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1 Introduction

Let X be a compact subset of Euclidean space IRd, Y a subset in IR and

IN` := {1, . . . , `} for any ` ∈ IN. Let ρ be a fixed but unknown probability

measure on Z := X×Y . The generalization error for a function f : X → Y

is defined as

E(f) :=

∫

Z

(
f(x) − y

)2
dρ(z). (1.1)

The function minimizing the above error is called the regression function

and is given by

fρ(x) =

∫

Y

ydρ(y|x), x ∈ X, (1.2)

where ρ(·|x) is the conditional probability measure at x induced by ρ.

We consider the problem of approximating the regression function from

a set of training data drawn from ρ. In this paper, we restrict our attention

to online learning algorithms for computing an approximator of fρ in a

reproducing kernel Hilbert space (RKHS).

Let K : X × X → IR be a Mercer kernel, that is, a continuous, sym-

metric and positive semi-definite function, see e.g. [12]. The RKHS HK

associated with K is defined [1] to be the completion of the linear span

of the set of functions {Kx(·) := K(x, ·) : x ∈ X} with inner product

satisfying, for any x ∈ X and g ∈ HK , the reproducing property

〈Kx, g〉K = g(x). (1.3)

Let {zt = (xt, yt) : t ∈ IN} be a sequence of random samples indepen-

dently distributed according to ρ. The online gradient descent algorithm

[10, 19, 22, 28] is defined as

{
f1 = 0, and for t ∈ N
ft+1 = ft − ηt

(
(ft(xt) − yt)Kxt + λft

)
,

(1.4)

where λ ≥ 0 is called the regularization parameter. We call the sequence

{ηt : t ∈ IN} the step sizes or learning rates and {ft : t ∈ IN} the learning

sequence. Clearly, each output ft+1 only depends only on {zj : j ∈ INt}.
The class of learning algorithms displayed above is also referred to

as stochastic approximation algorithms in the setting of RKHS’s. Such

a stochastic approximation procedure dates back to [21]. One can see

[22, 28, 32, 35] and references therein for more background material.
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When the parameter λ > 0, we call (1.4) the online regularized algo-

rithm. This algorithm has been well studied in the recent literature, see

e.g. [20, 22, 33]. In this paper, we are mainly concerned with the online

gradient descent algorithm without an explicit RKHS regularization term,

which is given by (1.4) with λ = 0, that is,

{
f1 = 0, and for t ∈ N
ft+1 = ft − ηt(ft(xt) − yt)Kxt .

(1.5)

We study the approximation of fT+1, the output of iteration step

(sample size) T , to the regression function fρ. The nature of the least-

square loss leads to the measurement in the metric of L2
ρX

defined as

‖f‖ρ = ‖f‖L2
ρX

:=
(∫

X
|f(x)|2dρX

) 1
2 , where ρX is the marginal distribu-

tion of ρ on X. A direct computation yields that

‖fT+1 − fρ‖2
ρ = E(fT+1) − E(fρ), (1.6)

see e.g. [12] for a proof.

Our primary goal is to estimate the error (1.6) for the least-square

online algorithm (1.5) by means of properties of ρ and K. We shall show

how the choice of the step sizes in the algorithm affects its generalization

error. Moreover, we shall derive error rates for algorithm (1.5) which are

competitive with those in the literature. We mainly focus on two different

types of step sizes. The first one is a universal polynomially decaying

sequence of the form {ηt = O(t−θ), t ∈ N} with θ ∈ (0, 1). The second

type of step sizes is of the form {ηt = η : t ∈ INT} with η = η(T ) depending

on the iteration number (sample size) T . As we shall discuss in Section 2,

the function η(T ) provides a trade-off between the learning rate η and the

iteration steps T and its choice ensures convergence of the algorithm. This

is in the spirit of early stopping implicit regularization, see e.g. [32, 36].

The rest of the paper is organized as follows. The next section summa-

rizes our main results and Section 3 collects discussions on related work.

To formulate our basic ideas, in Section 4 we provide a novel approach to

the error analysis of the online algorithm (1.4) under some conditions on

the step sizes. The essential element in our analysis is an appealing rela-

tion between the generalization error and a weighted form of cumulative

sample error (see Proposition 1) in online learning literature (e.g. [8, 10]).

In Section 5, we develop error bounds and convergence results for the on-

line algorithm (1.5). Finally, Section 6 establishes explicit error rates for
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algorithm (1.5) and, as a byproduct, improves the preceding rates [22, 33]

for the online regularized algorithm given by (1.4) with λ > 0.

2 Main results

We begin with some background material and notations. Firstly, let C(X)

be the space of continuous functions on X with the norm ‖ · ‖∞, κ :=

supx∈X

√
K(x, x) and note, by the reproducing property (1.3), for every

f ∈ HK , that

‖f‖∞ ≤ κ‖f‖K . (2.1)

In addition, for every t ∈ IN we denote the expectation Ez1,...,zt as EZt

and use the convention EZ0

[
ξ
]

= ξ for any random variable ξ. Secondly,

we introduce the notion of K-functional [5] which plays a central role in

approximation theory, namely

K(s, fρ) := inf
f∈HK

{‖f − fρ‖ρ + s‖f‖K}, s > 0. (2.2)

Next, we define, for any θ ∈ (0, 1), the quantity

µ(θ) :=

{
1248(1 + κ)4 if θ = 1

2
,

208(1+κ)4

(1−2θ−1)|2θ−1|

(
ln

(
8

1−θ

)
+ 1

min{θ,1−θ}

)
otherwise.

(2.3)

Finally, we require that
∫

Z
y2dρ(z) < ∞ which implies that the quantity

E(fρ) + ‖fρ‖2
ρ is finite.

We are now ready to state our main results. The first one deals with

error bounds for the online gradient descent algorithm (1.5).

Theorem 1. Let θ ∈ (0, 1) and {ηt = 1
µ
t−θ : t ∈ IN} with some con-

stant µ ≥ µ(θ). Define {ft : t ∈ IN} by (1.5). Then, for any T ∈ IN,

EZT

[‖fT+1 − fρ‖2
ρ

]
is bounded by

[
K(bθ

√
µ T−(1−θ)/2, fρ)

]2

+
cρcθ

µ
T−min{θ,1−θ} ln

( 8T

1 − θ

)
, (2.4)

where cρ := 4(1+κ)4
(
20‖fρ‖2

ρ+3E(fρ)
)
, bθ := 2(1+κ)

√
1−θ

1−2θ−1 and cθ = 13

if θ = 1
2

and 13
(1−2θ−1)|1−2θ| otherwise.

The K-functional term of our upper bound in Theorem 1 concerns the

approximation of the function fρ in the space L2
ρX

by functions in the
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space HK . Its polynomial decay can be characterized by requiring that fρ

lies in the interpolation space (L2
ρX

,HK)β,∞ defined as

(L2
ρX

,HK)β,∞ :=
{
f ∈ L2

ρX
: ‖f‖β,∞ = sup

s>0
s−βK(s, f) < ∞}

, (2.5)

where β ∈ [0, 1]. Indeed, it is easy to see that, for some c > 0, K(s, fρ) ≤
csβ for any s > 0 if and only if fρ ∈ (L2

ρX
,HK)β,∞. Note [5] that

(L2
ρX

,HK)0,∞ = L2
ρX

and (L2
ρX

,HK)1,∞ = HK . Therefore, we can intu-

itively regard the interpolation space (L2
ρX

,HK)β,∞ as an intermediate

space between the metric space L2
ρX

and the much smaller approximation

space HK . Similar ideas of using the K-functional to characterize the

approximation property of the space HK can be found in [11, 12, 23].

In general, we have [5] that lims→0+ K(s, fρ) = inff∈HK
‖f −fρ‖ρ. This

gives rise to convergence of the online gradient descent algorithm (1.5).

Theorem 2. Let θ ∈ (0, 1) and µ(θ) be given by (2.3). Define {ft : t ∈ IN}
by (1.5). If the step sizes satisfy ηt = 1

µ
t−θ for t ∈ IN with some constant

µ ≥ µ(θ) then we have that

lim
T→∞

EZT

[‖fT+1 − fρ‖2
ρ

]
= inf

f∈HK

‖f − fρ‖2
ρ.

We will give the proofs of Theorems 1 and 2 in Section 5.

If the space HK has a good approximation property then the limit in

Theorem 2 equals zero. To see this, we say that HK is dense in L2
ρX

if

inf
f∈HK

‖f − g‖ρ = 0, for all g ∈ L2
ρX

. (2.6)

We note that, in [26], a kernel is called universal if inff∈HK
‖f − g‖∞ =

0, for all g ∈ C(X). For example, the Gaussian kernel Kσ(x, x′) =

e−
|x−x′|2

2σ2 is universal for every σ > 0. Universal kernels are sufficient to

ensure our density condition (2.6), since ‖f‖ρ ≤ ‖f‖∞ and C(X) is dense

in L2
ρX

. Note that fρ ∈ L2
ρX

. Therefore, an immediate consequence of

Theorem 2 is the following corollary.

Corollary 1. Suppose the assumptions in Theorem 2 hold true. Moreover,

if HK is dense in L2
ρX

then we have that

lim
T→∞

EZT

[‖fT+1 − fρ‖2
ρ

]
= 0.
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By choosing θ appropriately, we can get explicit error rates if the re-

gression function fρ lies in the regularity space Lβ
K(L2

ρX
). To define this

space, we introduce the integral operator LK : L2
ρX

→ L2
ρX

defined as

LKf(x) :=

∫

X

K(x, x′)f(x′)dρX(x′), ∀ x ∈ X and f ∈ L2
ρX

.

Since K is a Mercer kernel, LK is compact and positive. Therefore, the

fractional power operator Lβ
K is well-defined for any β > 0. We indicate

its range space by

Lβ
K(L2

ρX
) :=

{
f =

∞∑
j=1

λβ
j ajφj : ‖L−β

K f‖ρ :=
∞∑

j=1

a2
j < ∞

}
, (2.7)

where {λj : j ∈ IN} are the positive eigenvalues of the operator LK and

{φj : j ∈ IN} are the corresponding orthonormal eigenfunctions. Thus,

the smaller β is, the bigger the range space Lβ
K(L2

ρX
) will be. In particular,

we know [25] that Lβ
K(L2

ρX
) ⊆ HK for β > 1

2
and L

1
2
K(L2

ρX
) = HK with the

norm satisfying

‖g‖K = ‖L− 1
2

K g‖ρ, ∀g ∈ HK . (2.8)

One can find more details in [12, 25].

Of course, one can assume that fρ ∈ (L2
ρX

,HK)β,∞. This is a natural

assumption since Lβ
K(L2

ρX
) ⊆ (L2

ρX
,HK)2β,∞ for β ∈ [0, 1

2
], see the Ap-

pendix. However, in this paper we concentrate on the hypothesis space

Lβ
K(L2

ρX
) since this facilitates a comparison of our results with those in

the related literature (e.g. [7, 25, 27, 32, 33, 34]).

We are now in a position to state our error rates for algorithm (1.5).

Hereafter, the expression aT = O(bT ) means that there exists an absolute

constant c such that aT ≤ cbT for all T ∈ IN.

