w w is a solution while sometimes hard to compute due to 

coupling across parameters and a large summation caused by the training set 

size. 

 Assume now we are at 0w w , and we want to take a small modificationw , 

which makes 0 0( ) ( )E E w + w w , then Taylor’s expansion can be applied.  

Taylor’s expansion: 
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20
0 0 0

0 0 0 0

1

"( )
scalar : ( ) ( ) '( ) . .  (high order terms)

2!

1
vector : ( ) ( ) ( ) ( ) . .

2!

( )

               , where ( ) is the Jacobian matrix: ( ) ( )     

T T

E w
w E w w E w E w w w H O T

E E J H H O T

E

w

J J E

      

       





  



+

w w + w w w w w w w

w

w w w

( )

k

E

w

 
 
 
 
 
 
  

w

 

2 2

1 1 1

2

2 2

1

( ) ( )

               , and ( ) is the Hessian matrix: ( ) ( )

( ) ( )

In machine learning, the H.O.T is often discarded.

k

k k k

E E

w w w w

H H E

E E

w w w w

  
 
   

 
   
 
  
     

w w

w w w

w w

Concepts of gradient descent: 

0 0 0

*

0 0 0

* 0
0

0

* *

0 0 0

keep the first two terms: ( ) ( ) ( )

arg min ( ) arg min ( ) ( )

( )
( ),   is set as a small constant for convenience

( )

( ) ( ) ( ) (

E E E

E E E

E
E

E

E E E E

 

  



   

   

     


     



       

w w

w + w w w w

w w + w w w w

w
w w

w

w + w w w w
2

0

( ) ( )

0 0 0

)

( )new old E  

w

w w w

 

 

 

 

 

Table 16 gradient descent and stochastic gradient descent 

Presetting: 

 Assume a function ( )

1

1
( ) ( )

N
n

n

E loss
N 

 w w is to be minimized. 

 Preset (1)w , usually assume (d+1)-dimensional zero vector. 

 The maximum number of iterations T 

 Preset the learning step , ex. 0.01   

Algorithm of gradient descent (GD): 
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( )

1

for 1:

        ( 1) ( ) ( ( )) ( ) ( ( ))

end

( 1)

N
n

n

t T

t t E t t loss t

g T

 




      

 

w w w w w

w

 

Algorithm of stochastic gradient descent (SGD): 

*

( ) ( )

1

*

( )

( 1)

1
( ) ( ) [ ( )]

for 1:

        randomly choose a 

        ( 1) ( ) ( ( ))

end

N
n n

n

n

T

E loss E loss
N

t T

n

t t loss t

g h







 



   





w

w w w

w w w

 

(SGD only perform GD on one sample each time, and perform iteratively.) 

  

differentiation- based optimization methods are available now. Adaline uses stochastic 

gradient descent (SGD) to search the best hypothesis which minimizes the objective 

function (without any penalty term). In Table 14, the pseudocode of Adaline algorithm 

is presented, and in Adaptive Perceptron Learning Algorithm- Classification 
  From this subsection on, several approximated loss functions as well as their 

optimization procedures and methods will be introduced. The first approximated loss 

function is a variant of the so-called Adaline (Adaptive linear neuron) algorithm for 

perceptron learning. The loss function of each sample is modified as: 

 

 

( ) ( )( ) 2 ( )
( ) ( ) ,  if ( ) 1

( )
0,  otherwise

n nn T n T
n y y

loss h
  

 


w

w x w x
 (24) 

, which is both continuous and differential at any w with a given data pair, so 

Table 15 and , both the Adaline algorithm and SGD are described in detailed.  

From these tables, the mechanism of using gradient descent for optimization is 

presented. There are several adjustable items of gradient descent algorithm, such as 

the learning step and the number of iterations T. The learning step should be kept 

small to fit the requirement of Taylor’s expansion. A too small learning step takes 

more number of iterations towards convergence. On the other hand, a large learning 

step may spend less number of iterations to converge, while it has chances to diverge 

out or reach a wrong solution. The number of iterations can be defined before or 
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during learning, where the modification between ( 1)t w and ( )tw is used as a measure 

of convergence, and generally, SGD takes more iteration than GD towards 

convergence. 

