
Types of Machine Learning Algorithms 19

Types of Machine Learning Algorithms

Taiwo Oladipupo Ayodele

X 
 

Types of Machine Learning Algorithms 
 

Taiwo Oladipupo Ayodele 
University of Portsmouth 

United Kingdom 

 
1. Machine Learning: Algorithms Types 
 

Machine learning algorithms are organized into taxonomy, based on the desired outcome of 
the algorithm. Common algorithm types include: 
 • Supervised learning --- where the algorithm generates a function that maps inputs 

to desired outputs. One standard formulation of the supervised learning task is the 
classification problem: the learner is required to learn (to approximate the behavior 
of) a function which maps a vector into one of several classes by looking at several 
input-output examples of the function. • Unsupervised learning --- which models a set of inputs: labeled examples are not 
available. • Semi-supervised learning --- which combines both labeled and unlabeled examples 
to generate an appropriate function or classifier. • Reinforcement learning --- where the algorithm learns a policy of how to act given 
an observation of the world. Every action has some impact in the environment, and 
the environment provides feedback that guides the learning algorithm. 

• Transduction --- similar to supervised learning, but does not explicitly construct a 
function: instead, tries to predict new outputs based on training inputs, training 
outputs, and new inputs. • Learning to learn --- where the algorithm learns its own inductive bias based on 
previous experience. 
 

The performance and computational analysis of machine learning algorithms is a branch of 
statistics known as computational learning theory. 
Machine learning is about designing algorithms that allow a computer to learn. Learning is 
not necessarily involves consciousness but learning is a matter of finding statistical 
regularities or other patterns in the data. Thus, many machine learning algorithms will 
barely resemble how human might approach a learning task. However, learning algorithms 
can give insight into the relative difficulty of learning in different environments. 
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1.1 Supervised Learning Approach 
Supervised learning1

Supervised learning

 is fairly common in classification problems because the goal is often to 
get the computer to learn a classification system that we have created. Digit recognition, 
once again, is a common example of classification learning. More generally, classification 
learning is appropriate for any problem where deducing a classification is useful and the 
classification is easy to determine. In some cases, it might not even be necessary to give pre-
determined classifications to every instance of a problem if the agent can work out the 
classifications for itself. This would be an example of unsupervised learning in a 
classification context.  
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Fig. 1. Examples of Supervised and Unsupervised Learning 
 

 often leaves the probability for inputs undefined. This model is not 
needed as long as the inputs are available, but if some of the input values are missing, it is 
not possible to infer anything about the outputs. Unsupervised learning, all the observations 
are assumed to be caused by latent variables, that is, the observations is assumed to be at the 
end of the causal chain. Examples of supervised learning and unsupervised learning are 
shown in the figure 1 below:  
 

Supervised learning3

be used to generalize from new instances. The process of applying supervised ML to a real-
world problem is described in Figure F. The first step is collecting the dataset. If a requisite 
expert is available, then s/he could suggest which fields (attributes, features) are the most 

 is the most common technique for training neural networks and 
decision trees. Both of these techniques are highly dependent on the information given by 
the pre-determined classifications. In the case of neural networks, the classification is used 
to determine the error of the network and then adjust the network to minimize it, and in 
decision trees, the classifications are used to determine what attributes provide the most 
information that can be used to solve the classification puzzle. We'll look at both of these in 
more detail, but for now, it should be sufficient to know that both of these examples thrive 
on having some "supervision" in the form of pre-determined classifications. 
Inductive machine learning is the process of learning a set of rules from instances (examples 
in a training set), or more generally speaking, creating a classifier that can 

                                                           
1 http://www.aihorizon.com/essays/generalai/supervised_unsupervised_machine_learning.htm 
2 http://www.cis.hut.fi/harri/thesis/valpola_thesis/node34.html 
3 http://www.aihorizon.com/essays/generalai/supervised_unsupervised_machine_learning.htm 

informative. If not, then the simplest method is that of “brute-force,” which means 
measuring everything available in the hope that the right (informative, relevant) features 
can be isolated. However, a dataset collected by the “brute-force” method is not directly 
suitable for induction. It contains in most cases noise and missing feature values, and 
therefore requires significant pre-processing according to Zhang et al (Zhang, 2002).  
The second step is the data preparation and data pre-processing. Depending on the 
circumstances, researchers have a number of methods to choose from to handle missing data 
(Batista, 2003). Hodge et al (Hodge, 2004) , have recently introduced a survey of 
contemporary techniques for outlier (noise) detection. These researchers have identified the 
techniques’ advantages and disadvantages. Instance selection is not only used to handle 
noise but to cope with the infeasibility of learning from very large datasets. Instance 
selection in these datasets is an optimization problem that attempts to maintain the mining 
quality while minimizing the sample size.  It reduces data and enables a data mining 
algorithm to function and work effectively with very large datasets. There is a variety of 
procedures for sampling instances from a large dataset. See figure 2 below. 
Feature subset selection is the process of identifying and removing as many irrelevant and 
redundant features as possible (Yu, 2004) . This reduces the dimensionality of the data and 
enables data mining algorithms to operate faster and more effectively. The fact that many 
features depend on one another often unduly influences the accuracy of supervised ML 
classification models. This problem can be addressed by constructing new features from the 
basic feature set. This technique is called feature construction/transformation. These newly 
generated features may lead to the creation of more concise and accurate classifiers. In 
addition, the discovery of meaningful features contributes to better comprehensibility of the 
produced classifier, and a better understanding of the learned concept.Speech recognition 
using hidden Markov models and Bayesian networks relies on some elements of 
supervision as well in order to adjust parameters to, as usual, minimize the error on the 
given inputs.Notice something important here: in the classification problem, the goal of the 
learning algorithm is to minimize the error with respect to the given inputs. These inputs, 
often called the "training set", are the examples from which the agent tries to learn. But 
learning the training set well is not necessarily the best thing to do. For instance, if I tried to 
teach you exclusive-or, but only showed you combinations consisting of one true and one 
false, but never both false or both true, you might learn the rule that the answer is always 
true. Similarly, with machine learning algorithms, a common problem is over-fitting the 
data and essentially memorizing the training set rather than learning a more general 
classification technique. As you might imagine, not all training sets have the inputs 
classified correctly. This can lead to problems if the algorithm used is powerful enough to 
memorize even the apparently "special cases" that don't fit the more general principles. This, 
too, can lead to over fitting, and it is a challenge to find algorithms that are both powerful 
enough to learn complex functions and robust enough to produce generalisable results. 
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Fig. 2. Machine Learning Supervise Process 

 
1.2 Unsupervised learning 
Unsupervised learning4

                                                           
4 

 seems much harder: the goal is to have the computer learn how to 
do something that we don't tell it how to do! There are actually two approaches to 
unsupervised learning. The first approach is to teach the agent not by giving explicit 
categorizations, but by using some sort of reward system to indicate success. Note that this 
type of training will generally fit into the decision problem framework because the goal is 
not to produce a classification but to make decisions that maximize rewards. This approach 
nicely generalizes to the real world, where agents might be rewarded for doing certain 
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actions and punished for doing others. Often, a form of reinforcement learning can be used 
for unsupervised learning, where the agent bases its actions on the previous rewards and 
punishments without necessarily even learning any information about the exact ways that 
its actions affect the world. In a way, all of this information is unnecessary because by 
learning a reward function, the agent simply knows what to do without any processing 
because it knows the exact reward it expects to achieve for each action it could take. This can 
be extremely beneficial in cases where calculating every possibility is very time consuming 
(even if all of the transition probabilities between world states were known). On the other 
hand, it can be very time consuming to learn by, essentially, trial and error. But this kind of 
learning can be powerful because it assumes no pre-discovered classification of examples. In 
some cases, for example, our classifications may not be the best possible. One striking 
exmaple is that the conventional wisdom about the game of backgammon was turned on its 
head when a series of computer programs (neuro-gammon and TD-gammon) that learned 
through unsupervised learning became stronger than the best human chess players merely 
by playing themselves over and over. These programs discovered some principles that 
surprised the backgammon experts and performed better than backgammon programs 
trained on pre-classified examples. A second type of unsupervised learning is called 
clustering. In this type of learning, the goal is not to maximize a utility function, but simply 
to find similarities in the training data. The assumption is often that the clusters discovered 
will match reasonably well with an intuitive classification. For instance, clustering 
individuals based on demographics might result in a clustering of the wealthy in one group 
and the poor in another. Although the algorithm won't have names to assign to these 
clusters, it can produce them and then use those clusters to assign new examples into one or 
the other of the clusters. This is a data-driven approach that can work well when there is 
sufficient data; for instance, social information filtering algorithms, such as those that 
Amazon.com use to recommend books, are based on the principle of finding similar groups 
of people and then assigning new users to groups. In some cases, such as with social 
information filtering, the information about other members of a cluster (such as what books 
they read) can be sufficient for the algorithm to produce meaningful results. In other cases, it 
may be the case that the clusters are merely a useful tool for a human analyst. 
Unfortunately, even unsupervised learning suffers from the problem of overfitting the 
training data. There's no silver bullet to avoiding the problem because any algorithm that 
can learn from its inputs needs to be quite powerful. 
Unsupervised learning algorithms according to Ghahramani (Ghahramani, 2008) are 
designed to extract structure from data samples. The quality of a structure is measured by a 
cost function which is usually minimized to infer optimal parameters characterizing the 
hidden structure in the data. Reliable and robust inference requires a guarantee that 
extracted structures are typical for the data source, i.e., similar structures have to be 
extracted from a second sample set of the same data source. Lack of robustness is known as 
over fitting from the statistics and the machine learning literature. In this talk I characterize 
the over fitting phenomenon for a class of histogram clustering models which play a 
prominent role in information retrieval, linguistic and computer vision applications. 
Learning algorithms with robustness to sample fluctuations are derived from large 
deviation results and the maximum entropy principle for the learning process. 
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Amazon.com use to recommend books, are based on the principle of finding similar groups 
of people and then assigning new users to groups. In some cases, such as with social 
information filtering, the information about other members of a cluster (such as what books 
they read) can be sufficient for the algorithm to produce meaningful results. In other cases, it 
may be the case that the clusters are merely a useful tool for a human analyst. 
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Unsupervised learning has produced many successes, such as world-champion calibre 
backgammon programs and even machines capable of driving cars! It can be a powerful 
technique when there is an easy way to assign values to actions. Clustering can be useful 
when there is enough data to form clusters (though this turns out to be difficult at times) 
and especially when additional data about members of a cluster can be used to produce 
further results due to dependencies in the data. Classification learning is powerful when the 
classifications are known to be correct (for instance, when dealing with diseases, it's 
generally straight-forward to determine the design after the fact by an autopsy), or when the 
classifications are simply arbitrary things that we would like the computer to be able to 
recognize for us. Classification learning is often necessary when the decisions made by the 
algorithm will be required as input somewhere else. Otherwise, it wouldn't be easy for 
whoever requires that input to figure out what it means. Both techniques can be valuable 
and which one you choose should depend on the circumstances--what kind of problem is 
being solved, how much time is allotted to solving it (supervised learning or clustering is 
often faster than reinforcement learning techniques), and whether supervised learning is 
even possible.  