Theorem 3. Let θ ∈ (0, 1) and µ(θ) be given by (2.3). Define {ft : t ∈ IN}
by (1.5). If fρ ∈ Lβ

K(L2
ρX

) with some 0 < β ≤ 1
2

then, by selecting

ηt = 1

µ( 2β
2β+1

)
t−

2β
2β+1 for t ∈ IN, for any T ∈ IN there holds

EZT

[‖fT+1 − fρ‖2
ρ

]
= O

(
T− 2β

2β+1 ln T
)
. (2.9)

In Section 6.1, we will derive the error rate (2.9) from some modified

error bounds similar to (2.4). Since the best rate of the second term

on the right-hand side of (2.4) is O(T− 1
2 ln T ), the associated error rate

6



(2.9) is never faster than the rate O(T− 1
2 ln T ) achieved for β = 1

2
. In

contrast, it is known that regularization algorithms [4, 7, 25, 31] in batch

learning1 can achieve better rates than O(T− 1
2 ) if fρ ∈ Lβ

K(L2
ρX

) with

β > 1
2
. Unfortunately, for the online algorithm (1.5) with polynomially

decaying step sizes, we do not know how to get better rates beyond the

range β ∈ (0, 1
2
].

We turn our attention to the case that the step sizes of (1.5) are in

the form of {ηt = η : t ∈ INT} while the learning rate η depends on the

sample number T . In this scenario, the error bounds for algorithm (1.5)

read as follows.

Theorem 4. Let {ηt = η : t ∈ INT} and {ft : t ∈ INT+1} be produced

by algorithm (1.5). If 16(κ + 1)4 ln
(
8T

)
η ≤ 1, then EZT

[‖fT+1 − fρ‖2
ρ

]
is

bounded by [
K(2(1 + κ)

(
ηT

)− 1
2 , fρ)

]2

+ cρη ln
(
8T

)
. (2.10)

Note that the function K(·, fρ) is non-decreasing and lims→0+ K(s, fρ) =

inff∈HK
‖f − fρ‖ρ. Thus, from the error bound (2.10) we see that large

number of iteration T reduces the K-functional, but enlarge the last term

in (2.10); on the other hand, small number of iteration reduces the last

term in (2.10), but enlarges the K-functional. Hence, trading off the two

terms in the error bound (2.10) suggests an early stopping rule T = T (η)

which guarantees convergence of algorithm (1.5) as η → 0+.

However, our purpose in this paper is to derive error rates with respect

to the iteration steps (sample number) T by choosing η appropriately, and

thus we take the inverse function’s description η = η(T ).

In addition to the error ‖fT+1−fρ‖ρ, there are other interesting relevant

quantities such as the error ‖fT+1 − fρ‖K (if fρ ∈ HK). Observe that the

global error ‖fT+1 − fρ‖ρ can not wholly describe the local properties of

fT+1 which is usually measured by |fT+1(x0) − fρ(x0)| for any x0 ∈ X.

However, if fρ ∈ HK , for every x0 ∈ X we have that |fT+1(x0)− fρ(x0)| ≤
κ‖fT+1 − fρ‖K . In this case, the convergence and the error rate in HK

reflect the local performance of the predictor fT+1. Indeed, it was further

pointed out in [25] that the convergence in HK yields convergence in Ck(X)

under some conditions on K, where Ck denotes the space of all functions

whose derivatives up to order k are continuous.

1In this learning setting, we usually use the whole batch of examples at one time.
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When the step sizes of (1.5) are of the form {ηt = η(T ) : t ∈ INT}, we

can get convergence results in L2
ρX

as well as in HK .

Theorem 5. Let {ηt = η(T ) : t ∈ INT} and {ft : t ∈ INT+1} be produced

by (1.5). Then the following statements hold true.

(1) If the step size satisfies

lim
T→∞

Tη(T ) = ∞, lim
T→∞

η(T ) ln T = 0 (2.11)

then there holds

lim
T→∞

EZT

[‖fT+1 − fρ‖2
ρ

]
= inf

f∈HK

‖f − fρ‖2
ρ. (2.12)

(2) If fρ ∈ HK and the step size satisfies

lim
T→∞

Tη(T ) = ∞, lim
T→∞

η2(T )T = 0 (2.13)

then we have that

lim
T→∞

EZT

[‖fT+1 − fρ‖2
K

]
= 0. (2.14)

Note that, if the step size decays in the form of η(T ) = O(T−θ), T →
∞ with θ > 0 then the hypothesis (2.11) allows the choice θ ∈ (0, 1) while

(2.13) requires that θ ∈ (1
2
, 1).

We will prove Theorems 4 and 5 in Section 5. In Section 6, we shall

establish the following error rates in L2
ρX

as well as in HK when the step

sizes are of the form {ηt = η(T ) : t ∈ INT}.
Theorem 6. Let {ηt = η : t ∈ INT} and {ft : t ∈ INT+1} be pro-

duced by (1.5). If fρ ∈ Lβ
K(L2

ρX
) for some β > 0 then, by choosing

η := β
64(1+κ)4(2β+1)

T− 2β
2β+1 , we have that

EZT

[‖fT+1 − fρ‖2
ρ

]
= O

(
T− 2β

2β+1 ln T
)
. (2.15)

Moreover, if β > 1
2

then there holds

EZT

[‖fT+1 − fρ‖2
K

]
= O

(
T− 2β−1

2β+1

)
. (2.16)

As the last contribution of this paper, we further improve the preceding

error rate [33] for the online regularized algorithm (1.4) with λ > 0. The

proof will be given in Section 6.2.
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Theorem 7. Let λ > 0, θ ∈ (0, 1) and µ(θ) be given by (2.3). Define

{ft : t ∈ INT+1} by (1.4). Assume that fρ ∈ Lβ
K(L2

ρX
) with some 0 < β ≤

1. For any 0 < ε < 2β
2β+1

, choose ηt = 1

µ( 2β
2β+1

)+1
t−

2β
2β+1 and λ = T− 1

2β+1
+ ε

2β .

Then there holds

EZT

[‖fT+1 − fρ‖2
ρ

]
= O

(
T− 2β

2β+1
+ε

)
. (2.17)

The preceding error rates of the online regularized algorithm (1.4) with

λ > 0 were established in [33] under the assumption that fρ ∈ Lβ
K(L2

ρX
)

with some β ∈ (0, 1]. Namely, for any arbitrarily small ε > 0, by choosing

λ := λ(T ) appropriately, there holds

EZT

[‖fT+1 − fρ‖ρ

]
= O

(
T− β

2(β+1)
+ε

)
(2.18)

and, for 1
2

< β ≤ 1, we further have that

EZT

[‖fT+1 − fρ‖K

]
= O

(
T− 2β−1

4β+2
+ε

)
. (2.19)

By Cauchy-Schwarz inequality, we see from (2.17) that, for any arbitrarily

small ε > 0, there holds

EZT

[‖fT+1 − fρ‖ρ

] ≤
(
Ez∈ZT

[‖fT+1 − fρ‖2
ρ

]) 1
2

= O
(
T− β

2β+1
+ε

)
.

Therefore, the rate (2.17) is much better than (2.18).

We end this section with some remarks. Firstly, the above error rates

for algorithm (1.5) are capacity independent except the prior requirement

that fρ ∈ Lβ
K(L2

ρX
) with some β > 0. It is an open problem to improve

these rates when some additional information is known such as the regu-

larity of the kernel K or some polynomial decay of the eigenvalues of LK

[7, 12, 31]. Secondly, all the rates are proved with respect to expectation

norm and we do not know how to convert them into similar probabilistic

bounds such as those in [25, 32]. Finally, we wish to emphasize that when

the step sizes are a polynomially decaying sequence like that in Theorem

1, the learning scheme (1.5) is a truly online algorithm. Instead, when

we use a constant step size ηt = η(T ), algorithm (1.5) is only an infor-

mal online algorithm since the knowledge of the sample size is required in

advance.
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3 Related work

In this section, we discuss and compare our results with related work.

A main conclusion of this discussion is that the online algorithm (1.5) is

competitive with the commonly used least-square learning schemes.

3.1 Cumulative loss analysis

The mistake (regret) bounds for the cumulative loss
∑T

t=1(yt−ft(xt))
2 for

general online algorithms have been well studied in the literature. See e.g.

[2, 8, 9, 10, 17, 18, 19, 29, 35] and references therein. Specifically, mistake

bounds were derived for the online density estimation in [2]. Section 6 in

[17] derived, for a learning algorithm different from (1.5), upper bounds on

the relative expected instantaneous loss, measuring the predicting ability

of the last output in the linear regression problem. The online algorithm

studied in [10] in the linear regression setting is closest to our algorithm

(1.5). This paper discussed how the choice of the learning rate affects

the bound for the cumulative loss. Related mistake bounds in this setting

can also be found in [35]. In [19], the authors proposed general online

regularized algorithms with kernels and presented their cumulative loss

bounds.

For a more detailed review of mistake bounds in this direction, one

can refer to [29, Section 5]. There, generalization bounds for the average

prediction were also derived from the cumulative loss bounds for certain

algorithms in RKHS’s. More precisely, for each t ∈ IN, let Ht : X → IR

be the function produced by a prediction algorithm when fed with the

independent data {(xj, yj) : j ∈ INt−1}. Consider the average prediction

HT+1 = 1
T+1

∑T+1
t=1 Ht and let D ∈ HK with D(x) ∈ Y := [−M,M ] for

all x ∈ X. It was shown ([29, Corollary 2]) that there exists a prediction

algorithm such that, for any δ > 0 and T ∈ IN, with probability at least

1 − δ, there holds

E(HT+1) ≤ E(D) +
2M√
T + 1

(√
κ2 + M2

(‖D‖K + 1
)

+ 2M

√
2 ln

2

δ

)
.

The main difference of our generalization bounds (2.4) and (2.10) from

the above one is that we have no assumption on the functions in the given

upper bounds.
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Soon after Proposition 1 in Section 4.1, we shall discuss an appealing

relationship between statistical generalization error of fT+1 and a weighted

modification of cumulative loss
∑T

t=1(yt−ft(xt))
2. However, it remains to

be understood whether the standard cumulative loss bounds for algorithm

(1.5) can be directly applied to the study of its generalization error.

3.2 Comparison with other regularization schemes

Although deriving cumulative loss bounds of the online gradient descent

algorithm (1.4) is very useful, it is also important to further understand

the statistical behavior of fT+1. In [22], the authors studied the perfor-

mance of fT+1 in the HK norm when fT+1 is given by the online regular-

ized algorithm (1.4) with λ > 0. More general online regularized schemes

(1.4) involving commonly used loss functions in classification and regres-

sion were discussed in [20, 33]. Using quite different methods from ours,

[35] obtained similar generalization bounds as (2.10) for the online gradi-

ent descent algorithm associated with uniformly Lipschitz loss functions,

linear kernels and constant step sizes (learning rates).

In particular, in what follows we compare our rates for algorithm (1.5)

with the state-of-art ones for other least-square learning algorithms under

the same hypothesis that fρ ∈ Lβ
K(L2

ρX
) with β > 0.