 GD, SGD, and * arg( ( ) 0)E  w w are searching for the “local minima" of ( )E w , 

which means the achieved final hypothesis g may not actually minimizes the objective 

function. While if ( )E w is a convex function of w , then any local minima of ( )E w is 

exactly the global minima of ( )E w . The definition of convexity can be referred to the 

textbook written by S. Boyd et al. [22]. In fact, the stochastic gradient descent can’t 

even achieve the local minima, but vibrates around it after a number of iterations. 

 Adaline provides a much stable learning algorithm than PLA. Although the 

function minimized by Adaline is just an approximated loss function, not directly the 

in-sample error of the ERM strategy, the in-sample error resulting from the final 

hypothesis g is usually not far away from the minimum value. 

 

5.2.4 Linear Regressor-Regression 

 As mentioned in Section 5.2, the linear model for classification can also be used 

for regression by replacing the binary (.)sign function in (20) and (21) into some 

continuous functions, and the simplest choice is the identity function ( )f x x . By 

doing so, the linear regressor is formulized as: 

 
( )( )( ) .
nn Th x w x  (25) 

After achieving the regression model, we also need to define the objective function 

and optimization method for training. As mentioned in Section 3.4, the most 

widely-used criterion for regression is to minimize the root mean square error 

(RMSE):   

 
22 ( )( ) ( ) ( )

1 1

1 1
( ) ( ) .

N N
nn n n T

n n

E h y h y
N N 

    x w x  (26) 

This equation is definitely continuous and differentiable, so gradient descent or 

stochastic gradient descent can be applied for optimization. Furthermore, because 

2
( )( ) nn Ty w x is a convex function on w and the positive weighted summation of a set 

of convex functions is still convex [22], the final solution provided by gradient 

descent is a global minimum solution (or very close to the global minima due to the 

iteration limitation). 

 Besides applying the general differentiation optimization methods, there exists a 

closed form solution for linear regressors with the RMSE criterion. This closed form 
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solution is quite general, which can be applied not only for linear regressors but also 

for many optimization problems with the RMSE criterion. In Table 17, we summarize 

this formulation. To be noticed, for linear regressors with other kinds of objective 

functions, this closed form solution may not exist. To get more understanding on 

linear regression and other kinds of objective functions, the textbook [16] is 

recommended. 

 

Table 17 The closed form solution for linear regression with the RMSE criterion 

Presetting: 

 A function
22 ( )( ) ( ) ( )

1 1

1 1
( ) ( )

N N
nn n n T

n n

E h y h y
N N 

    x w x is to be minimized. 

 * arg( ( ) 0)E h  ww
 
is the global optimal solution. 

Closed form solution and its justification: 

 

  
2

( )( )

1

1 1

1
                                2

N
Tnn T T T

n

TT T T T

y Y X Y X
N N

YY XY X X
N



   

  

 w x w w

w w w

 

 
1

2 2 2( )
T TT T T T TYY XY X X XY X X

N

 
      

 
w w w w w  

 * *2 2( ) 0  ( ) ,  where  is 
T T TT TXY X X X X XY X X d d     w w  

 If
T

X X is nonsingular (when N d , it is usually the case), * 1( ) .
T TX X XYw  

 If
T

X X is singular, other treatments like pseudo-inverse or SVD can be applied. 

 

5.2.5 Rigid Regression-Regression 

 Linear regressors with the RMSE criterion directly minimize the in-sample 

RMSE. While in some situations such as high noise in the data or a small sample size, 

they may suffer from over-fitting and result in poor out-of-sample performances. To 

deal with this problem, the concept of regularization introduced in Section 4.4 can be 

applied. In general, linear regression with 1L regularization is called Lasso regression 

[16], and linear regression with 2L regularization is called rigid regression. Lasso 

regression has the property to find a sparse *w and can be optimized through linear 

programming, while in this subsection we mainly focus on rigid regression. 
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 The formulation of rigid regression is as follows: 

 
2 2( )( )

1

1 1
( )

2

N
nn T

i

n i

E h y w
N




   w x  (27) 

, where is a tradeoff term between the loss function and the penalty function. The 

penalty term penalizes w with large components, and the algorithm of rigid regression 

is summarized in Table 18. 

 

Table 18 The rigid regression algorithm 

Presetting: 

 A function
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5.2.6 Support Vector Machine (SVM) and Regression (SVR) 

 Support vector machine (SVM) which combines the 2L regularized term as well 

as the hinge loss function has attracts a significant amount of attention during the past 

ten years. In many classification and recognition problems, SVM now become the 

baseline for performance comparison. From the geometrical perspective, SVM tends 

to find the separating hyperplane that has the largest margin to the nearest positive 

and negative samples, which gives a unique final hypothesis against the traditional 

perceptron learning algorithm. And from the theoretical perspective, SVM searches 

the final hypothesis in a much smaller hypothesis set due to the regularized term. With 

the help of feature transform, SVM can achieve a nonlinear separating hyperplane. 