 
1.3 Algorithm Types 
In the area of supervised learning which deals much with classification. These are the 
algorithms types: 
 

• Linear Classifiers 
 Logical Regression 
 Naïve Bayes Classifier 
 Perceptron 
 Support Vector Machine 

• Quadratic Classifiers 
• K-Means Clustering 
• Boosting 
• Decision Tree 

 Random Forest 
• Neural networks 
• Bayesian Networks 

 
Linear Classifiers: In machine learning, the goal of classification is to group items that have 
similar feature values, into groups. Timothy et al (Timothy Jason Shepard, 1998)  stated that 
a linear classifier achieves this by making a classification decision based on the value of 
the linear combination of the features. If the input feature vector to the classifier is 
a real vector , then the output score is 

 

where  is a real vector of weights and f is a function that converts the dot product of the 
two vectors into the desired output. The weight vector  is learned from a set of labelled 
training samples. Often f is a simple function that maps all values above a certain threshold 
to the first class and all other values to the second class. A more complex f might give the 
probability that an item belongs to a certain class. 
For a two-class classification problem, one can visualize the operation of a linear classifier as 
splitting a high-dimensional input space with a hyperplane: all points on one side of the 
hyper plane are classified as "yes", while the others are classified as "no". A linear classifier is 
often used in situations where the speed of classification is an issue, since it is often the 
fastest classifier, especially when  is sparse. However, decision trees can be faster. Also, 
linear classifiers often work very well when the number of dimensions in  is large, as 
in document classification, where each element in  is typically the number of counts of a 
word in a document (see document-term matrix). In such cases, the classifier should be well-
regularized. 
 

• Support Vector Machine: A Support Vector Machine as stated by Luis et al 
(Luis Gonz, 2005) (SVM) performs classification by constructing an N-
dimensional hyper plane that optimally separates the data into two 
categories. SVM models are closely related to neural networks. In fact, a SVM 
model using a sigmoid kernel function is equivalent to a two-
layer, perceptron neural network. 
Support Vector Machine (SVM) models are a close cousin to classical 
multilayer perceptron neural networks. Using a kernel function, SVM’s are 
an alternative training method for polynomial, radial basis function and 
multi-layer perceptron classifiers in which the weights of the network are 
found by solving a quadratic programming problem with linear constraints, 
rather than by solving a non-convex, unconstrained minimization problem as 
in standard neural network training. 
In the parlance of SVM literature, a predictor variable is called an attribute, 
and a transformed attribute that is used to define the hyper plane is called 
a feature. The task of choosing the most suitable representation is known 
as feature selection. A set of features that describes one case (i.e., a row of 
predictor values) is called a vector. So the goal of SVM modelling is to find 
the optimal hyper plane that separates clusters of vector in such a way that 
cases with one category of the target variable are on one side of the plane and 
cases with the other category are on the other size of the plane. The vectors 
near the hyper plane are the support vectors. The figure below presents an 
overview of the SVM process. 
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A Two-Dimensional Example 
Before considering N-dimensional hyper planes, let’s look at a simple 2-dimensional 
example. Assume we wish to perform a classification, and our data has a categorical target 
variable with two categories. Also assume that there are two predictor variables with 
continuous values. If we plot the data points using the value of one predictor on the X axis 
and the other on the Y axis we might end up with an image such as shown below. One 
category of the target variable is represented by rectangles while the other category is 
represented by ovals. 

 
In this idealized example, the cases with one category are in the lower left corner and the 
cases with the other category are in the upper right corner; the cases are completely 
separated. The SVM analysis attempts to find a 1-dimensional hyper plane (i.e. a line) that 
separates the cases based on their target categories. There are an infinite number of possible 
lines; two candidate lines are shown above. The question is which line is better, and how do 
we define the optimal line. 
The dashed lines drawn parallel to the separating line mark the distance between the 
dividing line and the closest vectors to the line. The distance between the dashed lines is 
called the margin. The vectors (points) that constrain the width of the margin are the support 
vectors. The following figure illustrates this. 

 
 

An SVM analysis (Luis Gonz, 2005) finds the line (or, in general, hyper plane) that is 
oriented so that the margin between the support vectors is maximized. In the figure above, 
the line in the right panel is superior to the line in the left panel. 
If all analyses consisted of two-category target variables with two predictor variables, and 
the cluster of points could be divided by a straight line, life would be easy. Unfortunately, 
this is not generally the case, so SVM must deal with (a) more than two predictor variables, 
(b) separating the points with non-linear curves, (c) handling the cases where clusters 
cannot be completely separated, and (d) handling classifications with more than two 
categories.  
In this chapter, we shall explain three main machine learning techniques with their 
examples and how they perform in reality. These are: 
 

• K-Means Clustering 
• Neural Network 
• Self Organised Map 

 
1.3.1 K-Means Clustering 
 The basic step of k-means clustering is uncomplicated. In the beginning we determine 
number of cluster K and we assume the centre of these clusters. We can take any random 
objects as the initial centre or the first K objects in sequence can also serve as the initial 
centre. Then the K means algorithm will do the three steps below until convergence. 
Iterate until stable (= no object move group): 

1. Determine the centre coordinate 

2. Determine the distance of each object to the centre 

3. Group the object based on minimum distance 

The Figure 3 shows a K- means flow diagram  
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A Two-Dimensional Example 
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represented by ovals. 
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The dashed lines drawn parallel to the separating line mark the distance between the 
dividing line and the closest vectors to the line. The distance between the dashed lines is 
called the margin. The vectors (points) that constrain the width of the margin are the support 
vectors. The following figure illustrates this. 

 
 

An SVM analysis (Luis Gonz, 2005) finds the line (or, in general, hyper plane) that is 
oriented so that the margin between the support vectors is maximized. In the figure above, 
the line in the right panel is superior to the line in the left panel. 
If all analyses consisted of two-category target variables with two predictor variables, and 
the cluster of points could be divided by a straight line, life would be easy. Unfortunately, 
this is not generally the case, so SVM must deal with (a) more than two predictor variables, 
(b) separating the points with non-linear curves, (c) handling the cases where clusters 
cannot be completely separated, and (d) handling classifications with more than two 
categories.  
In this chapter, we shall explain three main machine learning techniques with their 
examples and how they perform in reality. These are: 
 

• K-Means Clustering 
• Neural Network 
• Self Organised Map 

 
1.3.1 K-Means Clustering 
 The basic step of k-means clustering is uncomplicated. In the beginning we determine 
number of cluster K and we assume the centre of these clusters. We can take any random 
objects as the initial centre or the first K objects in sequence can also serve as the initial 
centre. Then the K means algorithm will do the three steps below until convergence. 
Iterate until stable (= no object move group): 

1. Determine the centre coordinate 

2. Determine the distance of each object to the centre 

3. Group the object based on minimum distance 

The Figure 3 shows a K- means flow diagram  
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Fig. 3. K-means iteration 
 
K-means (Bishop C. M., 1995)  and (Tapas Kanungo, 2002) is one of the simplest 
unsupervised learning algorithms that solve the well known clustering problem. The 
procedure follows a simple and easy way to classify a given data set through a certain 
number of clusters (assume k clusters) fixed a priori. The main idea is to define k centroids, 
one for each cluster. These centroids shoud be placed in a cunning way because of different 
location causes different result. So, the better choice is to place them as much as possible far 
away from each other. The next step is to take each point belonging to a given data set and 
associate it to the nearest centroid. When no point is pending, the first step is completed and 
an early groupage is done. At this point we need to re-calculate k new centroids as 
barycenters of the clusters resulting from the previous step. After we have these k new 
centroids, a new binding has to be done between the same data set points and the nearest 
new centroid. A loop has been generated. As a result of this loop we may notice that the k 
centroids change their location step by step until no more changes are done. In other words 
centroids do not move any more. 
Finally, this algorithm aims at minimizing an objective function, in this case a squared error 
function. The objective function 

, 

where is a chosen distance measure between a data point and the cluster 

centre , is an indicator of the distance of the n data points from their respective cluster 
centres. 
The algorithm in figure 4 is composed of the following steps: 
 

1. Place K points into the space represented by the objects that 

are being clustered. These points represent initial group 

centroids. 

2. Assign each object to the group that has the closest 

centroid. 

3. When all objects have been assigned, recalculate the 

positions of the K centroids. 

4. Repeat Steps 2 and 3 until the centroids no longer move. 

This produces a separation of the objects into groups from 

which the metric to be minimized can be calculated. 