Firstly, we begin by the comparison with the rates for the online regu-

larized algorithms. In this discussion, we note that the rates (2.9), (2.15)

and (2.16) of algorithm (1.5) are comparable to the rates (2.17), (2.19) of

the online regularized algorithm (1.4).

Secondly, we present the comparison with the rates of averaged stochas-

tic gradient descent algorithms introduced in [35]. This class of online

algorithms and the derived error bounds are stated in the linear kernel

setting. However, we can easily extend them to the general kernel set-

ting as follows. Assume 2κ2ηt < 1 for t ∈ INT , and let r1 = 0, f̂1 = 0

and {ft : t ∈ INT+1} be defined by (1.5). For any t ∈ INT , we update

rt+1 = rt + ηt − 2κ2η2
t and f̂t+1 = rt

rt+1
f̂t + rt+1−rt

rt+1
ft. Then, the general-

ization bound (see [35, Theorem 5.2]) for the average output f̂T+1 in the

kernel setting can be cast as

EZT

[E(f̂T+1)
] ≤ inf

f∈HK

{(
1 +

2κ2σ2
T+1

rT+1

)E(f) +
1

2rT+1

‖f‖2
K

}
, (3.1)
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where σ2
T+1 =

∑
t∈INT

η2
t . Note that E(f) − E(fρ) = ‖f − fρ‖2

ρ for any

f ∈ L2
ρX

. In view of the regularization error

D(λ) := inf
f∈HK

{‖f − fρ‖2
ρ + λ‖f‖2

K

}
, (3.2)

the bound (3.1) implies that EZT [‖f̂T+1 − fρ‖2
ρ] is bounded by

(
1 +

2κ2σ2
T+1

rT+1

)
D

( 1

2(rT+1 + 2κ2σ2
T+1)

)
+

2κ2σ2
T+1

rT+1

E(fρ). (3.3)

When the step sizes are of the form ηt = 1
4(1+κ2)

t−θ with θ ∈ (0, 1), it is

not hard to observe that rT = O(T 1−θ),
σ2

T+1

rT+1
= O(T−min{θ,1−θ}) for θ 6= 1

2

and
σ2

T+1

rT+1
= O(T− 1

2 ln T ) for θ = 1
2
. Furthermore, if fρ ∈ Lβ

K(L2
ρX

) with

some β ∈ (0, 1
2
] then we know from [25, Lemma 3] that

D(λ) ≤ λ2β‖L−β
K fρ‖2

ρ, (3.4)

which implies that

D
( 1

2(rT+1 + 2κ2σ2
T+1)

)
= O(T−2β(1−θ)). (3.5)

Therefore, if fρ ∈ Lβ
K(L2

ρX
) with β ∈ (0, 1

2
], choosing θ = 2β

2β+1
and putting

the above observations for rT+1,
σ2

T+1

rT+1
and (3.5) into (3.3) yields that

EZT [‖f̂T+1 − fρ‖2
ρ] =

{
O(T− 1

2 ln T ) for β = 1
2
,

O(T− 2β
2β+1 ) for β ∈ (0, 1

2
).

(3.6)

Similarly, if fρ ∈ Lβ
K(L2

ρX
) with β ∈ (0, 1

2
] and the step sizes have the

form {ηt ≡ η : t ∈ INT} then, by choosing η = 1
4(1+κ2)

T− 2β
2β+1 , we see from

(3.3) and (3.4) that

EZT [‖f̂T+1 − fρ‖2
ρ] = O(T− 2β

2β+1 ). (3.7)

Based on the above discussion, we see that the rates (2.9) and (2.15)

for algorithm (1.5) are the same, up to a logarithmic term, as the corre-

sponding rates (3.6) and (3.7) for the averaged stochastic gradient descent

algorithm.
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Thirdly, we move on to the comparison with the Tikhonov regulariza-

tion algorithm (see e.g. [16]) in batch learning which is defined by

fz,λ := arg inf
f∈HK

{ 1

T

∑
t∈INT

(f(xt) − yt)
2 + λ‖f‖2

K

}
. (3.8)

The capacity independent generalization bounds for this algorithm in

[34] can be expressed as

EZT

[E(fz,λ)
] ≤

(
1 +

2κ2

Tλ

)2

inf
f∈HK

{
E(f) + λ‖f‖2

K

}
.

In terms of the regularization error D(λ), it can be equivalently stated as

EZT

[∥∥fz,λ − fρ

∥∥2

ρ

] ≤ D(
λ
)

+
(E(fρ) + D(

λ
)){4κ2

Tλ
+

(
2κ2

Tλ

)2}
. (3.9)

But, if fρ ∈ Lβ
K(L2

ρX
) with β ∈ (0, 1

2
] we know from (3.4) that D(λ) ≤

λ2β‖L−β
K fρ‖2

ρ. Putting this into (3.9) and trading off T and λ, for fρ ∈
Lβ

K(L2
ρX

) with some β ∈ (0, 1
2
], the choice λ = T− 1

2β+1 gives the rate

EZT

[∥∥fz,λ − fρ

∥∥2

ρ

]
= O

(
T− 2β

2β+1

)
. (3.10)

When fρ ∈ Lβ
K(L2

ρX
) with β ∈ (1

2
, 1], it was further improved in [25], by

choosing λ = λ(T ) appropriately, that2

EZT

[‖fz,λ − fρ‖2
ρ

]
= O

(
T− 2β

2β+1
)
, (3.11)

and

EZT

[‖fz,λ − fρ‖2
K

]
= O

(
T− 2β−1

2β+1
)
. (3.12)

Under the same assumptions, the rates (2.9), (2.15) and (2.16) of the

online algorithm (1.5) are almost the same as the corresponding rates

(3.10), (3.11) and (3.12) in batch learning.

Finally, we end this subsection with the remark that generalization

bounds associated with D(λ) such as (3.9) for the regularization algo-

rithms are quite neat and interesting, but they tend to suffer a saturation

phenomenon.

2The rates are originally stated in the form of probability inequalities. We employ
their expectation versions for consistency with the other bounds presented in the paper.
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To explain this phenomenon, we observe that

D(λ) = inf
f∈HK

{‖f − fρ‖2
ρ + λ‖f‖2

K} ≥ inf
f∈HK

{
‖f − fρ‖2

ρ + λ
‖f‖2

ρ

κ2

}
.

Since ‖f − fρ‖ρ ≥ |‖f‖ − ‖fρ‖ρ|, by letting t = ‖f‖ρ, we have that

D(λ) ≥ inf
t∈IR

{
(t − ‖fρ‖ρ)

2 +
λt2

κ2

}
=

λ

κ2 + λ
‖fρ‖2

ρ. (3.13)

If fρ is not identically zero (i.e., ‖fρ‖ρ > 0), the inequality (3.13) im-

plies that the optimal decay of D(λ) is O(λ), λ → 0+ which, by (3.4),

is achieved when fρ ∈ L
1
2
K(L2

ρX
) = HK . Equivalently, the rate of D(λ)

is never faster than O(λ), λ → 0+ even if fρ lies in any smaller space

Lβ
K(L2

ρX
) with β > 1

2
than HK . Therefore, in this case the consequent

trade-off rate (3.10) derived from (3.9) is at most O(T− 1
2 ), T → ∞, which

is achieved at β = 1
2

and can not be improved beyond the range β ∈ (0, 1
2
].

This is the so-called saturation phenomenon in the context of inverse prob-

lems [15].

For similar reasons, the rates (3.6) and (3.7) derived from (3.3) for the

averaged stochastic gradient descent algorithm have the same problem.

In contrast, our capacity independent rate (2.15) for algorithm (1.5) does

not suffer this drawback and is arbitrarily close to T−1 as β → ∞.

3.3 Capacity independent optimality

In this subsection, we explain in two folds that the error rates for algorithm

(1.5) are optimal, up to a logarithmic term, in the capacity independent

sense. We initially illustrate this by citing the lower bounds in [7] when

fρ ∈ Lβ
K(L2

ρX
) with β ∈ (1

2
, 1]. Then, we demonstrate a specific example

to contrast our rates with the best possible rate in the non-parametric

statistical literature (see e.g. [6, 27]).

We begin with the citation of the lower bound in [7]. Consider fρ ∈
Lβ

K(L2
ρX

) with β ∈ (1
2
, 1] and the eigenvalues (arranged in decreasing order)

of LK have the decay λi = O(i−b) with b > 1. It was proved in [7]

that the rate T− 2βb
2βb+1 in L2

ρX
is optimal, see [7] for a precise definition

of optimal rates. Since K(x, x′) =
∑

i∈IN λiφi(x)φi(x
′) for any x, x′ ∈

X and
∫

X
φ2

i (x)dρX(x) = 1 for any i ∈ IN, it follows that
∑∞

i=1 λi =∫
X

K(x, x)dρX(x) ≤ κ2, see e.g. [12]. Therefore, for any i ∈ IN we have

14



that iλi ≤
∑

j∈INi
λj ≤ κ2 which implies that λi = O(i−1) for all kernels.

Since our capacity independent rates are independent of the eigenvalues of

LK , taking b → 1 in the rate T− 2βb
2βb+1 leads to the eigenvalue-independent

optimal rate T− 2β
2β+1 (see also [32] for a discussion). In this sense, our

rates (2.15) and (2.17) are almost optimal for the capacity independent

case under the condition that fρ ∈ Lβ
K(L2

ρX
) with β ∈ (1

2
, 1].

Now, we illustrate by a specific example that our rates for algorithm

(1.5) are comparable to the optimal rate in non-parametric statistics. For

simplicity, we only consider smooth splines [30] in one dimension.

Let X = [0, 1], dρX = dx. For smooth splines, the reproducing kernel

space can be regarded as a fractional Sobolev space Hs[0, 1] with s > 1
2

which is defined by Fourier coefficients

Hs[0, 1] :=

{
f = a0 +

∑

k∈IN

√
2k−s(ak sin(2πkx) + bk cos(2πkx)) :

‖f‖2
s := a2

0 +
∑

k∈IN

(a2
k + b2

k) < ∞
}

.

It is easy to see, for any x, x′ ∈ X, that the reproducing kernel of the

space Hs[0, 1] can be represented by

Ks(x, x′) = 1 +
∑

k∈IN

2k−2s cos(2πk(x − x′)).

In addition, λ1 = 1, λ2j = λ2j+1 = j−2s for j ∈ IN and φ1(x) = 1,

φ2j(x) =
√

2 sin(2πjx) and φ2j+1(x) =
√

2 cos(2πjx) for j ∈ IN. Therefore,

in this case, the range space Lβ
Ks

(L2
dx) with β > 0 defined by (2.7) is

identical to the Sobolev space H2βs[0, 1].

It is well known (e.g. [27]) in non-parametric statistics that the rate

O(T− 4βs
4βs+1 ) is optimal if fρ ∈ Lβ

Ks
(L2

dx) = H2βs[0, 1] with β > 1
2
. There-

fore, if dρX = dx, fρ ∈ Lβ
Ks

(L2
dx), and HKs = Hs[0, 1] with s > 1

2
with

β > 1
2

then our rate O(T− 2β
2β+1 ln T ) of algorithm (1.5) given by (2.15)

is suboptimal. But it is arbitrarily close to the best one O(T− 4βs
4βs+1 ) as

s → 1
2
+.

