Tsvyatko

_ Konoy
Nikolay ")
Nedyalkov leo!ay
5 Koty Teodor Vassilev
: rist
Yosif 4 Getin :ov ostoy Stoev radoslav
Yosifov Todorov
pavlin@ Y
Hadjie\/a = k Teodo,_
SVEtlll‘l Na ovl Bozhiko,,
’ in Kolev Y
Radoslav Vesel in 0 Yordan
Ivanov Pavlov
& Co. Tliyan
radoslav Murdanijey
Kirliov 15
: Stefan :
Mihai Mihail ~ Pavel ~ Yesselin Staey ~ Bivas h
VI ail Stovnoy Donchey Georgiev
alkov y Dilyan
Dimitrov
Stanislav
Zlatinov

FUNDAMENTALS OF
CoMPUTER PROGRAMMING

" with C#

The Bulgariap, C# Boog

http://www.introprogramming.info/
http://www.introprogramming.info

Contents

0o 3 1 =T 3 1 2
Detailed Table of Contentscccvcivmmammmmnmmirirsrmasm s s s s ssassassansanss 5
2 =) - T ol = S 13
Chapter 1. Introduction to Programming....ccccuveriemrenmrsrnsransnansnanses 69
Chapter 2. Primitive Types and Variablesccccivciicniciirvnn v nnannas 111
Chapter 3. Operators and EXpressSiONS...ccuucvsrmsesssnsssnsssnsssnsssnnssnnsnns 139
Chapter 4. Console Input and Outputcccccvicimicrmnssmnesrsesrsessssssannnes 165
Chapter 5. Conditional Statementscccvicmicmncimnssnssnsessssssnssannnes 195
Chapter 6. LOOPS wiuciruciramiimrrntrantrassmassmsssmsssssssssssssssssssssnsssnnssnnsnnnnnns 211
Chapter 7. Arrays cociceircirsetrastrastrassmassmsssmsssmsssssssssssssnsssnsssnsssnnsnnnnnns 235
Chapter 8. Numeral Systemscccciiiiiciiisincincsrscsn s sr s sr s r s r s nnnes 265
Chapter 9. Methodscciiiiii i i rr s s s r s a i a 293
Chapter 10. RECUISION ...ciieiierierimsimssessassassansansansansansansanssnsansnnsnnnnnnnas 351
Chapter 11. Creating and Using Objectsc.ccvvvimrimriesiernesnessannanaas 385
Chapter 12. Exception Handlingc.cccvmimiimirnsi i s s s snnsnasnannas 415
Chapter 13. Strings and Text Processingccuvcrverierververrerressassansanas 457
Chapter 14. Defining ClasSeS ...cccvuirtritrssrssmssrsssssssssssssnsssnsnsnnnnns 499
Chapter 15. Text Fil@S...ccciiiiiiiiiin i ir s srs s sr s rs s r s r s n s n s n s nnnas 615
Chapter 16. Linear Data Structuresccceciciic i incsnncsnn e snssnnnnnnes 641
Chapter 17. Trees and Graphsc.ccuviimmimiriss i i s s s s snasnns 681
Chapter 18. Dictionaries, Hash-Tables and Setsccvvcmininnennnes 727
Chapter 19. Data Structures and Algorithm Complexityc..c.ue. 769
Chapter 20. Object-Oriented Programming Principles..................... 807
Chapter 21. High-Quality Programming Code........ccccrurimrumimraniaransass 853
Chapter 22. Lambda Expressions and LINQ........ccvcrverververresrasransansas 915
Chapter 23. Methodology of Problem Solvingc.ccvciiiiiiiirnceranenss 935
Chapter 24. Sample Programming Exam — Topic #1......cccvcrvervennnnnes 985
Chapter 25. Sample Programming Exam — Topic #2.....cccvcvvemrnnnnes 1041
Chapter 26. Sample Programming Exam — Topic #3.....cccvervemrnannes 1071
[0 0 3 T 1T T o I 1119

FUNDAMENTALS OF
COMPUTER PROGRAMMING
WITH C#

(The Bulgarian C# Programming Book)

Svetlin Nakov & Co.

Dilyan Dimitrov
Hristo Germanov
Iliyan Murdanliev
Mihail Stoynov
Mihail Valkov
Mira Bivas
Nikolay Kostov
Nikolay Nedyalkov
Nikolay Vasilev
Pavel Donchev
Pavlina Hadjieva
Radoslav Ivanov

Radoslav Kirilov
Radoslav Todorov
Stanislav Zlatinov

Stefan Staev
Svetlin Nakov
Teodor Bozhikov
Teodor Stoev

Tsvyatko Konov

Vesselin Georgiev
Veselin Kolev
Yordan Pavlov
Yosif Yosifov

Sofia, 2013

FUNDAMENTALS OF COMPUTER
PROGRAMMING WITH C#

(The Bulgarian C# Programming Book)

© Svetlin Nakov & Co., 2013

The book is distributed freely under the following license conditions:

1. Book readers (users) may:

distribute free of charge unaltered copies of the book in electronic or
paper format;

use portions of the book and the source code examples or their
modifications, for all intents and purposes, including educational and
commercial projects, provided they clearly specify the original source,
the original author(s) of the corresponding text or source code, this
license and the website www.introprogramming.info;

distribute free of charge portions of the book or modified copies of it
(including translating the book into other languages or adapting it to
other programming languages and platforms), but only by explicitly
mentioning the original source and the authors of the corresponding
text, source code or other material, this license and the official website
of the project: www.introprogramming.info.

2. Book readers (users) may NOT:

distribute for profit the book or portions of it, with the exception of the
source code;

remove this license from the book when modifying it for own needs.

All trademarks referenced in this book are the property of their respective
owners.

Official Web Site:
http://www.introprogramming.info

ISBN 978-954-400-773-7

http://www.introprogramming.info/
http://www.introprogramming.info/
http://www.introprogramming.info/

Detailed Table of Contents

0o 3 1 =T 3 1 2
Detailed Table of Contentscccvcivmmammmmnmmirirsrmasm s s s s ssassassansanss 5
2 =Y - T ol = S 13
PN Lo 1 UL i g L= = To o G PP PPP 13
(OF - o To I\ | = B o =T 0 0 1= o OO 17
HOW TO Read This BOOK? ...iriiiiiiiiiiiee st s e e e e e s e s e e s e rean e neenes 22
Why Are Data Structures and Algorithms Emphasized?c.oooiiiiiiiiiiiininnne, 25
Do You Really Want to Become @ Programmer?c.ovoviiiiiiiiiniiiiiineneneeeaeaens 26
A Look at the BOOK’'S CONEENTS .. .cuviuiiiiiiiii e 29
History: How Did This Book Come t0 BEe?ccuiiiiiiiiiiiiiiiiii it 38
Authors and ContribULOrS ... e 40
The Book Is Free of Charge! ... e 53
RV NS ettt 53
0l o =] =P 63
Resources Coming With the BOOK.......oviiiiiiiiiiii e 65
Chapter 1. Introduction to Programming......ccecrverierververresresrassassansanss 69
LT I oV E=3 O = o) o= 69
What Does It Mean "To Program™? oo ae e e 69
Stages in Software Development.o 71
(O 10] ol T = A O o To | = o PPN 75
The C# Language and the .NET Platform........cooiiiiiiiii e 79
VisUAl STUAIO IDE ...vieieiiiiiii e e et e e e e e e s e e e e e enans 93
Alternatives to Visual STUdIOcoviieiiii e 104
[B7=Tole] o] 0] 115 Te [Nl Yo 1= PP 104
C# in Linux, iI0S @and ANdroid......ccouiieieiiiiei e e e e e anans 107
Other .NET LanQUAaGgES .. .uiuiiiieieititiie ettt e s e e e e e e e e e s e s e s e e s eeeeens 107
=] o of Y= P 108
SoIUtioNS aNd GUIAEIINES ...vvie it e e e e e anans 108
Chapter 2. Primitive Types and Variablesccicvvciiiiimirvemre v nnannas 111
| I VTSRO = o) = P 111
What Is @ Variable? ..o e 111
[T o= TR IV o 1= 111
RV 4= = 1 o 1= PP 123
Value and RefErENCE Ty PES .t ittt ittt ittt a e a e aneanereaneenes 128

I = o= £ 131

6 Fundamentals of Computer Programming with C#

ST o0 111 135
Solutions and GUIAEIINES ...cviiieiii i e e e e e e e anans 136
Chapter 3. Operators and EXpressionS....cccccvicmsmssmsssssssssssnssnnnnns 139
IN This Chapler . i e e 139
(@ o 7= o= | (o =P 139
Type Conversion and Castingo.voiveiiiiiiiiiii e 152
0 177 10 158
ST o0 111 160
Solutions and GUIAEIINESviiieiii i s e e e e e e anans 161
Chapter 4. Console Input and Outputccoiciiicinicirrcsrr s srr s s s s s r s 165
| oI I o £ O T o) = PN 165
What Is the CONSO0IE? .. et e e e e e ree e 165
Standard INPUL-OUEPUL ..ot et e e e aaeas 169
Printing to the ConSO0le. ... 169
CONSO0IE INPUL L. 183
Console Input and Output — EXamplescoviiiiiiiii e 190
] ol 1= =T 192
SolUutions and GUIAEIINES ...viiei it e e e e 193
Chapter 5. Conditional Statementscccvicmmicimicirnesrsesssssssnannnes 195
LT I oY = O T o) = S 195
Comparison Operators and Boolean EXPresSsionsc.vveviviiiiiiiieiiiiiiiienieiennens 195
Conditional Statements "if" and "if-else"cociiiiiiiii 200
Conditional Statement "switch-case".......ccoviiiiiiii 206
=] of =1 P 208
SOIULiONS aNd GUIAEIINES .. .vvieiii e e e e e e anans 209
Chapter 6. LOOPS tciierierierieriermasmasrasrassassassasssnssnssasssssasssssnssnnsansansansas 211
| T I 1T O = o =] o P 211
L= L == T o Yo o PP 211
L 1 L= o o 1= PP 211
[T AT 1 L= e Yo o 3PP 216
0 il 10 01 221
[=TTl a T e Lo o 1= PP 225
[N =Ty o< N o Yo o 1= PP 226
=] o of Y= P 231
SoIUtioNs and GUIAEIINES ...evii it e e e aeaaans 233
Chapter 7. Arrays .cuiciicriri i rresresre s s sassassssssassssssssnssnssnssnnsnnsnnsnnsas 235
| I VTSRO = o) = P 235
T oo o = Yo T Y o = |V A PP 235
Declaration and Allocation of Memory fOr Arrays ...ocvvviiiiiie i eeas 235
Access to the Elements of an Array..covii i e 238

Reading an Array from the COoNSOIlec.vieiiiiii i e e 241

Detailed Table of Contents 7

Printing an Array to the Console......ccviiiiiiii e 243
Iteration through Elements of @an Array .c.ooviiiii i e 244
MUItIdIMENSIONAl AFTAYS ..ueieiiii i et e e e e e 246
LN g o= 1 2o) AN o o= 12 PP 253
=] ol 1= 257
Solutions and GUIAEIINESieiie i e e an e e e rneanens 259
Chapter 8. Numeral Systemsccccuvmrmrmmmms i s n s s srasnassansas 265
| oI I g E O T o] = PPN 265
History in @ NUEShell ..o e e 265
N T8 e L= = TS VA (=] 4 = PR 266
Representation of NUMDbDEIS ... e 276
=T of 1= 289
SolUtioNs and GUIAEIINES ...vviiii i e e e e e e e aeanans 290
Chapter 9. Methodsccciviiiiis i ir s e s e s r 293
| T I 1T O = o =T o P 293
Subroutines in ProgramimMing.......oceeieieiiiieee et e e e e e e reeaaans 293
LT g1 Y £ B 1= o T Yo P 293
Why to Use MethOdS?veiiiii e e aes 294
How to Declare, Implement and Invoke a Method?ccoviiiiiiiiiici e 295
Declaring Our OWn Methodcoviniiii s 295
Implementation (Creation) of Own Methodcccoiiiiiiiiiiii e 300
INVOKING @ MEENOA. ...ttt e e nans 301
Parameters in Methodscooviiiiiiii 303
Returning a Result from a Methodcccciiiiiiiiiii 328
Best Practices when Using Methodscciiiiiiiiiiiiiii e 345
=] of 1= 347
SoIUtioNS anNd GUIAEIINES ...vviiiei i e e e e e anans 348
Chapter 10. RECUISION ...ciiciierierierressessassassansanssnssnssnssnssnssnssnssnsnnnsansas 351
| T I 1T O = o =] o P 351
T o o K =Tl | =] o] o PP 351
EXample Of RECUMSION ...viiiiiiiii it e st e e e e e enes 351
Direct and INAir€Ct RECUISION .. .iuiiiiiiiii i et eaneaeraens 352
(2o u o] g g I} il S U=Tol U] =1 o] o NPT PR 352
Creating Recursive Methods........o.vuiiiiiii e e 352
Recursive Calculation of Factorialccevviiiiiiiii e 353
ReCUrSION OF TEeration 2. .. e e e e e e rneans 355
Simulation of N Nested LOOPS ...uvviuiiiiiiiiiie et eeeens 356
Which is Better: Recursion or Iteration?coiiiiiiiiiii e 362
Using RecUrsion = CONCIUSIONSuiuiuiiiiieieieiie e e e e e e e e e e e e e aeaees 378
] o0 111 378
Solutions and GUIAEIINESviuiieiiiii it e e e nans 380

Chapter 11. Creating and Using Objectscvecvciiicrnncsnnssnnssnnn e . 385

8 Fundamentals of Computer Programming with C#

| oI I gV E R O T o] = RPN 385
Classes anNd ObJECES. . ittt i e 385
(O] 2T =Y | o O - 387
Creating and Using ODJECESciuiuiiiiiiiiiiii e s 390
AV = 1 1S 5= o] 405
XIS . a ittt e 410
Solutions and GUIdEIINES ... e 412
Chapter 12. Exception Handlingccccvciviimmmisn i v s v snnsnasnannas 415
| oI I g E R O T o] =] PPN 415
T g = o K Yo I LY o) o o 1 P 415
EXCeptions HIierarChy ..o e eas 424
Throwing and Catching EXCEPLiONS ...vivviviiiiiiii i e 426
The try-finally ConstrUCT. .. iiiiii i e eas 432
IDisposable and the "using" Statementccoiiiiiiiiii 437
Advantages of USiNg EXCEPLIONS ... uuiiiiii e et 439
Best Practices when Using EXCEPLIONSviviiiiiiiiiiiiii e e 445
XIS . ittt e 453
Solutions and GUIEIINESt e e s 454
Chapter 13. Strings and Text Processingccoceviermiemmnesmsnsssnsssnnssansnns 457
| T I 1T O = o =] o P 457
15 T T P 457
1o T Lo FR @ =T = o o] 1= P 462
Constructing Strings: the StringBuilder Class.........ccvvviiiiiiiiiii s 480
StriNg FOrmatting ..o e 488
=] of =1 P 491
SOIULiONS aNd GUIAEIINES .. .vvieiii e e e e e e anans 496
Chapter 14. Defining Classesciccvcrrirrirsirasssasssass s sassasannss 499
| T I 1T O = o =] o P 499
(OB} o] 0 g T O F= 11T T P 499
Usage of Class and ObJeCtS.......civiiiiiii e e 502
Organizing Classes in Files and Namespacescovviiiuiiiiiiiiiiiiiiiiiieneeenereeanns 505
Modifiers and Access Levels (ViSibility)oovveiiiiiiii e 508
[DI=Tol = o[o B =TT PP 509
The Reserved Word "this" ... e 511
[T=] o L= PP 512
1 =% ol T T 3 PP 518
Accessing Non-Static Data of the Classccoiiiiiiiiiiii e 519
Hiding Fields with Local Variablesccoiiiiiii e 522
Visibility of Fields and Methods. ... 524
CONSEMUCEOIS 1ttt 531
[0] 1= o o = 549

Static Classes and Static MEMbDEIS ...vviiiiiiii i i e aaeraes 559

Detailed Table of Contents 9

] 8L o = 580
ENUMEIratioNs ..eii i e 584
Inner Classes (Nested ClasSeS)uiuiiiuiiiiiiiiiiiii s e s 590
L= 1T o TP 594
=] ol 1= 610
Solutions and GUIAEIINESieiie i e e an e e e rneanens 613
Chapter 15. Text FileS...icivciirimirarrrrss s s s s snssnsssnssnsnansnnsas 615
| oI I g E O T o] = PPN 615
R 11 == 1= 615
Reading from @ TeXt File ..uiuiiiiiiiiii i e e e 620
WrItiNg T0 @ TeXt File cuviiiii i e e e e e e 628
Input / Output Exception Handlingooeiiiiiiiiiiiiic e e 630
Text Files — More EXampPles ..ot e e eas 631
=] of 11 636
Solutions and GUIAEIINES ...viieiie i e e r e e e rneanens 638
Chapter 16. Linear Data Structurescccvirmrmnrmsms s ssssssansnnnsnns 641
| T I 1T O = o =T P 641
Abstract Data StruCtUreS ... 641
TS BT = IS o Lol B | == PP 642
] ol 1= = 676
SoIULioNS aNd GUIAEIINES .. .eviiiei i s e e e e e e e anans 678
Chapter 17. Trees and Graphs ...ccccvcrremrmrimmsmsrsarie s s ssassassassassansns 681
LT I oY = O T o) = S 681
Tree Data StrUCTUIESvii it e e s e e rnens 681
(=T P 681
[7= 0 2 13 714
] oL 1= == 722
SolUutions and GUIAEIINES ...uiiuiii i e ne e e 723
Chapter 18. Dictionaries, Hash-Tables and Setsccvvcimicninennnes 727
| T I 1T O = o =] o P 727
Dictionary Data StruCtUreo.viiiiiiii i e as 727
Hash-Tables et s 735
The "Set" Data StrUCTUNE ...ttt a e aeenes 760
=] o of Y= P 765
SoIUtioNS anNd GUIAEIINES .. .vvie i e e e e e aaans 767
Chapter 19. Data Structures and Algorithm Complexityccccvemunnnes 769
| I VTSRO = o) = P 769
Why Are Data Structures So Important?.......cccviiiiiiiiiiiii e 769
Algorithm ComPleXitY «oviiriiiii i e 770
Comparison between Basic Data Structures......cocoiviiiiiiiiiiiiic e 779

When to Use a Particular Data Structure?cooiviiiiiiii i 779

10 Fundamentals of Computer Programming with C#

Choosing a Data Structure — EXampPles ...oouiiiiiiiiiiiiici i it aneeaeas 786
External Libraries with .NET ColleCtioNS......cvvviiiiiiiiii e 801
=] ol 1= 803
Solutions and GUIAEIINESeiie i e e e n e e rneanens 804
Chapter 20. Object-Oriented Programming Principles..................... 807
IN This Chapler . i e e e 807
Let’s Review: Classes and ObjJeCtSccvviiiiiiiiiiiiiiii e 807
Object-Oriented Programming (OOP) ...iviiiiiiii i e 807
Fundamental Principles of OOP.. ...t e e 808
g] a1 =] o o= TP 809
FAY 0 13 o o= ot o o S PP 824
ENCaPSUItiON ettt e e 828
(0T V 40 o Vo T o]] =] o o [P 830
Cohesion and CoUP NG . ..ciiuiiiii i e e 836
Object-Oriented Modeling (OOM).....iuiiiiiiiii i e 842
L] A\) = o o 844
DESIgN PatlernS. ..o 847
] ol 1= =T 851
SolUutions and GUIAEIINES ...viiei it e e e e 852
Chapter 21. High-Quality Programming Code........c.ccrverimrimrnnrnnnnanaas 853
LT I oY= O T o) = S 853
Why Is Code Quality Important? ..o e 853
What Does Quality Programming Code Mean?cccevvvieiiiiinniieiiiiiniieieneananeens 854
Why Should We Write Quality Code?......ciiiiiiiiiiii i e 854
o [T oL} A= ol A\ F=Ta 011 T PP 857
(@feTa (ST o] o n o =] u u] o T PR 866
High-QUality ClasS@S ... cuciieieiiii e e ae e 874
High-Quality Methods ..o e 878
Proper Use Of Variables ..o e 883
Proper Use Of EXPreSSIONS . .uuuitiieiiieiet ittt et s s e et esne e e eaeaneaeenenes 890
UL o] @0][] = o] o= PP 891
Proper Use of Control Flow Statementsc.covviiiiiiiiiii e 894
Defensive Programming ...t e e e 898
(@feTa (ST Do o{U]a g T=T o) =) o] o [PRSPPI 900
(@feTe [2] =Tl o] 1 o o NPT 904
L7 T I = o T 905
AddItioNal RESOUICES. .. .uiitiiiti ittt et e e e e e e e e raneaean 912
=] o of Y= 912
Solutions and GUIAEIINES .. .civieiieii i e e e aaans 913
Chapter 22. Lambda Expressions and LINQ........ccvcvrvemverrerrasransansas 915
LT I gV O T | o] = PP 915

EXEENSioN Methods ..o e e 915

Detailed Table of Contents 11

Y Yo 14 0 [o XU [1AV 0 1= PP 918
(= g] oY b= I g 0] =11 (o] 1 PP 920
I L @ =T =P 924
Nested LINQ QUEIIES ...uuiieiiieii it ieeae e aeea e e sesaesaesaaeansaneseaneeanaaeennsaneanernnans 930
[\ @ =T o] a -1 [0l PP 930
=] ol 1= 933
Solutions and GUIAEIINESieiie i e e n e an e e e rneanens 933
Chapter 23. Methodology of Problem Solvingc.ccvciiiiiiirnieranness 935
| oI I g E R O T o] =] PPN 935
Basic Principles of Solving Computer Programming Problems............cccvvvvvininnnn. 935
USE PEN @NA PPl ittt ittt ettt et eaas 936
Generate Ideas and Give Them @ Try !l . e 937
Decompose the Task into Smaller Subtasksccoooiiiiiiiiiiiici 938
VErify YOUr Id@aS! .ot 941
If a Problem Occurs, Invent a New Idealcooiiiiiiiiiiiiiiiiccc s 943
Choose Appropriate Data StruCtures!o s 946
Think about the EffiCiencCy! ... e 950
Implement Your Algorithm! ... 953
Write the Code Step by Step! ..o 954
TSt YOUr SOIULION .. e e e s e e reans 967
[CT<T T =1 I @] Tl [1] o] 1= PP 979
=] of 1= 980
SoIUtioNS anNd GUIAEIINES ...vviiiei i s e e e e e nans 983
Chapter 24. Sample Programming Exam — Topic #1....ccocrvrvervannannes 985
LT I oY = O T o) = 985
Problem 1: Extract Text from HTML Document......cvviviiiiiiiiiiiiiien e 985
Problem 2: Escape from Labyrinth ... 1012
Problem 3: Store for Car PartsS ...viiiiriii i e e 1026
] oL 1= == S 1038
Solutions and GUIAEIINESuiuiiiiii i e e eeeans 1040
Chapter 25. Sample Programming Exam — Topic #2.....cccvevvemrnnnnes 1041
IN This CRapter . e e 1041
Problem 1: Counting the Uppercase / Lowercase Words in @ Text.......c.cocvevvnnne. 1041
Problem 2: A Matrix of Prime NUmMbersccooiiiiiiiiii e e 1054
Problem 3: Evaluate an Arithmetic EXpressioncocvviiiiiiiiiiiiieee e 1060
ST o of Y= PP 1069
Solutions and GUIAEIINES ...i.viriieiiii e e ees 1069
Chapter 26. Sample Programming Exam — Topic #3....ccicvrremrnnnnns 1071
| T I T O =] /] o PP 1071
Problem 1: Spiral MatriX ...ocviiiiiiii i e 1071
Problem 2: Counting Words in @ TeXt Filecciviiiiiiiiiiiii e 1078

g0 o] 1T /9 TG JH Y ol Lo o | e 1099

12 Fundamentals of Computer Programming with C#

ST o0 111 1117
Solutions and GUIAEIINESviueieiiiiii e e e ees 1118
[0 0 5 T o 1T T o 1 1119
Did You Solve All Problems? ... e e 1119
Have You Encountered Difficulties with the Exercises?..........cooooiiiiiiiiiiinnnnnnn. 1119
How Do You Proceed After Reading the BOOK?.......cccoiiiiiiiiiniiiiiiiiiieiee e 1120
Free Courses at Telerik Software ACademyccceiiiiiiiiiini e 1121

Go0d LUCK £0 EVEIrYONE! .o e 1121

Preface

If you want to take up programming seriously, you've come across the
right book. For real! This is the book with which you can make your first
steps in programming. It will give a flying start to your long journey into
learning modern programming languages and software development
technologies. This book teaches the fundamental principles and concepts
of programming, which have not changed significantly in the past 15 years.

Do not hesitate to read this book even if C# is not the language you would
like to pursue. Whatever language you move on to, the knowledge we will
give you here will stick, because this book will teach you to think like
programmers. We will show you and teach you how to write programs for
solving practical algorithmic problems, form the skills in you to come up
with (and implement) algorithms, and use various data structures.

As improbable as it might seem to you, the basic principles of writing
computer programs have not changed all that much in the past 15 years.
Programming languages change, technologies get modernized, integrated
development environments get more and more advanced but the
fundamental principles of programming remain the same. When
beginners learn to think algorithmically, and then learn to divide a problem
instinctively into a series of steps to solve it, as well as when they learn to
select the appropriate data structures and write high-quality programming
code that is when they become programmers. Once you acquire these skills,
you can easily learn new languages and various technologies - like Web
programming, HTML5 and JavaScript, mobile development, databases and
SQL, XML, REST, ASP.NET, Java EE, Python, Ruby and hundreds more.

About the Book

This book is designed specifically to teach you to think like a programmer and
the C# language is just a tool that can be replaced by any other modern
programming languages, such as Java, C++, PHP or Python. This is a book
on programming, not a book on C#!

Please Excuse Us for the Bugs in the Translation!

This book was originally written in Bulgarian language by a large team of
volunteer software engineers and later translated into English. None of the
authors, translators, editors and the other contributors is a native English
speaker so you might find many mistakes and imprecise translation. Please,
excuse us! Over 70 people have participated in this project (mostly
Bulgarians): authors, editors, translators, correctors, bug submitters, etc. and

14 Fundamentals of Computer Programming with C#

still the quality could be improved. The entire team congratulates you on your
choice to read this book and we believe the content in it is more important
that the small mistakes and inaccuracies you might find. Enjoy!

Who Is This Book Aimed At?

This book is best suited for beginners. It is intended for anyone who so far
has not engaged seriously in programming and would like to begin doing it.
This book starts from scratch and introduces you step by step into the
fundamentals of programming. It won’t teach you absolutely everything you
might need for becoming a software engineer and working at a software
company, but it will lay the groundwork on which you can build up
technological knowledge and skills, and through them you will be able to turn
programming into your profession.

If you've never written a computer program, don’t worry. There is always a
first time. In this book we will teach you how to program from scratch.
We do not expect any previous knowledge or abilities. All you need is some
basic computer literacy and a desire to take up programming. The rest you
will learn from the book.

If you can already write simple programs or if you have studied programming
at school or in college, or you've coded with friends, do not assume you
know everything! Read this book and you’ll become aware of how many
things you’ve missed. This book is indeed for beginners, but it teaches
concepts and skills that even experienced professional programmers lack.
Software companies are riddled with a shocking amount of self-taught
amateurs who, despite having programmed on a salary for years, have no
grasp of the fundamentals of programming and have no idea what a hash
table is, how polymorphism works and how to work with bitwise operations.
Don't be like them! Learn the basics of programming first and then the
technologies. Otherwise you risk having your programming skills crippled,
more or less, for years, if not for life.

If, on the other hand, you have programming experience, examine this book
in details and see if you are familiar with all subjects we have covered, in
order to decide whether it is for you or not. Take a close look especially at the
chapters "Data Structures and Algorithms Complexity", "Object-Oriented
Programming Principles", "Methodology of Problem Solving" and "High-Quality
Programming Code". It is very likely that, even if you have several years of
experience, you might not be able to work well with data structures; you
might not be able to evaluate the complexity of an algorithm; you might
not have mastered in depth the concepts of object-oriented programming
(including UML and design patterns); and you might not be acquainted with
the best practices for writing high-quality programming code. These are
very important topics that are not covered in all books on programming, so
don’t skip them!

Preface 15

Previous Knowledge Is Not Required!

In this book we do not expect any previous programming knowledge
from the readers. It is not necessary for you to have studied information
technology or computer science, in order to read and comprehend the book
content. The book starts from scratch and gradually gets you involved in
programming. All technical terms you will come across will have been
explained beforehand and it is not necessary for you to know them from other
sources. If you don’t know what a compiler, debugger, integrated develop-
ment environment, variable, array, loop, console, string, data structure,
algorithm, algorithm complexity, class or object are, don’t be alarmed. From
this book, you will learn all these terms and many more and gradually get
accustomed to using them constantly in your everyday work. Just read the
book consistently and do the exercises.

Certainly, if, after all, you do have prior knowledge in computer science and
information technologies, they will by all means be of use to you. If, at
university, you major in the field of computer science or if you study
information technology at school, this will only help you, but it is not a must.
If you major in tourism, law or other discipline that has little in common with
computer technology, you could still become a good programmer, as long
as you have the desire. The software industry is full of good developers
without a computer science or related degree.

It is expected for you to have basic computer literacy, since we would not
be explaining what a file, hard disk and network adapter is, nor how to move
the mouse or how to write on a keyboard. We expect you to know how to
work with a computer and how to use the Internet.

It is recommended that the readers have at least some basic knowledge of
English. The entire documentation you will be using every day and almost all
of the websites on programming you would be reading at all times are in
English. In the profession of a programmer, English is absolutely
essential. The sooner you learn it, the better. We hope that you already
speak English; otherwise how do you read this text?

Make no illusion you can become a programmer without
learning even a little English! This is simply a naive
expectation. If you don’t speak English, complete a course of
& some sort and then start reading technical literature, make
note of any unfamiliar words and learn them. You will see for
yourselves that Technical English is easy to learn and it
doesn’t take much time.

What Is the Scope of This Book?

This book covers the fundamentals of programming. It will teach you how
to define and use variables, how to work with primitive data structures (such
as numbers), how to organize logical statements, conditional statements and

16 Fundamentals of Computer Programming with C#

loops, how to print on the console, how to use arrays, how to work with
numeral systems, how to define and use methods, and how to create and use
objects. Along with the basic programming knowledge, this book will help
you understand more complicated concepts such as string processing,
exception handling, using complex data structures (like trees and hash
tables), working with text files, defining custom classes and working with
LINQ queries. The concepts of object-oriented programming (OOP) - an
established approach in modern software development - will be covered in
depth. Finally, you’ll be faced with the practices for writing high-quality
programs and solving real-world programming problems. This book presents
a complete methodology for solving programming problems, as well as
algorithmic problems in general, and shows how to implement it with a few
sample subjects and programming exams. This is something you will not find
in any other book on programming!

What Will This Book Not Teach You?

This book will not award you the profession "software engineer"! This
book won't teach you how to use the entire .NET platform, how to work with
databases, how to create dynamic web sites and develop mobile applications,
how to create window-based graphical user interface (GUI) and rich Internet
applications (RIA). You won't learn how to develop complex software
applications and systems like Skype, Firefox, MS Word or social networks like
Facebook and retail sites like Amazon.com. And no other single book will.
These kinds of projects require many, many years of work and experience
and the knowledge in this book is just a wonderful beginning for the future
programmer geek.

From this book, you won’t learn software engineering, team work and you
won't be able to prepare for working on real projects in a software company.
In order to learn all of this, you will need a few more books and extra courses,
but do not regret the time you will spend on this book. You are making the
right choice by starting with the fundamentals of programming rather
than directly with Web development, mobile applications and databases. This
gives you the opportunity to become a master programmer who has in-
depth knowledge of programming and technology. After you acquire the
fundamentals of programming, it will become much easier for you to read and
learn databases and web applications, and you will understand what you read
much easier and in greater depth rather than if you directly begin learning
SQL, ASP.NET, AJAX, XAML or WinRT.

Some of your colleagues directly begin programming with Web or mobile
applications and databases without knowing what an array, a list or hash
table is. Do not envy them! They have set out to do it the hard way,
backwards. They will learn to make low-quality websites with PHP and MySQL,
but they will find it infinitely difficult to become real professionals. You,
too, will learn web technologies and databases, but before you take them up,
learn how to program! This is much more important. Learning one

Preface 17

technology or another is very easy once you know the basics, when you can
think algorithmically and you know how to tackle programming problems.

Starting to program with web applications or/and databases
is just as incorrect as studying up a foreign language from
some classical novel rather than from the alphabet and a
& textbook for beginners. It is not impossible, but if you lack
the basics, it is much more difficult. It is highly-probable that
you would end up lacking vital fundamental knowledge and
being the laughing-stock of your colleagues/peers.

How 1Is the Information Presented?

Despite the large number of authors, co-authors and editors, we have done
our best to make the style of the book similar in all chapters and highly
comprehensible. The content is presented in a well-structured manner; it is
broken up into many titles and subtitles, which make its reception easy and
looking up information in the text quick.

The present book is written by programmers for programmers. The
authors are active software developers, colleagues with genuine experience in
both software development and training future programmers. Due to this, the
quality of the content presentation is at a very good level, as you will see for
yourself.

All authors are distinctly aware that the sample source code is one of the
most important things in a book on programming. Due to this very reason,
the text is accompanied with many, many examples, illustrations and figures.

When every chapter is written by a different author, there is no way to
completely avoid differences in the style of speech and the quality of
chapters. Some authors put a lot of work (for months) and a lot of efforts to
make their chapters perfect. Others could not invest too much effort and
that is why some chapters are not as good as the best ones. Last but not
least, the experience of the authors varies - some have been programming
professionally for 2-3 years, while others - for 15 years. This affects the
quality, no doubt, but we assure you that every chapter has been
reviewed and meets the quality standards of Svetlin Nakov and his team.

C# and .NET Framework

This book is about programming. It is intended to teach you to think as a
programmer, to write code, to think in data structures and algorithms and to
solve problems.

We use C# and Microsoft .NET Framework (the platform behind C#) only
as means for writing programming code and we do not scrutinize the
language’s specifics. This same book can be found in versions for other
languages like Java and C++, but the differences are not very significant.

http://www.nakov.com/

18 Fundamentals of Computer Programming with C#

Nevertheless, let’s give a short account of C# (pronounced "see sharp").

& C# is a modern programming language for development of
software applications.

If the words "C#" and ".NET Framework" are unknown to you, you’ll learn in
details about them and their connection in the next chapter. Now let’s explain
briefly what C#, .NET, .NET Framework, CLR and the other technologies
related to C# are.

The C# Programming Language

C# is a modern object-oriented, general-purpose programming
language, created and developed by Microsoft together with the .NET
platform. There is highly diverse software developed with C# and on the .NET
platform: office applications, web applications, websites, desktop applications,
mobile applications, games and many others.

C# is a high-level language that is similar to Java and C++ and, to some
extent, languages like Delphi, VB.NET and C. All C# programs are object-
oriented. They consist of a set of definitions in classes that contain methods
and the methods contain the program logic - the instructions which the
computer executes. You will find out more details on what a class, a method
and C# programs are in the next chapter.

Nowadays C# is one of the most popular programming languages. It is
used by millions of developers worldwide. Because C# is developed by
Microsoft as part of their modern platform for development and execution of
applications, the .NET Framework, the language is widely spread among
Microsoft-oriented companies, organizations and individual developers. For
better or for worse, as of this book writing, the C# language and the .NET
platform are maintained and managed entirely by Microsoft and are not
open to third parties. Because of this, all other large software corporations
like IBM, Oracle and SAP base their solutions on the Java platform and use
Java as their primary language for developing their own software products.

Unlike C# and the .NET Framework, the Java language and platform are
open-source projects that an entire community of software companies,
organizations and individual developers take part in. The standards, the
specifications and all the new features in the world of Java are developed by
workgroups formed out of the entire Java community, rather than a single
company (as the case of C# and .NET Framework).

The C# language is distributed together with a special environment on which
it is executed, called the Common Language Runtime (CLR). This
environment is part of the platform .NET Framework, which includes CLR, a
bundle of standard libraries providing basic functionality, compilers,
debuggers and other development tools. Thanks to the framework CLR
programs are portable and, once written they can function with little or no
changes on various hardware platforms and operating systems. C# programs

Preface 19

are most commonly run on MS Windows, but the .NET Framework and CLR
also support mobile phones and other portable devices based on Windows
Mobile, Windows Phone and Windows 8. C# programs can still be run under
Linux, FreeBSD, iOS, Android, MacOS X and other operating systems through
the free .NET Framework implementation Mono, which, however, is not
officially supported by Microsoft.

The Microsoft .NET Framework

The C# language is not distributed as a standalone product - it is a part of
the Microsoft .NET Framework platform (pronounced "Microsoft dot net
framework"). .NET Framework generally consists of an environment for the
development and execution of programs, written in C# or some other
language, compatible with .NET (like VB.NET, Managed C++, J# or F#). It
consists of:

- the .NET programming languages (C#, VB.NET and others);

- an environment for the execution of managed code (CLR), which
executes C# programs in a controlled manner;

- a set of development tools, such as the csc compiler, which turns C#
programs into intermediate code (called MSIL) that the CLR can
understand;

- a set of standard libraries, like ADO.NET, which allow access to
databases (such as MS SQL Server or MySQL) and WCF which connects
applications through standard communication frameworks and protocols
like HTTP, REST, JSON, SOAP and TCP sockets.

The .NET Framework is part of every modern Windows distribution and is
available in different versions. The latest version can be downloaded and
installed from Microsoft’s website. As of this book’s publishing, the latest
version of the .NET Framework is 4.5. Windows Vista includes out-of-the-
box .NET Framework 2.0, Windows 7 — .NET 3.5 and Windows 8 - .NET 4.5.

Why C#?

There are many reasons why we chose C# for our book. It is a modern
programming language, widely spread, used by millions of programmers
around the entire world. At the same time C# is a very simple and easy to
learn (unlike C and C++). It is natural to start with a language that is
suitable for beginners while still widely used in the industry by many large
companies, making it one of the most popular programming languages
nowadays.

C# or Java?

Although this can be extensively discussed, it is commonly acknowledged that
Java is the most serious competitor to C#. We will not make a
comparison between Java and C#, because C# is undisputedly the better,

20 Fundamentals of Computer Programming with C#

more powerful, richer and just better engineered. But, for the purposes of this
book, we have to emphasize that any modern programming language will be
sufficient to learn programming and algorithms. We chose C#, because it is
easier to learn and is distributed with highly convenient, free integrated
development environment (e.g. Visual C# Express Edition). Those who prefer
Java can prefer to use the Java version of this book, which can be found here:
WWW.introprogramming.info.

Why Not PHP?

With regards to programing languages popularity, besides C# and Java,
another widely used language is PHP. It is suitable for developing small web
sites and web applications, but it gives rise to serious difficulties when
implementing large and complicated software systems. In the software
industry PHP is used first and foremost for small projects, because it can
easily lead developers into writing code that is bad, disorganized and hard to
maintain, making it inconvenient for more substantial projects. This subject is
also debatable, but it is commonly accepted that, because of its antiquated
concepts and origins it is built on and because of various evolutionary
reasons, PHP is a Ilanguage that tends towards Ilow-quality
programming, writing bad code and creating hard to maintain software. PHP
is a procedural language in concept and although it supports the paradigms of
modern object-oriented programming, most PHP programmers write
procedurally. PHP is known as the language of "code monkeys" in the
software engineering profession, because most PHP programmers write
terrifyingly low-quality code. Because of the tendency to write low-quality,
badly structured and badly organized programming code, the entire concept
of the PHP language and platform is considered wrong and serious companies
(like Microsoft, Google, SAP, Oracle and their partners) avoid it. Due to this
reason, if you want to become a serious software engineer, start with C# or
Java and avoid PHP (as much as possible).

Certainly, PHP has its uses in the world of programming (for example
creating a blog with WordPress, a small web site with Joomla or Drupal, or a
discussion board with PhpBB), but the entire PHP platform is not well-
organized and engineered for large systems like .NET and Java. When it
comes to non-web-based applications and large industrial projects, PHP is not
by a long shot among the available options. Lots and lots of experience is
necessary to use PHP correctly and to develop high-quality professional
projects with it. PHP developers usually learn from tutorials, articles and low-
quality books and pick up bad practices and habits, which then are hard to
eradicate. Therefore, do not learn PHP as your first development
language. Start with C# or Java.

Based on the large experience of the authors' collective we advise you to
begin programming with C# and ignore languages such as C, C++ and PHP
until the moment you have to use them.

http://www.introprogramming.info/

Preface 21

Why Not C or C++?

Although this is also debatable, the C and C++ languages are considered
complex and requires deep understanding of hardware. They still have their
uses and are suitable for low-level programming (e.g. programming for
specialized hardware devices), but we do not advise you to use C / C++ when
you are beginner who wants to learn programming.

You can program in pure C, if you have to write an operating system, a
hardware device driver or if you want to program an embedded device,
because of the lack of alternatives and the need to control the hardware very
carefully. The C language is very low-level and in no way do we advise
you to begin programming with it. A programmer’s productivity under pure C
is many times lower compared to their productivity under modern general-
purpose programming languages like C# and Java. A variant of C is used
among Apple / iPhone developers, but not because it is a good language, but
because there is no decent alternative. Most Apple-oriented programmers do
not like Objective-C, but they have no choice in writing in something else. In
2014 Apple promoted their new language Swift, which is of higher level and
aims to replace Objective-C for the iOS platform.

C++ is good when you have to program applications that require very close
work with the hardware or that have special performance requirements
(like 3D games). For all other purposes (like Web applications development or
business software) C++ is inadequate. We do not advise you to pursue it, if
you are starting with programming just now. One reason it is still being
studied in some schools and universities is hereditary, because these
institutions are very conservative. For example, the International Olympiad in
Informatics (IOI) continues to promote C++ as the only language permitted
to use at programming contests, although C++ is rarely used in the
industry. If you don’t believe this, look through some job search site and
count the percentage of job advertisements with C++.

The C++ language lost its popularity mainly because of the inability to quickly
write quality software with it. In order to write high-quality software in C++,
you have to be an incredibly smart and experienced programmer, whereas
the same is not strictly required for C# and Java. Learning C++ takes
much more time and very few programmers know it really well. The
productivity of C++ programmers is many times lower than C#’s and that is
why C++ is losing ground. Because of all these reasons, the C++ language
is slowly fading away and therefore we do not advise you to learn it.

Advantages of C#

C# is an object-oriented programming language. Such are all modern
programming languages used for serious software systems (like Java and
C++). The advantages of object-oriented programming are brought up in
many passages throughout the book, but, for the moment, you can think of
object-oriented languages as languages that allow working with objects from
the real world (for example student, school, textbook, book and others).

22 Fundamentals of Computer Programming with C#

Objects have properties (e.g. name, color, etc.) and can perform actions (e.g.
move, speak, etc.).

By starting to program with C# and the .NET Framework platform, you are on
a very perspective track. If you open a website with job offers for
programmers, you'll see for yourself that the demand for C# and .NET
specialists is huge and is close to the demand for Java programmers. At the
same time, the demand for PHP, C++ and other technology specialists is far
lower than the demand for C# and Java engineers.

For the good programmer, the language they use is of no significant meaning,
because they know how to program. Whatever language and technology
they might need, they will master it quickly. Our goal is not to teach you
C#, but rather teach you programming! After you master the
fundamentals of programming and learn to think algorithmically, when you
acquaint with other programming languages, you will see for yourself how
much in common they have with C# and how easy it will be to learn them.
Programming is built upon principles that change very slowly over the years
and this book teaches you these very principles.

Examples Are Given in C# 5 and Visual Studio 2012

All examples in this book are with regard to version 5.0 of the C# language
and the .NET Framework 4.5 platform, which is the latest as of this book’s
publishing. All examples on using the Visual Studio integrated development
environment are with regard to version 2012 of the product, which were also
the latest at the time of writing this book.

The Microsoft Visual Studio 2012 integrated development environment
(IDE) has a free version, suitable for beginner C# programmers, called
Microsoft Visual Studio Express 2012 for Windows Desktop. The difference
between the free and the full version of Visual Studio (which is a commercial
software product) lies in the availability of some functionalities, which we will
not need in this book.

Although we use C# 5 and Visual Studio 2012, most examples in this book
will work flawlessly under .NET Framework 2.0 / 3.5 /4.0 and C# 2.0/ 3.5/
4.0 and can be compiled under Visual Studio 2005 / 2008 / 2010.

It is of no great significance which version of C# and Visual Studio you'll use
while you learn programming. What matters is that you learn the principles
of programming and algorithmic thinking! The C# language, the .NET
Framework platform and the Visual Studio integrated development
environment are just tools and you can exchange them for others at any time.
If you read this book and VS2012 is not currently the latest, be sure almost
all of this book’s content will still be the same due to backward compatibility.

How To Read This Book?

Reading this book has to be accompanied with lots and lots of practice. You
won't learn programming, if you don’t practice! It would be like trying to learn

Preface 23

how to swim from a book without actually trying it. There is no other way!
The more you work on the problems after every chapter, the more you will
learn from the book.

Everything you read here, you would have to try for yourself on a computer.
Otherwise you won't learn anything. For example, once you read about Visual
Studio and how to write your first simple program, you must by all means
download and install Microsoft Visual Studio (or Visual C# Express) and try to
write a program. Otherwise you won't learn! In theory, everything seems
easy, but programming means practice. Remember this and try to solve
the problems from this book. They are carefully selected - they are neither
too hard to discourage you, nor too easy, so you’ll be motivated to perceive
solving them as a challenge. If you encounter difficulties, look for help at the
discussion group for the "C# Programming Fundamentals" training course
at Telerik Software Academy: http://forums.academy.telerik.com (the forum
is intended for Bulgarian developers but the people "living" in it speak English
and will answer your questions regarding this book, don’t worry). Thousands
students solve the exercises from this book every year so you will find many
solutions to each problem from the book. We will also publish official solutions
+ tests for every exercise in the book at its web site.

Reading this book without practicing is meaningless! You
must spend much more time on writing programs than
& reading the text itself. It is just like learning to drive: no one

can learn driving by reading books. To learn driving, you
need to drive many times in different situations, roads, cars,
etc. To learn programming, you need to program!

Everybody has studied math in school and knows that learning how to solve
math problems requires lots of practice. No matter how much they watch and
listen to their teachers, without actually sitting down and solving
problems, they won’t learn. The same goes for programming. You need
lots of practice. You need to write a lot, to solve problems, to experiment, to
endeavor in and to struggle with problems, to make mistakes and correct
them, to try and fail, to try anew and experience the moments when things
finally work out. You need lots and lots of practice. This is the only way you
will make progress.

So people say that to become a developer you might need to write at least
50,000 - 100,000 lines of code, but the correct humber can vary a lot. Some
people are fast learners or just have problem-solving experience. Others may
need more practice, but in all cases practicing programming is very
important! You need to solve problems and to write code to become a
developer. There is no other way!

Do Not Skip the Exercises!

At the end of each chapter there is a considerable list of exercises. Do not
skip them! Without exercises, you will not learn a thing. After you read a

http://forums.academy.telerik.com/

24 Fundamentals of Computer Programming with C#

chapter, you should sit in front of the computer and play with the examples
you have seen in the book. Then you should set about solving all problems. If
you cannot solve them all, you should at least try. If you don't have all the
time necessary, you must at least attempt solving the first few problems from
each chapter. Do not carry on without solving problems after every
chapter, it would just be meaningless! The problems are small feasible
situations where you apply the stuff you have read. In practice, once you
have become programmers, you would solve similar problems every day, but
on a larger and more complex scale.

after every chapter from the book! Otherwise you risk not

2 You must at all cost strive to solve the exercise problems
learning anything and simply wasting your time.

How Much Time Will We Need for This Book?

Mastering the fundamentals of programming is a crucial task and takes a lot
of time. Even if you're incredibly good at it, there is no way that you will
learn programming on a good level for a week or two. To learn any human
skill, you need to read, see or be shown how it is done and then try doing it
yourselves and practice a lot. The same goes for programming - you must
either read, see or listen how it is done, then try doing it yourself. Then you
would succeed or you would not and you would try again, until you finally
realize you have learned it. Learning is done step by step, consecutively, in
series, with a lot of effort and consistency.

If you want to read, understand, learn and acquire thoroughly and in-depth
the subject matter in this book, you have to invest at least 2 months for
daylong activity or at least 4-5 months, if you read and exercise a little
every day. This is the minimum amount of time it would take you to be able
to grasp in depth the fundamentals of programming.

The necessity of such an amount of lessons is confirmed by the free trainings
at Telerik Software Academy (http://academy.telerik.com), which follow this
very book. The hundreds of students, who have participated in trainings
based on the lectures from this book, usually learn all subjects from this book
within 3-4 months of full-time work. Thousands of students every year
solve all exercise problems from this book and successfully sit on
programming exams covering the book’s content. Statistics shows that
anyone without prior exposure to programming, who has spent less than the
equivalent of 3-4 months daylong activity on this book and the corresponding
courses at Telerik Academy, fails the exams.

The main subject matter in the book is presented in more than 1100 pages,
which will take you a month (daylong) just to read them carefully and test the
sample programs. Of course, you have to spend enough time on the exercises
(few more months); without them you would hardly learn programming.

http://academy.telerik.com/

Preface 25

Exercises: Complex or Easy?

The exercises in the book consist of about 350 problems with varying
difficulty. For some of them you will need a few minutes, for others several
hours (if you can solve them at all without help). This means you would need
a month or two of daylong exercising or several months, if you do it little by
little.

The exercises at each chapter are ordered in increasing level of difficulty.
The first few exercises are easy, similar to the examples in the chapter. The
last few exercises are usually complex. You might need to use external
resources (like information from Wikipedia) to solve them. Intentionally, the
last few exercises in each chapter require skills outside of the chapter. We
want to push you to perform a search in your favorite search engine. You
need to learn searching on the Internet! This is an essential skill for any
programmer. You need to learn how to learn. Programming is about learning
every day. Technologies constantly change and you can’t know everything. To
be a programmer means to learn new APIs, frameworks, technologies
and tools every day. This cannot be avoided, just prepare yourself. You will
find many problems in the exercises, which require searching on the Internet.
Sometimes you will need the skills from the next chapter, sometimes some
well-known algorithm, sometimes something else, but in all cases searching
on the Internet is an essential skill you need to acquire.

Solving the exercises in the book takes a few months, really. If you don’t
have that much time at your disposal, ask yourselves if you really want to
pursue programming. This is a very serious initiative in which you must invest
a really great deal of efforts. If you really want to learn programming on a
good level, schedule enough time and follow the book or the video lectures
based on it.

Why Are Data Structures and Algorithms
Emphasized?

This book teaches you, in addition to the basic knowledge in programming,
proper algorithmic thinking and using basic data structures in
programming. Data structures and algorithms are a programmer’s most
important fundamental skills! If you have a good grasp of them, you will not
have any trouble becoming proficient in any software technology,
development tool, framework or API. That is what the most serious software
companies rely on when hiring employees. Proof of this are job interviews at
large companies like Google and Microsoft that rely exclusively on
algorithmic thinking and knowledge of all basic data structures and
algorithms.

The information below comes from Svetlin Nakov, the leading author of this
book, who passed software engineering interviews at Microsoft and Google in
2007-2008 and shares his own experience.

26 Fundamentals of Computer Programming with C#

Job Interviews at Google

100% of the questions at job interviews for software engineers at Google,
Zurich, are about data structures, algorithms and algorithmic thinking.
At such an interview you may have to implement on a white board a linked
list (see the chapter "Linear Data Structures") or come up with an algorithm
for filling a raster polygon (given in the form of a GIF image) with some sort
of color (see Breadth-first search in the chapter "Trees and Graphs"). It
seems like Google are interested in hiring people who can think
algorithmically and who have a grasp of basic data structures and computer
algorithms. Any technology that candidates would afterwards use in their line
of work can be quickly learned. Needless to say, do not assume this book will
give you all the knowledge and skills to pass a job interview at Google. The
knowledge in the book is absolutely a necessary minimum, but not completely
sufficient. It only marks the first steps.

Job Interviews at Microsoft

A lot of questions at job interviews for software engineers at Microsoft,
Dublin, focus on data structures, algorithms and algorithmic thinking.
For example, you could be asked to reverse the words in a string (see the
chapter "Strings and Text Processing" or to implement topological sorting in
an undirected graph (see the chapter "Trees and Graphs"). Unlike Google,
Microsoft asks a lot of engineering questions related to software architectures,
multithreading, writing secure code, working with large amounts of data and
software testing. This book is far from sufficient for applying at Microsoft, but
the knowledge in it will surely be of use to you for the majority of questions.

About the LINQ Technology

The book includes a chapter on the popular .NET technology LINQ
(Language Integrated Query), which allows execution of various queries
(such as searching, sorting, summation and other group operations) on
arrays, lists and other objects. It is placed towards the end on purpose, after
the chapters on data structures and algorithms complexity. The reason
behind this is that the good programmer must know what happens when they
sort a list or search in an array according to criteria and how many operations
these actions take. If LINQ is used, it is not obvious how a given query works
and how much time it takes. LINQ is a very powerful and widely-used
technology, but it has to be mastered at a later stage (at the end of the
book), after you are well familiar with the basics of programming, the main
algorithms and data structures. Otherwise you risk learning how to write
inefficient code without realizing how it works and how many operations it
performs in the background.

Do You Really Want to Become a Programmer?

If you want to become a programmer, you have to be aware that true
programmers are serious, persevering, thinking and questioning people who

Preface 27

handle all kinds of problems. It is important for them to master quickly all
modern or legacy platforms, technologies, libraries, APIs, programming tools,
programming languages and development tools necessary for their job and to
feel programming as a part of their life.

Good programmers spend an extraordinary amount of time on
advancing their engineering skills, on learning new technologies, new
programming languages and paradigms, new ways to do their job, new
platforms and new development tools every day. They are capable of logical
thinking; reasoning on problems and coming up with algorithms for solving
them; imagining solutions as a series of steps; modeling the surrounding
world using technological means; implementing their ideas as programs or
program components; testing their algorithms and programs; seeing issues;
foreseeing the exceptional circumstances that can come about and handling
them properly; listening to the advice of more experienced people; adapting
their applications’ user interface to the user’s needs; adapting their algorithms
to the capabilities of the machines and the environment they will be executed
on and interacted with.

Good programmers constantly read books, articles or blogs on
programming and are interested in new technologies; they constantly enrich
their knowledge and constantly improve the way they work and the quality of
software they write. Some of them become obsessed to such an extent that
they even forget to eat or sleep when confronted with a serious problem or
simply inspired by some interesting lecture or presentation. If you have the
tendency to get motivated to such an extent to do something (like playing
video games incessantly), you can learn programming very quickly by getting
into the mindset that programming is the most interesting thing in this world
for you, in this period of your life.

Good programmers have one or more computers, an Internet connection and
live in constant reach with technologies. They regularly visit websites and
blogs related to new technologies, communicate everyday with their
colleagues, visit technology lectures, seminars and other events, even if they
have no use for them at the moment. They experiment with or research the
new means and new ways for making a piece of software or a part of their
work. They examine new libraries, learn new languages, try new frameworks
and play with new development tools. That way they develop their skills
and maintain their level of awareness, competence and professionalism.

True programmers know that they can never master their profession to its full
extent, because it constantly changes. They live with the firm belief that they
have to learn their entire lives; they enjoy this and it satisfies them. True
programmers are curious and questioning people that want to know how
everything works - from a simple analog clock to a GPS system, Internet
technology, programming languages, operation systems, compilers, computer
graphics, games, hardware, artificial intelligence and everything else related
to computers and technologies. The more they learn, the more knowledge and
skills they crave after. Their life is tied to technologies and they change

28 Fundamentals of Computer Programming with C#

with them, enjoying the development of computer science, technologies and
the software industry.

Everything we tell you about true programmers, we know firsthand. We are
convinced that programmer is a profession that requires your full
devotion and complete attention, in order to be a really good specialist -
experienced, competent, informed, thinking, reasoning, knowing, capable and
able to deal with non-standard situations. Anyone who takes up programming
"among other things" is fated to being a mediocre programmer. Programming
requires complete devotion for years. If you are ready for all of this,
continue reading and take into account that the next few months you will
spend on this book on programming are just a small start. And then you will
learn for years until you turn programming into your profession. Once that
happens, you would still learn something every day and compete with
technologies, so that you can maintain your level, until one day programming
develops your thinking and skills enough, so that you may take up another
profession, because few programmers reach retirement; but there are quite
a lot of successful people who have begun their careers with programming.

Motivate Yourself to Become a Programmer or Find
Another Job!

If you still haven't given up on becoming a good programmer and if you
have already come to the understanding deep down that the next months and
years will be tied every day to constant diligent work on mastering the secrets
of programming, software development, computer science and software
technologies, you may use an old technique for self-motivation and
confident achievement of goals that can be found in many books and ancient
teachings under one form or another. Keep imagining that you are
programmers and that you have succeeded in becoming ones; you engage
every day in programming; it is your profession; you can write all the
software in the world (provided you have enough time); you can solve any
problem that experienced programmers can solve. Keep thinking constantly
and incessantly of your goal. Keep telling yourself, sometimes even out loud:
"I want to become a good programmer and I have to work hard for this, I
have to read a lot and learn a lot, I have to solve a lot of problems, every
day, constantly and diligently". Put programming books everywhere around
you, even stick a sign that says "I'll become a good programmer" by your
bed, so that you can see it every evening when you go to bed and every
morning when you wake up. Program every day (no exceptions!), solve
problems, have fun, learn new technologies, experiment; try writing a game,
making a website, writing a compiler, a database and hundreds of other
programs you may come up with original ideas for. In order to become good
programmers, program every day and think about programming every day
and keep imagining the future moment when you are an excellent
programmer. You can, as long as you deeply believe that you can! Everybody
can, as long as they believe that they can and pursue their goals constantly

Preface 29

without giving up. No-one would motivate you better than yourselves.
Everything depends on you and this book is your first step.

A great way to really learn programming is to program every
day for a year. If you program every day (without exception)
and you do it for a long time (e.g. year or two) there is no
& way to not become a programmer. Anyone who practices
programming every day for years will become good someday.
This is valid for any other skill: if you want to learn it, just
practice every day for a long time.

A Look at the Book’s Contents

Now let's take a glance at what we are about to encounter in the next
chapters of the book. We will give an account of each of them with a few
sentences, so that you know what you are about to learn.

Chapter 0: Preface

The preface (the current chapter) introduces the readers to the book, its
content, what the reader will learn and what will not, how to read the
book, why we use the C# language, why we focus on data structures and
algorithms, etc. The preface also describes the history of the book, the
content of its chapter one by one, the team of authors, editors and translators
from Bulgarian to English. In contains the full reviews written by famous
software engineers from Microsoft, Google, SAP, VMware, Telerik and other
leading software companies from all over the world.

Author of the preface is Svetlin Nakov (with little contribution from Veselin
Kolev and Mihail Stoynov). Translation to English: by Ivan Nenchovski (edited
by Mihail Stoynov, Veselina Raykova, Yoan Krumov and Hristo Radkov).

Chapter 1: Introduction to Programming

In the chapter "Introduction to Programming", we will take a look at the basic
terminology in programming and write our first program. We will
familiarize ourselves with what programming is and what connection to
computers and programming languages it has. We will briefly review the main
stages in software development, introduce the C# language, the .NET
platform and the different Microsoft technologies used in software
development. We will examine what auxiliary tools we need to program in C#
and use the C# language to write our first computer program, compile it
and run it using the command line, as well as Microsoft Visual Studio
integrated development environment. We will familiarize ourselves with the
MSDN Library — the documentation for the .NET Framework, which will help us
in our study of the language’s capabilities.

Author of the chapter is Pavel Donchev; editors are Teodor Bozhikov and
Svetlin Nakov. The content of the chapter is somewhat based on the work of

30 Fundamentals of Computer Programming with C#

Luchesar Cekov from the book "Introduction to Programming with Java".
Translation to English: by Atanas Valchev (edited by Vladimir Tsenev and
Hristo Radkov).

Chapter 2: Primitive Types and Variables

In the chapter "Primitive Types and Variables", we will examine primitive
types and variables in C# - what they are and how to work with them.
First, we will focus on data types - integer types, real floating-point types,
Boolean, character types, strings and object types. We will continue with
variables, what they and their characteristics are, how to declare them, how
they are assigned a value and what variable initialization is. We will familiarize
ourselves with the main categories of data types in C# - value and reference
types. Finally, we will focus on literals, what they are and what kinds of
literals there are.

Authors of the chapter are Veselin Georgiev and Svetlin Nakov; editor is
Nikolay Vasilev. The content of the entire chapter is based on the work of
Hristo Todorov and Svetlin Nakov from the book "Introduction to
Programming with Java". Translation to English: by Lora Borisova (edited by
Angel Angelov and Hristo Radkov).

Chapter 3: Operators and Expressions

In the chapter "Operators and Expressions", we will familiarize ourselves with
the operators in C# and the operations they perform on the various data
types. We will clarify the priorities of operators and familiarize ourselves with
the types of operators, according to the count of the arguments they take and
the operations they perform. Then, we will examine typecasting, why it is
necessary and how to work with it. Finally, we will describe and illustrate
expressions and how they are utilized.

Authors of the chapter are Dilyan Dimitrov and Svetlin Nakov; editor is
Marin Georgiev. The content of the entire chapter is based on the work of
Lachezar Bozhkov from the book "Introduction to Programming with Java".
Translation to English: by Angel Angelov (edited by Martin Yankov and Hristo
Radkov).

Chapter 4: Console Input and Output

In the chapter "Console Input and Output", we will get familiar with the
console as a means for data input and output. We will explain what it is,
when and how it is used, what the concepts of most programming languages
for accessing the console are. We will familiarize ourselves with some of the
features in C# for user interaction and will examine the main streams for
input-output operations Console.In, Console.Out and Console.Error, the
class Console and the utilization of format strings for printing data in
various formats. We will see how to convert text into a number (parsing),
since this is the way to enter numbers in C#.

Preface 31

Author of the chapter is Iliyan Murdanliev and editor is Svetlin Nakov. The
content of the entire chapter is largely based on the work of Boris Valkov from
the book "Introduction to Programming with Java". Translation to English: by
Lora Borisova (edited by Dyanko Petkov).

Chapter 5: Conditional Statements

In the chapter "Conditional Statements" we will cover the conditional
statements in C#, which we can use to execute different actions depending
on some condition. We will explain the syntax of the conditional operators:
if and if-else with suitable examples and explain the practical applications
of the selection control operator switch. We will focus on the best practices
that must be followed, in order to achieve a better style of programming when
utilizing nested or other types of conditional statements.

Author of the chapter is Svetlin Nakov and editor is Marin Georgiev. The
content of the entire chapter is based on the work of Marin Georgiev from the
book "Introduction to Programming with Java". Translation to English: by
George Vaklinov (edited by Momchil Rogelov).

Chapter 6: Loops

In the chapter "Loops", we will examine the loop mechanisms, through
which we can execute a snippet of code repeatedly. We will discuss how
conditional repetitions (while and do-while loops) are implemented and how
to work with for loops. We will give examples of the various means for
defining a loop, the way they are constructed and some of their key
applications. Finally, we will see how we can use multiple loops within each
other (nested loops).

Author of the chapter is Stanislav Zlatinov and editor is Svetlin Nakov. The
content of the entire chapter is based on the work of Rumyana Topalska from
the book "Introduction to Programming with Java". Translation to English: by
Angel Angelov (edited by Lora Borisova).

Chapter 7: Arrays

In the chapter "Arrays", we will familiarize ourselves with arrays as a means
for working with a sequence of elements of the same type. We will
explain what they are, how we can declare, create and instantiate arrays and
how to provide access to their elements. We will examine one-dimensional
and multidimensional arrays. We will learn the various ways for iterating
through an array, reading from the standard input and writing to the standard
output. We will give many exercises as examples, which can be solved using
arrays, and show you how useful they are.

Author of the chapter is Hristo Germanov and editor is Radoslav Todorov.
The content of the chapter is based on the work of Mariyan Nenchev from the
book "Introduction to Programming with Java". Translation to English: by
Boyan Dimitrov (edited by Radoslav Todorov and Zhelyazko Dimitrov).

32 Fundamentals of Computer Programming with C#

Chapter 8: Numeral Systems

In the chapter "Numeral Systems", we will take a look at the means for
working with various numeral systems and the representation of
numbers in them. We will pay special attention to the way numbers are
represented in decimal, binary and hexadecimal numeral systems, because
they are widely used in computers, communications and programming. We
will also explain the methods for encoding numeral data in a computer and
the types of encodings, namely signed magnitude, one’s complement, two’s
complement and binary-coded decimals.

Author of the chapter is Teodor Bozhikov and editor is Mihail Stoynov. The
content of the entire chapter is based on the work of Petar Velev and Svetlin
Nakov from the book "Introduction to Programming with Java". Translation to
English: by Atanas Valchev (edited by Veselina Raykova).

Chapter 9: Methods

In the chapter "Methods", we will get to know in details the subroutines in
programming, which are called methods in C#. We will explain when and
why methods are used; will show how methods are declared and what a
method signature is. We will learn how to create a custom method and how
to use (invoke) it subsequently, and will demonstrate how we can use
parameters in methods and how to return a result from a method. Finally, we
will discuss some established practices when working with methods. All of this
will be backed up with examples explained in details and with extra exercises.

Author of the chapter is Yordan Pavlov; editors are Radoslav Todorov and
Nikolay Vasilev. The content of the entire chapter is based on the work of
Nikolay Vasilev from the book "Introduction to Programming with Java".
Translation to English: by Ivaylo Dyankov (edited by Vladimir Amiorkov and
Franz Fischbach).

Chapter 10: Recursion

In the chapter "Recursion”, we will familiarize ourselves with recursion and
its applications. Recursion is a powerful programming technique where a
method invokes itself. By means of recursion we can solve complicated
combinatorial problems where we can easily exhaust different
combinatorial configurations. We will demonstrate many examples of correct
and incorrect recursion usage and we will convince you how useful it can be.

Author of the chapter is Radoslav Ivanov and editor is Svetlin Nakov. The
content of the entire chapter is based on the work of Radoslav Ivanov and
Svetlin Nakov from the book "Introduction to Programming with Java".
Translation to English: by Vasya Stankova (edited by Yoan Krumov).

Preface 33

Chapter 11: Creating and Using Objects

In the chapter "Creating and Using Objects", we will get to know the basic
concepts of object-oriented programming - classes and objects - and we
will explain how to use classes from the standard libraries of the .NET
Framework. We will focus on some commonly used system classes and will
show how to create and use their instances (objects). We will discuss how to
access properties of an object, how to call constructors and how to work
with static fields in classes. Finally, we will focus on the term "namespaces" -
how they help us, how to include and use them.

Author of the chapter is Teodor Stoev and editor is Stefan Staev. The
content of the entire chapter is based on the work of Teodor Stoev and Stefan
Staev from the book "Introduction to Programming with Java". Translation to
English: by Vasya Stankova (edited by Todor Mitev).

Chapter 12: Exception Handling

In the chapter "Exception Handling", we will get to know exceptions in
object-oriented programming and in C# in particular. We will learn how to
catch exceptions using the try-catch clause, how to pass them to the
calling methods and how to throw standard, custom or caught exceptions
using the throw statement. We will give a number of examples of their
utilization and will look at the types of exceptions and the exceptions
hierarchy they form in the .NET Framework. Finally, we will look at the
advantages of using exceptions and how to apply them in specific situations.

Author of the chapter is Mihail Stoynov and editor is Radoslav Kirilov. The
content of the entire chapter is based on the work of Luchesar Cekov, Mihail
Stoynov and Svetlin Nakov from the book "Introduction to Programming with
Java". Translation to English: by Dimitar Bonev and George Todorov (edited
by Doroteya Agayna).