 The original form of SVM aims at finding a separating hyperplane that not only 
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achieve zero in-sample error but also results in the largest margin, which is usually 

called the hard-margin SVM. While the error-free constraint often results in a much 

complicated hyperplane and may over-fit the training data, especially when noise 

occurs. To deal with this problem, slack variables are introduced to release the 

error-free constraint. This modification results in a more complicated objective 

function of SVM, but bring a smoother separating hyperplane and makes the training 

of SVM more robust to outliers and noise. This type of SVM is usually called the 

soft-margin SVM.  

 The objective function of SVM can be modeled as a quadratic programming 

problem or a constraint quadratic problem (primal form), where the computational 

time is based on the number of features. So when the feature transform is performed, 

SVM takes more time for training. While with the dual modification, SVM can be 

modeled as another constraint quadratic problem whose computational time is based 

on the number of samples, and the feature transform can be embedded in a more 

efficient form called the kernel trick. Through the dual modification and kernel trick, 

complicated feature transforms can be performed on SVM while the computational 

time won’t increase explicitly. In addition, with the large margin concept (regularized 

term), SVM has lower risk to suffer from over-fitting even with a complicated feature 

transform. 

 The idea of kernel trick, large margin, and dual modification can be extended to 

other problems, such as regression and density estimation. The support vector 

regression (SVR) which combines the 2L regularized term and the 1L loss function (also 

called -sensitive loss function) is a successive example. The LIBSVM [23] developed 

by C. Chang and C. Lin which exploits sequential minimal optimization (SMO) 

[24][25] for fast optimization is an efficient and easily-used toolbox for SVM and 

SVR training, and can be downloaded freely for academic usage. 

 

5.2.7 Extension to Multi-Class Problems 

 In previous subsections, linear classifiers are defined only for binary 

classification problems. And in this subsection, we introduce two methods to extend 

binary classifiers into multi-class classifiers: one-versus-one (OVO) and 

one-versus-all (OVA) [26]. 

 

 One-versus-one (OVO): Assume that there are totally c classes. OVO builds a 

binary classifier for each pair of classes, which means totally ( 1) / 2c c binary 

classifiers are built. When given an input sample x, each classifier predicts a 
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possible class label, and the final predicted label is the one with the most votes 

among all ( 1) / 2c c classifiers. 

 

 One-versus-all (OVA): OVA build a binary classifier for each class (positive) 

against all other classes (negative), which means totally c binary classifiers are 

built. When given an input sample x, the class label corresponded to the 

classifier which gives a positive decision on x is selected as the final predicted 

label. 

 

 In general, the OVA method suffers from two problems. The first problem is that 

there may be more than one positive class or no positive class, and the second one is 

the unbalance problem. The unbalance problem means the number of positive training 

samples is either much larger or smaller than the number of negative training samples. 

In this condition, the trained classifier will tend to always predict the class with more 

training samples and lead to poor performances for unseen samples. For example, if 

there are 100 positive training samples and 9900 negative samples, always predicting 

the negative class could simply results in a 0.01 in-sample error. Although the OVO 

method doesn’t suffer from these problems, it needs to build more binary classifiers 

( ( 1) / 2c times more) than the OVA method, which is of highly computational cost 

especially when c is large. 

 There are also other methods to extend binary linear classifiers into multi-class 

linear classifiers, either based on a similar concept of OVO and OVA or from 

theoretical modifications. And for non-metric, non-parametric, and parametric models, 

multi-class classifiers are usually embedded in the basic formulation without extra 

modifications. 