4 Error decomposition and basic estimates

In this section, we formulate our basic ideas by providing a novel approach

to the error analysis of online gradient descent algorithms in L2
ρX

. As
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mentioned in the introduction, the main purpose of this paper is to analyze

the online algorithm (1.5). However, we would like to state a unified

approach for the general online algorithm (1.4) for any λ ≥ 0 since this

will, as a byproduct, allow us to improve the preceding error rate in [33]

for the algorithm (1.4) with λ > 0 as proved in Section 6.2 below.

We first establish some useful observations used later. For λ > 0,

define the regularizing function by

fλ = arg inf
f∈HK

{
E(f) + λ‖f‖2

K

}
. (4.1)

Lemma 1. Let λ > 0 and fλ be defined as above. Then we have that

LK(fλ − fρ) + λfλ = 0 (4.2)

and

‖fλ − fρ‖ρ ≤ ‖fρ‖ρ. (4.3)

Proof. The first equality is well-known, see e.g. [12].

For the inequality (4.3), we know from the equality (1.6) that (4.1) is

equivalent to fλ = arg inff∈HK

{
‖f − fρ‖2

ρ + λ‖f‖2
K

}
. By taking f = 0,

the definition of fλ yields the desired estimate ‖fλ − fρ‖2
ρ ≤ ‖fρ‖2

ρ.

With (4.2) at hand, we can interpret the online algorithm (1.4) with

λ ≥ 0 as the following useful form. With a slight abuse of notation, we

indicate fρ by f0.

Lemma 2. Let λ ≥ 0 and {ft : t ∈ INT+1} be defined as (1.4). Then, for

any t ∈ INT we have that

ft+1 − fλ = (I − ηt(LK + λI))(ft − fλ) + ηtB(ft, zt), (4.4)

where I is the identity operator and the vector-valued random variable

B(ft, zt) is defined by

B(ft, zt) := LK(ft − fρ) + (yt − ft(xt))Kxt . (4.5)

Proof. The equality (4.4) for the case λ = 0 is easily verified since we

have set f0 = fρ.
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For the case λ > 0, we use the property (4.2) of the regularizing

function fλ in Lemma 1. By the definition of ft+1 given by (1.4) with

λ > 0, we know that

ft+1 − fλ = ft − fλ − ηt(ft(xt) − yt)Kxt − ηtλft

= (I − ηt(LK + λI))(ft − fλ) + ηtLK(ft − fλ)

− ηtλfλ + ηt(yt − ft(xt))Kxt .

But the equality (4.2) tells us that −λfλ = LK(fλ − fρ). Hence, putting

this back into the above equation and arranging it yield the desired equal-

ity (4.4).

With the help of the formula (4.4), we can describe our approach by

three steps in which the first one is referred to as error decomposition.

4.1 Error decomposition

For λ ≥ 0 and t ∈ IN, set the operator ωt
k(LK + λI) :=

∏t
j=k(I − ηj(LK +

λI)) for k ∈ INt and ωt
t+1(LK + λI) := I. Applying induction to the

equality (4.4) and noting that f1 = 0, for any t ∈ INT we have that

ft+1 − fλ = −ωt
1(LK + λI)fλ +

∑
j∈INt

ηjω
t
j+1(LK + λI)B(fj, zj). (4.6)

Applying (4.6) with t = T , we get the following error decomposition

fT+1 − fλ = −ωT
1 (LK + λI)fλ +

∑
t∈INT

ηtω
T
t+1(LK + λI)B(ft, zt). (4.7)

The above error decomposition technique is well-known in statistical

learning theory in order to realize the error analysis for least-square related

learning algorithms, see e.g. [22, 32, 33]. One can find similar ideas used

for different learning schemes, see e.g. [3, 12, 14, 24, 25] and references

therein.

We will use the error decomposition (4.7) to estimate the expectation

of ‖fT+1−fρ‖2
ρ. To this end, we need some useful preparations. Let L be a

linear operator from L2
ρX

to itself, we use ‖L‖ to denote its operator norm,

that is, ‖L‖ := sup‖f‖ρ=1 ‖Lf‖ρ. We also need the following technical

lemma which forms the essential estimates of our approach.
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Lemma 3. Let λ ≥ 0, β > 0 and ηt(κ
2 + λ) ≤ 1 for any integer t ∈ [j, k].

Then there holds

‖ωk
j (LK + λI)Lβ

K‖2 ≤
2
((

β
e

)β
+ κ2β

)2

exp
{
λ

∑k
t=j ηt

}(
1 +

(∑k
t=j ηt

)2β) .

Proof. Note that, for any x, x′ ∈ X

K(x, x′) = 〈Kx, Kx′〉K ≤ ‖Kx‖K‖Kx′‖K ≤ κ2. (4.8)

Combing this with the fact ρX(X) = 1, we see from Cauchy-Schwarz

inequality that, for any f ∈ L2
ρX

‖LKf‖2
ρ =

∫

X

∣∣
∫

X

K(x, x′)f(x′)dρX(x′)
∣∣2dρX(x)

≤
∫

X

( ∫

X

∣∣K(x, x′)
∣∣2dρX(x′)

∫

X

∣∣f(x′)
∣∣2dρX(x′)

)
dρX(x)

= ‖f‖2
ρ

∫

X

∫

X

∣∣K(x, x′)
∣∣2dρX(x′)dρX(x) ≤ κ4‖f‖2

ρ. (4.9)

Hence, ‖LK‖ ≤ κ2. Since {λ` : ` ∈ IN} are the eigenvalues of LK , it

follows that sup` λ` ≤ κ2 and

‖Lβ
K‖ := sup

`∈IN
λβ

` ≤ κ2β. (4.10)

Moreover, for any x ≤ (κ2 + λ)−1,

‖I − x(LK + λI)‖ := sup
`∈IN

(1 − x(λ` + λ)) ≤ 1 − xλ. (4.11)

Applying (4.11) with x = ηt iteratively for t ∈ [j, k] and (4.10), we have

that

‖ωk
j (LK + λI)Lβ

K‖ ≤
k∏

t=j

‖I − ηt(LK + λI)‖‖Lβ
K‖

≤ κ2β

k∏
t=j

(1 − ηtλ) ≤ exp
{
− λ

k∑
t=j

ηt

}
κ2β, (4.12)

where the elementary inequality 1 − ηtλ ≤ e−ηtλ for any t ∈ [j, k] is used

in the last inequality.
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Also,

‖ωk
j (LK + λI)Lβ

K‖ := sup
`∈IN

k∏
t=j

(1 − ηt(λ` + λ))λβ
`

≤ sup
`∈IN

exp
{−(λ + λ`)

k∑
t=j

ηt

}
λβ

`

≤ exp
{
− λ

k∑
t=j

ηt

}
sup
x≥0

exp
{
− x

k∑
t=j

ηt

}
xβ

= exp
{
− λ

k∑
t=j

ηt

}(β

e

)β( k∑
t=j

ηt

)−β

.

Consequently, the above inequality and (4.12) implies that ‖ωT
t (LK + λI)Lβ

K‖2

is bounded by

exp
{
− λ

k∑
t=j

ηt

}((β

e

)β

+ κ2β

)2

min
{

1,
( k∑

t=j

ηt

)−2β}
.

Combining this with the elementary inequality that min{a−1, b−1} ≤ 2
a+b

for any a > 0, b > 0 finishes the lemma.

Now we present the upper bound for EZT

[‖fT+1 − fρ‖2
ρ

]
which is the

foundation of our approach introduced in this paper. Hereafter, we adopt

the convention that
∑`

j=`+1 ηj = 0 for any ` ∈ N.

Proposition 1. Let λ ≥ 0 and {ft : t ∈ IN} be defined as (1.4). Then,

for any T ∈ IN, EZT

[‖fT+1 − fρ‖2
ρ

]
is bounded by

‖fλ − fρ‖2
ρ + ‖ωT

1 (LK + λI)fλ‖2
ρ + 2‖ωT

1 (LK + λI)fλ‖ρ‖fλ − fρ‖ρ

+ 2(1 + κ)4
∑
t∈INT

η2
t exp

{−λ
∑T

j=t+1 ηj

}

1 +
∑T

j=t+1 ηj

EZt−1

[E(ft)
]
. (4.13)

Proof. Since fT+1 − fρ = fT+1 − fλ + fλ − fρ, there holds

EZT

[‖fT+1 − fρ‖2
ρ

]
= EZT

[‖fT+1 − fλ‖2
ρ

]
+ ‖fλ − fρ‖2

ρ

+ 2EZT

[〈fT+1 − fλ, fλ − fρ〉ρ
]
. (4.14)

In order to use (4.14) to prove (4.13), we need to estimate the first

term and the last term on the right-hand side of (4.14).

19



For the last term on the right-hand side of (4.14), observe that the data

is i.i.d. and ft is only dependent on {z1, . . . , zt−1}, not on zt. Moreover,

recall the definition of the regression function: fρ(x) =
∫

X
ydρ(y|x). Thus,

B(ft, zt) has a nice vanishing property

Ezt

[B(ft, zt)
]

= 0, ∀t ∈ IN. (4.15)

Applying (4.15) to the equality (4.7) implies that EZT

[
fT+1 − fλ

]
=

−ωT
1 (LK + λI)fλ. Therefore,

EZT 〈fT+1 − fλ, fλ − fρ〉ρ = 〈EZT

[
fT+1 − fλ

]
, fλ − fρ〉ρ

≤ ‖ωT
1 (LK + λI)fλ‖ρ‖fλ − fρ‖ρ. (4.16)

For the first term on the right-hand side of (4.14), we first use the

equality (4.7) to get that

EZT

[‖fT+1 − fλ‖2
ρ

]
= ‖ωT

1 (LK + λI)fλ‖2
ρ

+ EZT

[‖
∑
t∈INT

ηtω
T
t+1(LK + λI)B(ft, zt)‖2

ρ

]

− 2EZT

[〈
∑
t∈INT

ηtω
T
t+1(LK + λI)B(ft, zt), ω

T
1 (LK + λI)fλ〉ρ. (4.17)

Below, we estimate the last two terms on the right-hand side of (4.17)

separately.

For the second term on the right-hand side of (4.17), we write it as

∑
t∈INT

∑

t′∈INT

ηtηt′EZT

[
〈ωT

t′+1(LK + λI)B(ft′ , zt′), ω
T
t+1(LK + λI)B(ft, zt)〉ρ

]
.

Therefore, by (4.5), for t > t′

EZt〈ωT
t′+1(LK + λI)B(ft′ , zt′), ω

T
t+1(LK + λI)B(ft, zt)〉ρ

= EZt−1Ezt〈ωT
t+1(LK + λI)ωT

t′+1(LK + λI)B(ft′ , zt′),B(ft, zt)〉ρ
= EZt−1〈ωT

t+1(LK + λI)ωT
t′+1(LK + λI)B(ft′ , zt′),Ezt

[B(ft, zt)
]〉ρ = 0.