Chapter 13: Strings and Text Processing

In the chapter "Strings and Text Processing”, we will familiarize ourselves with
strings: how they are implemented in C# and how we can process text
content. We will go through different methods for manipulating text; and
learn how to extract substrings according to passed parameters, how to
search for keywords as well as how to split a string by separator
characters. We will provide useful information on regular expressions and
we will learn how to extract data matching a specific pattern. Finally, we will
take a look at the methods and classes for achieving more elegant and strict
formatting of text content on the console, with various ways for printing
numbers and dates.

Author of the chapter is Veselin Georgiev and editor is Radoslav Todorov.
The content of the entire chapter is based on the work of Mario Peshev from
the book "Introduction to Programming with Java". Translation to English: by
Vesselin Georgiev (edited by Todor Mitev and Vladimir Amiorkov).

34 Fundamentals of Computer Programming with C#

Chapter 14: Defining Classes

In the chapter "Defining Classes", we will show how we can define custom
classes and what the elements of a class are. We will learn to declare
fields, constructors and properties in classes and will again recall what a
method is but will broaden our knowledge on methods and their access
modifiers. We will focus on the characteristics of constructors and we will
explain in details how program objects exist in the heap (dynamic memory)
and how their fields are initialized. Finally, will explain what class static
elements - fields (including constants), properties and methods - are and
how to utilize them. In this chapter, we will also introduce generic types
(generics), enumerated types (enumerations) and nested classes.

Authors of the chapter are Nikolay Vasilev, Svetlin Nakov, Mira Bivas and
Pavlina Hadjieva. The content of the entire chapter is based on the work of
Nikolay Vasilev from the book "Introduction to Programming with Java".
Translation to English: by Radoslav Todorov, Yoan Krumov, Teodor Rusev and
Stanislav Vladimirov (edited by Vladimir Amiorkov, Pavel Benov and Nencho
Nenchev). This is the largest chapter in the book, so lots of contributors
worked on it to prepare it to a high quality standard for you.

Chapter 15: Text Files

In the chapter "Text Files", we will familiarize ourselves with working with
text files in the .NET Framework. We will explain what a stream is, what its
purpose is and how it is used. We will describe what a text file is and how to
read and write data in text files and will present and elaborate on the best
practices for catching and handling exceptions when working with text files.
Naturally, we will visualize and demonstrate in practice all of this with a lot of
examples.

Author of the chapter is Radoslav Kirilov and editor is Stanislav Zlatinov.
The content of the entire chapter is based on the work of Danail Alexiev from
the book "Introduction to Programming with Java". Translation to English: by
Nikolay Angelov (edited by Martin Gebov).

Chapter 16: Linear Data Structures

In the chapter "Linear Data Structures", we will familiarize ourselves with
some of the basic representations of data in programming and with linear
data structures, because very often, in order to solve a given problem, we
need to work with a sequence of elements. For example, to read this book
we have to read consecutively every single page, e.g. we have to traverse
consecutively every single element of its set of pages. We are going to see
how for a specific problem some data structure is more efficient and
convenient than another. Then we will examine the linear structures "list",
"stack"” and "queue" and their applications and will get to know in details
some implementations of these structures.

Preface 35

Author of the chapter is Tsvyatko Konov and editors are Dilyan Dimitrov and
Svetlin Nakov. The content of the entire chapter is largely based on the work
of Tsvyatko Konov and Svetlin Nakov from the book "Introduction to
Programming with Java". Translation to English: by Vasya Stankova (edited
by Ivaylo Gergov).

Chapter 17: Trees and Graphs

In the chapter "Trees and Graphs", we will look at the so called tree-like
data structures, which are trees and graphs. Knowing the properties of
these structures is important for modern programming. Every one of these
structures is used for modeling real-life problems that can be efficiently solved
with their help. We will examine in details what tree-like data structures are
and show their primary advantages and disadvantages. Also, we will provide
sample implementations and exercises, demonstrating their practical utiliza-
tion. Further, we will scrutinize binary trees, binary search trees and
balanced trees and then examine the data structure "graph", the types of
graphs and their usage. We will also show which parts of the .NET Framework
make use of binary search trees.

Author of the chapter is Veselin Kolev and editors are Iliyan Murdanliev and
Svetlin Nakov. The content of the entire chapter is based on the work of
Veselin Kolev from the book "Introduction to Programming with Java".
Translation to English: by Kristian Dimitrov and Todor Mitev (edited by
Nedjaty Mehmed and Dyanko Petkov).

Chapter 18: Dictionaries, Hash Tables and Sets

In the chapter "Dictionaries, Hash Tables and Sets", we will analyze more
complex data structures like dictionaries and sets, and their implementa-
tions with hash tables and balanced trees. We will explain in details what
hashing and hash tables mean, and why they are such important parts of
programming. We will discuss the concept of "collisions" and how they can
occur when implementing hash tables. We will also suggest various
approaches for solving them. We will look at the abstract data structure "set"
and explain how it can be implemented with a dictionary or a balanced
tree. We will provide examples that illustrate the applications of these data
structures in everyday practice.

Author of the chapter is Mihail Valkov and editors are Tsvyatko Konov and
Svetlin Nakov. The content of the entire chapter is partially based on the work
of Vladimir Tsanev (Tsachev) from the book "Introduction to Programming
with Java". Translation to English: by George Mitev and George K. Georgiev
(edited by martin Gebov and Ivaylo Dyankov).

36 Fundamentals of Computer Programming with C#

Chapter 19: Data Structures and Algorithm
Complexity

In the chapter "Data Structures and Algorithm Complexity", we will compare
the data structures we have learned so far based on their performance for
basic operations (addition, searching, deletion, etc.). We will give
recommendations for the most appropriate data structures in certain cases.
We will explain when it is preferable to use a hash table, an array, a
dynamic array, a set implemented by a hash table or a balanced tree.
There is an implementation in the .NET Framework for every one of these
structures. We only have to learn how to decide when to use a particular data
structure, so that we can write efficient and reliable source code.

Authors of the chapter are Nikolay Nedyalkov and Svetlin Nakov; editor is
Veselin Kolev. The content of the entire chapter is based on the work of
Svetlin Nakov and Nikolay Nedyalkov from the book "Introduction to
Programming with Java". Translation to English: by George Halachev and
Tihomir Iliev (edited by Martin Yankov).

Chapter 20: Object-Oriented Programming Principles

In the chapter "Object-Oriented Programming Principles", we will familiarize
ourselves with the principles of object-oriented programmming (OOP): class
inheritance, interfaces implementation, data and behavior abstraction,
data encapsulation and hiding implementation details, polymorphism and
virtual methods. We will explain in detail the principles of cohesion and
coupling. We will also briefly outline object-oriented modeling and object
model creation based on a specific business problem and will get to know
UML and its role in object oriented modeling. Finally, we will briefly discuss
design patterns and provide examples for design patterns commonly used in
practice.

Author of the chapter is Mihail Stoynov and editor is Mihail Valkov. The
content of the entire chapter is based on the work of Mihail Stoynov from the
book "Introduction to Programming with Java". Translation to English: by
Vasya Stankova and Momchil Rogelov (edited by Ivan Nenchovski).

Chapter 21: High-Quality Programming Code

In the chapter "High-Quality Programming Code", we will take a look at the
basic rules for writing high-quality programming code. We will focus on
naming conventions for program elements (variables, methods, classes and
others), formatting and code layout guidelines, best practices for creating
high-quality classes and methods, and the principles of high-quality code
documentation. Many examples of high-quality and low-quality code will be
given. In the course of work, it will be explained how to use an integrated
development environment, in order to automate some operations like
formatting and refactoring existing code, when it is necessary. Unit
testing as an industrial method to automated testing will also be discussed.

Preface 37

Authors of the chapter are Mihail Stoynov and Svetlin Nakov. Editor is
Pavel Donchev. The content of the entire chapter is partially based on the
work of Mihail Stoynov, Svetlin Nakov and Nikolay Vasilev from the book
"Introduction to Programming with Java". Translation to English: by Blagovest
Buyukliev (edited by Dyanko Petkov, Mihail Stoynov and Martin Yankov).

Chapter 22: Lambda Expressions and LINQ

In the chapter "Lambda Expressions and LINQ", we will introduce some of the
more sophisticated capabilities of C#. To be more specific, we will pay special
attention to clarifying how to make queries to collections using lambda
expressions and LINQ. We will explain how to add functionality to already
created classes, using extension methods. We will familiarize ourselves with
anonymous types and briefly describe their nature and usage. We will also
discuss lambda expressions and show in practice how most of the built-in
lambda functions work. Afterwards we will dive into the LINQ’s syntax, which
is part of C#. We will learn what it is, how it works, and what queries we can
make using it. Finally, we will discuss the keywords in LINQ, their meaning
and we will demonstrate their capabilities with a lot of examples.

Author of the chapter is Nikolay Kostov and editor is Veselin Kolev.
Translation to English: by Nikolay Kostov (edited by Zhasmina Stoyanova and
Mihail Stoynov).

Chapter 23: Methodology of Problem Solving

In the chapter "Methodology of Problem Solving", we will discuss an advisable
approach for solving programming problems and we will illustrate it with
concrete examples. We will discuss the engineering principles we should
follow when solving problems (that largely apply to problems in math, physics
and other disciplines) and we will show them in action. We will describe the
steps we must go through while we solve a few sample problems and
demonstrate the mistakes that can be made, if we do not follow these steps.
We will consider some important steps of problem solving (such as
testing) that are usually skipped.

Author of the chapter is Svetlin Nakov and editor is Veselin Georgiev. The
content of the whole chapter is entirely based on the work of Svetlin Nakov
from the book "Introduction to Programming with Java". Translation to
English: by Ventsi Shterev and Martin Radev (edited by Tihomir Iliev and
Nedjaty Mehmed).

Chapters 24, 25, 26: Sample Programming Exam

In the chapters "Sample Programming Exam (Topic #1, Topic #2 and Topic
#3)", we will look at the problem descriptions of nine sample problems
from three sample programming exams and we will propose solutions to
them. In the course of solving them, we will put into practice the methodology
described in the chapter "Methodology of Problem Solving".

38 Fundamentals of Computer Programming with C#

Authors of the chapters are Stefan Staev, Yosif Yosifov and Svetlin Nakov
respectively; their respective editors are Radoslav Todorov, Radoslav Ivanov
and Teodor Stoev. The contents of these chapters are largely based on the
work of Stefan Staev, Svetlin Nakov, Radoslav Ivanov and Teodor Stoev from
the book "Introduction to Programming with Java". Translation to English: by
Stanislav Vladimirov, Ivaylo Gergov, Ivan Nenchovski and Ivaylo Gergov
(edited by Dyanko Petkov, Vladimir Tsenev and Veselina Raykova).

Chapters 28: Conclusion

In the conclusion we give further instruction how to proceed with your
development as a skillful software engineer after this book. We explain
the free courses at Telerik Software Academy - the largest training center for
software development professionals in Bulgaria - how to apply, what you will
learn, how to choose a career path and we mention few other resources.

Author of the chapter is Svetlin Nakov. Translation to English: by Ivan
Nenchovski (edited by Svetlin Nakov).

History: How Did This Book Come to Be?

Often in our teaching practice students ask us from which book to start
learning how to program. There are enthusiastic young people who want to
learn programming, but don’t know what to begin with. Unfortunately, it's
hard to recommend a good book. We can come up with many books
concerning C#, but none of them teaches programming. Indeed there aren’t
many books that teach the concepts of computer programming,
algorithmic thinking and data structures. Certainly, there are books for
beginners that teach the C# programming language, but those rarely cover
the fundamentals of programming. There are some good books on
programming, but most of them are now outdated and teach languages and
technologies that have become obsolete in the process of evolution. There are
several such books regarding C and Pascal, but not C# or Java. Considering
all aspects, it is hard to come up with a good book which we could highly
recommend to anyone who wants to pick up programming from scratch.

At one point, the lack of good books on programming for beginners
drove the project leader, Svetlin Nakov, to gather a panel of authors set to
finally write such a book. We decided we could help many young people to
take up programming seriously by sharing our knowledge and inspiring them.

The Origins of This Book

This book is actually an adaptation to C# of the free Bulgarian book
“Introduction to Programming with Java”, with some additional content
added, many bug fixes and small improvements, translated later into English.

Svetlin Nakov teaches computer programing, data structures, algorithms
and software technologies since 2000. He is an author and co-author of
several courses in fundamentals of programming taught at Sofia University

Preface 39

(the most prestigious Bulgarian university at this time). Nakov (with
colleagues) teaches programming and software development in the Faculty of
Mathematics and Informatics (FMI) at Sofia University for few years and later
creates his own company for training software engineers. In 2005, he gathers
and leads a team of volunteers who creates a solid curriculum on
fundamentals of programming and data structures (in C#) with
presentation slides and many examples, demonstrations and homework
assignments. These teaching materials are the first very early outline of the
content in this book. Later this curriculum evolves and is translated to Java
and serves as a base for the Java version of this book. Later the Java book is
translated to C# and after its great success in Bulgaria (thousands paper
copies sold and 50,000 downloads) it is translated from Bulgarian to English.

The Java Programming Fundamentals Book

In mid-2008, Svetlin Nakov is inspired to create a book on Java programming,
covering his “Introduction to Programming” course in the National
Academy for Software Development (a private training center in Bulgaria,
founded by Svetlin Nakov). He and a group of authors outline the work that
needs to be done and the subjects that need to be covered and work begins,
with everyone working voluntarily, without any direct profit. Through
delays, pitfalls and improvements, the Java book finally comes out in January
of 2009. It is available both on its website www.introprogramming.info for
free, and in a paper edition.

The C# Programming Fundamentals Book

The interest towards the “Introduction to Programming with Java” book is
huge (for Bulgaria). In late 2009, the project to “translate” the book to C#
begins, under the title “Introduction to Programming with C#”. Again, a
large number of authors, both new and from the Java book group, gather and
begin working. The task seems easier, but turns out to be time-consuming.
About half a year later, the “preview” edition of the book is completed - with
some mistakes and incorrect content. Another year passes as all of the text
and examples are improved, and new content is added. In the summer of
2011, the C# book is released. Its official website stays the same as the
Java book (www.introprogramming.info). A paper version of the book is also
released and sold, with a price covering only the expenses of its printing.

Both books are open-source and their repositories are available at Google
Code: code.google.com/p/introcsharpbook, code.google.com/p/introjavabook.

The Translation of the C# Book: from Bulgarian to
English

In late 2011, following the great success of “Introduction to Programming
with C#”, a project to translate the book to English started. Large group of
volunteers began work on the translation - each of them with good
programming skills. The book you are reading is the result of the successful

http://www.introprogramming.info/
file:///C:/Users/GGeorgiev/Dropbox/Work/translation-to-English/chapters/4-completed/www.introprogramming.info
http://code.google.com/p/introcsharpbook/
http://code.google.com/p/introjavabook/

40 Fundamentals of Computer Programming with C#

translation, review and completion of the original C# Bulgarian book. The
most effort in the translation was given by the leading author Svetlin Nakov.

Some of the authors have ideas to make yet another adaptation of the book -
this time for C++. As of now, these ideas are still foggy. We hope they will
become a reality one day, but we can’t promise anything yet.

Bulgaria? Bulgarian Authors? Is This True?

Bulgaria is a country in Europe, part of the European Union, just like
Germany and France. Did you know this? Bulgaria has very solid traditions in
computer programming and technologies.

The main inventor of the technology behind the modern digital computers is
the famous computer engineer John Atanasoff and he is 50% Bulgarian
(see en.wikipedia.org/wiki/John Vincent Atanasoff).

Bulgaria is the founder of the International Olympiad in Informatics
(IOI). The first IOI was organized and held in 1980 in Pravetz, Bulgaria (see
en.wikipedia.org/wiki/International Olympiad in Informatics).

In 2011 Bulgaria was ranked #3 in the world by Internet speed (see
http://mashable.com/2011/09/21/fastest-download-speeds-infographic).

The world’s leading component vendor for the Microsoft ecosystem is a
Bulgarian company called Telerik (www.telerik.com) and almost all of its
products are developed in Bulgaria. The world’s leading software product for
3D rendering (V-Ray), used in most Hollywood movies and by most
automotive producers, is invented and developed in Bulgaria by another
Bulgarian company - Chaos Group (www.chaosgroup.com). A Bulgarian
company Datecs designed and produces the barcode scanner with credit card
swipe for Apple iPhone / iPad / iPod devices used in all Apple stores. Large
international software companies like SAP, VMware, HP, Cisco, Siemens
and CSC have large development centers in Sofia with thousands developers.

Bulgarian software engineers can be found in every major software company
in the software industry like Microsoft, Google, Oracle, SAP, Facebook, Apple,
IBM, Cisco, Siemens, VMware, HP, Adobe, Nokia, Ericsson, Autodesk, etc.

We, the authors, editors and translators of this book are all proud Bulgarian
software developers - some living in Bulgaria, others abroad. We are happy
to be part of the global software industry and to help beginners over the world
to learn computer programming and become skillful software engineers. We
are supporters of the culture of free education (like Coursera, edX, Udacity
and Khan Academy), free education for everyone and everywhere. We are
happy to share our knowledge, skills and expertise and sharing is part of
our culture.

Authors and Contributors

This book is written by volunteer developers from Bulgaria who want to
share their knowledge and skills about computer programming. They have

http://en.wikipedia.org/wiki/John_Vincent_Atanasoff
http://en.wikipedia.org/wiki/International_Olympiad_in_Informatics
http://mashable.com/2011/09/21/fastest-download-speeds-infographic/
http://www.telerik.com/
http://www.chaosgroup.com/

Preface 41

worked for months (some for years) for free to help the community to learn
programming, data structures and algorithms in an easy and efficient way:
through this book and the presentations and video tutorials coming with it.

Over 70 people contributed to the project: authors, editors, translators, etc.

The Panel of Authors

The panel of authors of both the old, the new and the translated to English
book is indeed the main drivers behind this book’s existence. Writing content
of this size and quality is a serious task demanding a lot of time.

The idea of having so many authors participating has been well tested, since a
few other books have already been written in a similar manner (e.g.
"Programming for the .NET Framework" - parts 1 and 2). Although all
chapters from the book are written by different authors, they adhere to
the same style and possess the same high quality of content (even though it
might differ a little in some chapters). The text is well structured, has many
titles and subtitles, contains many appropriate examples, follows a good
manner of expression and is uniformly formatted.

The team that wrote this book is made up of people who are strongly
interested in programming and would like to wvoluntarily share their
knowledge by participating in writing one or more of the chapters. The best
part is that all authors, co-authors and editors in the team working on the
book are working programmers with hands-on experience, which means
that the reader will receive knowledge, a collection of best practices and
advice by people with an active career in the software industry.

The participants in the project made their contribution voluntarily, without
material or any other direct compensation, because they supported the idea
of writing a good book for novice programmers and because they
strongly wanted to help their future colleagues get into programming quickly.

What follows is a brief presentation of the authors of the book "Introduction
to Programming with C#" (in an alphabetical order). The original authors of
the corresponding chapters from the book "Introduction to Programming with
Java" are mentioned accordingly, since their contributions to some chapters
are greater than those authors who adapted the text and examples to C#
afterwards.

Dilyan Dimitrov

Dilyan Dimitrov is a certified software developer with professional experience
in building mid-size and large web-based systems with the .NET Framework.
His interests include development of both web and desktop applications using
Microsoft’s latest technologies. He graduated from the Sofia University "St.
Kliment Ohridski" where he majored in "Informatics" at the Faculty of
Mathematics and Informatics. . He can be reached at
dimitrov.dilgn@gmail.com or vyou can visit his personal blog at
http://dilyandimitrov.blogspot.com.

http://www.devbg.org/dotnetbook/
mailto:dimitrov.dilqn@gmail.com
http://dilyandimitrov.blogspot.com/

42 Fundamentals of Computer Programming with C#

Hristo Germanov

Hristo Germanov is a software engineer, whose interests are related mainly
to .NET technologies. Architecture and design of web based systems,
algorithms and modern standards for quality code are also his passion. He has
participated in developing both small and large web-based and desktop-based
applications. He likes challenging problems and projects that require strong
logical thinking. He graduated from the Omega College in Plovdiv with a
degree in "Computer Networks". He specialized for a "Core .NET Developer" at
the National Academy for Software Development in Sofia.

You can contact him by e-mail at: hristo.germanov@gmail.com.

Iliyvan Murdanliev

Iliyan Murdanliev is a software developer at NearSoft (www.nearsoft.eu).
He currently pursues a master’s degree in "Computer Technologies and
Applied Programming” at the Technical University of Sofia. He has a
bachelor’'s degree in "Applied Mathematics" from the same university. He has
graduated from an English language high school.

Iliyan has participated in significant projects and in the development of front-
end visualization, as well as back-end logic. He has prepared and conducted
trainings in C# and other programming languages and technologies. Iliyan’s
interests lie in the field of cutting-edge technologies in .NET, Windows Forms
and Web-based technologies, design patterns, algorithms and software
engineering. He likes out-of-the-box projects that require not only
knowledge, but also logical thinking.

His personal blog is available at: http://imurdanliev.wordpress.com. He can
be reached by e-mail: i.murdanliev@gmail.com.

Mihail Stoynov

Mihail Stoynov has a master’s degree in "Economics and Management" from
the Sofia University "St. Kliment Ohridski". He has obtained his bachelor’s
degree in "Informatics" also from Sofia University.

Mihail is a professional software developer, consultant and instructor with
many years of experience. For the last few years he is an honorary instructor
at the Faculty of Mathematics and Informatics and has delivers lectures in
the "Networks Theory", "Programming for the .NET Framework", "Java Web
Applications Development”, "Design Patterns" and "High Quality Programming
Code" courses. He has also been an instructor at New Bulgarian University.

He is an author of a number of articles and publications and a speaker at
many conferences and seminars in the field of software technologies and
information security. Mihail is a co-author of the books "Programming for the
.NET Framework" and "Introduction to Programming with Java". He has
participated in Microsoft’'s MSDN Academic Alliance and is a lecturer at the
Microsoft Academic Days.

mailto:hristo.germanov@gmail.com
http://www.nearsoft.eu/
http://imurdanliev.wordpress.com/
mailto:i.murdanliev@gmail.com

Preface 43

Mihail has led IT courses in Bulgaria and abroad. He was a lecturer in the
"Java", "Java EE", "SOA" and "Spring Framework" courses at the National
Academy for Software Development.

Mihail has worked at the international offices of Siemens, HP and EDS in the
Netherlands and Germany, where he has gained a lot of experience in the art
of software, as well as in the quality programming, by taking part in the
development of large software projects. His interests encompass software
architectures and design development, B2B integration of various information
systems, business processes optimization and software systems mainly for
the Java and .NET platforms. Mihail has participated in dozens of software
projects and has extensive experience in web applications and services,
distributed systems, relational databases and ORM technologies, as well as
management of projects and software development teams.

His personal blog is available at: http://mihail.stoynov.com. His twitter
account is available at: https://twitter.com/mihailstoynov.

Mihail Valkov

Mihail Valkov has been a software developer since 2000. Throughout the
years, he has faced numerous technologies and software development
platforms, some of which are MS .NET, ASP, Delphi. Mihail has been
developing software at Telerik (www.telerik.com) ever since 2004. There he
co-develops a number of components targeting ASP.NET, Windows Forms,
Silverlight and WPF. In the last few years, Mihail has been leading some of
the best progressing teams in the company, and currently develops an
online Word-like rich text editor.

He can be reached at: m.valkov@gmail.com.

His blog is at: http://blogs.telerik.com/mihailvalkov/. His twitter account is
available at: https://twitter.com/mvalkov.

Mira Bivas

Mira Bivas is an enthusiastic young programmer in one of Telerik’'s ASP.NET
teams (www.telerik.com). She is a student at the Faculty of Mathematics and
Informatics at the Sofia University "St. Kliment Ohridski", where she majors in
"Applied Mathematics". Mira has completed the "Intro C#" and "Core .NET"
courses at the National Academy for Software Development (NASD).

She can be reached by e-mail: mira.bivas@gmail.com.

Nikolay Kostov

Nikolay Kostov works as a senior software developer and trainer at
Telerik’s "Technical Training" department (http://academy.telerik.com). He is
involved deeply with Telerik Academy’s trainings and the courses organized
by Telerik. He currently majors in "Computer Science" at the Faculty of
Mathematics and Informatics at the Sofia University "St. Kliment Ohridski".

http://mihail.stoynov.com/
https://twitter.com/mihailstoynov
http://www.telerik.com/
mailto:m.valkov@gmail.com
http://blogs.telerik.com/mihailvalkov/
https://twitter.com/mvalkov
http://www.telerik.com/
mailto:mira.bivas@gmail.com
http://academy.telerik.com/

44 Fundamentals of Computer Programming with C#

Nikolay has participated in a number of high school and college student
Olympiads and contests in computer science, throughout many years. He
is a two-time champion in the project categories "Desktop Applications" and
"Web Applications" at the Bulgarian National Olympiad in Information
Technologies (NOIT). He has rich experience in designing and developing Web
applications, algorithmic programming and processing large amounts of data.

His main interests lie in developing software applications, data structures,
everything related to .NET technologies, web applications security, data
processing automation, web crawlers, single page applications and others.

Nikolay’s personal blog can be found at: http://nikolay.it.

Nikolay Nedyalkov

Nikolay Nedyalkov is the chairman of The Association for Information
Security, technical director of the eBG.bg’s electronic payments and services
portal and business consultant at other companies. Nikolay is a professional
software developer, consultant and instructor with many vyears of
experience. He has authored a number of articles and publications and has
lectured at many conferences and seminars in the field of software
technologies and information security. His experience as an instructor ranges
from assisting in "Data Structures in Programming"”, "Object-oriented
Programming with C++" and "Visual C++4" to lecturing at the "Network
Security", "Secure Code", "Web Development with Java", "Creating High
Quality Code", "Programming for the .NET platform" and "Applications
Development with Java" courses. Nikolay’s interests are focused on creating
and managing information and communications solutions, modeling and
managing business processes in large-size organizations and state
administration. Nikolay has a bachelor's and a master’s degree from the
Faculty of Mathematics and Informatics at the Sofia University "St. Kliment
Ohridski". As a high school student he was a programming contestant
throughout many years and received a humber of accolades.

His personal website is located at: http://www.nedyalkov.com.

Nikolay Vasilev

Nikolay Vasilev is a professional software developer, an instructor and a
participant in many open source projects.

He holds a master’'s degree in "Software Engineering and Artificial
Intelligence" from University of Malaga (Spain) and is currently pursuing a
master’s degree in "Mathematical Physics Equations and Their Applications" at
Sofia University (Bulgaria). He obtained his bachelor’s degree in "Mathematics
and Informatics" from Sofia University.

In the period 2002-2005, he was instructor in the classes of "Introduction in
Programming with Java" and "Data Structures and Programming with Java" at
Sofia University.

http://nikolay.it/
http://www.nedyalkov.com/
http://www.iseca.org/
http://www.iseca.org/
http://www.ebg.bg/
http://netsec.iseca.org/
http://netsec.iseca.org/
http://netsec.iseca.org/2004/
http://www.nakov.com/inetjava/
http://codecourse.sourceforge.net/
http://codecourse.sourceforge.net/
http://www.nakov.com/dotnet/2003/
http://jse.openfmi.net/
http://jse.openfmi.net/
http://www.nedyalkov.com/

Preface 45

Nikolay is a co-author of the books "Introduction in Programming with
Java" and "Introduction in Programming with C#" and also one of the
initiators, organizers and co-authors of a project for creating an open source
book in Bulgarian, dedicated to the classical (GoF) design patterns in the
software engineering. He is one of the organizers and lecturers of the
"Bulgarian Java User Group".

Nikolay is a certified software developer with nearly 10 years of expertise
in development of Java enterprise applications, gained in international
companies. He participated in large-size systems development from various
domains like e-commerce, banking, visual simulators for nuclear plant sub-
systems, VOD systems, etc.; using cutting-edge technologies and applying
the best up-to-date design and development methodologies and practices. His
interests span across various areas such as software engineering and artificial
intelligence, fluid mechanics, project management and scientific research.

Nikolay Vasilev’s personal blog is available at http://blog.nvasilev.com.

Pavel Donchev

Pavel Donchev is a programmer at Telerik (www.telerik.com), where he
develops web applications mostly for the company internal purposes. He takes
extramural courses in "Theoretical Physics" at the Sofia University "St.
Kliment Ohridski". He was engaged in developing Desktop and Web
Applications for various business sectors — mortgage credits, online stores,
automation and Web UML diagrams. His interests lie mainly in the sphere of
process automation using Microsoft technologies.

His personal blog is located at: http://donchevp.blogspot.com.

Pavlina Hadjieva

Pavlina Hadjieva is a senior enterprise support officer and team lead at
Telerik (www.telerik.com). She currently pursues a master’'s degree in
"Distributed Systems and Mobile Technologies" at the Faculty of Mathematics
and Informatics at the Sofia University "St. Kliment Ohridski". She obtained
her bachelor’'s degree in "Chemistry and Computer Science" also from Sofia
University.

Her professional interests are oriented towards web technologies, in particular
ASP.NET, as well as the complete development cycle of .NET Framework
applications.

You can contact Pavlina Hadjieva by e-mail: pavlina.hadjieva@gmail.com.

Radoslav Ivanov

Radoslav Ivanov is an experienced software engineer, consultant and
trainer with several years of professional experience in wide range of
technologies and programming languages. He has solid practical and
theoretical background in computer science and excellent writing and
lecturing skills.

http://www.introprogramming.info/intro-java-book/
http://www.introprogramming.info/intro-java-book/
http://www.introprogramming.info/intro-csharp-book/
http://blog.nvasilev.com/
http://www.telerik.com/
http://donchevp.blogspot.com/
http://www.telerik.com/
mailto:pavlina.hadjieva@gmail.com

46 Fundamentals of Computer Programming with C#

Radoslav has a bachelor’s degree in "Informatics" and master’s degrees in
"Software Engineering" and "E-learning" from the Sofia University "St.
Kliment Ohridski". For several years he has been an honorary instructor at
the Faculty of Mathematics and Informatics where he was teaching courses in
"Design Patterns in C#", "Programming for the .NET Framework", "Java Web
Applications Development" and "Java EE Development".

He is a co-author of the books "Programming for the .NET Framework" and
"Introduction to Programming with Java".

His professional interests include data warehousing, security, cloud
computing, Java technologies, the .NET platform, software architecture and
design and project management.

Radoslav’s twitter account is available at: https://twitter.com/radoslavi.

Radoslav Kirilov

Radoslav Kirilov is a senior software developer and team leader at Telerik
(www.telerik.com). He graduated from the Technical University of Sofia with a
major in "Computer Systems and Technologies". . His professional interests
are oriented towards web technologies, particularly ASP.NET, and the
complete development cycle of .NET Framework-based applications. Radoslav
is an experienced lecturer who has taken part in putting through, as well as
creating study materials (presentations, examples, exercises) for the
National Academy for Software Development (NASD). Radoslav is a member
of the instructors' team of the "High Quality Programming Code" course
that started in 2010 at the Technical University of Sofia and at the Sofia
University "St. Kliment Ohridski".

He has been maintaining a tech blog since 2009 located at:
radoslavkirilov.blogspot.com. You can contact Radoslav by e-mail at:
radoslav.pkirilov@gmail.com.

Radoslav Todorov

Radoslav Todorov is a software developer who obtained his bachelor’s
degree from the Faculty of Mathematics and Informatics at the Sofia
University "St. Kliment Ohridski" (www.fmi.uni-sofia.bg). He received his
master’s degree in the field of computer science from the Technical University
of Denmark in Lyngby, Denmark (http://www.dtu.dk).

Radoslav has been conducting courses as an instructor-assistant at the IT
University of Copenhagen in Denmark (http://www.itu.dk) and participating in
the research activity of university projects ever since he received his masters’
education. He has rich experience in designing, developing and maintaining
large software products for various companies. He gained working
experience at several companies in Bulgaria. At present, he works as a
software engineer for Canon Handy Terminal Solutions Europe in Denmark
(www.canon-europe.com/Handy

Terminal Solutions).

http://www.devbg.org/dotnetbook/
http://www.introprogramming.info/intro-java-book/
https://twitter.com/radoslavi
http://www.telerik.com/
http://radoslavkirilov.blogspot.com/
mailto:radoslav.pkirilov@gmail.com
http://www.fmi.uni-sofia.bg/
http://www.dtu.dk/
http://www.itu.dk/
http://www.canon-europe.com/Handy_Terminal_Solutions
http://www.canon-europe.com/Handy_Terminal_Solutions

Preface 47

Radoslav’s interests are oriented towards software technologies for high-level
programming languages, as well as products integrating complete hardware
and software solutions in the industrial and private sectors.

You can contact Radoslav by e-mail: radoslav todorov@hotmail.com.

Stanislav Zlatinov

Stanislav Zlatinov is a software developer with professional experience in
web and desktop applications development based on the .NET and Java
platforms.

He has a master’s degree in "Computer Multimedia" from the "St. Cyril and
St. Methodius" University of Veliko Tarnovo.

His personal blog is located at: http://encryptedshadow.blogspot.com.

Stefan Staev

Stefan Staev is a software developer who is occupied with building web
based systems using the .NET platform. His professional interests are related
to the latest .NET technologies, design patterns and databases. He is a
member of the authors' team of the book "Introduction to Programming with
Java".

Stefan currently majors in "Informatics" at the Faculty of Mathematics and
Informatics at the Sofia University "St. Kliment Ohridski". He is a "Core .NET
Developer" graduate from the National Academy for Software Development.

You can contact him by e-mail: stefosv@gmail.com. His Twitter micro blog is
located at: http://twitter.com/stefanstaev.

Svetlin Nakov

Svetlin Nakov is the head of the "Technical Training" department at Telerik
Corp. where he manages the project for free training of software engineers
Telerik Software Academy (http://academy.telerik.com) as well as all other
connected courses and training initiatives, such as Telerik School Academy,
Telerik Algo Academy, Telerik Kids Academy. He is the founder of the
Software University open-education project.

He has achieved a bachelor’s degree in "Computer Science" and a master’s
degree in "Distributed Systems and Mobile Technologies" at the Sofia
University "St. Kliment Ohridski". Later he obtained a Ph.D. in "Computer
Science" after defending a thesis in the field of "Computational Linguistics"
before the Higher Attestation Commission of the Bulgarian Academy of
Sciences (BAS).

His interests encompass software architectures development, the .NET
platform, web applications, databases, Java technologies, training software
specialists, information security, technological entrepreneurship and
managing software development projects and teams.

mailto:radoslav_todorov@hotmail.com
http://encryptedshadow.blogspot.com/
mailto:stefosv@gmail.com
http://twitter.com/stefanstaev
http://academy.telerik.com/
http://schoolacademy.telerik.com/
http://algoacademy.telerik.com/
http://www.telerik-kids.com/
http://softuni.org/

48 Fundamentals of Computer Programming with C#

Svetlin Nakov has nearly 20 years of experience as a software engineer,
programmer, instructor and consultant, moving from Assembler, Basic and
Pascal through C and C++ to PHP, JavaScript, Java and C#. He was involved
as a software engineer, consultant and manager of teams in dozens of
projects for developing information systems, web applications, database
management systems, business applications, ERP systems, cryptographic
modules and trainings of software engineers. At the age of 24, he founded his
first software company for training software engineers, which was
acquired 5 years later by Telerik.

Svetlin has extensive experience in creating study materials, preparing and
conducting trainings in programming and modern software technologies,
gathered during his practice as an instructor. For many years now, he has
been an honored instructor at the Faculty of Mathematics and Informatics
at the Sofia University "St. Kliment Ohridski" (FMI at SU), at the New
Bulgarian University (NBU) and at the Technical University of Sofia (TU-
Sofia), where he held courses in "Design and Analysis of Computer
Algorithms", "Internet and Web Programming with Java", "Network Security",
"Programming for the .NET Framework", "Developing Java Web Applications",
"Design Patterns"”, "High Quality Programming Code", "Developing Web
Applications with the .NET Framework and ASP.NET", "Developing Java and
Java EE Applications", "Web Front-End Development" and many others (see
http://www.nakov.com/courses/).

Svetlin has dozens of scientific and technical articles focused on software
development in both Bulgarian and foreign publications and is the lead author
of the books "Programming for the .NET Framework (vol. 1 & 2)",
"Introduction to Programming with Java", "Introduction to Programming with
C#", "Internet Development with Java" and "Java for Digitally Signing Web
Documents". He is a regular speaker at technical conferences, trainings and
seminars and up to now has held hundreds of technical lectures at various
technological events in Bulgaria and abroad.

As a high school and a college student, Svetlin was champion in tens of
national contests in programming and was awarded with 4 medals at
International Olympiads in Informatics (IOI).

In 2003, he received the "John Atanasoff" award by the EVRIKA Foundation.
In 2004, he was awarded by the Bulgarian President with the "John
Atanasoff" award for his contribution to the development of the information
technologies and the information society.

He is one of the founders of the Bulgarian Association of Software
Developers (www.devbg.org) and its present chairman.

Apart from computer programming, Svetlin Nakov is founder of NLP Club
Bulgaria (http://nipclub.devbg.org), a community of NLP (neuro-linguistic
programming) practitioners and successful people who are looking for
personal development and knowledge sharing. The goal for Svetlin is to add
soft skills and personal development to his students at the Software
academy in addition to the profession and job positions they gain.

http://www.nakov.com/courses/
http://www.devbg.org/dotnetbook/
http://www.introprogramming.info/
http://www.introprogramming.info/
http://www.introprogramming.info/
http://www.nakov.com/books/inetjava/
http://www.nakov.com/books/signatures/
http://www.nakov.com/books/signatures/
http://www.devbg.org/
http://nlpclub.devbg.org/

Preface 49

The personal website and blog of Svetlin Nakov is: http://www.nakov.com.
His story of life is published at http://www.nakov.com/blog/2011/09/24/.

Teodor Bozhikov

Teodor Bozhikov is a senior software developer and team leader at
Telerik (www.telerik.com). He completed his master’s degree in "Computer
Systems and Technologies" at the Technical University of Varna. Besides his
background as a WPF and Silverlight programmer, he has achieved expertise
in developing ASP.NET web applications. He was involved briefly in the
development of private websites. Within the ICenters project, he took part in
building and maintaining of a local area network for public use at the Festival
and Congressional Center in Varna. He has held courses in computer literacy
and computer networks basics.

Teodor’'s professional interests include web and desktop application
development technologies, architecture and design patterns, networks and all
kinds of new technologies.

You can contact Teodor by e-mail: t bozhikov@yahoo.com. His Twitter micro
blog is located at: http://twitter.com/tbozhikov.

Teodor Stoev

Teodor Stoev has a bachelor’s and a master’s degree in "Informatics" from
the Faculty of Mathematics and Informatics at the Sofia University "St.
Kliment Ohridski". At Sofia University, he mastered in "Software
Technologies". He currently attends a master’'s program in "Computer
Science" at the Saarland University (Saarbricken, Germany).

Teodor is a software designer and developer with many years’ experience.
He has participated in creating financial and insurance software systems, a
number of web applications and corporate websites. He was actively involved
in the development of the TENCompetence project of the European
Commission. He is a co-author of the book "Introduction to Programming
with Java".

His professional interests lie in the field of object-oriented analysis, modeling
and building of software applications, web technologies and, in particular,
building rich internet applications (RIA). He has an extensive background in
algorithmic programming: he has competed at a number of national high
school and collegiate computer science contests.

His personal website is available at: http://www.teodorstoev.com.

You can contact Teodor by e-mail: teodor.stoev@gmail.com.

Tsvyatko Konov

Tsvyatko Konov is a senior software developer and instructor with varied
interests and experience. He is competent in fields such as systems
integration, building software architectures, developing systems with a
number of technologies, such as .NET Framework, ASP.NET, Silverlight,

http://www.nakov.com/
http://www.nakov.com/blog/2011/09/24/
http://www.telerik.com/
mailto:t_bozhikov@yahoo.com
http://twitter.com/tbozhikov
http://www.teodorstoev.com/
mailto:teodor.stoev@gmail.com

50 Fundamentals of Computer Programming with C#

WPF, WCF, RIA, MS SQL Server, Oracle, MySQL, PostgreSQL and PHP. His
experience as an instructor includes a large variety of courses — courses for
beginners and experts in .NET technologies, as well as specialized courses in
individual technologies, such as ASP.NET, Oracle, .NET Compact Framework,
"High Quality Programming Code" and others. Tsvyatko was part of the
authors’ team of the book "Introduction to Programming with Java". His
professional interests include web-based and desktop-based technologies,
client-oriented web technologies, databases and design patterns.

Tsvyatko Konov has a technical blog: http://www.konov.me.

Veselin Georgiev

Veselin Georgiev is a co-founder of Lead IT (www.leadittraining.com) and
software developer at Abilitics (www.abilitics.com). He has a master’s degree
in "E-Business and E-Governance" at the Sofia University "St. Kliment
Ohridski", after obtaining a bachelor’s degree in "Informatics" from the same
university.

Veselin is a Microsoft Certified Trainer and Microsoft Certified Professional
Developer. He lectured at the Microsoft Tech Days conferences in 2011 and
2009, and also takes part as an instructor in various courses at Sofia
University. He is an experienced lecturer who has trained software
specialists for working practical jobs in the IT industry.

His professional interests are oriented towards training, SharePoint and
software architectures. He can be reached at veselin.vgeorgiev@gmail.com.

Veselin Kolev

4

Veselin "Vesko" Kolev is a leading software engineer with many years
professional experience. He has worked at various companies where he
managed teams and the development of many different software projects.
As a high school student, he participated in a number of competitions in the
fields of mathematics, computer science and information technology, where
he finished in prestigious places. He currently majors in "Computer Science"
at the Faculty of Mathematics and Informatics at the Sofia University "St.
Kliment Ohridski".

Vesko is an experienced lecturer who has worked on training software
specialists for practical jobs in the IT industry. He is an instructor at the
Faculty of Mathematics and Informatics at the Sofia University "St. Kliment
Ohridski" where he conducts courses in "Modern Java Technologies" and "High
Quality Programming Code". He has delivered similar lectures at the Technical
University of Sofia.

Vesko’s main interests include software projects design, development of
software systems, .NET and Java technologies, Win32 programming (C/C++),
software architectures, design patterns, algorithms, databases, team and
software projects management, specialists training. The projects he has
worked on include large web based systems, mobile applications, OCR,

http://www.konov.me/
http://www.leadittraining.com/
http://www.abilitics.com/
mailto:veselin.vgeorgiev@gmail.com

Preface 51

automated translation systems, economic software and many others. Vesko is
a co-author of the book "Introduction to Programming with Java".

Vesko works on the development of Silverlight and WPF based applications at
Telerik (www.telerik.com). He shares parts of his day-to-day experiences
online on his personal blog at http://veskokolev.blogspot.com.

Yordan Pavilov

Yordan Pavlov has a bachelor’s and a master’s degree in "Computer Systems
and Technologies" from the Technical University of Sofia. He is a software
developer at Telerik (www.telerik.com) with an extensive background in
software components development.

His interests lie mainly in the following fields: object-oriented design, design
patterns, high-quality software development, geographic information
systems (GIS), parallel processing and high performance computing, artificial
intelligence, teams’ management.

Yordan won the Imagine Cup 2008 finals in Bulgaria in the Software Design
category, as well as the world finals in Paris, where he won Microsoft's
prestigious "The Engineering Excellence Achievement Award". He has worked
with Microsoft engineers at the company headquarters in Redmond, USA,
where he has gathered useful knowledge and experience in the development
of complex software systems.

Yordan has also received a golden mark for "Contributions to the Innovation
and Information Youth Society". He has taken part in many contests and
Olympiads in programming and informatics.

Yordan’s personal blog can be found at http://yordanpavlov.blogspot.com. He
can be reached by e-mail: iordanpavliov@gmail.com.

Yosif Yosifov

Yosif Yosifov is a senior software developer at Telerik (www.telerik.com).
His interests consist mainly of .NET technologies, design patterns and
computer algorithms. He has participated in numerous contests and
Olympiads in programming and informatics. He currently pursues a
bachelor’s degree in "Computer Science" at the Faculty of Mathematics and
Informatics at the Sofia University "St. Kliment Ohridski".

Yosif's personal blog can be found at http://yyosifov.blogspot.com. He can be
reached by e-mail: cypressx@gmail.com.

The Java Book Authors

This C# fundamentals programming book is based on its original Java
version, the book "Introduction to Programming with Java". Thanks to the
original Java book authors for their work. They have significant contribution to
almost all chapters of the book. Some chapters are entirely based on their

http://www.telerik.com/
http://veskokolev.blogspot.com/
http://www.telerik.com/
http://yordanpavlov.blogspot.com/
mailto:iordanpavlov@gmail.com
http://www.telerik.com/
http://yyosifov.blogspot.com/
mailto:cypressx@gmail.com
http://www.introprogramming.info/intro-java-book/

52

Fundamentals of Computer Programming with C#

work, some partially, but in all cases their original work is the primary origin
of this book:

Boris Valkov
Danail Aleksiev
Hristo Todorov

Lachezar Bozhkov

Luchesar Cekov
Marin Georgiev
Mario Peshev

The Editors

Apart from the authors, a significant contribution to the making of this
book was made by the editors who voluntarily took part in reviewing the text

and the examples and fixing

Dilyan Dimitrov
Doncho Minkov
Hristo Radkov
Iliyan Murdanliev
Marin Georgiev
Mihail Stoynov
Mihail Valkov
Mira Bivas

The Translators

- Mariyan Nenchev Stefan Staev

- Mihail Stoynov - Svetlin Nakov

- Nikolay Nedyalkov - Teodor Stoev

- Nikolay Vasilev - Vesselin Kolev

- Petar Velev - Vladimir Tsanev
- Radoslav Ivanov - Yosif Yosifov

- Rumyana Topalska

errors and other problems:

- Nikolay Kostov - Svetlin Nakov

- Nikolay Vasilev - Teodor Bozhikov
- Pavel Donchev - Tsvyatko Konov
- Radoslav Ivanov - Veselin Georgiev
- Radoslav Kirilov - Veselin Kolev

- Radoslav Todorov - Yosif Yosifov

- Stanislav Zlatinov
- Stefan Staev

This book would have remained only in Bulgarian for many years if these guys
hadn’t volunteered to translate it in English:

Angel Angelov
Atanas Vaichev

Blagovest
Buyukliev

Boyan Dimitrov
Dimitar Bonev
Doroteya Agayna
Dyanko Petkov
Franz Fischbach
George Halachev

George K.
Georgiev

- George S. - Lora Borisova
Georgiev - Martin Gebov

- Georgi Mitev - Martin Radev

- Georgi Todorov - Martin Yankov

- Georgi Vaklinov - Momchil Rogelov

- Hristo Radkov - Nedjaty Mehmed

- Ivan Nenchovski - Nencho Nenchev

- Ivaylo Dyankov - Nikolay Angelov

- Ivaylo Gergov - Nikolay Kostov

- Zhasmina - Pavel Benov
Stoyanova

- Radoslav Todorov
- Kristian Dimitrov

Preface 53

- Stanislav - Vasya Stankova - Vladimir Tsenev
Vladimirov - Ventsi Shterev - Yoan Krumov

- Svetlin Nakov - Vesselin Georgiev - Zhelyazko

- Teodor Rusev - Vesselina Raikova Dimitrov

- Tihomir Iliev - Vladimir

- Todor Mitev Amiorkov

Many thanks to George S. Georgiev who was seriously involved in the
translation process and edited the translated text for most of the chapters.

Other Contributors

The authors would also like to thank Kristina Nikolova for her efforts in
working out the book’s cover design. Big thanks to Viktor Ivanov and Peter
Nikov for their work on the project’'s web site. Big thanks to Ivaylo Kenov
for fixing few hundreds bugs reported in the Bulgarian edition of the book.
Thanks to Ina Dobrilova and Aneliya Stoyanova for the proofreading of the
first few chapters and their contribution to the marketing of the book. Many
thanks to Hristo Radkov who is proficient in English (lives and works in
London for many years) and who edited and corrected the translation of the
first few chapters.

The Book Is Free of Charge!

The present book is distributed absolutely free of charge in an electronic
format under a license that grants its usage for all kinds of purposes,
including commercial projects. The book is also distributed in paper format for
a charge, covering its printing and distribution costs without any profit.

Reviews

If you don't fully trust the authors who wrote this book, you can take
inspiration from its reviews written by leading worldwide specialists,
including software engineers at Microsoft, Google, Oracle, SAP and VMware.

Review by Nikola Mihaylov, Microsoft

Programming is an awesome thing! People have been trying for hundreds of
years to make their lives easier, in order to work less. Programming allows
humanity’s tendency towards laziness to continue. If you are a computer
freak or if you'd just like to impress others with a good website or something
of yours "never-seen -before", then you are welcome. No matter if you are
part of the relatively small group of "freaks" who get off on encountering a
nice program or if you’d just like to fulfill yourself professionally and lead your
life outside the workplace, this book is for you.

The fundamental concepts of a car’s engine haven't changed in years -
something inside it burns (gas, oil or whatever you have filled it with) and the
car rolls along. Likewise, the concepts of programming haven't changed for

http://introprogramming.info/

54 Fundamentals of Computer Programming with C#

years. Whether you write the next video game, money management software
in a bank or you program the "mind" of a new bio robot, you will use - with
absolute certainty - the concepts and the data structures described in
this book.

In this book, you will find a large part of the programming fundamentals.
An analogical fundamental book in the automobile industry would be titled
"Internal Combustion Engines".

Whatever you do, it's most important to enjoy it! Before you start reading
this book, think of something you’d like to do as a programmer - a website, a
game or some other program! While reading the book, think of how and what
from the stuff you have read you would use in your program! If you find
something interesting, you would learn it easily!

My first program (of which I'm proud enough to speak of in public) was
simply drawing on the screen using the arrow keys of the keyboard. It took
me quite some time to write it back then, but when it was done, I liked it. I
wish you this: may you like everything related to programming! Have a nice
reading and a successful professional fulfillment!

Nikola Mihaylov is a software engineer at Microsoft in the team developing
Visual Studio. He is the author of the website http://nokola.com and is easily
“turned on” by the topic of programming; he is always ready when it’s
necessary to write something positive! He loves helping people with questions
and a desire for programming, no matter if they are beginners or experts.
When in need, contact him by e-mail: nokola@nokola.com.

Review by Vassil Bakalov, Microsoft

"Introduction to Programming with C#" is a brave effort to not only help the
reader make their first steps in programming, but also to introduce them with
the programming environment and to train for the practical tasks that
occur in a programmer’s day-to-day life. The authors have found a good
combination of theory - to pass over the necessary knowledge for writing and
reading programming code - and practice - all kinds of problems, carefully
selected to assimilate the knowledge and to form a habit in the reader to
always think of the efficient solution to the problem in addition to the syntax
when writing programs.

The C# programming language is a good choice, because it is an elegant
language through which the program’s representation in the computer
memory is of no concern to us and we can concentrate on improving the
efficiency and elegance of our program.

Up until now I haven’t come across a programming book that introduces its
reader with the programming language and develops their problem
solving skills at the same time. I'm happy now that there is such a book and
I'm sure it will be of great use to future programmers.

Vassil Bakalov is a software engineer at Microsoft Corporation (Redmond)
and a participant in the project for the first Bulgarian book for .NET:

http://nokola.com/
mailto:nokola@nokola.com

Preface 55

"Programming for the .NET Framework”. His blog is located at:
http://bakalov.com.

Review by Vassil Terziev, Telerik

Skimming through the book, I remembered the time, when I was making my
first steps in PHP programming. I still remember the book I learned from
- four authors, very disorganized and incoherent content and elementary
examples in the chapters for experts and complicated examples in the
chapters for beginners, different coding conventions and emphasis only on the
platform and the language and not on how to use them efficiently for writing
high quality applications.

I'm very glad that "Introduction to Programming with C#" takes an entirely
different approach. Everything is explained in an easy to understand
manner, but with the necessary profundity, and every chapter goes on to
slowly extend the previous ones. As an outside bystander I was a witness of
the efforts put into writing the book and I'm happy that this immense energy
and desire to create a more different book truly has materialized in a subject
matter of very high quality.

I strongly hope that this book will be useful to its readers and that it will
provide them with a strong basis for finding their feet, a basis that will hook
them on to a professional development in the field of computer programming
and that will help them make a more painless and qualitative start.

Vassil Terziev is one of the founders and CEO of Telerik Corporation, leading
provider of developer tools and components for .NET, HTML5 and mobile
development. His blog is located at http://blogs.telerik.com/vassilterziev/.
You can contact him at any time you want by e-mail: terziev@telerik.com.

Review by Veselin Raychev, Google

Perhaps even without reading this, you’ll be able to work as a software
developer, but I think you’ll find it much more difficult.

I have seen cases of reinventing the wheel, often times in a worse shape than
the best in theory and the entire team suffers mostly from this. Everybody
committed to programming must sooner or later read what algorithm
complexity is, what a hash table is, what binary search is and what the
best practices for using design patterns are. Why don‘t you start at this very
moment by reading this book?

There are many books on C# and much more on programming. People would
say about many of them that they are the best guides, the fastest way to get
into the swing of the language. This book differs from others mainly because
it will show you what you must know to achieve success and not what the
twists and turns of a given programming language are. If you find the
topics covered in this book uninteresting, then software engineering
might possibly not be for you.

http://bakalov.com/
http://blogs.telerik.com/vassilterziev/
mailto:terziev@telerik.com

56 Fundamentals of Computer Programming with C#

Veselin Raychev is a software engineer at Google where he works on Google
Maps and Google Translate. He has previously worked at Motorola Biometrics
and Metalife AG.

Veselin has won accolades at a number of national and international
contests and received a bronze medal at the International Olympiad in
Informatics (IOI) in South Korea, 2002, and a silver medal at the Balkan
Olympiad in Informatics (BOI). He represented the Sofia University "St.
Kliment Ohridski" twice at the world finals in computer science (ACM ICPC)
and taught at several optional courses at the Faculty of Mathematics and
Informatics at the University of Sofia.

Review by Vassil Popovski, VMware

As an employee at a managing position at VMware and at Sciant before that, I
often have to carry out technical interviews for job candidates at our
company. It's surprising how many of the candidates for software engineering
positions that come to us for an interview don’t know how a hash table
works, haven't heard of algorithm complexity, cannot sort an array or sort it
with a complexity of O(n3). It’s hard to believe the amount of self-taught
programmers that haven’t mastered the fundamentals of programming you’ll
find in this book. Many people practicing the software developer profession
are not even familiar with the most basic data structures in programming and
don’t know how to iterate through a tree using recursion. Read this book, so
that you won’t be like these people! It is the first textbook you should
start with during your training as a programmer. The fundamental knowledge
of data structures, algorithms and problem solving will be necessary for
you to build your carrier in software engineering successfully and, of
course, to be successful at job interviews and the workplace afterwards.

If you start with creating dynamic websites using databases and AJAX without
knowing what a linked list, tree or hash table is, one day you’ll find out what
fundamental gaps there are in your skill set. Do you have to make a fool of
yourself at a job interview, in front of your colleagues or in front of your
superior when it becomes clear that you don’t know the purpose of a hash
code, or how the List<T> structure works or how hard drive folders are
traversed recursively?

Most programming books will teach you to write simple programs, but they
won't take into consideration the quality of the programming code. It is a
topic most authors find unimportant, but writing high quality code is a basic
skill that separates the capable programmers from the mediocre ones.
Throughout the years you might discover the best practices yourself, but do
you have to learn by trial and error? This book will show you the right course
of action the easy way - master the basic data structures and
algorithms; learn to think correctly; and write your code with high-
quality. I wish you beneficial studying.

Vassil Popovski is a software architect at VMware Bulgaria with more than
10 years of experience as a Java developer. At VMware Bulgaria he works on

Preface 57

developing scalable Enterprise Java systems. He has previously worked as
senior manager at VMware Bulgaria, as technical director at Sciant and as
team leader at SAP Labs Bulgaria.

As a high school student Vassil won awards at a number of national and
international contests including a bronze medal at the International
Olympiad in Informatics (IOI) in Setubal, 1998, and a bronze medal at the
Balkan Olympiad in Informatics (BOI) in Drama, Greece, 1997. As a college
student, Vassil participated in a number of college contests and in the
worldwide interuniversity contest in programming (ACM ICPC). During the
2001/2002 period, he held the course "Transaction Processing" at the Sofia
University "St. Kliment Ohridski". Vassil is one of the founders of the
Bulgarian Association of Software Developers (BASD).

Review by Pavlin Dobrev, ProSyst Labs

The book "Introduction to Programming with C#" is an excellent study
material for beginners that gives you the opportunity to master the
fundamentals of programming in an easy to understand manner. It's the
seventh book written under the guidance of Svetlin Nakov and just like the
others, it's oriented exclusively to gaining practical programming skills.
The subject matter includes fundamental topics such as data structures,
algorithms and problem solving and that makes it intransient in technologies’
development. It's filled with countless examples and practical advice for
solving basic problems from a programmer’s everyday work.

The book "Introduction to Programming with C#" represents an adaptation of
the incredibly successful book "Introduction to Programming with Java" to
the C# programming language and Microsoft’'s .NET Framework platform and
is based on its leading author’s, Svetlin Nakov, experience gained while
teaching programming fundamentals - not only at the National Academy
for Software Development (NASD) and later at Telerik Software
Academy, but at the Faculty of Mathematics and Informatics at the Sofia
University "St. Kliment Ohridski", at the New Bulgarian University and at
the Technical University of Sofia as well.

Despite the large number of authors, all of which with differing professional
and training experience, there is a clear logical connection between the
separate chapters from the book. It's clearly written, with detailed
explanations and many, many examples far from the dull academic style
of most university textbooks.

Oriented towards those making their first steps in programming, the book
delivers carefully, step by step, the most important stuff a programmer
must be proficient in, in order to practice his profession - starting from
variables, loops and arrays, to fundamental data structures and algorithms.
The book also covers important topics like recursive algorithms, trees, graphs
and hash tables. It's one of the few books that teach a good programming
style and high-quality programming code at the same time. There is enough

58 Fundamentals of Computer Programming with C#

thought put into the object-oriented programming principles and exceptions
handling, without which modern software development is unimaginable.

The book "Introduction to Programming with C#" teaches the most
important principles and concepts in programming in the way
programmers think when solving problems in their everyday work.

This book doesn’t contain everything about programming and won‘t make you
.NET software engineers. If you want to become really good programmer,
you need lots and lots of practice. Start from the exercises at the end of each
chapter, but dont confine yourselves to solving only them. You'll write
thousands of lines of code until you become really good - that’s the life of
a programmer. This book is indeed a great start! Seize the opportunity to
come across everything of utmost importance in one place without all the
wandering through the thousands of self-instruction books and articles on the
Internet. Good luck!

Dr. Pavlin Dobrev is technical director at ProSyst Labs (www.prosyst.com),
a software engineer with more than 15 years’ experience, consultant and
scientist, Ph.D. in "Computer Systems, Complexes and Networks". Pavlin has
made worldwide contributions in developing modern computer technologies
and technological standards. He is an active member of international
standardization organizations such as the OSGi Alliance (www.osgi.org) and
the Java Community Process (www.jcp.org), as well as open source software
initiatives such as the Eclipse Foundation (www.eclipse.org). Pavlin manages
software projects and consults companies of the likes of Miele, Philips,
Siemens, BMW, Bosch, Cisco Systems, France Telecom, Renault, Telefonica,
Telekom Austria, Toshiba, HP, Motorola, Ford, SAP, etc. in the field of
embedded applications, OSGi based automobile systems, mobile devices and
home networks, integrated development environments and Java Enterprise
servers for applications. He has many scientific and technical publications
and has participated in prestigious international conferences.

Review by Nikolay Manchev, Oracle

To become a skillful software developer, you must be ready to invest in
gaining knowledge in many fields and a particular programming language is
only one of them. A good developer mustn’t only know the syntax and the
application programming interface of the language he’s chosen. He also has to
possess deep knowledge in object-oriented programming, data
structures and quality code writing. He must also back up his knowledge
with serious practical experience.

When I was starting my career as a software developer more than 15 years
ago, finding a comprehensive source for learning these things was
impossible. Yes, there were books on the individual programming languages,
but they only described their syntax. For the API description one had to rely
on the documentation of the libraries. There were individual books devoted
solely on object-oriented programming. The various algorithms and data

http://www.prosyst.com/
http://www.osgi.org/
http://www.jcp.org/
http://www.eclipse.org/

Preface 59

structures were taught at the university. There was not even a word on high-
quality programming code.

Learning all these things, one piece at a time, and making the efforts to put
them into a common context, was up to the one walking "the way of the
programmer". Sometimes a self-taught programmer cannot manage to fill the
huge gaps in their knowledge simply because they have no idea of the gaps’
existence. Let me give you an example to illustrate the problem.

In the year 2000 I picked up the management of a large Java project. The
team developing it consisted of 25 people and at that moment there were
about 4000 classes written for the project. As a team leader, part of my job
was to regularly review the code written by the other programmers. One
day I saw how one of my colleagues had solved a standard array sorting
assignment. He had written a separate, 25 lines long method implementing
the trivial bubble sort algorithm. When I went to see him and asked him why
he would do that instead of solving the problem with a single line of code
using Array.Sort(), he started explaining how the built-in method had been
"sluggish" and that it's better to write these things yourself. I told him to open
the documentation and showed him that the "sluggish" method works with a
complexity of O(n*log(n)) and his bubble sort is a prime example of bad
performance with its complexity of O(n?). In the next few minutes of our
conversation I made the actual discovery — my colleague had no idea what
algorithm complexity is and his knowledge of standard algorithms was
tragic. Consequently I found out he majored in an entirely different
engineering discipline, not computer science. Of course, there’s nothing wrong
with that. His knowledge of Java was no worse than his co-workers’, who had
longer professional exposures than him. But that very day we noticed a gap in
his professional qualification as a developer that he hadn’t even suspected.

I don’t want to leave you with wrong impressions from this story. Although a
college student who has successfully passed his main exams in "Informatics"
would definitely know the common sorting algorithms and would be able to
calculate their complexity, they would also have gaps in their education.
The sad truth is that the college education in Bulgaria in this discipline is still
theoretically oriented. It has changed very little over the course of the past 15
years. Yes, programs are nowadays written in Java and C#, but these are the
same programs that were written in Pascal and Ada back then.

Somewhere about a year ago I consulted a freshman student who was
majoring in "Informatics" at one of Bulgaria’s top state universities. When we
sat down to go over his notes taken during the "Introduction to Programming"
class, I was amazed at the code his instructor had given. The names of
the methods were a mix of English and transliterated Bulgarian. There was a
method calculate and a method rezultat (the Bulgarian for "result"). The
variables carried the descriptive names al, a2 and suma (the Bulgarian for
"sum"). Yes, there is nothing tragic in this approach, as long as it's a ten-
lines-long example, but when this student takes up the job he’s earned at
some large project, he will be harshly rebuked by the project leader, who will
have to explain to him the coding conventions, naming principle,

60 Fundamentals of Computer Programming with C#

cohesion and coupling and variable life span. Then they’ll find out together
about the gap in his knowledge of quality code the same way my colleague
and I found out about his uncertain knowledge in the field of algorithms.

Dear reader, I can boldly state that you are holding a truly unique book in
your hands. Its contents are very carefully selected. It's well-arranged and
presented with attention to details, of which only people with tremendous
practical experience and solid scientific knowledge, like the book’s chief
authors Svetlin Nakov and Veselin Kolev, are capable of. Over the course of
many years they have also been learning "on the fly", supplementing and
expanding their knowledge. They've worked for years on huge projects,
they’ve attended many scientific conferences and they’ve taught hundreds of
students. They know what's necessary for anybody striving for a career
in software development to learn and they’ve presented it in a manner that
no other book on introduction to programming has done before. Your journey
through the book’s pages will lead you through the C# programming
language’s syntax. You'll see how to use a large part of its API. You'll learn
the fundamentals of object-oriented programming and you’ll be able to
work freely with terms such as objects, events and exceptions. You'll see the
most widely used data structures such as arrays, trees, hash tables and
graphs. You'll get to know the most widely used algorithms for working with
these structures and you’ll come to know their pros and cons. You'll
understand the concepts for creating high-quality programming code and
you'll know what to require from your programmers when one day you
become a team leader. In addition, the book will challenge you with many
practical problems that will help you master, by the way of practice, the
subject matter it covers. And if one of the problems proves too hard for you,
you can always take a look at the solutions and guidelines the authors have
provided.

Computer programmers make mistakes - no one is safe from that. The more
capable ones make mistakes out of oversight or overwork, but the more
incompetent ones - out of lack of knowledge. Whether you become a good
or a bad software developer depends entirely on you and especially on
how much you’re willing to constantly invest in your knowledge - be it by
attending courses, reading or practicing. But I can tell you one thing for sure
- no matter how much time you invest in this book, you won't make a
mistake. If some years ago someone wanting to become a software developer
had asked me "Where do I start from", I wouldn't have been able to give
them a definitive answer. Today I can say without worry - "Start from this
very book (in its C# or Java version)!"

I wish you with all my heart success in mastering the secrets of C#, the .NET
Framework and software development!

Nikolay Manchev is a consultant and software developer with many years
of experience in Java Enterprise and Service Oriented Architecture (SOA). He
has worked for BEA Systems and Oracle Corporation. He’s a certified
developer in the programs run by Sun, BEA and Oracle. He teaches
software technologies and holds courses in "Network Programming”,

Preface 61

"J2EE", "Data Compression" and "High Quality Programming Code" at the
Plovdiv University "Paisii Hilendarski" and at the Sofia University "St. Kliment
Ohridski". He has held a number of courses for developers on Oracle
technologies in Central and Eastern Europe (Hungary, Greece, Slovakia,
Slovenia, Croatia and others) and has participated in international projects on
incorporating J2EE based systems for security management. Works of his in
the field of data compression algorithms have been accepted and presented in
the USA by IEEE. Nikolay is an honorary member of the Bulgarian Association
of Software Developers (BASD). He is author of the book "Oracle Database
Security: Version 10g & 11g". You can find out more about him on his
personal website: http://www.manchev.org. To contact him, use the e-mail
address: nick@manchev.org.

Review by Panayot Dobrikov, SAP AG

The book at hand is an incredibly good introduction to programming for
beginners and is a primary example of the notion (promoted by Wikipedia
and others) to create and distribute easy to understand knowledge that is not
only *free of charge*, but is of incredibly high quality as well.

Panayot Dobrikov is program director at SAP AG and co-author of the book
"Programming = ++Algorithms;". You can find out more about him on his
personal website: http://indyana.hit.bg.

Review by Lyubomir Ivanov, Mobiltel

If someone had told me 5 or 10 years ago that there would be a book from
which to learn the basics of managing people and projects - budgeting,
finances, psychology, planning, etc., I wouldn’t have believed them. 1
wouldn’t even believe them at this very moment. For each of these topics
there are tens of books that must be read.

If someone had told me that there would be a book from which we can learn
the fundamentals of programming essential to every software developer -
I still wouldn’t have believed them.

I remember my time as a novice programmer and a college student - I was
reading several books on programming languages, several others on
algorithms and data structures, and a third set of books on writing high-
quality code. Very few of them helped me to think algorithmically and to
work out an approach for solving the everyday problems I came across
in my practice. None of them gave me an overview of everything I had to
know as a computer programmer and a software engineer. The only things
that helped me were being stubborn and reinventing the wheel.