 
Although it can be proved that the procedure will always terminate, the k-means algorithm 
does not necessarily find the most optimal configuration, corresponding to the global 
objective function minimum. The algorithm is also significantly sensitive to the initial 
randomly selected cluster centres. The k-means algorithm can be run multiple times to 
reduce this effect. K-means is a simple algorithm that has been adapted to many problem 
domains. As we are going to see, it is a good candidate for extension to work with fuzzy 
feature vectors.  
An example 
Suppose that we have n sample feature vectors x1, x2, ..., xn all from the same class, and we 
know that they fall into k compact clusters, k < n. Let mi be the mean of the vectors in cluster 
i. If the clusters are well separated, we can use a minimum-distance classifier to separate 
them. That is, we can say that x is in cluster i if || x - mi || is the minimum of all the k 
distances. This suggests the following procedure for finding the k means: 
 

• Make initial guesses for the means m1, m2, ..., mk 
• Until there are no changes in any mean 
• Use the estimated means to classify the samples into clusters  
• For i from 1 to k  
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Fig. 3. K-means iteration 
 
K-means (Bishop C. M., 1995)  and (Tapas Kanungo, 2002) is one of the simplest 
unsupervised learning algorithms that solve the well known clustering problem. The 
procedure follows a simple and easy way to classify a given data set through a certain 
number of clusters (assume k clusters) fixed a priori. The main idea is to define k centroids, 
one for each cluster. These centroids shoud be placed in a cunning way because of different 
location causes different result. So, the better choice is to place them as much as possible far 
away from each other. The next step is to take each point belonging to a given data set and 
associate it to the nearest centroid. When no point is pending, the first step is completed and 
an early groupage is done. At this point we need to re-calculate k new centroids as 
barycenters of the clusters resulting from the previous step. After we have these k new 
centroids, a new binding has to be done between the same data set points and the nearest 
new centroid. A loop has been generated. As a result of this loop we may notice that the k 
centroids change their location step by step until no more changes are done. In other words 
centroids do not move any more. 
Finally, this algorithm aims at minimizing an objective function, in this case a squared error 
function. The objective function 
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where is a chosen distance measure between a data point and the cluster 

centre , is an indicator of the distance of the n data points from their respective cluster 
centres. 
The algorithm in figure 4 is composed of the following steps: 
 

1. Place K points into the space represented by the objects that 

are being clustered. These points represent initial group 

centroids. 

2. Assign each object to the group that has the closest 

centroid. 

3. When all objects have been assigned, recalculate the 

positions of the K centroids. 

4. Repeat Steps 2 and 3 until the centroids no longer move. 

This produces a separation of the objects into groups from 

which the metric to be minimized can be calculated. 

 
Although it can be proved that the procedure will always terminate, the k-means algorithm 
does not necessarily find the most optimal configuration, corresponding to the global 
objective function minimum. The algorithm is also significantly sensitive to the initial 
randomly selected cluster centres. The k-means algorithm can be run multiple times to 
reduce this effect. K-means is a simple algorithm that has been adapted to many problem 
domains. As we are going to see, it is a good candidate for extension to work with fuzzy 
feature vectors.  
An example 
Suppose that we have n sample feature vectors x1, x2, ..., xn all from the same class, and we 
know that they fall into k compact clusters, k < n. Let mi be the mean of the vectors in cluster 
i. If the clusters are well separated, we can use a minimum-distance classifier to separate 
them. That is, we can say that x is in cluster i if || x - mi || is the minimum of all the k 
distances. This suggests the following procedure for finding the k means: 
 

• Make initial guesses for the means m1, m2, ..., mk 
• Until there are no changes in any mean 
• Use the estimated means to classify the samples into clusters  
• For i from 1 to k  
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• Replace mi with the mean of all of the samples for 
cluster i 

• end_for 
• end_until  

 
Here is an example showing how the means m1 and m2 move into the centers of two 
clusters.  
 

 
 

This is a simple version of the k-means procedure. It can be viewed as a greedy algorithm 
for partitioning the n samples into k clusters so as to minimize the sum of the squared 
distances to the cluster centers. It does have some weaknesses: 
 • The way to initialize the means was not specified. One popular way to start is to 

randomly choose k of the samples. • The results produced depend on the initial values for the means, and it frequently 
happens that suboptimal partitions are found. The standard solution is to try a 
number of different starting points. • It can happen that the set of samples closest to mi is empty, so that mi cannot be 
updated. This is an annoyance that must be handled in an implementation, but that 
we shall ignore. • The results depend on the metric used to measure || x - mi ||. A popular solution 
is to normalize each variable by its standard deviation, though this is not always 
desirable. • The results depend on the value of k. 
 

This last problem is particularly troublesome, since we often have no way of knowing how 
many clusters exist. In the example shown above, the same algorithm applied to the same 
data produces the following 3-means clustering. Is it better or worse than the 2-means 
clustering? 

 

Unfortunately there is no general theoretical solution to find the optimal number of clusters 
for any given data set. A simple approach is to compare the results of multiple runs with 
different k classes and choose the best one according to a given criterion  

 
1.3.2 Neural Network 
Neural networks (Bishop C. M., 1995) can actually perform a number of regression 
and/or classification tasks at once, although commonly each network performs only one. In 
the vast majority of cases, therefore, the network will have a single output variable, 
although in the case of many-state classification problems, this may correspond to a number 
of output units (the post-processing stage takes care of the mapping from output units to 
output variables). If you do define a single network with multiple output variables, it may 
suffer from cross-talk (the hidden neurons experience difficulty learning, as they are 
attempting to model at least two functions at once). The best solution is usually to train 
separate networks for each output, then to combine them into an ensemble so that they can 
be run as a unit. Neural methods are:  
 

• Multilayer Perceptrons: This is perhaps the most popular network architecture in 
use today, due originally to Rumelhart and McClelland (1986) and discussed at 
length in most neural network textbooks (e.g., Bishop, 1995). This is the type of 
network discussed briefly in previous sections: the units each perform a biased 
weighted sum of their inputs and pass this activation level through a transfer 
function to produce their output, and the units are arranged in a layered feed 
forward topology. The network thus has a simple interpretation as a form of input-
output model, with the weights and thresholds (biases) the free parameters of the 
model. Such networks can model functions of almost arbitrary complexity, with 
the number of layers, and the number of units in each layer, determining the 
function complexity. Important issues in Multilayer Perceptrons (MLP) design 
include specification of the number of hidden layers and the number of units in 
these layers (Bishop C. M., 1995), (D. Michie, 1994). 

The number of input and output units is defined by the problem (there may be 
some uncertainty about precisely which inputs to use, a point to which we will 
return later. However, for the moment we will assume that the input variables are 
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• Replace mi with the mean of all of the samples for 
cluster i 

• end_for 
• end_until  

 
Here is an example showing how the means m1 and m2 move into the centers of two 
clusters.  
 

 
 

This is a simple version of the k-means procedure. It can be viewed as a greedy algorithm 
for partitioning the n samples into k clusters so as to minimize the sum of the squared 
distances to the cluster centers. It does have some weaknesses: 
 • The way to initialize the means was not specified. One popular way to start is to 

randomly choose k of the samples. • The results produced depend on the initial values for the means, and it frequently 
happens that suboptimal partitions are found. The standard solution is to try a 
number of different starting points. • It can happen that the set of samples closest to mi is empty, so that mi cannot be 
updated. This is an annoyance that must be handled in an implementation, but that 
we shall ignore. • The results depend on the metric used to measure || x - mi ||. A popular solution 
is to normalize each variable by its standard deviation, though this is not always 
desirable. • The results depend on the value of k. 
 

This last problem is particularly troublesome, since we often have no way of knowing how 
many clusters exist. In the example shown above, the same algorithm applied to the same 
data produces the following 3-means clustering. Is it better or worse than the 2-means 
clustering? 

 

Unfortunately there is no general theoretical solution to find the optimal number of clusters 
for any given data set. A simple approach is to compare the results of multiple runs with 
different k classes and choose the best one according to a given criterion  

 
1.3.2 Neural Network 
Neural networks (Bishop C. M., 1995) can actually perform a number of regression 
and/or classification tasks at once, although commonly each network performs only one. In 
the vast majority of cases, therefore, the network will have a single output variable, 
although in the case of many-state classification problems, this may correspond to a number 
of output units (the post-processing stage takes care of the mapping from output units to 
output variables). If you do define a single network with multiple output variables, it may 
suffer from cross-talk (the hidden neurons experience difficulty learning, as they are 
attempting to model at least two functions at once). The best solution is usually to train 
separate networks for each output, then to combine them into an ensemble so that they can 
be run as a unit. Neural methods are:  
 

• Multilayer Perceptrons: This is perhaps the most popular network architecture in 
use today, due originally to Rumelhart and McClelland (1986) and discussed at 
length in most neural network textbooks (e.g., Bishop, 1995). This is the type of 
network discussed briefly in previous sections: the units each perform a biased 
weighted sum of their inputs and pass this activation level through a transfer 
function to produce their output, and the units are arranged in a layered feed 
forward topology. The network thus has a simple interpretation as a form of input-
output model, with the weights and thresholds (biases) the free parameters of the 
model. Such networks can model functions of almost arbitrary complexity, with 
the number of layers, and the number of units in each layer, determining the 
function complexity. Important issues in Multilayer Perceptrons (MLP) design 
include specification of the number of hidden layers and the number of units in 
these layers (Bishop C. M., 1995), (D. Michie, 1994). 

The number of input and output units is defined by the problem (there may be 
some uncertainty about precisely which inputs to use, a point to which we will 
return later. However, for the moment we will assume that the input variables are 
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intuitively selected and are all meaningful). The number of hidden units to use is 
far from clear. As good a starting point as any is to use one hidden layer, with the 
number of units equal to half the sum of the number of input and output units. 
Again, we will discuss how to choose a sensible number later. 