By the symmetry of t, t′, the above equality also holds true for t′ > t.
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Consequently, it follows that

EZT

[‖
∑
t∈INT

ηtω
T
t+1(LK + λI)B(ft, zt)‖2

ρ

]

=
∑
t∈INT

η2
tEZt

[‖ωT
t+1(LK + λI)B(ft, zt)‖2

ρ

]

≤
∑
t∈INT

η2
t ‖ωT

t+1(LK + λI)L
1
2
K‖2EZt

[‖L− 1
2

K B(ft, zt)‖2
ρ

]

=
∑
t∈INT

η2
t ‖ωT

t+1(LK + λI)L
1
2
K‖2EZt

[‖B(ft, zt)‖2
K

]
, (4.18)

where we have used equation (2.8) in the last equality.

To estimate EZt

[‖B(ft, zt)‖2
K

]
, we note from (4.15) that Ezt

[
(ft(xt) −

yt)Kxt

]
= LK(ft − fρ), and thus we can rewrite Ezt

[∥∥B(ft, zt)
∥∥2

K

]
as

Ezt

[∥∥(ft(xt) − yt)Kxt

∥∥2

K

] −
∥∥Ezt

[
(ft(xt) − yt)Kxt

]∥∥2

K
. (4.19)

Therefore,

EZt

[∥∥B(ft, zt)
∥∥2

K

] ≤ EZt−1Ezt

[∥∥(ft(xt) − yt)Kxt

∥∥2

K

]

≤ κ2EZt−1

[
Ezt

[(
ft(xt) − yt

)2]]
= κ2EZt−1

[E(ft)
]
. (4.20)

In addition, applying Lemma 3 with β = 1
2

and j = t + 1, k = T implies

that ‖ωT
t+1(LK+λI)L

1
2
K‖2 ≤ 2(1+κ)2 exp{−λ

∑T
j=t+1 ηj}

1+
∑T

j=t+1 ηj
. Consequently, plugging

this and (4.20) into (4.18) yields that

EZT

[‖
∑
t∈INT

ηtω
T
t+1(LK + λI)B(ft, zt)‖2

ρ

]

≤ 2(1 + κ)4
∑
t∈INT

exp
{−λ

∑T
j=t+1 ηj

}

1 +
∑T

j=t+1 ηj

EZt−1

[E(ft)
]
. (4.21)

For the last term on the right-hand side of (4.17), we use (4.15) to get

that

EZT

[〈
∑
t∈INT

ηtω
T
t+1(LK + λI)B(ft, zt), ω

T
1 (LK + λI)fλ〉ρ

=
∑
t∈INT

〈ηtω
T
t+1(LK + λI)EZt−1Ezt

[B(ft, zt)
]
, ωT

1 (LK + λI)fλ〉ρ = 0.
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Substituting this and (4.21) into (4.17) yields that

EZT

[‖fT+1 − fλ‖2
ρ

] ≤ ‖ωT
1 (LK + λI)fλ‖2

ρ

+ 2(1 + κ)4
∑
t∈INT

exp
{−λ

∑T
j=t+1 ηj

}

1 +
∑T

j=t+1 ηj

EZt−1

[E(ft)
]
. (4.22)

Combining this with (4.16), (4.14) completes the upper bound (4.13).

Now the error decomposition and Proposition 1 help us reduce the goal

of our error analysis to the estimation of the four terms in (4.13). The

first three terms of (4.13) are frequently referred to as the approximation

error [24, 25]. Since the data is i.i.d. and ft does not depend on zt, the

last term of (4.13) can be rewritten as

EZT

[ ∑
t∈INT

η2
t exp

{−λ
∑T

j=t+1 ηj

}

1 +
∑T

j=t+1 ηj

(yt − ft(xt))
2
]
.

It can be regarded as the expectation of a weighted form of the cumulative

loss
∑

t∈INT
(yt − ft(xt))

2 in the online learning literature [8, 10, 19]. Thus,

we call the second term of (4.13) the cumulative sample error. We esti-

mate these two errors separately in the following two subsections which

constitute the second and last steps of our approach.

4.2 Estimates for the approximation error

Here, we establish some basic estimates for the deterministic approxima-

tion errors involving ‖fλ − fρ‖ρ and ‖ωT
1 (LK +λI)fλ‖ which is the second

step of our approach.

To estimate the term ‖fλ − fρ‖ρ, we only need to consider the case

λ > 0 since f0 = fρ. For this purpose, recall Lemma 3 in [25].

Lemma 4. Let λ > 0 and fλ be defined by (4.1). If fρ ∈ Lβ
K(L2

ρX
) with

0 < β ≤ 1 then there holds

(a) ‖fλ − fρ‖ρ ≤ λβ‖L−β
K fρ‖ρ;

(b) If moreover, 1
2

< β ≤ 1 then ‖fλ − fρ‖K ≤ λβ− 1
2‖L−β

K fρ‖ρ.

Using the above lemma, we can estimate the quantity ‖ωT
1 (LK +

λI)fλ‖ρ as follows.
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Lemma 5. Let λ ≥ 0 and ηt(κ
2 + λ) ≤ 1 for each t ∈ INT . Then the

following statements hold true.

(a) If λ = 0 then we have that

‖ωT
1 (LK)fρ‖ρ ≤ K(

2(1 + κ)
( ∑

t∈INT

ηt

)− 1
2 , fρ

)
;

(b) If λ > 0 then we have that

‖ωT
1 (LK + λI)fλ‖ρ ≤ 2 exp

{
− λ

∑
t∈INT

ηt

}
‖fρ‖ρ.

Proof. We first prove property (a). Since ηtκ
2 ≤ 1 for t ∈ INT , us-

ing (4.11) with λ = 0 and x = ηt for t ∈ INT iteratively implies that

‖ωT
1 (LK)‖ ≤ ∏

t∈INT
‖I − ηtLK‖ ≤ 1. Thus, for any f ∈ HK there holds

‖ωT
1 (LK)fρ‖ρ ≤ ‖ωT

1 (LK)(f − fρ)‖ρ + ‖ωT
1 (LK)f‖ρ

≤ ‖f − fρ‖ρ + ‖ωT
1 (LK)L

1
2
K‖ ‖L− 1

2
K f‖ρ.

= ‖f − fρ‖ρ + ‖ωT
1 (LK)L

1
2
K‖‖f‖K , (4.23)

where (2.8) is used in the last equality. Applying Lemma 3 with λ = 0, β =

1
2
, j = 1, and k = T implies that ‖ωT

1 (LK)L
1
2
K‖ ≤ 2(1 + κ)

( ∑
t∈INT

ηt

)− 1
2
.

Then, substituting this into the right-hand side of (4.23) yields that

‖ωT
1 (LK)fρ‖ρ ≤ inf

f∈HK

{‖f − fρ‖ρ + 2(1 + κ)
( ∑

t∈INT

ηt

)− 1
2‖f‖K

}
. (4.24)

Turn to the proof of property (b), note that ηt(κ
2 + λ) ≤ 1 for any

t ∈ INT . Thus, applying (4.11) again with x = ηt for t ∈ INT implies that

‖ωT
1 (LK + λI)fλ‖ρ ≤

∏
t∈INT

(1 − ηtλ)‖fλ‖ρ ≤ exp
{−λ

∑
t∈INT

ηt

}‖fλ‖ρ.

But, by (4.3), ‖fλ‖ρ ≤ 2‖fρ‖ρ which finishes property (b).

The last step of our approach is to estimate the cumulative sample

error.
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4.3 Estimates for the cumulative sample error

In this subsection, we describe basic estimates for the cumulative sample

error.

Observe that the cumulative sample error (the last term in (4.13)) can

be bounded by

[
sup
t∈INT

EZt−1

[E(ft)
]][ ∑

t∈INT

η2
t exp

{−λ
∑T

j=t+1 ηj

}

1 +
∑T

j=t+1 ηj

]
. (4.25)

Therefore, it remains to estimate the above summand involving the step

sizes and the uniform bounds for the learning sequence separately. Let us

first deal with the summand.

Lemma 6. Let λ ≥ 0, θ ∈ [0, 1) and µ ≥ max{λ, 1} + κ2. If the step

sizes are in the form of {ηt = 1
µ
t−θ : t ∈ INT} then, for any ` ∈ INT , the

summation
∑
j∈IN`

η2
j exp

{−λ
∑`

k=j+1 ηk

}

1 +
∑`

k=j+1 ηk

is bounded by

cθ

µ

(
exp

{−λdθ`
1−θ/µ

}
`−min{θ,1−θ} + `−θ

)
ln

( 8`

1 − θ

)
, (4.26)

where dθ = 1−2θ−1

1−θ
and cθ = 1 for θ = 0, 13 for θ = 1

2
, and 13

(1−2θ−1)|2θ−1|
otherwise.

The technical proof is given in the Appendix.

Now, we can see that if the step sizes are of the form {ηt = 1
µ
t−θ :

t ∈ INT} with θ ∈ (0, 1) and µ ≥ max{λ, 1} + κ2, the summation part

involving the step sizes in (4.25) is bounded by (4.26) with ` = T, which

tends to zero as T → ∞.

Hence, in order to estimate the whole term (4.25) it suffices to es-

tablish the uniform bounds for supt∈INT+1
EZt−1

[E(ft)
]
. This is intuitively

reasonable since we expect that the learning sequence {ft : t ∈ INT+1} ap-

proximates the regression function fρ. To this end, we need the following

direct result from Lemma 6.

Corollary 2. Let λ ≥ 0, θ ∈ [0, 1) and ηt = 1
µ
t−θ for t ∈ INT with

µ ≥ κ2 + λ. For any T ∈ IN, if µ − λ is larger than the quantity

µ(θ) :=





16(1 + κ)4 ln
(
8T

)
if θ = 0,

1248(1 + κ)4 if θ = 1
2
,

208(1+κ)4

(1−2θ−1)|2θ−1|}

(
ln

(
8

1−θ

)
+ 1

min{θ,1−θ}

)
otherwise,

(4.27)

24



then there holds

∑
j∈INt

η2
j exp

{−λ
∑t

k=j+1 ηk

}

1 +
∑t

k=j+1 ηk

≤ 1

8(1 + κ)4
, ∀t ∈ INT . (4.28)

Proof. For any ` ∈ INT and λ ≥ 0, the quality (4.26) is bounded by
2cθ

µ
`−min{θ,1−θ} ln( 8`

1−θ
). Thus, the hypothesis (4.28) holds true as long as

µ ≥ κ2 +max{λ, 1} and 16(1+κ)4cθ

µ
t−min{θ,1−θ} ln

(
8t

1−θ

)
≤ 1 for any t ∈ INT .

When θ = 0, by the definition of c0, the above inequality is virtually

identical to µ ≥ 16(1 + κ)4 ln
(
8T

)
.

For θ ∈ (0, 1), note that ln t = 1
min{θ,1−θ} ln

(
tmin{θ,1−θ}) ≤ tmin{θ,1−θ}

min{θ,1−θ} .
Therefore, the inequality

16(1 + κ)4cθ

µ
t−min{θ,1−θ} ln

( 8t

1 − θ

)

≤ 16(1 + κ)4

µ
cθ

(
ln

( 8

1 − θ

)
+

1

min{θ, 1 − θ}
)
≤ 1

and the definition of cθ given in Lemma 6 yield the desired result.