Today I read this book and I'm happy that finally, although a bit too late for
me, someone got down to writing The Book that will help any beginner
programmer solve the puzzle of programming - a modern programming
language, data structures, quality code, algorithmic thinking and problem
solving. This is the book that you should take up programming from, if you

http://soft-press.com/goto.htm?http://soft-press.com/srchead.html?com=viewall&viewbook=746
http://soft-press.com/goto.htm?http://soft-press.com/srchead.html?com=viewall&viewbook=746
http://www.manchev.org/
mailto:nick@manchev.org
http://indyana.hit.bg/

62 Fundamentals of Computer Programming with C#

want to master the art of quality programming. Whether you choose the Java
or C# version of this book, it doesn’t really matter. What matters is that you
must learn to think as a programmer and solve the problems you
encounter when writing software; the programming language is just a tool
you can change for another at any given time.

This book isn’t only for beginners. Even programmers with many years of
experience can learn something from it. I recommend it to every software
developer who would like to realize what they didn’t know up until now.

Have a nice time reading!

Lyubomir Ivanov is the manager of the "Data and Mobile Applications"
department at Mobiltel EAD (part of Mobilkom Austria) where he engages in
developing and integrating IT solutions for the telecommunications industry.

Review by Hristo Deshev, Entrepreneur

It’s surprising what a large percentage of programmers don‘t pay attention to
the little things like variable names and good code structure. These
things pile up and, in the end, make the difference between a well-written
piece of software and a bowl of spaghetti. This book teaches discipline and
"hygiene" in code writing along with the very basic concepts in
programming and that will undoubtedly make you a professional.

Hristo Deshev, software craftsman

Review by Hristo Radkov, Clever IT (London, UK)

Fantastic book! It gives the start to any developer geek who wants to develop
into a software prodigy. While you can learn from the quick learning books for
dummies to do coding that “just works” and this is the level expected in many
of the small software development houses around, you can never leave a
trace in the software world without understanding the fundamental
concepts of programming. Yes, you can still develop software applications
and use the goodies of the .NET framework, but just use and not create or
innovate.

If you'd like to ever achieve architectural excellence and be able to
confidently and proudly say you have developed a good piece of software that
will stay there and serve its purpose for years, you need to understand just
how the technologies you use in everyday live (e.g. ASP.NET, MVC, WPF,
WCF, LINQ, Sockets, Task Parallel Library) work, but how they have been
developed and optimized to become what they are. Only then would you save
precious time in finding how to do things efficiently with these technologies,
because that knowledge will naturally come from what you have learned
from this book. And the same applies to understanding the widely
recommended in the world of programming nowadays design patterns,
architectures and techniques.

Preface 63

The book will allow you to prepare yourself to think, design and program
optimally as a concept and mindset with any object oriented language you
might ever use not just C# or .NET Framework.

Many banking systems here in London have a main requirement to be “real-
time” data servers to thousands of users with minimum delays and
interruptions, and this book provides the basics which if you lack you cannot
work on such systems successfully, ever.

This fundamental knowledge distinguishes the excellent and accomplished
developer, whose code would rarely require optimizations and would therefore
save direct and indirect costs to their employer from the general developers
who unfortunately are the prevailing part of the programmers you would meet
in your career. The accomplished specialists evolve and progress into senior
positions much easier when having the technical arguments and the mentality
to be creative and visionary, avoiding the difficulties of technology gap
limitations the mass around you have.

So, read the book carefully and diligently to become one!

Hristo Radkov is a Chief software architect and Co-founder at Clever IT, a
software services, best coding practices and architecture consulting company
based in London, United Kingdom. With over 15 years of experience as a
Developer, Team leader, Development manager, Head of IT and Software
Architect he has done projects professionally with C++, Java and C#,
eventually remaining completely on the side of the Microsoft Technologies
after the very first release of .NET Framework, becoming recognized by the
industry Microsoft Technology Software Development Best Practices and Cloud
Programming Expert, with MCPD, MCSD.NET, MCDBA and MCTS awards.
Hristo is co-author of the books "Programming for the .NET Framework
(vol. 1 & 2)" and has been instructor for .NET and Design Patterns for many
years. His company Clever IT is consulting top financial institutions and FTSE
100 corporations with multibillion valuations on the World Stock Exchanges.
You can find more about him on www.radkov.com or linked-in at Hristo
Radkov. To contact him, use the e-mail address: hradkov@clevit.com.

License

The book and all its study materials are distributed freely under the following
license:

Common Definitions

1. The present license defines the terms and conditions for using and
distributing the "study materials" and the book "Fundamentals of
Computer Programming with C#", developed by a team of
volunteers under the guidance of Svetlin Nakov (www.nakov.com).

2. The study materials consist of:

http://cleverit.info/
http://www.devbg.org/dotnetbook/
http://www.devbg.org/dotnetbook/
http://www.radkov.com/
http://lnkd.in/6YvJZ3
http://lnkd.in/6YvJZ3
mailto:hradkov@clevit.com
http://www.nakov.com/

64 Fundamentals of Computer Programming with C#

the book (textbook) on "Fundamentals of Computer Programming
with C#"

sample source code
demo programs
exercise problems
presentation slides

video materials

3. The study materials are available for free download according to the
terms and conditions specified in this license at the official website of
the project: www.introprogramming.info.

4. Authors of the study materials are the persons who participated in their
creation.

5. User of the study materials is anybody who uses or accesses these
materials or portions of them.

Rights and Limitations of the Users

1. Users may:

distribute free of charge unaltered copies of the study materials in
electronic or paper format;

use the study materials or portions of them, including the examples,
demos, exercises and presentation slides or their modifications, for all
intents and purposes, including educational and commercial
projects, provided they clearly specify the original source, the
original author(s) of the corresponding text or source code, this
license and the website www.introprogramming.info;

distribute free of charge portions of the study materials or modified
copies of them (including translating them into other languages or
adapting them to other programming languages and platforms), but
only by explicitly mentioning the original source and the authors
of the corresponding text, source code or other material, this license
and the official website of the project: www.introprogramming.info.

2. Users may not:

distribute for profit the study materials or portions of them, with
the exception of the source code;

remove this license from the study materials when modifying them
for own needs.

http://www.introprogramming.info/
http://www.introprogramming.info/
http://www.introprogramming.info/

Preface 65

Rights and Limitations of the Authors

1. Every author has non-exclusive rights on the products of his / her own

work contributing to build the study materials.

2. The authors have the right to use the products of their contribution for

any purpose, including modifying them and distributing them for profit.

3. The rights on all study materials written in joint authorship belong to all

co-authors together.

4. The authors may not distribute for profit study materials they’ve written

in joint authorship without the explicit permission of all other co-
authors.

Resources Coming with the Book

This book "Fundamentals of Computer Programming with C#" comes with a
rich set of resources: official web site, official discussion forum, presentation
slides for each chapter of the book, video lessons for each chapter of the
book and Facebook fan page.

The Book’s Website

The official website of the book "Introduction to programming with C#" is
available at: www.introprogramming.info. At book’'s web site you can
freely download the book and many related resources:

The whole book in several electronic formats (PDF / DOC / DOCX /
HTML / Kindle / etc.)

The source code of the examples (demos) for each chapter

Video lessons covering the entire book content with live demos and
detailed explanations (in English and in Bulgarian)

PowerPoint presentations slides for each chapter, ready for instructors
who want to teach programming (in English)

The exercises and solutions guidelines for each chapter

Solutions to all problems from the book + explanation of the
algorithm and the source code for each solution + tests (in Bulgarian)

Interactive Mind maps for each book chapter
The book in Bulgarian language (the original)

A Java version of the book (with all content and examples adapter to
Java programming language).

Discussion Forum

The discussion forum where you can find solutions to almost all problems
from the book is available at: forums.academy.telerik.com.

http://www.introprogramming.info/
http://forums.academy.telerik.com/

66 Fundamentals of Computer Programming with C#

This forum is created for discussions among the participants in Telerik
Software Academy’s courses who go through this book during the first few
months of their training and mandatorily solve all problems in the exercise
sections. Most people "living" in the forum are Bulgarian but everyone speaks
English so you are invited to ask your questions about the book exercises in
English.

In the forum you’ll find comments and solutions submitted by students and
readers of the book, as well as by the trainers at the Software Academy. Just
search thoroughly enough and you’ll find several solutions to all problems in
the book (with no exceptions). Every year thousands of participants in
Telerik Software Academy solve problems from this book and share their
solutions and the difficulties they’ve encountered, so simply search thoroughly
in the forum or ask, if you can’t get to a solution for a particular problem.

Presentation Slides Coming with the Book

This book is used in many universities, colleges, schools and organizations as
a textbook on computer programming, C#, data structures and algorithms. To
help instructors teach the lessons following this book we have prepared
PowerPoint presentation slides for each chapter of the book. Instructors
are welcome to use the slides free of charge under the license agreement
stated above. The authors' team will be happy to find out that this book and
its study materials and presentation slides are helping people all over the
world to learn programming. This is the primary goal of the project: to teach
computer programming fundamentals, in complete, simple, structured,
understandable way, free of charge. You may find the PowerPoint slides in
English at the book’s official web site: www.introprogramming.info.

Video Materials for Self-Education with the Book

As part of the Telerik Software Academy program (academy.telerik.com) and,
in particular, the free course "Fundamentals of C# Programming", videos of
all lectures on the subject matter in this book have been recorded. The video
materials in English and Bulgarian can be found at C# book’s official web site:

introprogramming.info.
If you speak Bulgarian you might be interested in Telerik Software Academy’s

video channel in YouTube: youtube.com/TelerikAcademy. It provides for
free thousands video lessons on programming and software development.

Interactive Mind Maps

As part of the book we created a set of interactive mind maps to visualize its
content and to improve the level of memorization. We have a few mind maps
for each chapter that visually illustrates its content and a global mind map of
the entire book. The mind maps are available at the book’s web site:
http://www.introprogramming.info/english-intro-csharp-book/mind-maps/.

http://www.introprogramming.info/
http://academy.telerik.com/
http://www.introprogramming.info/
http://www.youtube.com/TelerikAcademy/
http://www.introprogramming.info/english-intro-csharp-book/mind-maps/

Preface 67

Mind Maps on the Book “Fundamentals of Computer Programming with C#"

C# Book Fan Club

For the fans of the book "Introduction to Programming with C#" we have a
Facebook page: www.facebook.com/IntroCSharpBook.

Svetlin Nakov, PhD,

Manager of the "Technical Training" Department,
Telerik Software Academy, Telerik Corporation,
August 24t 2013

http://www.facebook.com/IntroCSharpBook
http://www.introprogramming.info/english-intro-csharp-book/mind-maps/

sl

Bulgarian Association
Of Software Developers

www.devbg.org

Bulgarian Association of Software Developers (BASD) is a
non-profit organization that supports the Bulgarian software
developers through educational and other initiatives.

BASD works to promote exchange of experience between the
developers and improvement of their knowledge and skills in
the area of software development and software technologies.

The Association organizes conferences, seminars and training
courses for software engineers and other professionals
involved in the software industry.

http://www.devbg.org/
http://www.devbg.org

Chapter 1. Introduction
to Programming

In This Chapter

In this chapter we will take a look at the basic programming terminology
and we will write our first C# program. We will familiarize ourselves with
programming - what it means and its connection to computers and
programming languages.

Briefly, we will review the different stages of software development.

We will introduce the C# language, the .NET platform and the different
Microsoft technologies used in software development. We will examine what
tools we need to program in C#. We will use the C# language to write our
first computer program, compile and run it from the command line as well as
from Microsoft Visual Studio integrated development environment. We will
review the MSDN Library - the documentation of the .NET Framework. It will
help us with our exploration of the features of the platform and the language.

What Does It Mean "To Program™?

Nowadays computers have become irreplaceable. We use them to solve
complex problems at the workplace, look for driving directions, have fun and
communicate. They have countless applications in the business world, the
entertainment industry, telecommunications and finance. It's not an over-
statement to say that computers build the neural system of our contemporary
society and it is difficult to imagine its existence without them.

Despite the fact that computers are so wide-spread, few people know how
they really work. In reality, it is not the computers, but the programs (the
software), which run on them, that matter. It is the software that makes
computers valuable to the end-user, allowing for many different types of
services that change our lives.

How Do Computers Process Information?

In order to understand what it means to program, we can roughly compare a
computer and its operating system to a large factory with all its workshops,
warehouses and transportation. This rough comparison makes it easier to
imagine the level of complexity present in a contemporary computer. There
are many processes running on a computer, and they represent the
workshops and production lines in a factory. The hard drive, along with the

70 Fundamentals of Computer Programming with C#

files on it, and the operating memory (RAM) represent the warehouses, and
the different protocols are the transportation systems, which provide the input
and output of information.

The different types of products made in a factory come from different
workshops. They use raw materials from the warehouses and store the
completed goods back in them. The raw materials are transported to the
warehouses by the suppliers and the completed product is transported from
the warehouses to the outlets. To accomplish this, different types of
transportation are used. Raw materials enter the factory, go through different
stages of processing and leave the factory transformed into products. Each
factory converts the raw materials into a product ready for consumption.

The computer is a machine for information processing. Unlike the
factory in our comparison, for the computer, the raw material and the product
are the same thing - information. In most cases, the input information is
taken from any of the warehouses (files or RAM), to where it has been
previously transported. Afterwards, it is processed by one or more processes
and it comes out modified as a new product. Web based applications serve as
a prime example. They use HTTP to transfer raw materials and products, and
information processing usually has to do with extracting content from a
database and preparing it for visualization in the form of HTML.

Managing the Computer

The whole process of manufacturing products in a factory has many levels of
management. The separate machines and assembly lines have operators, the
workshops have managers and the factory as a whole is run by general
executives. Every one of them controls processes on a different level. The
machine operators serve on the lowest level - they control the machines with
buttons and levers. The next level is reserved for the workshop managers.
And on the highest level, the general executives manage the different aspects
of the manufacturing processes in the factory. They do that by issuing orders.

It is the same with computers and software - they have many levels of
management and control. The lowest level is managed by the processor and
its registries (this is accomplished by using machine programs at a low level)
- we can compare it to controlling the machines in the workshops. The
different responsibilities of the operating system (Windows 7 for example),
like the file system, peripheral devices, users and communication protocols,
are controlled at a higher level — we can compare it to the management of the
different workshops and departments in the factory. At the highest level, we
can find the application software. It runs a whole ensemble of processes,
which require a huge amount of processor operations. This is the level of the
general executives, who run the whole factory in order to maximize the
utilization of the resources and to produce quality results.

Chapter 1. Introduction to Programming 71

The Essence of Programming

The essence of programming is to control the work of the computer on all
levels. This is done with the help of "orders" and "commands" from the
programmer, also known as programming instructions. To "program" means
to organize the work of the computer through sequences of
instructions. These commands (instructions) are given in written form and
are implicitly followed by the computer (respectively by the operating system,
the CPU and the peripheral devices).

To “program” means writing sequences of instructions in
& order to organize the work of the computer to perform

something. These sequences of instructions are called
“computer programs” or “scripts”.

A sequence of steps to achieve, complete some work or obtain some result is
called an algorithm. This is how programming is related to algorithms.
Programming involves describing what you want the computer to do by a
sequence of steps, by algorithms.

Programmers are the people who create these instructions, which control
computers. These instructions are called programs. Numerous programs
exist, and they are created using different kinds of programming
languages. Each language is oriented towards controlling the computer on a
different level. There are languages oriented towards the machine level (the
lowest) - Assembler for example. Others are most useful at the system level
(interacting with the operating system), like C. There are also high level
languages used to create application programs. Such languages include C#,
Java, C++, PHP, Visual Basic, Python, Ruby, Perl, JavaScript and others.

In this book we will take a look at the C# programming language - a
modern high level language. When a programmer uses C#, he gives
commands in high level, like from the position of a general executive in a
factory. The instructions given in the form of programs written in C# can
access and control almost all computer resources directly or via the operating
system. Before we learn how to write simple C# programs, let’s take a good
look at the different stages of software development, because programming,
despite being the most important stage, is not the only one.

Stages in Software Development

Writing software can be a very complex and time-consuming task, involving a
whole team of software engineers and other specialists. As a result, many
methods and practices, which make the life of programmers easier, have
emerged. All they have in common is that the development of each software
product goes through several different stages:

- Gathering the requirements for the product and creating a task;

- Planning and preparing the architecture and design;

72 Fundamentals of Computer Programming with C#

- Implementation (includes the writing of program code);
- Product trials (testing);

- Deployment and exploitation;

- Support.

Implementation, testing, deployment and support are mostly accomplished
using programming.

Gathering the Requirements

In the beginning, only the idea for a certain product exists. It includes a list of
requirements, which define actions by the user and the computer. In the
general case, these actions make already existing activities easier -
calculating salaries, calculating ballistic trajectories or searching for the
shortest route on Google maps are some examples. In many cases the
software implements a previously nonexistent functionality such as
automation of a certain activity.

The requirements for the product are usually defined in the form of
documentation, written in English or any other language. There is no
programming done at this stage. The requirements are defined by experts,
who are familiar with the problems in a certain field. They can also write them
up in such a way that they are easy to understand by the programmers. In
the general case, these experts are not programming specialists, and they are
called business analysts.

Planning and Preparing the Architecture and Design

After all the requirements have been gathered comes the planning stage. At
this stage, a technical plan for the implementation of the project is created,
describing the platforms, technologies and the initial architecture (design) of
the program. This step includes a fair amount of creative work, which is done
by software engineers with a lot of experience. They are sometimes called
software architects. According to the requirements, the following parts are
chosen:

- The type of the application - for example console application, desktop
application (GUI, Graphical User Interface application), client-server
application, Web application, Rich Internet Application (RIA), mobile
application, peer-to-peer application or other;

- The architecture of the software - for example single layer, double
layer, triple layer, multi-layer or SOA architecture;

- The programming language most suitable for the implementation -
for example C#, Java, PHP, Python, Ruby, JavaScript or C++, or a
combination of different languages;

- The technologies that will be used: platform (Microsoft .NET, Java EE,
LAMP or another), database server (Oracle, SQL Server, MySQL, NoSQL

Chapter 1. Introduction to Programming 73

database or another), technologies for the user interface (Flash,
JavaServer Faces, Eclipse RCP, ASP.NET, Windows Forms, Silverlight,
WPF or another), technologies for data access (for example Hibernate,
JPA or ADO.NET Entity Framework), reporting technologies (SQL Server
Reporting Services, Jasper Reports or another) and many other
combinations of technologies that will be used for the implementation of
the various parts of the software system.

- The development frameworks that will simplify the development, e.g.
ASP.NET MVC (for .NET), Knockout.js (for JavaScript), Rails (for Ruby),
Django (for Python) and many others.

- The number and skills of the people who will be part of the
development team (big and serious projects are done by large and
experienced teams of developers);

- The development plan - separating the functionality in stages,
resources and deadlines for each stage.

- Others (size of the team, locality of the team, methods of
communication etc.).

Although there are many rules facilitating the correct analysis and planning, a
fair amount of intuition and insight is required at this stage. This step
predetermines the further advancement of the development process. There is
no programming done at this stage, only preparation.

Implementation

The stage, most closely connected with programming, is the implementation
stage. At this phase, the program (application) is implemented (written)
according to the given task, design and architecture. Programmers
participate by writing the program (source) code. The other stages can
either be short or completely skipped when creating a small project, but the
implementation always presents; otherwise the process is not software
development. This book is dedicated mainly to describing the skills used
during implementation - creating a programmer’s mindset and building the
knowledge to use all the resources provided by the C# language and the .NET
platform, in order to create software applications.

Product Testing

Product testing is a very important stage of software development. Its
purpose is to make sure that all the requirements are strictly followed and
covered. This process can be implemented manually, but the preferred way to
do it is by automated tests. These tests are small programs, which
automate the trials as much as possible. There are parts of the functionality
that are very hard to automate, which is why product trials include automated
as well as manual procedures to ensure the quality of the code.

74 Fundamentals of Computer Programming with C#

The testing (trials) process is implemented by quality assurance engineers
(QAs). They work closely with the programmers to find and correct errors
(bugs) in the software. At this stage, it is a priority to find defects in the code
and almost no new code is written.

Many defects and errors are usually found during the testing stage and the
program is sent back to the implantation stage. These two stages are very
closely tied and it is common for a software product to switch between them
many times before it covers all the requirements and is ready for the
deployment and usage stages.

Deployment and Operation

Deployment is the process which puts a given software product into
exploitation. If the product is complex and serves many people, this process
can be the slowest and most expensive one. For smaller programs this is a
relatively quick and painless process. In the most common case, a special
program, called installer, is developed. It ensures the quick and easy
installation of the product. If the product is to be deployed at a large
corporation with tens of thousands of copies, additional supporting software is
developed just for the deployment. After the deployment is successfully
completed, the product is ready for operation. The next step is to train
employees to use it.

An example would be the deployment of a new version of Microsoft Windows
in the state administration. This includes installation and configuration of
the software as well as training employees how to use it.

The deployment is usually done by the team who has worked on the software
or by trained deployment specialists. They can be system administrators,
database administrators (DBA), system engineers, specialized consultants and
others. At this stage, almost no new code is written but the existing code is
tweaked and configured until it covers all the specific requirements for a
successful deployment.

Technical Support

During the exploitation process, it is inevitable that problems will appear.
They may be caused by many factors - errors in the software, incorrect usage
or faulty configuration, but most problems occur when the users change their
requirements. As a result of these problems, the software loses its abilities to
solve the business task it was created for. This requires additional
involvement by the developers and the support experts. The support
process usually continues throughout the whole life-cycle of the software
product, regardless of how good it is.

The support is carried out by the development team and by specially trained
support experts. Depending on the changes made, many different people
may be involved in the process - business analysts, architects, programmers,
QA engineers, administrators and others.

Chapter 1. Introduction to Programming 75

For example, if we take a look at a software program that calculates salaries,
it will need to be updated every time the tax legislation, which concerns the
serviced accounting process, is changed. The support team’s intervention will
be needed if, for example, the hardware of the end user is changed because
the software will have to be installed and configured again.

Documentation

The documentation stage is not a separate stage but accompanies all the
other stages. Documentation is an important part of software development
and aims to pass knowledge between the different participants in the
development and support of a software product. Information is passed along
between different stages as well as within a single stage. The development
documentation is usually created by the developers (architects, program-
mers, QA engineers and others) and represents a combination of documents.

Software Development Is More than Just Coding

As we saw, software development is much more than just coding (writing
code), and it includes a number of other processes such as: requirements
analysis, design, planning, testing and support, which require a wide variety
of specialists called software engineers. Programming is just a small, but
very essential part of software development.

In this book we will focus solely on programming, because it is the only
process, of the above, without which, we cannot develop software.

Our First C# Program

Before we continue with an in depth description of the C# language and the
.NET platform, let's take a look at a simple example, illustrating how a
program written in C# looks like:

class HelloCSharp
{
static void Main(string[] args)
{
System.Console.WritelLine("Hello C#!");

}
}

The only thing this program does is to print the message "Hello, C#!" on
the default output. It is still early to execute it, which is why we will only take
a look at its structure. Later we will describe in full how to compile and run a
given program from the command prompt as well as from a development
environment.

76 Fundamentals of Computer Programming with C#

How Does Our First C# Program Work?
Our first program consists of three logical parts:

- Definition of a class HelloCSharp;

- Definition of a method Main();

- Contents of the method Main().

Defining a Class

On the first line of our program we define a class called HelloCSharp. The
simplest definition of a class consists of the keyword class, followed by its
name. In our case the name of the class is HelloCSharp. The content of the
class is located in a block of program lines, surrounded by curly brackets: {}.

Defining the Main() Method

On the third line we define a method with the name Main(), which is the
starting point for our program. Every program written in C# starts from a
Main() method with the following title (signature):

static void Main(string[] args)

The method must be declared as shown above, it must be static and void, it
must have a name Main and as a list of parameters it must have only one
parameter of type array of string. In our example the parameter is called
args but that is not mandatory. This parameter is not used in most cases so it
can be omitted (it is optional). In that case the entry point of the program can
be simplified and will look like this:

static void Main()

If any of the aforementioned requirements is not met, the program will
compile but it will not start because the starting point is not defined correctly.

Contents of the Main() Method

The content of every method is found after its signature, surrounded by
opening and closing curly brackets. On the next line of our sample program
we use the system object System.Console and its method WritelLine() to
print a message on the default output (the console), in this case "Hello, C#!".

In the Main() method we can write a random sequence of expressions and
they will be executed in the order we assigned to them.

More information about expressions can be found in chapter "Operators and
Expressions", working with the console is described in chapter "Console Input
and Output", classes and methods can be found in chapter "Defining Classes".

Chapter 1. Introduction to Programming 77

C# Distinguishes between Uppercase and Lowercase!

The C# language distinguishes between uppercase and lowercase letters so
we should use the correct casing when we write C# code. In the example
above we used some keywords like class, static, void and the names of
some of the system classes and objects, such as System.Console.

Be careful when writing! The same thing, written in upper-
case, lower-case or a mix of both, means different things in
C#. Writing Class is different from class and System.Console
is different from SYSTEM. CONSOLE.

This rule applies to all elements of your program: keywords, names of
variables, class names etc.

The Program Code Must Be Correctly Formatted

Formatting is adding characters such as spaces, tabs and new lines, which are
insignificant to the compiler and they give the code a logical structure and
make it easier to read. Let's for example take a look at our first program
(the short version of the Main() method):

class HelloCSharp
{

static void Main()

{
System.Console.WriteLine("Hello C#!");

}
}

The program contains seven lines of code and some of them are indented
more than others. All of that can be written without tabs as well, like so:

class HelloCSharp
{

static void Main()

{
System.Console.WriteLine("Hello C#!");

}
}

Or on the same line:

class HelloCSharp{static void Main(){System.Console.WriteLine(
"Hello C#!");}}

Or even like this:

78 Fundamentals of Computer Programming with C#

class
HelloCSharp
{
static void Main()
{ System .
Console.WriteLine("Hello C#!") 5} }

The examples above will compile and run exactly like the formatted code but
they are more difficult to read and understand, and therefore difficult to
modify and maintain.

severely reduces program readability and leads to difficulties

2 Never let your programs contain unformatted code! That
for later modifications of the code.

Main Formatting Rules

If we want our code to be correctly formatted, we must follow several
important rules regarding indentation:

- Methods are indented inside the definition of the class (move to the
right by one or more [Tab] characters);

- Method contents are indented inside the definition of the method;

- The opening curly bracket { must be on its own line and placed exactly
under the method or class it refers to;

- The closing curly bracket } must be on its own line, placed exactly
vertically under the respective opening bracket (with the same
indentation);

- All class names must start with a capital letter;
- Variable names must begin with a lower-case letter;
- Method names must start with a capital letter;

Code indentation follows a very simple rule: when some piece of code is
logically inside another piece of code, it is indented (moved) on the right with
a single [Tab]. For example if a method is defined inside a class, it is indented
(moved to the right). In the same way if a method body is inside a method, it
is indented. To simplify this, we can assume that when we have the character
“{", all the code after it until its closing “}" should be indented on the right.

File Names Correspond to Class Names

Every C# program consists of one or several class definitions. It is
accepted that each class is defined in a separate file with a name
corresponding to the class name and a .cs extension. When these
requirements are not met, the program will still work but navigating the code

Chapter 1. Introduction to Programming 79

will be difficult. In our example, the class is hamed HelloCSharp, and as a
result we must save its source code in a file called HelloCSharp.cs.

The C# Language and the .NET Platform

The first version of C# was developed by Microsoft between 1999 and 2002
and was officially released to the public in 2002 as a part of the .NET
platform. The .NET platform aims to make software development for
Windows easier by providing a new quality approach to programming, based
on the concepts of the "virtual machine" and "managed code". At that time
the Java language and platform reaped an enormous success in all fields of
software development; C# and .NET were Microsoft’s natural response to the
Java technology.

The C# Language

C# is a modern, general-purpose, object-oriented, high-level prog-
ramming language. Its syntax is similar to that of C and C++ but many
features of those languages are not supported in C# in order to simplify the
language, which makes programming easier.

The C# programs consist of one or several files with a .cs extension, which
contain definitions of classes and other types. These files are compiled by the
C# compiler (csc) to executable code and as a result assemblies are created,
which are files with the same name but with a different extension (.exe or
.d1ll). For example, if we compile HelloCSharp.cs, we will get a file with the
name HelloCSharp.exe (some additional files will be created as well, but we
will not discuss them at the moment).

We can run the compiled code like any other program on our computer (by
double clicking it). If we try to execute the compiled C# code (for example
HelloCSharp.exe) on a computer that does not have the .NET Framework,
we will receive an error message.

Keywords

C# uses the following keywords to build its programming constructs (the list
is taken from MSDN in March 2013 and may not be complete):

abstract | as base bool break byte
case catch char checked class const
continue | decimal default delegate do double
else enum event explicit extern false
finally fixed float for foreach goto

if implicit | in int interface | internal
is lock long namespace | new null

80 Fundamentals of Computer Programming with C#

object operator | out override params private
protected | public readonly | ref return sbyte
sealed short sizeof stackalloc | static string
struct switch this throw true try
typeof uint ulong unchecked | unsafe ushort
using virtual void volatile while

Since the creation of the first version of the C# language, not all keywords
are in use. Some of them were added in later versions. The main program
elements in C# (which are defined and used with the help of keywords) are
classes, methods, operators, expressions, conditional statements,
loops, data types, exceptions and few others. In the next few chapters of
this book, we will review in details all these programming constructs along
with the use of the most of the keywords from the table above.

Automatic Memory Management

One of the biggest advantages of the .NET Framework is the built-in
automatic memory management. It protects the programmers from the
complex task of manually allocating memory for objects and then waiting for
a suitable moment to release it. This significantly increases the developer
productivity and the quality of the programs written in C#.

In the .NET Framework, there is a special component of the CLR that looks
after memory management. It is called a "garbage collector" (automated
memory cleaning system). The garbage collector has the following main
tasks: to check when the allocated memory for variables is no longer in use,
to release it and make it available for allocation of new objects.

It is important to note that it is not exactly clear at what
moment the memory gets cleaned of unused objects (local
variables for example). According to the C# Ilanguage
& specifications, it happens at some moment after a given

variable gets out of scope but it is not specified, whether this
happens instantly, after some time or when the available
memory becomes insufficient for the normal program
operation.

Independence from the Environment and the
Programming Language

One of the advantages of .NET is that programmers using different .NET
languages can easily exchange their code. For example a C# programmer
can use the code written by another programmer in VB.NET, Managed C++
or F#. This is possible because the programs written in different .NET

Chapter 1. Introduction to Programming 81

languages share a common system of data types, execution infrastructure
and a unified format of the compiled code (assemblies).

A big advantage of the .NET technology is the ability to run code, which is
written and compiled only once, on different operating systems and
hardware devices. We can compile a C# program in a Windows environment
and then execute it under Windows, Windows Mobile, Windows RT or Linux.
Officially Microsoft only supports the .NET Framework on Windows, Windows
Mobile and Windows Phone, but there are third party vendors that offer .NET
implementation on other operating systems.

Mono (.NET for Linux)

One example of .NET implementation for non-Windows environment is the
open-source project Mono (www.mono-project.com). It implements the
.NET Framework and most of its accompanying libraries for Linux, FreeBSD,
iPhone and Android. Mono is unofficial .NET implementation and some
features may work not exactly as expected. It does implement well the core
.NET standards (such as C# compiler and CLR) but does not support fully the
latest .NET technologies and framework like WPF and ASP.NET MVC.

Microsoft Intermediate Language (MSIL)

The idea for independence from the environment has been set in the earliest
stages of creation of the .NET platform and is implemented with the help of a
little trick. The output code is not compiled to instructions for a specific
microprocessor and does not use the features of a specific operating system;
it is compiled to the so called Microsoft Intermediate Language (MSIL).
This MSIL is not directly executed by the microprocessor but from a virtual
environment called Common Language Runtime (CLR).

Common Language Runtime (CLR) - the Heart of .NET

In the very center of the .NET platform beats its heart - the Common
Language Runtime (CLR) - the environment that controls the execution of
the managed code (MSIL code). It ensures the execution of .NET programs
on different hardware platforms and operating systems.

CLR is an abstract computing machine (virtual machine). Similarly to
physical computers, it supports a set of instructions, registries, memory
access and input-output operations. CLR ensures a controlled execution of
the .NET programs using the full capabilities of the processor and the
operating system. CLR also carries out the managed access to the memory
and the other resources of the computer, while adhering to the access rules
set when the program is executed.

http://www.mono-project.com/

82 Fundamentals of Computer Programming with C#

The .NET Platform

The .NET platform contains the C# language, CLR and many auxiliary
instruments and libraries ready for use. There are a few versions of .NET
according to the targeted user group:

- .NET Framework is the most common version of the .NET environment
because of its general purpose. It is used in the development of console
applications, Windows applications with a graphical user interface, web
applications and many more.

- .NET Compact Framework (CF) is a "light" version of the standard
.NET Framework and is used in the development of applications for
mobile phones and other PDA devices using Windows Mobile Edition.

- Silverlight is also a "light" version of the .NET Framework, intended to
be executed on web browsers in order to implement multimedia and
Rich Internet Applications.

- .NET for Windows Store apps is a subset of .NET Framework
designed for development and execution of .NET applications in
Windows 8 and Windows RT environment (the so called Windows
Store Apps).

.NET Framework

The standard version of the .NET platform is intended for development and
use of console applications, desktop applications, Web applications, Web
services, Rich Internet Applications, mobile applications for tablets and smart
phones and many more. Almost all .NET developers use the standard version.

.NET Technologies

Although the .NET platform is big and comprehensive, it does not provide
all the tools required to solve every problem in software development. There
are many independent software developers, who expand and add to the
standard functionality offered by the .NET Framework. For example,
companies like the Bulgarian software corporation Telerik develop subsidiary
sets of components. These components are used to create graphical user
interfaces, Web content management systems, to prepare reports and they
make application development easier.

The .NET Framework extensions are software components, which can be
reused when developing .NET programs. Reusing code significantly facilitates
and simplifies software development, because it provides solutions for
common problems, offers implementations of complex algorithms and
technology standards. The contemporary programmer uses libraries and
components every day, and saves a lot of effort by doing so.

Let's look at the following example - software that visualizes data in the
form of charts and diagrams. We can use a library, written in .NET, which
draws the charts. All that we need to do is input the correct data and the

Chapter 1. Introduction to Programming 83

library will draw the charts for us. It is very convenient and efficient. Also it
leads to reduction in the production costs because the programmers will not
need to spend time working on additional functionality (in our case drawing
the charts, which involves complex mathematical calculations and controlling
the graphics card). The application itself will be of higher quality because the
extension it uses is developed and supported by specialists with more
experience in that specific field.

Software technologies are sets of classes, modules, libraries, programming
models, tools, patterns and best practices addressing some specific problem
in software development. There are general software technologies, such as
Web technologies, mobile technologies, technologies for computer graphics
and technologies related to some platform such as .NET or Java.

There are many .NET technologies serving for different areas of .NET
development. Typical examples are the Web technologies (like ASP.NET and
ASP.NET MVC), allowing fast and easy creation of dynamic Web applications
and .NET mobile technologies (like WinJS), which make possible the creation
of rich user interface multimedia applications working on the Internet.

.NET Framework by default includes as part of itself many technologies and
class libraries with standard functionality, which developers can use. For
example, there are ready-to-use classes in the system library working with
mathematical functions, calculating logarithms and trigonometric functions
(System.Math class). Another example is the library dealing with networks
(System.Net), it has a built-in functionality to send e-mails (using the
System.Net.Mail.MailMessage class) and to download files from the
Internet (using System.Net.WebClient).

A .NET technology is the collection of .NET classes, libraries, tools,
standards and other programming means and established development
models, which determine the technological framework for creating a certain
type of application. A .NET library is a collection of .NET classes, which offer
certain ready-to-use functionality. For example, ADO.NET is a technology
offering standardized approach to accessing relational databases (like
Microsoft SQL Server and MySQL). The classes in the package (namespace)
System.Data.SqlClient are an example of .NET library, which provide
functionality to connect an SQL Server through the ADO.NET technology.

Some of the technologies developed by software developers outside of
Microsoft become wide-spread and as a result establish themselves as
technology standards. Some of them are noticed by Microsoft and later are
added to the next iteration of the .NET Framework. That way, the .NET
platform is constantly evolving and expanding with new libraries and
technologies. For instance, the object-relational mapping technologies
initially were developed as independent projects and products (like the open
code project NHibernate and Telerik’'s OpenAccess ORM). After they gained
enormous popularity, their inclusion in the .NET Framework became a
necessity. And this is how the LINQ-to-SQL and ADO.NET Entity Framework
technologies were born, respectively in .NET 3.5 and .NET 4.0.

84 Fundamentals of Computer Programming with C#

Application Programming Interface (API)

Each .NET library or technology is utilized by creating objects and calling their
methods. The set of public classes and methods in the programming libraries
is called Application Programming Interface or just API. As an example
we can look at the .NET API itself; it is a set of .NET class libraries, expanding
the capabilities of the language and adding high-level functionality. All .NET
technologies offer a public API. The technologies are often referred to simply
as API, which adds certain functionality. For example: API for working with
files, API for working with charts, API for working with printers, API for
reading and creating Word and Excel documents, API for creating PDF
documents, Web development API, etc.

.NET Documentation

Very often it is necessary to document an API, because it contains many
namespaces and classes. Classes contain methods and parameters. Their
purpose is not always obvious and needs to be explained. There are also
inner dependencies between the separate classes, which need to be explained
in order to be used correctly. These explanations and technical instructions on
how to use a given technology, library or API, are called documentation. The
documentation consists of a collection of documents with technical content.

The .NET Framework also has a documentation officially developed and
supported by Microsoft. It is publicly available on the Internet and is also
distributed with the .NET platform as a collection of documents and tools for
browsing and searching.

v Visual Studio Search Visual Studio with Bing Q sGNIN

HOME SAMPLES LANGUAGES EXTENSIONS DOCUMENTATION COMMUNITY

get started for free (3)

visual studio team foundation server/alm .net framework

Developer Tools and

Langusges v .NET Framework Class Library

.NET Framework 4.5
.NET Framework 4.5 | Other Versions « 105 out of 128 rated this helpful - Rate this topic
4 NET Framewark Class

e The .NET Framework dass library is a library of classes, interfaces, and value types that provide access to system
System functionality. It is the foundation an which .NET Framework applications, components, and controls are built.
System.Activities The namespaces and namespace categories in the class library are listed in the following table and documented
Namespaces in detail in this reference, The namespaces and categories are listed by usage, with the most frequently used

System.Addln Namespaces| ~Namespaces appearing first.
System.CodeDom
Namespaces

FENS PR
System.Collections N“WEDDUCE‘)
Namespaces

Namespace Description
System.ComponentModel
I es es :
\amespaces System The System namespace contains fundamental classes and base
System.Configuration classes that define commonly-used value and reference data types,
Namespaces events and event handlers, interfaces, attributes, and processing
System.Data Namespaces exceptions.
Svstem. Denlovie L ;i
System.Deployment System.Activities The System.Activities namespaces contain all the dasses necessary

\amespaces to create and waork with activities in Window Workflow Foundation.

System.Device.Location

Chapter 1. Introduction to Programming 85

The MSDN Library is Microsoft’s official documentation for all their products
for developers and software technologies. The .NET Framework’s technical
documentation is part of the MSDN Library and can be found here:
http://msdn.microsoft.com/en-us/library/vstudio/gg145045.aspx. The above
screenshot shows how it might look like (for .NET version 4.5).

What We Need to Program in C#?

After we made ourselves familiar with the .NET platform, .NET libraries and
.NET technologies, we can move on to writing, compiling and executing C#
programs.

In order to program in C#, we need two basic things - an installed .NET
Framework and a text editor. We need the text editor to write and edit the
C# code and the .NET Framework to compile and execute it.

.NET Framework

By default, the .NET Framework is installed along with Windows, but in old
Windows versions it could be missing. To install the .NET Framework, we must
download it from Microsoft’'s website (http://download.microsoft.com). It is
best if we download and install the latest version.

Do not forget that we need to install the .NET Framework
before we begin! Otherwise, we will not be able to compile

& and execute the program.

If we run Windows 8 or Windows 7, the .NET Framework will
be already installed as part of Windows.

Text Editor

The text editor is used to write the source code of the program and to save
it in a file. After that, the code is compiled and executed. There are many text
editing programs. We can use Windows’ built-in Notepad (it is very basic and
inconvenient) or a better free text editor like Notepad++ (notepad-
plus.sourceforge.net) or PSPad (www.pspad.com).

Compilation and Execution of C# Programs

The time has come to compile and execute the simple example program
written in C# we already discussed. To accomplish that, we need to do the
following:

- Create a file named HelloCSharp.cs;
- Write the sample program in the file;

- Compile HelloCSharp.cs to an executable file HelloCSharp.exe using
the console-based C# compiler (csc.exe);

- Execute the HelloCSharp.exe file.

http://msdn.microsoft.com/en-us/library/vstudio/gg145045.aspx
http://download.microsoft.com/
http://notepad-plus.sourceforge.net/
http://notepad-plus.sourceforge.net/
http://www.pspad.com/

86 Fundamentals of Computer Programming with C#

Now, let’s do it on the computer!

The instructions above vary depending on the operating system. Since
programming on Linux is not the focus of this book, we will take a thorough
look at what we need to write and execute the sample program on Windows.
For those of you, who want to program in C# in a Linux environment, we
already explained the Mono project, and you can download it and experiment.

Here is the code of our first C# program:

HelloCSharp.cs

class HelloCSharp
{

static void Main()

{

System.Console.WriteLine("Hello C#!");

}

}

Creating C# Programs in the Windows Console

First we start the Windows command console, also known as Command
Prompt. In Windows 7 this is done from the Windows Explorer start menu:
Start -> Programs -> Accessories -> Command Prompt.

It is advised that we run the console as administrator (right click on the
Command Prompt icon and choose "Run as administrator”). Otherwise
some operations we want to use may be restricted.

Z Command Prompt i _ _
..-‘_

Open
% Snipping Tool ¥ Run as administrator

.f} Paint Pin to Taskbar \

g Pin to Start Menu

E .] Remuowve from this list

% Magnifier Properties

I._J.‘ Solitaire Help and Suppert

Remote Desktop Conne

» All Programs

Chapter 1. Introduction to Programming 87

In Windows 8 the "Run as administrator” command is directly available when
you right click the command prompt icon from the Win8 Start Screen:

Search

A p pS Results for “cmd” [

cmd

fen—] Command Prompt

Apps
o] Open V52012 x64

Native Tools...

a Settings
o] V52012 x64 Cross
— Tools Command...

E Files
o] V52012 ARM Cross
—' Tools Command...

A p pS Results for “ecmd”

e Command Prnmpﬂ'

®H & @ @ ®

Pin to Start Pin to taskbar Open new Fun as Open file
window administrator location

After opening the console, let's create a directory, in which we will
experiment. We use the md command to create a directory and ¢d command
to navigate to it (enter inside it):

Administrator: Command Prompt

C:somd IntroCSharp
C:sod IntroCSharp
G IntroCSharpr

88 Fundamentals of Computer Programming with C#

The directory will be named IntroCSharp and will be located in C:\. We
change the current directory to C:\IntroCSharp and create a new file
HelloCSharp.cs, by using the built-in Windows text editor — Notepad.

To create the text file "HelloCSharp.cs”, we execute the following command
on the console:

notepad HelloCSharp.cs

This will start Notepad with the following dialog window, confirming the
creation of a new file:

B® Administrator: Command Prompt — -
~
sIntroCSharpinotepad HelloCSharp.cs
sIntroCSharp> S] o
Untitled - Notepad -

File Edit Format WView Help

Motepad “

Cannot find the HelloCSharp.cs file,

Do you want to create a new file?

Yes Mo Cancel

Notepad will warn us that no such file exists and will ask us if we want to
create it. We click [Yes]. The next step is to rewrite or simply Copy / Paste the
program’s source code.

El HelloCSharp.cs - Notepad ==
File Edit Format Yiew Help

class HelloCSharp

{
static void Main()
{
System.Console.Writeline("Hello C#!");
}

Chapter 1. Introduction to Programming 89

We save it by pressing [Ctrl+S] and close the Notepad editor with [Alt+F4].
Now we have the initial code of our sample C# program, written in the file
C:\IntroCSharp\HelloCSharp.cs.

Compiling C# Programs in Windows

The only thing left to do is to compile and execute it. Compiling is done by
the csc.exe compiler.

. Administrator: Command Prompt - O -

sIntroCSharpicsc HelloCSharp.cs
‘csc’ is not recognized asz an internal or external command.
pperable program or bhatch file.

snIntroCSharp

We got our first error — Windows cannot find an executable file or command
with the name "csc". This is a very common problem and it is normal to
appear if it is our first time using C#. Several reasons might have caused it:

- The .NET Framework is not installed;

- The .NET Framework is installed correctly, but its directory
Microsoft.NET\Framework\v4.0.xxx is not added to the system path
for executable files and Windows cannot find csc.exe.

The first problem is easily solved by installing the .NET Framework (in our
case — version 4.5). The other problem can be solved by changing the system
path (we will do this later) or by using the full path to csc.exe, as it is shown
on the figure below. In our case, the full file path to the C# compiler is
C:\Windows\Microsoft.NET\Framework\v4.0.30319\csc.exe (note that this
path could vary depending on the .NET framework version installed). Strange
or not, .NET 4.5 coming with Visual Studio 2012 and C# 5 installs in a
directory named “v4.0.30319” - this is not a mistake.

Compiling and Running C# Programs in Windows

Now let’s invoke the csc compiler through its full path and pass to it the file
we want to compile as a parameter (HelloCSharp.exe):

o Administrator: Command Prompt

ssnIntroC8harp>C:sWindowss\Microsoft .NET~\Framewvorksv4.0.30319~csc HelloCSharp.cs
icrosoft (R> Uisual CH Compiler version 4.0.30319.17929
for Microsoft (R> .MET Framework 4.5

opyright (C)» Microsoft Corporation. All rights reserved.

snIntroC8harpr_

90 Fundamentals of Computer Programming with C#

After the execution csc is completed without any errors, and we get the
following file as a result: C:\IntroCSharp\HelloCSharp.exe. To run it, we
simply need to write its name. The result of the execution of our program is
the message "Hello, C#!" printed on the console. It is not great but it is a

good start:

. Administrator: Command Prompt

sIntroCSiharp*HelloCSharp.exe
ello CH?

snIntroCiharpl

o

Changing the System Paths in Windows

If we know to use the command line C# compiler (csc.exe) without entering
the full path to it, we could add its folder to the Windows system path.

1. We open Control Panel and select "System". As a result this well-
known window appears (the screenshot is taken from Windows 7):

Control Panel Home

Performance Information and Display

Tools

[E= N 5

IKHJI_J" |_'ﬂ <« Al Control Panel Iterns . Systern - |\'vf| | Search Control Panet o

.ﬂ -

View basic information about your computer

% Device Manager Windows edition

fy Remote settings Windows 7 Enterprise

f System protection Copyright © 2009 Microsoft Corporation. All rights

B Advanced system settings reserved. |
System

Rating: __-I_I_- . Windows Experience Index

Processor: Intel(R} Core(TM)2 Quad CPU Q8200 @
233GHz 233 GHz

See also Installed memory (RAM): 4.00 GB (3.90 GB usable)
Action Center System type: 64-bit Operating Systemn
Windows Update Pen and Touch: No Pen or Touch Input is available for this

Computer name, domain, and workgroup settings

In Windows 8 it might look a bit different, but is almost the same:

Chapter 1. Introduction to Programming 91

+ 1 (8« All Control Panel ltems »+ System v & Search Control Panel

Control Panel Home
View basic information about your computer

B Device Manager Windows edition

@' Remote settings Windows 8 Enterprise

By System protection © 2012 Microsoft == WI n d OWS) 8

B Advanced system settings Cerporation. All
rights reserved,

System

Seealso Rating: mWindows Experience Index

Action Center
Processor: Intel(R) Core(TM)2 Duc CPU E4300 @ 2.20GHz 2.20 GHz

Installed memory (RAM): 4,00 GB
System type: 64-bit Operating System, x64-based processor

Windows Update

Performance Informatien and
Tools
Pen and Touch: Ma Pen er Touch Input is available for this Display

2. We select "Advanced system settings". The dialog window "System
Properties" appears:

| Computer Name I Hardware | Advanced |S}ﬂstem Protection I Hﬂmnt&|

You must be logged on as an Administrator to make most of these changes.

Performance

Visual effects, processaor scheduling, memony usage, and virtual memary

Ilzer Profiles
Desktop settings related to your sign4n

Startup and Recovery
System startup, system failure, and debugging information

 Environment Variables...

92 Fundamentals of Computer Programming with C#

3. We click the button "Environment Variables" and a window with all
the environment variables shows up:

Lser variables for nakov

Variable Value

TEMP 24 ISERPROFILE%%:\AppDataLocal Temp
P %ol JSERPROFILES:\AppData\Local \Temp

System variables

Variable

Cr\windows\system32;C: Wiindows; C:h,..
PATHEXT .COM; [EXE; . BAT;.CMD;.VBS; .VBE;. JS;. ...
PROCESSOR,_A... AMDS4
PROCESSOR_ID... Intel64Family & Model 15 Stepping 13, ... ¥

Mew. .. | | Delete |

| oo

4. We choose "Path" from the list of System variables, as shown on the
figure, and press the "Edit" button. A small window appears, in which we
enter the path to the directory where the .NET Framework is installed:

Variable name: | Path |

Variable value: | s\Microsoft. MET \Frameworka4w4.0,30319 |

ook | cancel |

Of course, first we need to find where our .NET Framework is installed.
By default it is located somewhere inside the Windows system directory
C:\Windows\Microsoft.NET, for example:

Chapter 1. Introduction to Programming 93

C:\Windows\Microsoft.NET\Framework64\v4.0.30319

Adding the additional path to the already existing ones in the Path
variable of the environment is done by adjoining the path name to the
others and using a semicolon (;) as a spacer.

system paths, some of Windows’ functions or part of the

2 We must be careful because if we delete any of the existing
installed software might fail to operate properly!

5. When we are done with setting the path, we can try running csc.exe,
without entering its full path. To do so, we open a new cmd.exe
(Command Prompt) window (it is important to restart the Command
Prompt) and type in the "csc" command. We should see the C#
compiler version and a message that no input file has been specified:

. Administrator: Command Prompt - B “

sIntroCSharpicsc

icrosoft C(R> Uisual CH Compiler version 4.0.30317_17229
or Microzoft (R>» _NET Framework 4.5

opuyright <C> Microsoft Corporation. All rights reserved.

parning CE2008: Mo source files specified
error CE51562: Outputs without szource must have the ~out optio

sIntroCSharpl

Visual Studio IDE

So far we have examined how to compile and run C# programs using the
Windows console (Command Prompt). Of course, there is an easier way to
do it — by using an integrated development environment, which will execute
all the commands we have used so far. Let’s take a look at how to work with
development environments (IDE) and how they will make our job easier.

Integrated Development Environments

In the previous examples, we examined how to compile and run a program
consisting of a single file. Usually programs are made of many files,
sometimes even tens of thousands. Writing in a text editor, compiling and
executing a single file program from the command prompt are simple, but to
do all this for a big project can prove to be a very complex and time-
consuming endeavor. There is a single tool that reduces the complexity,
makes writing, compiling and executing software applications easier - the so
called Integrated Development Environment (IDE). Development
environments usually offer many additions to the main development functions

94 Fundamentals of Computer Programming with C#

such as debugging, unit testing, checking for common errors, access to a
repository and others.

What Is Visual Studio?

Visual Studio is a powerful integrated environment (IDE) for developing
software applications for Windows and the .NET Framework platform. Visual
Studio (VS) supports different programming languages (for example C#,
VB.NET and C++) and different software development technologies
(Win32, COM, ASP.NET, ADO.NET Entity Framework, Windows Forms, WPF,
Silverlight, Windows Store apps and many more Windows and .NET
technologies). It offers a powerful integrated environment for writing code,
compiling, executing, debugging and testing applications, designing user
interface (forms, dialogs, web pages, visual controls and others), data and
class modeling, running tests and hundreds of other functions.

IDE means “integrated development environment” - a tool where you write
code, compile it, run it, test it, debug it, etc. and everything is integrated
into a single place. Visual Studio is typical example of development IDE.

.NET Framework 4.5 comes with Visual Studio 2012 (VS 2012). This is the
latest version of Visual Studio as of March 2013. It is designed for C# 5, .NET
4.5 and Windows 8 development.

VS 2012 is a commercial product but has a free version called Visual Studio
Express 2012, which can be downloaded for free from the Microsoft website
at http://microsoft.com/visualstudio/downloads.

Visual Studio 2012 Express has several editions (for Desktop, for Web, for
Windows 8 and others). If you want to write C# code following the content of
this book, you may use Visual Studio 2012 Express for Desktop or check
whether you have a free license of the full Visual Studio from your University
or organization. Many academic institutions (like Sofia University and Telerik
Software Academy) provide free Microsoft DreamSpark accounts to their
students to get licensed Windows, Visual Studio, SQL Server and other
development tools. If you are student, ask your university administration
about the DreamSpark program. Most universities worldwide are members of
this program.

In this book we will take a look at only the most important functions of VS
Express 2012 - the ones related to coding. These are the functions for
creating, editing, compiling, executing and debugging programs.

Note that older Visual Studio versions such as VS 2010 and VS 2008 can
also be used for the examples in this book but their user interface might look
slightly different. Our examples are based on VS 2012 on Windows 8.

Before we continue with an example, let's take a more detailed look of the
structure of Visual Studio 2012’s visual interface. Windows are the main
part of it. Each of them has a different function tied to the development of
applications. Let's see how Visual Studio 2012 looks after the default
installation and configuration:

http://microsoft.com/visualstudio/downloads

Chapter 1. Introduction to Programming 95

PRE EDIT WEW DEBUG TEAM TOOLS TEST WWINDOW MELP
B8 & o P Attach.. - A

Pl Start Page @ X

GET STARTED

Welcome

. ¢
st What'e New i1 Windawe Deckton Bevelonment
-” What's New in Windows Desktop Development
» |

Visual Studio has several windows that we will explore (see the figures
above and below):

- Start Page - from the start page we can easily open any of our latest
projects or start a new one, to create our first C# program or to get
help how to use C#.

- Code Editor - keeps the program’s source code and allows opening and
editing multiple files.

- Error List - it shows the errors in the program we develop (if any). We
learn how to use this window later when we compile C# programs in
Visual Studio.

- Solution Explorer - when no project is loaded, this window is empty,
but it will become a part of our lives as C# programmers. It will show
the structure of our project - all the files it contains, regardless if they
are C# code, images or some other type of code or resources.

- Properties - holds a list of the current object’s properties. Properties
are used mainly in the component-based programming, e.g. when we
develop WPF, Windows Store or ASP.NET Web Forms application.

96 Fundamentals of Computer Programming with C#

D TestVS2012 - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = 0O X

EILE EDIT WVIEW PROJECT BUILD DEBUG TEAM 50L TOOLS TEST AMNALYZE
WINDOW HELP

e-0 B-akm b Stat - Debug - A _ N
§' Program.cs® ® X ~ Solution Bxplorer i v B0
E_ % Program - @ Main(string]] args) - &N e-2nd
. ; Y
using System; 1_ Search Solution Explorer (Ctrl+; P =
—class Program fal Solution 'TestV52012' {1 project)
1 4 [TestVs2012
= static void Main(string[] args) b M Properties
{ [=B References
Console.WriteLine("Hello C#")_ ¢ App.config
3 P <* Program.cs
¥ w Sclution Explorer | Team Explorer
100% =~ 4 b

F'ru:uperties PR | I 4

.
T

Search Error List 2~

Description | File Line Ceolumn Project «

sexpected Program.cs 7 TestV52012

There are many other windows with auxiliary functionality in Visual Studio but
we will not review them at this time.

Creating a New C# Project

Before doing anything else in Visual Studio, we must create a new project
or load an existing one. The project groups many files, designed to implement
a software application or system, in a logical manner. It is recommended that
we create a separate project for each new program.

We can create a project in Visual Studio by following these steps:
- File -> New Project ...

- The “New Project” dialog appears and lists all the different types of
projects we can create. We can choose a project type (e.g. Console
Application or WPF Application), programming language (e.g. C# or
VB.NET) and .NET Framework version (e.g. .NET Framework 4.5) and
give a name to our project (in our case “IntroToCSharp”):

Chapter 1. Introduction to Programming 97

New Project ?

P Recent MET Framework 4.5 * Sortby: Default -| &5 Search Installed Te P ~
4 |nstalled c# - o)
| | Windows Forms Application Visual C# Type: Visual C#
-
4 Templates A project for creating a command-line
. " C# o
4 Visual C# ™"] weF Application Visual C# applicatioy
Windows Store
Windows Console Application Visual C#
Web
- C#
b Office 2;’5! Class Library Visual C#
Cloud =
. C#
Reporting - gsi! Portable Class Library Visual C#
Name: IntroToCSharp
Location: Ch\Users\nakovi\DocumentsiVisual Studio 2012\Projects -
Solution: Create new solution -

IntroToCSharp Create directory for solution
[] Add to source control

Solution name:

| 0K || Cancel |

- We choose Console Application. Console applications are programs,
which use the console as a default input and output. Data is entered
with the keyboard and when a result needs to be printed it appears on
the console (as text on the screen in the program window). Aside from
console applications, we can create applications with a graphical user
interface (e.g. Windows Forms or WPF), Web applications, web services,
mobile applications, Windows Store apps, database projects and others.

- In the field "Name" we enter the name of the project. In our case we
choose the name IntroToCSharp.

- We press the [OK] button.

The newly created project is now shown in the Solution Explorer. Also, our
first file, containing the program code, is automatically added. It is named
Program.cs. It is very important to give meaningful names to our files,
classes, methods and other elements of the program, so that we can easily
find them and navigate the code. A meaningful name means a name that
answers the question “what is the intent of this file / class / method /
variable?” and helps developers to understand how the code works. Don’t use
Problem3 for a name, even if you are solving the problem 3 from the
exercises. Name your project / class by its purpose. If your project is well
named, after few months or a year you will be able to explain what it is
intended to do without opening it and looking inside. Problem3 says nothing
about what this project actually does.

In order to rename the Program.cs file, we right click on it in the Solution
Explorer and select "Rename". We can name the main file of our C# program
HelloCSharp.cs. Renaming a file can also be done with the [F2] key when
the file is selected in the Solution Explorer:

98 Fundamentals of Computer Programming with C#

qu IntroToCSharp - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = 0B X
FLE EDIT VIEW P € Open 5 TEST AMALYZE
WINDOW HELP Open With...
- i - @&l b < ViewCode F7 n
g_| Program.cs + X 3 View Class Diagram »n Explorer
g 5, IntroToCSharp.Pro - Scope to This & o-20d "
Susi 1 Mew Sclutien Explorer Vi
DUS:.LHE Syst = Senen BparEr e Solution Explorer (Ctrl+: S =
using Syst Exclude From Project o, , .
using Syst clutien 'IntroTeCSharp' (1 proj
using Systi 3 Cut Chrl+X # IntroToCSharp
using Syst: Ol Copy Ctrl+ C & Properties
i X Delete Del 5-B References
. Ann.confi
Hnamespace | g g ¥ App.config
{ =2 Program.cs
=] class | & Properties Alt+Enter
|

A dialog window appears asking us if we want to rename class name as well

as the file name. We select "Yes".

| >

TEST AMNALYZE

Col 1

Program.cs File Properties -

qu IntroToCSharp - Microsoft Visual Studio Quick Launch (Ctrl+0) P
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM 5QL TOOLS
WINDOW
g_| IntroTof
= | You are renaming a file. Would you also like to perform a rename in this
2 ntrg project of all references to the code element 'Program'?
=
) =B References
Fnamespace IntroTolSharp #1 App.config
{ P c# IntroToCSharp.cs
=l class Program
1
= static void Main(string[] args) - Solution Explorer | Team Explorer
W0% =~ 4 4
P rti
Error List o it b e i b i w3 ropertes
T - 0 Errars 0 Warnings 0 Messages
Error arning Message uz; 5
Search Error List P
Copy to Qutpu Do not copy
Description | File Line Column Project +
Build Action
How the file relates to the build an...

Ch1 N5

Chapter 1. Introduction to Programming 99

After we complete all these steps we have our first console application named
IntroToCSharp and containing a single class HelloCSharp (stored in the file
HelloCSharp.cs):

0 IntroToCSharp - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = B X
EILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST WINDOW HELP
O-0 B-aAEH 9- P Stat- Debug - A_ &IE 9% N L
g_| HelloCSharp.cs® R X = Solution Explorer iz w Q13
g “;9IntraTDCSharp.HeIIDCSharp - ‘E‘QMain(string[]args) - f;j B-a0
= =
= ?amespace IntroToCSharp _: Search Solution Explorer (Ctr JQ -
:"'5 - class HelloCSharp fad Solution 'IntroToCSharp' (1 pr
5 { 4 IntroToCSharp
E = static void Main(string[] args) P # Properties
{| [+ =B References
1 w1 App.config
} P o HelloCSharp.cs
T v
100% = 4 » 1 g
) Solution Explorer | Team Explorer
Erpor LISt oo s b i b e e e e [
Y - Properties ot w 1 x
Search Error List - .
Description File Line Column Project « n=-z
Error List | Code Coverage Results

Col 10

All we have to do is add code to the Main() method. By default, the
HelloCSharp.cs code should be loaded and ready for editing. If it is not, we
double click on the HelloCSharp.cs file in the Solution Explorer to load it. We
enter the following source code:

HelloCSharp.cs®™ +& X -
":aIntrDTu:uCSharp.HeIIDCSharp - &’EMain{string[] args) -
-inamespace IntroTolSharp +
{ -
- class Hello(Sharp
{
- static void Main(string[] args)
{
Console.Writeline("Hello CI|");
¥
¥ -
100 % - 4]

100 Fundamentals of Computer Programming with C#

Compiling the Source Code

The compiling process in Visual Studio includes several steps:

- Syntax error check;

Error List * 0 X
T - 9 2 Errors Search Error List D~

Descripticn Line | Column | Project

[%)1 The type or namespace name 'Systema’ HelloCSharp.cs 1 ri IntroToCSharp
could not be found (are you missing a
using directive or an assembly referencef)

€3 2 The name 'Console’ does not exist inthe HelloCSharp.cs 13
current context

4

IntroTeCSharp

- A check for other errors, like missing libraries;

- Converting the C# code into an executable file (a .NET assembly). For
console applications it is an .exe file.

To compile a file in Visual Studio, we press the [F6] key or [Shift+Ctri+B].
Usually, errors are underlined in red, to attract the programmer’s attention,
while we are still writing or when compiling, at the latest. They are listed in
the "Error List" window if it is visible (if it is not, we can show it from the
"View" menu of Visual Studio).

If our project has at least one error, it will be marked with a small red "x" in
the "Error List" window. Short info about the problem is displayed for each
error — filename, line number and project name. If we double click any of the
errors in the "Error List", Visual Studio will automatically take us to the file
and line of code where the error has occurred. In the screenshot above the
problem is that we have “using Systema;” instead of “using System”.

Starting the Project

To start the project, we press [Ctrl+F5] (holding the [Ctrl] key pressed and
at the same time pressing the [F5] key).

The program will start and the result will be displayed on the console,
followed by the "Press any key to continue . . ." message:

oo | CAWindows\system32\cmd.exe ~— O - x [

Hello CH!

Press anv key to continue

Chapter 1. Introduction to Programming 101

The last message is not part of the result produced by the program. It is a
reminder by Visual Studio that our program has finished its execution
and it gives us time to see the result. If we run the program by only pressing
[F5], that message will not appear and the result will vanish instantly after
appearing because the program will have finished its execution, and the
window will be closed. That is why we should always start our console
applications by pressing [Ctri+F5].

Not all project types can be executed. In order to execute a C# project, it
needs to have one class with a Main() method declared in the way described
earlier in this chapter.

Debugging the Program

When our program contains errors, also known as bugs, we must find and
remove them, i.e. we need to debug the program. The debugging process
includes:

- Noticing the problems (bugs);
- Finding the code causing the problems;
- Fixing the code so that the program works correctly;

- Testing to make sure the program works as expected after the changes
are made.

The process can be repeated several times until the program starts working
correctly. After we have noticed the problem, we need to find the code
causing it. Visual Studio can help by allowing us to check step by step
whether everything is working as planned.

To stop the execution of the program at designated positions we can place
breakpoints. The breakpoint is associated with a line of the program. The
program stops its execution on the lines with breakpoints, allowing for the
rest of the code to be executed step by step. On each step we can check and
even change the values of the current variables.

Debugging is a sort of step by step slow motion execution of the program. It
gives us the opportunity to easily understand the details of the code and see
where exactly and why the errors have occurred.

Let’s create an intentional error in our program, to illustrate how to use
breakpoints. We will add a line to the program, which will create an exception
during the execution (we will take a detailed look at exceptions in the
"Exception Handling" chapter).

For now let’s edit our program in the following way:

HelloCSharp.cs

class HelloCSharp

102 Fundamentals of Computer Programming with C#

{
static void Main()
{
throw new System.NotImplementedException(
"Intended exception.");
System.Console.WriteLine("Hello C#!");
}
}

When we start the program again with [Ctrl+F5] we will get an error and it
will be printed on the console:

B CAWindows\system32\cmd.exe

Let's see how breakpoints will help us find the problem. We move the
cursor to the line with the opening bracket of the Main() method and press
[F9] (by doing so we place a breakpoint on that line). A red dot appears,
indicating that the program will stop there if it is executed in debug mode:

HelloCSharp.cs & X -

' HelloCSharp - @ Main(string[] args) -
Siclass HelloCSharp —
{
- static void Main(string[] args)
b
throw new System.NotImplementedException(
"Intended exception.”);
System.Console Writeline("Hello C#!™);
i
I

Now we must start the program in debug mode. We select Debug -> Start
Debugging or press [F5]. The program will start and immediately stop at
the first breakpoint it encounters. The line will be colored in yellow and we
can execute the program step by step. With the [F10] key we move to the
next line.

When we are on a given line and it is colored in yellow, the code on that line
is not executed yet. It executes once we have passed that line. In this case

Chapter 1. Introduction to Programming 103

we have not received the error yet despite the fact that we are on the line we
added and should cause it:

1

HelloCSharp.cs B & X
=, HelloCSharp - & Main(string[] args) -
Elclass HelloCSharp
1

=] static void Main(string[] args)

L i
=

» ok

throw new System.NotImplementedException(
"Intended exception.”);
System.Console.Writeline("Hello C#!");

¥

We press [F10] one more time to execute the current line. This time Visual
Studio displays a window specifying the line, where the error occurred as well
as some additional details about it:

0 IntroToCSharp (Debug... Quick Launch (Ctrl+Q) F = 0 X
FILE EDIT WIEW PROJECT BUILD DEBUG TEaM SQL TOOLS TEST
10~ @B 90 - pContiue-li 0 om® Ll
HelloCSharp.cs 8 # X =
5 HelloCSharp |v E’E Main(string[] args) -
®] +
= fthrow new System.NotImplementedException(-
"Intended exception.");
System.Console.Writeline("Hello C#!™);
! NotlmplementedException was unhandled X
Intended exception.
-
10C Troubleshooting tips: b
Lo |Get general help for this exception. ~lrx
t anc
W #

Search for more Help Online...

Exception settings:

[] Break when this exception type is thrown
Actions:

View Detail...

Copy exception detail to the clipboard

Lo, Open exception settings

104 Fundamentals of Computer Programming with C#

Once we know where exactly the problem in the program is, we can easily
correct it. To do so, first, we need to stop the execution of the program before
it is finished. We select Debug -> Stop Debugging or press [Shift+F5].
After that we delete the problem line and start the program in normal mode
(without debugging) by pressing) [Ctrl+F5].