• Training Multilayer Perceptrons: Once the number of layers, and number of units 
in each layer, has been selected, the network's weights and thresholds must be set 
so as to minimize the prediction error made by the network. This is the role of 
the training algorithms. The historical cases that you have gathered are used to 
automatically adjust the weights and thresholds in order to minimize this error. 
This process is equivalent to fitting the model represented by the network to the 
training data available. The error of a particular configuration of the network can 
be determined by running all the training cases through the network, comparing 
the actual output generated with the desired or target outputs. The differences are 
combined together by an error function to give the network error. The most 
common error functions are the sum squared error (used for regression problems), 
where the individual errors of output units on each case are squared and summed 
together, and the cross entropy functions (used for maximum likelihood 
classification). 

In traditional modeling approaches (e.g., linear modeling) it is possible to 
algorithmically determine the model configuration that absolutely minimizes this 
error. The price paid for the greater (non-linear) modeling power of neural 
networks is that although we can adjust a network to lower its error, we can never 
be sure that the error could not be lower still. 
 

A helpful concept here is the error surface. Each of the N weights and thresholds of the 
network (i.e., the free parameters of the model) is taken to be a dimension in space. 
The N+1th dimension is the network error. For any possible configuration of weights the 
error can be plotted in the N+1th dimension, forming an error surface. The objective of 
network training is to find the lowest point in this many-dimensional surface. 
In a linear model with sum squared error function, this error surface is a parabola (a 
quadratic), which means that it is a smooth bowl-shape with a single minimum. It is 
therefore "easy" to locate the minimum. 
Neural network error surfaces are much more complex, and are characterized by a number 
of unhelpful features, such as local minima (which are lower than the surrounding terrain, 
but above the global minimum), flat-spots and plateaus, saddle-points, and long narrow 
ravines. 
It is not possible to analytically determine where the global minimum of the error surface is, 
and so neural network training is essentially an exploration of the error surface. From an 
initially random configuration of weights and thresholds (i.e., a random point on the error 
surface), the training algorithms incrementally seek for the global minimum. Typically, the 
gradient (slope) of the error surface is calculated at the current point, and used to make a 
downhill move. Eventually, the algorithm stops in a low point, which may be a local 
minimum (but hopefully is the global minimum). 
 
 

• The Back Propagation Algorithm: The best-known example of a neural 
network training algorithm is back propagation (Haykin, 19994), (Patterson, 
19996), (Fausett, 19994). Modern second-order algorithms such as conjugate 
gradient descent and Levenberg-Marquardt (see Bishop, 1995; Shepherd, 1997) (both 
included in ST Neural Networks) are substantially faster (e.g., an order of 
magnitude faster) for many problems, but back propagation still has advantages in 
some circumstances, and is the easiest algorithm to understand. We will introduce 
this now, and discuss the more advanced algorithms later. In back propagation, the 
gradient vector of the error surface is calculated. This vector points along the line 
of steepest descent from the current point, so we know that if we move along it a 
"short" distance, we will decrease the error. A sequence of such moves (slowing as 
we near the bottom) will eventually find a minimum of some sort. The difficult 
part is to decide how large the steps should be. 

Large steps may converge more quickly, but may also overstep the solution or (if 
the error surface is very eccentric) go off in the wrong direction. A classic example 
of this in neural network training is where the algorithm progresses very slowly 
along a steep, narrow, valley, bouncing from one side across to the other. In 
contrast, very small steps may go in the correct direction, but they also require a 
large number of iterations. In practice, the step size is proportional to the slope (so 
that the algorithm settles down in a minimum) and to a special constant: 
the learning rate. The correct setting for the learning rate is application-dependent, 
and is typically chosen by experiment; it may also be time-varying, getting smaller 
as the algorithm progresses. 
 

The algorithm is also usually modified by inclusion of a momentum term: this encourages 
movement in a fixed direction, so that if several steps are taken in the same direction, the 
algorithm "picks up speed", which gives it the ability to (sometimes) escape local minimum, 
and also to move rapidly over flat spots and plateaus. 
The algorithm therefore progresses iteratively, through a number of epochs. On each epoch, 
the training cases are each submitted in turn to the network, and target and actual outputs 
compared and the error calculated. This error, together with the error surface gradient, is 
used to adjust the weights, and then the process repeats. The initial network configuration is 
random, and training stops when a given number of epochs elapses, or when the error 
reaches an acceptable level, or when the error stops improving (you can select which of 
these stopping conditions to use). 
 

• Over-learning and Generalization: One major problem with the approach 
outlined above is that it doesn't actually minimize the error that we are really 
interested in - which is the expected error the network will make when new cases 
are submitted to it. In other words, the most desirable property of a network is its 
ability to generalize to new cases. In reality, the network is trained to minimize the 
error on the training set, and short of having a perfect and infinitely large training 
set, this is not the same thing as minimizing the error on the real error surface - the 
error surface of the underlying and unknown model (Bishop C. M., 1995). 
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intuitively selected and are all meaningful). The number of hidden units to use is 
far from clear. As good a starting point as any is to use one hidden layer, with the 
number of units equal to half the sum of the number of input and output units. 
Again, we will discuss how to choose a sensible number later. 

• Training Multilayer Perceptrons: Once the number of layers, and number of units 
in each layer, has been selected, the network's weights and thresholds must be set 
so as to minimize the prediction error made by the network. This is the role of 
the training algorithms. The historical cases that you have gathered are used to 
automatically adjust the weights and thresholds in order to minimize this error. 
This process is equivalent to fitting the model represented by the network to the 
training data available. The error of a particular configuration of the network can 
be determined by running all the training cases through the network, comparing 
the actual output generated with the desired or target outputs. The differences are 
combined together by an error function to give the network error. The most 
common error functions are the sum squared error (used for regression problems), 
where the individual errors of output units on each case are squared and summed 
together, and the cross entropy functions (used for maximum likelihood 
classification). 

In traditional modeling approaches (e.g., linear modeling) it is possible to 
algorithmically determine the model configuration that absolutely minimizes this 
error. The price paid for the greater (non-linear) modeling power of neural 
networks is that although we can adjust a network to lower its error, we can never 
be sure that the error could not be lower still. 
 

A helpful concept here is the error surface. Each of the N weights and thresholds of the 
network (i.e., the free parameters of the model) is taken to be a dimension in space. 
The N+1th dimension is the network error. For any possible configuration of weights the 
error can be plotted in the N+1th dimension, forming an error surface. The objective of 
network training is to find the lowest point in this many-dimensional surface. 
In a linear model with sum squared error function, this error surface is a parabola (a 
quadratic), which means that it is a smooth bowl-shape with a single minimum. It is 
therefore "easy" to locate the minimum. 
Neural network error surfaces are much more complex, and are characterized by a number 
of unhelpful features, such as local minima (which are lower than the surrounding terrain, 
but above the global minimum), flat-spots and plateaus, saddle-points, and long narrow 
ravines. 
It is not possible to analytically determine where the global minimum of the error surface is, 
and so neural network training is essentially an exploration of the error surface. From an 
initially random configuration of weights and thresholds (i.e., a random point on the error 
surface), the training algorithms incrementally seek for the global minimum. Typically, the 
gradient (slope) of the error surface is calculated at the current point, and used to make a 
downhill move. Eventually, the algorithm stops in a low point, which may be a local 
minimum (but hopefully is the global minimum). 
 
 

• The Back Propagation Algorithm: The best-known example of a neural 
network training algorithm is back propagation (Haykin, 19994), (Patterson, 
19996), (Fausett, 19994). Modern second-order algorithms such as conjugate 
gradient descent and Levenberg-Marquardt (see Bishop, 1995; Shepherd, 1997) (both 
included in ST Neural Networks) are substantially faster (e.g., an order of 
magnitude faster) for many problems, but back propagation still has advantages in 
some circumstances, and is the easiest algorithm to understand. We will introduce 
this now, and discuss the more advanced algorithms later. In back propagation, the 
gradient vector of the error surface is calculated. This vector points along the line 
of steepest descent from the current point, so we know that if we move along it a 
"short" distance, we will decrease the error. A sequence of such moves (slowing as 
we near the bottom) will eventually find a minimum of some sort. The difficult 
part is to decide how large the steps should be. 

Large steps may converge more quickly, but may also overstep the solution or (if 
the error surface is very eccentric) go off in the wrong direction. A classic example 
of this in neural network training is where the algorithm progresses very slowly 
along a steep, narrow, valley, bouncing from one side across to the other. In 
contrast, very small steps may go in the correct direction, but they also require a 
large number of iterations. In practice, the step size is proportional to the slope (so 
that the algorithm settles down in a minimum) and to a special constant: 
the learning rate. The correct setting for the learning rate is application-dependent, 
and is typically chosen by experiment; it may also be time-varying, getting smaller 
as the algorithm progresses. 
 

The algorithm is also usually modified by inclusion of a momentum term: this encourages 
movement in a fixed direction, so that if several steps are taken in the same direction, the 
algorithm "picks up speed", which gives it the ability to (sometimes) escape local minimum, 
and also to move rapidly over flat spots and plateaus. 
The algorithm therefore progresses iteratively, through a number of epochs. On each epoch, 
the training cases are each submitted in turn to the network, and target and actual outputs 
compared and the error calculated. This error, together with the error surface gradient, is 
used to adjust the weights, and then the process repeats. The initial network configuration is 
random, and training stops when a given number of epochs elapses, or when the error 
reaches an acceptable level, or when the error stops improving (you can select which of 
these stopping conditions to use). 
 