We are ready to establish the uniform bounds for the learning sequence.

Proposition 2. Let λ ≥ 0 and {ft : t ∈ INT+1} be produced by algorithm

(1.4). Moreover, if the step sizes satisfy ηt(κ
2 + λ) ≤ 1 for t ∈ INT and

the inequality (4.28) then we have that

EZt−1

[E(ft)
] ≤ 20‖fρ‖2

ρ + 3E(fρ), ∀ t ∈ INT+1. (4.29)

Proof. Since f1 = 0, from (1.6) it follows that

E(f1) = ‖f1 − fρ‖2
ρ + E(fρ) = ‖fρ‖2

ρ + E(fρ),

which implies that (4.29) holds true for t = 1. As the induction assump-

tion, suppose (4.29) holds true for all k ∈ INt. To advance the induction,

we need to estimate EZt

[E(ft+1)
]
.

Applying (4.13) with T = t ∈ IN, EZt

[‖ft+1 − fρ‖2
ρ

]
is bounded by

‖fλ − fρ‖2
ρ + ‖ωt

1(LK + λI)fλ‖2
ρ + 2‖ωt

1(LK + λI)fλ‖ρ‖fλ − fρ‖ρ

+ 2(1 + κ)4
∑

k∈INt

η2
k exp

{−λ
∑t

j=k+1 ηj

}

1 +
∑t

j=k+1 ηj

EZk−1

[E(fk)
]
. (4.30)
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Note that ‖fλ−fρ‖ρ ≤ ‖fρ‖ρ by (4.11). Since ηt(κ
2 +λ) ≤ 1 for t ∈ IN,

‖ωt
1(LK + λI)‖ ≤ ∏

j∈INt
‖I − ηj(LK + λI)‖ ≤ 1, Hence,

‖ωt
1(LK + λI)fλ‖2

ρ ≤ ‖ωt
1(LK + λI)‖2‖fλ‖2

ρ ≤ ‖fλ‖2
ρ ≤ 4‖fρ‖2

ρ.

Similarly, by (4.3), there holds that

‖ωt
1(LK + λI)fλ‖ρ‖fλ − fρ‖ρ ≤ 2‖fρ‖2

ρ.

Putting the above estimates, the induction assumption, and hypothesis

(4.28) into (4.30) implies that

EZt

[‖ft+1 − fρ‖2
ρ

] ≤ 9‖fρ‖2
ρ +

(
20‖fρ‖2

ρ + 3E(fρ)
)
/4.

Note that E(ft+1) = E(fρ) + ‖ft+1 − fρ‖2
ρ by (1.6), and thus

EZT

[E(ft+1)
] ≤ 20‖fρ‖2

ρ + 3E(fρ),

which advances the induction and completes the proof.

In the following sections, we apply Proposition 1 and the basic esti-

mates for the approximation error and cumulative sample error to prove

our main results stated in Section 2.

5 Error bounds and convergence

In this section, we mainly develop error bounds and convergence results

for algorithm (1.5) based on the Proposition 1.

In this case, we have that λ = 0 and f0 = fρ. Therefore, the error

decomposition formula (4.7) is reduced to

fT+1 − fρ = −ωT
1 (LK)fρ +

∑
t∈INT

ηtω
T
t+1(LK)B(ft, zt). (5.1)

By Proposition 1, EZT

[‖fT+1 − fρ‖2
ρ

]
is bounded by

‖ωT
1 (LK)fρ‖2

ρ + 2(1 + κ)4
∑

k∈INT

η2
t

1 +
∑T

j=t+1 ηj

EZt−1

[E(ft)
]
. (5.2)
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5.1 Proofs of error bounds

This subsection proves error bounds stated in Theorems 1 and 4. The

essential estimates will also be used to derive error rates in Section 6.

We start with the following useful lemma. One can find its modified

form in [32].

Lemma 7. If f ∈ Lβ
K(L2

ρX
) with some β > 0 then

‖ωT
1 (LK)f‖ρ ≤ 2

((β

e

)β

+ κ2β

)
‖L−β

K f‖ρ

( ∑
t∈INT

ηt

)−β

. (5.3)

In addition, if β > 1
2

then ‖ωT
1 (LK)f‖K is bounded by

2

((2β − 1

2e

)β− 1
2

+ κ2β−1

)
‖L−β

K f‖ρ

( ∑
t∈INT

ηt

)−(β− 1
2
)

. (5.4)

Proof. Applying Lemma 3 with λ = 0, j = 1, and k = T , the desired

estimates (5.3) and (5.4) follow immediately from the following observa-

tions

‖ωT
1 (LK)f‖ρ ≤ ‖ωT

1 (LK)Lβ
K‖ ‖L−β

K f‖ρ

and

‖ωT
1 (LK)f‖K = ‖ωT

1 (LK)L
− 1

2
K f‖ρ ≤ ‖ωT

1 (LK)L
β− 1

2
K ‖ ‖L−β

K f‖ρ.

This completes our lemma.

Recall the definitions of µ(θ) in Corollary 2 and cθ in Lemma 6, our

error bounds read as follows.

Proposition 3. Let λ = 0, θ ∈ [0, 1) and ηt = 1
µ
t−θ for t ∈ IN with some

constant µ ≥ µ(θ). Define {ft : t ∈ IN} by (1.5). Then, for any T ∈ IN

we have that

EZT

[‖fT+1 − fρ‖2
ρ

] ≤ ‖ωT
1 (LK)fρ‖2

ρ +
cρcθ

µ
T−min{θ,1−θ} ln

( 8T

1 − θ

)

where cρ := 4(1 + κ)4
(
20‖fρ‖2

ρ + 3E(fρ)
)
.

Proof. Since ηt = 1
µ
t−θ with µ ≥ µ(θ) for any t ∈ INT , by Corollary 2

we know that the inequality (4.28) on the step sizes holds true for any
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t ∈ INT . Hence, the bound (4.29) in Proposition 2 holds true. Now, the

desired result follows by applying (4.26) with λ = 0 and ` = T to the

right-hand side of (5.2).

To apply Proposition 3 to prove Theorem 1, we need an easy observa-

tion, that is, if 0 < θ < 1 then, for any t ∈ INT ,

T∑
j=t

j−θ ≥ (T + 1)1−θ − t1−θ

1 − θ
. (5.5)

We are in a position to establish Theorem 1 stated in Section 2.

Proof of Theorem 1. Recall that ηt = 1
µ
t−θ for θ ∈ (0, 1). Therefore, by

(5.5) we have that
T∑

t=1

ηt ≥ 1 − 2θ−1

(1 − θ)µ
T 1−θ. Putting this and property (a) in

Lemma 5 together, the bound (2.4) immediately follows from Proposition

3 with θ ∈ (0, 1).

It still remains a question whether we can estimate the stronger error

‖fT+1 − fρ‖K when the step sizes have the form {ηt = O(t−θ) : t ∈ IN}
with θ ∈ (0, 1) and fρ ∈ Lβ

K(L2
ρX

) with β > 1
2
.

We turn our attention to the case when the step sizes are in the form

of {ηt = η : t ∈ INT} with η = η(T ) depending on T . In this case, we can

deal with the expectation of the error ‖fT+1 − fρ‖2
K if fρ ∈ HK .

Lemma 8. Let fρ ∈ HK, ηt = η for t ∈ INT with ηκ2 ≤ 1 and {ft : t ∈
INT+1} be defined as (1.5). Then we have that

EZT

[‖fT+1 − fρ‖2
K

] ≤ ‖ωT
1 (LK)fρ‖2

K + κ2η2
∑
t∈INT

EZt−1

[E(ft)
]
.

Proof. Since the argument here is essentially similar to the proof of

Proposition 1 except the norm ‖ · ‖ρ is replaced by ‖ · ‖K in HK , we

only sketch its proof.

From the error decomposition (5.1), we know that

EZT

[‖fT+1 − fρ‖2
K

]
= ‖ωT

1 (LK)fρ‖2
K + η2EZT

[‖
∑
t∈INT

ωT
t+1(LK)B(ft, zt)‖2

K

]

− 2η
∑
t∈INT

〈ωT
1 (LK)fρ,EZT

[
ωT

t+1(LK)B(ft, zt)
]〉K . (5.6)
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By the vanishing property (4.15) of B(ft, zt), the second term on right-

hand side of the above inequality is estimated as follows:

EZT

[‖
∑
t∈INT

ωT
t+1(LK)B(ft, zt)‖2

K

]
=

∑
t∈INT

EZt

[‖ωT
t+1(LK)B(ft, zt)‖2

K

]

Consequently,

EZT

[‖
∑
t∈INT

ωT
t+1(LK)B(ft, zt)‖2

K

]
=

∑
t∈INT

EZt

[‖ωT
t+1(LK)L

− 1
2

K B(ft, zt)‖2
ρ

]

≤
∑
t∈INT

‖ωT
t+1(LK)‖2EZt

[‖L− 1
2

K B(ft, zt)‖2
ρ

]

=
∑
t∈INT

‖ωT
t+1(LK)‖2EZt

[‖B(ft, zt)‖2
K

]
. (5.7)

By (4.20), EZt

[∥∥B(ft, zt)
∥∥2

K

] ≤ κ2EZt−1

[E(ft)
]
. Also, since ηκ2 ≤ 1, the

estimate (4.11) yields that, for any t ∈ INT there holds ‖ωT
t+1(LK)‖ ≤ 1.

Putting these estimates back into (5.7), we have that

EZT

[‖
∑
t∈INT

ωT
t+1(LK)B(ft, zt)‖2

K

] ≤ κ2

T∑
t=1

EZt−1

[E(ft)
]
. (5.8)

Using (4.15) again, the last term on the right-hand side of (5.6) fol-

lows that
∑
t∈INT

〈ωT
1 (LK)fρ,EZT

[
ωT

t+1(LK)B(ft, zt)
]〉K = 0. Cascading this

equality, (5.6) and (5.8) yields the desired estimate.

We are ready to present error bounds when the step sizes are of the

form {ηt = η : t ∈ INT} with η = η(T ) depending on T .

Proposition 4. Let ηt = η for t ∈ INT and {ft : t ∈ INT+1} be defined as

(1.5). If 16(κ + 1)4 ln
(
8T

)
η ≤ 1 then there holds

EZT

[‖fT+1 − fρ‖2
ρ

] ≤ ‖ωT
1 (LK)fρ‖2

ρ + cρη ln
(
8T

)
. (5.9)

In addition, if fρ ∈ HK then we have that

EZT

[‖fT+1 − fρ‖2
K

] ≤ ‖ωT
1 (LK)fρ‖2

K + cρη
2T. (5.10)

Proof. We regard η as 1
µ
. Then, the inequality 16(κ + 1)4 ln

(
8T

)
η ≤ 1

means that µ ≥ 16(1 + κ)4 ln
(
8T

)
. By Corollary 2, the inequality (4.28)
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on the step sizes is satisfied. Hence, the estimate (4.29) in Proposition 2

holds true.

The first estimate (5.9) follows from Proposition 3 in the case of θ = 0.

Combining Lemma 8 and (4.29) yields (5.10).

From the above proposition, we can prove Theorem 4 stated in the

Section 2.