Alternatives to Visual Studio

As we have seen, in theory, we can do without Visual Studio, but in practice
that is not a good idea. The work required compiling a big project, finding all
the errors in the code and performing numerous other actions would simply
take too much time without Visual Studio.

On the other hand, Visual Studio is not a free software developing
environment (the full version). Many people cannot afford to buy the
professional version (this is also true for small companies and some people
engaged in programming).

This is why there are some alternatives to Visual Studio (except VS Express
Edition), which are free and can handle the same tasks relatively well.

SharpDevelop

One alternative is SharpDevelop (#Develop). We can find it at the following
Internet address: http://www.icsharpcode.NET/OpenSource/SD/. #Develop is
an IDE for C# and is developed as an open-source project. It supports the
majority of the functionalities offered in Visual Studio 2012 but also works in
Linux and other operating systems. We will not review it in details but you
should keep it in mind, in case you need a C# development environment and
Visual Studio is not available.

MonoDevelop

MonoDevelop is an integrated software development environment for the
.NET platform. It is completely free (open source) and can be downloaded at:
http://monodevelop.com. With MonoDevelop, we can quickly and easily write
fully functional desktop and ASP.NET applications for Linux, Mac OS X and
Windows. It also enables programmers to easily transfer projects created in
Visual Studio to the Mono platform and make them functional in other
platforms.

Decompiling Code

Sometimes programmers need to see the code of a given module or program,
not written by them and with no source code available. The process, which
generates source code from an existing executable binary file (.NET
assembly - .exe or .d11l) is called decompiling.

We might need to decompile code in the following cases:

http://www.icsharpcode.net/OpenSource/SD/
http://monodevelop.com/

Chapter 1. Introduction to Programming 105

- We want to check how a given algorithm is implemented but we do not
have the source code, e.g. to check how Array.Sort() internally works.

- There are several options when using some .NET library, and we want to
find the optimal choice. We want to see how to use certain API
digging into some compiled code that uses it.

- We have no information how a given library works, but we have the
compiled code (.NET assembly), which uses it, and we want to find out
how exactly the library works.

- We have lost our source code and we want to recover it. Code
recovery through decompilation will result in lost variable names,
comments, formatting, and others, but is better than nothing.

Decompiling is done with the help of tools, which are not standard part of
Visual Studio. The first popular .NET decompiler was Red Gate’s Reflector
(before it became commercial in early 2011).

Telerik is offering a good and completely free .NET decompiler called
JustDecompile. It can be downloaded from the company’s website:
http://www.telerik.com/products/decompiler.aspx. JustDecompile allows code
decompilation directly in Visual Studio and also has an external stand-alone
GUI application for browsing assemblies and decompile their code:

= Telerik JustDecompile - DefaultAssemblyList = =
ﬁ ﬁ !Open... [T Assembly List [[] Search Tools Plugins | C# A & @ | wtelerik
i WriteAsync(String) : Task ‘ 7 Flpublic wvirtual void Writeline(string wvalue) -
i WriteAsync(Char[]) : Task g } if (value != null)
i WriteAsync(Char[], Int32, Int32) 10 {
& WriteLine() : Void 11 int length = walue.lLengths
L . 12 int num = (int)this.C 1. Length;
& WriteLine(Char) : Void 13 char[] coreNewLine = new r[length + num]
ip WriteLine(Char(]}) : Yoid 14 value.CopyTo (0, coreWNewlLine, 0, length);
& WriteLine(Char[], Int32, Int32) : _; ?f (num != Z)
& WriteLine(Boolean) : Void - if (mum '= 1)
i WriteLine(lnt32) : Void 8 {
& WriteLine{UInt32) : Void f } Buffer.InternalBlockCopy(this.CoreN
@ WriteLine(Int64) : Void 1 clse
ip WriteLine(UIntt4) : Void 2 {
& WriteLine(Single) : Void _ 3 : coreNewline [length] = this.Coreliewkl
i WriteLine(Double) : Void } -
i WriteLine(Decimal] : Void else
o . . {
@\t finetsnng) oo 8 coreNewline [length] = this.CorelNewl [t
i WriteLine(Object) : Void g corelewline[length + 1] = this=s.

i WriteLine(String, Object) : Void }

-

=

this.Write (coreNewlLine, 0, length + num):
4 I ’ return;
Assembly mscorlib, “ 4 else
Version=4.0.0.0, = 5 {
Culture=neutral, & this.Writeline();
return;

PublicKeyToken=b77
a5c561934e089

Namespa System IO | P I

0G0 L0 L L G0 G0 L0 L0 L B B B BRI BRI B B B RO Bd R e
1 LNk

http://www.telerik.com/products/decompiler.aspx

106 Fundamentals of Computer Programming with C#

Another good decompilation tool for .NET is the ILSpy, which is developed
around the SharpDevelop project. ILSpy can be downloaded at:
http://ilspy.net. The program does not require installation. After we start it,
ILSpy loads some of the standard .NET Framework libraries. Via the menu File
-> Open, we can open a certain .NET assembly. We can also load an assembly

from the GAC (Global Assembly Cache). This is how ILSpy looks like:

7 1LSpy =NACE X)
File View Help
Q0B [P - | £
% Internalf « || Search
+ % ISCHEnc String % | Search for. | “§ Type -
* g% 1502022 = StringComparison {} System
g% LatinlEn “i% StringBuilder {} System.Ted _
+ jﬁ MLangC R S R S P S — [n.._L:.___.»-_.._._:n__r__.:P |
+ =% Mormali
+ =& Mormali <param name= *A character array. </param:
5 &% SBCSCol- <{param name= »The starting position in <paramref t"lE:‘TE
5 %2 m: pa-‘a1'_r.1a1'e= »The number of characters to append. </pz
exception cref=
* g% Surrogat <paramref name= /> is null, and <paramref name=
1§ Unicode exception cref=
+ “ff UTF32Er <paramref name= /> is less than zero.-or- <paramrei
+ “1§ UTFTEnc = /) «filterpriority>1</filterpriority
+ “% UTFSEnc [SecuritysafeCritical]
% {} System.Thre = public unsafe StringBuilder Append(char[] wvalue, int startIndex, ini
34} System.Thre if (startIndex < @)
+ -+ Systermn {
= +3 System.Core throw new ArgumentOutOfRangeException(”startIndex™, Environn
+ «3] References i
+ | _1 Resources if (charCount < @) *
4} - i v
+# {} Microsoft.\ Analyzer ®
4} Microsoft W # g System.Xml.XPath.XPathMNavigator.get_Uniqueld() : string
4} System - # = System.Xml . XPath.XPathNodelterator.DebuggerDisplayProxy. ToString() : string
{1 Sustem.Coll L Exposed By
m 13 -

In ILSpy there are two ways to find out how a given method is implemented.
For example, if we want to see how the static method
System.Currency.ToDecimal works, first we can use the tree on the left to
find the Currency class in the System namespace and finally select the
ToDecimal method. If we click on any method, we will be able to see its
source code in C#. Another way to find a given class is using the search
engine in ILSpy. It searches through the names of all classes, interfaces,
methods, properties etc. from the loaded assemblies. Unfortunately, the
version at the time of writing of this book (ILSpy 2.1) can decompile only the
languages C#, VB.NET and IL.

JustDecompile and ILSpy are extremely useful tools, which can help almost
every day when developing .NET software and we should definitely download
at least one and play with it. When we are wondering how a certain method
works or how something is implemented in a given assembly, we can always
rely on the decompiler to find out.

http://ilspy.net/

Chapter 1. Introduction to Programming 107

C# in Linux, iOS and Android

C# programming in Linux is not very developed compared to that in Windows.
We do not want to completely skip it, so we will give some guidelines on how
to start programming in C# in Linux, iOS and Android.

The most important thing that we need in order to write C# code in Linux is a
.NET Framework implementation. Microsoft .NET Framework is not available
for Linux but there is an open-source .NET implementation called
“Mono”. We can download Mono at its official website: http://www.mono-
project.com. Mono allows us to compile and execute C# programs in a Linux
environment and on other operating systems. It contains a C# compiler, a
CLR, a garbage collector, the standard .NET libraries and many of the libraries
available for .NET Framework in Windows like Windows Forms and ASP.NET.

Mono supports compiling and running C# code not only in Linux but also in
Solaris, Mac 0OS X, i0S (iPhone / iPad) and Android. The iOS version
(MonoTouch) and the Android version of Mono (Mono for Android) are
commercial projects, while Mono for Linux is open-source free software.

Of course, Visual Studio does not work in Linux environment but we can use
the #Develop or MonoDevelop as C# IDE in Linux.

Other .NET Languages

C# is the most popular .NET language but there are few other languages that
may be used to write .NET programs:

- VB.NET - Visual Basic .NET (VB) is Basic language adapted to run in
.NET Framework. It is considered a successor of Microsoft Visual Basic 6
(legacy development environment for Windows 3.1 and Windows 95). It
has strange syntax (for C# developers) but generally does the same as
C#, just in different syntax. The only reason VB.NET exists is historical:
it is successor of VB6 and keeps most of its syntax. Not recommended
unless you are VB6 programmer.

- Managed C++ - adaptation of the C++ programming language to .NET
Framework. It can be useful if you need to quickly convert existing C++
code to be used from .NET. Not recommended for new projects. Not
recommended for the readers of this book, even if someone has some
C++ experience, because it makes .NET programming unnecessary
complicated.

- F# - an experiment to put purely functional programming paradigm in
.NET Framework. Not recommended at all (unless you are functional
programming guru).

- JavaScript - it may be used to develop Windows 8 (Windows Store)
applications through the WinJS technology. It might be a good choice
for skillful HTML5 developers who have good JavaScript skills. Not
recommended for the readers of this book because it does not support
Console applications.

http://www.mono-project.com/
http://www.mono-project.com/

108 Fundamentals of Computer Programming with C#

Exercises

1. Install and make yourself familiar with Microsoft Visual Studio and
Microsoft Developer Network (MSDN) Library Documentation.

2. Find the description of the System.Console class in the standard .NET
API documentation (MSDN Library).

3. Find the description of the System.Console.WriteLine() method and its
different possible parameters in the MSDN Library.

4. Compile and execute the sample program from this chapter using the
command prompt (the console) and Visual Studio.

5. Modify the sample program to print a different greeting, for example
"Good Day!".

6. Write a console application that prints your first and last name on the
console.

7. Write a program that prints the following numbers on the console 1,
101, 1001, each on a new line.

Write a program that prints on the console the current date and time.
Write a program that prints the square root of 12345.

10. Write a program that prints the first 100 members of the sequence 2, -
3,4,-5,6,-7, 8.

11. Write a program that reads your age from the console and prints your
age after 10 years.
12. Describe the difference between C# and the .NET Framework.

13. Make a list of the most popular programming languages. How are they
different from C#?

14. Decompile the example program from exercise 5.

Solutions and Guidelines

1. If you have a DreamSpark account (www.dreamspark.com), or your
school or university offers free access to Microsoft products, install the
full version of Microsoft Visual Studio. If you do not have the
opportunity to work with the full version of Microsoft Visual Studio, you
can download Visual Studio Express for free from the Microsoft web
site; it is completely free and works well for educational purposes.

2. Use the address given in the ".NET Documentation" section of this
chapter. Open it and search in the tree on the left side. A Google search
will work just as well and is often the fastest way to find documentation
for a given .NET class.

3. Use the same approach as in the previous exercise.

http://www.dreamspark.com/

Chapter 1. Introduction to Programming 109

© ©® N O

11.

12.

13.

14.

Follow the instruction from the Compiling and Executing C# Programs
section.

Use the code from the sample C# program from this chapter and
change the printed message.

Find out how to use the System.Console.Write() method.
Use the System.Console.WriteLine() method.
Find out what features are offered by the System.DateTime class.

Find out what features are offered by the System.Math class.

. Try to learn on your own how to use loops in C#. You may read about

for-loops in the chapter “Loops”.

Use the methods System.Console.ReadlLine(), int.Parse() and
System.DateTime.AddYears().

Research them on the Internet (e.g. in Wikipedia) and take a closer
look at the differences between them. You will find that C# is a
programming language while .NET Framework is development platform
and runtime for running .NET code. Be sure to read the section "The C#

Language and the .NET Platform” form this chapter.

Find out which are the most popular languages and examine some
sample programs written in them. Compare them to C#. You might take
a look at C, C++, Java, C#, VB.NET, PHP, JavaScript, Perl, Python
and Ruby.

First download and install JustDecompile or ILSpy (more information
about them can be found in the “"Code Decompilation” section). After you
run one of them, open your program’s compiled file. It can be found in
the bin\Debug subdirectory of your C# project. For example, if your
project is named TestCSharp and is located in C:\Projects, then the
compiled assembly (executable file) of your program will be the following
file C:\Projects\TestCSharp\bin\Debug\TestCSharp.exe.

http://www.telerik.com/justdecompile.aspx

Chapter 2. Primitive
Types and Variables

In This Chapter

In this chapter we will get familiar with primitive types and variables in
C# - what they are and how to work with them. First we will consider the
data types - integer types, real types with floating-point, Boolean, character,
string and object type. We will continue with the wvariables, with their
characteristics, how to declare them, how they are assigned a value and what
a variable initialization is. We will get familiar with the two major sets of data
types in C# - value types and reference types. Finally we will examine
different types of literals and their usage.

What Is a Variable?

A typical program uses various values that change during its execution.
For example, we create a program that performs some calculations on the
values entered by the user. The values entered by one user will obviously be
different from those entered in by another user. This means that when
creating the program, the programmer does not know what values will be
introduced as input, and that makes it necessary to process all possible values
a user may enter.

When a user enters a new value that will be used in the process of calculation,
we can preserve it (temporarily) in the random access memory of our
computer. The values in this part of memory change (vary) throughout
execution and this has led to their name - variables.

Data Types

Data types are sets (ranges) of values that have similar characteristics. For
instance byte type specifies the set of integers in the range of [0 ... 255].

Characteristics
Data types are characterized by:
- Name - for example, int;
- Size (how much memory they use) - for example, 4 bytes;

- Default value - for example 0.

112 Fundamentals of Computer Programming with C#

Types
Basic data types in C# are distributed into the following types:

Integer types — sbyte, byte, short, ushort, int, uint, long, ulong;
- Real floating-point types - float, double;

- Real type with decimal precision - decimal;

- Boolean type - bool;

- Character type - char;

- String - string;

- Object type - object.

These data types are called primitive (built-in types), because they are
embedded in C# language at the lowest level. The table below represents the
above mentioned data types, their range and their default values:

1?;;:5 3:{::“ Minimum Value Maximum Value
sbyte (%] -128 127

byte 0) 255

short 0 -32768 32767

ushort 0 0 65535

int (%] -2147483648 2147483647

uint ou 9] 4294967295

long oL -9223372036854775808 | 9223372036854775807
ulong Qu 0 18446744073709551615
float 0.0f +1.5%x10°45 +3.4x1038

double 0.od 1+5.0x107°32%4 +1.7x103%8

decimal | ©.@m 11.0x10°28 +7.9x102%8

bool false Two possible values: true and false

char "\ueeee' | '\ueeee’ "\uffff'

object null - -

string null - -

Chapter 2. Primitive Types and Variables 113

Correspondence between C# and .NET Types

Primitive data types in C# have a direct correspondence with the types of the
common type system (CTS) in .NET Framework. For instance, int type in C#
corresponds to System.Int32 type in CTS and to Integer type in VB.NET
language, while long type in C# corresponds to System.Int64 type in CTS
and to Long type in VB.NET language. Due to the common types system
(CTS) in .NET Framework there is compatibility between different prog-
ramming languages (like for instance, C#, Managed C++, VB.NET and F#).
For the same reason int, Int32 and System.Int32 types in C# are actually
different aliases for one and the same data type - signed 32-bit integer.

Integer Types

Integer types represent integer numbers and are sbyte, byte, short,
ushort, int, uint, long and ulong. Let’s examine them one by one.

The sbyte type is an 8-bit signed integer. This means that the number of
possible values for it is 28, i.e. 256 values altogether, and they can be both,
positive and negative. The minimum value that can be stored in sbyte is
SByte.MinValue = -128 (-27), and the maximum value is SByte.MaxValue =
127 (27-1). The default value is the number 0.

The byte type is an 8-bit unsigned integer type. It also has 256 different
integer values (28) that can only be nonnegative. Its default value is the
number 0. The minimal taken value is Byte.MinValue = 0, and the maximum
is Byte.MaxValue = 255 (28-1).

The short type is a 16-bit signed integer. Its minimal value is
Intl6.MinValue = -32768 (-2!°), and the maximum is Int16.MaxValue =
32767 (2%5-1). The default value for short type is the number 0.

The ushort type is 16-bit unsigned integer. The minimum value that it can
store is UIntl6.MinValue = 0, and the minimum value is -
UIntl6.MaxValue = 65535 (21%-1). Its default value is the number 0.

The next integer type that we will consider is int. It is a 32-bit signed
integer. As we can notice, the growth of bits increases the possible values
that a type can store. The default value for int is 0. Its minimal value is
Int32.Minvalue = -2,147,483,648 (-23!), and its maximum value is
Int32.MaxValue = 2,147,483,647 (23!-1).

The int type is the most often used type in programming. Usually
programmers use int when they work with integers because this type is
natural for the 32-bit microprocessor and is sufficiently "big" for most of the
calculations performed in everyday life.

The uint type is 32-bit unsigned integer type. Its default value is the
number Qu or U (the two are equivalent). The 'u' letter indicates that the
number is of type uint (otherwise it is understood as int). The minimum

114 Fundamentals of Computer Programming with C#

value that it can take is UInt32.MinValue = 0, and the maximum value is
UInt32.MaxValue = 4,294,967,295 (232-1).

The long type is a 64-bit signed type with a default value of @1 or OL (the
two are equivalent but it is preferable to use 'L' because the letter '1' is easily
mistaken for the digit one '1'). The 'L' letter indicates that the number is of
type long (otherwise it is understood int). The minimal value that can be
stored in the long type is Int64.MinValue = -9,223,372,036,854,775,808
(-2%3) and its maximum value is Int64.MaxValue = 9,223,372,036,854,
775,807 (263-1).

The biggest integer type is the ulong type. It is a 64-bit unsigned type,
which has as a default value - the number Qu, or @U (the two are equivalent).
The suffix 'u' indicates that the number is of type ulong (otherwise it is
understood as long). The minimum value that can be recorded in the ulong
type is UInt64.MinValue = 0 and the maximum is UInt64.MaxValue =
18,446,744,073,709,551,615 (2%4-1).

Integer Types — Example

Consider an example in which we declare several variables of the integer
types we know, we initialize them and print their values to the console:

// Declare some variables
byte centuries = 20;
ushort years = 2000;

uint days = 730480;

ulong hours = 17531520;
// Print the result on the console
Console.WriteLine(centuries + "

years, or " + days + " days, or

centuries are " + years +
" 4+ hours + " hours.");

// Console output:
// 20 centuries are 2000 years, or 730480 days, or 17531520
// hours.

ulong maxIntValue = UInt64.MaxValue;
Console.WritelLine(maxIntValue); // 18446744073709551615

You would be able to see the declaration and initialization of a variable in
detail in sections "Declaring Variables" and "Initialization of Variables" below,
and it would become clear from the examples.

In the code snippet above, we demonstrate the use of integer types. For small
numbers we use byte type, and for very large - ulong. We use unsigned
types because all used values are positive numbers.

Chapter 2. Primitive Types and Variables 115

Real Floating-Point Types

Real types in C# are the real numbers we know from mathematics. They are
represented by a floating-point according to the standard IEEE 754 and are
float and double. Let's consider in details these two data types and
understand what their similarities and differences are.

Real Type Float

The first type we will consider is the 32-bit real floating-point type float. It
is also known as a single precision real nhumber. Its default value is 0.0f
or 8.0F (both are equivalent). The character 'f' when put at the end explicitly
indicates that the number is of type float (because by default all real
numbers are considered double). More about this special suffix we can read
bellow in the "Real Literals" section. The considered type has accuracy up to
seven decimal places (the others are lost). For instance, if the number
0.123456789 is stored as type float it will be rounded to 0.1234568. The
range of values, which can be included in a float type (rounded with accuracy
of 7 significant decimal digits), range from +1.5 x 10-° to £3.4 x 1038,

Special Values of the Real Types

The real data types have also several special values that are not real numbers
but are mathematical abstractions:

- Negative infinity -0 (Single.NegativelInfinity). It is obtained
when for instance we are dividing -1.0f by 0.0f.

- Positive infinity +o00 (Single.PositiveInfinity). It is obtained
when for instance we are dividing 1.0f by 0.0f.

- Uncertainty (Single.NaN) - means that an invalid operation is
performed on real numbers. It is obtained when for example we divide
0.0f by 0.06f, as well as when calculating square root of a negative
number.

Real Type Double

The second real floating-point type in the C# language is the double type.
It is also called double precision real number and is a 64-bit type with a
default value of ©0.0d and 0.0D (the suffix 'd' is not mandatory because by
default all real numbers in C# are of type double). This type has precision of
15 to 16 decimal digits. The range of values, which can be recorded in double
(rounded with precision of 15-16 significant decimal digits), is from
+5.0 x 107324 to 1.7 x 103,

The smallest real value of type double is the constant Double.MinValue =
-1.79769e+308 and the largest is Double.MaxValue = 1.79769e+308. The
closest to 0 positive number of type double is Double.Epsilon = 4.94066e-
324. As with the type float the variables of type double can take the special

116 Fundamentals of Computer Programming with C#

values: Double.PositivelInfinity (+o0), Double.NegativeInfinity (-o0)
and Double.NaN (invalid number).

Real Floating-Point Types — Example

Here is an example in which we declare variables of real number types, assign
values to them and print them:

float floatPI = 3.14f;
Console.WriteLine(floatPI); // 3.14
double doublePI = 3.14;
Console.WriteLine(doublePI); // 3.14
double nan = Double.NaN;
Console.WriteLine(nan); // NaN

double infinity = Double.PositiveInfinity;
Console.WriteLine(infinity); // Infinity

Precision of the Real Types

In mathematics the real numbers in a given range are countless (as opposed
to the integers in that range) as between any two real humbers a and b there
are countless other real numbers ¢ where a < ¢ < b. This requires real
numbers to be stored in computer memory with a limited accuracy.

Since mathematics and physics mostly work with extremely large numbers
(positive and negative) and with extremely small nhumbers (very close to
zero), real types in computing and electronic devices must be stored and
processed appropriately. For example, according to the physics the mass of
electron is approximately 9.109389*10-3! kilograms and in 1 mole of
substance there are approximately 6.02*1023 atoms. Both these values can
be stored easily in float and double types.

Due to its flexibility, the modern floating-point representation of real
numbers allows us to work with a maximum number of significant digits for
very large numbers (for example, positive and negative numbers with
hundreds of digits) and with humbers very close to zero (for example, positive
and negative numbers with hundreds of zeros after the decimal point before
the first significant digit).

Accuracy of Real Types — Example

The real types in C# we went over - float and double - differ not only by
the range of possible values they can take, but also by their precision (the
number of decimal digits, which they can preserve). The first type has a
precision of 7 digits, the second - 15-16 digits.

Consider an example in which we declare several variables of the known real
types, initialize them and print their values on the console. The purpose of the
example is to illustrate the difference in their accuracy:

Chapter 2. Primitive Types and Variables 117

// Declare some variables
float floatPI = 3.1415926535897932387;
double doublePI = 3.141592653589793238;

// Print the results on the console
Console.WritelLine("Float PI is: " + floatPI);
Console.WriteLine("Double PI is: " + doublePI);

// Console output:
// Float PI is: 3.141593
// Double PI is: 3.14159265358979

We see that the number n which we declared as float, is rounded to the 7-th
digit, and the one we declared double - to 15-th digit. We can conclude that
the real type double retains much greater precision than float, thus if we
need a greater precision after the decimal point, we will use it.

About the Presentation of the Real Types

Real floating-point numbers in C# consist of three components (according to
the standard IEEE 754): sign (1 or -1), mantissa and order (exponent),
and their values are calculated by a complex formula. More detailed
information about the representation of the real numbers is provided in the
chapter "Numeral Systems" where we will take an in-depth look at the
representation of numbers and other data types in computing.

Errors in Calculations with Real Types

In calculations with real floating-point data types it is possible to observe
strange behavior, because during the representation of a given real number
it often happens to lose accuracy. The reason for this is the inability of some
real numbers to be represented exactly as a sum of negative powers of the
number 2. Examples of numbers that do not have an accurate representation
in float and double types are for instance 0.1, 1/3, 2/7 and other. Here is a
sample C# code, which demonstrates errors in calculations with floating-point
numbers in C#:

float £ = 0.1F;
Console.WriteLine(f); // 0.1 (correct due to rounding)
double d = 0.1f;
Console.WriteLine(d); // ©.100000001490116 (incorrect)

float ff = 1.0f / 3;

Console.WriteLine(ff); // ©.3333333 (correct due to rounding)
double dd = ff;

Console.WriteLine(dd); // ©.333333343267441 (incorrect)

118 Fundamentals of Computer Programming with C#

The reason for the unexpected result in the first example is the fact that the
number 0.1 (i.e. 1/10) has no accurate representation in the real floating-
point number format IEEE 754 and its approximate value is recorded. When
printed directly the result looks correct because of the rounding. The rounding
is done during the conversion of the number to string in order to be printed
on the console. When switching from float to double the approximate
representation of the number in the IEEE 754 format is more noticeable.
Therefore, the rounding does no longer hide the incorrect representation and
we can observe the errors in it after the eighth digit.

In the second case the number 1/3 has no accurate representation and is
rounded to a number very close to 0.3333333. The value of this number is
clearly visible when it is written in double type, which preserves more
significant digits.

Both examples show that floating-point number arithmetic can produce
mistakes, and is therefore not appropriate for precise financial calculations.
Fortunately, C# supports decimal precision arithmetic where numbers like 0.1
are presented in the memory without rounding.

and double types. For example, the number 0.1 is represent-

j Not all real numbers have accurate representation in float
ted rounded in float type as 0.099999994,

Real Types with Decimal Precision

C# supports the so-called decimal floating-point arithmetic, where
numbers are represented via the decimal numeral system rather than the
binary one. Thus, the decimal floating point-arithmetic type in C# does not
lose accuracy when storing and processing floating-point numbers.

The type of data for real numbers with decimal precision in C# is the 128-
bit type decimal. It has a precision from 28 to 29 decimal places. Its minimal
value is -7.9x10%® and its maximum value is +7.9x10?8, The default value is
0.0m or 9.0M. The 'm' character at the end indicates explicitly that the number
is of type decimal (because by default all real numbers are of type double).
The closest to ® numbers, which can be recorded in decimal, are +1.0 x 10-28,
It is obvious that decimal can store neither very big positive or negative
numbers (for example, with hundreds of digits), nor values very close to @.
However, this type is almost perfect for financial calculations because it
represents the numbers as a sum of powers of 10 and losses from rounding
are much smaller than when using binary representation. The real numbers of
type decimal are extremely convenient for financial calculations -
calculation of revenues, duties, taxes, interests, payments, etc.

Here is an example in which we declare a variable of type decimal and assign
its value:

Chapter 2. Primitive Types and Variables 119

decimal decimalPI = 3.14159265358979323846m;
Console.Writeline(decimalPI); // 3.14159265358979323846

The number decimalPI, which we declared of type decimal, is not rounded
even with a single position because we use it with precision of 21 digits,
which fits in the type decimal without being rounded.

Because of the high precision and the absence of anomalies during
calculations (which exist for float and double), the decimal type is
extremely suitable for financial calculations where accuracy is critical.

Despite its smaller range, the decimal type retains precision
& for all decimal numbers it can store! This makes it much

more suitable for precise calculations, and very appropriate
for financial ones.

The main difference between real floating-point numbers and real
numbers with decimal precision is the accuracy of calculations and the
extent to which they round up the stored values. The double type allows us
to work with very large values and values very close to zero but at the
expense of accuracy and some unpleasant rounding errors. The decimal type
has smaller range but ensures greater accuracy in computation, as well as
absence of anomalies with the decimal numbers.

If you perform calculations with money use the decimal type
& instead of float or double. Otherwise, you may encounter

unpleasant anomalies while calculating and errors as a
result!

As all calculations with data of type decimal are done completely by software,
rather than directly at a low microprocessor level, the calculations of this type
are from several tens to hundreds of times slower than the same
calculations with double, so use this type only when it is really necessary.

Boolean Type

Boolean type is declared with the keyword bool. It has two possible values:
true and false. Its default value is false. It is used most often to store the
calculation result of logical expressions.

Boolean Type - Example

Consider an example in which we declare several variables from the already
known types, initialize them, compare them and print the result on the
console:

// Declare some variables

120 Fundamentals of Computer Programming with C#

int a = 1;

int b = 2;

// Which one is greater?

bool greaterAB = (a > b);

// Is 'a' equal to 1?

bool equalAl = (a == 1);

// Print the results on the console
if (greaterAB)

{
b
else

{
}

Console.WriteLine("A > B");

Console.WriteLine("A <= B");

Console.WritelLine("greaterAB = " + greaterAB);

Console.WritelLine("equalAl = " + equalAl);

// Console output:
// A <=B

// greaterAB = False
// equalAl = True

In the example above, we declare two variables of type int, compare them
and assign the result to the bool variable greaterAB. Similarly, we do the
same for the variable equalAl. If the variable greaterAB is true, then A > B
is printed on the console, otherwise A <= B is printed.

Character Type

Character type is a single character (16-bit number of a Unicode table
character). It is declared in C# with the keyword char. The Unicode table is
a technological standard that represents any character (letter, punctuation,
etc.) from all human languages as writing systems (all languages and
alphabets) with an integer or a sequence of integers. More about the Unicode
table can be found in the chapter "Strings and Text Processing"”. The smallest
possible value of a char variable is @, and the largest one is 65535. The
values of type char are letters or other characters, and are enclosed in
apostrophes.

Character Type - Example

Consider an example in which we declare one variable of type char, initialize
it with value 'a', then 'b', then 'A' and print the Unicode values of these
letters to the console:

Chapter 2. Primitive Types and Variables 121

// Declare a variable
char ch = 'a‘;
// Print the results on the console
Console.WriteLine(

"The code of '"" + ch + "' is: " + (int)ch);
ch = 'b";
Console.WriteLine(

"The code of '"" + ch + "' is: " + (int)ch);
ch = 'A";
Console.WriteLine(

"The code of '" + ch + "' is: " + (int)ch);

// Console output:

// The code of 'a' is: 97
// The code of 'b' is: 98
// The code of 'A' is: 65

Strings

Strings are sequences of characters. In C# they are declared by the
keyword string. Their default value is null. Strings are enclosed in quotation
marks. Various text-processing operations can be performed using strings:
concatenation (joining one string with another), splitting by a given separator,
searching, replacement of characters and others. More information about text
processing can be found in the chapter "Strings and Text Processing", where
you will find detailed explanation on what a string is, what its applications are
and how we can use it.

Strings - Example

Consider an example in which we declare several variables of type string,
initialize them and print their values on the console:

// Declare some variables

string firstName = "John";

string lastName = "Smith";

string fullName = firstName + + lastName;

// Print the results on the console
Console.WriteLine("Hello, " + firstName + "I");
Console.WriteLine("Your full name is " + fullName + ".");

// Console output:
// Hello, John!
// Your full name is John Smith.

122 Fundamentals of Computer Programming with C#

Object Type

Object type is a special type, which is the parent of all other types in the .NET
Framework. Declared with the keyword object, it can take values from any
other type. It is a reference type, i.e. an index (address) of a memory area
which stores the actual value.

Using Objects — Example

Consider an example in which we declare several variables of type object,
initialize them and print their values on the console:

// Declare some variables
object containerl = 5;
object container2 = "Five";

// Print the results on the console
Console.WriteLine("The value of containerl is:
Console.WriteLine("The value of container2 is:

+ containerl);
" + container2);
// Console output:

// The value of containerl is: 5

// The value of container2 is: Five.

As you can see from the example, we can store the value of any other type in
an object type variable. This makes the object type a universal data
container.

Nullable Types

Nullable types are specific wrappers around the value types (as int,
double and bool) that allow storing data with a null value. This provides
opportunity for types that generally do not allow lack of value (i.e. value
null) to be used as reference types and to accept both normal values and the
special one null. Thus nullable types hold an optional value.

Wrapping a given type as nullable can be done in two ways:

Nullable<int> il = null;
int? i2 = i1;

Both declarations are equivalent. The easiest way to perform this operation is
to add a question mark (?) after the type, for example int?, the more difficult
is to use the Nullable«<..> syntax.

Nullable types are reference types i.e. they are reference to an object in the
dynamic memory, which contains their actual value. They may or may not
have a value and can be used as normal primitive data types, but with some
specifics, which are illustrated in the following example:

Chapter 2. Primitive Types and Variables 123

int i = 5;
int? ni = i;
Console.WriteLine(ni); // 5

// i =ni; // this will fail to compile
Console.WriteLine(ni.HasValue); // True
i = ni.Value;

Console.WriteLine(i); // 5

ni = null;

Console.WriteLine(ni.HasValue); // False

//1 = ni.Value; // System.InvalidOperationException
i = ni.GetValueOrDefault();

Console.WriteLine(i); // ©

The example above shows how a nullable variable (int?) can have a value
directly added even if the value is non-nullable (int). The opposite is not
directly possible. For this purpose, the nullable types’ property Value can be
used. It returns the value stored in the nullable type variable, or produces an
error (InvalidOperationException) during program execution if the value is
missing (null). In order to check whether a variable of nullable type has a
value assigned, we can use the Boolean property HasValue. Another useful
method is GetValueOrDefault(). If the nullable type variable has a value,
this method will return its value, else it will return the default value for the
nullable type (most commonly 0).

Nullable types are used for storing information, which is not mandatory. For
example, if we want to store data for a student such as the first name and
last name as mandatory and age as not required, we can use type int? for
the age variable:

string firstName = "John";
string lastName = "Smith";
int? age = null;

Variables

After reviewing the main data types in C# let's see how we can use them. In
order to work with data we should use variables. We have already seen their
usage in the examples, but now let’s look at them in more detail.

A variable is a container of information, which can change its value. It
provides means for:

- storing information;

- retrieving the stored information;

124 Fundamentals of Computer Programming with C#

- modifying the stored information.

In C# programming, you will use variables to store and process information
all the time.

Characteristics of Variables

Variables are characterized by:
- name (identifier), for example age;
- type (of the information preserved in them), for example int;
- value (stored information), for example 25.

A variable is a named area of memory, which stores a value from a
particular data type, and that area of memory is accessible in the program by
its name. Variables can be stored directly in the operational memory of the
program (in the stack) or in the dynamic memory in which larger objects are
stored (such as character strings and arrays).

Primitive data types (numbers, char, bool) are called value types because
they store their value directly in the program stack.

Reference data types (such as strings, objects and arrays) are an address,
pointing to the dynamic memory where their value is stored. They can be
dynamically allocated and released i.e. their size is not fixed in advance
contrary to the case of value types.

More information about the value and reference data types is provided in the
section "Value and Reference Types".

Naming Variables — Rules

When we want the compiler to allocate a memory area for some information
which is used in our program we must provide a name for it. It works like an
identifier and allows referring to the relevant memory area.

The name of the variable can be any of our choice but must follow certain
rules defined in the C# language specification:

- Variable names can contain the letters a-z, A-Z, the digits 0-9 as well as
the character '_".

- Variable names cannot start with a digit.

- Variable names cannot coincide with a keyword of the C# language.
For example, base, char, default, int, object, this, null and many
others cannot be used as variable names.

A list of the C# keywords can be found in the section "Keywords" in chapter
"Introduction to Programming". If we want to name a variable like a keyword,
we can add a prefix to the name - "@". For example, @char and @null are
valid variable names while char and null are invalid.

Chapter 2. Primitive Types and Variables 125

Naming Variables - Examples
Proper names:
- name
- first_Name
- _namel
Improper names (will lead to compilation error):
- 1 (digit)
- if (keyword)
- 1name (starts with a digit)

Naming Variables - Recommendations

We will provide some recommendations how to name your variables, since not
all names, allowed by the compiler, are appropriate for the variables.

- The names should be descriptive and explain what the variable is used
for. For example, an appropriate name for a variable storing a person’s
name is personName and inappropriate name is a37.

- Only Latin characters should be used. Although Cyrillic is allowed by
the compiler, it is not a good practice to use it in variable names or in
the rest of the identifiers within the program.

- In C# it is generally accepted that variable names should start with a
small letter and include small letters, every new word, however, starts
with a capital letter. For instance, the name firstName is correct and
better to use than firstname or first_name. Usage of the character _
in the variable names is considered a bad naming style.

- Variable names should be neither too long nor too short - they just
need to clarify the purpose of the variable within its context.

- Uppercase and lowercase letters should be used carefully as C#
distinguishes them. For instance, age and Age are different variables.

Here are some examples of well-named variables:
- firstName
- age
- startIndex
- lastNegativeNumberIndex

And here are some examples for poorly named variables (although the names
are correct from the C# compiler’s perspective):

- _firstName (starts with _)

126

Fundamentals of Computer Programming with C#

- last_name (contains _)

- AGE (is written with capital letters)

- Start_Index (starts with capital letter and contains _)

- lastNegativeNumber_Index (contains _)

- a37 (the name is not descriptive and does not clearly provide the
purpose of the variable)

- fullName23, fullName24, etc. (it is not appropriate for a variable name
to contain digits unless this improves the clarity of the variable used; if
you need to have multiple variables with similar names ending in a
different number, storing the same or similar type of data, it may be

more appropriate to create a single collection or array variable and
name it fullNamesList, for example).

Variables should have names, which briefly explain their purpose. When a
variable is named with an inappropriate name, it makes the program very
difficult to read and modify later (after a while, when we have forgotten how
it works). For further explanation on the proper naming of variables refer to
chapter "High-Quality Programming Code".

A

Always try to use short and precise names when naming the
variables. Follow the rule that the variable name should state
what it is used for, e.g. the name should answer the question
"what value is stored in this variable”. When this condition is
not fulfilled then try to find a better name. Digits are not
appropriate to be used in variable names.

Declaring Variables

When you declare a variable, you perform the following steps:

- specify its type (such as int);

- specify its name (identifier, such as age);

- optionally specify initial value (such as 25) but this is not obligatory.

The syntax for declaring variables in C# is as follows:

<data type> <identifier> [= <initialization>];

Here is an example of declaring variables:

string name;
int age;

Chapter 2. Primitive Types and Variables 127

Assigning a Value

Assigning a value to a variable is the act of providing a value that must be
stored in the variable. This operation is performed by the assignment operator
"=", On the left side of the operator we put the variable nhame and on the right
side — its new value.

Here is an example of assigning values to variables:

name = "John Smith";
age = 25;

Initialization of Variables

The word initialization in programming means specifying an initial value.
When setting value to variables at the time of their declaration we actually
initialize them.

Default Variable Values

Each data type in C# has a default value (default initialization) which is used
when there is no explicitly set value for a given variable. We can use the
following table to see the default values of the types, which we already got
familiar with:

Data Type Default Value Data Type Default Value
sbyte 0 float 0.of
byte 0 double 0.od
short 0 decimal 0.0m
ushort 0 bool false
int 0 char "\uoeee'
uint ou string null
long oL object null
ulong ou

Let’s summarize how to declare variables, initialize them and assign values to
them with the following example:

// Declare and initialize some variables
byte centuries = 20;

ushort years = 2000;

decimal decimalPI = 3.141592653589793238m;
bool isEmpty = true;

char ch = 'a';

128 Fundamentals of Computer Programming with C#

string firstName = "John";

ch = (char)5;
char secondChar;

// Here we use an already initialized variable and reassign it
secondChar = ch;

Value and Reference Types
Data types in C# are two types: value and reference.

Value types are stored in the program execution stack and directly contain
their value. Value types are the primitive numeric types, the character type
and the Boolean type: sbyte, byte, short, ushort, int, long, ulong,
float, double, decimal, char, bool. The memory allocated for them is
released when the program exits their range, i.e. when the block of code in
which they are defined completes its execution. For example, a variable
declared in the method Main() of the program is stored in the stack until the
program completes execution of this method, i.e. until it finishes (C#
programs terminate after fully executing the Main() method).

Reference types keep a reference (address), in the program execution
stack, and that reference points to the dynamic memory (heap), where
their value is stored. The reference is a pointer (address of the memory cell)
indicating the actual location of the value in the heap. An example of a value
at address in the stack for execution is 0x00AD4934. The reference has a
type. The reference can only point to objects of the same type, i.e. it is a
strongly typed pointer. All reference types can hold a null value. This is a
special service value, which means that there is no value.

Reference types allocate dynamic memory for their creation. They also
release some dynamic memory for a memory cleaning (garbage
collector), when it is no longer used by the program. It is unknown exactly
when a given reference variable will be released of the garbage collector as
this depends on the memory load and other factors. Since the allocation and
release of memory is a slow operation, it can be said that the reference types
are slower than the value ones.

As reference data types are allocated and released dynamically during
program execution, their size might not be known in advance. For example, a
variable of type string can contain text data which varies in length. Actually
the string text value is stored in the dynamic memory and can occupy a
different volume (count of bytes) while the string variable stores the address
of the text value.

Reference types are all classes, arrays and interfaces such as the types:
object, string, byte[]. We will learn about classes, objects, strings, arrays
and interfaces in the next chapters of this book. For now, it is enough to know

Chapter 2. Primitive Types and Variables 129

that all types, which are not value, are reference and their values are stored
in the heap (the dynamically allocated memory).

Value and Reference Types and the Memory

In this example we will illustrate how value and reference types are
represented in memory. Consider the execution of the following
programming code:

int i = 42;

char ch = 'A";

bool result = true;

object obj = 42;

string str = "Hello";
byte[] bytes = { 1, 2, 3 };

At this point the variables are located in the memory as follows:

Stack Heap

42 | (4 bytes)

ch

A (2 bytes)

result

true (1 byte)

obj

- int
Int32 @936764 » 42 (4 byteS)
str
String@7cdaf2 » | Hello | string
bytes
byte[]@190d11 > | 1| 2| 3| bytel]

If we now execute the following code, which changes the values of the
variables, we will see what happens to the memory when changing the
value and reference types:

130 Fundamentals of Computer Programming with C#

i=0;
ch = 'B';
result = false;
obj = null;

str = "Bye";
bytes[1] = ©;

After these changes the variables and their values are located in the
memory as follows:

Stack Heap

0 (4 bytes)

B (2 bytes)

result

false | (1 byte) Bye | string

obj
null 42

int
(4 bytes)

str

String@9a787b Hello |string

bytes

byte[]@190d11

byte[]

v
=
o
w

As you can see from the figure, a change in a value type (i = @) changes its
value directly into the stack. When changing a reference type, things are
different: the value is changed in the heap (bytes[1] = 9). The variable
that keeps the array reference remains unchanged (0x00190D11). When
assigning a null value in a reference type, that reference is disconnected
from its value and the variable remains with no value (obj = null).

When assigning new value to an object (a reference type variable) the new
object is allocated in the heap (the dynamic memory) while the old object
remains free (unreferenced). The reference is redirected to the new object
(str = "Bye") while the old objects ("Hello") will be cleaned at some moment

Chapter 2. Primitive Types and Variables 131

by the garbage collector (the .NET Framework’s internal system for
automatic memory cleaning) as they are not in use anymore.

Literals

Primitive types, which we already met, are special data types built into the C#
language. Their values specified in the source code of the program are called
literals. One example will make this clearer:

bool result = true;
char capitalC = 'C';
byte b = 100;

short s = 20000;

int i = 300000;

In the above example, literals are true, 'C', 100, 20000 and 300000. They
are variable values set directly in the source code of the program.

Types of Literals

In C# language, there are several types of literals:

Boolean

Integer

- Real

- Character

- String

- Object literal null

Boolean Literals
Boolean literals are:

- true

- false

When we assign a value to a variable of type bool we can use only one of
these two values or a Boolean expression (which is calculated to true or
false).

Boolean Literals — Example

Here is an example of a declaration of a variable of type bool and assigning a
value, which represents the Boolean literal true:

bool result = true;

132 Fundamentals of Computer Programming with C#

Integer Literals

Integer literals are sequences of digits, a sign (+, -), suffixes and prefixes.
Using prefixes we can present integers in the program source in decimal or
hexadecimal format. More information about the different numeral systems
we can find in the chapter "Numeral Systems". In the integer literals the
following prefixes and suffixes may take part:

- "Ox" and "eX" as prefix indicates hexadecimal values, for example
OxA8F1;

- '1'"and 'L' as suffix indicates long type data, for example 357L.
'u’ and 'U' as suffix indicates uint or ulong data type, for example 112u.

By default (if no suffix is used) the integer literals are of type int.

Integer Literals — Examples

Here are some examples of using integer literals:

// The following variables are initialized with the same value
int numberInDec 16;
int numberInHex 0x10;

// This will cause an error, because the value 234L is not int
int longInt = 234L;

Real Literals

Real literals are a sequence of digits, a sign (+, -), suffixes and the decimal
point character. We use them for values of type float, double and decimal.
Real literals can be represented in exponential format. They also use the
following indications:

- 'f'and 'F' as suffixes mean data of type float;
- 'd" and 'D' as suffixes mean data of type double;
- 'm'and 'm' as suffixes mean data of type decimal;

- 'e'is an exponent, for example,
by 10->.

By default (if there is no suffix), the real numbers are of type double.

e-5" means the integer part multiplied

Real Literals — Examples

Here are some examples of real literals' usage:

// The following is the correct way of assigning a value:
float realNumber = 12.5f;

Chapter 2. Primitive Types and Variables 133

// This is the same value in exponential format:
realNumber = 1.25e+1f;

// The following causes an error, because 12.5 is double
float realNumber = 12.5;

Character Literals

Character literals are single characters enclosed in apostrophes (single
quotes). We use them to set the values of type char. The value of a character
literal can be:

- a character, for example 'A";
- a character code, for example '\u@e65"';

- an escaping sequence;

Escaping Sequences

Sometimes it is necessary to work with characters that are not displayed on
the keyboard or with characters that have special meanings, such as the “new
line” character. They cannot be represented directly in the source code of
the program and in order to use them we need special techniques, which we
will discuss now.

Escaping sequences are literals. They are a sequence of special characters,
which describe a character that cannot be written directly in the source code.
This is, for instance, the “new line” character.

There are many examples of characters that cannot be represented directly in
the source code: a double quotation mark, tab, new line, backslash and
others. Here are some of the most frequently used escaping sequences:

- \' - single quote

- \" - double quotes

- \\ - backslash

- \n - new line

-\t - offset (tab)

- \uXXXX - char specified by its Unicode number, for example \u@3A7.

The character \ (backslash) is also called an escaping character because it
allows the display on screen (or other output device) of characters that have
special meaning or effect and cannot be represented directly in the source
code.

134 Fundamentals of Computer Programming with C#

Escaping Sequences - Examples

Here are some examples of character literals:

// An ordinary character
char character = 'a’';
Console.WriteLine(character);

// Unicode character code in a hexadecimal format
character = '\u@@3A';
Console.WriteLine(character);

// Assigning the single quotiation character (escaped as \')
character = "\'"';
Console.WriteLine(character);

// Assigning the backslash character (escaped as \\)
character = "\\';
Console.WriteLine(character);

// Console output:
// a
/] :
/]
/] \

String Literals

String literals are used for data of type string. They are a sequence of
characters enclosed in double quotation marks.

All the escaping rules for the char type discussed above are also valid for
string literals.

Strings can be preceded by the @ character that specifies a quoted string
(verbatim string). In quoted strings the rules for escaping are not valid, i.e.
the character \ means \ and is not an escaping character. Only one character
needs to be escaped in the quoted strings - the character " (double-quotes)
and it is escaped in the following way - by repeating it "" (double double-
quotes). All other characters are treated literally, even the new line. Quoted
strings are often used for the file system paths naming.

String Literals — Examples

Here are few examples for string literals usage:

string quotation = "\"Hello, Jude\", he said.";

Chapter 2. Primitive Types and Variables 135

Console.WriteLine(quotation);

string path = "C:\\Windows\\Notepad.exe";
Console.WriteLine(path);

string verbatim = @"The \ is not escaped as \\.
I am at a new line.";
Console.WriteLine(verbatim);

// Console output:

// "Hello, Jude", he said.

// C:\Windows\Notepad.exe

// The \ is not escaped as \\.

// I am at a new line.

More about strings we will find in the chapter "Strings and Text Processing".

Exercises

1.

Declare several variables by selecting for each one of them the most
appropriate of the types sbyte, byte, short, ushort, int, uint, long
and ulong in order to assign them the following values: 52,130; -115;
4825932; 97; -10000; 20000; 224; 970,700,000; 112; -44; -1,000,000;
1990; 123456789123456789.

Which of the following values can be assigned to variables of type float,
double and decimal: 5, -5.01, 34.567839023; 12.345; 8923.1234857;
3456.0911248759565421512566834677?

Write a program, which compares correctly two real numbers with
accuracy at least 0.000001.

Initialize a variable of type int with a value of 256 in
hexadecimal format (256 is 100 in a numeral system with base 16).

Declare a variable of type char and assign it as a value the character,
which has Unicode code, 72 (use the Windows calculator in order to find
hexadecimal representation of 72).

Declare a variable isMale of type bool and assign a value to it depending
on your gender.

Declare two variables of type string with values "Hello" and "World".
Declare a variable of type object. Assign the value obtained of
concatenation of the two string variables (add space if necessary) to this
variable. Print the variable of type object.

Declare two variables of type string and give them values "Hello" and
"World". Assign the value obtained by the concatenation of the two
variables of type string (do not miss the space in the middle) to a
variable of type object. Declare a third variable of type string and
initialize it with the value of the variable of type object (you should use
type casting).

136

Fundamentals of Computer Programming with C#

o.

10.
11.

12.

13.

Declare two variables of type string and assign them a value “The
"use" of quotations causes difficulties.” (without the outer quotes).
In one of the variables use quoted string and in the other do not use it.

Write a program to print a figure in the shape of a heart by the sign "o".

Write a program that prints on the console isosceles triangle which
sides consist of the copyright character "©".

A company dealing with marketing wants to keep a data record of its
employees. Each record should have the following characteristic - first
name, last name, age, gender (‘'m’ or ‘f") and unique employee number
(27560000 to 27569999). Declare appropriate variables needed to
maintain the information for an employee by using the appropriate data
types and attribute names.

Declare two variables of type int. Assign to them values 5 and 10
respectively. Exchange (swap) their values and print them.

Solutions and Guidelines

1.
2.

©® N o w

10.
11.

Look at the ranges of the numerical types in C# described in this chapter.

Consider the number of digits after the decimal point. Refer to the table
that describes the sizes of the types float, double and decimal.

Two floating-point variables are considered equal if their difference is less
than some predefined precision (e.g. 0.000001):

bool equal = Math.Abs(a - b) < 0.000001;

Look at the section about Integer Literals. To easily convert humbers to a
different numeral system use the built-in Windows calculator. For a
hexadecimal representation of the literal use prefix 0x.

Look at the section about Character Literals.

Look at the section about Boolean Literals.

Look at the sections about Strings and Object Data Type.

Look at the sections about Strings and Object Data Type. To cast from
object to string use typecasting:

string str = (string)obj;

Look at the section about Character Literals. It is necessary to use the
escaping character \" or verbatim strings.

Use Console.WriteLine(..), the character 'o' and spaces.

Use Console.WriteLine(..), the character © and spaces. Use Windows
Character Map in order to find the Unicode code of the sign "©".
Note that the console may display "c" instead of "©" if it does not

Chapter 2. Primitive Types and Variables 137

support Unicode. If this happens, you might be unable to do anything to
fix it. Some versions of Windows just do not support Unicode in the
console even when you explicitly set the character encoding to UTF-8:

Console.OutputEncoding = System.Text.Encoding.UTF8;

You may need to change the font of your console to some font that
supports the "©"” symbol, e.g. “"Consolas” or “"Lucida Console”.

12. For the names use type string, for the gender use type char (only one
char m/f), and for the unique number and age use some integer type.

13. Use third temporary variable for exchanging the variables:

int
int
int
a
b

a
b

5;
10;

oldA = a;

=b;

oldA;

To swap integer variables other solutions exist which do not use a third
variable. For example, if we have two integer variables a and b:

int
int

a =
b =
a =

a
b

a
a
a

5;
10;

b;
b;
b;

You might also use the XOR swap algorithm for exchanging integer
values: http://en.wikipedia.org/wiki/XOR swap algorithm.

http://en.wikipedia.org/wiki/XOR_swap_algorithm

Chapter 3. Operators
and Expressions

In This Chapter

In this chapter we will get acquainted with the operators in C# and the
actions they can perform when used with the different data types. In the
beginning, we will explain which operators have higher priority and we will
analyze the different types of operators, according to the number of the
arguments they can take and the actions they perform. In the second part,
we will examine the conversion of data types. We will explain when and
why it is needed to be done and how to work with different data types. At the
end of the chapter, we will pay special attention to the expressions and how
we should work with them. Finally, we have prepared exercises to strengthen
our knowledge of the material in this chapter.

Operators

Every programming language uses operators, through which we can perform
different actions on the data. Let’s take a look at the operators in C# and see
what they are for and how they are used.

What Is an Operator?

After we have learned how to declare and set a variable in the previous
chapter, we will discuss how to perform various operations with them. For this
purpose we will get familiar with operators.

Operators allow processing of primitive data types and objects. They take as
an input one or more operands and return some value as a result. Operators
in C# are special characters (such as "+", ".", "A", etc.) and they perform
transformations on one, two or three operands. Examples of operators in C#
are the signs for adding, subtracting, multiplication and division from math
(+, =, *, /) and the operations they perform on the integers and the real

numbers.
Operators in C#

Operators in C# can be separated in several different categories:

- Arithmetic operators - they are used to perform simple mathematical
operations.

140 Fundamentals of Computer Programming with C#

- Assignment operators - allow assigning values to variables.

- Comparison operators -
variables.

allow comparison of two literals and/or

- Logical operators - operators that work with Boolean data types and
Boolean expressions.

- Binary operators - used to perform operations on the binary
representation of numerical data.

- Type conversion operators - allow conversion of data from one type to
another.

Operator Categories

Below is a list of the operators, separated into categories:

Category Operators
arithmetic ST TR O S 5
logical &&, |1, ',
binary & |, ~ ~ <<, >
comparison ===, 5, ¢, >=, <=
assignment =, +=, -=, *=, /=, %=, &=, |=, M=, <<=, >=
string concatenation +
type conversion (type), as, is, typeof, sizeof
other ., new, (), [], ?:, ??

Types of Operators by Number of Arguments

Operators can be separated into different types according to the number of

arguments they could take:

Operator type Number of arguments (operands)
unary takes one operand
binary takes two operands
ternary takes three operands

All binary operators in C# are left-associative, i.e. the expressions are
calculated from left to right, except for the assignment operators. All
assignment operators and conditional operators ?: and ?? are right-
associative, i.e. the expressions are calculated from right to left. The unary
operators are not associative.

Some of the operators in C# perform different operations on the different
data types. For example the operator +. When it is used on numeric data

Chapter 3. Operators and Expressions 141

types (int, long, float, etc.), the operator performs mathematical addition.
However, when we use it on strings, the operator concatenates (joins
together) the content of the two variables/literals and returns the new string.

Operators — Example

Here is an example of using operators:

int a =7+ 9;
Console.WriteLine(a); // 16

string firstName = "John";
string lastName = "Doe";

// Do not forget the space between them
string fullName = firstName + " " + lastName;
Console.WriteLine(fullName); // John Doe

The example shows how, as explained above, when the operator + is used on
numbers it returns a numerical value, and when it is used on strings it returns
concatenated strings.

Operator Precedence in C#

Some operators have precedence (priority) over others. For example, in
math multiplication has precedence over addition. The operators with a higher
precedence are calculated before those with lower. The operator () is used to
change the precedence and like in math, it is calculated first.

The following table illustrates the precedence of the operators in C#:

Priority Operators

Highest ()
priority ++, -- (as postfix), new, (type), typeof, sizeof

++, -- (as prefix), +, - (unary), !, ~

*I/I%

+ (string concatenation)

+, -

<<, >>

<, >, <=, >=,1s, as

&I All

142 Fundamentals of Computer Programming with C#

Lowest &8&

priority T

?:, 22

°7

=, *:I /:I %:I +=, -=, ((:I)}:l &:I A=, I:

The operators located upper in the table have higher precedence than
those below them, and respectively they have an advantage in the calculation
of an expression. To change the precedence of an operator we can use
brackets.

When we write expressions that are more complex or have many operators, it
is recommended to use brackets to avoid difficulties in reading and
understanding the code. For example:

// Ambiguous
X +y / 100

// Unambiguous, recommended
x + (y / 100)

Arithmetical Operators

The arithmetical operators in C# +, -, * are the same like the ones in math.
They perform addition, subtraction and multiplication on numerical values and
the result is also a numerical value.

The division operator / has different effect on integer and real numbers.
When we divide an integer by an integer (like int, long and sbyte) the
returned value is an integer (no rounding, the fractional part is cut). Such
division is called an integer division. Example of integer division: 7 / 3 = 2.

Integer division by 0 is not allowed and causes a runtime exception
DivideByZeroException. The remainder of integer division of integers can be
obtained by the operator %. For example, 7% 3 =1, and -10% 2 = 0.

When dividing two real numbers or two numbers, one of which is real (e.g.
float, double, etc.), a real division is done (not integer), and the result is a
real number with a whole and a fractional part. For example: 5.0 / 2 = 2.5. In
the division of real numbers it is allowed to divide by 0.0 and respectively
the result is +co (Infinity), -oo (-Infinity) or NaN (invalid value).

The operator for increasing by one (increment) ++ adds one unit to the
value of the variable, respectively the operator -- (decrement) subtracts one
unit from the value. When we use the operators ++ and -- as a prefix (when
we place them immediately before the variable), the new value is calculated
first and then the result is returned. When we use the same operators as
post-fix (meaning when we place them immediately after the variable) the

Chapter 3. Operators and Expressions 143

original value of the operand is returned first, then the addition or subtraction
is performed.

Arithmetical Operators — Example

Here are some examples of arithmetic operators and their effect:

int squarePerimeter = 17;

double squareSide = squarePerimeter / 4.0;
double squareArea = squareSide * squareSide;
Console.WriteLine(squareSide); // 4.25
Console.WriteLine(squareArea); // 18.0625

int a = 5;
int b = 4;

Console.WriteLine(a + b); // 9
Console.WriteLine(a + (b++)); // 9
Console.WriteLine(a + b); // 10
Console.WriteLine(a + (++b)); // 11
Console.WriteLine(a + b); // 11
Console.WritelLine(14 / a); // 2
Console.WritelLine(14 % a); // 4

int one = 1;
int zero = 0;
// Console.WritelLine(one / zero); // DivideByZeroException

double dMinusOne = -1.0;

double dZero = 0.0;

Console.WriteLine(dMinusOne / zero); // -Infinity
Console.WriteLine(one / dZero); // Infinity

Logical Operators

Logical (Boolean) operators take Boolean values and return a Boolean result
(true or false). The basic Boolean operators are "AND" (&&), "OR" (||),
"exclusive OR" (*) and logical negation (!).

The following table contains the logical operators in C# and the operations
that they perform:

X \Y Ix X &&y x|ly XNy
true true false true true false
true false false false true true

false true true false true true

144 Fundamentals of Computer Programming with C#

false false true false false false

The table and the following example show that the logical "AND" (&&) returns
true only when both variables contain truth. Logical "OR" (||) returns true
when at least one of the operands is true. The logical negation operator (1)
changes the value of the argument. For example, if the operand has a value
true and a negation operator is applied, the new value will be false. The
negation operator is a unary operator and it is placed before the argument.
Exclusive "OR" () returns true if only one of the two operands has the value
true. If the two operands have different values, exclusive "OR" will return the
result true, if they have the same values it will return false.

Logical Operators — Example

The following example illustrates the usage of the logical operators and their
actions:

bool a = true;
bool b = false;

Console.WriteLine(a && b); // False
Console.WriteLine(a || b); // True
Console.WritelLine(!b); // True
Console.WriteLine(b || true); // True

Console.WriteLine((5 > 7) ~ (a == b)); // False

Laws of De Morgan
Logical operations fall under the laws of De Morgan from the mathematical
logic:

!(a & b)
'(a || b) =

a || !'b)
la && !b)

The first law states that the negation of the conjunction (logical AND) of two
propositions is equal to the disjunction (logical OR) of their negations.

The second law states that the negation of the disjunction of both statements
is equivalent to the conjunction of their negations.

Operator for Concatenation of Strings

The operator + is used to join strings (string). It concatenates (joins) two
or more strings and returns the result as a new string. If at least one of the
arguments in the expression is of type string, and there are other operands
of type different from string, they will be automatically converted to type
string, which allows successful string concatenation.

It is fantastic how .NET runtime handles such operation incompatibilities for
us on the fly, saving us some coding time and allowing us to concentrate on

Chapter 3. Operators and Expressions 145

the main objectives of our programming task! However, it is a good practice
to not miss to cast the variables on which we wish to apply an operation; we
should instead have them converted to the appropriate type for each
operation, so that we are in full control of the end result and prevent implicit
type casts. We will provide more detailed information on casting operations
further down in the section "Type Conversion" of this chapter.

Operator for Concatenation of Strings — Example

Here is an example, which shows concatenations of two strings and a string
with a number:

string csharp "CH";

string dotnet = ".NET";

string csharpDotNet = csharp + dotnet;
Console.WriteLine(csharpDotNet); // C#.NET
string csharpDotNet4 = csharpDotNet + " " + 5;
Console.WriteLine(csharpDotNet4); // C#.NET 5

In the example we initialize two variables of type string and assign them
values. On the third and fourth row we concatenate both strings and pass the
results to the method Console.WriteLine() to print it on the console. On the
next line we join the resulting string with a space and the number 5. We
assign the returned value to the variable csharpDotNet5, which will
automatically be converted to type string. On the last row we print the
result.

Concatenation (joining, gluing) of strings is a slow operation
& and should be used carefully. It is recommended to use the

StringBuilder class for iterative (repetitive) operations on
strings.

In the chapter "Strings" we will explain in detail why the StringBuilder class
must be used for join operations on strings performed in a loop.

Bitwise Operators

A bitwise operator is an operator that acts on the binary representation of
numeric types. In computers all the data and particularly numerical data is
represented as a series of ones and zeros. The binary numeral system is
used for this purpose. For example, number 55 in the binary numeral system
is represented as ©0110111.

Binary representation of data is convenient because zero and one in
electronics can be implemented by Boolean circuits, in which zero is
represented as "no electricity” or for example with a voltage of -5V and the
one is presented as "have electricity" or say with voltage +5V.

146 Fundamentals of Computer Programming with C#

We will examine in depth the binary numeral system in the chapter
"Numeral Systems", but just for now we can consider that the numbers in
computers are represented as ones and zeros, and bitwise operators are used
to analyze and change those ones to zeros and vice versa.

Bitwise operators are very similar to the logical ones. In fact, we can
imagine that the logical and bitwise operators perform the same thing but
using different data types. Logical operators work with the values true and
false (Boolean values), while bitwise operators work with numerical values
and are applied bitwise over their binary representation, i.e., they work with
the bits of the number (the digits ® and 1 of which it consists). Just like the
logical operators in C#, there are bitwise operators "AND" (&), bitwise "OR"
(], bitwise negation (~) and excluding "OR" (*).

Bitwise Operators and Their Performance

The bitwise operators' performance on binary digits © and 1 is shown in the
following table:

X Y ~X X&y x|y XNy
1 1 0 1 1 %]
1 0 (] 0 1 1
0 1 1 0 1 1
%] 0 1 0 0 %]

As we see bitwise and logical operators are very much alike. The difference in
the writing of "AND" and "OR" is that the logical operators are written with
double ampersand (&&) and double vertical bar (| |), and the bitwise - with a
single ampersand or vertical bar (& and |). Bitwise and logical operators for
exclusive "OR" are the same "~". For logical negation we use "!", while for
bitwise negation (inversion) the "~" operator is used.

In programming there are two bitwise operators that have no analogue in
logical operators. These are the bit shift left (<<) and bit shift right (>>).
Used on numerical values, they move all the bits of the value to the left or
right. The bits that fall outside the number are lost and replaced with 0.

The bit shifting operators are used in the following way: on the left side of
the operator we place the variable (operand) with which we want to use the
operator, on the right side we put a numerical value, indicating how many bits
we want to offset. For example, 3 << 2 means that we want to move the bits
of the number three, twice to the left. The number 3 presented in bits looks
like this: "0000 0011". When you move twice left, the binary value will look
like this: "0000 1100", and this sequence of bits is the number 12. If we look
at the example we can see that actually we have multiplied the number by 4.
Bit shifting itself can be represented as multiplication (bitwise shifting left) or
division (bitwise shifting right) by a power of 2. This occurrence is due to the

Chapter 3. Operators and Expressions 147

nature of the binary numeral system. Example of moving to the right is 6 >>
2, which means to move the binary number "0000 110" with two positions to
the right. This means that we will lose two right-most digits and feed them
with zeros on the left. The end result will be "0000 6001" which is 1.

Bitwise Operators — Example

Here is an example of using bitwise operators. The binary representation of
the numbers and the results of the bitwise operators are shown in the
comments (green text):

byte a = 3; // 0000 0011 = 3
byte b = 5; // 0000 0101 = 5
Console.WriteLine(a | b); // 0000 0111 = 7
Console.WriteLine(a & b); // 0000 0001 = 1
Console.WriteLine(a ~ b); // 0000 0110 = 6
Console.WriteLine(~a & b); // 0000 0100 = 4
Console.WriteLine(a << 1); // 0000 0110 = 6
Console.WriteLine(a << 2); // 0000 1100 = 12
Console.WriteLine(a >> 1); // 0000 0001 = 1

In the example we first create and initialize the values of two variables a and
b. Then we print on the console the results of some bitwise operations on the
two variables. The first operation that we apply is "OR". The example shows
that for all positions where there was 1 in the binary representation of the
variables a and b, there is also 1 in the result. The second operation is "AND".
The result of the operation contains 1 only in the right-most bit, because the
only place where a and b have 1 at the same time is their right-most bit.
Exclusive "OR" returns ones only in positions where a and b have different
values in their binary bits. Finally, the logical negation and bitwise shifting:
left and right, are illustrated.

Comparison Operators

Comparison operators in C# are used to compare two or more operands. C#
supports the following comparison operators:

- greater than (»)

- less than (<)

- (greater than or equal to (>=)
- less than or equal to (<=)

- equality (==

- difference (!=)

148 Fundamentals of Computer Programming with C#

All comparison operators in C# are binary (take two operands) and the
returned result is a Boolean value (true or false). Comparison operators
have lower priority than arithmetical operators but higher than the
assignment operators.

Comparison Operators — Example

The following example demonstrates the usage of comparison operators in
C#:

int x = 10, y = 5;

Console.WriteLine("x > vy + (x >y)); // True
Console.WriteLine("x <y : " + (X < y)); // False
Console.WriteLine("x " (x >=y)); // True
Console.WriteLine("x (x <=y)); // False
Console.WriteLine("x (x ==y)); // False
Console.WriteLine("x ! (x '=y)); // True

AN Vv
i
+ + + +

— |l
1l
<K K

In the example, first we create two variables x and y and we assign them the
values 10 and 5. On the next line we print on the console using the method
Console.WriteLine(..) the result from comparing the two variables x and y
using the operator »>. The returned value is true because x has a greater
value than y. Similarly, in the next rows the results from the other 5
comparison operators, used to compare the variables x and y, are printed.

Assignment Operators

The operator for assigning value to a variable is "=" (the character for
mathematical equation). The syntax used for assigning value is as it follows:

operandl = literal, expression or operand2;

Assignment Operators — Example

Here is an example to show the usage of the assignment operator:

int x = 6;
string helloString = "Hello string.";
int y = x;

In the example we assign value 6 to the variable x. On the second line we
assign a text literal to the variable helloString, and on the third line we
copy the value of the variable x to the variable y.