• Over-learning and Generalization: One major problem with the approach 
outlined above is that it doesn't actually minimize the error that we are really 
interested in - which is the expected error the network will make when new cases 
are submitted to it. In other words, the most desirable property of a network is its 
ability to generalize to new cases. In reality, the network is trained to minimize the 
error on the training set, and short of having a perfect and infinitely large training 
set, this is not the same thing as minimizing the error on the real error surface - the 
error surface of the underlying and unknown model (Bishop C. M., 1995). 
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The most important manifestation of this distinction is the problem of over-learning, 
or over-fitting. It is easiest to demonstrate this concept using polynomial curve fitting rather 
than neural networks, but the concept is precisely the same. 
A polynomial is an equation with terms containing only constants and powers of the 
variables. For example: 
 

y=2x+3 
y=3x2+4x+1 

 
Different polynomials have different shapes, with larger powers (and therefore larger 
numbers of terms) having steadily more eccentric shapes. Given a set of data, we may want 
to fit a polynomial curve (i.e., a model) to explain the data. The data is probably noisy, so we 
don't necessarily expect the best model to pass exactly through all the points. A low-order 
polynomial may not be sufficiently flexible to fit close to the points, whereas a high-order 
polynomial is actually too flexible, fitting the data exactly by adopting a highly eccentric 
shape that is actually unrelated to the underlying function. See figure 4 below. 
 

 
Fig. 4. High-order polynomial sample 

 
Neural networks have precisely the same problem. A network with more weights models a 
more complex function, and is therefore prone to over-fitting. A network with less weight 
may not be sufficiently powerful to model the underlying function. For example, a network 
with no hidden layers actually models a simple linear function. How then can we select the 
right complexity of network? A larger network will almost invariably achieve a lower error 
eventually, but this may indicate over-fitting rather than good modeling. 
The answer is to check progress against an independent data set, the selection set. Some of 
the cases are reserved, and not actually used for training in the back propagation algorithm. 
Instead, they are used to keep an independent check on the progress of the algorithm. It is 
invariably the case that the initial performance of the network on training and selection sets 
is the same (if it is not at least approximately the same, the division of cases between the two 
sets is probably biased). As training progresses, the training error naturally drops, and 
providing training is minimizing the true error function, the selection error drops too. 
However, if the selection error stops dropping, or indeed starts to rise, this indicates that the 
network is starting to overfit the data, and training should cease. When over-fitting occurs 
during the training process like this, it is called over-learning. In this case, it is usually 

advisable to decrease the number of hidden units and/or hidden layers, as the network is 
over-powerful for the problem at hand. In contrast, if the network is not sufficiently 
powerful to model the underlying function, over-learning is not likely to occur, and neither 
training nor selection errors will drop to a satisfactory level. 
The problems associated with local minima, and decisions over the size of network to use, 
imply that using a neural network typically involves experimenting with a large number of 
different networks, probably training each one a number of times (to avoid being fooled by 
local minima), and observing individual performances. The key guide to performance here 
is the selection error. However, following the standard scientific precept that, all else being 
equal, a simple model is always preferable to a complex model, you can also select a smaller 
network in preference to a larger one with a negligible improvement in selection error. 
A problem with this approach of repeated experimentation is that the selection set plays a 
key role in selecting the model, which means that it is actually part of the training process. 
Its reliability as an independent guide to performance of the model is therefore 
compromised - with sufficient experiments, you may just hit upon a lucky network that 
happens to perform well on the selection set. To add confidence in the performance of the 
final model, it is therefore normal practice (at least where the volume of training data allows 
it) to reserve a third set of cases - the test set. The final model is tested with the test set data, 
to ensure that the results on the selection and training set are real, and not artifacts of the 
training process. Of course, to fulfill this role properly the test set should be used only once - 
if it is in turn used to adjust and reiterate the training process, it effectively becomes 
selection data! 
This division into multiple subsets is very unfortunate, given that we usually have less data 
than we would ideally desire even for a single subset. We can get around this problem by 
resampling. Experiments can be conducted using different divisions of the available data 
into training, selection, and test sets. There are a number of approaches to this subset, 
including random (monte-carlo) resampling, cross-validation, and bootstrap. If we make 
design decisions, such as the best configuration of neural network to use, based upon a 
number of experiments with different subset examples, the results will be much more 
reliable. We can then either use those experiments solely to guide the decision as to which 
network types to use, and train such networks from scratch with new samples (this removes 
any sampling bias); or, we can retain the best networks found during the sampling process, 
but average their results in an ensemble, which at least mitigates the sampling bias. 
To summarize, network design (once the input variables have been selected) follows a 
number of stages: 
 

• Select an initial configuration (typically, one hidden layer with the number of 
hidden units set to half the sum of the number of input and output units). 

• Iteratively conduct a number of experiments with each configuration, retaining 
the best network (in terms of selection error) found. A number of experiments are 
required with each configuration to avoid being fooled if training locates a local 
minimum, and it is also best to resample. 

• On each experiment, if under-learning occurs (the network doesn't achieve an 
acceptable performance level) try adding more neurons to the hidden layer(s). If 
this doesn't help, try adding an extra hidden layer. 
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The most important manifestation of this distinction is the problem of over-learning, 
or over-fitting. It is easiest to demonstrate this concept using polynomial curve fitting rather 
than neural networks, but the concept is precisely the same. 
A polynomial is an equation with terms containing only constants and powers of the 
variables. For example: 
 

y=2x+3 
y=3x2+4x+1 

 
Different polynomials have different shapes, with larger powers (and therefore larger 
numbers of terms) having steadily more eccentric shapes. Given a set of data, we may want 
to fit a polynomial curve (i.e., a model) to explain the data. The data is probably noisy, so we 
don't necessarily expect the best model to pass exactly through all the points. A low-order 
polynomial may not be sufficiently flexible to fit close to the points, whereas a high-order 
polynomial is actually too flexible, fitting the data exactly by adopting a highly eccentric 
shape that is actually unrelated to the underlying function. See figure 4 below. 
 

 
Fig. 4. High-order polynomial sample 

 
Neural networks have precisely the same problem. A network with more weights models a 
more complex function, and is therefore prone to over-fitting. A network with less weight 
may not be sufficiently powerful to model the underlying function. For example, a network 
with no hidden layers actually models a simple linear function. How then can we select the 
right complexity of network? A larger network will almost invariably achieve a lower error 
eventually, but this may indicate over-fitting rather than good modeling. 
The answer is to check progress against an independent data set, the selection set. Some of 
the cases are reserved, and not actually used for training in the back propagation algorithm. 
Instead, they are used to keep an independent check on the progress of the algorithm. It is 
invariably the case that the initial performance of the network on training and selection sets 
is the same (if it is not at least approximately the same, the division of cases between the two 
sets is probably biased). As training progresses, the training error naturally drops, and 
providing training is minimizing the true error function, the selection error drops too. 
However, if the selection error stops dropping, or indeed starts to rise, this indicates that the 
network is starting to overfit the data, and training should cease. When over-fitting occurs 
during the training process like this, it is called over-learning. In this case, it is usually 

advisable to decrease the number of hidden units and/or hidden layers, as the network is 
over-powerful for the problem at hand. In contrast, if the network is not sufficiently 
powerful to model the underlying function, over-learning is not likely to occur, and neither 
training nor selection errors will drop to a satisfactory level. 
The problems associated with local minima, and decisions over the size of network to use, 
imply that using a neural network typically involves experimenting with a large number of 
different networks, probably training each one a number of times (to avoid being fooled by 
local minima), and observing individual performances. The key guide to performance here 
is the selection error. However, following the standard scientific precept that, all else being 
equal, a simple model is always preferable to a complex model, you can also select a smaller 
network in preference to a larger one with a negligible improvement in selection error. 
A problem with this approach of repeated experimentation is that the selection set plays a 
key role in selecting the model, which means that it is actually part of the training process. 
Its reliability as an independent guide to performance of the model is therefore 
compromised - with sufficient experiments, you may just hit upon a lucky network that 
happens to perform well on the selection set. To add confidence in the performance of the 
final model, it is therefore normal practice (at least where the volume of training data allows 
it) to reserve a third set of cases - the test set. The final model is tested with the test set data, 
to ensure that the results on the selection and training set are real, and not artifacts of the 
training process. Of course, to fulfill this role properly the test set should be used only once - 
if it is in turn used to adjust and reiterate the training process, it effectively becomes 
selection data! 
This division into multiple subsets is very unfortunate, given that we usually have less data 
than we would ideally desire even for a single subset. We can get around this problem by 
resampling. Experiments can be conducted using different divisions of the available data 
into training, selection, and test sets. There are a number of approaches to this subset, 
including random (monte-carlo) resampling, cross-validation, and bootstrap. If we make 
design decisions, such as the best configuration of neural network to use, based upon a 
number of experiments with different subset examples, the results will be much more 
reliable. We can then either use those experiments solely to guide the decision as to which 
network types to use, and train such networks from scratch with new samples (this removes 
any sampling bias); or, we can retain the best networks found during the sampling process, 
but average their results in an ensemble, which at least mitigates the sampling bias. 
To summarize, network design (once the input variables have been selected) follows a 
number of stages: 
 

• Select an initial configuration (typically, one hidden layer with the number of 
hidden units set to half the sum of the number of input and output units). 

• Iteratively conduct a number of experiments with each configuration, retaining 
the best network (in terms of selection error) found. A number of experiments are 
required with each configuration to avoid being fooled if training locates a local 
minimum, and it is also best to resample. 

• On each experiment, if under-learning occurs (the network doesn't achieve an 
acceptable performance level) try adding more neurons to the hidden layer(s). If 
this doesn't help, try adding an extra hidden layer. 
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• If over-learning occurs (selection error starts to rise) try removing hidden units 
(and possibly layers). 

• Once you have experimentally determined an effective configuration for your 
networks, resample and generate new networks with that configuration. 