Proof of Theorem 4. The error bound (2.10) is derived from (5.9) and

property (a) in Lemma 5.

5.2 Proofs of convergence results

We are in a position to apply the error bounds in Theorems 1 and 4 to

prove Theorems 2 and 5, while Propositions 3 and 4 will be used to derive

the explicit rates in the next section.

To prove Theorem 2, we introduce the following well-known property

of K-functional, see [5]. We include its proof for completeness.

Lemma 9. Let s > 0 and K(s, fρ) be defined by (2.2). Then there holds

lim
s→0+

K(s, fρ) = inf
f∈HK

‖f − fρ‖ρ.

Proof. By the definition (2.2) of K-functional, it is straightforward that

lims→0+K(s, fρ) ≥ inff∈HK
‖f − fρ‖ρ. Hence, we only need to show that

lims→0+K(s, fρ) ≤ inf
f∈HK

‖f − fρ‖ρ. (5.11)

To this end, for any ε > 0 we know that there exists fε ∈ HK such that

‖fε −fρ‖ρ ≤ ε+inff∈HK
‖f −fρ‖ρ. Therefore, by letting f = fε, we know,

for any s > 0, that K(s, fρ) is bounded by ε+inff∈HK
‖f − fρ‖ρ + s‖fε‖K .

Letting s → 0+ yields (5.11), and hence completes the lemma.

We are ready to prove Theorem 2 based on Lemma 9 and Theorem 1.

Proof of Theorem 2. Since θ ∈ (0, 1) and ηt = t−θ

µ
for any t ∈

IN with µ ≥ µ(θ), Theorem 1 holds true. Applying Lemma 9 with

s = bθ
√

µ T−(1−θ)/2 to (2.4) yields that limT→∞EZT

[‖fT+1 − fρ‖2
ρ

] ≤
inff∈HK

‖f − fρ‖2
ρ.
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On the other hand, since fT+1 ∈ HK , for any T ∈ IN and any sample

z = {zt : t ∈ INT}, we know that inff∈HK
‖f − fρ‖2

ρ ≤ ‖fT+1 − fρ‖2
ρ, which

leads to limT→∞EZT

[‖fT+1 − fρ‖2
ρ

] ≥ inff∈HK
‖f − fρ‖2

ρ. This completes

Theorem 2.

To prove Theorem 5, we further need the following observation.

Lemma 10. Let fρ ∈ HK, the step sizes {ηt = η(T ) : t ∈ INT} satisfy

η(T )κ2 ≤ 1 for any T ∈ IN and limT→∞ η(T )T = ∞. Then we have that

lim
T→∞

‖ωT
1 (LK)fρ‖K = 0.

Proof. Recall the definition of Lβ
K(L2

ρX
) with β > 0 and the fact HK =

L
1
2
K(L2

ρX
). Hence, if fρ ∈ HK then

fρ =
∞∑

j=1

λ
1
2
j ajφj, for some {aj : j ∈ IN} ∈ `2.

Before we move to the next step, it will be helpful to sketch the main

ideas. In what follows we construct functions in L1
K(L2

ρX
) to approximate

fρ arbitrarily in HK while for functions in L1
K(L2

ρX
), we apply (5.4) in

Lemma 7 with β = 1 to deal with it.

Now, write fρ =
∑N

λj>0,j=1 λ
1
2
j ajφj +

∑∞
λj>0,j=N+1 λ

1
2
j ajφj. Then, fN =

N∑

λj>0,j=1

λ1
j(λ

− 1
2

j aj)φj ∈ L1
K(L2

ρX
) for any N ∈ IN because ‖L−1

K fN‖2
ρ =

∑N
λj>0,j=1(λ

− 1
2

j aj)
2 < ∞. On the other hand, since

∑∞
j=1 a2

j < ∞, then, for

any ε > 0, there exists N(ε) ∈ IN such that
∑∞

j=N(ε)+1 a2
j ≤ ε2. Therefore,

‖fρ − fN(ε)‖2
K = ‖

∞∑

j=N(ε)+1

λ
1
2
j ajφj‖2

K =
∞∑

j=N(ε)+1

a2
j ≤ ε2.

By (2.8), we have that ‖(I − η(T )LK)f‖K = ‖(I − η(T )LK)L
− 1

2
K f‖ρ ≤

‖I − η(T )LK‖‖L− 1
2

K f‖ρ = ‖I − η(T )LK‖ ‖f‖K .

Also, since η(T )κ2 ≤ 1, applying (4.11) with x = η implies that ‖(I −
η(T )LK)‖ ≤ 1. Hence, for any f ∈ HK there holds ‖(I − η(T )LK)f‖K ≤
‖f‖K . Consequently, applying the above inequality with f = fρ − fN(ε)
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tells us that

‖(I − η(T )LK)T fρ‖K ≤ ‖(I − η(T )LK)T fN(ε)‖K

+ ‖(I − η(T )LK)T (fρ − fN(ε))‖K

≤ ‖(I − η(T )LK)T fN(ε)‖K + ‖fρ − fN(ε)‖K

≤ ‖(I − η(T )LK)T fN(ε)‖K + ε. (5.12)

To estimate ‖(I − η(T )LK)T fN(ε)‖K , applying (5.4) with ηt = η(T ) for

any t ∈ INT , f = fN(ε), and β = 1 yields that

‖(I − η(T )LK)T fN(ε)‖K ≤ 2
(
1 + κ

)‖L−1
K fN(ε)‖ρ

(
Tη(T )

)− 1
2 .

Since limT→∞ Tη(T ) = ∞, the above estimation implies that there exists

an integer T (ε) ≥ N(ε) such that

‖(I − η(T )LK)T fN(ε)‖K ≤ ε, ∀ T ≥ T (ε). (5.13)

Putting (5.12) and (5.13) together, we know that

‖ωT
1 (LK)fρ‖K = ‖(I − η(T )LK)T fρ‖K ≤ 2ε, ∀ T ≥ T (ε).

Since ε > 0 is arbitrary, we obtain the desired claim.

We now move on to the proof of Theorem 5.

Proof of Theorem 5. Observe whenever limT→∞ η(T ) ln T = 0 or

limT→∞ Tη2(T ) = 0, there exists T1(ε) ∈ IN such that 16(κ+1)4η(T ) ln T ≤
1 for all T ≥ T1(ε). The hypotheses in Lemma 8 and Theorem 4 are sat-

isfied for any T ≥ T1(ε). Therefore, (2.10) holds true for any T ≥ T1(ε).

We first prove the convergence in L2
ρX

. Applying Lemma 9 with s =

2(1+κ)
(
η(T )T

)− 1
2 to (2.10), it follows from the hypothesis limT→∞ Tη(T ) =

∞ that limT→∞EZT

[‖fT+1−fρ‖2
ρ

] ≤ inff∈HK
‖f−fρ‖2

ρ. On the other hand,

since fT+1 ∈ HK , inff∈HK
‖f − fρ‖2

ρ ≤ ‖fT+1 − fρ‖2
ρ for any data z = {zt :

t ∈ INT} which leads to inff∈HK
‖f − fρ‖2

ρ ≤ limT→∞EZT

[‖fT+1 − fρ‖2
ρ

]
.

This verifies the first part of Theorem 5.

The proof for the second part is similar. Since limT→∞ Tη2(T ) = 0,

combining (5.10) in Proposition 4 with Lemma 10 yields that

limT→∞EZT

[‖fT+1 − fρ‖2
K

] ≤ 0

which completes Theorem 5.
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6 Explicit error rates

In this section we use Propositions 3 and 4 to derive explicit error rates

for EZT

[‖fT+1 − fρ‖2
ρ

]
by choosing the step sizes appropriately, when the

regression function fρ lies in Lβ
K(L2

ρX
) with β > 0.

6.1 Rates for online learning with λ = 0

We start by establishing explicit error rates for algorithm (1.5) stated in

Theorems 3 and 6.

Proof of Theorem 3. Recall that µ(θ) is defined by (4.27) for 0 < θ < 1.

Therefore, if ηt = t−θ

µ(θ)
then, by Proposition 3, we know that

EZT

[‖fT+1 − fρ‖2
ρ

] ≤ ‖ωT
1 (LK)fρ‖2

ρ + O
(
T−min{θ,1−θ} ln T

)
. (6.1)

Since fρ ∈ Lβ
K(L2

ρX
), applying (5.3) with f = fρ implies that ‖ωT

1 (LK)fρ‖ρ =

O
((∑

t∈INT
ηt

)−β
)
. Therefore, we see from (5.5) that ‖ωT

1 (LK)fρ‖2
ρ =

O
(
T−2(1−θ)β

)
. Note that O

(
T−min{θ,1−θ} ln T

)
= O

(
T−θ ln T+T−(1−θ) ln T

)
.

Putting these estimates into (6.1) and noting the hypothesis β ∈ (0, 1
2
],

we know that

EZT

[‖fT+1 − fρ‖2
ρ

]
= O

(
T−2(1−θ)β ln T + T−θ ln T

)
.

Selecting θ = 2β
2β+1

in the above inequality completes the theorem.

By Proposition 4, we can establish Theorem 6.

Proof of Theorem 6. Observe that ln(8T ) ≤ (8T )θ

θ
≤ 8T θ

θ
for any

θ ∈ (0, 1). Hence, we know that the choice of η := β
64(1+κ)4(2β+1)

T− 2β
2β+1 for

β > 0 satisfies the hypothesis 16(κ + 1)4 ln
(
8T

)
η ≤ 1 in Proposition 4.

Applying (5.3) with f = fρ, we know that ‖ωT
1 (LK)fρ‖ρ = O((ηT )−β).

This in connection with (5.9) in Proposition 4 implies that

EZT

[‖fT+1 − fρ‖2
ρ

] ≤ O((ηT )−2β) + cρη ln
(
8T

)
.

Substituting η = β
64(1+κ)4(2β+1)

T− 2β
2β+1 into the right-hand side of the above

inequality yields the rate (2.15).
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Similarly, if fρ ∈ Lβ
K(L2

ρX
) with β > 1

2
then, applying (5.4) with f = fρ

to (5.10) yields that

EZT

[‖fT+1 − fρ‖2
K

] ≤ ‖ωT
1 (LK)fρ‖2

K + cρη
2T

≤ O
((

Tη
)−2(β− 1

2
)
)

+ cρη
2T.

Putting the choice η = β
64(1+κ)4(2β+1)

T− 2β
2β+1 back into the right-hand side

of the above inequality directly implies the rate (2.16).

6.2 Improved rates for online regularized learning

Our analysis can also yield improved rates for the online regularized algo-

rithm given by (1.4) with λ > 0 which is stated as Theorem 7.

Proof of Theorem 7. Note that if 0 < λ ≤ 1 then Corollary 2 tells us

that the choice of the step sizes {ηt = 1
µ(θ)+1

t−θ : t ∈ INT} with θ ∈ (0, 1)

satisfies the hypothesis (4.28). Consequently, by Proposition 2 we have

that

sup
k∈INT+1

EZt−1

[E(ft)
] ≤ 20‖fρ‖2

ρ + 3E(fρ).