Chapter 3. Operators and Expressions 149

Cascade Assignment

The assignment operator can be used in cascade (more than once in the
same expression). In this case assignments are carried out consecutively from
right to left. Here’s an example:

int x, y, z;
X =y =12z = 25;

On the first line in the example we initialize three variables and on the second
line we assign them the value 25.

The assignment operator in C# is "=", while the comparison
operator is "==". The exchange of the two operators is a
& common error when we are writing code. Be careful not to
confuse the comparison operator and the assignment
operator as they look very similar.

Compound Assignment Operators

Except the assignment operator there are also compound assignment
operators. They help to reduce the volume of the code by typing two
operations together with an operator: operation and assignment. Compound
operators have the following syntax:

operandl operator = operand2;

The upper expression is like the following:

operandl = operandl operator operand2;

Here is an example of a compound operator for assignment:

int x
int y

2;
4;

X *=vy; // Same as x = x * y;
Console.WriteLine(x); // 8

The most commonly used compound assignment operators are += (adds value
of operand2 to operandl), -= (subtracts the value of the right operand from
the value of the left one).Other compound assignment operators are *=, /=
and %=.

The following example gives a good idea of how the compound assignment
operators work:

int x = 6;

150 Fundamentals of Computer Programming with C#

int y = 4;

Console.WriteLine(y *= 2); // 8

intz=y = 3; // y=3 and z=3
Console.WriteLine(z); // 3

Console.WriteLine(x |= 1); // 7
Console.WriteLine(x += 3); // 1@
Console.WriteLine(x /= 2); // 5

In the example, first we create the variables x and y and assign them values
6 and 4. On the next line we print on the console y, after we have assigned it
a new value using the operator *= and the literal 2.The result of the operation
is 8. Further in the example we apply the other compound assignment
operators and print the result on the console.

Conditional Operator ?:

The conditional operator ?: uses the Boolean value of an expression to
determine which of two other expressions must be calculated and returned as
a result. The operator works on three operands and that is why it is called
ternary operator. The character "?" is placed between the first and second
operand, and ":" is placed between the second and third operand. The first
operand (or expression) must be Boolean, and the next two operands must
be of the same type, such as numbers or strings.

The operator ?: has the following syntax:

operandl ? operand2 : operand3

It works like this: if operandl is set to true, the operator returns as a result
operand2. Otherwise (if operandl is set to false), the operator returns as a
result operand3.

During the execution, the value of the first argument is calculated. If it has
value true, then the second (middle) argument is calculated and it is
returned as a result. However, if the calculated result of the first argument is
false, then the third (last) argument is calculated and it is returned as a
result.

Conditional Operator "?:" — Example

The following example shows the usage of the operator "?:":

int a = 6;
int b = 4;
Console.WriteLine(a > b ? "a>b" : "b<=a"); // a>b

Chapter 3. Operators and Expressions 151

int num=a==b ? 1 : -1; // num will have value -1

Other Operators

So far we have examined arithmetic, logical and bitwise operators, the
operator for concatenating strings, also the conditional operator ?:. Besides
them in C # there are several other operators worth mentioning.

The "." Operator

The access operator "." (dot) is used to access the member fields or
methods of a class or object. Example of usage of point operator:

Console.WriteLine(DateTime.Now); // Prints the date + time

Square Brackets [] Operator

Square brackets [] are used to access elements of an array by index,
they are the so-called indexer. Indexers are also used for accessing
characters in a string. Example:

int[] arr = { 1, 2, 3 };
Console.WriteLine(arr[0]); // 1
string str = "Hello";
Console.WriteLine(str[1]); // e

Brackets () Operator

Brackets () are used to override the priority of execution of expressions
and operators. We have already seen how the brackets work.

Type Conversion Operator

The operator for type conversion (type) is used to convert a variable from
one type to another. We will examine it in details in the section "Type
Conversion".

Operator "as"

The operator as also is used for type conversion but invalid conversion
returns null, not an exception.

Operator "new"

The new operator is used to create and initialize new objects. We will
examine it in details in the chapter "Creating and Using Objects".

152 Fundamentals of Computer Programming with C#

Operator "is"

The is operator is used to check whether an object is compatible with a given
type (check object's type).

Operator "??"

The operator ?? is similar to the conditional operator ?:. The difference is that
it is placed between two operands and returns the left operand only if its
value is not null, otherwise it returns the right operand. Example:

int? a = 5;

Console.WriteLine(a ?? -1); // 5

string name = null;

Console.WriteLine(name ?? "(no name)"); // (no name)

Other Operators — Examples

Here is an example that shows the operators we just explained:

int a = 6;

int b = 3;

Console.WriteLine(a + b / 2); /] 7
Console.WriteLine((a + b) / 2); // 4
string s = "Beer";

Console.WriteLine(s is string); // True

string notNullString = s;

string nullString = null;

Console.WriteLine(nullString ?? "Unspecified"); // Unspecified
Console.WritelLine(notNullString ?? "Specified"); // Beer

Type Conversion and Casting

Generally, operators work over arguments with the same data type. However,
C# has a wide variety of data types from which we can choose the most
appropriate for a particular purpose. To perform an operation on variables of
two different data types we need to convert both to the same data type. Type
conversion (typecasting) can be explicit and implicit.

All expressions in C# have a type. This type can derive from the expression
structure and the types, variables and literals used in it. It is possible to write
an expression which type is inappropriate for the current context. In some
cases this will lead to a compilation error, but in other cases the context can
get a type that is similar or related to the type of the expression. In this case
the program performs a hidden type conversion.

Chapter 3. Operators and Expressions 153

Specific conversion from type S to type T allows the expression of type S to be
treated as an expression of type T during the execution of the program. In
some cases this will require a validation of the transformation. Here are some
examples:

- Conversion of type object to type string will require verification at
runtime to ensure that the value is really an instance of type string.

- Conversion from string to object does not require any verification. The
type string is an inheritor of the type object and can be converted to
its base class without a risk of an error or data loss. We shall examine
inheritance in details in the chapter "Object-Oriented Programming
Principles".

- Conversion of type int to long can be made without verification during
the execution, because there is no risk of data loss since the set of
values of type int is a subset of values of type long.

- Conversion from type double to long requires conversion of 64-bit
floating-point value to 64-bit integer. Depending on the value, data loss
is possible and therefore it is necessary to convert the types explicitly.

In C# not all types can be converted to all other types, but only to some of
them. For convenience, we shall group some of the possible transformations
in C# according to their type into three categories:

- implicit conversion;
- explicit conversion;

- conversion to or from string;

Implicit Type Conversion

Implicit (hidden) type conversion is possible only when there is no risk of data
loss during the conversion, i.e. when converting from a lower range type to a
larger range (e.g. from int to long). To make an implicit conversion it is not
necessary to use any operator and therefore such transformation is called
implicit. The implicit conversion is done automatically by the compiler when
you assign a value with lower range to a variable with larger range or if the
expression has several types with different ranges. In such case the
conversion is executed into the type with the highest range.

Implicit Type Conversion — Examples

Here is an example of implicit type conversion:

int myInt = 5;
Console.WriteLine(myInt); // 5
long myLong = myInt;
Console.WriteLine(myLong); // 5

154 Fundamentals of Computer Programming with C#

Console.WriteLine(myLong + myInt); // 10

In the example we create a variable myInt of type int and assign it the value
5. After that we create a variable myLong of type long and assign it the value
contained in myInt. The value stored in myLong is automatically converted
from type int to type long. Finally, we output the result from adding the two
variables. Because the variables are from different types they are
automatically converted to the type with the greater range, i.e. to type long
and the result that is printed on the console is long again. Indeed, the given
parameter to the method Console.WriteLine() is of type long, but inside
the method it will be converted again, this time to type string, so it can be
printed on the console. This transformation is performed by the method
Long.ToString().

Possible Implicit Conversions
Here are some possible implicit conversions of primitive data types in C#:
- sbyte — short, int, long, float, double, decimal;

- byte — short, ushort, int, uint, long, ulong, float, double,
decimal;

- short — int, long, float, double, decimal;
- ushort — int, uint, long, ulong, float, double, decimal;

- char — ushort, int, uint, long, ulong, float, double, decimal
(although char is a character type in some cases it may be regarded as
a number and have a numeric type of behavior, it can even participate
in numeric expressions);

- uint — long, ulong, float, double, decimal;
- int — long, float, double, decimal;

- long — float, double, decimal;

- ulong — float, double, decimal;

- float — double.

There is no data loss when converting types of smaller range to types
with a larger range. The numerical value remains the same after
conversion. There are a few exceptions. When you convert type int to type
float (32-bit values), the difference is that int uses all bits for a whole
number, whereas float has a part of bits used for representation of a
fractional part. Hence, loss of precision is possible because of rounding when
conversion from int to float is made. The same applies for the conversion of
64-bit long to 64-bit double.

Chapter 3. Operators and Expressions 155

Explicit Type Conversion

Explicit type conversion is used whenever there is a possibility of data loss.
When converting floating point type to integer type there is always a loss of
data coming from the elimination of the fractional part and an explicit
conversion is obligatory (e.g. double to long). To make such a conversion it
is necessary to use the operator for data conversion (type). There may also
be data loss when converting a type with a wider range to type with a
narrower one (double to float or long to int).

Explicit Type Conversion — Example

The following example illustrates the use of explicit type conversion and data
loss that may occur in some cases:

double myDouble = 5.1d;
Console.WriteLine(myDouble); // 5.1

long myLong = (long)myDouble;
Console.WriteLine(myLong); // 5

myDouble = 5e9d; // 5 * 1079
Console.WriteLine(myDouble); // 5000000000

int myInt = (int)myDouble;
Console.WriteLine(myInt); // -2147483648
Console.WritelLine(int.MinValue); // -2147483648

In the first line of the example we assign a value 5.1 to the variable
myDouble. After we convert (explicitly) to type long using the operator
(long) and print on the console the variable myLong we see that the variable
has lost its fractional part, because long is an integer. Then we assign to the
real double precision variable myDouble the value 5 billion. Finally, we convert
myDouble to int by the operator (int) and print variable myInt. The result is
the same like when we print int.MinValue because myDouble contains a
value bigger than the range of int.

It is not always possible to predict what the value of a
& variable will be after its scope overflows! Therefore, use

sufficiently large types and be careful when switching to a
"smaller" type.

Data Loss during Type Conversion

We will give an example for data loss during type conversion:

long myLong = long.MaxValue;

156 Fundamentals of Computer Programming with C#

int myInt = (int)myLong;

Console.WriteLine(myLong); // 9223372036854775807
Console.WriteLine(myInt); // -1

The type conversion operator may also be used in case of an intentional
implicit conversion. This contributes to the readability of code, reducing the
chance for errors and it is considered good practice by many programmers.

Here are some more examples for type conversions:

float heightInMeters = 1.74f; // Explicit conversion
double maxHeight = heightInMeters; // Implicit

double minHeight = (double)heightInMeters; // Explicit
float actualHeight = (float)maxHeight; // Explicit

float maxHeightFloat = maxHeight; // Compilation error!

In the example above at the last line we have an expression that will generate
a compilation error. This is because we try implicitly to convert type double to
float, which can cause data loss. C# is a strongly typed programming
language and does not allow such appropriation of values.

Forcing Overflow Exceptions during Casting

Sometimes it is convenient, instead of getting the wrong result, when a type
overflows during switching from larger to smaller type, to get notification of
the problem. This is done by the keyword checked which includes a check for
overflow in integer types:

double d = 5e9d; // 5 * 1079

Console.WritelLine(d); // 5000000000

int i = checked((int)d); // System.OverflowException
Console.WriteLine(i);

During the execution of the code fragment above an exception (i.e.
notification of an error) of type OverflowException is raised. More
information about the exceptions and the methods to catch and handle them
can be found in the chapter "Exception Handling".

Possible Explicit Conversions

The explicit conversions between numeral types in C# are possible between
any couple among the following types:

sbyte, byte, short, ushort, char, int, uint, long, ulong, float, double,
decimal

Chapter 3. Operators and Expressions 157

In these conversions data can be lost, like data about the number size or
information about its precision.

Notice that conversion to or from string is not possible through typecasting.

Conversion to String

If it is necessary we can convert any type of data, including the value null, to
string. The conversion of strings is done automatically whenever you use the
concatenation operator (+) and one of the arguments is not of type string. In
this case the argument is converted to a string and the operator returns a
new string representing the concatenation of the two strings.

Another way to convert different objects to type string is to call the method
ToString() of the variable or the value. It is valid for all data types in .NET
Framework. Even calling 3.ToString() is fully valid in C# and the result will
return the string "3".

Conversion to String - Example

Let's take a look on several examples for converting different data types to
string:

int a = 5;
int b = 7;
string sum = "Sum = " + (a + b);

Console.WriteLine(sum);
String incorrect = "Sum = " + a + b;
Console.WriteLine(incorrect);

Console.WritelLine(
"Perimeter = " + 2 * (a + b) +

. Area =" + (a *b) + ".");

The result from the example is as follows:

Sum = 12
Sum = 57
Perimeter = 24. Area = 35.

From the results it is obvious, that concatenating a number to a character
string returns in result the string followed by the text representation of the
number. Note that the "+" for concatenating strings can cause unpleasant
effects on the addition of numbers, because it has equal priority with the
operator "+" for mathematical addition. Unless the priorities of the operations
are changed by placing the brackets, they will always be executed from left to
right.

158 Fundamentals of Computer Programming with C#

More details about converting from and to string we will look at the chapter
"Console Input and Output".

Expressions

Much of the program’s work is the calculation of expressions. Expressions
are sequences of operators, literals and variables that are calculated to
a value of some type (number, string, object or other type). Here are some
examples of expressions:

int r = (150-20) / 2 + 5;

// Expression for calculating the surface of the circle
double surface = Math.PI * r * pr;

// Expression for calculating the perimeter of the circle
double perimeter = 2 * Math.PI * r;

Console.WriteLine(r);
Console.WriteLine(surface);
Console.WritelLine(perimeter);

In the example three expressions are defined. The first expression calculates
the radius of a circle. The second calculates the area of a circle, and the last
one finds the perimeter. Here is the result from the fragment above:

70
15393.80400259
439.822971502571

Side Effects of Expressions

The calculation of the expression can have side effects, because the
expression can contain embedded assignment operators, can cause increasing
or decreasing of the value and calling methods. Here is an example of such a
side effect:

int a
int b

55
++a;

Console.WriteLine(a); // 6
Console.WriteLine(b); // 6

Chapter 3. Operators and Expressions 159

Expressions, Data Types and Operator Priorities

When writing expressions, the data types and the behavior of the used
operators should be considered. Ignoring this can lead to unexpected results.
Here are some simple examples:

// First example
double d =1 / 2;
Console.WriteLine(d); // @, not 0.5

// Second example
double half = (double)l / 2;
Console.WriteLine(half); // ©.5

In the first example, an expression divides two integers (written this way, 1
and two are integers) and assigns the result to a variable of type double. The
result may be unexpected for some people, but that is because they are
ignoring the fact that in this case the operator "/" works over integers and the
result is an integer obtained by cutting the fractional part.

The second example shows that if we want to do division with fractions in the
result, it is necessary to convert to float or double at least one of the
operands. In this scenario the division is no longer integer and the result is
correct.

Division by Zero

Another interesting example is division by 0. Most programmers think that
division by 0 is an invalid operation and causes an error at runtime
(exception) but this is actually true only for integer division by 0. Here is an
example, which shows that fractional division by @ is Infinity or NaN:

int num = 1;

double denum = @; // The value is 0.0 (real number)

int zerolInt = (int) denum; // The value is © (integer number)
Console.WriteLine(num / denum); // Infinity
Console.WriteLine(denum / denum); // NaN
Console.WriteLine(zeroInt / zeroInt); // DivideByZeroException

Using Brackets to Make the Code Clear

When working with expressions it is important to use brackets whenever
there is the slightest doubt about the priorities of the operations. Here is an
example that shows how useful the brackets are:

double incorrect = (double)((1 + 2) / 4);
Console.WriteLine(incorrect); // ©

160

Fundamentals of Computer Programming with C#

double correct = ((double)(1 + 2)) / 4;
Console.WriteLine(correct); // 0.75

Console.WriteLine("2 + 3 =" +2 + 3); // 2 + 3 = 23
Console.WriteLine("2 + 3 =" + (2 + 3)); // 2+ 3 =5
Exercises

1. Write an expression that checks whether an integer is odd or even.

2. Write a Boolean expression that checks whether a given integer is
divisible by both 5 and 7, without a remainder.

3. Write an expression that looks for a given integer if its third digit (right
to left) is 7.

4. Write an expression that checks whether the third bit in a given integer
is 1 or 0.

5. Write an expression that calculates the area of a trapezoid by given
sides a, b and height h.

6. Write a program that prints on the console the perimeter and the area
of a rectangle by given side and height entered by the user.

7. The gravitational field of the Moon is approximately 17% of that on the
Earth. Write a program that calculates the weight of a man on the
moon by a given weight on the Earth.

8. Write an expression that checks for a given point {x, y} if it is within
the circle K({0, 0}, R=5). Explanation: the point {0, 0} is the center of
the circle and 5 is the radius.

9. Write an expression that checks for given point {x, y} if it is within the
circle K({0, 0}, R=5) and out of the rectangle [{-1, 1}, {5, 5}].
Clarification: for the rectangle the lower left and the upper right corners
are given.

10. Write a program that takes as input a four-digit number in format abcd

(e.g. 2011) and performs the following actions:
- Calculates the sum of the digits (in our example 2+0+1+1 = 4).

- Prints on the console the number in reversed order: dcba (in our
example 1102).

- Puts the last digit in the first position: dabc (in our example 1201).

- Exchanges the second and the third digits: acbd (in our example
2101).

Chapter 3. Operators and Expressions 161

11.

12.

13.

14.

15.

16.

We are given a number n and a position p. Write a sequence of
operations that prints the value of the bit on the position p in the
number (0 or 1). Example: n=35, p=5 -> 1. Another example: n=35,
p=6 -> 0.

Write a Boolean expression that checks if the bit on position p in the
integer v has the value 1. Example v=5, p=1 -> false.

We are given the number n, the value v (v = 0 or 1) and the position p.
write a sequence of operations that changes the value of n, so the bit on
the position p has the value of v. Example: n=35, p=5, v=0 -> n=3.
Another example: n=35, p=2, v=1 -> n=39.

Write a program that checks if a given number n (1 < n < 100) is a
prime number (i.e. it is divisible without remainder only to itself and 1).

* Write a program that exchanges the values of the bits on positions
3, 4 and 5 with bits on positions 24, 25 and 26 of a given 32-bit unsigned
integer.

* Write a program that exchanges bits {p, p+1, ..., p+k-1} with bits {q,
g+1, ..., g+k-13} of a given 32-bit unsigned integer.

Solutions and Guidelines

1.

Take the remainder of dividing the number by 2 and check if it is @ or
1 (respectively the number is odd or even). Use % operator to calculate
the remainder of integer division.

Use a logical "AND" (&& operator) and the remainder operation % in

division. You can also solve the problem by only one test: the division of
35 (think why).

Divide the number by 100 and save it in a new variable, which then
divide by 10 and take the remainder. The remainder of the division by 10
is the third digit of the original number. Check if it is equal to 7.

Use bitwise "AND" on the current number and the number that has 1
only in the third bit (i.e. number 8, if bits start counting from 0). If the
returned result is different from O the third bit is 1:

int num = 25;
bool bit3 = (num & 8) != 0;

The formula for trapezoid surfaceis: S = (a + b) * h / 2.

Search the Internet for how to read integers from the console and use
the formula for rectangle area calculation. If you have difficulties see
instructions on the next problem.

Use the following code to read the number from the console:

162

Fundamentals of Computer Programming with C#

10.

11.

12.
13.

14.

Console.Write("Enter number: ");
int number = Convert.ToInt32(Console.ReadLine());

Then multiply by 0.17 and print it.

Use the Pythagorean Theorem a? + b? = c2. The point is inside the circle
when (x*x) + (y*y) < 5*5,

Use the code from the previous task and add a check for the
rectangle. A point is inside a rectangle with walls parallel to the axes,
when in the same time it is right of the left wall, left of the right wall,
down from the top wall and above the bottom wall.

To get the individual digits of the number you can divide by 10 and
take the remainder of the division by 10:

int a = num % 10;

int b = (num / 10) % 10;
int ¢ = (num / 100) % 10;
int d = (num / 1000) % 10;

Use bitwise operations:

int n = 35; // 00100011

int p = 6;

int 1 = 1; // 00000001

int mask = i << p; // Move the 1-st bit left by p positions

// If 1 & mask are positive then the p-th bit of n is 1
Console.WriteLine((n & mask) != 90 ? 1 : 9);

The task is similar to the previous one.

Use bitwise operations by analogy with the previous two problems. You
can reset the bit at position p in the number n as follows:

n =N & (~(1 <« p));

You can set bits in the unit at position p in the number n as follows:

n=n/| (1<<p);

Think how you can combine the above two hints.

Read about loops in the Internet or in the chapter “Loops”. Use a loop
and check the number for divisibility by all integers from 1 to the square
root of the number. Since n < 100, you can find in advance all prime
numbers from 1 to 100 and checks the input over them. The prime

Chapter 3. Operators and Expressions 163

15.

16.

numbers in the range [1...100] are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 and 97.

Use 3 times a combination of getting and setting a bit at a given
position. The first exchange is given below:

int bit3 = (num >> 3) & 1;

int bit24 = (num >> 24) & 1;

num = num & (~(1 << 24)) | (bit3 << 24);
num = num & (~(1 << 3)) | (bit24 << 3);

Extend the solution of the previous problem to perform a sequence of
bit exchanges in a loop. Read about loops in the chapter “Loops”.

Chapter 4. Console
Input and Output

In This Chapter

In this chapter we will get familiar with the console as a tool for data input
and output. We will explain what it is, when and how to use it, and how most
programming languages access the console. We will get familiar with some of
the features in C# for user interaction: reading text and numbers from the
console and printing text and numbers. We will also examine the main
streams for input-output operations Console.In, Console.Out and
Console.Error, the Console and the usage of format strings for printing
data in various formats.

What Is the Console?

The Console is a window of the operating system through which users can
interact with system programs of the operating system or with other console
applications. The interaction consists of text input from the standard input
(usually keyboard) or text display on the standard output (usually on the
computer screen). These actions are also known as input-output
operations. The text written on the console brings some information and is a
sequence of characters sent by one or more programs.

For each console application the operating system connects input and output
devices. By default these are the keyboard and the screen but they can be
redirected to a file or other devices.

Communication between the User and the Program

A lot of programs communicate in some way with the user. This is necessary
for the user in order to give instructions to them. Modern communication
methods are many and various: they can be through graphical or web-
based interface, console or others. As we mentioned one of the tools for
communication between programs and users is the console, which is
becoming less and less used. This is because the modern user interface
concepts are more convenient and intuitive to work with, from a user’s
perspective.

166 Fundamentals of Computer Programming with C#

When to Use the Console?

In some cases the console remains an irreplaceable tool for communication
with the user. One of these cases is when writing small and simple
programs where it is necessary to focus the attention on the specific problem
to be solved, rather than the elegant representation of the result to the user.
Then a simple solution is used for entering or printing a result, such as input-
output console. Another use case is when we want to test a small piece of
code for a larger application. Due to simplicity of the operation of the console
application we can isolate this part of the code easily and comfortably without
having to go through a complex user interface and a number of screens to get
to the desired code for testing.

How to Launch the Console?

Each operating system has its own way to launch the console. On Windows for
example, it can be done in the following way:

Start -> (All) Programs -> Accessories -> Command Prompt

After starting the console a black screen (this color can be changed) like the
following should appear:

) Command Prompt - o IEM |

icroszoft Windows [Uersion 6.2.92001
Cc>» 20112 Microsoft Corporation. All rights rezerved.

sslzerssnakow >

When starting the console the home directory of the current user (in this case
the username is nakov) is used as a current directory and this is displayed as
a guide for the user.

Console can be launched through pressing the Start button
and typing "cmd" in the search box and pressing [Enter] (on
& Windows Vista, Windows 7 and later). For Windows XP, go
through the sequence Start -> Run... ->, type in "cmd" and
press [Enter].

For simplified visualization of the results from now on in this chapter instead
of a console screenshot we will use the form:

Results from console

Chapter 4. Console Input and Output 167

More about Consoles

The system console is the black window shown above which displays text
information. It can display text strings and has a cursor, which moves to the
right after each character is printed. After the cursor passes through the last
column of the console (usually it has 80 columns), it moves to the beginning
of the next line. If the cursor passes through the last line, the console scrolls
its content upwards and shows a new empty line below the last line.

Programs in Windows can be console-based, desktop-based, Web-based and
other. The console-based programs use the console for their input and
output. The desktop-based programs use graphical user interface (GUI). The
Web-based programs have Web-based user interface. In this book we will
write console-based programs almost all the time, so their input will be read
from the keyboard and their output will be printed in the console.

Some console-based programs expect the users to enter text, numbers and
other data, and this is usually done through the keyboard.

The console in Windows is often associated with the system command
interpreter, also called the "Command Prompt" or "shell" or which is a
console-based program in the operating system, which provides access to
system commands as well as a wide range of programs, which are part of the
operating system or are additionally installed to it.

The word "shell" means "wrap" and has a meaning of a wrapper between the
user and the inside of the operating system.

The so called operating system "shells" can be split into two main categories
according to the type of interface they can provide to the operating system:

- CLI - Command Line Interface - is a console for commands (such as
cmd.exe in Windows and bash in Linux).

- GUI - Graphical User Interface - is a graphical work environment (such
as Windows Explorer).

For both types the main purpose of the shell is to run other programs with
which the user works although most of the interpreters also support some
advanced features such as the opportunity to examine the content of
directories with files.

& Each operating system has its own command interpreter that
has its own commands.

For example, when starting Windows console, we run the so-called Windows
command interpreter in it (cmd.exe) that executes system programs and
commands in interactive mode. For example, the command dir shows the
files in the current directory:

168 Fundamentals of Computer Programming with C#

tsdir
Uolume Serdial Humher is

Directory of C:o

0 File<s>
? Dirisd

=N Command Prompt

Uolume in drive C is Windows 2003
CCAB-5301

A0.02.2013 0O4:47 <DIR> inetpub
17.03.2013 23:47 <DIR> IntroCSharp
24 _02_.2013 12:55 <DIR> Program Files

13.03.2013 23:57 <DIR> Program Files (xBG62>
A7.03.2013 22:49 <DIR> Trash

2. .03.2013 01:21 <DIR> Uzers

13.03.2013 0O8:00 <DIR> Windows

M hytes
17 574 104 064 bytes free

Basic Console Commands

We will take a look at some basic commands in the Windows standard
command prompt, which is useful for finding and launching programs.

Windows Console Commands

The command interpreter running in the console is also called "Command
Prompt" or "MS-DOS Prompt" (in older versions of Windows). We will take a
look at some basic commands for this interpreter:

Command

Description

dir

Displays the content of the current directory.

cd <directory name>

Changes the current directory.

mkdir <directory name>

Creates a new directory in the current one.

rmdir <directory name>

Deletes an existing directory.

type <file name>

Prints file content.

copy <src file>
<destination file>

Copies one file into another.

Here is an example of multiple commands executed in the Windows command
shell. The result of the commands’ execution is displayed on the console:

C:\Documents and Settings\Userl>cd "D:\Project2009\C# Book"

C:\Documents and Settings\Useril>D:

Chapter 4. Console Input and Output 169

D:\Project2008\C# Book>dir
Volume in drive D has no label.
Volume Serial Number is B43A-B0OD6

Directory of D:\Project2009\C# Book
26.12.2009 12:24 <DIR>

26.12.2009 12:24 <DIR> ..
26.12.2009 12:23 537 600 Chapter-4-Console-Input-

Output.doc
26.12.2009 12:23 <DIR> Test Folder
26.12.2009 12:24 0 Test.txt

2 File(s) 537 600 bytes

3 Dir(s) 24 154 062 848 bytes free

D:\Project2009\C# Book>

Standard Input-Output

The standard input-output also known as "Standard I/0" is a system input-
output mechanism created since the UNIX operating systems was developed
many years ago. Special peripheral devices for input and output are used,
through which data can be input and output.

When the program is in mode of accepting information and expects action by
the user, there is a blinking cursor on the console showing that the system is
waiting for command entering.

Later we will see how we can write C# programs that expect input data to be
entered from the console.

Printing to the Console

In most programming languages printing and reading the information from
the console is implemented in similar ways and the most of the solutions are
based on the concept of "standard input" and "standard output".

Standard Input and Standard Output

The operating system is required to define standard input-output
mechanisms for user interaction. When starting a given console program,
system code running at the initialization of the program is responsible for
opening (closing) of streams to the allocated by the operating system
mechanisms for input-output. This system code initializes the program
abstraction for user interaction embedded in the respective programming
language. In this way, the application started can automatically read the user

170 Fundamentals of Computer Programming with C#

input from the standard input stream (in C# this is Console.In), print
information on the standard output stream (in C# this is Console.Out) and
can signal for problem situations in the standard error stream (in C# this is
Console.Error).

The concept of the streams will be later examined in details. For now we will
focus on the theoretical basis related to the program input and output in C#.

Devices for Console Input and Output

Besides the keyboard an application input can come from many other places,
such as file, microphone, barcode reader and others. The output of a
program may be on the console (on the screen), as well as in a file or another
output device, such as a printer:

[Keyboard [
Printing to the

Program screen

L 4

We will show a basic example that illustrates text printing to the console
through the abstraction for accessing the standard input and standard output
provided to us by C#:

Console.Out.WriteLine("Hello World");

The result of the above code execution would be the following:

Hello World

Console.Out Stream

System.Console class has different properties and methods (classes are
considered in details in the chapter "Creating and Using Objects") which are
used to read and display text on the console as well as its formatting. Among
them there are three properties that make impression and they are related to
data entering and displaying, namely the Console.Out, Console.In and
Console.Error. They provide access to the standard streams for printing on
the console, for reading from the console and to the error messages reporting
stream accordingly. Although we could use them directly, the other methods
of System.Console give us the convenience for working with input-output
console operations and actually most often these properties are ignored.
However it is good to remember that this part of the console functionality is
working on these streams. If needed, we can replace the default input /
output / error streams at runtime by using the methods Console.SetOut(..),
Console.SetIn(..) and Console.SetError(..) respectively.

Chapter 4. Console Input and Output 171

Now we will examine the most commonly used methods for text printing on
the console.

Using Console.Write(...) and Console.WriteLine(...)

Work with these methods is easy because they can print all the basic types
(string, numeric and primitive types).

Here are some examples of printing various types of data:

// Print String
Console.WriteLine("Hello World");

// Print int
Console.WriteLine(5);

// Print double
Console.WriteLine(3.14159265358979);

The result of this code execution looks like this:

Hello World
5
3.14159265358979

As we see by using Console.WriteLine(..) it is possible to print various data

types because for each type there is a predefined version of the
methodWriteLine(..) in the Console class.

The difference between Write(..) and WriteLine(..) is that the Write(..)
method prints on the console what it is provided between the parentheses but
does nothing in addition while the method WriteLine(..) means directly
“write line”. This method does what the Write(..) one does but in addition
goes to a new line. In fact the method does not print a new line but simply
puts a “command” for moving cursor to the position where the new line
starts (this command consists of the character \r followed by \n).

Here is an example, which illustrates the difference between Write(..) and
WriteLine(..):

Console.WriteLine("I love");
Console.Write("this ");
Console.Write("Book!");

The output of this example is:

I love
this Book!

172 Fundamentals of Computer Programming with C#

We notice that the output of this example is printed on two lines, even though
the code is on three. This happens because on the first line of code we use
WriteLine(..) which prints "I love" and then goes to a new line. In the next
two lines of the code uses the Write(..) method, which prints without going
on a new line and thus the words "this" and "Book!" remain on the same
line.

Concatenation of Strings

In general C# does not allow the use of operators over string objects. The
only exception to this rule is the addition operation (+) which concatenates
(joins) two strings and returns as result a new string. This allows chaining
of concatenate (+) operations one after another in a sequence. The next
example represents concatenation of three strings.

string age = "twenty six";

string text = "He is " + age + " years old.";
Console.WriteLine(text);

The result of this code execution is again a string:

He is twenty six years old.

Concatenation of Mixed Types

What happens when we want to print larger and more complex text, which
consists of different types? Until now we used versions of the method
WriteLine(..) for a specific type. Is it necessary when we want to print
different types at once to use different versions of the method WriteLine(...)
for each of these types? The answer to this question is "no” because in C# we
can unite text and other data (for instance, numeric) by using the "+"
operator. The following example is like the previous but in it the years (age)

are from integer type:

int age = 26;
string text = "He is " + age + " years old.";
Console.WriteLine(text);

In the example is concatenation and printing on the screen performed. The
result of the example is the following:

He is 26 years old.

On the second line of the example code we see that a concatenation of the
string "He is" and the integer type "age" is performed. We are trying to
combine two different types. This is possible because of the presence of
the following important rule.

Chapter 4. Console Input and Output 173

& When a string is involved in concatenation with any other
type the result is always a string.

From the rule it is clear that the result of "He is " + age is again a string and
then the result is added to the last part of the expression " years old.". So
after calling a chain of + operators ultimately the result is a string and thus
the string version of the method WriteLine(..) is invoked.

For short the above example can be written as follows:

int age = 26;
Console.WriteLine("He is

+ age + " years old.");

Some Features of String Concatenation

There are some interesting situations with concatenation (addition) of strings
that you need to know and be careful about because they lead to errors. The
following example represents a surprising behavior of the code:

string s = "Four: " + 2 + 2;
Console.WriteLine(s);
// Four: 22

string s1 = "Four: " + (2 + 2);
Console.WritelLine(sl);
// Four: 4

As seen from the example the operators’ execution order (see chapter
"Operator and Expressions") is of great importance! In our example first the
concatenation of "Four: " to "2" is performed and the result of the
operation is string. After that, another concatenation with the second
number is performed and the obtained unexpected result is "Four: 22"
instead of the expected "Four: 4". This is because the operations are
performed from left to right and in this scenario a string participates in each
of them.

In order to avoid this unpleasant situation we can use parentheses that will
change the order of operators’ execution can be used to achieve the desired
result. Parentheses are operators with highest priority and make the
execution of the operation "addition" of the two numbers happen before the
concatenation with the string on the left. Thus first the addition of the two
numbers is done and then they are concatenated with the string.

This mistake is very common for beginner programmers because they do not
consider that string concatenation is performed from left to right because the
addition of numbers is of the same priority than as concatenation.

174 Fundamentals of Computer Programming with C#

parentheses to specify the correct order of operations.

2 When you concatenate strings and also sum numbers, use
Otherwise they are executed from left to right.

Formatted Output with Write(...) and WriteLine(...)

For printing long and elaborate series of elements, special options (also
known as overloads) of the methods Write(..) and WriteLine(..) have been
introduced. These options have a completely different concept than the
standard methods for printing in C#. Their main idea is to adopt a special
string, formatted with special formatting characters and list of values, which
should be substituted in place of “the format specifiers”. Here is how
Write(..) is defined in the standard C# libraries:

public static void Write(string format, object argo,
object argl, object arg2, object arg3, ..);

Formatted Output — Examples

The following example prints twice the same thing but in different ways:

string str = "Hello World!";

// Print (the normal way)
Console.Write(str);

// Print (through formatting string)
Console.Write("{0}", str);

The result of this example execution is:

Hello World!Hello World!

We see as a result "Hello, World!" twice on one line. This is because there
is no printing of a new line in the program.

First we print the string in a well-known way in order to see the difference
with the other approach. The second printing is the formatting Write(..) and
the first argument is the format string. In this case {0} means to put the first
argument after the formatting string in the place of {@}. The expression {0}
is called a placeholder, i.e. a place that will be replaced by a specific value
while printing.

The next example will further explain this concept:

string name = "John";
int age = 18;

Chapter 4. Console Input and Output 175

string town = "Seattle";
Console.Write(
"{0} is {1} years old from {2}!\n", name, age, town);

The result of this example execution is as follows:

John is 18 years old from Seattle!

From the signature of this Write(..) version we saw that the first argument is
the format string. Following is a series of arguments, which are placed where
we have a number enclosed in curly brackets. The expression {0} means to
put in its place the first of the arguments submitted after the format string
(in this case name). Next is {1} which means to replace with the second of
the arguments (age). The last placeholder is {2}, which means to replace with
the next parameter (town). Last is \n, which is a special character that
indicates moving to a new line.

It is appropriate to mention that actually the new line command on Windows
is \r\n, and on Unix-based operating systems - \n. When working with
the console it does not matter that we use only \n because the standard input
stream considers \n as \r\n but if we write into a file, for example, using only
\n is wrong (on Windows).

Composite Formatting

The methods for formatted output of the Console class use the so-called
composite formatting feature. The composite formatting is used for
console printing as well as in certain operations with strings. We examined the
composite formatting in the simplest of its kind in the previous example but it
has significantly bigger potential than what we have seen so far. Basically the
composite formatting uses two things: composite formatting string and
series of arguments, which are replaced in certain places in the string.

Composite Formatting String

The composite formatting string is a mixture of normal text and formatting
items. In formatting the normal text remains the same as in the string and
the places of formatting items are replaced by the values of the respective
arguments printed according to certain rules. These rules are specified using
the syntax of formatting items.

Formatting Items

The formatting items provide the possibility for powerful control over the
displayed value and therefore can obtain very complicated form. The following
formation scheme represents the general syntax of formatting items:

{index[,alignment][:formatString]}

176 Fundamentals of Computer Programming with C#

As we notice the formatting item begins with an opening curly bracket { and
ends with a closing curly bracket }. The content between the brackets is
divided into three components of which only the index component is
mandatory. Now we will examine each of them separately.

Index Component

The index component is an integer and indicates the position of the
argument from the argument list. The first argument is indicated by "@", the
second by "1", etc. The composite formatting string allows having multiple
formatting items that relate to one and same argument. In this case index
component of these items is one and the same number. There is no restriction
on the sequence of arguments’ calling. For example, we could use the
following formatting string:

Console.Write(
"{1} is {@} years old from {3}!", 18, "John", @, "Seattle");

In cases where some of the arguments are not referenced by any of the
formatting items, those arguments are simply ignored and do not play a role.
However it is good to remove such arguments from the list of arguments
because they introduce unnecessary complexity and may lead to confusion.

In the opposite case, when a formatting item refers an argument that does
not exist in the list of arguments, an exception is thrown. This may occur,
for example, if we have formatting placeholder {4} and we submitted a list of
only two arguments.

Alignment Component

The alignment component is optional and indicates the string alignment. It
is a positive or negative integer and the positive values indicate alignment
to the right and the negative - alignment to the left. The value of the number
indicates the number of positions in which to align the number. If the string
we want to represent has a length greater than or equal to the value of the
number, then this number is ignored. If it is less, however, the unfilled
positions are filled in with spaces.

For example, let’s try the following formatting:

Console.WriteLine("{0,6}", 123);
Console.WriteLine("{0,6}", 1234);
Console.WriteLine("{0,6}", 12);
Console.Write("{0,-6}", 123);
Console.WriteLine("--end");

It will output the following result:

123

Chapter 4. Console Input and Output 177

1234
12
123 --end

If we decide to use the alignment component, we must separate it from the
index component by a comma as it is done in the example above.

The "formatString" Component

This component specifies the specific formatting of the string. It varies
depending on the type of argument. There are three main types of
formatString components:

- for numerical types of arguments
- for arguments of type date (DateTime)

- for arguments of type enumeration (listed types)

Format String Components for Numbers

This type formatString component has two subtypes: standard-defined
formats and user-defined formats (custom format strings).

Standard Formats for Numbers

These formats are defined by one of several format specifiers, which are
letters with particular importance. After the format specifier there can be a
positive integer called precision, which has a different meaning for the
different specifiers. When it affects the number of decimal places after the
decimal point, the result is rounded. The following table describes specifiers
and their precision meaning:

Specifier Description
Indicates the currency and the result will be displayed
"C" or "c" along with the currency sign for the current “culture”
(for example, English). The precision indicates the
number of decimal places after the decimal point.
An integer number. The precision indicates the
"D" or "d" minimum number of characters for representing the
string and, if necessary, zeroes are supplemented in the
beginning.
ngn w_n Exponential notation. The precision indicates the
or "e . .
number of places after the decimal point.
"E" or “f" Integer or decimal number. The precision indicates
the number of signs after the decimal point.

178 Fundamentals of Computer Programming with C#

Equivalent to "F" but represents also the corresponding
separator for thousands, millions, etc. (for example, in
"N" or "n" the English language often the number "1000" is
represented as "1,000" - with comma between the
number 1 and the zeroes).

Percentage: it will multiply the number by 100 and will
"P" or "p" display the percent character upfront. The precision
indicates the number of signs after the decimal point.

Displays the number in hexadecimal numeral system.

It works only for integer numbers. The precision
"X" or "x" indicates minimum numbers of signs to display the
string as the missing ones are supplemented with zeroes
at the beginning.

Part of the formatting is determined by the current “culture” settings,
which are taken by default from the regional settings of the operating system.
"The cultures" are set of rules that are valid for a given language or a given
country and that indicate which character is to be used as decimal separator,
how the currency is displayed, etc. For example, for the Japanese "culture"
the currency is displayed by adding "¥" after the amount, while for the
American "culture", the character "$" is displayed before the amount. For
Bulgarian currency is suffixed by " nB."

Standard Formats for Numbers — Example

Let's see a few examples of usage of the specifiers represented in the table
above. In the code below we assume the regional settings are Bulgarian so
the currency will be printed in Bulgarian, the decimal separator will be "," and
the thousands separator will be space (the regional settings can be changed

from Control Panel in Windows):

StandardNumericFormats.cs

class StandardNumericFormats

{

static void Main()

{
Console.WriteLine("{0:C2}", 123.456);
//Output: 123,46 ns.
Console.WriteLine("{@:D6}", -1234);
//Output: -001234
Console.WriteLine("{0@:E2}", 123);
//Output: 1,23E+002
Console.WriteLine("{0@:F2}", -123.456);
//Output: -123,46

Chapter 4. Console Input and Output 179

Console.WriteLine("{@:N2}", 1234567.8);
//Output: 1 234 567,80
Console.WriteLine("{0@:P}", 0.456);
//Output: 45,60 %
Console.WriteLine("{0:X}", 254);
//Output: FE

}

}

If we run the same code with English (United States) culture, the output will
be as follows:

$123.46
-001234
1.23E+002
-123.46
1,234,567.80
45.60 %

FE

Custom Formats for Numbers

All formats that are not standard are assigned to the user (custom) formats.
For the custom formats are again defined a set of specifiers and the
difference with the standard formats is that a number of specifiers can be
used (in standard formats only a single specifier is used). The following table
lists various specifiers and their meaning:

Specifier Description

0 Indicates a digit. If at this position of the result a digit is
missing, a zero is written instead.

Indicates a digit. Does not print anything if at this
position in the result a digit is missing.

Decimal separator for the respective “culture”.

B Thousands separator for the respective “culture”.
% Multiplies the result by 100 and prints the character for
) percent.

Indicates an exponential notation. The number of zeroes
indicates the number of signs of the exponent. The sign
EOQ or E+0 or E-0 | "+" means that we always want to represent also the
number’s sign while minus means to display the sign
only if the value is negative.

180 Fundamentals of Computer Programming with C#

There are many characteristics regarding the use of custom formats for
numbers, but they will not be discussed here. You may find more information
in MSDN. Here are some simple examples that illustrate how to use custom
formatting strings (the output is given for the U.S. culture):

CustomNumericFormats.cs

class CustomNumericFormats

{
static void Main()
{
Console.WriteLine("{0:0.00}", 1);
//Output: 1.00
Console.WriteLine("{0:#.##}", 0.234);
//Output: .23
Console.WriteLine("{0:#####}", 12345.67);
//Output: 12346
Console.WriteLine("{0: (0#) #H# ## ##}", 29342525);
//Output: (©2) 934 25 25
Console.WriteLine("{0:%##}", 0.234);
//Output: %23
}
}

Format String Components for Dates

When formatting dates we again have separation of standard and custom
formats.

Standard Defined Date Formats

Since the standard defined formats are many we will list only few of them.
The rest can be easily checked on MSDN.

Specifier Format (for English (United States) "culture")
d 2/27/2012
D February 27, 2012
t 17:30 (hour)
T
Y

17:30:22 (hour)

ory February 2012 (only month and year)

Custom Date Formats

Similar to custom formats for numbers here we have multiple format
specifiers and we can combine several of them. Since here are many

Chapter 4. Console Input and Output 181

specifiers we will show only some of them, which we will use to demonstrate
how to use custom formats for dates. Consider the following table:

Specifiers Format (for English (United States) "culture")
d Day - from 1 to 31
dd Day - from 01 to 31
M Month - from 1 to 12
MM Month - from 01 to 12
yy The last two digits of the year (from 00 to 99)
yyyy Year written in 4 digits (e.g. 2012)
hh Hour - from 00 to 11
HH Hour - from 00 to 23
m Minutes - from 0 to 59
mm Minutes - from 00 to 59
3 Seconds - from 0 to 59
SS Seconds - from 00 to 59

When using these specifiers we can insert different separators between the
different parts of the date, such as "." or "/". Here are few examples:

DateTime d = new DateTime(2012, @2, 27, 17, 30, 22);
Console.WriteLine("{0:dd/MM/yyyy HH:mm:ss}", d);
Console.WriteLine("{0:d.MM.yy}", d);

Execution of these examples gives the following result for the U.K. culture:

27/02/2012 17:30:22
27.02.12

Note that the result can vary depending on the current culture. For example if
we run the same code in the Bulgarian culture, the result will be different:

27.02.2012 17:30:22
27.02.12

Format String Enumeration Components

Enumerations (listed types) are data types that can take as value one of
several predefined possible values (e.g. the seven days of the week). We will
examine them in details in the chapter "Defining Classes".

182 Fundamentals of Computer Programming with C#

In enumerations there is very little to be formatted. Four standard format
specifiers are defined:

Specifier Format
Gor g Represents enumeration as a string.
Dord Represents enumeration as a number.

Represents enumeration as a number in hexadecimal

X or x numeral system and with eight digits.

Here are some examples:

Console.WriteLine("{0:G}", DayOfWeek.Wednesday);
Console.WriteLine("{0@:D}", DayOfWeek.Wednesday);
Console.WriteLine("{0:X}", DayOfWeek.Wednesday);

While executing the above code we get the following result:

Wednesday
3
00000003

Formatting Strings and Localization

When using format strings it is possible one and same program to print
different values depending on the localization settings for the operating
system. For example, when printing the month from a given date if the
current localization is English it will print in English, for example “August”,
while if the localization is French it will print in French, for example "Ao(t".

When launching a console application it automatically retrieves the operating
system localization (culture settings) and uses it for reading and writing
formatted data (like numbers, dates, currency, etc.).

Localization in .NET is also called "culture" and can be changed manually by
the class System.Globalization.CultureInfo. Here is an example in which
we print a number and a date by the U.S. and Bulgarian localization:

CultureInfoExample.cs

using Systenm;
using System.Threading;
using System.Globalization;

class CulturelInfoExample

{

static void Main()

Chapter 4. Console Input and Output 183

DateTime d = new DateTime(2012, 02, 27, 17, 30, 22);

Thread.CurrentThread.CurrentCulture =
CultureInfo.GetCultureInfo("en-US");

Console.WriteLine("{@:N}", 1234.56);

Console.WriteLine("{0:D}", d);

Thread.CurrentThread.CurrentCulture =
CultureInfo.GetCultureInfo("bg-BG");

Console.WriteLine("{0@:N}", 1234.56);

Console.WriteLine("{0@:D}", d);

}
}

When starting the example the following result is obtained:

1,234.56

Monday, February 27, 2012
1 234,56

27 OeBpyapu 2012 r.

Console Input

As in the beginning of this chapter we explained, the most suitable for small
applications is the console communication because it is easiest to implement.
The standard input device is the part of the operating system that controls
from where the program will receive its input data. By default "the standard
input device" reads its input from a driver "attached" to the keyboard. This
can be changed and the standard input can be redirected to another location,
for example to a file, but this is rarely done.

Each programming language has a mechanism for reading and writing to the
console. The object that controls the standard input stream in C#, is
Console.In.

From the console we can read different data:
- text;
- other types after parsing the text;

Actually for reading the standard input stream Console.In is rarely used
directly. The class Console provides two methods Console.Read() and
Console.ReadLine() that run on this stream and usually reading from the
console is done by them.

184 Fundamentals of Computer Programming with C#

Reading through Console.ReadLine()

The method Console.ReadLine() provides great convenience for reading
from console. How does it work? When this method is invoked, the program
prevents its work and wait for input from the console. The user enters some
string on the console and presses the [Enter] key. At this moment the
console understands that the user has finished entering and reads the string.
The method Console.ReadLine() returns as result the string entered by the
user. Now perhaps it is clear why this method has this name.

The following example demonstrates the operation of Console.ReadLine():

UsingReadLine.cs
class UsingReadlLine
{
static void Main()
{
Console.Write("Please enter your first name: ");
string firstName = Console.ReadLine();
Console.Write("Please enter your last name: ");
string lastName = Console.ReadlLine();
Console.WriteLine("Hello, {@} {1}!", firstName, lastName);
}
}
// Output: Please enter your first name: John
// Please enter your last name: Smith
// Hello, John Smith!

We see how easy it is to read text from the console by using the method
Console.ReadlLine():

- We print some text in the console, which asks for a user name (this is
only for the convenience of the user and is not obligatory).

- We execute reading of an entire line from the console using the method
ReadLine(). This leads to blocking the program until the user enters
some text and presses [Enter].

- Then we repeat these two steps for the last name.

- Once we have gathered the necessary information we print it on the
console.

Chapter 4. Console Input and Output 185

Reading through Console.Read()

The method Read() behaves slightly different than ReadLine(). As a
beginning it reads only one character and not the entire line. The other
significant difference is that the method does not return directly the read
character but its code. If we want to use the result as a character we must
convert it to a character or use the method Convert.ToChar() on it. There is
one important characteristic: the character is read only when the [Enter]
key is pressed. Then the entire string written on the console is transferred to
the buffer of the standard input string and the method Read() reads the first
character of it. In subsequent invocations of the method if the buffer is not
empty (i.e. there are already entered in but still unread characters) then the
program execution will not stop and wait, but will directly read the next
character from the buffer and thus until the buffer is empty. Only then the
program will wait again for a user input if Read() is called again. Here is an
example:

UsingRead.cs
class UsingRead
{
static void Main()
{
int codeRead = 0;
do
{
codeRead = Console.Read();
if (codeRead != 0)
{
Console.Write((char)codeRead);
}
}
while (codeRead != 10);
}
}

This program reads one line entered by the user and prints it character by
character. This is possible due to a small trick — we are previously aware that
the [Enter] key actually enters two characters in the buffer. These are the
"carriage return" code (Unicode 13) followed by the "linefeed" code
(Unicode 10). In order to understand that one line is finished we are looking
for a character with code 10 in the Unicode table. Thus the program reads
only one line and exits the loop.

We should mention that the method Console.Read() is rarely used in
practice if there is an alternative to use Console.ReadLine(). The reason for
this is that the possibility of mistaking with Console.Read() is much greater

186

Fundamentals of Computer Programming with C#

than if we choose an alternative approach and the code will most likely be

unnecessarily complicated.

Reading Numbers

Reading numbers from the console in C# is not done directly. In order to
read a number we should have previously read the input as a string (using
ReadLine()) and then convert this string to a number. The operation of
converting a string into another type is called parsing. All primitive types
have methods for parsing. We will give a simple example for reading and

parsing of humbers:

ReadingNumbers.cs

{

}

class ReadingNumbers

static void Main()

{

}

Console.

int a =

Console.

int b =

Console

Console

WriteLine("{0} + {1}
Console.

Write("a = ");
int.Parse(Console.ReadLine());

Write("b = ");
int.Parse(Console.ReadLine());

{2}", a, b, a + b);
WriteLine("{0} * {1} = {2}", a, b, a * b);

Mrite("f = ");

double f = double.Parse(Console.ReadlLine());

Console

a, b,

WriteLine("{@} * {1} / {2} = {3}",
f, a*b/ f);

The result of program execution might be as follows (provided that we enter

5, 6 and 7.5 as input)

vl -h U1 U1 G L

* 4+ 1

*

5

6

6 = 11
6 = 30
7.5

6 /7.5

= 4

In this particular example the specific thing is that we use parsing methods
of numerical types and when wrong a result is passed (such as text) this

Chapter 4. Console Input and Output 187

will cause an error (exception) System.FormatException. This is especially
true when reading real numbers, because the delimiter used between the
whole and fractional part is different in various cultures and depends on
regional settings of the operating system.

The separator for floating point numbers depends on the
current language settings of the operating system (Regional
and Language Options in Windows). In some systems as
& separator the character comma can be used, in others - point
(dot). Entering a point (dot) instead of a comma will cause
System.FormatException when the current language settings
use comma.

The exceptions as a mechanism for reporting errors will be discussed in the
chapter "Exception Handling". For now you can consider that when the
program provides an error this is associated with the occurrence of an
exception that prints detailed information about the error on the console. For
example, let’s suppose that the regional settings of the computer are
Bulgarian and we execute the following code:

Console.Write("Enter a floating-point number: ");
string line = Console.ReadlLine();

double number = double.Parse(line);
Console.WriteLine("You entered: {0}", number);

If we enter the number "3.14" (with a wrong decimal separator for the
Bulgarian settings) we will get the following exception (error message):

Unhandled Exception: System.FormatException: Input string was
not in a correct format.

at System.Number.StringToNumber(String str, NumberStyles
options, NumberBuffer& number, NumberFormatInfo info, Boolean
parseDecimal)

at System.Number.ParseDouble(String value, NumberStyles
options, NumberFormatInfo numfmt)

at System.Double.Parse(String s, NumberStyles style,
NumberFormatInfo info)

at System.Double.Parse(String s)

at ConsoleApplication.Program.Main() in
C:\Projects\IntroCSharpBook\ConsoleExample\Program.cs:line 14

Parsing Numbers Conditionally

When parsing a string to a number using the method Int32.Parse(string)
or by Convert.ToInt32(string) if the submitted string is not a number we

188 Fundamentals of Computer Programming with C#

get an exception. Sometimes it is necessary to catch the failed parsing and to
print an error message or to ask the user to enter in a new value.

Interception of an incorrectly entered number when parsing a sting can be
done in two ways:

- by catching exceptions (see the chapter "Exception Handling");

- by conditional parsing (using the method TryParse(...)).

Let’s consider the conditional parsing of numbers in .NET Framework. The
method Int32.TryParse(..) accepts two parameters - a parsing string and a
variable to record the result of parsing. If the parsing is successful the method
returns value true. For greater clarity, let’s consider an example:

string str = Console.ReadlLine();
int intValue;
bool parseSuccess = Int32.TryParse(str, out intValue);
Console.WriteLine(parseSuccess ?
"The square of the number is "
"Invalid number!");

+ intValue * intValue +

In the example, conditional parsing of a string entered from the console to the
integer type Int32 is performed. If we enter as input "2", parsing will be
successful so the result of TryParse() will be true, and the parsed number
will be recorded in the variable intValue and on the console the squared
number will be printed:

Result: The square of the number is 4.

If we try to parse an invalid number such as "abc", TryParse() will return
false as a result and the user that will be notified that he has entered an
invalid number:

Invalid number!

Note that the method TryParse() as a result of its work returns
simultaneously two values: the parsed number (as an output parameter)
and a Boolean value as a result of the method invocation. Returning multiple
values at once is possible because one of the values is returned as an output
parameter (out parameter). The output parameters return value in a
predefined for the purpose variable coinciding with their type. When calling a
method the output parameters must be preceded by the keyword out.

Reading by Console.ReadKey()

The method Console.ReadKey() waits for key pressing on the console and
reads its character equivalent without the need of pressing [Enter]. The
result of invoking ReadKey() is information about the pressed key (or

Chapter 4. Console Input and Output 189

more accurately a key combination) as an object of type ConsoleKeyInfo.
The obtained object contains the character that is entered by the pressed key
combination (property KeyChar) along with information about the keys
[Shift], [Ctrl] and [Alt] (property Modifiers). For example, if we press
[Shift+A] we will read a capital letter 'A’" while in the Modifiers property we will
have the Shift flag. Here is an example:

ConsoleKeyInfo key = Console.ReadKey();
Console.WriteLine();

Console.WriteLine("Character entered: + key.KeyChar);
Console.WritelLine("Special keys: " + key.Modifiers);

If we execute the program and press [Shift+A], we will obtain the following
result:

A
Character entered: A
Special keys: Shift

Simplified Reading of Numbers through Nakov.IO.Cin

There is no standard easy way to read several numbers, located on the same
line, separated by a space. In C# and .NET Framework we need to read a
string, split it into tokens using the space as separator and parse the obtained
tokens to extract the numbers. In other languages and platforms like C++ we
can directly read numbers, characters and text from the console without
parsing. This is not available in C# but we can use an external library or class.

The standard library Nakov.IO0.Cin provides a simplified way to read
numbers from the console. You can read about it from the blog of its author
Svetlin Nakov: http://www.nakov.com/blog/2011/11/23/cin-class-for-csharp-
read-from-console-nakov-io-cin/. Once we have copied the file Cin.cs from
Nakov.IO.Cin into our Visual Studio C# project, we could write code like this:

using Nakov.IO;

int x = Cin.NextInt();

double y = Cin.NextDouble();

decimal d = Cin.NextDecimal();
Console.WriteLine("Result: {0} {1} {2}", x, y, d);

If we execute the code, we can enter 3 numbers by putting any amount of
whitespace separators between them. For example we can enter the first
number, two spaces, the second number, a new line + space and the last
number + space. The numbers will be read correctly and the output will
be as follows:

http://www.nakov.com/blog/2011/11/23/cin-class-for-csharp-read-from-console-nakov-io-cin/
http://www.nakov.com/blog/2011/11/23/cin-class-for-csharp-read-from-console-nakov-io-cin/

190 Fundamentals of Computer Programming with C#

3 2.5
3.58
Result: 3 2.5 3.58

Console Input and Output - Examples

We will consider few more examples of console input and output that will
show us some interesting techniques.

Printing a Letter

Next is a practical example representing console input and formatted text in
the form of a letter:

PrintingLetter.cs

class Printingletter

{

static void Main()

{
Console.Write("Enter person name: ");
string person = Console.ReadlLine();

Console.Write("Enter book name: ");
string book = Console.ReadlLine();

string from = "Authors Team";

Console.WriteLine(" Dear {0},", person);
Console.Write("We are pleased to inform " +
"you that \"{1}\" is the best Bulgarian book. {2}" +
"The authors of the book wish you good luck {@}!{2}",

person, book, Environment.NewLine);

Console.WriteLine(" Yours,");
Console.WriteLine(" {0}", from);

}
}

The result of the execution of the above program could be the following:

Enter person name: Readers
Enter book name: Introduction to programming with C#
Dear Readers,
We are pleased to inform you that "Introduction to programming

Chapter 4. Console Input and Output 191

with C#" is the best Bulgarian book.

The authors of the book wish you good luck Readers!
Yours,
Authors Team

In this example we have a letter template. The program "asks" a few
questions to the user and reads from the console information needed to print
the letter by replacing the formatting specifiers with the data filled in by the
user.

Area of a Rectangle or a Triangle

We will consider another example: calculating of an area of a rectangle or a
triangle.

CalculatingArea.cs

class CalculatingArea

{
static void Main()
{
Console.WritelLine("This program calculates " +
"the area of a rectangle or a triangle");

Console.WriteLine("Enter a and b (for rectangle) " +
"or a and h (for triangle): ");

int a = int.Parse(Console.ReadLine());

int b = int.Parse(Console.ReadLine());

Console.WriteLine("Enter 1 for a rectangle or " +
"2 for a triangle: ");

int choice = int.Parse(Console.ReadlLine());
double area = (double) (a * b) / choice;
Console.WriteLine("The area of your figure is

}

+ area);

}

The result of the above example’s execution is as follows:

This program calculates the area of a rectangle or a triangle
Enter a and b (for rectangle) or a and h (for triangle):

5

4

192

Fundamentals of Computer Programming with C#

Enter 1 for a rectangle or 2 for a triangle:

2

The area of your figure is 10

Exercises

1.

10.

11.

12.

Write a program that reads from the console three numbers of type int
and prints their sum.

man

Write a program that reads from the console the radius "r" of a circle
and prints its perimeter and area.

A given company has name, address, phone number, fax number, web
site and manager. The manager has name, surname and phone number.
Write a program that reads information about the company and its
manager and then prints it on the console.

Write a program that prints three nhumbers in three virtual columns
on the console. Each column should have a width of 10 characters and
the numbers should be left aligned. The first number should be an
integer in hexadecimal; the second should be fractional positive; and
the third - a negative fraction. The last two numbers have to be
rounded to the second decimal place.

Write a program that reads from the console two integer numbers (int)
and prints how many numbers between them exist, such that the
remainder of their division by 5 is 0. Example: in the range (14, 25)
there are 3 such numbers: 15, 20 and 25.

Write a program that reads two numbers from the console and prints the
greater of them. Solve the problem without using conditional
statements.

Write a program that reads five integer numbers and prints their
sum. If an invalid number is entered the program should prompt the user
to enter another number.

Write a program that reads five numbers from the console and prints the
greatest of them.

Write a program that reads an integer number n from the console. After
that reads n numbers from the console and prints their sum.

Write a program that reads an integer number n from the console and
prints all numbers in the range [1..n], each on a separate line.

Write a program that prints on the console the first 100 numbers in the
Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ..

Write a program that calculates the sum (with precision of 0.001) of
the following sequence: 1 + 1/2-1/3 + 1/4-1/5 + ...

Chapter 4. Console Input and Output 193

Solutions and Guidelines
1. Use the methods Console.ReadLine() and Int32.Parse().
2. Use Math.PI constant and the well-known geometric formulas.

3. Format the text with Write(..) or WriteLine(..) similar to the example
with the letter that we looked at.

4. Use the format strings explained in the “Composite Formatting” section
and the method Console.WriteLine(). Below is a piece of the code:

int hexNum = 2013;
Console.WriteLine("|@x{0@,-8:X}|", hexNum);
double fractNum = -1.856;
Console.WriteLine("|{0@,-10:f2}|", fractNum);

5. There are two approaches for solving the problem:

First approach: Use mathematical tricks for optimized calculation based
on the fact that every fifth number is divisible by 5. Think how to
implement this correctly and about the borderline cases.

The second approach is easier but it works slower. With a for-loop
each number within the given range can be checked. You should read in
Internet or in the chapter "Loops" how to use for-loops.

6. Since the problem requires a solution, which does not use conditional
statements, you should use a different approach. Two possible solutions
of the problem include the use of functions of class Math. The greater of
the two numbers you can find with the function Math.Max(a, b) and the
smaller with Math.Min(a, b).

Another solution to the problem includes usage of the function for
taking the absolute value of a number Math.Abs(a):

int a = 2011;
int b = 1990;
Console.WritelLine("Greater: {0}", (a + b+ Math.Abs(a-b)) / 2);
Console.WriteLine("Smaller: {@0}", (a+ b - Math.Abs(a-b)) / 2);

The third solution uses bitwise operations:

int a = 1999;

int b = 2011;

int max = a - ((a - b) & ((a - b) > 31));
Console.WritelLine(max);

There is another solution which is partially correct because it uses a
hidden conditional statement (the ternary ?: operator):

194

Fundamentals of Computer Programming with C#

10.

11.

12.

int a = 1990;

int b = 2013;

int max =a >b ? a : b;
Console.WritelLine(max);

You can read the numbers in five different variables and finally sum
them and print the obtained sum. Note that the sum of 5 int values may
not fit in the int type so you should use long.

Another approach is using loops. When parsing the consecutive numbers
use conditional parsing with TryParse(..). When an invalid number is
entered, repeat reading of the number. You can do this through while
loop with an appropriate exit condition. To avoid repetitive code you can
explore the for-loops from the chapter "Loops".

You can use the comparison statement "if" (you can read about it on
the Internet or from the chapter "Conditional Statements"). To avoid
repeating code you can use the looping construct "for" (you could read
about it online or in the chapter "Loops").

You should use a for-loop (see the chapter "Loops"). Read the numbers
one after another and accumulate their sum in a variable, which then
display on the console at the end.

Use a combination of loops (see the chapter "Loops") and the methods
Console.ReadLine(), Console.WriteLine() and Int32.Parse().

More about the Fibonacci sequence can be found in Wikipedia at:
http://en.wikipedia.org/wiki/Fibonacci sequence. For the solution of the
problem use 2 temporary variables in which store the last 2 calculated
values and with a loop calculate the rest (each subsequent number in the
sequence is a sum of the last two). Use a for-loop to implement the
repeating logic (see the chapter "Loops").

Accumulate the sum of the sequence in a variable inside a while-loop
(see the chapter "Loops"). At each step compare the old sum with the
new sum. If the difference between the two sums Math.Abs(current_sum
- old_sum) is less than the required precision (0.001), the calculation
should finish because the difference is constantly decreasing and the
precision is constantly increasing at each step of the loop. The expected
result is 1.307.

http://en.wikipedia.org/wiki/Fibonacci_sequence

Chapter 5. Conditional
Statements

In This Chapter

In this chapter we will cover the conditional statements in C#, which we
can use to execute different actions depending on a given condition. We will
explain the syntax of the conditional operators if and if-else with suitable
examples and explain the practical application of the operator for selection
switch-case.

We will focus on the best practices to be followed in order to achieve a
better programming style when using nested or other types of conditional
statements.

Comparison Operators and Boolean Expressions

In the following section we will recall the basic comparison operators in the
C# language. They are important, because we use them to describe
conditions in our conditional statements.

Comparison Operators

There are several comparisons operators in C#, which are used to compare
pairs of integers, floating-point humbers, characters, strings and other types:

Operator Action

== Equal to

I= Not equal to

> Greater than

>= Greater than or equal to
< Less than

<= Less than or equal to

Comparison operators can be used to compare expressions such as two
numbers, two numerical expressions, or a number and a variable. The result
of the comparison is a Boolean value (true or false).

Let’s look at an example of using comparisons:

196 Fundamentals of Computer Programming with C#

int weight = 700;
Console.WriteLine(weight >= 500); // True

char gender = 'm';
Console.WriteLine(gender <= 'f'); // False

double colorWavelLength = 1.630;
Console.WriteLine(colorWavelLength > 1.621); // True

int a = 5;

int b = 7;

bool condition = (b > a) & (a + b < a * b);
Console.WriteLine(condition); // True

Console.WriteLine('B' == 'A' + 1); // True

In the sample code we perform a comparison between numbers and between
characters. The numbers are compared by size while characters are compared
by their lexicographical order (the operation uses the Unicode numbers for the
corresponding characters).

As seen in the example, the type char behaves like a number and can be
subtracted, added and compared to numbers freely. However, this should be
used cautiously as it could make the code difficult to read and understand.

By running the example we will produce the following output:

True
False
True
True
True

In C# several types of data that can be compared:
- numbers (int, long, float, double, ushort, decimal, ...)
- characters (char)
- Booleans (bool)

- References to objects, also known as object pointers (string, object,
arrays and others)

Every comparison can affect two numbers, two bool values, or two object
references. It is allowed to compare expressions of different types, like
an integer with a floating-point number for example. However, not every pair
of data types can be compared directly. For example, we cannot compare a
string with a number.