 
• Data Selection: All the above stages rely on a key assumption. Specifically, the 

training, verification and test data must be representative of the underlying model 
(and, further, the three sets must be independently representative). The old 
computer science adage "garbage in, garbage out" could not apply more strongly 
than in neural modeling. If training data is not representative, then the model's 
worth is at best compromised. At worst, it may be useless. It is worth spelling out 
the kind of problems which can corrupt a training set: 
 

The future is not the past. Training data is typically historical. If circumstances have 
changed, relationships which held in the past may no longer hold. All eventualities must be 
covered. A neural network can only learn from cases that are present. If people with 
incomes over $100,000 per year are a bad credit risk, and your training data includes nobody 
over $40,000 per year, you cannot expect it to make a correct decision when it encounters 
one of the previously-unseen cases. Extrapolation is dangerous with any model, but some 
types of neural network may make particularly poor predictions in such circumstances. 
A network learns the easiest features it can. A classic (possibly apocryphal) illustration of 
this is a vision project designed to automatically recognize tanks. A network is trained on a 
hundred pictures including tanks, and a hundred not. It achieves a perfect 100% score. 
When tested on new data, it proves hopeless. The reason? The pictures of tanks are taken on 
dark, rainy days; the pictures without on sunny days. The network learns to distinguish the 
(trivial matter of) differences in overall light intensity. To work, the network would need 
training cases including all weather and lighting conditions under which it is expected to 
operate - not to mention all types of terrain, angles of shot, distances... 
Unbalanced data sets. Since a network minimizes an overall error, the proportion of types of 
data in the set is critical. A network trained on a data set with 900 good cases and 100 bad 
will bias its decision towards good cases, as this allows the algorithm to lower the overall 
error (which is much more heavily influenced by the good cases). If the representation of 
good and bad cases is different in the real population, the network's decisions may be 
wrong. A good example would be disease diagnosis. Perhaps 90% of patients routinely 
tested are clear of a disease. A network is trained on an available data set with a 90/10 split. 
It is then used in diagnosis on patients complaining of specific problems, where the 
likelihood of disease is 50/50. The network will react over-cautiously and fail to recognize 
disease in some unhealthy patients. In contrast, if trained on the "complainants" data, and 
then tested on "routine" data, the network may raise a high number of false positives. In 
such circumstances, the data set may need to be crafted to take account of the distribution of 
data (e.g., you could replicate the less numerous cases, or remove some of the numerous 
cases), or the network's decisions modified by the inclusion of a loss matrix (Bishop C. M., 
1995). Often, the best approach is to ensure even representation of different cases, then to 
interpret the network's decisions accordingly. 
 
 

1.3.3 Self Organised Map 
Self Organizing Feature Map (SOFM, or Kohonen) networks are used quite differently to the 
other networks. Whereas all the other networks are designed for supervised 
learning tasks, SOFM networks are designed primarily for unsupervised learning (Haykin, 
19994), (Patterson, 19996), (Fausett, 19994) (Whereas in supervised learning the training data 
set contains cases featuring input variables together with the associated outputs (and the 
network must infer a mapping from the inputs to the outputs), in unsupervised learning the 
training data set contains only input variables. At first glance this may seem strange. 
Without outputs, what can the network learn? The answer is that the SOFM 
network attempts to learn the structure of the data.  
Also Kohonen (Kohonen, 1997) explained one possible use is therefore in exploratory data 
analysis. The SOFM network can learn to recognize clusters of data, and can also relate 
similar classes to each other. The user can build up an understanding of the data, which is 
used to refine the network. As classes of data are recognized, they can be labelled, so that 
the network becomes capable of classification tasks. SOFM networks can also be used for 
classification when output classes are immediately available - the advantage in this case is 
their ability to highlight similarities between classes. 
A second possible use is in novelty detection. SOFM networks can learn to recognize 
clusters in the training data, and respond to it. If new data, unlike previous cases, is 
encountered, the network fails to recognize it and this indicates novelty. 
A SOFM network has only two layers: the input layer, and an output layer of radial units 
(also known as the topological map layer). The units in the topological map layer are laid 
out in space - typically in two dimensions (although ST Neural Networks also supports one-
dimensional Kohonen networks). 
SOFM networks (Patterson, 19996) are trained using an iterative algorithm. Starting with an 
initially-random set of radial centres, the algorithm gradually adjusts them to reflect the 
clustering of the training data. At one level, this compares with the sub-sampling and K-
Means algorithms used to assign centres in SOM network and indeed the SOFM algorithm 
can be used to assign centres for these types of networks. However, the algorithm also acts 
on a different level. 
The iterative training procedure also arranges the network so that units representing centres 
close together in the input space are also situated close together on the topological map. You 
can think of the network's topological layer as a crude two-dimensional grid, which must be 
folded and distorted into the N-dimensional input space, so as to preserve as far as possible 
the original structure. Clearly any attempt to represent an N-dimensional space in two 
dimensions will result in loss of detail; however, the technique can be worthwhile in 
allowing the user to visualize data which might otherwise be impossible to understand. 
The basic iterative Kohonen algorithm simply runs through a number of epochs, on each 
epoch executing each training case and applying the following algorithm: 
 • Select the winning neuron (the one who's centre is nearest to the input case); 

• Adjust the winning neuron to be more like the input case (a weighted sum of the 
old neuron centre and the training case). 
 

The algorithm uses a time-decaying learning rate, which is used to perform the weighted 
sum and ensures that the alterations become more subtle as the epochs pass. This ensures 
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• If over-learning occurs (selection error starts to rise) try removing hidden units 
(and possibly layers). 

• Once you have experimentally determined an effective configuration for your 
networks, resample and generate new networks with that configuration. 

 
• Data Selection: All the above stages rely on a key assumption. Specifically, the 

training, verification and test data must be representative of the underlying model 
(and, further, the three sets must be independently representative). The old 
computer science adage "garbage in, garbage out" could not apply more strongly 
than in neural modeling. If training data is not representative, then the model's 
worth is at best compromised. At worst, it may be useless. It is worth spelling out 
the kind of problems which can corrupt a training set: 
 

The future is not the past. Training data is typically historical. If circumstances have 
changed, relationships which held in the past may no longer hold. All eventualities must be 
covered. A neural network can only learn from cases that are present. If people with 
incomes over $100,000 per year are a bad credit risk, and your training data includes nobody 
over $40,000 per year, you cannot expect it to make a correct decision when it encounters 
one of the previously-unseen cases. Extrapolation is dangerous with any model, but some 
types of neural network may make particularly poor predictions in such circumstances. 
A network learns the easiest features it can. A classic (possibly apocryphal) illustration of 
this is a vision project designed to automatically recognize tanks. A network is trained on a 
hundred pictures including tanks, and a hundred not. It achieves a perfect 100% score. 
When tested on new data, it proves hopeless. The reason? The pictures of tanks are taken on 
dark, rainy days; the pictures without on sunny days. The network learns to distinguish the 
(trivial matter of) differences in overall light intensity. To work, the network would need 
training cases including all weather and lighting conditions under which it is expected to 
operate - not to mention all types of terrain, angles of shot, distances... 
Unbalanced data sets. Since a network minimizes an overall error, the proportion of types of 
data in the set is critical. A network trained on a data set with 900 good cases and 100 bad 
will bias its decision towards good cases, as this allows the algorithm to lower the overall 
error (which is much more heavily influenced by the good cases). If the representation of 
good and bad cases is different in the real population, the network's decisions may be 
wrong. A good example would be disease diagnosis. Perhaps 90% of patients routinely 
tested are clear of a disease. A network is trained on an available data set with a 90/10 split. 
It is then used in diagnosis on patients complaining of specific problems, where the 
likelihood of disease is 50/50. The network will react over-cautiously and fail to recognize 
disease in some unhealthy patients. In contrast, if trained on the "complainants" data, and 
then tested on "routine" data, the network may raise a high number of false positives. In 
such circumstances, the data set may need to be crafted to take account of the distribution of 
data (e.g., you could replicate the less numerous cases, or remove some of the numerous 
cases), or the network's decisions modified by the inclusion of a loss matrix (Bishop C. M., 
1995). Often, the best approach is to ensure even representation of different cases, then to 
interpret the network's decisions accordingly. 
 
 

1.3.3 Self Organised Map 
Self Organizing Feature Map (SOFM, or Kohonen) networks are used quite differently to the 
other networks. Whereas all the other networks are designed for supervised 
learning tasks, SOFM networks are designed primarily for unsupervised learning (Haykin, 
19994), (Patterson, 19996), (Fausett, 19994) (Whereas in supervised learning the training data 
set contains cases featuring input variables together with the associated outputs (and the 
network must infer a mapping from the inputs to the outputs), in unsupervised learning the 
training data set contains only input variables. At first glance this may seem strange. 
Without outputs, what can the network learn? The answer is that the SOFM 
network attempts to learn the structure of the data.  
Also Kohonen (Kohonen, 1997) explained one possible use is therefore in exploratory data 
analysis. The SOFM network can learn to recognize clusters of data, and can also relate 
similar classes to each other. The user can build up an understanding of the data, which is 
used to refine the network. As classes of data are recognized, they can be labelled, so that 
the network becomes capable of classification tasks. SOFM networks can also be used for 
classification when output classes are immediately available - the advantage in this case is 
their ability to highlight similarities between classes. 
A second possible use is in novelty detection. SOFM networks can learn to recognize 
clusters in the training data, and respond to it. If new data, unlike previous cases, is 
encountered, the network fails to recognize it and this indicates novelty. 
A SOFM network has only two layers: the input layer, and an output layer of radial units 
(also known as the topological map layer). The units in the topological map layer are laid 
out in space - typically in two dimensions (although ST Neural Networks also supports one-
dimensional Kohonen networks). 
SOFM networks (Patterson, 19996) are trained using an iterative algorithm. Starting with an 
initially-random set of radial centres, the algorithm gradually adjusts them to reflect the 
clustering of the training data. At one level, this compares with the sub-sampling and K-
Means algorithms used to assign centres in SOM network and indeed the SOFM algorithm 
can be used to assign centres for these types of networks. However, the algorithm also acts 
on a different level. 
The iterative training procedure also arranges the network so that units representing centres 
close together in the input space are also situated close together on the topological map. You 
can think of the network's topological layer as a crude two-dimensional grid, which must be 
folded and distorted into the N-dimensional input space, so as to preserve as far as possible 
the original structure. Clearly any attempt to represent an N-dimensional space in two 
dimensions will result in loss of detail; however, the technique can be worthwhile in 
allowing the user to visualize data which might otherwise be impossible to understand. 
The basic iterative Kohonen algorithm simply runs through a number of epochs, on each 
epoch executing each training case and applying the following algorithm: 
 • Select the winning neuron (the one who's centre is nearest to the input case); 

• Adjust the winning neuron to be more like the input case (a weighted sum of the 
old neuron centre and the training case). 
 