 

5.3 Conclusion and Summary 

 In this section, we give an overview of supervised learning techniques. Generally, 

supervised learning techniques can be categorized into linear models, parametric 

models, nonparametric models, and non-metric models, and the aggregation methods 

that combine several classifiers or regressors together usually improve the learning 

performance. The linear model is probably the most fundamental while powerful 

supervised learning technique, and several techniques as well as their optimization 

methods are introduced and listed in this section. At the end, two simple treatments to 

extend binary classifiers into multi-class classifiers are presented. 
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6. Techniques of Unsupervised Learning 

 In this section, we briefly introduce the techniques of unsupervised learning and 

its categorization. Compared to supervised learning, unsupervised learning only 

acquires the feature set, not the label set. As mentioned in Section 3.2, the main goal 

of unsupervised learning can be categorized into clustering, probability density 

estimation, and dimensionality reduction:  

 

 Clustering: Given a set of samples, clustering aims to separate them into several 

groups based on some kinds of similarity / distance measures, and the basic 

criterion for doing so is to minimize the intra-group distance while maximize the 

inter-group distance. Clustering can discover the underlying structure in the 

samples, which is very important in applications such as business and medical 

issues: Separating the customers or patients into groups based on their attributes 

and designing specific strategies or treatments for each group. In addition, the 

discovered groups can be used as the label of each sample, and then the 

supervised learning techniques can be applied for further applications. 

 

 Probability estimation: Given a set of samples, probability estimation aims to 

estimate the appearing probability of each sample vector, either via parametric 

models, semi-parametric models, or non-parametric models. By doing so, the 

underlying mechanism to generate these samples can be discovered, and the 

learned probability distribution can further be used for outlier and special event 

detections. 

 

 Dimensionality reduction: Given a set of samples, dimensionality reduction 

aims to learn the relationship between features and discover the latent factors that 

control the feature values of a sample. By doing so, a compact representation can 

be derived for each sample, which are more informative for the subsequent 

applications such as pattern recognition and retrieval and can prevent the 

possible over-fitting problems during learning. We will discuss this category in 

more detailed in another suvery. 

 

In Table 19, several important techniques for each category as well as the important 

references are listed for further studying. 
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Table 19 The category and important techniques for unsupervised learning 

Category Techniques Reference 

Clustering 
K-means clustering 

Spectral clustering 

[8] 

[27][28] 

Density Estimation 
Gaussian mixture model (GMM) 

Graphical models 

[9] 

[9][15] 

Dimensionality reduction 
Principal component analysis (PCA) 

Factor analysis 

[8] 

[8] 

 

 

 

Fig. 18 The general framework of pattern recognition. 

 

7. Practical Usage: Pattern Recognition 

 There are many applications of machine learning, such as economic, information 

retrieval, data mining, and pattern recognition. In this section, we briefly introduce the 

framework of pattern recognition and discuss how machine learning techniques can 

be applied in this framework. 

 The general framework of pattern recognition is presented in Fig. 18. Given a set 

of observations or raw data, the first step of pattern recognition is to extract important 

features from these observations, either based on domain knowledge or data-driven 
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knowledge. This step not only discards irrelevant information for recognition, but also 

reshapes these observations into a unified form (ex. vector or matrix). After the 

feature extraction step, the next step of pattern recognition is to build a classifier or 

recognizer that can perform class prediction or detection based on extracted features. 

Now when a new observation (query) is acquired, the pre-defined feature extraction 

step and classifier are performed to predict the corresponding class label or event 

occurrence. 

 In this framework, machine learning techniques can be applied in both the two 

steps. For example, in the feature extraction step, the dimensionality reduction 

techniques can be applied to extract relevant features and reduce the dimensionality of 

raw data. And in the second step, the supervised learning techniques introduced in 

Section 錯誤! 找不到參照來源。 can be directly used for classifier training. 

 However, when applying machine learning techniques in pattern recognition, 

some issues should be considered. At first, the observations or raw data often contain 

high noise and high dimensionality, which can degrade the overall learning 

performance and result in over-fitting. Second, the form of raw data may not be in the 

vector form. For example, images are in the form of 2D matrices, and videos are 3D 

matrices. These types of data have their intrinsic data structures (spatial and temporal 

relationship), so how to transfer them into the standard form of machine learning 

while maintaining the intrinsic structures is a key issue in pattern recognition. In 

general, when doing pattern recognition researches, both the domain knowledge and 

the theory of machine learning should be considered to achieve better recognition 

performance. 

 

8. Conclusion 

 In this tutorial, a broad overview of machine learning containing both theoretical 

and practical aspects is presented. Machine learning is generally composed of 

modeling (hypothesis set + objective function) and optimization, and the necessary 

part to perform machine learning is a suitable dataset for knowledge learning. For the 

theoretical aspect, we introduce the basic idea, categorization, structure, and criteria 

of machine learning. And for the practical aspect, several principles and techniques of 

both unsupervised and supervised learning are presented in this tutorial. 