Chapter 5. Conditional Statements 197

Comparison of Integers and Characters

When comparing integers and characters, we directly compare their binary
representation in memory i.e. we compare their values. For example, if we
compare two numbers of type int, we will compare the values of their
respective series of 4 bytes. Here is one example for integer and character
comparisons:

Console.WriteLine("char 'a' == "a'? " + ('a' == 'a')); // True
Console.WriteLine("char 'a' == 'b'? " + ('a' == 'b")); // False
Console.WriteLine("5 != 62 " + (5 !=6)); // True
Console.WriteLine("5.0 == 5L? " + (5.0 == 5L)); // True
Console.WriteLine("true == false? " + (true == false)); // False

The result of the example is as follows:

char 'a' == 'a'? True
char 'a' == 'b'? False
5 I= 6? True

5.9 == 5L? True

true == false? False

Comparison of References to Objects

In .NET Framework there are reference data types that do not contain their
value (unlike the value types), but contain the address of the memory in the
heap where their value is located. Strings, arrays and classes are such types.
They behave like a pointer to some value and can have the value null, i.e. no
value. When comparing reference type variables, we compare the
addresses they hold, i.e. we check whether they point to the same location
in the memory, i.e. to the same object.

Two object pointers (references) can refer to the same object or to different
objects, or one of them can point to nowhere (to have null value). In the
following example we create two variables that point to the same value
(object) in the heap.

string str = "beer";
string anotherStr = str;

After executing the source code above, the two variables str and anotherStr
will point to the same object (string with value "beer"), which is located at
some address in the heap (managed heap).

We can check whether the variables point to the same object with the
comparison operator (==). For most reference types this operator does not
compare the content of the objects but rather checks if they point at the same

198 Fundamentals of Computer Programming with C#

location in memory, i.e. if they are one and the same object. The size
comparisons (<, >, <= and >=) are not applicable for object type variables.

The following example illustrates the comparison of references to objects:

string str = "beer";

string anotherStr = str;

string thirdStr = "bee";

thirdStr = thirdStr + 'r';

Console.WriteLine("str = {0}", str);
Console.WriteLine("anotherStr = {0}", anotherStr);
Console.WriteLine("thirdStr = {0}", thirdStr);
Console.WriteLine(str == anotherStr); // True - same object
Console.WriteLine(str == thirdStr); // True - equal objects
Console.WriteLine((object)str == (object)anotherStr); // True
Console.WriteLine((object)str == (object)thirdStr); // False

If we execute the sample code, we will get the following result:

str = beer
anotherStr = beer
thirdStr = beer
True

True

True

False

Because the strings used in the example (instances of the class
System.String, defined by the keyword string in C#) are of reference type,
their values are set as objects in the heap. The two objects str and thirdStr
have equal values, but are different objects, located at separate addresses in
the memory. The variable anotherStr is also reference type and gets the
address (the reference) of str, i.e. points to the existing object str. So by
the comparison of the variables str and anotherStr, it appears that they are
one and the same object and are equal. The result of the comparison between
str and thirdStr is also equality, because the operator == compares the
strings by value and not by address (a very useful exception to the rule for
comparison by address). However, if we convert the three variables to objects
and then compare them, we will get a comparison of the addresses in the
heap where their values are located and the result will be different.

This above example shows that the operator == has a special behavior
when comparing strings, but for the rest of the reference types (like arrays
or classes) it applies comparison by address.

You will learn more about the class String and the comparison of strings in
the chapter about "Strings".

Chapter 5. Conditional Statements 199

Logical Operators

Let's recall the logical operators in C#. They are often used to construct
logical (Boolean) expressions. The logical operators are: &&, ||, ! and ~.

Logical Operators && and ||

The logical operators && (logical AND) and || (logical OR) are only used on
Boolean expressions (values of type bool). In order for the result - of
comparing two expressions with the operator & - to be true (true), both
operands must have the value true. For instance:

bool result = (2 < 3) && (3 < 4);

This expression is "true", because both the operands: (2 < 3) and (3 < 4) are
"true". The logical operator && is also called short-circuit, because it does
not lose time in additional unnecessary calculations. It evaluates the left part
of the expression (the first operand) and if the result is false, it does not lose
time for evaluating the second operand - it's not possible the end result to be
"true" when the first operand is not "true". For this reason it is also called
short-circuit logical operator "and".

Similarly, the operator || returns true if at least one of the two operands has
the value "true". Example:

bool result = (2 < 3) || (1 == 2);

This example is "true", because its first operand is "true". Just like the &&
operator, the calculation is done fast - if the first operand is true, the second
is not calculated at all, as the result is already known. It is also called short-
circuit logical operator "or".

Logical Operators & and |

The operators for comparison & and | are similar to & and ||, respectively.
The difference lies in the fact that both operands are calculated one after the
other, although the final result is known in advance. That's why these
comparison operators are also known as full-circuit logical operators and
are used very rarely.

For instance, when two operands are compared with & and the first one is
evaluated "false", the calculation of the second operand is still executed. The
result is clearly "false". Likewise, when two operands are compared with | and
the first one is "true", we still evaluate the second operand and the final result
is nevertheless "true".

We must not confuse the Boolean operators & and | with the bitwise
operators & and |. Although they are written in the same way, they take
different arguments (Boolean or integer expressions) and return different
result (bool or integer) and their actions are not identical.

200 Fundamentals of Computer Programming with C#

Logical Operators N and !

The ~ operator, also known as exclusive OR (XOR), belongs to the full-
circuit operators, because both operands are calculated one after the other.
The result of applying the operator is true if exactly one of the operands
is true, but not both simultaneously. Otherwise the result is false. Here
is an example:

Console.WriteLine("Exclusive OR: "+ ((2 < 3) ~ (4 > 3)));

The result is as follows:

Exclusive OR: False

The previous expression is evaluated as false, because both operands: (2 <3)
and (4 > 3) are true.

The operator ! returns the reversed value of the Boolean expression to
which it is attached. Example:

bool value = !(7 == 5); // True
Console.WritelLine(value);

The above expression can be read as "the opposite of the truth of the phrase
"7 == 5". The result of this pattern is True (the opposite of False). Note that
when we print the value true it is displayed on the console as "True" (with
capital letter). This "defect" comes from the VB.NET language that also runs
in .NET Framework.

Conditional Statements "if" and "if-else"

After reviewing how to compare expressions, we will continue with conditional
statements, which will allow us to implement programming logic.

Conditional statements if and if-else are conditional control statements.
Because of them the program can behave differently based on a defined
condition checked during the execution of the statement.

Conditional Statement "if"

The main format of the conditional statements if is as follows:

if (Boolean expression)

{
}

Body of the conditional statement;

It includes: if-clause, Boolean expression and body of the conditional
statement.

Chapter 5. Conditional Statements 201

The Boolean expression can be a Boolean variable or Boolean logical
expression. Boolean expressions cannot be integer (unlike other programming
languages like C and C++).

The body of the statement is the part locked between the curly brackets:
{}. It may consist of one or more operations (statements). When there are
several operations, we have a complex block operator, i.e. series of
commands that follow one after the other, enclosed in curly brackets.

The expression in the brackets which follows the keyword if must return the
Boolean value true or false. If the expression is calculated to the value
true, then the body of a conditional statement is executed. If the result is
false, then the operators in the body will be skipped.

Conditional Statement "if" - Example

Let’s take a look at an example of using a conditional statement if:

static void Main()
{
Console.WriteLine("Enter two numbers.");
Console.Write("Enter first number: ");
int firstNumber = int.Parse(Console.ReadLine());
Console.Write("Enter second number: ");
int secondNumber = int.Parse(Console.ReadLine());
int biggerNumber = firstNumber;
if (secondNumber > firstNumber)
{
biggerNumber = secondNumber;
}
Console.WritelLine("The bigger number is: {@}", biggerNumber);
}

If we start the example and enter the numbers 4 and 5 we will get the
following result:

Enter two numbers.
Enter first number: 4
Enter second number: 5
The bigger number is: 5

Conditional Statement "if" and Curly Brackets

If we have only one operator in the body of the if-statement, the curly
brackets denoting the body of the conditional operator may be omitted, as
shown below. However, it is a good practice to use them even if we have only
one operator. This will make the code is more readable.

Here is an example of omitting the curly brackets which leading to confusion:

202 Fundamentals of Computer Programming with C#

int a = 6;
if (a > 5)
Console.WritelLine("The variable is greater than 5.");
Console.WritelLine("This code will always execute!");
// Bad practice: misleading code

In this example the code is misleadingly formatted and creates the impression
that both printing statements are part of the body of the if-block. In fact,
this is true only for the first one.

& Always put curly brackets { } for the body of “if” blocks even
if they consist of only one operator!

Conditional Statement "if-else"

In C#, as in most of the programming languages there is a conditional
statement with else clause: the if-else statement. Its format is the
following:

if (Boolean expression)

{
}
else

{
}

Body of the conditional statement;

Body of the else statement;

The format of the if-else structure consists of the reserved word if,
Boolean expression, body of a conditional statement, reserved word else and
else-body statement. The body of else-structure may consist of one or more
operators, enclosed in curly brackets, same as the body of a conditional
statement.

This statement works as follows: the expression in the brackets (a Boolean
expression) is calculated. The calculation result must be Boolean - true or
false. Depending on the result there are two possible outcomes. If the
Boolean expression is calculated to true, the body of the conditional
statement is executed and the else-statement is omitted and its operators
do not execute. Otherwise, if the Boolean expression is calculated to false,
the else-body is executed, the main body of the conditional statement is
omitted and the operators in it are not executed.

Conditional Statement "if-else" - Example

Let's take a look at the next example and illustrate how the if-else
statement works:

Chapter 5. Conditional Statements 203

static void Main()

{
int x = 2;
if (x > 3)
{

Console.WriteLine("x is greater than 3");

}

else

{

}
}

Console.WriteLine("x is not greater than 3");

The program code can be interpreted as follows: if x>3, the result at the end
is: "x is greater than 3", otherwise (else) the result is: "x is not greater
than 3". In this case, since x=2, after the calculation of the Boolean

expression the operator of the else structure will be executed. The result of
the example is:

x is not greater than 3

The following scheme illustrates the process flow of this example:

\V4

Variable X with a
starting value of 2

Boolean
X is not condition: Is X is greater
greater than 3 the value of X than 3
greater than 3?
\V4 V4

(" end)

End

Y
AN

204 Fundamentals of Computer Programming with C#

Nested "if" Statements

Sometimes the programming logic in a program or an application needs to be
represented by multiple if-structures contained in each other. We call them
nested if or nested if-else structures.

We call nesting the placement of an if or if-else structure in the body of
another if or else structure. In such situations every else clause
corresponds to the closest previous if clause. This is how we understand
which else clause relates to which if clause.

It’s not a good practice to exceed three nested levels, i.e. we should not nest
more than three conditional statements into one another. If for some reason
we need to nest more than three structures, we should export a part of the
code in a separate method (see chapter Methods).

Nested "if" Statements - Example

Here is an example of using nested if structures:

int first = 5;
int second = 3;

if (first == second)

{
}

else

{

Console.WritelLine("These two numbers are equal.");

if (first > second)

{

Console.WriteLine("The first number is greater.");

}

else

{

Console.WriteLine("The second number is greater.");

}
}

In the example above we have two numbers and compare them in two steps:
first we compare whether they are equal and if not, we compare again, to
determine which one is the greater. Here is the result of the execution of the
code above:

The first number is greater.

Chapter 5. Conditional Statements 205

Sequences of "if-else-if-else-..."

Sometimes we need to use a sequence of if structures, where the else
clause is a new if structure. If we use nested if structures, the code would
be pushed too far to the right. That's why in such situations it is allowed to
use a new if right after the else. It's even considered a good practice. Here
is an example:

char ch = 'X';
if (ch == 'A" || ch == 'a")
{

Console.WriteLine("Vowel [ei]");
}
else if (ch == "E' || ch == 'e")
{

Console.WriteLine("Vowel [i:]");
}
else if (ch == 'I' || ch == "i")
{

Console.WriteLine("Vowel [ai]");
}
else if (ch == '0" || ch == '0")
{

Console.WriteLine("Vowel [ou]");
}
else if (ch == 'U" || ch == 'u")
{

Console.WriteLine("Vowel [ju:]");
}
else
{

Console.WriteLine("Consonant™);
}

The program in the example makes a series of comparisons of a variable to
check if it is one of the vowels from the English alphabet. Every following
comparison is done only in case that the previous comparison was not true. In
the end, if none of the if-conditions is not fulfilled, the last else clause is
executed. Thus, the result of the example is as follows:

Consonant

Conditional "if" Statements - Good Practices

Here are some guidelines, which we recommend for writing if, structures:

206 Fundamentals of Computer Programming with C#

- Use blocks, surrounded by curly brackets {} after if and else in order
to avoid ambiguity

- Always format the code correctly by offsetting it with one tab inwards
after if and else, for readability and avoiding ambiguity.

- Prefer switch-case structure to of a series of if-else-if-else-..
structures or nested if-else statement, if possible. The construct
switch-case we will cover in the next section.

Conditional Statement "switch-case"

In the following section we will cover the conditional statement switch. It is
used for choosing among a list of possibilities.

How Does the "switch-case" Statement Work?

The structure switch-case chooses which part of the programming code to
execute based on the calculated value of a certain expression (most often of
integer type). The format of the structure for choosing an option is as follows:

switch (integer_selector)
{
case integer_value_1:
statements;
break;
case integer_value_2:
statements;
break;
// ..
default:
statements;
break;

}

The selector is an expression returning a resulting value that can be
compared, like a number or string. The switch operator compares the result
of the selector to every value listed in the case labels in the body of the
switch structure. If a match is found in a case label, the corresponding
structure is executed (simple or complex). If no match is found, the default
statement is executed (when such exists). The value of the selector must be
calculated before comparing it to the values inside the switch structure. The
labels should not have repeating values, they must be unique.

As it can be seen from the definition above, every case ends with the
operator break, which ends the body of the switch structure. The C#
compiler requires the word break at the end of each case-section containing
code. If no code is found after a case-statement, the break can be omitted

Chapter 5. Conditional Statements 207

and the execution passes to the next case-statement and continues until it
finds a break operator. After the default structure break is obligatory.

It is not necessary for the default clause to be last, but it's recommended to
put it at the end, and not in the middle of the switch structure.

Rules for Expressions in Switch

The switch statement is a clear way to implement selection among many
options (namely, a choice among a few alternative ways for executing the
code). It requires a selector, which is calculated to a certain value. The
selector type could be an integer number, char, string or enum. If we want
to use for example an array or a float as a selector, it will not work. For non-
integer data types, we should use a series of if statements.

Using Multiple Labels

Using multiple labels is appropriate, when we want to execute the same
structure in more than one case. Let’s look at the following example:

int number = 6;
switch (number)
{
case
case
case
case
case 10:
Console.WriteLine("The number is not prime!"); break;
case 2:
case 3:
case 5:
case 7:
Console.WriteLine("The number is prime!"); break;
default:
Console.WriteLine("Unknown number!"); break;

=00 oA R

}

In the above example, we implement multiple labels by using case
statements without break after them. In this case, first the integer value of
the selector is calculated - that is 6, and then this value is compared to every
integer value in the case statements. When a match is found, the code block
after it is executed. If no match is found, the default block is executed. The
result of the example above is as follows:

The number is not prime!

208

Fundamentals of Computer Programming with C#

Good Practices When Using "switch-case"

A good practice when using the switch statement is to put the default
statement at the end, in order to have easier to read code.

It's good to place first the cases, which handle the most common
situations. Case statements, which handle situations occurring rarely,
can be placed at the end of the structure.

If the values in the case labels are integer, it's recommended that they
be arranged in ascending order.

If the values in the case labels are of character type, it's recommended
that the case labels are sorted alphabetically.

It's advisable to always use a default block to handle situations that
cannot be processed in the normal operation of the program. If in the
normal operation of the program the default block should not be
reachable, you could put in it a code reporting an error.

Exercises

1.

Write an if-statement that takes two integer variables and exchanges
their values if the first one is greater than the second one.

Write a program that shows the sign (+ or -) of the product of three real
numbers, without calculating it. Use a sequence of if operators.

Write a program that finds the biggest of three integers, using nested
if statements.

Sort 3 real numbers in descending order. Use nested if statements.

Write a program that asks for a digit (0-9), and depending on the input,
shows the digit as a word (in English). Use a switch statement.

Write a program that gets the coefficients a, b and ¢ of a quadratic
equation: ax? + bx + c, calculates and prints its real roots (if they exist).
Quadratic equations may have 0, 1 or 2 real roots.

Write a program that finds the greatest of given 5 humbers.

Write a program that, depending on the user’s choice, inputs int, double
or string variable. If the variable is int or double, the program
increases it by 1. If the variable is a string, the program appends "*" at
the end. Print the result at the console. Use switch statement.

We are given 5 integer numbers. Write a program that finds those
subsets whose sum is 0. Examples:
- If we are given the numbers {3, -2, 1, 1, 8}, the sum of -2, 1 and 1
is 0.
- If we are given the numbers {3, 1, -7, 35, 22}, there are no subsets
with sum 0.

Chapter 5. Conditional Statements 209

10. Write a program that applies bonus points to given scores in the range
[1...9] by the following rules:

- If the score is between 1 and 3, the program multiplies it by 10.
- If the score is between 4 and 6, the program multiplies it by 100.
- If the score is between 7 and 9, the program multiplies it by 1000.
- If the score is 0 or more than 9, the program prints an error
message.
11. * Write a program that converts a number in the range [0...999] to
words, corresponding to the English pronunciation. Examples:
- 0-->"Zero"
- 12 --> "Twelve"
- 98 --> "Ninety eight"
- 273 --> "Two hundred seventy three"
- 400 --> "Four hundred"
- 501 --> "Five hundred and one"
- 711 --> "Seven hundred and eleven"

Solutions and Guidelines

1. Look at the section about if-statements.

2. A multiple of non-zero numbers has a positive product, if the negative
multiples are even number. If the count of the negative numbers is
odd, the product is negative. If at least one of the numbers is zero, the
product is also zero. Use a counter negativeNumbersCount to keep the
number of negative numbers. Check each number whether it is
negative and change the counter accordingly. If some of the numbers is

0, print “"@” as result (the zero has no sign). Otherwise print “+” or
depending on the condition (negativeNumbersCount % 2 == 0).

3. Use nested if-statements, first checking the first two numbers then
checking the bigger of them with the third.

4. First find the smallest of the three numbers, and then swap it with
the first one. Then check if the second is greater than the third number
and if yes, swap them too.

Another approach is to check all possible orders of the numbers with a
series of if-else checks: a<bsc, a<c<b, bgasc, bscz<a, c<a<b and c<bza.

A more complicated and more general solution of this problem is to put
the numbers in an array and use the Array.Sort(..) method. You may
read about arrays in the chapter “Arrays”.

Just use a switch statement to check for all possible digits.

6. From math it is known, that a quadratic equation may have one or two
real roots or no real roots at all. In order to calculate the real roots of a

210

Fundamentals of Computer Programming with C#

10.

11.

given quadratic equation, we first calculate the discriminant (D) by the
formula: D = b? - 4ac. If the discriminant is zero, then the quadratic
equation has one double real root and it is calculated by the formula:

X, =2—. If the value of the discriminant is positive, then the equation
’ a

has two distinct real roots, which are calculated by the formula:

_ —b++b*-4ac
2 2a '
equation has no real roots.

If the discriminant is negative, the quadratic

Use nested if statements. You could use the loop structure for, which
you could read about in the “Loops” chapter of the book or in Internet.

First input a variable, which indicates what type will be the input, i.e.
by entering 0 the type is int, by 1 is double and by 2 is string.

Use nested if statements or series of 31 comparisons, in order to
check all the sums of the 31 subsets of the given numbers (without the
empty one). Note that the problem in general (with N numbers) is
complex and using loops will not be enough to solve it.

Use switch statement or a sequence of if-else constructs and at the
end print at the console the calculated points.

Use nested switch statements. Pay special attention to the numbers
from 0 to 19 and those that end with 0. There are many special cases!

You might benefit from using methods to reuse the code you write,
because printing a single digit is part of printing a 2-digit number which is
part of printing 3-digit number. You may read about methods in the
chapter “"Methods”.

Chapter 6. Loops

In This Chapter

In this chapter we will examine the loop programming constructs through
which we can execute a code snippet repeatedly. We will discuss how to
implement conditional repetitions (while and do-while loops) and how to
work with for-loops. We will give examples of different possibilities to define
loops, how to construct them and some of their key usages. Finally, we will
discuss the foreach-loop construct and how we can use multiple loops placed
inside each other (nested loops).

What Is a "Loop"?

In programming often requires repeated execution of a sequence of
operations. A loop is a basic programming construct that allows repeated
execution of a fragment of source code. Depending on the type of the loop,
the code in it is repeated a fixed number of times or repeats until a given
condition is true (exists).

Loops that never end are called infinite loops. Using an infinite loop is rarely
needed except in cases where somewhere in the body of the loop a break
operator is used to terminate its execution prematurely. We will cover this
later but now let’s look how to create a loop in the C# language.

While Loops

One of the simplest and most commonly used loops is while.

while (condition)

{
}

loop body;

In the code above example, condition is any expression that returns a
Boolean result - true or false. It determines how long the loop body will
be repeated and is called the loop condition. In this example the loop body
is the programming code executed at each iteration of the loop, i.e. whenever
the input condition is true. The behavior of while loops can be represented by
the following scheme:

212 Fundamentals of Computer Programming with C#

Condition

false

Loop body —

N
P

A 4

In the while loop, first of all the Boolean expression is calculated and if it is
true the sequence of operations in the body of the loop is executed. Then
again the input condition is checked and if it is true again the body of the loop
is executed. All this is repeated again and again until at some point the
conditional expression returns value false. At this point the loop stops
and the program continues to the next line, immediately after the body of the
loop.

The body of the while loop may not be executed even once if in the beginning
the condition of the cycle returns false. If the condition of the cycle is never
broken the loop will be executed indefinitely.

Usage of While Loops

Let’s consider a very simple example of using the while loop. The purpose of
the loop is to print on the console the numbers in the range from 0 to 9 in
ascending order:

// Initialize the counter
int counter = 9;

// Execute the loop body while the loop condition holds

while (counter <= 9)

{
// Print the counter value
Console.WriteLine("Number :
// Increment the counter
counter++;

+ counter);

}

When executing the sample code we obtain the following result:

Number : ©

Chapter 6. Loops 213

Number :
Number :
Number :
Number :
Number :
Number :
Number :
Number :
Number :

OLCoONAOATUVTE, WN PR

Let’s give some more examples in order to illustrate the usefulness of loops
and to show some problems that can be solved by using loops.

Summing the Numbers from 1 to N

In this example we will examine how by using the while loop we can find the
sum of the numbers from 1 to n. The number n is read from the console:

Console.Write("n = ");

int n = int.Parse(Console.ReadlLine());
int num = 1;

int sum = 1;

Console.Write("The sum 1");

while (num < n)

{

num++;

sum += num;

Console.Write(" + " + num);
}
Console.WriteLine(" = " + sum);

First we initialize the variables num and sum with the value of 1. In num we
keep the current number, which we add to the sum of the preceding numbers.
Trough each loop we increase num with 1 to get the next number, then in the
condition of the loop we check whether it is in the range from 1 to n. The sum
variable contains the sum of the numbers from 1 to num at any time. Upon
entering the loop we add to sum the next number stored in num. We print on
the console all num numbers from 1 to n with a separator "+" and the final
result of the summing after the loop’s ending. The result of the program’s
execution is as follows (we enter n = 17):

N =17
The sum 1 + 2 + 3 +4 +5 +6+7+8+ 9+ 10 + 11 + 12 + 13 +
14 + 15 + 16 + 17 = 153

214 Fundamentals of Computer Programming with C#

Let’s give another example of using the while loop, before moving on to
other structures for organizing loops.

Check If a Number Is Prime - Example

We will write a program to check whether a given number is prime or
not. We will read the number to check from the console. As we know from the
mathematics, a prime number is any positive integer number, which, is not
divisible by any other numbers except 1 and itself. We can check if the
number num is prime when in a loop we check if it divides by numbers from 2
to vnum:

Console.Write("Enter a positive number: ");
int num = int.Parse(Console.ReadLine());
int divider = 2;
int maxDivider = (int)Math.Sqrt(num);
bool prime = true;
while (prime && (divider <= maxDivider))
{

if (num % divider == 0)

{

prime = false;
}
divider++;

}

Console.WriteLine("Prime? " + prime);

We use the variable divider to store the value of a potential divisor of the
number. First we initialize it with 2 (the smallest possible divider). The
variable maxDivider is the maximum possible divisor, which is equal to the
square root of the number. If we have a divisor bigger than vnum, then num
should also have another divisor smaller than vnum and that’s why it’s useless
to check the numbers bigger than vnum. This way we reduce the number of
loop iterations.

For the result we use a Boolean variable called prime. Initially, its value is
true. While passing through the loop, if it turns out that the number has a
divisor, the value of prime will become false.

The condition of the while loop consists of two other sub-conditions which are
related to the logical operator (logical and). In order to execute the loop,
these two sub-conditions must be true simultaneously. If at some point we
find a divisor of the number num, the variable prime becomes false and the
condition of the loop is no longer satisfied. This means that the loop is
executed until it finds the first divisor of the number or until it proves the fact
that num is not divisible by any of the numbers in the range from 2 to vnum.

Chapter 6. Loops 215

Here is how the result of the above example’s execution looks like if the input
values are respectively the numbers 37 and 34:

Enter a positive number: 37
Prime? True

Enter a positive number: 34
Prime? False

Operator "break"

The break operator is used for prematurely exiting the loop, before it has
completed its execution in a natural way. When the loop reaches the break
operator it is terminated and the program’s execution continues from the line
immediately after the loop’s body. A loop’s termination with the break
operator can only be done from its body, during an iteration of the loop. When
break is executed the code in the loop’s body after it is skipped and not
executed. We will demonstrate exiting from loop with break with an example.

Calculating Factorial - Example

In this example we will calculate the factorial of a number entered from the
console. The calculation is performed by using an infinite while loop and the
operator break. Let's remember from the mathematics what is factorial and
how it is calculated. The factorial of an integer n is a function that is
calculated as a product of all integers less than or equal to n or equal to it. It
is written down as n! and by definition the following formulas are valid for it:

- Nl=1*2*3 .. (n-1) *n, forn> 1;

- 20=1%2;
- 11 =1;
- 0l =1.

The product n! can be expressed by a factorial of integers less than n:
- N!' = (N-1)! * N, by using the initial value of 0! = 1.

In order to calculate the factorial of n we will directly use the definition:

int n = int.Parse(Console.ReadLine());
// "decimal" is the biggest C# type that can hold integer values
decimal factorial = 1;
// Perform an "infinite loop"
while (true)
{
if (n <= 1)
{

216 Fundamentals of Computer Programming with C#

break;
¥
factorial *= n;
n--;
}
Console.WriteLine("n! = " + factorial);

First we initialize the variable factorial with 1 and read n from the console.
We construct an endless while loop by using true as a condition of the loop.
We use the break operator, in order to terminate the loop, when n reaches a
value less than or equal to 1. Otherwise, we multiply the current result by n
and we reduce n with one unit. Practically in the first iteration of the loop the
variable factorial has a value n, in the second - n*(n-1) and so on. In the
last iteration of the loop the value of factorial is the product n*(n-1)*(n-
2)*..*3*2, which is the desired value of nl.

If we execute the sample program and enter 10 as input, we obtain the
following result:

10
n! = 3628800

Do-While Loops

The do-while loop is similar to the while loop, but it checks the condition
after each execution of its loop body. This type of loops is called loops with
condition at the end (post-test loop). A do-while loop looks like this:

do
{

executable code;
} while (condition);

By design do-while loops are executed according to the following scheme:

<

A 4

Loop body

true

false

Chapter 6. Loops 217

Initially the loop body is executed. Then its condition is checked. If it is
true, the loop’s body is repeated, otherwise the loop ends. This logic is
repeated until the condition of the loop is broken. The body of the loop is
executed at least once. If the loop’s condition is constantly true, the loop
never ends.

Usage of Do-While Loops

The do-while loop is used when we want to guarantee that the sequence of
operations in it will be executed repeatedly and at least once in the beginning
of the loop.

Calculating Factorial - Example

In this example we will again calculate the factorial of a given number n, but
this time instead of an infinite while loop we will use a do-while. The logic is
similar to that in the previous example:

Console.Write("n = ");
int n = int.Parse(Console.ReadlLine());
decimal factorial = 1;
do
{
factorial *= n;
n--;
} while (n > 0);
Console.WriteLine("n! = " + factorial);

At the beginning we start with a result of 1 and multiply consecutively the
result at each iteration by n, and reduce n by one unit, until n reaches 0. This
gives us the product n*(n-1)*...*1. Finally, we print the result on the console.
This algorithm always performs at least one multiplication and that’s why it
will not work properly when n < 0.

Here is the result of the above example’s execution for n=7:

n! = 5040

Factorial of a Large Number - Example

You might be wondering what will happen if we set a large value for the
number n in the previous example, say n=100. Then when, calculating the n!
we will overflow the decimal type and the result will be an exception of type
System.OverflowException:

n = 100

218 Fundamentals of Computer Programming with C#

Unhandled Exception: System.OverflowException: Value was either
too large or too small for a Decimal.

at System.Decimal.FCallMultiply(Decimal& result, Decimal di,
Decimal d2)

at System.Decimal.op_Multiply(Decimal d1, Decimal d2)

at TestProject.Program.Main() in
C:\Projects\TestProject\Program
.cs:line 17

If we want to calculate 100! we can use data type BigInteger (which is new
as of .NET Framework 4.0 and is missing in the older .NET versions). This
type represents an integer, which can be very large (for example 100,000
digits). There is no limit on the size of the numbers recorded in the class
BigInteger (as long as you have enough RAM).

In order to use BigInteger, we must first add a reference from our project
to the assembly System.Numerics.dll (this is a standard .NET library for
working with very large integers, which is not referenced by default by our VS
projects). Adding a reference to it is done by right-clicking on the current
project references in the Solution Explorer window of Visual Studio:

Add Reference... =
Add Service Reference...
] Manage MuGet Packages...

Scope to This

Mew Solution Explorer View

We search and choose the assembly System.Numerics.dll from the list:

Assernblies system.n

Framewaork Mame Version Name:
Extensions Systemn.Net —— System.MNurmerics

System.Net.Http 2.0.00 .

Search Results Created by:
System.Net.Http 4000 Microsoft Corporation
System.Net.Http.Formatting 4000 Version:

System.Met.Http.WebRequest 2.0.00 4.0.0.0
System.Net.Http.WebRequest 4.0.0.0 File Version:

COM Systern.Numerics 4.0.0.0 4.0.30319.17929 built by:

FX45RTMREL

Recent

Solution

Browse

| Browse... || QK || Cancel

Chapter 6. Loops 219

If the assembly is missing from the list, that means that the Visual Studio
project probably does not target .NET Framework 4.0 or above and you
must either create a new project or change the version of the current one:

New Project

NET Framework 45 | Sort by: Default .o
MET Framework 2.0

MET Framework 2.0 yplication Visual C#
MET Framework 3.5

MET Framework 4 Visual C2
MET Framework 4.5

< More Frameworks...> n Visual C#

Then we need to add "using System.Numerics;" before the beginning of the
class of our program and replace decimal with BigInteger. The program
obtains the following form:

using System;
using System.Numerics;

class Factorial

{

static void Main()
{
Console.Write("n = ");
int n = int.Parse(Console.ReadLine());
BigInteger factorial = 1;
do
{
factorial *= n;
n--;
} while (n > 9);
Console.WriteLine("n! = " + factorial);
}
}

If we now run the program for n=100, we will get the value of 100 factorial,
which is a 158-digit number:

n = 100

n! =
9332621544394415268169923885626670049071596826438162146859296389
5217599993229915608941463976156518286253697920827223758251185210
916864000000000000000000000000

220 Fundamentals of Computer Programming with C#

By BigInteger you can calculate 1000!, 10000! and even 100000! It will take
some time, but OverflowException will not occur. The BigInteger class is
very powerful but it works many times slower than int and long. For our
unpleasant surprise there is no class "big decimal” in .NET Framework, only
"big integer".

Product in the Range [N...M] - Example

Let’s give another, more interesting example of working with do-while loops.
The goal is to find the product of all numbers in the range [n..m]. Here is an
example solution to this problem:

Console.Write("n = ");
int n = int.Parse(Console.ReadLine());

Console.Write("m = ");
int m = int.Parse(Console.ReadLine());

int num = n;
long product = 1;
do
{
product *= num;
num++;
} while (num <= m);

Console.WriteLine("product[n...m] = " + product);

In the example code we consecutively assign to num at each iteration the
values n, n+1, ..., m and in the variable product we accumulate the product
of these values. We require the user to enter n, which should be less than m.
Otherwise we will receive as a result the number n.

If we run the program for n=2 and m=6 we will obtain the following result:

n =2
m=6
product[n...m] = 720

Be careful: the product grows very fast, so you may need to use BigInteger
instead of long for the calculated result. Also beware of hidden integer
overflow. Unchecked code will silently overflow and the code above will
produce incorrect output instead of showing an error. To overcome this, you
may surround the line holding the multiplication by the checked keyword.

Chapter 6. Loops 221

For Loops

For-loops are a slightly more complicated than while and do-while loops but
on the other hand they can solve more complicated tasks with less code. Here
is the scheme describing for-loops:

3 i A
~for (A; B; C)
X
D
}
true false
| D
- for (int i=0; i<10; i++)
A /* 1 body */ .
oop body
} ¢

They contain an initialization block (A), condition (B), body (D) and
updating commands for the loop variables (C). We will explain them in
details shortly. Before that, let’s look at how the program code of a for-loop
looks like:

for (initialization; condition; update)

{
}

loop's body;

It consists of an initialization part for the counter (in the pattern int i =
@), a Boolean condition (i < 10), an expression for updating the counter
(i++, it might be i-- or forinstance, i = i + 3) and body of the loop.

The counter of the loop distinguishes it from other types of loops. Most
often the counter changes from a given initial value to a final one in ascending
order, for example from 1 to 100. The number of iterations of a given for-
loop is usually known before its execution starts. A for-loop can have one or
several loop variables that move in ascending or descending order or with a
step. It is possible one loop variable to increase and the other - to decrease.
It is even possible to make a loop from 2 to 1024 in steps of multiplication by
2, since the update of the loop variables can contain not only addition, but
any other arithmetic (as well as other) operations.

222 Fundamentals of Computer Programming with C#

Since none of the listed elements of the for-loops is mandatory, we can skip
them all and we will get an infinite loop:

for (5 5)
{

}

// Loop body

Now let’s consider in details the separate parts of a for-loop.

Initialization of For Loops

For-loops can have an initialization block:

for (int num = @; ..; ..)

{
}

// Here num can not be used

// The variable num is visible here and it can be used

It is executed only once, just before entering the loop. Usually the
initialization block is used to declare the counter-variable (also called a loop
variable) and to set its initial value. This variable is "visible" and can be used
only within the loop. In the initialization block is possible to declare and
initialize more than one variable.

Condition of the For Loop

For-loops can have a loop condition:

for (int num = @; num < 10; ..)

{
}

// Loop body

The condition (loop condition) is evaluated once before each iteration of the
loop, just like in the while loops. For result true the loop’s body is executed,
for result false it is skipped and the loop ends (the program continues
immediately after the last line of the loop’s body).

Update of the Loop Variables

The last element of a for-loop contains code that updates the loop variable:

for (int num = @; num < 10; num++)

{
// Loop body

Chapter 6. Loops 223

}

This code is executed at each iteration, after the loop’s body has been
executed. It is most commonly used to update the value of the counter-
variable.

The Body of the Loop

The body of the loop contains a block with source code. The loop variables,
declared in the initialization block of the loop are available in it.

For-Loop — Example

Here is a complete example of a for-loop:

for (int i = @; 1 <= 10; i++)

{
}

Console.Write(i + " ");

The result of its execution is the following:

0123456738910

Here is another, more complicated example of a for-loop, in which we have
two variables i and sum, that initially have the value of 1, but we update them
consecutively at each iteration of the loop:

for (int i = 1, sum = 1; i <= 128; i =1 * 2, sum += i)

{
}

Console.WritelLine("i={0}, sum={1}", i, sum);

The result of this loop’s execution is the following:

1, sum=1
2, sum=3
=4, sum=7
8

i=32, sum=63
i=64, sum=127
i=128, sum=255

224 Fundamentals of Computer Programming with C#

Calculating NAM - Example

As a further example we will write a program that raises the number n to a
power of m, and for this purpose we will use a for-loop:

Console.Write("n = ");
int n = int.Parse(Console.ReadLine());
Console.Write("m = ");

int m = int.Parse(Console.ReadlLine());
decimal result = 1;
for (int i = 0; 1 < m; i++)

{
}

Console.WriteLine("n™m =

result *= n;

+ result);

First we initialize the result (result = 1). The loop starts by setting an initial
value for the counter-variable (int i1 = 0). We define the condition for the
loop’s execution (i < m). This way the loop will be executed from 0@ to m-1 i.e.
exactly m times. During each run of the loop we multiply the result by n and
so n will be raised to the next power (1, 2, ..., m) at each iteration. Finally we
print the result to see if the program works properly.

Here is how the outcome of the program for n = 2 and m = 10 looks like:

n =2
m= 10
n“m = 1024

For-Loop with Several Variables

As we have already seen, in the construct of a for-loop we can use multiple
variables at the same time. Here is an example in which we have two
counters. One of the counters moves up from 1 and the other moves down
from 10:

for (int small=1, large=10; small<large; small++, large--)

{
}

Console.WritelLine(small + + large);

The condition for loop termination is overlapping of the counters. Finally we
get the following result:

110
29

Chapter 6. Loops 225

v b w
[e)TN0]

Operator "continue"

The continue operator stops the current iteration of the inner loop,
without terminating the loop. With the following example we will examine how
to use this operator.

We will calculate the sum of all odd integers in the range [1...n], which are not
divisible by 7 by using the for-loop:

int n = int.Parse(Console.ReadlLine());
int sum = 9;
for (int i = 1; 1 <= n; i += 2)

{
if (1 %7 == 0)
{
continue;
}
sum += i;
}
Console.WriteLine("sum = " + sum);

First we initialize the loop’s variable with a value of 1 as this is the first odd
integer within the range [1...n]. After each iteration of the loop we check if i
has not yet exceeded n (i <= n). In the expression for updating the variable
we increase it by 2 in order to pass only through the odd numbers. Inside the
loop body we check whether the current number is divisible by 7. If so we call
the operator continue, which skips the rest of the loop’s body (it skips adding
the current number to the sum). If the number is not divisible by seven, it
continues with updating of the sum with the current number.

The result of the example for n = 11 is as follows:

11
sum = 29

Foreach Loops

The foreach loop (extended for-loop) is new for the C/C++/C# family of
languages, but is well known for the VB and PHP programmers. This
programming construct serves to iterate over all elements of an array, list
or other collection of elements (IEnumerable). It passes through all the
elements of the specified collection even if the collection is not indexed.

226 Fundamentals of Computer Programming with C#

We will discuss arrays in more details in chapter "Arrays", but for now we can
imagine one array as an ordered sequence of numbers or other elements.

Here is how a foreach loop looks like:

foreach (type variable in collection)

{
}

statements;

As we see, it is significantly simpler than the standard for-loop and
therefore is very often preferred by developers because it saves writing when
you need to go through all the elements of a given collection. Here is an
example that shows how we can use foreach:

int[] numbers = { 2, 3, 5, 7, 11, 13, 17, 19 };
foreach (int i in numbers)

{
}

Console.WriteLine();
string[] towns = { "London", "Paris", "Milan", "New York" };
foreach (string town in towns)

{
}

Console.Write(+1);

Console.Write(+ town);

In the example we create an array of numbers, which are after that went
through with a foreach loop, and its elements are printed on the console.
Then an array of city names (strings) is created and in the same way it is
went through and its elements are printed on the console. The result of the
example is:

235711 13 17 19
London Paris Milan New York

Nested Loops

The nested loops are programming constructs consisting of several loops
located into each other. The innermost loop is executed more times, and the
outermost - less times. Let’s see how two nested loops look like:

for (initialization, verification, update)

{

for (initialization, verification, update)

{

Chapter 6. Loops 227

executable code

}

After initialization of the first for loop, the execution of its body will start,
which contains the second (nested) loop. Its variable will be initialized, its
condition will be checked and the code within its body will be executed, then
the variable will be updated and execution will continue until the condition
returns false. After that the second iteration of the first for loop will
continue, its variable will be updated and the whole second loop will be
performed once again. The inner loop will be fully executed as many times as
the body of the outer loop.

Let’'s now consider a real example that will demonstrate how useful the nested
loops are.
Printing a Triangle — Example

Let’'s solve the following problem: for a given number n, to print on the
console a triangle with n number of lines, looking like this:

R R R
NN

123 .n

We will solve the problem with two for-loops. The outer loop will traverse
the lines, and the inner one - the elements in them. When we are on the first
line, we have to print "1" (1 element, 1 iteration of the inner loop). On the
second line we have to print "1 2" (2 elements, 2 iterations of the internal
loop). We see that there is a correlation between the line on which we are and
the number of the elements that we print. This tells us how to organize the
inner loop’s structure:

- We initialize the loop variable with 1 (the first number that we will
print): col = 1;

- The repetition condition depends on the line on which we are: col <=
row;

- We increase the loop variable with one unit at each iteration of the
internal loop.

Basically, we need to implement a for-loop (external) from 1 to n (for the
lines) and put another for-loop (internal) in it — for the numbers on the
current line, which should spin from 1 to the number of the current line. The

228 Fundamentals of Computer Programming with C#

external loop should go through the lines while the internal - through the
columns of the current line.

Finally we get the following code:

int n = int.Parse(Console.ReadLine());
for (int row = 1; row <= n; row++)

{
for (int col = 1; col <= row; col++)
{
Console.Write(col + " ");
}
Console.WriteLine();
}

If we execute it, we will make sure that it works correctly. Here is how the
result for n=7 looks like:

RPRRPRRRRR
NNNNNDN
W wwww

EE R S

v Ut U

6
6 7

Note: when n > 9 the triangle will have a small defect. Think how to fix it!

Prime Numbers in an Interval - Example

Let’s consider another example of nested loops. We set a goal to print on
the console all prime number in the interval [n..m]. We will limit the interval
by a for-loop and in order to check for a prime number we will use a nested
while loop:

Console.Write("n = ");
int n = int.Parse(Console.ReadLine());
Console.Write("m = ");

int m = int.Parse(Console.ReadLine());

for (int num = n; num <= m; num++)
{
bool prime = true;
int divider = 2;
int maxDivider = (int)Math.Sqrt(num);
while (divider <= maxDivider)

Chapter 6. Loops 229

{
if (num % divider == 0)
{
prime = false;
break;

¥

divider++;

}
if (prime)

{

Console.Write(

}

+ num);

}

Using the outer for-loop we check each of the numbers n, n+1, ..., mifitis
prime. At each iteration of the outer for-loop we check whether its loop
variable num is a prime number. The logic by which we check for a prime
number is already familiar to us. At first we initialize the variable prime with
true. With the internal while loop we check for each of the numbers
[2..Vnum] if it is a divisor of num and if so, we set prime to false. After
finishing the while loop the Boolean variable prime indicates whether the
number is prime or not. If the number is prime we print it on the console.

If we execute the example for n=3 and m=75, we will obtain the following
result:

n=3
m =75
357 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73

Lucky Numbers — Example

Let's consider another example through which we will show that we can put
even more than two loops into each other. Our purpose is to find and
print all four-digit numbers of the type ABCD, where: A+B = C+D (we call
them lucky numbers). We will implement it with four for-loops - one for each
digit. The outermost loop will define the thousands. It will start from 1 and
the rest of the loops - from 0. They will determine the hundreds, the tens and
the units. We will perform a check if our current number in the most inner
loop is a lucky one and if so, we will print it on the console. Here is an
implementation example:

for (int a = 1; a <= 9; a++)

{
for (int b = @; b <= 9; b++)

230 Fundamentals of Computer Programming with C#

{
for (int ¢ = @; c <= 9; c++)
{
for (int d = 0; d <= 9; d++)

if ((a + b) == (c + d))
{

Console.WriteLine(

non + a3 + non + b +

+c+ " " +d);

Here is a part of the printed result (the entire result is too long):

RRRPRRPRRRRR
NNNRPRRPROO®
NRONRORO®
PNWORNO®R

We leave as homework for the diligent reader to offer a more efficient solution
to the same problem, using only three nested loops rather than four.

Lottery 6/49 — Example

In the following example we will find all possible combinations of the
lottery game "6/49". We have to find and print all possible extracts of 6
different numbers, each of which is in the range [1...49]. We will use 6 for-
loops. Unlike the previous example, the numbers cannot be repeated. To
avoid repetitions we will strive for each subsequent number to be larger than
the previous. Therefore, the internal loops will not start from 1 but from the
number to which the previous loop got + 1. We will have to go through the
first loop until it reaches 44 (and not to 49), the second - 45, etc. The last
loop will be up to 49. If you make all loops to 49 you will receive matching
numbers in certain combinations. For the same reason, each subsequent cycle
starts from the previous loop counter + 1. Let’s see what will happen:

for (int i1 = 1; il <= 44; il++)
{

Chapter 6. Loops 231

for (int i2 = i1 + 1; i2 <= 45; i2++)
{ for (int i3 = i2 + 1; i3 <= 46; 1i3++)
{ for (int i4 = i3 + 1; i4 <= 47; i4++)
¢ for (int i5 = i4 + 1; i5 <= 48; i5++)
{ for (int i6 = i5 + 1; i6 <= 49; i6++)
{ Console.WritelLine(il +
i3 + +i4 + " "

+ i2 + +
+i5 + " " + i6);

Everything looks correct. Let’s run the program. It seems to work but there is
one problem - there are too many combinations and the program does not
end (it is so slow, that hardly anyone is going to wait). This is correct and it
is one of the reasons why there is Lottery 6/49 - there really are lots of
combinations. We are leaving the curious reader to practice changing the
example above just to calculate all lottery combinations, instead of printing
them. This change will dramatically reduce the volume of the printed results
on the console and the program will end surprisingly quickly.

Printing excessive amount of text on the console is very slow
& and should be avoided. A modern computer (as of 2012) can

perform 300,000,000 operations per second but can print
only 10,000 - 20,000 text lines per second.

Exercises

1. Write a program that prints on the console the numbers from 1 to N.
The number N should be read from the standard input.

2. Write a program that prints on the console the numbers from 1 to N,
which are not divisible by 3 and 7 simultaneously. The number N
should be read from the standard input.

3. Write a program that reads from the console a series of integers and
prints the smallest and largest of them.

4. Write a program that prints all possible cards from a standard deck
of cards, without jokers (there are 52 cards: 4 suits of 13 cards).

232 Fundamentals of Computer Programming with C#

10.

11.

12.

13.

14.

15.

16.

17.

Write a program that reads from the console nhumber N and print the sum
of the first N members of the Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8,
13, 21, 34, 55, 89, 144, 233, 377, ...

Write a program that calculates N!/K! for given N and K (1<K<N).

Write a program that calculates N!*K!/(N-K)! for given N and K
(1<K<N).

In combinatorics, the Catalan numbers are calculated by the following

1 (2n (2n)! .
formula: C, =—— =———, for n = 0. Write a program that
n+1\n (n+1)In!

calculates the nt" Catalan number by given n.

Write a program that for a given integers n and x, calculates the sum:

S =1+%+%2+...+%n

Write a program that reads from the console a positive integer number
N (N < 20) and prints a matrix of humbers as on the figures below:
N=3 N=4
1123 1(2/3|4
3 213145
3/4]5 3456
41567

Write a program that calculates with how many zeroes the factorial of
a given number ends. Examples:

N =10 -> N! = 3628800 -> 2
N = 20 -> N! = 2432902008176640000 -> 4

Write a program that converts a given nhumber from decimal to binary
notation (numeral system).

Write a program that converts a given nhumber from binary to decimal
notation.

Write a program that converts a given number from decimal to
hexadecimal notation.

Write a program that converts a given number from hexadecimal to
decimal notation.

Write a program that by a given integer N prints the numbers from 1 to N
in random order.

Write a program that given two numbers finds their greatest common
divisor (GCD) and their least common multiple (LCM). You may use
the formula LCM(a, b) = |a*b]| / GCD(a, b).

Chapter 6. Loops 233

18. * Write a program that for a given number n, outputs a matrix in the

form of a spiral:

11213

Example for n=4: 1211314
111615

10| 9 | 8

N|jo|lu|d

Solutions and Guidelines

Use a for-loop.

Use a for-loop and the operator % for finding the remainder in integer
division. A number num is not divisible by 3 and 7 simultaneously exactly
when (num % (3*7) == 9).

First read the count of numbers, for example in a variable n. Then
consequently enter n numbers with one for loop. While entering each
new number, save in two variables the smallest and the largest number
until this moment. At the start initialize the smallest and the largest
number with Int32.MaxValue and Int32.MinValue respectively.

Number the cards from 2 to 14 (these numbers will match the cards 2,
3,4,5,6,7,8,9, 10, J, Q, K, A). Number the suits from 1 to 4 (1 -
club, 2 - diamond, 3 - heart and 4 - spades). Now you can use the two
nested loops and print each of the cards with two switch statements.

Fibonacci numbers start from 0 and 1, each additional is obtained as
the sum of the previous two. You can find the first n Fibonacci
numbers with a for-loop from 1 to n, and at each iteration calculate the
next number by using the previous two (which you will keep in two
additional variables).

Multiply the numbers from K+1 to N (think why this is correct). You
may check the properties of the factorial function in Wikipedia:
http://en.wikipedia.org/wiki/Factorial.

One solution is to calculate separately each factorial and at the end to
perform the respective operations with the results.

Think how you can optimize the calculations, in order to not calculate
too many factorials! In fractions of factorials there are many possibilities
to reduce the same factors in the numerator and denominator. These
optimizations will not only reduce the calculations and increase the
performance but will save you from overflows in some situations. You
might need to use arrays num[@..N] and denum[@. .n] to hold the factors
in the numerator and in the denominator and to cancel the fraction.
You may read about arrays in the chapter “Arrays”.

http://en.wikipedia.org/wiki/Factorial

234

Fundamentals of Computer Programming with C#

10.

11.

12.

13.
14.
15.
16.

17.

18.

Use the same concept of canceling the faction of simple factors, like
you probably did in the previous problem.

You may also read more about the Catalan numbers in Wikipedia
(http://en.wikipedia.org/wiki/Catalan number) and use the recurrent
formula for calculating them.

You can solve the problem with a for-loop for k=0...n, by using three
additional variables factorial, power and sum in which you will keep for
the kth iteration of the loop respectively k!, x* and the sum of the first
k members of sequence. If your implementation is good, you should
have only one loop and you should not use external functions to calculate
factorials and to raise power.

You should use two nested loops, similar to the problem "Printing a
Triangle". The outer loop must run from 1 to N, and the inner - from the
value of the outer loop to the value of the outer loop + N - 1.

The number of zeros at the end of n! depends on how many times the
number 10 is a divisor of the factorial. Because the product 1*2*3..*n
has a greater number of divisors 2, than 5 and because 10 = 2 * 5, then
the number of zeros in n! is exactly as many as the multipliers with
value 5 in the product 1 * 2 * 3 * ., * n, Because every fifth number
is divisible by 5, and every 25™ number is divisible by 5 two times, etc.,
the number of zeros in n! is the sum: n/5 + n/25 + n/125 + ...

Read in Wikipedia what numeral systems are: http://en.wikipedia.org/
wiki/Numeral system. After that consider how you can convert
numbers from decimal numeral system to another. Think about the
opposite — moving from another numeral system to decimal. If you have
difficulty, see the chapter "Numeral Systems".

See the previous problem.
See the previous problem.
See the previous problem.

Search in the Internet for information about the class System.Random.
Read in the Internet about arrays (or in the next chapter). Create an
array with N elements and write in it the numbers from 1 to N. After
that a few times (think exactly how many) swap two random pairs of
elements from the array.

Search the Internet for the Euclidean algorithm for calculation the
greatest common divisor (CGD) or read about it in Wikipedia:
http://en.wikipedia.org/wiki/Euclidean algorithm.

You should use a two-dimensional array (matrix). Search the Internet
or see the chapter "Arrays". The algorithm of filling a spiral matrix in
not straightforward and may require a bit of thinking. You might find
helpful the “Spiral Matrix” problem from chapter “Sample Programming
Exam - Topic #3".

http://en.wikipedia.org/wiki/Catalan_number
http://en.wikipedia.org/wiki/Numeral_system
http://en.wikipedia.org/wiki/Numeral_system
http://en.wikipedia.org/wiki/Euclidean_algorithm

Chapter 7. Arrays

In This Chapter

In this chapter we will learn about arrays as a way to work with sequences
of elements of the same type. We will explain what arrays are, how we
declare, create, instantiate and use them. We will examine one-dimensional
and multidimensional arrays. We will learn different ways to iterate
through the array, read from the standard input and write to the standard
output. We will give many example exercises, which can be solved using
arrays and we will show how useful they really are.

What Is an "Array"?

Arrays are vital for most programming languages. They are collections of
variables, which we call elements:

Element of
an array

Array of 5
elements

o\l 2 3 4

An array’s elements in C# are numbered with 0, 1, 2, ... N-1. Those numbers
are called indices. The total number of elements in a given array we call
length of an array.

All elements of a given array are of the same type, no matter whether they
are primitive or reference types. This allows us to represent a group of
similar elements as an ordered sequence and work on them as a whole.

Arrays can be in different dimensions, but the most used are the one-
dimensional and the two-dimensional arrays. One-dimensional arrays are
also called vectors and two-dimensional are also known as matrices.

Declaration and Allocation of Memory for Arrays

In C# the arrays have fixed length, which is set at the time of their
instantiation and determines the total number of elements. Once the length of
an array is set we cannot change it anymore.

236 Fundamentals of Computer Programming with C#

Declaring an Array

We declare an array in C# in the following way:

int[] myArray;

In this example the variable myArray is the name of the array, which is of
integer type (int[]). This means that we declared an array of integer
numbers. With [] we indicate, that the variable, which we are declaring, is an
array of elements, not a single element.

When we declare an array type variable, it is a reference, which does not
have a value (it points to null). This is because the memory for the elements
is not allocated yet.

The figure below shows how a declared array variable looks, when the
memory for elements of the array is not allocated yet:

Stack Heap

myArray)é»

In the program’s execution stack the variable with the name myArray is
created and its value is set to null (meaning it holds no value).

Creation of an Array - the Operator "new"

In C# we create an array with the help of the keyword new, which is used to
allocate memory:

int[] myArray = new int[6];

In this example we allocate an array with length of 6 elements of type int.
This means that in the dynamic memory (heap) an area of 6 integer humbers
is allocated and they all are initialized with the value 0:

Stack Heap

v

myArray

Chapter 7. Arrays 237

The figure shows, that after the allocation of memory for the array the
variable myArray points to an address in the dynamic memory, where the
values are. In C#, the elements of an array are always stored in the dynamic
memory (called also heap).

During the allocation of the memory for an array we set the total number of
the elements in the brackets (a non-negative integer number), defining its
length. The type of the elements is written after the reserved word new, so we
indicate what type of elements are going to be allocated in the memory.

Array Initialization and Default Values

Before we can use an element of a given array, it has to be initialized or to
have a default value. In some programming languages there are no default
values and then if we try to access an element, which is not initialized, this
may cause an error. In C# all variables, including the elements of arrays have
a default initial value. This value is either @ for the numeral types or its
equivalent for the non-primitive types (for example null for a reference type
and false for the bool type).

Of course we can set initial values explicitly. We can do this in different ways.
Here is one of them:

int[] myArray = { 1, 2, 3, 4, 5, 6 };

In this case we create and initialize the elements of the array at the time of
the declaration. On the figure below we see how the array is allocated in the
memory when its values are initialized at the moment of its declaration:

Stack Heap

myArray

v
[Eny
w
(2]
(03}

With this syntax we use curly brackets instead of the operator new. Between
the brackets we list the initial values of the array, separated by commas.
Their count defines the length of the array.

Declaration and Initialization of an Array — Example

Here is one more example how to declare and initialize an array:

string[] daysOflWeek =
{ "Monday", "Tuesday", "Wednesday","Thursday", "Friday",
"Saturday", "Sunday" };

238 Fundamentals of Computer Programming with C#

In this case we allocate an array of seven elements of type string. The type
string is a reference type (object) and its values are stored in the dynamic
memory. The variable daysOflWeek is allocated in the stack memory, and
points to a section of the dynamic memory containing the elements of the
array. The type of each of these seven elements is string, which itself points
to a different section of the dynamic memory, where the real value is stored.

On this figure we see how the array is allocated in the memory:

Stack Heap

/ Monday
/v Tuesday

Wednesday

Thursday

L
[~ Friday
: \ Saturday

daysOfWeek >

Sunday

Boundaries of an Array

Arrays are by default zero-based, which means the enumeration of the
elements starts from 0. The first element has the index 0, the second - 1,
etc. In an array of N elements, the last element has the index N-1.

Access to the Elements of an Array

We access the array elements directly using their indices. Each element can
be accessed through the name of the array and the element’s index
(consecutive number) placed in the brackets. We can access given elements
of the array both for reading and for writing, which means we can treat
elements as variables.

Here is an example for accessing an element of an array:

myArray[index] = 100;

In the example above we set a value of 100 to the element, which is at
position index.

Chapter 7. Arrays 239

Here is an example, where we allocate an array of numbers and then we
change some of them:

int[] myArray = new int[6];
myArray[1] = 1;
myArray[5] = 5;

After the change, the array is allocated in the memory as shown below:

Stack Heap

myArray

v
o
[ERN
o
o
(%]

As we can see, all elements, except those for which values are explicitly set,
are initialized with the value 0 when the memory of the array was allocated.

We can iterate through the array using a loop statement. The most common
form of such iteration is by using a for-loop:

int[] arr = new int[5];
for (int i = @; i < arr.Length; i++)

{
}

arr[i] = i;

Going Out of Bounds of the Array

The .NET Framework does an automatic check on each element access
attempt, whether the index is valid or it is out of the range of the array.
When we try to access an invalid (not existing) element in an array, a
System.IndexOutOfRangeException is thrown. The automatic check really
helps the developers find errors while working with arrays. Of course,
checking for exceptions has its price. Checks affect the performance, but
that’'s nothing compared to avoiding errors like "out of range", "access to
unallocated memory", etc.

Here is an example, where we are trying to access an element, which is out of
the range of the array:

IndexOutOfRangeExample.cs

class IndexOutOfRangeExample
{

240 Fundamentals of Computer Programming with C#

static void Main()
{
int[] myArray = { 1, 2, 3, 4, 5, 6 };
Console.WriteLine(myArray[6]);
}
}

In the example above we allocate an array, which contains six integer
numbers. The first index is 0, and the last index is 5. We are trying to print to
the console an element with index 6, but because there is no such element
this leads to an exception:

o C\Windows\system32\cmd.exe — O EN

nhandled Exception: System.IndexOutOf RangeExcepti
pn: Index was outszide the bounds of the array.
at IndexOutOfRangeExample .Main{> in c:“Projects

OutOf Range~0utOf Ranges»Program.cs:1line 8
ress any key to continuwe . . . _

Reversing an Array - Example

In the next example we will access elements and change them using their
indices. The task is to print the elements in reversed order. We will reverse
the elements of the array using a second, auxiliary array, where we will keep
the elements of the first one, but in a reversed order. Note that the length of
both arrays is the same and it stays unchanged after the first allocation:

ArrayReverseExample.cs

class ArrayReverseExample

{

static void Main()
{
int[] array = { 1, 2, 3, 4, 5 };
// Get array size
int length = array.lLength;
// Declare and create the reversed array
int[] reversed = new int[length];

// Initialize the reversed array
for (int index = ©@; index < length; index++)
{

reversed[length - index - 1] = array[index];

}

Chapter 7. Arrays 241

// Print the reversed array
for (int index = ©@; index < length; index++)
{
}
}
}
// Output: 54 3 21

Console.Write(reversed[index] + " ");

The example works in the following way: initially we allocate a one-
dimensional array of type int and we initialize it with the numbers from 1 to
5. After that we keep the length of the array in the variable 1length. Note that
we are using the property Length, which returns the total count of the
elements of the array. In C# each array has a length property.

After that we declare the array reversed with the same length, where we
will keep elements of the original array, but in a reversed order.

To reverse the elements we use a for-loop. At each iteration we increment
the index variable by one and we make sure we access all consecutive
elements of the array. The loop condition ensures that the array will be
iterated from end to end.

Let’s follow what happens when we iterate through the array. On the first
iteration, index has a value of 0. Using array[index] we access the first
element of the array, and respectively with reversed[length - index - 1]
we access the last element of the new array reversed where we assign the
values. Thus, we appropriated the value of the first element of the array to
the last element of the reversed array. At each iteration index is
incremented by one. This way, we access the next element in the order of
array and the previous element in the order of reversed.

As a result we reversed the array and printed it. In the example we showed
consecutive iterations through the array, which can also be done with
different types of loop constructs (e.g. while and foreach).

Reading an Array from the Console

Let's see how we can read values of an array from the console. We will use a
for-loop and the .NET Framework tools for reading from the console.

Initially we read a line from the console using Console.ReadLine(), and then
we parse that line to an integer number using int.Parse() and we set it to
the variable n. We then use the number n as length of the array.

int n = int.Parse(Console.ReadlLine());
int[] array = new int[n];

242 Fundamentals of Computer Programming with C#

Again we use a loop to iterate through the array. At each iteration we set the
current element to what we have read from the console. The loop will
continue n times, which means it will iterate through the array and so we will
read a value for each element of the array:

for (int i = 0; 1 < n; i++)
{

array[i] = int.Parse(Console.ReadLine());

}

Check for Symmetric Array — Example

An array is symmetric if the first and the last elements are equal and at the
same time the second element and the last but one are equal as well and so
on. On the figure a few examples for symmetric arrays are shown:

RN LN TN

11221 112|321 1(2|3(3|2]|1

In the next example we will check whether an array is symmetric:

Console.Write("Enter a positive integer: ");
int n = int.Parse(Console.ReadlLine());
int[] array = new int[n];

Console.WriteLine("Enter the values of the array:");

for (int i = 0; 1 < n; i++)

{
}

array[i] = int.Parse(Console.ReadlLine());

bool symmetric = true;
for (int i = ©; i < array.Length / 2; i++)

{
if (array[i] != array[n - i - 1])
{
symmetric = false;
break;
}
}

Console.WriteLine("Is symmetric? {@}", symmetric);

Chapter 7. Arrays 243

We initialize an array and we read its elements from the console. We need to
iterate through half of the array to check whether it is symmetric. The middle
element of the array has an index array.Length / 2. If the length is an odd
number this index is exactly the middle one, but if it is an even number, the
index is to the right of the middle (the middle is between two elements). Thus
the loop runs from @ to array.Length / 2 (non-inclusive).

To check whether an array is symmetric, we use a bool variable, and initially
assume that the array is symmetric. During the iteration through the array we
compare the first with the last element, the second with the last but one and
so on. If at some point the compared elements are not equal, then we set the
bool variable to false, which means the array is not symmetric.

In the end we print the value of the bool variable to the console.

Printing an Array to the Console

Often we have to print the elements of a given array to the console, after
we have finished working with it.

We print elements of an array to the console similarly to the initializing of the
elements, i.e. by using a loop to iterate through the array. There are no strict
rules for printing, but often some sort of suitable formatting is used.

A frequent mistake is an attempt to print an array like a number:

string[] array = { "one", "two", "three", "four" };
Console.WritelLine(array);

Unfortunately this code does not print the elements of an array, just its
type. Here is what we get after the execution of this code:

=X CAWindows\system32\cmd.exe — O - x [

Sustem.Stringl]
Presz any kev to continue .

We print the elements of an array by hand, by using a for-loop:

string[] array = { "one", "two", "three", "four" };

for (int index

{

0; index < array.Length; index++)

// Print each element on a separate line
Console.WriteLine("Element[{@}] = {1}", index, array[index]);

}

244 Fundamentals of Computer Programming with C#

We are iterating through the array using the for-loop, which will go
array.Length times, and we will print the current element using
Console.WriteLine() and a formatted string. Here is the result:

Element[@] = one
Element[1] = two
Element[2] = three
Element[3] = four

Iteration through Elements of an Array

As we can see, the iteration through the elements of an array is one of the
most used techniques when we work with arrays. Consecutive iterating
using a loop will allow us to access each element through its index and we will
be able to modify it as we want. We can do that with different loop constructs,
but the most appropriate loop is the for-statement. We will examine in
details how this type of iteration works.

Iteration with a For Loop

It is a good practice to use for-loops, when we work with arrays and
structures with indices. In the following example we will double the values of
all elements of an array of numbers and we will print them:

int[] array = new int[] { 1, 2, 3, 4, 5 };

Console.Write("Output: ");
for (int index = @; index < array.Length; index++)
{

// Doubling the number

array[index] = 2 * array[index];

// Print the number

Console.Write(array[index] + " ");

}
// Output: 2 4 6 8 10

Using a for-loop we keep track of the current index of the array and we
access the elements as needed. We do not have to iterate consecutively
through all of them, which means the index that we are using in the for-loop
may iterate through the elements in a way that our algorithm requires. For
example we can iterate through some of the elements of the array, not
through all of them:

int[] array = new int[] { 1, 2, 3, 4, 5 };

Console.Write("Output: ");

Chapter 7. Arrays 245

for (int index = ©; index < array.Length; index += 2)
{
array[index] = array[index] * array[index];
Console.Write(array[index] + " ");

}
// Output: 1 9 25

In this example we are iterating through all elements at even positions and
we square their values.

Sometimes we want to iterate through the array in a reverse order. We
do that in a similar way, except that the for-loop will start with the index of
the last element and the index will decrease on each step until its value gets
to 0 (inclusive). Here is an example:

int[] array = new int[] { 1, 2, 3, 4, 5 };

Console.Write("Reversed: ");
for (int index = array.Length - 1; index >= ©; index--)

{

}
// Reversed: 54 3 2 1

Console.Write(array[index] + " ");

In this example we are iterating through the array in reverse order and we
print each element to the console.

Iteration with "foreach" Loop

One of the most used constructs for iterating through elements of an array is
foreach. The foreach-loop construct in C# is as follows:

foreach (var item in collection)

{
}

In this programming construct var is the type of the elements, which we
iterate through. The collection is the array (or any other collection of
elements) and item is the current element of the array on each step.

// Process the value here

In general the foreach loop construct has the same properties like the for-
loop. The main difference is that the iteration is made always through all
elements - from the start to the end. We cannot access the current index,
we are just iterating through the collection in a way, defined by the collection
itself. For arrays the order of iteration is consecutive from the first element to

246 Fundamentals of Computer Programming with C#

the last one. The loop variable in foreach-loops is read-only so we cannot
modify the current loop item from the loop body.

The foreach-loop statement is used, when we do not need to change the
elements, but just to read them.

Iteration with "foreach" Loop — Example

In the next example we will learn how to use the foreach loop to iterate
through the array:

string[] capitals =
{ "Sofia", "Washington", "London", "Paris" };

foreach (string capital in capitals)

{
}

Console.WritelLine(capital);

After we declared an array of strings capitals, we iterate through the array
using foreach loop and we print the elements to the console. The current
element on each step is stored in a variable capital. We get the following
result when we execute the code:

Sofia
Washington
London
Paris

Multidimensional Arrays

The one-dimensional arrays are known also as vectors in mathematics.
Often we need arrays with more than one dimension. For example we can
easily represent the standard chess board as a two-dimensional array with
size 8 by 8 (8 cells in a horizontal direction and 8 cells in a vertical direction).

What Is a Multidimensional Array? What Are
Matrices?

Every valid type in C# can be used for a type of an array. So, we can have an
array of arrays, which we will discuss later.