Also, observe that µ := µ(θ) + 1 ≥ κ2 + λ for λ ∈ (0, 1] and de-

note dθ = 1−2θ−1

1−θ
. Therefore, applying Lemma 6 with ` = T implies that

∑
t∈INT

η2
t exp

{−λ
∑T

j=t+1 ηj

}

1 +
∑T

j=t+1 ηj

is bounded by

cθ

µ

(
exp

{−λdθT
1−θ/µ

}
T−min{θ,1−θ} + T−θ

)
ln

( 8T

1 − θ

)
. (6.2)

Combining this with Proposition 1 for the case λ ∈ (0, 1], EZT

[‖fT+1 −
fρ‖2

ρ

]
is bounded by

‖fλ − fρ‖2
ρ + ‖ωT

1 (LK + λI)fλ‖2
ρ + 2‖fλ − fρ‖ρ‖ωT

1 (LK + λI)fλ‖ρ

+
cρcθ

µ

(
exp

{−λdθT
1−θ/µ

}
T−min{θ,1−θ} + T−θ

)
ln(

8T

1 − θ
). (6.3)

To move to the next step, we note from Lemma 4 that

‖fλ − fρ‖ρ ≤ λβ‖L−β
K fρ‖ρ, ∀β ∈ (0, 1].
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Also, property (b) in Lemma 5 and the inequality (5.5) with t = 1 implies

that

‖ωT
1 (LK + λI)fλ‖ρ ≤ 2 exp

{−λdθT
1−θ/µ

}‖fρ‖ρ.

Substituting these into (6.3), it follows that EZT

[‖fT+1−fρ‖2
ρ

]
is bounded

by

λ2β‖L−β
K fρ‖2

ρ+
cρcθ

µ
T−θ ln(

8T

1 − θ
) + 4‖L−β

K fρ‖ρ‖fρ‖ρλ
β exp

{−λdθT
1−θ/µ

}

+
(cρcθ

µ
+ 4‖fρ‖2

ρ

)
exp

{−λdθT
1−θ/µ

}
ln

( 8T

1 − θ

)
. (6.4)

Note that, for all ε > 0, s > 0 and c > 0 the asymptotic behavior holds

exp{−cT ε} = O(T−s). (6.5)

Therefore, for any 0 < ε < β
2β+1

, choosing λ = T− 1
2β+1

+ ε
2β and θ = 2β

2β+1
in

(6.4) yields the desired error rate (2.17).
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Appendix

This appendix includes a detailed proof of Lemma 6 and the relationship

between the functional space (L2
ρX

,HK)β,∞ and Lβ
K(L2

ρX
).

Proof of Lemma 6: Recall the convention
∑`

k=`+1 ηk = 0 which gives

rise to the equality

∑
j∈IN`

η2
j exp

{−λ
∑̀

k=j+1

ηk

}/( ∑̀

k=j+1

ηk + 1
)

=
∑

j∈IN`−1

η2
j exp

{−λ
∑̀

k=j+1

ηk

}/( ∑̀

k=j+1

ηk + 1
)

+
1

µ2`2θ
. (6.6)

Let us first prove the case θ 6= 0. The last term on the right-hand side

of (6.6) is easy: 1
µ2`2θ ≤ 1

µ`2θ since µ ≥ 1 + κ2.

To estimate the first term on the right-hand side of (6.6), we divide it

into two terms:

∑
j∈IN`−1

η2
j exp

{−λ
∑`

k=j+1 ηk

}
∑`

k=j+1 ηk + 1
=

∑
j∈IN

j≤ `−1
2

η2
j exp

{−λ
∑`

k=j+1 ηk

}
∑`

k=j+1 ηk + 1

+
`−1∑

j> `−1
2

,j∈IN

η2
j exp

{−λ
∑`

k=j+1 ηk

}
∑`

k=j+1 ηk + 1
. (6.7)

38



By (5.5), we know that
∑`

t=j+1 t−θ ≥ 1
1−θ

(
(` + 1)1−θ − (j + 1)1−θ

)
. Then,

for any j ≤ ` − 1, there holds

exp
{−λ

∑̀

k=j+1

ηk

}/( ∑̀

k=j+1

ηk + 1
)

≤
exp

{− λ
(1−θ)µ

(
(` + 1)1−θ − (j + 1)1−θ

)}
1

µ(1−θ)

(
(` + 1)1−θ − (j + 1)1−θ

)
+ 1

. (6.8)

Below, we use (6.8) to estimate the two terms on the right-hand side of

(6.7) respectively.

For the first term, since j ≤ `−1
2

, (`+1)1−θ−(j+1)1−θ ≥ (1−2θ−1)(`+

1)1−θ. Thus, the inequality (6.8) implies that

∑
j∈IN

j≤ `−1
2

η2
j exp

{−λ
∑̀

k=j+1

ηk

}/( ∑̀

k=j+1

ηk + 1
)

≤ 1

µ

( 1 − θ

1 − 2θ−1

)
(` + 1)θ−1 exp

{
− λ(1 − 2θ−1)

(1 − θ)µ
(` + 1)1−θ

} ∑

j≤ `−1
2

j−2θ.

Also,

∑

j≤ `−1
2

j−2θ ≤ 1 +

∫ `−1
2

1

x−2θdx ≤





2
1−2θ

`1−2θ for 0 < θ < 1
2
,

ln( e`
2
) for θ = 1

2
,

2
2θ−1

for 1
2

< θ < 1.

Consequently, it follows that

∑
j∈IN

j≤ `−1
2

η2
j exp

{−λ
∑̀

k=j+1

ηk

}/( ∑̀

k=j+1

ηk + 1
)

≤ c̃θ

µ
`−min{θ,1−θ} exp

{−λ(1 − 2θ−1)

(1 − θ)µ
(` + 1)1−θ

}
ln

(e`

2

)
(6.9)

where c̃θ = 2 for θ = 1
2

and 2
(1−2θ−1)|2θ−1| for θ 6= 0, 1

2
.

We now turn to the second term on the right-hand side of (6.7). Since
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exp
{− λ

(1−θ)µ

(
(` + 1)1−θ − (j + 1)1−θ

)} ≤ 1, from (6.8), we have that

`−1∑

j> `−1
2

,j∈IN

η2
j exp

{−λ
∑̀

k=j+1

ηk

}/( ∑̀

k=j+1

ηk + 1
)

≤ 4

µ2
`−θ

`−1∑

j> `−1
2

,j∈IN

j−θ

1
µ(1−θ)

(
(` + 1)1−θ − (j + 1)1−θ

)
+ 1

.

Since j−θ ≤ 3(1 + x)−θ and (`+1)1−θ − (j +1)1−θ ≥ (`+1)1−θ − (x+1)1−θ

for any x ∈ [j, j + 1] and j ≤ ` − 1, we have that

`−1∑

j> `−1
2

j−θ

1
µ(1−θ)

(
(` + 1)1−θ − (j + 1)1−θ

)
+ 1

≤ 3
`−1∑

j> `−1
2

∫ j+1

j

(x + 1)−θ

1
µ(1−θ)

(
(` + 1)1−θ − (x + 1)1−θ

)
+ 1

dx

≤ 3

∫ `

`−1
2

(x + 1)−θ

1
µ(1−θ)

(
(` + 1)1−θ − (x + 1)1−θ

)
+ 1

dx

= 3µ ln
(
1 +

(1 − 2θ−1

(1 − θ)µ

)
(` + 1)1−θ

)
≤ 3µ ln

(2(` + 1)

1 − θ

)

where 1
µ
≤ 1

1+κ2 ≤ 1 is used in the last inequality. Therefore,

`−1∑

j> `−1
2

,j∈IN

η2
j exp

{−λ
∑̀

k=j+1

ηk

}/( ∑̀

k=j+1

ηk + 1
) ≤ 12

µ
`−θ ln

(2(` + 1)

1 − θ

)
.

Putting this and (6.9) together into (6.6), we have, for θ ∈ (0, 1), that

∑
j∈IN`

η2
j exp

{−λ
∑̀

k=j+1

ηk

}/( ∑̀

k=j+1

ηk + 1
)

≤ cθ

µ

(
exp

{−λ(1 − 2θ−1)

(1 − θ)µ
(` + 1)1−θ

}
`−min{θ,1−θ} + `−θ

)
ln(

8`

1 − θ
).

where cθ = 13 for θ = 1
2
, and 13

(1−2θ−1)|2θ−1| for θ ∈ (0, 1
2
) ∪ (1

2
, 1).

For the case θ = 0, we know that

∑
j∈IN`

η2
j exp

{−λ
∑̀

k=j+1

ηk

}/( ∑̀

k=j+1

ηk + 1
)

=
1

µ2

∑̀
j=1

e−
(`−j)λ

µ
/(` − j

µ
+ 1

)

≤ 1

µ2

∑
j∈IN`

1
`−j
µ

+ 1
≤ 1

µ
ln

(
e`

)
.
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This finishes the proof of Lemma 6.

We end the appendix with the relationship between (L2
ρX

,HK)β,∞ and

Lβ
K(L2

ρX
) which is interesting in its own right.

Proposition 5. Let the interpolation space (L2
ρX

,HK)β,∞ be defined by

(2.5). Then, Lβ
K(L2

ρX
) ⊆ (L2

ρX
,HK)2β,∞ for β ∈ [0, 1

2
].

Proof. We assume that the positive eigenvalues {λj : j ∈ IN} of LK are

arranged in decreasing order. Then, ‖LK‖ = λ1 ≤ κ2.

For any f1 ∈ Lβ
K(L2

ρX
), there exists {aj : j ∈ IN} with

∑
j∈IN a2

j < ∞
such that f1 =

∑
j∈IN λβ

j ajφj. To estimate K(s, f1) in the case of s2 ≤ λ1,

we select ` ∈ IN such that λ`+1 ≤ s2 ≤ λ` and let f =
∑

j∈IN`
ajλ

β
j φj.

Therefore,

‖f − f1‖ρ + s‖f‖K = λβ
`+1

{ ∑

j≥`+1

a2
j(

λj

λ`+1

)2β
} 1

2 + sλ
β− 1

2
`

{∑
j∈IN`

a2
j

(λj

λ`

)2β−1} 1
2

≤ 2s2β
{∑

j∈IN

a2
j

} 1
2 = 2s2β‖L−β

K f1‖ρ.

Consequently, this proves that K(s, f1) ≤ 2s2β‖L−β
K f1‖ρ in the case s2 ≤

λ1. For s2 ≥ λ1, we choose f = 0, then K(s, f1) ≤ ‖f1‖ρ ≤ s2βλ−β
1 ‖f1‖ρ ≤

s2β‖L−β
K f1‖ρ. Above all, for any s > 0,

K(s, f1) ≤ 2s2β‖L−β
K f1‖ρ

which completes the proposition.

We remark with a simple counterexample that the reverse conclusion in

Proposition 5 between these spaces is not true. Let dρX be the Lebesgue

measure dx on [0, 1] and the RKHS be Hs[0, 1] with s > 1
2
. By the

argument at the end of Section 3, we know that Lβ
K(L2

dx) = H2βs[0, 1].

But it is well-known [5] that H2βs[0, 1] is not identical to the interpolation

space (L2
dx, H

s)2β,∞. We conjecture that this reverse conclusion is also not

true in the general case.
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