The algorithm uses a time-decaying learning rate, which is used to perform the weighted 
sum and ensures that the alterations become more subtle as the epochs pass. This ensures 
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that the centres settle down to a compromise representation of the cases which cause 
that neuron to win. The topological ordering property is achieved by adding the concept of 
a neighbourhood to the algorithm. The neighbourhood is a set of neurons surrounding the 
winning neuron. The neighbourhood, like the learning rate, decays over time, so that 
initially quite a large number of neurons belong to the neighbourhood (perhaps almost the 
entire topological map); in the latter stages the neighbourhood will be zero (i.e., consists 
solely of the winning neuron itself). In the Kohonen algorithm, the adjustment of neurons is 
actually applied not just to the winning neuron, but to all the members of the current 
neighbourhood. 
The effect of this neighbourhood update is that initially quite large areas of the network are 
"dragged towards" training cases - and dragged quite substantially. The network develops a 
crude topological ordering, with similar cases activating clumps of neurons in 
the topological map. As epochs pass the learning rate and neighbourhood both decrease, so 
that finer distinctions within areas of the map can be drawn, ultimately resulting in fine-
tuning of individual neurons. Often, training is deliberately conducted in two distinct 
phases: a relatively short phase with high learning rates and neighbourhood, and a long 
phase with low learning rate and zero or near-zero neighbourhoods. 
Once the network has been trained to recognize structure in the data, it can be used as a 
visualization tool to examine the data. The Win Frequencies Datasheet (counts of the number 
of times each neuron wins when training cases are executed) can be examined to see if 
distinct clusters have formed on the map. Individual cases are executed and the topological 
map observed, to see if some meaning can be assigned to the clusters (this usually involves 
referring back to the original application area, so that the relationship between clustered 
cases can be established). Once clusters are identified, neurons in the topological map are 
labelled to indicate their meaning (sometimes individual cases may be labelled, too). Once 
the topological map has been built up in this way, new cases can be submitted to the 
network. If the winning neuron has been labelled with a class name, the network can 
perform classification. If not, the network is regarded as undecided. 
SOFM networks also make use of the accept threshold, when performing classification. 
Since the activation level of a neuron in a SOFM network is the distance of the neuron from 
the input case, the accept threshold acts as a maximum recognized distance. If the activation 
of the winning neuron is greater than this distance, the SOFM network is regarded as 
undecided. Thus, by labelling all neurons and setting the accept threshold appropriately, a 
SOFM network can act as a novelty detector (it reports undecided only if the input case is 
sufficiently dissimilar to all radial units). 
SOFM networks as expressed by Kohonen (Kohonen, 1997) are inspired by some known 
properties of the brain. The cerebral cortex is actually a large flat sheet (about 0.5m squared; 
it is folded up into the familiar convoluted shape only for convenience in fitting into the 
skull!) with known topological properties (for example, the area corresponding to the hand 
is next to the arm, and a distorted human frame can be topologically mapped out in two 
dimensions on its surface).  

 
1.4 Grouping Data Using Self Organise Map  
The first part of a SOM is the data. Above are some examples of 3 dimensional data which 
are commonly used when experimenting with SOMs. Here the colours are represented in 
three dimensions (red, blue, and green.) The idea of the self-organizing maps is to project 

the n-dimensional data (here it would be colour and would be 3 dimensions) into something 
that be better understood visually (in this case it would be a 2 dimensional image map). 
 

 
Fig. 5. Sample Data 
 
In this case one would expect the dark blue and the greys to end up near each other on a 
good map and yellow close to both the red and the green.  The second components to SOMs 
are the weight vectors. Each weight vector has two components to them which I have here 
attempted to show in the image below.  The first part of a weight vector is its data. This is of 
the same dimensions as the sample vectors and the second part of a weight vector is its 
natural location. The good thing about colour is that the data can be shown by displaying 
the color, so in this case the color is the data, and the location is the x,y position of the pixel 
on the screen. 
 

 
Fig. 6. 2D Array Weight of Vector 

 
In this example, 2D array of weight vectors was used and would look like figure 5 above. 
This picture is a skewed view of a grid where you have the n-dimensional array for each 
weight and each weight has its own unique location in the grid. Weight vectors don’t 
necessarily have to be arranged in 2 dimensions, a lot of work has been done using SOMs of 
1 dimension, but the data part of the weight must be of the same dimensions as the sample 
vectors.Weights are sometimes referred to as neurons since SOMs are actually neural 
networks.   SOM Algorithm. The way that SOMs go about organizing themselves is by 
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that the centres settle down to a compromise representation of the cases which cause 
that neuron to win. The topological ordering property is achieved by adding the concept of 
a neighbourhood to the algorithm. The neighbourhood is a set of neurons surrounding the 
winning neuron. The neighbourhood, like the learning rate, decays over time, so that 
initially quite a large number of neurons belong to the neighbourhood (perhaps almost the 
entire topological map); in the latter stages the neighbourhood will be zero (i.e., consists 
solely of the winning neuron itself). In the Kohonen algorithm, the adjustment of neurons is 
actually applied not just to the winning neuron, but to all the members of the current 
neighbourhood. 
The effect of this neighbourhood update is that initially quite large areas of the network are 
"dragged towards" training cases - and dragged quite substantially. The network develops a 
crude topological ordering, with similar cases activating clumps of neurons in 
the topological map. As epochs pass the learning rate and neighbourhood both decrease, so 
that finer distinctions within areas of the map can be drawn, ultimately resulting in fine-
tuning of individual neurons. Often, training is deliberately conducted in two distinct 
phases: a relatively short phase with high learning rates and neighbourhood, and a long 
phase with low learning rate and zero or near-zero neighbourhoods. 
Once the network has been trained to recognize structure in the data, it can be used as a 
visualization tool to examine the data. The Win Frequencies Datasheet (counts of the number 
of times each neuron wins when training cases are executed) can be examined to see if 
distinct clusters have formed on the map. Individual cases are executed and the topological 
map observed, to see if some meaning can be assigned to the clusters (this usually involves 
referring back to the original application area, so that the relationship between clustered 
cases can be established). Once clusters are identified, neurons in the topological map are 
labelled to indicate their meaning (sometimes individual cases may be labelled, too). Once 
the topological map has been built up in this way, new cases can be submitted to the 
network. If the winning neuron has been labelled with a class name, the network can 
perform classification. If not, the network is regarded as undecided. 
SOFM networks also make use of the accept threshold, when performing classification. 
Since the activation level of a neuron in a SOFM network is the distance of the neuron from 
the input case, the accept threshold acts as a maximum recognized distance. If the activation 
of the winning neuron is greater than this distance, the SOFM network is regarded as 
undecided. Thus, by labelling all neurons and setting the accept threshold appropriately, a 
SOFM network can act as a novelty detector (it reports undecided only if the input case is 
sufficiently dissimilar to all radial units). 
SOFM networks as expressed by Kohonen (Kohonen, 1997) are inspired by some known 
properties of the brain. The cerebral cortex is actually a large flat sheet (about 0.5m squared; 
it is folded up into the familiar convoluted shape only for convenience in fitting into the 
skull!) with known topological properties (for example, the area corresponding to the hand 
is next to the arm, and a distorted human frame can be topologically mapped out in two 
dimensions on its surface).  

 
1.4 Grouping Data Using Self Organise Map  
The first part of a SOM is the data. Above are some examples of 3 dimensional data which 
are commonly used when experimenting with SOMs. Here the colours are represented in 
three dimensions (red, blue, and green.) The idea of the self-organizing maps is to project 

the n-dimensional data (here it would be colour and would be 3 dimensions) into something 
that be better understood visually (in this case it would be a 2 dimensional image map). 
 

 
Fig. 5. Sample Data 
 
In this case one would expect the dark blue and the greys to end up near each other on a 
good map and yellow close to both the red and the green.  The second components to SOMs 
are the weight vectors. Each weight vector has two components to them which I have here 
attempted to show in the image below.  The first part of a weight vector is its data. This is of 
the same dimensions as the sample vectors and the second part of a weight vector is its 
natural location. The good thing about colour is that the data can be shown by displaying 
the color, so in this case the color is the data, and the location is the x,y position of the pixel 
on the screen. 
 

 
Fig. 6. 2D Array Weight of Vector 

 
In this example, 2D array of weight vectors was used and would look like figure 5 above. 
This picture is a skewed view of a grid where you have the n-dimensional array for each 
weight and each weight has its own unique location in the grid. Weight vectors don’t 
necessarily have to be arranged in 2 dimensions, a lot of work has been done using SOMs of 
1 dimension, but the data part of the weight must be of the same dimensions as the sample 
vectors.Weights are sometimes referred to as neurons since SOMs are actually neural 
networks.   SOM Algorithm. The way that SOMs go about organizing themselves is by 
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competeting for representation of the samples. Neurons are also allowed to change 
themselves by learning to become more like samples in hopes of winning the next 
competition. It is this selection and learning process that makes the weights organize 
themselves into a map representing similarities. 
So with these two components (the sample and weight vectors), how can one order the 
weight vectors in such a way that they will represent the similarities of the sample vectors? 
This is accomplished by using  the very simple algorithm shown here. 
 