We declare a one-dimensional array of integer numbers using int[], and we
declare a two-dimensional with int[,]. This example shows that:

int[,] twoDimensionalArray;

Chapter 7. Arrays 247

Those arrays we will call two-dimensional, because they have two
dimensions. They are also known as matrices (it is mathematical term). In
general arrays with more than one dimension we will call multidimensional.

This way we can declare three-dimensional arrays as we add one more
dimension:

int[,,] threeDimensionalArray;

In theory there is no limit for an array dimensions, but in practice we do
not use much arrays with more than two dimensions therefore we will focus
on two-dimensional arrays.

Multidimensional Array Declaration and Allocation

We declare multidimensional arrays in a way similar to one-dimensional
arrays. Each dimension except the first is marked with comma:

int[,] intMatrix;
float[,] floatMatrix;
string[,,] strCube;

In the example above we create two-dimensional and three-dimensional
arrays. Each dimension is represented by a comma in the square brackets [].

We are allocating memory for multidimensional arrays by using the keyword
new and for each dimension we set a length in the brackets as shown:

int[,] intMatrix = new int[3, 4];
float[,] floatMatrix = new float[8, 2];
string[,,] stringCube = new string[5, 5, 5];

In this example intMatrix is a two-dimensional array with 3 elements of type
int[] and each of those 3 elements has a length of 4. Two-dimensional
arrays are difficult to understand explained that way. Therefore we can
imagine them as two-dimensional matrices, which have rows and columns
for the dimensions:

O 1 2 3

O |1]3|6]2

1 | 85|91

2 |4]7]3]|0

The rows and the columns of the square matrices are numbered with indices
from 0 to n-1. If a two-dimensional array has a size of m by n, there are
exactly m*n elements.

248 Fundamentals of Computer Programming with C#

Two-Dimensional Array Initialization

We initialize two-dimensional arrays in the same way as we initialize one-
dimensional arrays. We can list the element values straight after the
declaration:

int[,] matrix =
{
{1, 2, 3, 4}, // row @ values
{5, 6, 7, 8}, // row 1 values
s

// The matrix size is 2 x 4 (2 rows, 4 cols)

In the example above we initialize a two-dimensional array of type
integer with size of 2 rows and 4 columns. In the outer brackets we place the
elements of the first dimension, i.e. the rows of the array. Each row contains
one dimensional array, which we know how to initialize.

Accessing the Elements of a Multidimensional Array

Matrices have two dimensions and respectively we access each element by
using two indices: one for the rows and one for the columns. Multidimensional
arrays have different indices for each dimension.

& Each dimension in a multidimensional array starts at index 0.

Let's examine the next example:

int[,] matrix =
{
{1, 2, 3, 4},
{5) 6) 7) 8})

}s

The array matrix has 8 elements, stored in 2 rows and 4 columns. Each
element can be accessed in the following way:

matrix[0, O] matrix[@, 1] matrix[0, 2] matrix[0, 3]
matrix[1, @] matrix[1, 1] matrix[1, 2] matrix[1, 3]

In this example we can access each element using indices. If we assign the
index for rows to row, and the index for columns to col, then we can access
any element as shown:

matrix[row, col]

Chapter 7. Arrays 249

When we use multidimensional arrays each element is unique and can be
identified with indices from the array:

nDimensionalArray[index1, .., indexN]

Length of Multidimensional Arrays

Each dimension of a multidimensional array has its own length, which can be
accessed during the execution of the program. Let’s look at an example for a
two-dimensional array:

int[,] matrix =
{
{1) 2.’ 3.’ 4})
{5) 6) 7) 8}J
s

We can get the number of the rows of this two-dimensional array by using
matrix.GetLength(@) and the number of all columns per row with
matrix.GetLength(1). So, in this case matrix.GetLength(@) returns 2 and
matrix.GetLength(1) returns 4.

Printing Matrices — Example

In the next example we will demonstrate how we can print two-dimensional
arrays to the console:

// Declare and initialize a matrix of size 2 x 4
int[,] matrix =
{

{1J 2: 3) 4}; // row © values

{5, 6, 7, 8}, // row 1 value

}s

// Print the matrix on the console
for (int row = @; row < matrix.GetLength(@); row++)

{
for (int col = @; col < matrix.GetLength(1); col++)

{

Console.Write(matrix[row, col]);

}

Console.WriteLine();

}

First we declare and initialize an array, which we want to iterate through and
print to the console. The array is two-dimensional, therefore we use a for-

250 Fundamentals of Computer Programming with C#

loop which will iterate through the rows and a nested for loop which for each
row will iterate through the columns. At each iteration we will print the
current element using the appropriate method to access this element by using
its two indices (row and column). Finally, if we execute this piece of code we
will get the following result:

1234
5678

Reading Matrices from the Console — Example

In this example we will learn how to read a two-dimensional array from
the console. First, we read the values (lengths) of the two-dimensions and
then by using two nested loops we assign the value of each element (and in
the end we print out the values of the array):

Console.Write("Enter the number of the rows: ");
int rows = int.Parse(Console.ReadlLine());

Console.Write("Enter the number of the columns: ");
int cols = int.Parse(Console.ReadLine());

int[,] matrix = new int[rows, cols];
Console.WriteLine("Enter the cells of the matrix:");

for (int row = @; row < rows; row++)

{

for (int col = @; col < cols; col++)

{
Console.Write("matrix[{0},{1}] = ",row, col);

matrix[row, col] = int.Parse(Console.ReadLine());

}
}

for (int row = @; row < matrix.GetLength(@); row++)

{
for (int col = 9; col < matrix.GetLength(1l); col++)

{

Console.Write(

}

Console.WritelLine();

+ matrix[row, col]);

}

The program output when we execute it (in this case the array consists of
three rows and two columns) is:

Chapter 7. Arrays

251

Enter the number of the rows: 3
Enter the number of the columns: 2
Enter the cells of the matrix:
matrix[0,0] = 2
matrix[0,1] = 3
matrix[1,0] 5
matrix[1,1]
matrix[2,0] =
matrix[2,1]
23
5 10
89

0

I
O 0

Maximal Platform in a Matrix — Example

In the next example we will solve another interesting problem: we are given a
two-dimensional rectangular array (matrix) of integers and our task is to find
the sub-matrix of size of 2 by 2 with maximum sum of its elements and

to print it to the console.

One solution to the problem might be the following:

MaxPlatform2x2.cs

class MaxPlatform2x2

{

static void Main()

{

// Declare and initialize the matrix
int[,] matrix = {

{0,2,4,0,9,51},
{7) 1) 3) 3) 2.’1}J
{1,3,9,8,5,61},
{4,6,7,9,1, 0}

}s

// Find the maximal sum platform of size 2 x 2
long bestSum = long.MinValue;

int bestRow = 9;

int bestCol 0;

{
{

for (int row = @; row < matrix.GetLength(®) - 1; row++)

for (int col = @; col < matrix.GetLength(1) - 1; col++)

252 Fundamentals of Computer Programming with C#

long sum = matrix[row, col] + matrix[row, col + 1] +
matrix[row + 1, col] + matrix[row + 1, col + 1];
if (sum > bestSum)

{
bestSum = sum;
bestRow = row;
bestCol = col;
}

}
}

// Print the result

Console.WriteLine("The best platform is:");

Console.WriteLine(" {0} {1}",
matrix[bestRow, bestCol],
matrix[bestRow, bestCol + 1]);

Console.WriteLine(" {0} {1}",
matrix[bestRow + 1, bestCol],
matrix[bestRow + 1, bestCol + 1]);

Console.WriteLine("The maximal sum is: {@}", bestSum);

}
}

If we execute the program, we will see that it works properly:

The best platform is:
9 8
79

The maximal sum is: 33

We will explain the algorithm. First we create a two-dimensional array, which
contains integer numbers. We declare our auxiliary variables bestSum,
bestRow, bestCol and we initialize bestSum with the minimal value of type
long (so any other value is greater than this one). Note that sum of 4
integers may not fit in int, so we use long.

In the variable bestSum we keep the current maximal sum and in bestRow
and bestCol we keep the current best sub-matrix. This means the current
row and current column describe the start element for the sub-matrix of size
2 x 2, which is currently found to have the maximal sum of its elements.

To access all elements of a sub-array with a size of 2 by 2 we need the indices
of the first element. Having them we can easily access the rest 3 elements:

matrix[row, col]
matrix[row, col + 1]

Chapter 7. Arrays 253

matrix[row + 1, col]
matrix[row + 1, col + 1]

In this example row and col are the indices of the first element of the sub-
matrix with a size of 2 by 2, which is part of the array matrix.

After we know how to access all four elements of the matrix with a size of 2
by 2, starting from a particular row and column, we can look at the algorithm,
which we will use to find the maximal sub-matrix.

We need to iterate through each 2 x 2 platform in the matrix until we reach
the platform with the best sum. We will do this using two nested for-loops
and two variables row and col. Note that we are not iterating through the
entire matrix, because if we try to access index row + 1 or col + 1, as we
are at the last row or column we will go out of the range of the matrix,
respectively System.IndexOutOfRangeException will be thrown.

We access the neighbor elements of each current element of the sub-matrix
and we sum them. Then we check if our current sum is bigger than our
current highest sum for the moment. If it is so, our current sum becomes our
best sum and our current indices will update bestRow and bestCol. So, after
the entire iteration through the main matrix we will find the maximal sum and
the first element of the sub-matrix of size 2 by 2 and its indices.

If there is more than one sub-matrix with the same maximal sum, we will find
the one, which appears first.

At the end of the example we are printing to the console the requested sub-
matrix of size 2 x 2 and its sum of elements in an appropriate way.

Arrays of Arrays
In C# we can have arrays of arrays, which we call jagged arrays.

Jagged arrays are arrays of arrays, or arrays in which each row contains an
array of its own, and that array can have length different than those in the
other rows.

Declaration and Allocation an Array of Arrays

The only difference in the declaration of the jagged arrays compared to the
regular multidimensional array is that we do not have just one pair of
brackets. With the jagged arrays we have a pair brackets per dimension. We
allocate them this way:

int[][] jaggedArray;

jaggedArray = new int[2][];
jaggedArray[0] = new int[5];
jaggedArray[1] = new int[3];

254 Fundamentals of Computer Programming with C#

Here is how we declare, allocate and initialize an array of arrays (a jagged
array whose elements are arrays of integer values):

int[][] myJaggedArray = {
new int[] {5, 7, 2},
new int[] {10, 20, 40},
new int[] {3, 25}

¥

Memory Allocation

The figure below depicts how the now declared jagged array myJaggedArray
is allocated in the memory. As we see the jagged arrays are an aggregation of
references. A jagged array does not directly contain any arrays, but rather
has elements pointing to them. The size is unknown and that is why CLR
just keeps references to the internal arrays. After we allocate memory for one
array-element of the jagged array, then the reference starts pointing to the
newly created block in the dynamic memory. The variable myJaggedArray is
stored in the execution stack of the program and points to a block in the
dynamic memory, which contains a sequence of three references to other
three blocks in memory; each of them contains an array of integer numbers -
the elements of the jagged array:

Stack Heap

| 517|2

myJaggedArray > »10120|40
~ 3 [25

Initialization and Access to the Elements

We can access elements of the arrays, which are part of the jagged array by
using their index. In next example we will access the element with index 3 of
the array stored at index 0 in the myJaggedArray declared above:

myJaggedArray[0][2] = 45;

The elements of the jagged array can be one-dimensional and multi-
dimensional arrays. Here is an example for jagged array of two-dimensional
arrays:

int[][,] jaggedOfMulti = new int[2][,];

Chapter 7. Arrays 255

jaggedOfMulti[o]

new int[, , 15 }, { 125, 206 } };
jaggedOfMulti[1] 5

1 {{5,1
new int[,] { {3, 4,5}, {7,8,9%}};

Pascal’s Triangle — Example

In the next example we will use a jagged array to generate and visualize the
Pascal’s triangle. As we know from mathematics, the first row of the
triangle contains the number 1 and each next number is generated by sum of
the two numbers on the row above it. The Pascal’s triangle looks like this:

To have a Pascal’s triangle with a given height, for example 12, we allocate a
jagged array triangle[][], which contains 1 element on the zero row, 2 -
on first, 3 - on second and so on. First we initialize triangle[@][@0] = 1 and
the rest of the cells will have a default value than 0 by allocation. Then we
loop through the rows and from row we will get the values for row+1. It works
with nested for loop through the columns on the current row and the
following Pascal definitions for values in the triangle: we add the value of the
current cell of the current row (triangle[row][col]) to the cell below
(triangle[row+1l][col]) and to the cell below on the right (triangle
[row+1][col+1]). We print using an appropriate number of spaces (using
method PadLeft () of class String), because we want the result to be
aligned.

Here is the code of the described algorithm:

PascalTriangle.cs

class PascalTriangle

{

static void Main()

{
const int HEIGHT = 12;

// Allocate the array in a triangle form
long[][] triangle = new long[HEIGHT + 1][];

for (int row = 0; row < HEIGHT; row++)

{

256 Fundamentals of Computer Programming with C#

triangle[row] = new long[row + 1];

}

// Calculate the Pascal's triangle
triangle[@][0] = 1;
for (int row = 0; row < HEIGHT - 1; row++)
{
for (int col = @; col <= row; col++)
{
triangle[row + 1][col] += triangle[row][col];
triangle[row + 1][col + 1] += triangle[row][col];
}
}

// Print the Pascal's triangle
for (int row = @; row < HEIGHT; row++)
{
Console.Write("".PadLeft((HEIGHT - row) * 2));
for (int col = @; col <= row; col++)
{
Console.Write("{0,3} ", triangle[row][col]);

}
Console.WriteLine();
}
}
b

If we execute the program, we will see that it is working properly and it
generates a Pascal’s triangle by a given numbers of rows (in our case the
HEIGHT is 12):

1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1
1 10 45 120 210 252 210 120 45 10 1
1 11 55 165 330 462 462 330 165 55 11 1

Chapter 7. Arrays 257

Exercises

1.

10.

11.

12.

Write a program, which creates an array of 20 elements of type
integer and initializes each of the elements with a value equals to the
index of the element multiplied by 5. Print the elements to the console.

Write a program, which reads two arrays from the console and checks
whether they are equal (two arrays are equal when they are of equal
length and all of their elements, which have the same index, are equal).

Write a program, which compares two arrays of type char
lexicographically (character by character) and checks, which one is first
in the lexicographical order.

Write a program, which finds the maximal sequence of consecutive
equal elements in an array. E.g.: {1, 1, 2,3, 2, 2,2,1} > {2, 2, 2}.

Write a program, which finds the maximal sequence of consecutively
placed increasing integers. Example: {3, 2, 3, 4, 2, 2, 4} > {2, 3, 4}.

Write a program, which finds the maximal sequence of increasing
elements in an array arr[n]. It is not necessary the elements to be
consecutively placed. E.g.: {9, 6, 2,7,4,7,6,5,8,4} > {2, 4, 6, 8}.

Write a program, which reads from the console two integer numbers N
and K (K<N) and array of N integers. Find those K consecutive
elements in the array, which have maximal sum.

Sorting an array means to arrange its elements in an increasing (or
decreasing) order. Write a program, which sorts an array using the
algorithm "selection sort".

Write a program, which finds a subsequence of numbers with
maximal sum. E.g.: {2, 3, -6,-1,2,-1,6,4,-8,8} > 11

Write a program, which finds the most frequently occurring element in
an array. Example: {4,1,1,4,2,3,4,4,1,2,4,9, 3} > 4 (5 times).

Write a program to find a sequence of neighbor numbers in an array,
which has a sum of certain number S. Example: {4, 3, 1, 4, 2, 5, 8},
S=11 > {4, 2, 5}.

Write a program, which creates square matrices like those in the
figures below and prints them formatted to the console. The size of the
matrices will be read from the console. See the examples for matrices
with size of 4 x 4 and make the other sizes in a similar fashion:

258 Fundamentals of Computer Programming with C#
1/5|9 |13 118|916
2|16|10|14 217 1]10|15

a) b)
3|7 |11|15 3|16 (11|14
4|8 (12|16 415 12|13
7 (11|14|16 1/|12(11|10
4|8 |12|15 2 |13|16| 9
c) d)*
215|913 3(14|15| 8
1(3]6]10 41516 |7
13. Write a program, which creates a rectangular array with size of n by m

14.

15.

16.

17.

18.

19.

20.

21.

elements. The dimensions and the elements should be read from the
console. Find a platform with size of (3, 3) with a maximal sum.

Write a program, which finds the longest sequence of equal string
elements in a matrix. A sequence in a matrix we define as a set of
neighbor elements on the same row, column or diagonal.

i s | qd
—> ha, ha, ha pp | pp —> 5,5,S
PP | 99

Write a program, which creates an array containing all Latin letters.
The user inputs a word from the console and as result the program
prints to the console the indices of the letters from the word.

Write a program, which uses a binary search in a sorted array of
integer numbers to find a certain element.

Write a program, which sorts an array of integer elements using a "merge
sort™ algorithm.

Write a program, which sorts an array of integer elements using a "quick
sort" algorithm.

Write a program, which finds all prime numbers in the range
[1..10,000,000].

* Write a program, which checks whether there is a subset of given
array of N elements, which has a sum S. The numbers N, S and the array
values are read from the console. Same number can be used many times.

Example: {2, 1,2,4,3,5,2,6},S=14>yes (1 +2+ 5+ 6 = 14)

Write a program which by given N numbers, K and S, finds K elements out
of the N numbers, the sum of which is exactly S or says it is not possible.

Example: {3,1,2,4,9,6},S=14, K=3>vyes (1 +2 + 4 = 14)

Chapter 7. Arrays 259

22.

23.

24.

25.

Write a program, which reads an array of integer numbers from the
console and removes a minimal number of elements in such a way
that the remaining array is sorted in an increasing order.

Example: {6,1,4,3,0,3,6,4,5}>{1,3,3,4,5}

Write a program, which reads the integer numbers N and K from the
console and prints all variations of K elements of the numbers in the
interval [1.N]. Example: N =3, K =2 > {1, 13}, {1, 2}, {1, 3}, {2, 1},
{2, 2}, 42, 3}, {3, 1}, {3, 2}, {3, 33}.

Write a program, which reads an integer number N from the console and
prints all combinations of K elements of humbers in range [1 .. N].
Example:N = 5, K =2 2> {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4},
{2, 5}, {3, 4}, {3, 5}, {4, 5}.

*Write a program, which finds in a given matrix the largest area of
equal numbers. We define an area in the matrix as a set of neighbor
cells (by row and column). Here is one example with an area containing
13 elements with equal value of 3:

1132

—> 13

3
4
4
4

WW(INININ

RPIWW| N

NP FXIENIES

3|3
3|1
3|1
3|3

Solutions and Guidelines

Use an int[] array and a for-loop.

Two arrays are equal if they have the same value for the length and the
values for their elements. You can check for the second condition
using a for-loop.

In lexicographic order the elements are compared one by one
starting from the very left. If the elements are not the same, the array,
whose element is smaller (comes earlier in the alphabet), comes first. If
the elements are equal, the next character is compared. If the end of one
of the arrays is reached, without finding different elements, the shorter
array is the smaller (comes earlier lexicographically). If all elements are
equal, the arrays are equal.

Scan the array from left to right. Every time when the current number
is different from the one before it, a new sequence starts. If the
current element is equal to the one before it, it is a continuation of the
same sequence. So, if we keep the index of the start position of the
current sequence (in the beginning it is 0) in start and the length of
the current sequence (in the beginning it is 1) in 1len, we can find all

260

Fundamentals of Computer Programming with C#

sequences of equal elements and their lengths. We can easily keep the
shortest one in two additional variables — bestStart and bestLen.

This exercise is very similar to the previous one, but we have a
continuation of the current sequence when the next element is bigger.

We can solve the problem with two nested loops and one more array
len[0@..n-1]. In the array len[i] we can keep the length of the longest
consecutively increasing sequence, which starts somewhere in the array
(it does not matter where exactly) and ends with the element arr[i].
Therefore 1en[0]=1, len[x] is the maximal sum max(1 + len[prev]),
where prev < x and arr[prev] < arr[x]. Following the definition, we can
calculate len[@..n-1] with two nested loops: the outer loop will iterate
through the array from left to right with the loop variable x. The inner
loop will iterate through the array from the start to position x-1 and
searches for the element prev with maximal value of len[prev], where
arr[prev] < arr[x]. After the search, we initialize 1len[x] with 1 + the
biggest found value of 1len[prev] or with 1, if such a value is not found.

The described algorithm finds the lengths of all maximal ascending
sequences, which end at each of the elements. The biggest one of these
values is the length of the longest increasing sequence. If we need to
find the elements themselves, which compose that longest sequence,
we can start from the element, where the sequence ends (at index x), we
can print it and we can search for a previous element (prev). By
definition prev < x and len[x] = 1 + 1len[prev] so we can find prev with
a for-loop from 1 to x-1. After that we can repeat the same for x=prev.
By finding and printing the previous element (prev) many times until it
exists, we can find the elements, which compose the longest
sequence in reversed order (from the last to the first).

You can find out which sequence of the sequences of K numbers has the
biggest sum by checking the sums of all of those sequences. The
first sequence starts at index 0 and finishes at index K-1 and has sum S.
Then the second one starts at index 1 and ends at index K and we can
find its sum using S by subtracting the element at index 0 and adding the
element at index K. In this way we can reach the end of the sequence.

Find in Internet information about "Selection sort" and its C#
implementations. Briefly the idea is to find the smallest element and to
place it at position 0 (through swapping) then to find the smallest
number excluding the first and place it at position 1 and so on, until the
entire array is arranged in ascending order.

There are two ways to solve this problem. The first way is to use brute
force method, which in this case means that using two nested loops
we check every possible start and end and its corresponding sum.

The second way is to use one loop through the array to scan it from
left to right and sum the elements. Once we get a negative sum, we can

Chapter 7. Arrays 261

10.

11.

12.

13.
14.

15.

16.

restart summing from the next element. Think why this is correct! At
each step we check if the current sum is greater than the current max.

This exercise can be solved in a couple of ways. One of them is the
following: get the first number and check how many times it is repeated
in the array and store this number in a variable. After a repeated number
is found we change its value to int.MinValue. Then pass to the next
number and do the same with it. The current number is remembered if
its occurrences are maximal. As you may guess, when a number equal to
int.MinVvalue is found (already processed number) we should skip it.

Another solution is to sort the numbers in ascending order and then the
elements with same value will be placed next to each other. So, basically
we then find the longest sequence of neighbor equal elements.

This exercise can be solved with two nested loops. The first loop
assigns a starting index. The second loop sums the elements from the
starting index to the right until this partial sum reaches or is greater than
S. If the sum is equal to S, we will remember the starting index (from the
first loop) and the ending index (from the second loop).

If all numbers are positive, there is a much faster algorithm. We sum
all numbers from left to the right, starting from zero. If the current
sum becomes greater than S during the summation, we remove the
leftmost number in the sequence and we subtract it from the sum. If the
current sum is still greater than S, we remove the next leftmost number
and do that until the current sum becomes smaller than S. When the sum
becomes smaller than S we add the next number on right. If we find a
sum equal to S, we print the sum and the sequence to the console. So
this solution uses just with one scan through the elements in the array.

a), b), c) Think about appropriate ways for iterating through the
matrices with two nested loops.

d) We can start from (0, 0) and go down N times. Therefore, go to the
right N-1 times, after that up N-1 times, after that left N-2 times,
after that down N-2 times and etc. At each iteration we place the next
number in a sequence 1, 2, 3, ..., N in the cell, which we are leaving.

Modify the example about maximal platform with size of 2 by 2.

Check every element in a diagonal line, a row and a column until you get
a sequence. If you get a sequence, check whether this sequence is
longer than the currently longest sequence.

We can solve this problem with two nested for-loops (one for the
words and one for the letters of the current word). There is a solution
without using an array: we can calculate the index of a given uppercase
Latin letter ch using the expression: (int) ch - (int) 'A"'.

Find on the Internet information about the algorithm "binary search".
Note that binary search works only on sorted arrays.

262

Fundamentals of Computer Programming with C#

17.

18.

19.

20.

21.

22.

Find on the Internet information about the algorithm "merge sort™ and
its implementations in C#. It is a bit complicated to write merge sort
efficiently. You can have 3 preallocated arrays when merging arrays:
two arrays for keeping the numbers for merging and a result
array. Thus you will never allocate new arrays during the algorithm’s
execution. The arrays will be allocated just once at the start and you will
just change their purpose (swap them) during the algorithm execution.

Find information about the "quick sort" algorithm in Internet and its
C# implementations. It can be best implemented by using recursion.
See the chapter “Recursion” to read about recursive algorithms.
Generally at each step you choose an element called pivot and reorder
the array into two sections: at the left side move all elements =< pivot
and at the right side move all elements > pivot. Finally run the
quicksort algorithm recursively over the left and the right sides.

Find on the Internet information about "The sieve of Erathostenes"
(you have probably heard about it in math classes in high-school).

Generate all possible sums this way: take all the numbers and mark
them as "possible sum". Then take every number ko, k3, ..., ka-1 and for
each already marked "possible sum" p, mark as possible the sum p+k;. If
at some step you get S, a solution is found. You can keep track of the
"possible sums" either in a bool[] array possible[], where each index
is a possible sum, or in a more complex data structure like Set<int>.
Once you have possible[S] == true, you can find a number ki such
that possible[S-ki] == true, print ki and subtract it from S. Repeat the
same to find the next k; and print and subtract is again, until S reaches @.

Another algorithm: generate all possible subsets of the numbers by
a for-loop from 0 to 2N-1. If we have a number p, take its binary
representation (which consists of exactly N bits) and sum the numbers
that correspond to 1 in the binary representation of p (with a nested
loop from 0 to N-1). Thus all possible sums will be generated and if some
of them is S, it can be printed. Note that this algorithm is slow (needs
exponential time and cannot run for 100 or 1000 elements). It also does
not allow using the same array element twice in the sum.

See the previous problem. Generate all subsets of exactly K
elements (the second algorithm) and check if their sum is equal to S.

Try in the first algorithm to think how to keep the count of the humbers
used in the sum in order to take exactly K numbers. Can you define a
matrix possible[p, n] to keep whether the number p can be obtained as
a sum of the first n numbers (the numbers ko, ka2, ..., kn-1)?

Use dynamic programming to find the longest increasing sub-
sequence in the input sequence arr[], just like in problem #6. The
elements not included in the maximal increasing sequence should be
removed in order the array to become sorted.

Chapter 7. Arrays 263

23.

24.

25.

Start from the first variation in the lexicographical order: {1, 1, ...} K
times. Think of this as k-digit number. To obtain the next variation,
increase the last digit. If it becomes greater than N, change it to 1 and
increase the next digit on the left. Do the same on the left until the first
digit goes greater than N.

Modify the algorithm from the previous problem in the following way:
start from {1, 2, ..., N} and increase the last digit (with the digits at the
left when required), but always keep all elements in the array in
ascending order (element p[i] should start increasing from p[i-1]+1).

This is a little bit more difficult. You can use different graph traversal
algorithms like "DFS" (Depth-First-Search) and "BFS" (Breadth-
First-Search) to go through all the cells in certain area starting from any
cell that belongs to it. If you have an area traversal algorithm (like
DFS), run it several times starting from unvisited cell and mark the cells
of the traversed area as visited. Repeat this until all cells become
visited. Read later in this book about DFS and BFS in the chapter “Trees
and Graphs” or find information about these algorithms in Internet.

Chapter 8. Numeral Systems

In This Chapter

In this chapter we will take a look at working with different numeral
systems and how numbers are represented in them. We will pay more
attention to how numbers are represented in decimal, binary and
hexadecimal numeral systems, since they are most widely used in
computers and programming. We will also explain the different ways for
encoding numeral data in computers - signed or unsigned integers and the
different types of real numbers.

History in a Nutshell

Different numeral systems have been used since the ancient times. This
claim is supported by the fact that in ancient Egypt people used sun dials,
which measure time with the help of numeral systems. Most historians believe
that ancient Egyptians are the first civilization, which divided the day into
smaller parts. They accomplished this by using the first sun dials, which were
nothing more than a simple pole stuck in the ground, oriented by the length
and direction of the shadow.

Later a better sundial was invented, which looked like the letter T and
divided the time between sunrise and sunset into 12 parts. This proves the
use of the duodecimal system in ancient Egypt, the importance of the nhumber
12 is usually related to the fact that moon cycles in a single year are 12 or the
number of phalanxes found in the fingers of one hand (four in each finger,
excluding the thumb).

In modern times, the decimal system is the most widely spread numeral
system. Maybe this is due to the fact that it enables people to count by using
the fingers on their hands.

Ancient civilizations divided the day into smaller parts by using different
numeral systems - duodecimal and sexagesimal with bases 12 and 60
respectively. Greek astronomers such as Hipparchus used astronomical
approaches, which were earlier used by the Babylonians in Mesopotamia. The
Babylonians did astronomical calculations using the sexagesimal system,
which they had inherited from the Sumerians, who had developed it on their
own around 2000 B.C. It is not known exactly why the number 60 was chosen
for a base of the numeral system but it is important to note that this system
is very appropriate for the representation of fractions, because the number 60
is the smallest number that can be divided by 1, 2, 3, 4, 5, 6, 10, 12, 15, 20
and 30 without a remainder.

266 Fundamentals of Computer Programming with C#

Applications of the Sexagesimal Numeral System

The sexagesimal system is still used today for measuring angles,
geographical coordinates and time. It still finds application on the watch dial
and the sphere of the geographical globe. The sexagesimal system was used
by Eratosthenes for dividing a circumference into 60 parts in order to create
an early system of geographical latitudes, made up from horizontal lines
passing through places well known in the past.

One century after Eratosthenes, Hipparchus standardized these lines by
making them parallel and conformable to the geometry of the Earth. He
introduced a system of geographical longitude lines, which included 360
degrees and respectively passed from north to south and pole to pole. In the
book "Almagest" (150 A.D.), Claudius Ptolemy further developed Hipparchus’
studies by dividing the 360 degrees of geographical latitude and longitude into
other smaller parts. He divided each of the degrees into 60 equal parts, each
of which was later divided again into 60 smaller and equal parts. The parts
created by the division were called partes minutiae primae, or "first minute"
and respectively partes minutiae secundae, or "second minute". These parts
are still used today and are called "minutes" and "seconds" respectively.

Short Summary

We took a short historical trip through the millennia, which helped us learn
that numeral systems were created, used and developed as far back as the
Sumerians. The presented facts explain why a day contains (only) 24
hours, the hour has 60 minutes and the minute has 60 seconds. This is
a result of the fact that the ancient Egyptians divided the day after they had
started using the duodecimal numeral system. The division of hours and
minutes into 60 equal parts is a result of the work of ancient Greek
astronomers, who did their calculations using the sexagesimal numeral
system, which was created by the Sumerians and used by the Babylonians.

Numeral Systems

So far we have taken a look at the history of numeral systems. Let’s now take
a detailed look at what they really are and what is their role in computing.

What Are Numeral Systems?

Numeral systems are a way of representing numbers by a finite type-set of
graphical signs called digits. We must add to them the rules for depicting
numbers. The characters, which are used to depict numbers in a given
numeral system, can be perceived as that system’s alphabet.

During the different stages of the development of human civilization, various
numeral systems had gained popularity. We must note that today the most
widely spread one is the Arabic numeral system. It uses the digits 0, 1, 2,
3,4,5,6,7,8and9, as its alphabet. (An interesting fact is that the depiction
of Arabic numerals in modern times is different from the ten digits mentioned

Chapter 8. Numeral Systems 267

above but in spite of all they are still referred to the same numeral system -
the decimal one).

Beside an alphabet, every numeral system has a base. The base is a number
equal to the different digits used by the system for depicting the numbers in
it. For example, the Arabic numeral system is decimal because it has 10
digits. A random number can be chosen as a base, which has an absolute
value different than 1 and 0. It can also be a real or a complex number with a
sign.

A practical question we can ask is: which is the best numeral system that
we should use? To answer it, we must decide what the optimal way to depict
a number (the digit count in the number) is and the number of digits the
given numeral system uses - its base. Mathematically it can be proven that
the best ratio between the length of depiction and the number of used digits
is accomplished by using Euler's number (e = 2,718281828), which is the
base of natural logarithms.

Working in a system with such base e is extremely inconvenient and
impractical because that number cannot be represented as a ratio of two
natural numbers. This gives us grounds to conclude that the optimal base of a
numeral system is either 2 or 3.

Although the number 3 is closer to the Neper number, it is unsuitable for
technical implementation. Because of that the binary numeral system is the
only one suitable for practical use and it is used in the modern computers and
electronic devices.

Positional Numeral Systems

A positional numeral system is a system, in which the position of the
digits is significant for the value of the number. This means that the value of
the digits in the number is not strictly defined and depends on which position
the given digit is. For example, in the number 351 the digit 1 has a value of 1,
while in the number 1024 it has a value of 1000. We must note that the bases
of the numeral systems are applicable only with positional numeral systems.
In a positional numeral system the number Ap) = (ama-1)...a),ac-1)ac-2)...ack))
can be represented in the following way:

—k
Ap = 2 2nTn

In this sum Tm has the meaning of a weight factor for the mt" digit of the
number. In most cases Tm = P™, which means that:

K
A = Zampm

268 Fundamentals of Computer Programming with C#

Formed using the sum above, the number A(p) is respectively made up from
its whole part (aman-1)...a0)) and its fraction (a¢-nac2)...acx)), where every a
belongs to the multitude of the natural numbers M={0, 1, 2, ..., p-1}. We can
easily see that in positional numeral systems the value of each digit is the-
base-of-the-system times bigger than the one before it (the digit to the right,
which is the lower-order digit). As a direct result from this we must add one
to the left (higher-order) digit, if we need to note a digit in the current digit
that is bigger than the base. The systems with bases of 2, 8, 10 and 16 have
become wide spread in computing devices. In the table below we can see
their notation of the numbers from 0 to 15:

Binary Octal Decimal Hexadecimal
0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 10 A
1011 13 11 B
1100 14 12 C
1101 15 13 D
1110 16 14 E
1111 17 15 F

Non-Positional Numeral Systems

Besides the positional numeral systems, there are also non-positional
numeral systems, in which the value of each digit is a constant and does not
strictly depend on its position in the number. Such numeral systems are the
Roman and Greek numeral systems. All non-positional numeral systems
have a common drawback - the notation of big numbers in them is very
inefficient. As a result of this drawback, they have gained only limited use.
This could often lead to inaccuracy when determining the value of numbers.
We will take a very brief look at the Roman and Greek numeral systems.

Chapter 8. Numeral Systems 269

Roman Numeral System

The Roman numeral system uses sequences of the following symbols to
represent the numbers:

Roman Digit Decimal Value
I 1
Vv 5
X 10
L 50
C 100
D 500
M 1000

As we have already mentioned, in this numeral system the position of the
digit has no significance for the value of the number and for determining the
value, the following rules are applied:

1. If two consecutively represented Roman digits are in such order that the
value of the first one is bigger or equal to the value of the second one,
their values are added. Examples:

The number III = 3 (1 + 1 + 1). The number MMD = 2500 (2000 + 2000
+ 500).

2. If two consecutively represented roman digits are in increasing order of
their values, they are subtracted. This is done from right to left. Examples:

The number IX = 9 (-1 + 10), the number MXL=1040 (1000 - 10 + 50),
but the number MXXIV = 1024 (1000 + 10 + 10 - 1 + 5).

Greek Numeral System

The Greek numeral system is a decimal system, in which a grouping of fives
is done. It uses the following digits:

Greek Digit Decimal Value
I 1
r 5
A 10
H 100
X 1,000
M 10,000

270 Fundamentals of Computer Programming with C#

As we can see in the table, one is represented with a vertical line, five with
the letter I', and the powers of 10 with the first letter of the corresponding
Greek word.

Here are some examples of numbers in this system:
- TA=50=5x10
- H=500=5x100
- X =5000=5x 1,000
- 'M =50,000 =5 x 10,000

The Binary Numeral System - Foundation of
Computing Technology

The binary numeral system is the system, which is used to represent and
process numbers in modern computing machines. The main reason it is so
widely spread is explained with the fact that devices with two stable states
are very simple to implement and the production costs of binary arithmetic
devices are very low.

The binary digits @ and 1 can be easily represented in the computing
machines as "current" and "no current", or as "+5V" and "-5V".

Along with its advantages, the binary system for number notation in
computers has its drawbacks, too. One of its biggest practical flaws is that
numbers represented in binary numeral system are very long, meaning they
have a large number of bits. This makes it inconvenient for direct use by
humans. To avoid this disadvantage, systems with larger bases are used in
practice.

Decimal Numbers

Numbers represented in the decimal numeral system, are given in a primal
appearance, meaning that they are easy to be understood by humans. This
numeral system has the number 10 for a base. The nhumbers represented in it
are ordered by the powers of the number 10. The lowest-order digit (first
from right to left) of the decimal numbers is used to represent the ones
(10°=1), the next one to represent the tens (10'=10), the next one to
represent the hundreds (102=100), and so on. In other words - every
following digit is ten times bigger than the one preceding it. The sum of the
separate digits determines the value of the number. We will take the number
95031 as an example, which can be represented in the decimal numeral
system as:

95031 = (9x10%) + (5x10%) + (0x102) + (3x10%) + (1x10°)

Represented that way, the number 95031 is presented in a natural way for
humans because the principles of the decimal numeral system have been
accepted as fundamental for people.

Chapter 8. Numeral Systems 271

The discussed approaches are valid for the other numeral
systems, too. They have the same logical setting but are
& applied to a system with a different base. The last statement
is true for the binary and hexadecimal numeral systems,
which we will discuss in details in a little bit.

Binary Numbers

The numbers represented in the binary numeral system are represented in
a secondary aspect — which means that they are easy to be understood by the
computing machine. They are a bit harder to be understood by people. To
represent a binary number, the binary numeral system is used, which has the
number 2 for a base. The numbers represented in it are ordered by the
powers of two. Only the digits 0 and 1 are used for their notation.

Usually, when a number is represented in a numeral system other than
decimal, the numeral system’s base is added as an index in brackets next to
the number. For example, with this notation 1110¢2) we indicate a number in
the binary numeral system. If no numeral system is explicitly specified, it is
accepted that the number is in the decimal system. The number is
pronounced by reading its digits in sequence from left to right (we read from
the highest-order to the lowest-order bit).

Like with decimal numbers, each binary number being looked at from right to
left is represented by a power of the humber 2 in the respected sequence.
The lowest-order position in a binary number corresponds to the zero power
(2°=1), the second position corresponds to 2 to the first power (2!=2), the
third position corresponds to 2 to the second power (22=4), and so on. If the
number is 8 bits long, the last bit is 2 to the seventh power (27=128). If the
number has 16 bits, the last bit is 2 to the fifteenth power. By using 8 binary
digits (0 or 1) we can represent a total of 256 numbers, because 28=256. By
using 16 binary digits we can represent a total of 65536 numbers, because
216=65536.

Let’s look at some examples of numbers in the binary numeral system. Take,
for example, the decimal number 148. It is composed of three digits: 1, 4
and 8, and it corresponds to the following binary number:

10010100(2)
148 = (1x27) + (1x2%) + (1x2?)

The full notation of the number is depicted in the following table:

Number 1 0 o 1 o 1 o o
Power 27 26 2° 24 23 22 21 20

1x27 | Ox26 | Ox25 | 1x2% | Ox23 | 1x22 | Ox2! | 0x20

Value

272 Fundamentals of Computer Programming with C#

The sequence of eight zeros or ones represents one byte, an ordinary eight
bit binary number. All humbers from 0 to 255 including can be represented in
a single byte. In most cases this is not enough; as a result several
consecutive bytes can be used to represent a big number. Two bytes form the
so called "machine word" (word), which corresponds to 16 bits (in 16-bit
computing machines). Besides it, computing machines use the so called
double word or dword, corresponding to 32 bits.

& If a binary number ends in 0 it is even, if it ends in 1 it is
odd.

Converting From Binary to Decimal Numeral System

When turning from binary to decimal numeral system, we do a conversion of
a binary number to a decimal number. Every humber can be converted
from one numeral system to another by doing a sequence of operations that
are possible in both numeral systems. As we have already mentioned,
numbers in the binary system consist of binary digits, which are ordered by
the powers of 2. Let's take the number 11001(2). Converting into decimal is
done by calculating the following sum:

11001 = 1Xx24+ 1x23+ 0%x22+0x2! +1x20 =
= 16(10) + 8(10) + 1(10) = 25(10)
From this follows that 110012 = 2510)

In other words - every single binary digit is multiplied by 2 raised to the
power of the position it is in. In the end all of the numbers resulting from
the binary digits are added up to get the decimal value of the binary number.

Horner Scheme

Another method of conversion exists, known as the Horner Scheme. When
using it, we multiply the left most digit by 2 and add it to the one to its right.
We multiply this result by two and the neighboring digit (one to the right) is
added. This is repeated until all the digits in the number have been exhausted
and we add the last digit without multiplying it. Here is an example:

10010)=((1 x24+0)x24+0)x2+1=2%x2%x2+1=9

Converting from Decimal to Binary Numeral System

When transitioning from decimal to binary numeral system, we convert a
decimal number into a binary one. To accomplish this, we divide it by 2 with a
remainder. This is how we get the quotient and the remainder, which is
separated.

Let’s use the number 148 again as an example. We do an integer division by
the base we want to convert to (in this case it is 2). After that using the
remainders of the division (they will always be either zero or one), we

Chapter 8. Numeral Systems 273

represent the converted number. We continue dividing until we get a zero
quotient. Here is an example:

148:2=74 with remainder 0O;
74:2=37 with remainder 0O;
37:2=18 with remainder 1;
18:2=9 with remainder 0O;
9:2=4 with remainder 1;
4:2=2 with remainder O;
2:2=1 with remainder O;
1:2=0 with remainder 1;

After we are done with the division, we represent the remainders in reverse
order as follows:

10010100
i.e. 148100 = 10010100 (2)

Operations with Binary Numbers

The arithmetical rules of addition, subtraction and multiplication are valid for a
single digit of binary numbers:

0+0=0 0-0=0 0x0=0
1+0=1 1-0=1 1x0=0
0+1=1 1-1=0 0x1=0
1+1=10 10-1=1 1x1=1

In addition, with binary numbers we can also do logical operations such as
logical multiplication (conjunction), logical addition (disjunction) and the sum
of modulo two (exclusive or).

We must also note that when we are doing arithmetic operations with multi-
order numbers we must take into account the connection between the
separate orders by transfer or loan, when doing addition or subtraction
respectively. Let’s take a look at some details regarding bitwise operators.

Bitwise "and"

The bitwise AND operator can be used for checking the value of a given bit in
a number. For example, if we want to check if a given number is even (we
check if the lowest-order bit is 1):

10111011 AND 00000001 = 00000001

The result is 1, which means that the number is odd (if the result was 0 the
number would be even).

274 Fundamentals of Computer Programming with C#

In C# the bitwise "and" is represented with & and is used like this:

int result = integerl & integer2;

Bitwise "or"

The bitwise OR operator can be used if we want, for example, to "raise" a
given bit to 1:

10111011 OR 00000100 = 10111111

Bitwise "or" in C# is represented with | and is used like this:

int result = integerl | integer2;

Bitwise "exclusive or"

The bitwise operator XOR - every binary digit is processed separately, and
when we have a 0 in the second operand, the corresponding value of the bit
in the first operand is copied in the result. At every position that has a value
of 1 in the second operand, we reverse the value of the corresponding
position in the first operand and represent it in the result:

10111011 XOR 01010101 = 11101110

In C# the notation of the "exclusive or" operator is ~:

int result = integerl * integer2;

Bitwise Negation

The bitwise operator NOT - this is a unary operator, which means that it is
applied to a single operand. What it does is to reverse every bit of the given
binary number to its opposite value:

NOT 10111011 = 01000100

In C# the bitwise negation is represented with ~:

int result = ~integeril;

Hexadecimal Numbers

With hexadecimal numbers we have the number 16 for a system base,
which implies the use of 16 digits to represent all possible values from 0 to 15
inclusive. As we have already shown in one of the tables in the previous
sections, for notating numbers in the hexadecimal system, we use the digits
from 0 to 9 and the Latin numbers from A to F. Each of them has the
corresponding value:

A=10, B=11, C=12, D=13, E=14, F=15

Chapter 8. Numeral Systems 275

We can give the following example for hexadecimal numbers: D2, 1F2F1, D1E
and so on.

Transition to decimal system is done by multiplying the value of the right
most digit by 16°, the next one to the left by 16!, the next one to the left by
162 and so on, and adding them all up in the end. Example:

D1Ewus) = E*16° + 1*16! + D*162 = 14*1 + 1*16 + 13*256 = 3358(10).

Transition from decimal to hexadecimal numeral system is done by dividing
the decimal number by 16 and taking the remainders in reverse order.
Example:

3358 / 16 = 209 + remainder 14 (E)
209 /16 = 13 + remainder 1 (1)
13 /16 = 0 + remainder 13 (D)

We take the remainders in reverse order and get the number D1E(is).

Fast Transition from Binary to Hexadecimal Numbers

The fast conversion from binary to hexadecimal numbers can be quickly
and easily done by dividing the binary number into groups of four bits
(splitting it into half-bytes). If the number of digits is not divisible by four,
leading zeros in the highest-orders are added. After the division and the
eventual addition of zeros, all the groups are replaced with their
corresponding digits. Here is an example:

Let’s look at the following: 1110011110¢2).
1. We divide it into half-bytes and add the leading zeros
Example: 0011 1001 1110.

2. We replace every half-byte with the corresponding hexadecimal digit
and we get 39Es).

Therefore 1110011110 (2) = 39E(se).

Numeral Systems - Summary

As a summary, we will formulate again in a short but clear manner the
algorithms used for transitioning from one positional numeral system to
another:

- Transitioning from a decimal to a k-based numeral system is done
by consecutively dividing the decimal to the base of the k system and
the remainders (their corresponding digit in the k based system) are
accumulated in reverse order.

- Transitioning from a k-based numeral system to decimal is done by
multiplying the last digit of the k-based number by k°, the one before it
by k!, the next one by k? and so on, and the products are the added up.

276 Fundamentals of Computer Programming with C#

- Transitioning from a k-based numeral system to a p-based
numeral system is done by intermediately converting to the decimal
system (excluding hexadecimal and binary numeral systems).

- Transitioning from a binary to hexadecimal numeral system and
back is done by converting each sequence of 4 binary bits into its
corresponding hexadecimal number and vice versa.

Representation of Numbers

Binary code is used to store data in the operating memory of computing
machines. Depending on the type of data we want to store (strings, integers
or real numbers with an integral and fractal part) information is represented
in a particular manner. It is determined by the data type.

Even a programmer using a high level language must know how the data is
allocated in the operating memory of the machine. This is also relevant to the
cases when the data is stored on an external carrier, because when it is
processed, it will be situated in the operating memory.

In the current section we will take a look at the different ways to present
and process different types of data. In general they are based on the
concepts of bit, byte and machine word.

Bit is a binary unit of information with a value of either 0 or 1.

Information in the memory is grouped in sequences of 8 bits, which form a
single byte.

For an arithmetic device to process the data, it must be presented in the
memory by a set number of bytes (2, 4 or 8), which form a machine word.
These are concepts, which every programmer must know and understand.

Representing Integer Numbers in the Memory

One of the things we have not discussed so far is the sign of numbers.
Integers can be represented in the memory in two ways: with a sign or
without a sign. When numbers are represented with a sign, a signed order is
introduced. It is the highest-order and has the value of 1 for negative
numbers and the value of 0 for positive numbers. The rest of the orders are
informational and only represent (contain) the value of the number. In the
case of a number without a sign, all bits are used to represent its value.

Unsigned Integers

For unsigned integers 1, 2, 4 or 8 bytes are allocated in the memory.
Depending on the number of bytes used in the notation of a given number,
different scopes of representation with variable size are formed. Through n
bytes all integers in the range [0, 2"-1] can be represented. The following
table shows the range of the values of unsigned integers:

Chapter 8. Numeral Systems 277

Number of bytes Range
for representing
the number in Notation .
0 TS Y with order Regular notation
1 0+ 281 0 + 255
2 0 + 216-1 0 + 65,535
4 0+ 231 0 + 4,294,967,295
8 0 + 2%4-1 0 + 18,446,744,073,709,551,615

We will give as an example a single-byte and a double-byte representation of
the number 158, whose binary notation is the following 10011110¢2):

1. Representation with 1 byte:

2. Representation with 2 bytes:

0 6/ 0 0|0 0|0|0|1| 06|06 |1 1|1|1)|60

Representing Negative Numbers

For negative numbers 1, 2, 4 or 8 bytes are allocated in the memory of the
computer, while the highest-order (the left most bit) has a signature
meaning and carries the information about the sign of the number. As we
have already mentioned, when the signature bit has a value of 1, the number
is negative, otherwise it is positive.

The next table shows the range of the values of the signed integer numbers in
the computer according to the number of bytes used for their notation:

Number of bytes Rank
for representing
el oo T s Notation Regular notation
memory with order
1 -27+27-1 -128 + 127
2 =215+ 2151 -32,768 + 32,767
4 2231 = 9319 -2,147,483,648 + 2,147,483,647

-9,223,372,036,854,775,808 +

D63 = 63
8 27+ 271 9,223,372,036,854,775,807

To encode negative numbers, straight, reversed and additional code is
used. In all these three notations signed integers are within the range: [-2"1,

278 Fundamentals of Computer Programming with C#

2"1-1]. Positive numbers are always represented in the same way and the
straight, reversed and additional code all coincide for them.

Straight code (signed magnitude) is the simplest representation of the
number. The highest-order bit carries the sign and the rest of the bits hold
the absolute value of the number. Here are some examples:

The number 3 in signed magnitude is represented as an eight-bit-long number
00000011.

The number -3 in signed magnitude is represented in an eight-bit-long
number as 10000011.

Reversed code (one’s complement) is formed from the sighed magnitude
of the number by inversion (replacing all ones with zeros and vice-versa). This
code is not convenient for the arithmetical operations addition and subtraction
because it is executed in a different way if subtraction is necessary. Moreover
the sign carrying bits need to be processed separately from the information
carrying ones. This drawback is avoided by using additional code, which
instead of subtraction implements addition with a negative number. The latter
is depicted by its addition, i.e. the difference between 2" and the number
itself. Example:

The number -127 in signed magnitude is represented as 1 1111111 and in
one’s complement as 1 0000000.

The number 3 in sighed magnitude is represented as 0 0000011, and in one’s
complement looks like 0 1111100.

Additional code (two’s complement) is a number in reversed code to
which one is added (through addition). Example:

The number -127 is represented with additional code as 1 0000001.

In the Binary Coded Decimal, also known as BCD code, in one byte two
decimal digits are recorded. This is achieved by encoding a single decimal
digit in each half-byte. Numbers presented in this way can be packed, which
means that they can be represented in a packed format. If we represent a
single decimal digit in one byte we get a non-packed format.

Modern microprocessors use one or several of the discussed codes to present
negative numbers, the most widespread method is using two’s complement.

Integer Types in C#

In C# there are eight integer data types either signed or unsigned.
Depending on the amount of bytes allocated for each type, different value
ranges are determined. Here are descriptions of the types:

Type in .NET

Type Size Range Framework

sbyte 8 bits -128 + 127 System.SByte

Chapter 8. Numeral Systems 279

byte 8 bits 0 + 255 System.Byte
short 16 bits -32,768 + 32,767 System.Intl16
ushort | 16 bits 0 + 65,535 System.UInt16

int 32 bits -2,147,483,648 + 2,147,483,647 System.Int32

uint 32 bits 0 + 4,294,967,295 System.UInt32

-9,223,372,036,854,775,808 +

long | 64 bits 9,223,372,036,854,775,807

System.Int64

ulong 64 bits 0 + 18,446,744,073,709,551,615 System.UInté64

We will take a brief look at the most used ones. The most commonly used
integer type is int. It is represented as a 32-bit number with two’s
complement and takes a value in the range [-23!, 231-1]. Variables of this
type are most frequently used to operate loops, index arrays and other
integer calculations. In the following table an example of a variable of the
type int is being declared:

int integerValue = 25;
int integerHexValue = 0Ox002A;
int y = Convert.ToInt32("1001", 2); // Converts binary to int

The type long is the largest signed integer type in C#. It has a size of 64 bits
(8 bytes). When giving value to the variables of type long the Latin letters "1"
or "L" are placed at the end of the integer literal. Placed at that position, this
modifier signifies that the literal has a value of the type long. This is done
because by default all integer literals are of the type int. In the next
example, we declare and give 64-bit value to variables of type long:

long longValue = 9223372036854775807L;
long newlLongValue = 9321456990543236891;

An important condition is not to exceed the range of numbers that can be
represented in the used type. However, C# offers the ability to control what
happens when an overflow occurs. This is done via the checked and
unchecked blocks. The first are used when the application needs to throw an
exception (of the type System.OverflowException) in case that the range of
the variable is exceeded. The following programming code does exactly that:

280 Fundamentals of Computer Programming with C#

checked

{
int a = int.MaxValue;
a=a+1;
Console.WritelLine(a);

}

In case the fragment is in an unchecked block, an exception will not be
thrown and the output result will be wrong:

-2147483648

In case these blocks are not used, the C# compiler works in unchecked mode
by default.

C# includes unsigned types, which can be useful when a larger range is
needed for the variables in the scope of the positive numbers. Below are some
examples for declaring variables without a sign. We should pay attention to
the suffixes of ulong (all combinations of U, L, u, 1).

byte count = 50;

ushort pixels = 62872;

uint points = 4139276850; // or 4139276850u, 4139276850U
ulong y = 18446744073709551615; // or UL, ul, Ul, ulL, Lu, 1lU

Big-Endian and Little-Endian Representation

There are two ways for ordering bytes in the memory when representing
integers longer than one byte:

- Little-Endian (LE) - bytes are ordered from left to right from the
lowest-order to the highest. This representation is used in the Intel x86
and Intel x64 microprocessor architecture.

- Big-Endian (BE) - bytes are ordered from left to right starting with the
highest-order and ending with the lowest. This representation is used in
the PowerPC, SPARC and ARM microprocessor architecture.

Here is an example: the number A8B6EA721¢) is presented in both byte orders
in the following way:

0x72 | OXEA | OxB6 | OxA8 0xA8 | 0xB6 | OxXEA | 0x72
Big-Endian (BE) Little-Endian (LE)
for OXABB6EA72 for OxA8B6EA72

There are some classes in C# that offer the opportunity to define which order
standard to be used. This is important for operations like sending / receiving

Chapter 8. Numeral Systems 281

streams of information over the internet or other types of communication
between devices made by different standards. The field IsLittleEndian of
the BitConverter class for example shows what mode the class is working in
and how it stores data on the current computer architecture.

Representing Real Floating-Point Numbers

Real numbers consist of a whole and fraction parts. In computers, they are
represented as floating-point numbers. Actually this representation comes
from the Standard for Floating-Point Arithmetic (IEEE 754), adopted by the
leading microprocessor manufacturers. Most hardware platforms and
programming languages allow or require the calculations to be done according
to the requirements of this standard. The standard defines:

- Arithmetical formats: a set of binary and decimal data with a floating-
point, which consists of a finite number of digits.

- Exchange formats: encoding (bit sequences), which can be used for
data exchange in an effective and compact form.

- Rounding algorithms: methods, which are used for rounding up
numbers during calculations.

- Operations: arithmetic and other operations of the arithmetic formats.

- Exceptions: they are signals for extraordinary events such as division
by zero, overflowing and others.

According to the IEEE-754 standard a random real number R can be
presented in the following way:

R=M*gr

where M is the mantissa of the number, p is the order (exponent), and g
accordingly is the base of the numeral system the number is in. The mantissa
must be a positive or negative common fraction |M|<1, and the exponent - a
positive or negative integer.

In the mentioned method of representation of numbers, every floating-point
number will have the following summarized format £0,M*qg*P.

When notating numbers in the floating-point format using the binary numeral
system in particular, we will have R = M * 2P In this representation of real
numbers in the computer memory, when we change the exponent, the
decimal point in the mantissa moves ("floats"). The floating-point
representation format has a semi-logarithmic form. It is depicted in the
following figure:

Ek-l 20 2-1 2-2 2-n

s Po e | Py | My M, M

m1

Sign Exponent Mantissa

http://en.wikipedia.org/wiki/IEEE_754

282 Fundamentals of Computer Programming with C#

Representing Floating-Point Numbers — Example

Let's give an example of how a floating-point number is represented in the
memory. We want to write the number -21.15625 in 32-bit (single precision)
floating-point format according to the IEEE-754 standard. In this format, 23
bits are used for the mantissa, 8 bits for the exponent and 1 bit for the sign.
The notation of the number is as follows:

Bit 31 Bits {30-23) Bits (22-0)
‘\ A A
r O ™y
1 10000011 01010010100000000000000
{/ LN Y J L. ~ >

Sign =-1 Exponent =4 Mantissa = 1.322265625

The sign of the number is negative, which means that the mantissa has a
negative sign:

S=-1
The exponent has a value of 4 (represented with a shifted order):
p=(2°+2'+27)-127 = (1+2+128) - 127 =4

For transitioning to the real value we subtract 127 from the additional code
because we are working with 8 bits (127 = 27-1) starting from the zero
position.

The mantissa has the following value (without taking the sign into account):
M=1+22+2%+27+2°%=

1+ 0.25 + 0.0625 + 0.0078125 + 0.001953125 =

1.322265625

We should note that we added a one, which was missing from the binary
notation of the mantissa. We did it because the mantissa is always normalized
and starts with a one by default.

The value of the number is calculated using the formula R = M * 2P, which in
our example looks like the following:

R = -1,3222656 * 2% = -1,322265625 * 16 = -21,1562496 =~ -21,15625

Mantissa Normalization

To use the order grid more fully, the mantissa must contain a one in its
highest-power order. Every mantissa fulfilling this condition is called
normalized. In the IEEE-754 standard, the one in the whole part of the
mantissa is by default, meaning the mantissa is always a number between 1
and 2.

If during the calculations a result that does not fulfill this condition is reached,
it means that the normalization is violated. This requires the normalization of

Chapter 8. Numeral Systems 283

the number prior to its further processing, and for this purpose the decimal
point in the mantissa is moved and the corresponding order change is made.

The Float and Double Types in C#

In C# we have at our disposal two types, which can represent floating-point
numbers. The float type is a 32-bit real number with a floating-point and it
is accepted to be called single precision floating-point number. The double is
a 64-bit real number with a floating-point and it is accepted that it has a
double precision floating-point. These real data types and the arithmetic
operations with them correspond to the specification outlined by the IEEE
754-1985 standard. In the following table are presented the most important
characteristics of the two types:

. Significant Type in .NET
Type Sles e Digits Framework
—45 -
float 32 bits iiéijlolow ' 7 System.Single
-324
double 64 bits ii‘f;xlolom' 15-16 System.Double

In the float type we have a mantissa, which contains 7 significant digits,
while in the double type it stores 15-16 significant digits. The remaining bits
are used for specifying the sign of the mantissa and the value of the
exponent. The double type, aside from the larger number of significant digits,
also has a larger exponent, which means that it has a larger scope of the
values it can assume. Here is an example how to declare variables of the
float and double types:

float total = 5.0f;
float result = 5.0f;
double sum = 10.0;
double div = 35.4 / 3.0;
double x = 5d;

The suffixes placed after the numbers on the right side of the equation, serve
the purpose of specifying what type the number should be treated as (f for
float, d for double). In this case they are in place because by default 5.0 will
be interpreted as a double and 5 - as an int.

In C#, floating-point numbers literals by default are of the
double type.

Integers and floating-point numbers can both be present in a given
expression. In that case, the integer variables are converted to floating-point
variables and the result is defined according to the following rules:

284 Fundamentals of Computer Programming with C#

1. If any of the floating-point types is a double, the result will be double
(or bool).

2. If there is no double type in the expression, the result is float (or
bool).

Many of the mathematical operations can yield results, which have no specific
numerical value, like the value "+4/- infinity" or NaN (which means "Not a
Number"), these values are not numbers. Here is an example:

double d = 0;
Console.WriteLine(d);
Console.WritelLine(1/d);
Console.WriteLine(-1/d);
Console.WriteLine(d/d);

If we execute it we get the following result:

0.0
Infinity
-Infinity
NaN

If we execute the code above using int instead of double, we will receive a
System.DivideByZeroException, because integer division by 0 is not an
allowed operation.

Errors When Using Floating-Point Numbers

Floating-point numbers (presented according to the IEEE 754 standard) are
very convenient for calculations in physics, where very big humbers are used
(with several hundred digits) and also numbers that are very close to zero
(with hundreds of digits after the decimal point before the first significant
digit). When working with these numbers, the IEEE 754 format is
exceptionally convenient because it keeps the number’s order in the exponent
and the mantissa is only used to store the significant digits. In 64-bit floating-
point numbers accuracy of 15-16 digits, as well as exponents displacing the
decimal point with 300 positions left or right can be achieved.

Unfortunately not every real number has an exact representation in the
IEEE 754 format, because not each number can be presented as a
polynomial of a finite number of addends, which are negative powers of two.
This is fully valid even for numbers, which are used daily for the simplest
financial calculations. For example the number 0.1 represented as a 32-bit
floating-point value is presented as 0.099999994. If the appropriate rounding
is used, the number can be accepted as 0.1, but the error can be accumulated
and cause serious deviations, especially in financial calculations. For example
when adding up 1000 items with a unit price of 0.1 EUR each, we should get a
sum of 100 EUR but if we use a 32-bit floating-point numbers for the

Chapter 8. Numeral Systems 285

calculations the result will be 99.99905. Here is C# example in action, which
proves the errors caused by the inaccurate presentation of decimal real
numbers in the binary numeral system:

float sum = Of;
for (int i = @; 1 < 1000; i++)
{

}

Console.WriteLine("Sum = {@}", sum);
// Sum = 99,99905

sum += 0.1F;

We can easily see the errors in such calculations if we execute the example or
modify it to get even more striking errors.

Precision of Floating-Point Numbers

The accuracy of the results from floating-point calculations depends on the
following parameters:

1. Precision of the nhumber representation.
2. Precision of the used number methods.
3. Value of the errors resulting from rounding up, etc.

Calculations with them can be inaccurate because they are represented in the
memory with some kind of precision. Let’s look at the following code fragment
as an example:

double sum = 0.0;
for (int i = 1; i <= 10; i++)

{
}

Console.WriteLine("{0@:r}", sum);
Console.WriteLine(sum);

sum += 0.1;

During the execution, in the loop we add the value 1/10 to the variable sum.
When calling the WritelLine() method, we use the round-trip format specifier
"{@:r}" to print the exact (not rounded) value contained in the variable, and
after that we print the same value without specifying a format. We expect
that when we execute the program we will get 1.0 as a result but in reality,
when rounding is turned off, the program returns a value very close to the
correct one but still different:

0.99999999999999989
1

286 Fundamentals of Computer Programming with C#

As we can see in the example, by default, when printing floating-point
numbers in .NET Framework, they are rounded, which seemingly reduces
the errors of their inaccurate notation in the IEEE 754 format. The result of
the calculation above is obviously wrong but after the rounding it looks
correct. However, if we add 0.1 a several thousand times, the error will
accumulate and the rounding will not be able to compensate it.

The reason for the wrong answer in the example is that the number 0.1 does
not have an exact representation in the double type and it has to be rounded.
Let’s replace double with float:

float sum = 0.0f;
for (int i = 1; i <= 10; i++)

{
}

Console.WriteLine("{0:r}", sum);

sum += 0.1F;

If we execute the code above, we will get an entirely different sum:

1.00000012

Again the reason for this is rounding.

If we investigate why the program yields these results, we will see that the
number 0.1 of the float type is represented in the following manner:

Bit 31 Bits (30-23) Bits (22-0)
\\ A A,
f \ ~
0 01111011 10011001100110011001101
’/ \ Y J L. ~ -

Sign =1 Exponent = -4 Mantissa = 1.6

All this looks correct except for the mantissa, which has a value slightly bigger
than 1.6, not exactly 1.6 because this number cannot be presented as sum of
the negative powers of 2. If we have to be very precise, the value of the
mantissaisl1 +1/2+1/16+1/32+1/256+1/512+1/409 + 1/
8192 + 1 /65536 +1 /131072 + 1 /1048576 + 1 /2097152 + 1 / 8388608
~ 1.60000002384185791015625 =~ 1.6. Thus the number 0.1 presented in
the IEE 754 is slightly more than 1.6 x 2 and the error occurs not during the
addition but before that, when 0.1 is recorded in the float type.

Double and Float types have a field called Epsilon, which is a constant, and
it contains the smallest value larger than zero, which can be represented by
an instance of System.Single or System.Double respectively. Each value
smaller than Epsilon is considered to be equal to 0. For example, if we

Chapter 8. Numeral Systems 287

compare two numbers, which are different after all, but their difference is
smaller than Epsilon, they will be considered equal.

The Decimal Type

The System.Decimal type in .NET Framework uses decimal floating-point
arithmetic and 128-bit precision, which is very suitable for big numbers and
precise financial calculations. Here are some characteristics of the decimal

type:

Significant Type in .NET

Type Sl LEDE numbers framework
. _ +1.0 x 10728 + .
decimal 128 bits £7.9 x 1028 28-29 System.Decimal

Unlike the floating-point numbers, the decimal type retains its precision for
all decimal number in its range. The secret to this excellent precision when
working with decimal numbers lies in the fact that the internal representation
of the mantissa is not in the binary system but in the decimal one. The
exponent is also a power of 10, not 2. This enables numbers to be
represented precisely, without them being converted to the binary numeral
system.

Because the float and double types and the operations on them are
implementer by the arithmetic coprocessor, which is part of all modern
computer microprocessors, and decimal is implemented by the software in
.NET CLR, it is tens of times slower than double, but is irreplaceable for the
execution of financial calculations.

In case our target is to assign a given literal to variable of type decimal, we
need to use the suffixes m or M. For example:

decimal calc = 20.4m;
decimal result = 5.0M;

Let’s use decimal instead of float / double in the example from before:

decimal sum = 0.0m;
for (int i = 1; i <= 10000000; i++)
{

}

Console.WriteLine(sum);

sum += ©.0000001m;

This time the result is exactly what we expected:

1.0000000

288 Fundamentals of Computer Programming with C#

Even though the decimal type has a higher precision than the floating-point
types, it has a smaller value range and, for example, it cannot be used to
represent the following value 1e-50. As a result, an overflow may occur when
converting from floating-point numbers to decimal.

Character Data (Strings)

Character (text) data in computing is text, encoded using a sequence of
bytes. There are different encoding schemes used to encode text data. Most
of them encode one character in one byte or in a sequence of several bytes.
Such encoding schemes are ASCII, Windows-1251, UTF-8 and UTF-16.

Encoding Schemes (Encodings)

The ASCII encoding scheme compares the unique number of the letters from
the Latin alphabet and some other symbols and special characters and writes
them in a single byte. The ASCII standard contains a total of 127 characters,
each of which is written in one byte. A text, written as a sequence of bytes
according to the ASCII standard, cannot contain Cyrillic or characters from
other alphabets such as the Arabian, Korean and Chinese ones.

Like the ASCII standard, the Windows-1251 encoding scheme compares the
unique number of the letters in the Latin alphabet, Cyrillic and some other
symbols and specialized characters and writes them in one byte. The
Windows-1251 encoding defines the numbers of 256 characters - exactly as
many as the different values that can be written in one byte. A text written
according to the Windows-1251 standard can contain only Cyrillic and Latin
letters, Arabian, Indian or Chinese are not supported.