 

9. Reference 

[1] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of Cognitive 



55 

 

Neuroscience, vol. 3, no.1, pp. 72-86, 1991. 

[2] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, “Eigenfaces vs. 

Fisherfaces: Recognition using class specific linear projection,” IEEE Trans. 

Pattern Analysis and Machine Intelligence, vol. 19, no. 7, 711-720, 1997. 

[3] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of 

simple features,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, 

pp. 511 -518, 2001. 

[4] P. Viola and M. Jones, “Robust real-time face detection,” Int’l Journal of 

Computer Vision, vol. 57, no. 2, pp. 137-154, 2004.  

[5] Flicker: http://www.flickr.com/ 

[6] Facebook: http://www.facebook.com/ 

[7] Youtube: http://www.youtube.com/ 

[8] E. Alpaydin, Introduction to machine learning, 2
nd

 ed., The MIT Press, 2010. 

[9] C. M. Bishop, Pattern recognition and machine learning, Springer, 2006. 

[10] W. Hoeffding, “Probability Inequalities for Sums of Bounded Random 

Variables,” American Statistical Association Journal, vol. 58, pp. 13-30, March 

1963. 

[11] K. Sayood, Introduction to Data Compression, Morgan Kaufmann Publishers, 

1996. 

[12] R. Xu, D.I.I. Wunsch, “Survey of clustering algorithms,” IEEE Trans.Neural 

Networks, vol. 16, no. 3, pp. 645–678, 2005. 

[13] I.K. Fodor, “A survey of dimension reduction techniques,” Technical report 

UCRL-ID-148494, LLNL, 2002. 

[14] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: a 

survey,” J. Artif. Intell. Res. 4, pp. 237-285, 1996. 

[15] D. Koller and N. Friedman, Probabilistic Graphical Models, MIT Press, 2009. 

[16] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning, 

2
nd

 ed., Springer, 2005. 

[17] J. L. Schafer, J. W. Graham, “Missing data: our view of the state of the art,” 

Psychological Methods, vol. 7, no. 2, pp. 147-177, 2002. 

[18] KDD Cup 2009: http://www.kddcup-orange.com/ 

[19] I. Guyon, V. Lemaire, G. Dror, and D. Vogel, “Analysis of the KDD cup 2009: 

Fast scoring on a large orange customer database,” JMLR: Workshop and 

Conference Proceedings, vol. 7, pp. 1-22, 2009. 

[20] H. Y. Lo et al, “An ensemble of three classifiers for KDD cup 2009: Expanded 

linear model, heterogeneous boosting, and selective naive Bayes,” In JMLR 

W&CP, vol.7, KDD cup 2009, Paris, 2009. 

http://www.flickr.com/
http://www.facebook.com/
http://www.youtube.com/
http://www.kddcup-orange.com/


56 

 

[21] A. Niculescu-Mizil, C. Perlich, G. Swirszcz, V. Sindhwani, Y. Liu, P. Melville, 

D. Wang, J. Xiao, J. Hu, M. Singh, et al, “Winning the KDD Cup Orange 

Challenge with Ensemble Selection,” In KDD Cup and Workshop in 

conjunction with KDD 2009, 2009. 

[22] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, 

Cambridge, 2004. 

[23] C. C. Chang and C. J. Lin, “LIBSVM: a library for support vector machines,” 

ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011. 

Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm 

[24] J. Platt, “Sequential minimal optimization: A fast algorithm for training support 

vector machines,” in Advances in Kernel Methods - Support Vector Learning, 

MIT Press, pp. 185-208, 1999. 

[25] R. E. Fan, P. H. Chen, and C. J. Lin, “Working set selection using second order 

information for training SVM,” Journal of Machine Learning Research, 

6:1889{1918, 2005. 

[26] C. W. Hsu and C. J. Lin, “A comparison of methods for multi-class support 

vector machines,” IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 

415-425, 2002. 

[27] U. Von Luxburg, “A Tutorial on Spectral Clustering,” Tech. Rep. TR-149, Max 

Plank Institute for Biological Cybernetics, 2006. 

[28] A. Ng, M. Jordan, and Y. Weiss, “On spectral clustering: analysis and an 

algorithm,” Advances in Neural Information Processing Systems, vol. 14, 2002. 

 

http://www.csie.ntu.edu.tw/~cjlin/libsvm