 
 

 

 

 

 

 
Fig. 7. A Sample SOM Algorithm  
 
The first step in constructing a SOM is to initialize the weight vectors. From there you select 
a sample vector randomly and search the map of weight vectors to find which weight best 
represents that sample. Since each weight vector has a location, it also has neighbouring 
weights that are close to it. The weight that is chosen is rewarded by being able to become 
more like that randomly selected sample vector. In addition to this reward, the neighbours 
of that weight are also rewarded by being able to become more like the chosen sample 
vector. From this step we increase t some small amount because the number of neighbours 
and how much each weight can learn decreases over time. This whole process is then 
repeated a large number of times, usually more than 1000 times. 
In the case of colours, the program would first select a color from the array of samples such 
as green, then search the weights for the location containing the greenest color. From there, 
the colour surrounding that weight are then made more green. Then another color is chosen, 
such as red, and the process continues. They processes are:   
 

• Initializing the Weights 
Here are screen shots of the three different ways which decided to initialize the 
weight vector map. We should first mention the palette here. In the java program 
below there are 6 intensities of red, blue, and green displayed, it really does not 
take away from the visual experience. The actual values for the weights are floats, 
so they have a bigger range than the six values that are shown in figure 7 below. 

Initialize Map
For t from 0 to 1

Randomly select a sample
Get best matching unit
Scale neighbors
Increase t a small amount

End for

 
 

Fig. 8. Weight Values 
 

There are a number of ways to initialize the weight vectors. The first you can see is just give 
each weight vector random values for its data. A screen of pixels with random red, blue, and 
green values is shown above on the left. Unfortunately calculating SOMs according to 
Kohonen (Kohonen, 1997) is very computationally expensive, so there are some variants of 
initializing the weights so that samples that you know for a fact are not similar start off far 
away. This way you need less iteration to produce a good map and can save yourself some 
time. 
Here we made two other ways to initialize the weights in addition to the random one. This 
one is just putting red, blue, green, and black at all four corners and having them slowly 
fade toward the center.  This other one is having red, green, and blue equally distant from 
one another and from the center.    
 

• B. Get Best Matching Unit 
This is a very simple step, just go through all the weight vectors and calculate the 
distance from each weight to the chosen sample vector. The weight with the 
shortest distance is the winner. If there are more than one with the same distance, 
then the winning weight is chosen randomly among the weights with the shortest 
distance.  There are a number of different ways for determining what distance 
actually means mathematically.  The most common method is to use the Euclidean 
distance: 
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where x[i] is the data value at the ith data member of a sample and n is the number of 
dimensions to the sample vectors. 
In the case of colour, if we can think of them as 3D points, each component being an axis. If 
we have chosen green which is of the value (0,6,0), the color light green (3,6,3) will be closer 
to green than red at (6,0,0). 
 
        Light green = Sqrt((3-0)^2+(6-6)^2+(3-0)^2) = 4.24  
        Red           = Sqrt((6-0)^2+(0-6)^2+(0-0)^2) =  8.49 
 
So light green is now the best matching unit, but this operation of calculating distances and 
comparing them is done over the entire map and the wieght with the shortest distance to the 
sample vector is the winner and the BMU. The square root is not computed in the java 
program for speed optimization for this section.   
 

• C. Scale Neighbors 
1. Determining Neighbors 
There are actually two parts to scaling the neighboring weights: determining which 
weights are considered as neighbors and how much each weight can become more 
like the sample vector. The neighbors of a winning weight can be determined using 
a number of different methods. Some use concentric squares, others hexagons, I 
opted to use a gaussian function where every point with a value above zero is 
considered a neighbor. 
As mentioned previously, the amount of neighbors decreases over time. This is 
done so samples can first move to an area where they will probably be, then they 
jockey for position. This process is similar to coarse adjustment followed by fine 
tuning. The function used to decrease the radius of influence does not really matter 
as long as it decreases, we just used a linear function. 

 
Fig. 9. A graph of SOM Neighbour’s determination 

 
Figure 8 above shows a plot of the function used. As the time progresses, the base goes 
towards the centre, so there are less neighbours as time progresses. The initial radius is set 
really high, some value near the width or height of the map.    
 

2. Learning 
The second part to scaling the neighbours is the learning function. The winning 
weight is rewarded with becoming more like the sample vector.  The neighbours 
also become more like the sample vector. An attribute of this learning process is 
that the farther away the neighbour is from the winning vector, the less it learns. 
The rate at which the amount a weight can learn decreases and can also be set to 
whatever you want. I chose to use a gaussian function. This function will return a 
value ranging between 0 and 1, where each neighbor is then changed using the 
parametric equation.  The new color is: 
 

Current color*(1.-t) + sample vector*t 
 

So in the first iteration, the best matching unit will get a t of 1 for its learning 
function, so the weight will then come out of this process with the same exact 
values as the randomly selected sample. 
 

Just as the amount of neighbors a weight has falls off, the amount a weight can learn also 
decreases with time. On the first iteration, the winning weight becomes the sample vector 
since t has a full range of from 0 to 1. Then as time progresses, the winning weight becomes 
slightly more like the sample where the maximum value of t decreases. The rate at which 
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the amount a weight can learn falls of linearly. To depict this visually, in the previous plot, 
the amount a weight can learn is equivalent to how high the bump is at their location.  As 
time progresses, the height of the bump will decrease. Adding this function to the 
neighbourhood function will result in the height of the bump going down while the base of 
the bump shrinks. 
So once a weight is determined the winner, the neighbours of that weight is found and each 
of those neighbours in addition to the winning weight change to become more like the 
sample vector.   

 
1.4.1 Determining the Quality of SOMs 
Below is another example of a SOM generated by the program using 500 iterations in figure 
9. At first glance you will notice that similar colour is all grouped together yet again. 
However, this is not always the case as you can see that there are some colour who are 
surrounded by colour that are nothing like them at all. It may be easy to point this out with 
colour since this is something that we are familiar with, but if we were using more abstract 
data, how would we know that since two entities are close to each other means that they are 
similar and not that they are just there because of bad luck? 
 

 
Fig. 10. SOM Iteration 

 
There is a very simple method for displaying where similarities lie and where they do not. 
In order to compute this we go through all the weights and determine how similar the 
neighbors are. This is done by calculating the distance that the weight vectors make between 
the each weight and each of its neighbors. With an average of these distances a color is then 
assigned to that location. This procedure is located in Screen.java and named public void 
update_bw(). 
If the average distance were high, then the surrounding weights are very different and a 
dark color is assigned to the location of the weight. If the average distance is low, a lighter 
color is assigned. So in areas of the center of the blobs the colour are the same, so it should 
be white since all the neighbors are the same color. In areas between blobs where there are 

similarities it should be not white, but a light grey. Areas where the blobs are physically 
close to each other, but are not similar at all there should be black. See Figure 8 below 
 

 
Fig. 11. A sample allocation of Weight in Colour 

 
As shown above, the ravines of black show where the colour may be physically close to each 
other on the map, but are very different from each other when it comes to the actual values 
of the weights. Areas where there is a light grey between the blobs represent a true 
similarity.  In the pictures above, in the bottom right there is black surrounded by colour 
which are not very similar to it. When looking at the black and white similarity SOM, it 
shows that black is not similar to the other colour because there are lines of black 
representing no similarity between those two colour. Also in the top corner there is pink and 
nearby is a light green which are not very near each other in reality, but near each other on 
the colored SOM. Looking at the black and white SOM, it clearly shows that the two not 
very similar by having black in between the two colour. 
With these average distances used to make the black and white map, we can actually assign 
each SOM a value that determines how good the image represents the similarities of the 
samples by simply adding these averages.   

 
1.4.2 Advantages and Disadvantages of SOM 
Self organise map has the following advantages:  
 

• Probably the best thing about SOMs that they are very easy to understand. It’s very 
simple, if they are close together and there is grey connecting them, then they are 
similar. If there is a black ravine between them, then they are different. Unlike 
Multidimensional Scaling or N-land, people can quickly pick up on how to use 
them in an effective manner. 

• Another great thing is that they work very well. As I have shown you they classify 
data well and then are easily evaluate for their own quality so you can actually 
calculated how good a map is and how strong the similarities between objects are.  
 

These are the disadvantages:   
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• One major problem with SOMs is getting the right data. Unfortunately you need a 
value for each dimension of each member of samples in order to generate a map. 
Sometimes this simply is not possible and often it is very difficult to acquire all of 
this data so this is a limiting feature to the use of SOMs often referred to as missing 
data. 

• Another problem is that every SOM is different and finds different similarities 
among the sample vectors. SOMs organize sample data so that in the final product, 
the samples are usually surrounded by similar samples, however similar samples 
are not always near each other. If you have a lot of shades of purple, not always 
will you get one big group with all the purples in that cluster, sometimes the 
clusters will get split and there will be two groups of purple. Using colour we 
could tell that those two groups in reality are similar and that they just got split, 
but with most data, those two clusters will look totally unrelated. So a lot of maps 
need to be constructed in order to get one final good map. 

• The final major problem with SOMs is that they are very computationally 
expensive which is a major drawback since as the dimensions of the data increases, 
dimension reduction visualization techniques become more important, but 
unfortunately then time to compute them also increases. For calculating that black 
and white similarity map, the more neighbours you use to calculate the distance 
the better similarity map you will get, but the number of distances the algorithm 
needs to compute increases exponentially.  
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