The UTF-8 encoding is completely different. All characters in the Unicode
standard - the letters and symbols used in all widely spread languages in the
world (Cyrillic, Latin, Arabian, Chinese, Japanese, Korean and many other
languages and writing systems) - can be encoded in it. The UTF-8 encoding
contains over half a million symbols. In the UTF-8 encoding, the more
commonly used symbols are encoded in 1 byte (Latin letters and digits for
example), the second most commonly used symbols are coded in 2 bytes
(Cyrillic letters for example), and the ones that are used even more rarely are
coded in 3 or 4 bytes (like the Chinese, Japanese and Korean alphabet).

The UTF-16 encoding, like UTF-8 can depict text of all commonly used
languages and writing systems, described in the Unicode standard. In UTF-16,
every symbol is written in 16 bits (2 bytes) and some of the more rarely used
symbols are presented as a sequence of two 16-bit values.

Presenting a Sequence of Characters

Character sequences can be presented in several ways. The most common
method for writing text in the memory is to write in 2 or 4 bytes its length,
followed by a sequence of bytes, which presents the text itself in some sort of
encoding (for example Windows-1251 or UTF-8).

Chapter 8. Numeral Systems 289

Another, less common method of writing texts in the memory, typical for the
C language, represents texts as a sequence of characters, usually coded in 1
byte, followed by a special ending character, most frequently a 0. When using
this method, the length of the text saved at a given position in the memory is
not known in advance. This is considered a disadvantage in many situations.

Char Type

The char type in the C# language is a 16-bit value, in which a single
Unicode character or part of it is coded. In most alphabets (for example the
ones used by all European languages) one letter is written in a single 16-bit
value, and thus it is assumed that a variable of the char type represents a
single character. Here is an example:

char ch = 'A";
Console.WriteLine(ch);

String Type

The string type in C# holds text, encoded in UTF-16. A single string in
C# consists of 4 bytes length and a sequence of characters written as 16-bit
values of the char type. The string type can store texts written in all
widespread alphabets and human writing systems - Latin, Cyrillic, Chinese,
Japanese, Arabian and many, many others. Here is an example of the usage
of the string:

string str = "Example";
Console.WriteLine(str);

Exercises

1. Convert the numbers 151, 35, 43, 251, 1023 and 1024 to the binary
numeral system.

2. Convert the number 1111010110011110(2) to hexadecimal and decimal
numeral systems.

3. Convert the hexadecimal numbers FA, 2A3E, FFFF, 5A0E9 to binary and
decimal numeral systems.

Write a program that converts a decimal number to binary one.
Write a program that converts a binary number to decimal one.
Write a program that converts a decimal nhumber to hexadecimal one.
Write a program that converts a hexadecimal nhumber to decimal one.

Write a program that converts a hexadecimal number to binary one.

© ® N o U A

Write a program that converts a binary number to hexadecimal one.

290 Fundamentals of Computer Programming with C#

10. Write a program that converts a binary number to decimal using the
Horner scheme.

11. Write a program that converts Roman digits to Arabic ones.

12. Write a program that converts Arabic digits to Roman ones.

13. Write a program that by given N, S, D (2 £ S, D £ 16) converts the number
N from an S-based numeral system to a D based numeral system.

14. Try adding up 50,000,000 times the number 0.000001. Use a loop
and addition (not direct multiplication). Try it with float and double and
after that with decimal. Do you notice the huge difference in the
results and speed of calculation? Explain what happens.

15. * Write a program that prints the value of the mantissa, the sign of the

mantissa and exponent in float numbers (32-bit numbers with a
floating-point according to the IEEE 754 standard). Example: for the
number -27.25 should be printed: sign = 1, exponent = 10000011,
mantissa = 10110100000000000000000.

Solutions and Guidelines

1.

Use the methods for conversion from one numeral system to
another. You can check your results with the help of the Windows built-
in calculator, which supports numeral systems in "Programmer" mode.
The results are: 10010111, 100011, 101011, 11111011, 1111111111 and
10000000000.

Like the previous exercise. Result: F59E(16) and 62878(10).

Like the previous exercise. The results are: FA@e) = 250(10) =
11111010(2), 2A3E(1s) = 1081410y = 10101000111110(2), FFFFs) =
65535(10) = 1111111111111111¢2y and B5AQE9ue) = 368873(10) =

10110100000111010012).

The rule is "divide by 2 and concatenate the remainders in
reversed order". For division with a remainder we use the % operator.
You can cheat by invoking Convert.ToString(numDecimal, 2).

Start with a sum of 0. Multiply the right-most bit with 1 and add it to
the sum. Multiply the next bit on the left by 2 and add it to the sum.
Multiply the next bit on the left by 4, the next by 8 and so on. You can
cheat by invoking Convert.ToInt32(binaryNumAsString, 2).

The rule is "divide by the base of the system (16) and concatenate
the remainders in reversed order". A logic that gets a hexadecimal
digit (@...F) by decimal number (0...15) should also be implemented. You
can cheat by invoking num.ToString("X").

Start with a sum of 0. Multiply the right-most digit with 1 and add it to
the sum. Multiply the next digit to the left by 16 and add it to the sum.

Chapter 8. Numeral Systems 291

10.
11.

12.

13.

14.

15.

Multiply the next digit by 16*16, the next by 16*16*16 and so on. You
can cheat by invoking Convert.ToInt32(hexNumAsString, 16).

Use the fast method for transitioning between hexadecimal and binary
numeral system (each hexadecimal digit turns to 4 binary bits).

Use the fast method for transitioning from binary to hexadecimal numeral
system (each 4 binary bits correspond to a hexadecimal digit).

Directly apply the Horner scheme.

Scan the digits of the Roman number from left to right and add them
up to a sum, which is initialized with a 0. When processing each Roman
digit, take it with a positive or negative sign, depending on the digit
after it (whether it has a bigger or smaller decimal value).

Take a look at the numbers from 1 to 9 and their corresponding Roman
representation with the digits "I", "V" and "X":

1->1
2->11I
3 ->1II1
4 -> 1V
5->V

6 -> VI
7 -> VII
8 -> VIII
9 -> IX

We have exactly the same correspondence for the humbers 10, 20, ...,
90 with their Roman representation "X", "L" and "C". The same is valid
for the numbers 100, 200, ..., 900 and their Roman representation with
"C", "D" and "M" and so on.

We are now ready to convert the number N into the Roman numeral
system. It must be in the range [1...3999], otherwise we should report
an error. First we separate the thousands (N / 1000) and replace them
with their Roman counterpart. After that we separate the hundreds (N /
100) % 10) and separate them with their Roman counterpart and so on.

You can convert first from S-based system to decimal number and
then from decimal number to D-based system.

If you execute the calculations correctly, you will get 32.00 (for float),
49.9999999657788 (for double) and 50.00 (for decimal) respectively.
The differences come from the fact that 0.000001 has no exact
representation as float and double. You may notice also that adding
decimal values is at least 10 times slower than adding double values.

Use the special method for conversion of single precision floating-point
numbers to a sequence of 4 bytes: System.BitConverter.GetBytes(
<float>). Then use bitwise operations (shifting and bit masks) to
extract the sign, mantissa and exponent following the IEEE 754 standard.

Chapter 9. Methods

In This Chapter

In this chapter we will get more familiar with what methods are and why we
need to use them. The reader will be shown how to declare methods, what
parameters are and what a method’s signature is, how to call a method,
how to pass arguments of methods and how methods return values. At the
end of this chapter we will know how to create our own method and how to
use (invoke) it whenever necessary. Eventually, we will suggest some good
practices in working with methods. The content of this chapter accompanied
by detailed examples and exercises that will help the reader practice the
learned material.

Subroutines in Programming

To solve a certain task, especially if it is a complex one, we apply the method
that ancient Romans did “divide and conquer”. According to this principle,
the problem we solve must be divided into small subproblems. Taken
separately they are well defined and easy to be resolved compared to the
original problem. At the end by finding solutions for all the small problems we
solve the complex one.

Using the same analogy, whenever we write a software program we aim to
solve particular task. To do it in an efficient and “easy-to-make” way we use
the same mentioned above principle “divide and conquer”. We separate the
given task into smaller tasks, then develop solutions for them and put them
together into one program. Those smaller tasks we call subroutines.

In some other programming languages subroutines can be named as
functions or procedures. In C#, they are called methods.

What Is a "Method"?

A method is a basic part of a program. It can solve a certain problem,
eventually take parameters and return a result.

A method represents all data conversion a program does, to resolve a
particular task. Methods consist of the program’s logic. Moreover they are
the place where the “real job” is done. That is why methods can be taken as a
base unit for the whole program. This on the other hand, gives us the
opportunity, by using a simple block, to build bigger programs, which resolve
more complex and sophisticated problems. Below is a simple example of a
method that calculates rectangle’s area:

294 Fundamentals of Computer Programming with C#

static double GetRectangleArea(double width, double height)

{
double area = width * height;

return area;

}

Why to Use Methods?

There are many reasons we should use methods. Some of them are listed
below, and by gaining experience, you will assure yourself that methods are
something that cannot be avoided for a serious task.

Better Structured Program and More Readable Code

Whenever a program has been created, it is always a good practice to use
methods, in a way to make your code better structured and easy to
read, hence to be maintained by other people.

A good reason for this is the fact, that of the time that a program exists, only
about 20% of the effort is spent on creating and testing the program. The rest
is for maintenance and adding new features to the initial version. In most of
the cases, once the code has been released, it is maintained not only from its
creator, but by many other developers. That is why it is very important for the
code to be as well structured and readable as possible.

Avoid Duplicated Code

Another very important reason to use methods is that methods help us to
avoid code repeating. This has a strong relationship to the idea of code
reuse.

Code Reuse

If a piece of code is used more than once in a program, it is good to separate
it in a method, which can be called many times - thus enabling reuse of the
same code, without rewriting it. This way we avoid code repeating, but this
is not the only advantage. The program itself becomes more readable and
well structured.

Repeating code may become very noxious and hazardous, because it impedes
the maintenance of the program and leads to errors. Often, whenever change
of repeating code is needed, the developer fixes only some of the blocks, but
the problems is still alive in the others, about which they forgot. So for
example if a defect is found into a piece of 50 lines code, that is copied to 10
different places over the program, to fix the defect, the repeated code must
be fixed for the all 10 places. This, however, is not what really happens.
Often, due to lack of concentration or some other reasons, the developer
fixes only some of the pieces of code, but not all of them. For example,

Chapter 9. Methods 295

let’s say that in our case the developer has fixed 8 out of 10 blocks of code.
This eventually, will lead to unexpected behavior of our program, only in rare
cases and, moreover, it will be very a difficult task to find out what is going
wrong with the program.

How to Declare, Implement and Invoke a Method?

This is the time to learn how to distinguish three different actions related to
existing of a method: declaring, implementation (creation) and calling of a
method.

Declaring a method we call method registration in the program, so it can be
successfully identified in the rest of the program.

Implementation (creation) of a method is the process of typing the code
that resolves a particular task. This code is in the method itself and
represents its logic.

Method call is the process that invokes the already declared method, from a
part of the code, where a problem, that the method resolves, must be solved.

Declaring Our Own Method

Before we learn how to declare our own method, it is important to know
where we are allowed to do it.

Where Is Method Declaration Allowed?

Although we still haven't explained how to declare a class, we have seen it in
the exercises before. We know that every class has opening and closing curly
brackets - "{" and "}", between which the program code is placed. More
detailed description for this can be found in the chapter "Defining Classes",
however we mention it here, because a method exists only if it is declared
between the opening and closing brackets of a class - "{" and "}". In
addition a method cannot be declared inside another method's body (this will
be clarified later).

In the C# language, a method can be declared only between
the opening "{" and the closing "}" brackets of a class.

A typical example for a method is the already known method Main(..) - that
is always declared between the opening and the closing curly brackets of our
class. An example for this is shown below:

HelloCSharp.cs

public class HelloCSharp
{ // Opening brace of the class

296 Fundamentals of Computer Programming with C#

// Declaring our method between the class' body braces
static void Main(string[] args)
{

Console.WriteLine("Hello C#!");

}
} // Closing brace of the class

Method Declaration

To declare a method means to register the method in our program. This is
shown with the following declaration:

[static] <return_type> <method name>([<param_list>])

There are some mandatory elements to declare method:
- Type of the result, returned by the method - <return_type>.
- Method’s name - <method_name>.

- List of parameters to the method - <param_list> - it can be empty list
or it can consist of a sequence of parameters declarations.

To clarify the elements of method’s declaration, we can use the Main(...)
method from the example HelloCSharp show in the previous block:

static void Main(string[] args)

As can be seen the type of returned value is void (i.e. that method does
not return a result), the method’s name is Main, followed by round brackets,
between which is a list with the method’s parameters. In the particular
example it is actually only one parameter - the array string[] args.

The sequence, in which the elements of a method are written, is strictly
defined. Always, at the very first place, is the type of the value that method
returns <return_type>, followed by the method’s name <method_name> and
list of parameters at the end <param_list> placed between in round brackets
- "(" and ")". Optionally the declarations can have access modifiers (as
public and static).

When a method is declared keep the sequence of its
& elements description: first is the type of the value that the

method returns, then is the method’s name, and at the end is
a list of parameters placed in round brackets.

The list with parameters is allowed to be void (empty). In that case the only
thing we have to do is to type "()" after the method’s name. Although the

Chapter 9. Methods 297

method has not parameters the round brackets must follow its name in the
declaration.

The round brackets - "(" and ")", are always placed after the
& method’s name, no matter whether it has or has not any
parameters.

For now we will not focus at what <return_type> is. For now we will use
void, which means the method will not return anything. Later, we will see
how that can be changed

The keyword static in the description of the declaration above is not
mandatory but should be used in small simple programs. It has a special
purpose that will be explained later in this chapter. Now the methods that we
will use for example, will include the keyword static in their declaration.
More about methods that are not declared as static will be discussed in the
chapter "Defining Classes", section "Static Members".

Method Signature

Before we go on with the basic elements from the method’s declaration, we
must pay attention to something more important. In object-oriented
programming a method is identified by a pair of elements of its declaration:
name of the method, and list of parameters. These two elements define the
so-called method specification (often can be found as a method
signature).

C#, as a language used for object oriented programming, also distinguishes
the methods using their specification (signature) - method’s name
<method_name> and the list with parameters - <param_list>.

Here we must note that the type of returned value of a method is only part of
its declaration, not of its signature.

What identifies a method is its signature. The return type is

& not part of the method signature. The reason is that if two
methods differ only by their return value types, for the

program is not clear enough which of them must be called.

A more detailed explanation on why the type of the returned value is not part
of the method signature, you will find later in this chapter.

Method Names

Every method solves a particular task from the whole problem that our
program solves. Method’s name is used when method is called. Whenever
we call (start) a particular method, we type its name and if necessary we pass
values (if there are any).

In the example below, the name of our method is PrintLogo:

298 Fundamentals of Computer Programming with C#

static void PrintLogo()

{

Console.WritelLine("Microsoft");
Console.WriteLine("www.microsoft.com");

}

Rules to Name a Method

It is recommended, when declare a method, to follow the rules for method
naming suggested by Microsoft:

- The name of a method must start with capital letter.

- The PascalCase rule must be applied, i.e. each new word, that
concatenates so to form the method name, must start with capital
letter.

- It is recommended that the method name must consist of verb, or verb
and noun.

Note that these rules are not mandatory, but recommendable. If we aim our
C# code to follow the style of all good programmers over the globe, we must
use Microsoft's code convention. A more detailed recommendation about
method naming will be given in the chapter "High-Quality Code", section
"Naming Methods".

Here some examples for well named methods:

Print
GetName
PlayMusic
SetUserName

And some examples for bad nhamed methods:

Abc11

Yellow__ Black
foo

_Bar

It is very important that the method name describes the method’s purpose.
All behind this idea is that when a person that is not familiar with our program
reads the method name, they can easily understand what that method does,
without the need to look at the method’s source code.

To name a method it is good to follow these rules:
& - Method name must describe the method’s purpose.
- Method name must begin with capital letter.

Chapter 9. Methods 299

- The PascalCase rule must be applied.

- The method name must consist of verb, or verb and
noun.

Modifiers

A modifier is a keyword in C#, which gives additional information to the
compiler for a certain code.

We have already met some modifiers - public and static. Now we will
briefly describe what modifiers are actually. Detailed description will be given
later in the chapter "Defining Classes", section "Access Modifiers". So let’s
begin with an example:

public static void PrintLogo()
{

Console.WritelLine("Microsoft");
Console.WriteLine("www.microsoft.com");

}

With this example we define a public method by the modifier public. It is a
special type modifier, called also access modifier and is used to show that
method can be called by any C# class, no matter where it is. Public modifiers
are not restricted in the meaning of “who” can call them.

Another example for access modifier, that we can meet, is the modifier
private. Its function is opposite to that of the public, i.e. if a method is
declared by access modifier private, it cannot be called from anywhere,
except from the class in which it is declared.

If a method is declared without an access modifier (either public or
private), it is accessible from all classes in the current assembly, but not
accessible for any other assemblies (let say from other projects in Visual
Studio). For the same reason, when we are writing small programs, like those
in this chapter, we will not specify access modifiers.

For now, the only thing that has to be learned is that in method declaration
there cannot be more than one access modifier.

When a method has a keyword static, in its declaration, this method is
called static. To call a static method there is no need to have an instance of a
class in which the static method is declared. For now the reader can accept
that, the methods must be static. Dealing with non-static methods will be
explained in the chapter "Defining Classes", section "Methods".

300 Fundamentals of Computer Programming with C#

Implementation (Creation) of Own Method

After a method had been declared, we must write its implementation. As we
already explained above, implementation (body) of the method consists of
the code, which will be executed by calling the method. That code must be
placed in the method’s body and it represents the method’s logic.

The Body of a Method

Method body we call the piece of code, that is placed in between the curly
brackets "{" and "}", that directly follow the method declaration.

static <return_type> <method_name>(<parameters_list>)

{
// .. code goes here - in the method's body ..

}

The real job, done by the method, is placed exactly in the method body. So,
the algorithm used in the method to solve the particular task is placed in the
method body.

So far we have seen many examples of method body however, we will show
one more with the code below:

static void PrintLogo()

{ // Method's body starts here
Console.WritelLine("Microsoft");
Console.WriteLine("www.microsoft.com");

} // .. And finishes here

Let's consider one more time one rule about method declaration:

method.

& Method can NOT be declared inside the body of another

Local Variables

Whenever we declare a variable inside the body of a method, we call that
variable local variable for the method. To name a variable we should follow
the identifiers rules in C# (refer to chapter "Primitive Types and Variables").

The area where a local variable exists, and can be used, begins from the line
where the variable is declared and ends at the closing curly bracket "}" of the
method body. This is the so-called area of visibility of the variable
(variable scope). If we try to declare variable, after we have already
declared a variable with the same name, the code will not compile due to an
error. Let’s look at the example below:

Chapter 9. Methods 301

static void Main()

{

int x
int x

3;
4;

}

Compiler will not let's use the name x for two different variables, and will
return a message similar to the one below:

A local variable named 'x' is already defined in this scope.

A block of code we call a code that is placed between opening and closing
curly brackets "{" and "}".

If a variable is declared within a block, it is also called local (for this block).
Its area of visibility begins from the line where the variable is declared, and
ends at the line where block’s closing bracket is.

Invoking a Method

Invoking or calling a method is actually the process of execution of the
method’s code, placed into its body.

It is very easy to invoke a method. The only thing that has to be done is to
write the method’s name <method_name>, followed by the round brackets and
semicolon ";" at the end:

<method_name>();

Later will see an example for when the invoked method has a parameter list
(in the case here the method has no parameters).

To clarify how method invocation works, the next fragment shows how the
method PrintLogo() will be called:

PrintLogo();

Result of method’s execution is:

Microsoft
www.microsoft.com

Who Takes Control over the Program when We
Invoke a Method?

When a method executes it takes control over the program. If in the caller
method, however, we call another one, the caller will give the control to the
called method. The called method will return back the control to the caller

302 Fundamentals of Computer Programming with C#

right after its execution finishes. The execution of the caller will continue from
that line, where it was before calling the other method.

For example, let’s call PrintLogo() from the Main() method:

class MethodControlTest
1
45tatic void PrintLogo()
+
2;‘ {
+ 3 Console.WriteLine ("Microsoft™);
1 Conscle.Writeline ("www.microsoft.com™);

'EH:: static woid Main()
u . Some code here ...
4 r‘

yPrintloge();

. Some code here ...

[——

First the code of method Main(), that is marked with (1) will be executed,
then the control of the program will be given to the method PrintLogo() -
the dotted arrow (2). This will cause the execution of the code in method
PrintLogo(), numbered with (3). When the method PrintLogo() work is
done, the control over the program is returned back to the method Main() -
dotted arrow (4). Execution of Main() will continue from the line after
PrintLogo() call - marked with (5).

Where a Method Can Be Invoked From?

A method can be invoked from the following places:

- From the main program method - Main():

static void Main()

{
}

PrintLogo();

- From some other method:

static void PrintLogo()

{

Console.WritelLine("Microsoft");

Chapter 9. Methods 303

Console.WriteLine("www.microsoft.com");

}

static void PrintCompanyInformation()

{
// Invoking the PrintLogo() method

PrintLogo();

Console.WritelLine("Address: One, Microsoft Way");

}

- A method can be invoked from its own body. Such a call is referred to as
recursion. We will discuss it in details in the chapter "Recursion".
Method Declaration and Method Invocation

In C# the order of the methods in the class is not important. We are allowed
to invoke (call) a method before it is declared in code:

static void Main()

{
/] ..
PrintLogo();

/]
}

static void PrintLogo()

{

Console.WritelLine("Microsoft");
Console.WritelLine("www.microsoft.com");

}

If we create a class that contains the code above, we will see that the code
will compile and run successfully. It doesn’t matter whether we declared the
method before or after the main method. In some other languages (like
Pascal), invocation of a method that is declared below the line of the
invocation is not allowed.

and implemented, it can be called at a line before the line at

2 If a method is called in the same class, where it is declared
which it is declared.

Parameters in Methods

Often to solve certain problem, the method may need additional information,
which depends on the environment in what the method executes.

304 Fundamentals of Computer Programming with C#

So if there is a method, that has to find the area of a square, in its body there
must be the algorithm that finds that area (equation S = a?). Since the area
depends on the square side length, to calculate that equation for each square,
the method will need to pass a value for the square side length. That is why
we have to pass somehow that value, and for this purpose we use
parameters.

Declaring Methods with Parameters

To pass information necessary for our method we use the parameters list.
As was already mentioned, we must place it between the brackets following
the method name, in method the declaration:

static <return_type> <method_name>(<parameters_list>)

{
}

// Method's body

The parameters list <parameters_list> is a list with zero or more
declarations of variables, separated by a comma, so that they will be used
for the implementation of the method’s logic:

<parameters_list> = [<typei:> <namei>[, <typei> <name:>]],
where i = 2, 3, .

When we create a method, and we need certain information to develop the
particular algorithm, we choose that variable from the list, which is of type
<typei> and so we use it by its name <name;>.

The parameters from the list can be of any type. They can be primitive types
(int, double, ...) or object types (for example string or array - int[],
double[], string[], ...).

Method to Display a Company Logo — Example

To make the mentioned above more clear, we will change the example that
shows the logo of "Microsoft":

static void PrintLogo(string logo)

{
}

Console.WritelLine(logo);

Now, executing our method, we can display the logo of other companies, not
only of "Microsoft". This is possible because we used a parameter of type
string to pass the company name. The example shows how to use the
information given in the parameters list - the variable logo, which is defined

Chapter 9. Methods 305

in the parameters list, is used in the method’s body by the name given in the
definition.

Method to Calculate the Sum of Prices of Books — Example

We mentioned above, that whenever it is necessary we can use arrays as
parameters for a certain method (int[], double[], string[], ...). So let's
take a look at another example to illustrate this.

Imagine we are in a bookstore and we want to calculate the amount of money
we must pay for all the books we bought. We will create a method that gets
the prices of all the books as an array of type decimal[], and then returns
the total amount we must pay:

static void PrintTotalAmountForBooks(decimal[] prices)

{

decimal totalAmount = 0;
foreach (decimal singleBookPrice in prices)

{
totalAmount += singleBookPrice;

}

Console.WriteLine("The total amount for all books is:" +
totalAmount);

}

Method Behavior According to Its Input

When a method with parameters is declared, our purpose is that every time
we invoke the method, its result changes according to its input. Said with
another word, the algorithm is the same, but due to input change, the result
changes too.

& When a method has parameters, its behavior depends upon
parameters values.

Method to Show whether a Number is Positive — Example

To clarify the way method execution depends upon its input let’s take look at
another example. The method gets as input a number of type int, and
according to it returns to the console "Positive", "Negative" or "Zero":

static void PrintSign(int number)

{
if (number > 0)
{
Console.WritelLine("Positive");
}

else if (number < 9)

306 Fundamentals of Computer Programming with C#

{

Console.WriteLine("Negative");

}

else

{

Console.WriteLine("Zero");

}

}

Method with Multiple Parameters

So far we had some examples for methods with parameter lists that consist of
a single parameter. When a method is declared, however, it can have as
multiple parameters as the method needs.

If we are asking for maximal of two values, for example, the method needs
two parameters:

static void PrintMax(float numberl, float number2)

{

float max = numberil;

if (number2 > max)

{
max = number2;
}
Console.WritelLine("Maximal number: " + max);

}

Difference in Declaration of Methods with Multiple Parameters

When a method with multiple parameters is declared, we must note that even
if the parameters are of the same type, usage of short way of variable
declaration is not allowed. So the line below in the methods declaration is
invalid and will produce compiler error:

float varl, var2;

Type of the parameters has to be explicitly written before each parameter, no
matter if some of its neighbors are of the same type.

Hence, declaration like one shown below is not valid:

static void PrintMax(float varl, var2)

Correct way to do so is:

Chapter 9. Methods 307

static void PrintMax(float varl, float var2)

Invoking Methods with Parameters

Invocation of a method with one or several parameters is done in the same
way as invocation of methods without parameters. The difference is that
between the brackets following the method name, we place values. These
values (called arguments) will be assigned to the appropriate parameters
form the declaration and will be used when method is executed.

Several examples for methods with parameters are show below:

PrintSign(-5);
PrintSign(balance);

PrintMax(100.0f, 200.0f);

Difference between Parameters and Arguments of a Method

Before we continue with this chapter, we must learn how to distinguish
between parameters naming in the parameters list in the methods declaration
and the values that we pass when invoking a method.

To clarify, when we declare a method, any of the elements from the
parameters list we will call parameters (in other literature sources they can
be named as formal parameters).

When we call a method the values we use to assign to its parameters are
named as arguments.

In other words, the elements in the parameters list (varl and varr2) are
called parameters:

static void PrintMax(float varl, float var2)

Accordingly, the values by the method invocation (-23.5 and 100) are called
arguments:

PrintMax(100.0f, -23.5f);

Passing Arguments of a Primitive Type

As just was explained, in C# when a variable is passed as a method
argument, its value is copied to the parameter from the declaration of the
method. After that, the copy will be used in the method body.

There is, however, one thing we should be aware of. If the declared
parameter is of a primitive type, the usage of the arguments does not

308 Fundamentals of Computer Programming with C#

change the argument itself, i.e. the argument value will not change for the
code after the method has been invoked.

So if we have piece of code like that below:

static void PrintNumber(int numberParam)
{
// Modifying the primitive-type parameter
numberParam = 5;
Console.WriteLine("in PrintNumber() method, after " +
"modification, numberParam is: {@}", numberParam);

}

Invocation of the method from Main():

static void Main()

{

int numberArg = 3;

// Copying the value 3 of the argument numberArg to the

// parameter numberParam

PrintNumber (numberArg);

Console.WriteLine("in the Main() method numberArg is: " +
numberArg);

}

The value 3 of numberArg, is copied into the parameter numberParam. After
the method PrintNumber() is invoked, to numberParam is assigned value 5.
This does not affect the value of variable numberArg, because by invocation of
that method, the variable numberParam keeps a copy of the argument value.
That is why the method PrintNumber() prints the number 5. Hence, after
invocation of method PrintNumber() in the method Main() what is printed is
the value of numberArg and as it can be seen that value is not changed. The
result from the above line is printed below:

in PrintNumber() method, after modification, numberParam is: 5
in the Main() method numberArg is: 3

Passing Arguments of Reference Type

When we need to declare (and so to invoke) a method, that has parameters
of reference type (as arrays), we must be very careful.

Before explaining the reason for the above consideration, we have to remind
ourselves something from chapter "Arrays". An array, as any other reference

Chapter 9. Methods 309

type, consists of a variable-pointer (object reference) and a value - the
real information kept in the computer’s memory (we call it an object). In our
case the object is the real array of elements. The address of this object,
however, is kept in the variable (i.e. the address where the array elements
are placed in the memory):

arrArg: int/[]

—— - —

variable object

So whenever we operate with arrays in C#, we always access them by that
variable (the address / pointer / reference) we used to declare the particular
array. This is the principle for any other reference type. Hence, whenever an
argument of a reference type is passed to a method, the method’s parameter
receives the reference itself. But what happens with the object then (the real
array)? Is it also copied or no?

To explain this, let's have the following example: assume we have method
ModifyArray(), that modifies the first element of an array that is passed as a
parameter, so it is reinitialized the first element with value 5 and then prints
the elements of the array, surrounded by square brackets and separated by
commas:

static void ModifyArray(int[] arrParam)

{
arrParam[@] = 5;
Console.Write("In ModifyArray() the param is: ");
PrintArray(arrParam);

}

static void PrintArray(int[] arrParam)

{

Console.Write("[");
int length = arrParam.Length;

if (length > 9)

{
Console.Write(arrParam[0].ToString());
for (int i = 1; i < length; i++)

{

}
}

Console.WriteLine("]");

Console.Write(", {0}", arrParam[i]);

310 Fundamentals of Computer Programming with C#

Let’s also declare a method Main(), from which we invoke the newly created
method ModifyArray():

static void Main()

{
int[] arrArg = new int[] { 1, 2, 3 };
Console.Write("Before ModifyArray() the argument is: ");
PrintArray(arrArg);
// Modifying the array's argument
ModifyArray(arrArg);
Console.Write("After ModifyArray() the argument is: ");
PrintArray(arrArg);

}

What would be the result of the code execution? Let’s take a look:

Before ModifyArray() the argument is: [1, 2, 3]
In ModifyArray() the param is: [5, 2, 3]
After ModifyArray() the argument is: [5, 2, 3]

It is apparent that after execution of the method ModifyArray(), the array to
which the variable arrArg refer, does not consists of [1,2,3], but [5,2,3]
instead. What does this mean?

The reason for such result is the fact that by passing arguments of reference
type, only the value of the variable that keeps the address to the object is
copied. Note that this does not copy the object itself.

By passing the argument that are of reference type, the only
& thing that is copied is the variable that keeps the reference
to the object, but not the object data.

Let’s try to illustrate what just was explained. We will use few drawings for
the example we used above. By invocation of the method ModifyArray(), the
value of the parameter arrParam is not defined and it does not keep a
reference to any particular object (not a real array):

arrArg: int[]
[IGe48elb

=
N
w

arrParam: int/[]

]

Chapter 9. Methods 311

By the time of ModifyArray() invocation, the value that is kept in the
argument arrArg is copied to the parameter arrParam:

arrArg: int[]

[ICGe48elb > 1| 2| 3

(copy))
arrParam: int|[]

P

This way, copying the reference to the elements of the array in the memory
from the argument into the parameter, we tell the parameter to point to the
same object, to which the argument points:

arrArg: int/[]

[IRed8elb > 1] 2] 3

arrParam: int][]
[IGe48elb

This actually is where we have to be very careful. If the invoked method
modifies the object, to which a reference is passed, this may affect the
execution of the code after the method invocation (as we have seen in the
example - the method PrintArray() does not print the array, that was
initially passed).

The difference between dealing with arguments of primitive and reference
type is in the way they are passed: primitive types are passed by their
values, the objects, however, are passed by reference.

Passing of Expressions as Method Arguments

When a method is invoked, we can pass a whole expression instead of
arguments. By doing so, C# calculates the values for those expressions and
by the time of code execution (if it is possible this is done at compile time)
replaces the expression with its result, when the method is invoked. The
following code shows methods invocation, by passing expressions as
method arguments:

PrintSign(2 + 3);

float oldQuantity = 3;
float quantity = 2;
PrintMax(oldQuantity * 5, quantity * 2);

The result of those methods execution is:

312 Fundamentals of Computer Programming with C#

Positive
Maximal number: 15.0

When a method with parameters is invoked, we must be aware of some
specific rules, which will be explained in the next few subsections.

Passing of Arguments Compatible with the Parameter Type

We must know that we can pass only arguments that are of type compatible
with the related parameter, declared in the method’s parameters list.

For example, if the parameter that the method expects in its declaration is of
type float, by invocation of the method we can pass a value that is of type
int. It will be converted by the compiler to a value of type float and then
will be passed to the method for its execution:

static void PrintNumber(float number)

{
}

Console.WritelLine("The float number is: {@}", number);

static void Main()

{
}

PrintNumber(5);

In the example, by invocation of PrintNumber() in the method Main(), first
the integer literal 5 (that implicitly is of type int) is converted to the related
floating point value 5.0f. Then the so converted value is passed to the
method PrintNumber().

As can be expected, the result of that code execution is:

The float number is: 5.0

Compatibility of the Method Parameter and the Passed Value

The result from the calculation of an expression, passed as argument, must
be of the same type, as the type of the declared parameter is, or
compatible with that type (refer to the passage above).

So if a parameter of type float is required, we can pass the value calculated
by an expression that is of a type int. E.g. in the example above, if instead of
PrintNumber(5), we called the method, with 5 replaced by the expression
2+3, the result of the calculation of that expression must be of type float
(one that the method expects), or of a type that can be converted to float
with no loss (in our case this is int). So let’s modify a little the method
Main() from the passage above, to illustrate what just was explained:

Chapter 9. Methods 313

static void Main()

{
}

PrintNumber(2 + 3);

In this example first the summing will be executed. Then the integer result 5
will be converted to its floating point equivalent 5.0f. When this is done the
method PrintNumber(..) will be invoked with argument 5.0f. The result
again will be:

The float number is: 5.0

Keeping the Declaration Sequence of the Arguments Types

Values, that are passed to the method, in the time of its invocation, must be
in the same order as the parameters are declared in the parameters list. This
is due to the method signature, mentioned above.

To clarify, let's discuss the following example: we have a method
PrintNameAndAge(), in which method declaration is a parameters list, with
parameters of type’s string and int, ordered as shown below:

Person.cs

class Person

{
static void PrintNameAndAge(string name, int age)
{
Console.WriteLine("I am {©}, {1} year(s) old.", name, age);
}
}

Let's add a method Main() to our class, in that method we will invoke the
PrintNameAndAge() method. Now let’s try to pass parameters in reverse (as
types) order, so instead "John" and 25, we will use 25 and "John":

static void Main()

{

// Wrong sequence of arguments
Person.PrintNameAndAge(25, "John");

}

The compiler in this case will not be able to find a method that is called
PrintNameAndAge, which accepts parameters in the sequence int and
string. That is why, the compiler will notify for an error:

314 Fundamentals of Computer Programming with C#

The best overloaded method match for
'Person.PrintNameAndAge(string, int)' has some invalid arguments

Variable Number of Arguments (var-args)

So far, we examined declaration of methods for which the parameters list
coincides with the count of the arguments we pass to that method, by its
invocation.

Now we will see how to declare methods that allow the count of arguments to
be different any time the method is invoked, so to meet the needs of the
invoking code. Such methods are often called methods with a wvariable
number of arguments.

Let's we look at the example, that calculates the sum of a given array of book
prices, the one that already was explained above. In that example, as a
parameter we passed an array of type decimal that consists of the prices of
the chosen books:

static void PrintTotalAmountForBooks(decimal[] prices)

{

decimal totalAmount = 9;

foreach (decimal singleBookPrice in prices)

{

totalAmount += singleBookPrice;
}
Console.WritelLine(

"The total amount of all books is:" + totalAmount);

}

Defined in this way, the method suppose, that always before its invocation,
we will have created an array with numbers of type decimal and they will be
initialized with certain values.

After we created a C# method that accepts variable number of parameters, is
possible, whenever a list of parameters from the same type must be
passed, instead of passing the array that consists of those values, to pass
them directly, as arguments, separated by comma.

In our case with the books, we need to create a new array, especially for that
method invocation:

decimal[] prices = new decimal[] { 3m, 2.5m };
PrintTotalAmountForBooks(prices);

Chapter 9. Methods 315

However, if we add some code (we will see it in a moment) to the method
declaration, we will be able to directly pass list with the books prices, as
method arguments:

PrintTotalAmountForBooks(3m, 2.5m);
PrintTotalAmountForBooks(3m, 5.1m, 10m, 4.5m);

Such invocation is possible only if we have declared the method in a way, so it
accepts variable number of arguments (var-args).

How to Declare Method with Variable Number of Arguments

Formally the declaration of a method with variable number of arguments is
the same as the declaration of any other method:

static <return_type> <method name>(<parameters_list>)

{
}

// Method's body

The difference is that the <parameters_list> is declared with the keyword
params in the way shown below:

<parameters_list> =

[<typel> <namel>[, <typei> <namei>], params <var_type>[]
<var_name>]
where i= 2, 3, ..

The last element from the list declaration - <params>, is the one that
allows passing of random count of arguments of type <var_type>, for each
invocation of the method.

In the declaration of that element, before its type <var_type> we must add
params: "params <var_type>[]". The type <var_type> can be either
primitive or by reference.

Rules and special characteristics for the other elements from the method’s
parameters list, that precede the var-args parameter <var_name>, are the
same, as those we discussed in the section "Method Parameters".

To clarify what was explained so far, we will discuss an example for
declaration and invocation of a method with variable number if arguments:

static long CalcSum(params int[] elements)

{
long sum = 0;
foreach (int element in elements)

{

316 Fundamentals of Computer Programming with C#

sum += element;

}

return sum;

}

static void Main()

{
long sum = CalcSum(2, 5);
Console.WriteLine(sum);

long sum2 = CalcSum(4, 0, -2, 12);
Console.WritelLine(sum2);

long sum3 = CalcSum();
Console.WriteLine(sum3);

}

The example sums the numbers, as their count is not known in advance. The
method can be invoked with one, two or more parameters, as well as with no
parameters at all. If we execute the example we will get the following result:

7
14
%]

Variable Number of Arguments: Arrays vs. "params"

From the formal definition, given above, of parameter that allows passing of
variable number of arguments by the method invocation - <var_name>, is
actually a name of an array of type <var_type>. By the method invocation,
the arguments of type <var_type> or compatible type that we pass to the
method (with no care for their count) will be kept into this array. Then they
will be used in the method body. The access and dealing with these
parameters is in the same way we do when we work with arrays.

To make it clearer we will modify the method that calculates the sum of the
prices of chosen books, to get variable number of arguments:

static void PrintTotalAmountForBooks(params decimal[] prices)

{

decimal totalAmount = 0;

foreach (decimal singleBookPrice in prices)

{

totalAmount += singleBookPrice;

}

Chapter 9. Methods 317

Console.WritelLine("The total amount of all books is:" +
totalAmount);

}

As we can see the only change is to change the declaration of the array
prices with adding params before decimal[]. In the body of our method,
"prices" is still an array of type decimal, so we use it in the same way as
before.

Now we can invoke our method, with no need to declare in advance an array
of number and pass it as an argument:

static void Main()

{
PrintTotalAmountForBooks(3m, 2.5m);

PrintTotalAmountForBooks(1m, 2m, 3.5m, 7.5m);
b

The result of the two invocations will be:

The total amount of all books is: 5.5
The total amount of all books is: 14.0

Since prices is an array, it can be assumed that we can declare and initialize
an array before invocation of our method. Then to pass that array as an
argument:

static void Main()

{

decimal[] pricesArr = new decimal[] { 3m, 2.5m };

// Passing initialized array as var-arg:
PrintTotalAmountForBooks(pricesArr);

}

The above is legal invocation, and the result from that code execution is the
following:

The total amount of all books is: 5.5

Position and Declaration of a Method with Variable Arguments

A method, that has a variable number of its arguments, can also have other
parameters in its parameters list.

The following code, for example, has as a first parameter an element of type
string, and right after it there can be one or more parameters of type int:

318 Fundamentals of Computer Programming with C#

static void DoSomething(string strParam, params int[] x)

{
}

The one thing that we must consider is that the element from the parameters
list in the method’s definition, that allows passing of a variable number of
arguments, must always be placed at the end of the parameters list.

The element of the parameters list, that allows passing of
& variable nhumber of arguments by invocation of a method,

must always be declared at the end of the method’s
parameters list.

So, if we try to put the declaration of the var-args parameter x, shown in the
last example, not at the last place, like so:

static void DoSomething(params int[] x, string strParam)

{
}

The compiler will return the following error message:

A parameter array must be the last parameter in a formal
parameter list

Limitations on the Count for the Variable Arguments

Another limitation, for the methods with variable number of arguments, is
that the method cannot have in its declaration more than one parameter that
allows passing of variable numbers of arguments. So if we try to compile a
method declared in the following way:

static void DoSomething(params int[] x, params string[] z)

{
}

The compiler will return the already known error message:

A parameter array must be the last parameter in a formal
parameter list

This rule can be taken as a special case of the rule for the var-args position,
i.e. the related parameter to be at the end of the parameters list.

Chapter 9. Methods 319

Specifics of Empty Parameter List

After we got familiar with the declaration and invocation of methods with
variable number of arguments, one more question arises. What would happen
if we invoke such method, but with no parameters?

For example, what would be the result of the invocation of our method that
calculates the sum of books prices, in a case we did not liked any book:

static void Main()

{
}

PrintTotalAmountForBooks();

As can be seen this code is compiled with no errors and after its execution the
result is as follow:

The total amount of all books is: ©

This happens because, although, we did not pass any value to our method, by
its invocation, the array decimal[] prices is created, but it is empty (i.e. it
does not consists of any elements).

This has to be remembered, because even if we did not initialize the array,
C# takes care to do so for the array that has to keep the parameters.

Method with Variable Number of Arguments — Example

Bearing in mind how we define methods with variable nhumber of arguments,
we can write the Main() method of a C# program in the following way:

static void Main(params string[] args)

{
}

// Method body comes here

The definition above is valid and is accepted without any errors by the
compiler.

Optional Parameters and Named Arguments

Named arguments and optional parameters are two different functionalities of
the C# language. However, they often are used together. These parameters
are introduced in C#, version 4.0. Optional parameters allow some
parameters to be skipped when a method is invoked. Named arguments on
their side, allow method parameter values to be set by their name, instead of
their exact position in the parameters list. These two features in the C#
language syntax are very useful in cases, when we invoke a method with a
different combination of its parameters.

320 Fundamentals of Computer Programming with C#

Declaration of optional parameters can be done just by using a default value
in the way shown below:

static void SomeMethod(int x, int y = 5, int z = 7)
{
}

In the example above y and z are optional and can be skipped upon method’s
invocation:

static void Main()

{
// Normal call of SomeMethod
SomeMethod(1, 2, 3);
// Omitting z - equivalent to SomeMethod(1, 2, 7)
SomeMethod (1, 2);
// Omitting both y and z - equivalent to SomeMethod(1, 5, 7)
SomeMethod(1);

}

We can pass a value by a particular parameter name, by setting the
parameter’'s name, followed by a colon and the value of the parameter. An
example of using named arguments is shown below:

static void Main()

{
// Passing z by name and x by position
SomeMethod(1, z: 3);
// Passing both x and z by name
SomeMethod(x: 1, z: 3);
// Reversing the order of the arguments passed by name
SomeMethod(z: 3, x: 1);
}

All invocations in the sample above are equivalent to each other - parameter
y is skipped, but x and z are set to 1 and 3. The only difference between the
second and third call is that the parameter values are calculated in the same
order they are passed to the method, in the last invocation 3 will be
calculated before 1. In this example all parameters are constants and their
purpose is only to clarify the idea of named and optional parameters.
However, the mentioned consideration may lead to some unexpected behavior
when the order of parameters calculation matters.

Chapter 9. Methods 321

Method Overloading

When in a class a method is declared and its name coincides with the name of
another method, but their signatures differ by their parameters list (count
of the method’s parameters or the way they are arranged), we say that there
are different wvariations / overloads of that method (method
overloading).

As an example, let’'s assume that we have to write a program that draws
letters and digits to the screen. We also can assume that our program has
methods for drawing strings DrawString(string str), integers -
DrawInt(int number), and floating point digits — DrawFloat(float number)
and so on:

static void DrawString(string str)

{
}

// Draw string

static void DrawInt(int number)

{
}

static void DrawFloat(float number)

{
}

// Draw integer

// Draw float number

As we can see the C# language allows us to create variations of the same
method Draw(..), called overloads. The method below gets combinations of
different parameters, depending of what we want to write on the screen:

static void Draw(string str)

{
}

// Draw string

static void Draw(int number)

{
}

// Draw integer

static void Draw(float number)

{

// Draw float number

322 Fundamentals of Computer Programming with C#

}

The definitions of the methods above are valid and will compile without error
messages. The method Draw(...) is also called overloaded.

Method Parameters and Method Signature

As mentioned above, there are only two things required in C# to specify a
method signature: the parameter type and the order in which the
parameters are listed. The names of the method’s parameters are not
significant for the method’s declaration.

The most important aspect of creating an unambiguous
& declaration of a method in C# is the definition of its

signature and the type of the method’s parameters in
particular.

For example in C#, the following two declarations are actually declarations of
one and the same method. That’s because the parameter type in each of their
parameters is the same - int and float. So the names of the variables we
are using - paraml and param2 or pl and p2, are not significant:

// These two lines will cause an error
static void DoSomething(int paraml, float param2) { }
static void DoSomething(int p1, float p2) { }

If we declare two or more methods in one class, in the way shown above, the
compiler will show an error message, which will look something like the one
below:

Type '<the_name_of_your_class>' already defines a member called
'DoSomething’ with the same parameter types.

If we change the parameter type from a given position of the parameter
list to a different type, in C# they will count as two absolutely different
methods, or more precisely said, different variations of a method with
the same name.

For example if in the second method, the second parameter from the
parameter list of any of the methods - float p2, is declared not as float,
but as int for example, we will have two different methods with two
different signatures - DoSomething(int, float) and DoSomething(int,
int). Now the second element from their signature - parameter list, is
different, due to difference of their second element type:

static void DoSomething(int pl, float p2) { }
static void DoSomething(int paraml, int param2) { }

Chapter 9. Methods 323

In this case even if we type the same name for the parameters, the compiler
will accept this declaration, because they are practically different methods:

static void DoSomething(int paraml, float param2) { }
static void DoSomething(int paraml, int param2) { }

The compiler will accept the code again if we declare two variations of the
method, but this time we are going to change the order of the parameters
instead of their type.

static void DoSomething(int paraml, float param2) { }
static void DoSomething(float param2, int paraml) { }

In the example above the order of the parameter types is different and
this makes the signature different too. Since the parameter lists are different,
it plays no role that the name (DoSomething) is the same for both methods.
We still have different signatures for both methods.

Overloaded Methods Invocation

Since we have declared methods with the same name and different
signatures, we can invoke each of them as any other method - just by using
their name and arguments. Here is an example:

static void PrintNumbers(int intValue, float floatValue)
{

}

static void PrintNumbers(float floatValue, int intValue)
{

}

Console.WritelLine(intValue + "; " + floatValue);

Console.WriteLine(floatValue + "; + intValue);

static void Main()

{
PrintNumbers(2.71f, 2);
PrintNumbers(5, 3.14159f);

}

When the code executes, we will see, that the first invocation refers to the
second method, and the second invocation refers to the first method. Which
method will be invoked depends on the type of the used parameters. The
result after executing the code above is:

2.71; 2
5; 3.14159

324 Fundamentals of Computer Programming with C#

The lines below, however, will not compile and execute:

static void Main()

{
}

PrintNumbers(2, 3);

The reason for this not to work is that the compiler tries to convert both
integer numbers to suitable types before passing them to any of the methods
named PrintNumbers. In this case, however, these conversions are not equal.
There are two possible options - either to convert the first parameter to
float and call the method PrintNumbers(float, int) or to convert the
second parameter to float and call the method PrintNumbers(int, float).
This ambiguity has to be manually resolved, and one way to do so is shown in
the example below:

static void Main()

{
}

PrintNumbers((float)2, (short)3);

The code above will be compiled without errors, because after the arguments
are transformed, it is clearly decided which method we refer to -
PrintNumbers(float, int).

Methods with Coinciding Signatures

We will discuss some other interesting examples that show how to use
methods. Let’'s take a look at an example of an incorrect redefinition
(overload) of methods:

static int Sum(int a, int b)

{
}

return a + b;

static long Sum(int a, int b)
{

}

return a + b;

static void Main()

{
}

Console.WriteLine(Sum(2, 3));

Chapter 9. Methods 325

The code from the example will show an error message upon compilation
process, because there are two methods with same parameters lists (i.e. with
same signature) which return results of different types. This makes the
method invocation ambiguous, so it is not allowed by the compiler.

Triangles with Different Size — Example

It would be a good time now to give a little bit more complex example, since
we know now how to declare methods with parameters, how to invoke them
as well as how to get result back from those methods. Let’s assume we want
to write a program, which prints triangles on the console, as those shown
below:

5

rRrRRRRRRRRLRSDS
NNNMNNMNNMNDNMNDN
wwwww
e
Ul

1}
(e)}

RPrRRRRRRRRRRLRS
NNNMNNMNNMNNMNNMNDNMDN
wwwwwww
EE S
Ul U1 Ui
()}

A possible solution of this task is given below:

Triangle.cs

using Systenm;

class Triangle

{

326 Fundamentals of Computer Programming with C#

static void Main()

{
// Entering the value of the variable n
Console.Write("n = ");
int n = int.Parse(Console.ReadLine());
Console.WriteLine();

// Printing the upper part of the triangle
for (int line = 1; line <= nj; line++)

{
}

PrintLine(1, line);

// Printing the bottom part of the triangle
// that is under the longest line
for (int line = n - 1; line »>= 1; line--)

{

}
}

PrintLine(1, line);

static void PrintLine(int start, int end)

{

for (int i = start; i <= end; i++)

{
}

Console.WriteLine();

}

Console.Write(i + " ");

}

Let’s discuss how the example code works. We should think of the triangles as
sequences of numbers, placed on separate lines, since we can print each line
directly on the console. In order to print each line of the triangle on the
console we need a tool. For this purpose we created the method
PrintLine(..).

In this method, by using a for-loop, we print a line of consequent numbers.
The first number from this sequence is the first parameter from the method’s
parameter list (the variable start). The last element of the sequence is the
number, passed to the method, as second parameter (the variable end).

Notice that since the numbers are sequential, the length (count of the
numbers) of each line corresponds to the difference between the second
parameter end and the first one - start, from the methods parameters list
(this will be useful later, when we build the triangles).

Chapter 9. Methods 327

Then we implement an algorithm that prints the triangles, as whole figures, in
the Main() method. With another method int.Parse, we get the n variable
and print the empty line.

Now with two sequential for-loops we build the triangle according to the
entered n. With the first loop we print all the lines that draw the upper part of
the triangle and the middle (longest) line inclusively. With the second loop, we
print the rest of the triangle’s lines that lie below the middle line.

As we mentioned above, the line number, corresponds to the element count
placed on the appropriate line. And since we always start from 1, the line
number will always be equal to the last element in the sequence, which has to
be printed on that line. So, we can use this when we call PrintLine(..), as it
requires exactly that for its parameters.

Note that, the count of the elements on each next line, increases with one and
so the last element of each sequent line must be greater (one is added) than
the last element of the preceding line. That’s why at each loop iteration of the
first for-loop, we pass to the PrintLine(..) method, as first parameter 1, and
as a second - the current value of the variable 1line. Since, on each execution
of the body of the loop, line increases with one, at each iteration
PrintLine(..) the method prints a line that has more than one element than
the preceding line.

With the second loop, that draws the part under the middle triangle line, we
follow the reverse logic. The downward we print lines, the shorter lines we
print. Each line decreases with one element according to its preceding line.
Hence, we set the initial value for the variable line in the second loop: line =
n-1. After each iteration of the loop line decreases with one and pass it as
second parameter to the PrintLine(...).

We can improve the program, as we take the logic that prints the triangle, in
a separate method. It can be noticed that, logically, the triangle print is
clearly defined, that is why we can declare a method with one parameter (the
value that we get from the keyboard) and to invoke it from the Main()
method:

static void Main()

{

Console.Write("n = ");
int n = int.Parse(Console.ReadLine());
Console.WriteLine();

PrintTriangle(n);

}

static void PrintTriangle(int n)

{

// Printing the upper part of the triangle

328 Fundamentals of Computer Programming with C#

for (int line = 1; line <= n; line++)
{
PrintLine(1, line);

}

// Printing the bottom part of the triangle
// that is under the longest line
for (int line = n - 1; line >= 1; line--)
{
PrintLine(1, line);
}
}

If we execute the program and enter for n the value 3, we will get the
following result:

n =3

RRBRRR
N
w

Returning a Result from a Method

So far, we always were given examples, in which the method does something
like printing on the console, and nothing more. Methods, however, usually do
not just execute a simple code sequence, but in addition they often return
results. So let’s take a look at how this actually happens.

Declaring a Method that Returns a Result

Let’s see again how to declare a method.

static <return_type> <method name>(<parameters_list>)

Earlier we said that at the place of <return type> we will always put void.
Now we will extend this definition, as we will see, that void is not the only
choice. Instead of void we can return any type either primitive (int, float,
double, ...) or by reference (as string or array), depending on the type of
the result that the method shall return after its execution.

For example, take a method that calculates the area of a square and instead
of printing it to the console returns it as a result. So, the declaration would
look as follows:

Chapter 9. Methods 329

static double CalcSquareSurface(double sidelength)

As can be seen the result of the calculation of the area is of type double.

How to Use the Returned Value?

When the method is executed and returns a value, we can imagine that C#
puts this value where this method has been invoked from. Then the program
continues work with that value. Respectively, that returned value, we can use
for any purpose from the calling method.

Assigning to a Variable

We can also assign the result of the method execution to a variable of an
appropriate type:

// GetCompanyLogo() returns a string
string companylLogo = GetCompanyLogo();

Usage in Expressions
After a method returns a result, it can be used then in expressions too.

So for example, to find the total price for invoice calculation, we must get the
single price and to multiply it by the quantity:

float totalPrice = GetSinglePrice() * quantity;

Using the Returned Value as Method Parameter

We can pass the result from the method execution as value in the parameters
list from another method:

Console.WriteLine(GetCompanyLogo());

In this example, in the beginning we invoke the method GetCompanyLogo(),
and write it as an argument of the method WriteLine(). Right after the
GetCompanyLogo() method finishes its execution it will return a result. Let's
say that the result will be "Microsoft Corporation". Then C# will put the
result returned by the method’s execution in the method’s place. So we can
assume that this is represented in the code in the following way:

Console.WriteLine("Microsoft Corporation");

Returned Value Type

As it was already explained above, the result that a method returns can be of
any type - int, string, array and so on. When, however, instead of a type

330 Fundamentals of Computer Programming with C#

we use the keyword void instead of a type, this mean that method does not
return value.

The Operator "return”

To make a method return value, the keyword return must be placed in the
method’s body, followed by an expression that will be returned as a result
by the method:

static <return_type> <method_name>(<parameters_list>)

{

// Some code that is preparing the method's result comes here
return <method's_result>;

}

Respectively <method's_result>, is of type <return_type>. For example:

static long Multiply(int numberl, int number2)
{

long result = numberl * number2;
return result;

}

In this method after the multiplication, by using the return the method will
produce as a result of its execution the integer variable result.

Compatibility of the Result and the Retuning Type

The result returned by the method, can be of a type that is compatible (the
one that can be implicitly converted) with the type of the returned value
<return_type>.

For example, we can modify the following example, in which the type of the
returned value to be of type float, but not int and to keep the following
code in the shown way:

static float Multiply(int numberl, int number2)
{

int result = numberl * number2;
return result;

}

In this case after the multiplication execution, the result will be of type int.
Even though the type of the expression after the return keyword is not of
type float, it can be returned, because it can be implicitly converted to
float.

Chapter 9. Methods 331

Using an Expression after the Return Operator

It is allowed (whenever this will not make the code look complicated / ugly) to
directly put some expression after the keyword return:

static int Multiply(int numberl, int number2)
{

}

return numberl * number2;

In this situation, after the calculation of numberl * number2, the result that
this expression produces will be replaced where the expression is, and hence
will be returned by the return operator.

Features of the Return Operator
The execution of return does two things:
- Stops immediately the method execution.
- Returns the result of the executed method to the calling method.

In relation to the first feature of return operator, we must note that, since it
stops the method’s execution (and no code after it and before the method
body’s closing bracket will be executed), we should not put any code after the
return operation.

Though, if we do so, the compiler will show a warning message:

static int Add(int numberl, int number2)

{
int result = numberl + number2;
return result;
// Let’s try to "clean" the result variable here:
result = 0;
}

In this example the compilation will be successful, but for the lines after
return, the compiler will output a warning message like this:

Unreachable code detected

When the method has void for returned value type, then after return, there
would be no expression to be returned. In that case return usage is only
used to stop the method’s execution:

static void PrintPositiveNumber(int number)

{

332 Fundamentals of Computer Programming with C#

if (number <= 0)

{
// If the number is NOT positive, terminate the method

return;

}

Console.WriteLine(number);

}

Multiple Return Statements

The last thing that must be said about the operator return is that it can be
called from several places in the code of our method, but should be
guaranteed that at least one of the operators return that we have used, will
be reached while executing the method.

So let’s take a look, at the example for a method that gets two numbers, and
then upon their values return 1 if the first is greater than the second, 0 if both
are equal, or -1 if the second is greater than the first:

static int CompareTo(int numberl, int number2)
{
if (numberl > number2)
{
return 1;
}
else if (numberl == number2)
{
return 0;
}
else
{
return -1;
}
}

Having multiple return statements is usual in programming and is typical
for methods that check several cases, like the above.

Why Is the Returned Value Type not a Part of the
Method Signature?
In C# it is not allowed to have several methods that have equal name and

parameters, but different type of returned value. This means that the
following code will fail to compile:

static int Add(int numberl, int number2)

Chapter 9. Methods 333

{
}

static double Add(int numberl, int number2)
{

}

return (numberl + number2);

return (numberl + number2);

The reason for this limitation is that the compiler doesn’t know which of both
methods must be invoked. Both methods have the same signature
(sequence of parameters along with their types). Note that the return value is
not part of the method’s signature. That is why on the declaration of the
methods an error message like the one below will be returned:

Type '<the_name_of_your_class>' already defines a member called
'Add' with the same parameter types

Where <the_name_of_your_class> is the name of the class in which we have
tried to declare those methods.

Fahrenheit to Celsius Conversion — Example

Now we have to write a program that for a given (by the user) body
temperature, measured in Fahrenheit degrees, has to convert that
temperature and output it in Celsius degrees, with the following message:
"Your body temperature in Celsius degrees is X", where X is respectively
the Celsius degrees. In addition if the measured temperature in Celsius is
higher than 37 degrees, the program should warn the user that they are ill,
with the following message "You are ill!".

For starters, we can make fast research in Internet and find out that the
Celsius to Fahrenheit formula is like this one: °C = (°F - 32) * 5 / 9,
where respectively with °C we mark the temperature measured in Celsius,
and with °F - the temperature in Fahrenheit.

After analysis of the current task, we can see that it can be divided to
subtasks as follow:

- Take the temperature measured in Fahrenheit degrees as an input from
the console (the user must enter it).

- Convert that number to its corresponding value, for temperature
measured in Celsius.

- Print a message for the converted temperature in Celsius.

- If the temperature is found to be higher than 37 °C, print a message
that the user is ill.

334 Fundamentals of Computer Programming with C#

A sample implementation of the above described algorithm is given below in
the class TemperatureConverter:

TemperatureConverter.cs
using Systenm;
class TemperatureConverter
{
static double ConvertFahrenheitToCelsius(double temperatureF)
{
double temperatureC = (temperatureF - 32) * 5 / 9;
return temperatureC;
}
static void Main()
{
Console.Write(

"Enter your body temperature in Fahrenheit degrees: ");
double temperature = double.Parse(Console.ReadLine());
temperature = ConvertFahrenheitToCelsius(temperature);
Console.WritelLine(

"Your body temperature in Celsius degrees is {0}.",

temperature);
if (temperature >= 37)

{

Console.WriteLine("You are ill!");

}
}
}

The operations for input of the temperature and output of the messages are
trivial, so we will skip their explanation, as we will focus on the approach to
convert the temperatures. As we can see this is a logical unit that can be
separated in its own method. By doing so, not only the program source code
will get clearer, but moreover, we will have the opportunity to reuse that
piece of code, whenever we need it, so we just will use the same method. So
we declare the method ConvertFahrenheitToCelsius(..), with list of one
parameter with the name temperatureF that represents the measured value
of the temperature in Fahrenheit. Then the method returns a result of type
double, which represents the calculated body temperature in Celsius degrees.
In the method’s body we use the formula we found on Internet (and write it
according to the C# syntax).

Chapter 9. Methods 335

Since we are done with this step from our task solution, we have decided that
the rest of the steps we will not need to be in separate methods, so we just
implement them in the Main() method of the class.

By the method double.Parse(..), we get the user’s body temperature as we
have previously asked him for it, by the following message: "Enter your
body temperature in Fahrenheit degrees".

Then we invoke the method ConvertFahrenheitToCelsius() and we store
the returned result in the variable temperature.

By the method Console.WriteLine() we print the message "Your body
temperature in Celsius degrees is X", where X is replaced with the value
of temperature.

The last step we must make is to check whether the temperature is higher
than 37 degrees in Celsius or no. This can be done by using a conditional
statement if. So if the temperature is higher than 37 degrees Celsius a
message that the user is ill must be printed.

Below is shown a possible output of the program:

Enter your body temperature in Fahrenheit degrees: 100
Your body temperature in Celsius degrees is 37,777778.
You are ill!

Difference between Two Months - Example

Let’s take a look at the following task: we have to write a program which, by
given two numbers, that are between 1 and 12 (so to correspond to a
particular month) prints the count of months between these months. The
message that must be printed to the console must be "There is X months
period from Y to Z.", where X is the count of the months, that we must
calculate, and Y and Z, are respectively the names of the months that mark
start and end of the period.

By reading carefully the task we will try to divide it into subtasks, that can be
more easily solved, and then by combining them to get the whole solution.
We can see that we have to solve the following subtasks:

- To enter the months numbers that mark beginning and end of the
period.

- To calculate the period between the input months.
- To print the message.

- In the message instead of the numbers we entered, for beginning and
end of the period, we must write their corresponding month names in
English.

A possible solution of the given task is shown below:

336 Fundamentals of Computer Programming with C#

Months.cs

using System;

class Months

{
static string GetMonthName(int month)

{
string monthName;
switch (month)
{
case 1:
monthName = "January";
break;
case 2:
monthName
break;
case 3:
monthName = "March";
break;
case 4:
monthName = "April";
break;
case 5:
monthName = "May";
break;
case 6:
monthName = "June";
break;
case 7:
monthName = "July";
break;
case 8:
monthName = "August";
break;
case 9:
monthName = "September";
break;
case 10:
monthName = "October";
break;
case 11:
monthName = "November";
break;

"February";

Chapter 9. Methods 337

case 12:
monthName = "December";
break;
default:
Console.WriteLine("Invalid month!");
return null;

}

return monthName;

}

static void SayPeriod(int startMonth, int endMonth)
{
int period = endMonth - startMonth;
if (period < 9)
{
// Fix negative distance
period = period + 12;
}
Console.WriteLine(
"There is {@} months period from {1} to {2}.",
period, GetMonthName(startMonth),
GetMonthName (endMonth));

}

static void Main()

{
Console.Write("First month (1-12): ");

int firstMonth = int.Parse(Console.ReadlLine());

Console.Write("Second month (1-12): ");
int secondMonth = int.Parse(Console.ReadlLine());

SayPeriod(firstMonth, secondMonth);

}
}

The first task solution is trivial. In the Main() method we will use
int.Parse(..) so we get the months for the period, the length of which we
aim to calculate.

Then we see that period calculation and message printing can be logically
separated as a subtask, so we create a method SayPeriod(..) that has two
parameters — numbers representing month numbers that mark the beginning
and the end of the period. This method will not return a value but it will
calculate period and print the message, described in the task, to the console,
by the standard output — Console.WriteLine(..).

338 Fundamentals of Computer Programming with C#

Apparently, to find the length of the period between two months, we have to
subtract the number of the beginning month from that of the end month. We
consider also, that if the second month has number less that the number of
the first month, then the user most probably has had the assumption that the
second month is not in the current year, but in the next one. That is why, if
the difference between the two months is negative, we must add 12 to it -
the length of a year in months, and so to find the length of the given period.
Then we must print the message, as for the months names we use the
method GetMonthName(...).

The method that gets the month’s name by its number can be easily created
with conditional switch-case statement, in which we could get the months
for each of the input numbers. If the value is not in the range of [1...12], the
program will report an error. Later in the chapter "Exception Handling" we
will discuss in details how to notify for an error occurring. You will be shown
how to catch and deal with the exceptions (error notifications). However, for
now we just will print an error message to the console. This is generally an
incorrect behavior and we will learn how to avoid it in the chapter "High-
Quality Code", section "What Should a Method Do".

At the end, in the Main() method we invoke the SayPeriod() method, by
entered numbers for beginning and end of the period. By doing so, we have
completely solved the task.

A possible output, if the input was 2 and 6, is shown below:

First month (1-12): 2
Second month (1-12): 6
There is 4 months period from February to June.

Input Data Validation — Example

In this task we must write a program that asks the user what time it is, by
printing on the console "What time is it?". Then the user must enter two
numbers - one for hours and one for minutes. If the input data represents a
valid time, the program must output the message "The time is hh:mm now.",
where hh respectively means the hours, and mm - the minutes. If the entered
hours or minutes are not valid, the program must print the message
"Incorrect time!".

After we read the task carefully, we see that it can be divided into the
following subtasks:

- Get input data for hours and minutes.
- Check if input data is valid (input validation).

- Print the corresponding message - either an error message, or the valid
time message.

Chapter 9. Methods 339

We consider that getting the input data and printing the output messages will
not be a problem anymore, so we will focus on input data validation, i.e.
validation the numbers for hours and minutes. We know that the hours are in
the range from 0 to 23 inclusive, and the minutes respectively from 0 to 59
inclusive. Since the data (for hours and for minutes) has not the same nature,
we decide to create two separate methods. One of them will check the validity
of hours, while the other will check the validity for minutes.

A solution is shown below:

DataValidation.cs

using System;

class DataValidation

{

static void Main()

{

Console.WriteLine("What time is it?");

Console.Write("Hours: ");
int hours = int.Parse(Console.ReadLine());

Console.Write("Minutes: ");
int minutes = int.Parse(Console.ReadLine());

bool isValidTime =
ValidateHours(hours) && ValidateMinutes(minutes);
if (isValidTime)

¢ Console.WriteLine("The time is {@}:{1} now.",
hours, minutes);
}
else
{
Console.WriteLine("Incorrect time!");
}
}
static bool ValidateHours(int hours)
{

bool result = (hours >= 0) && (hours < 24);
return result;

}

static bool ValidateMinutes(int minutes)

340 Fundamentals of Computer Programming with C#

{

bool result = (minutes >= @) && (minutes <= 59);
return result;

}
}

The method that checks the hours is named ValidateHours(), and it gets a
number of type int for the hours, and returns result of type bool, i.e. true if
the input number is a valid hour, otherwise — false:

static bool ValidateHours(int hours)

{
bool result = (hours >= 0) && (hours < 24);
return result;

}

We use simple logic to declare method, which checks the validity of the
minutes. We named it ValidateMinutes(), since it gets a parameter that is
integer value and represents the minutes, and returns a value of type bool. If
the input number is a valid minute value, the method will return as result
true, otherwise - false:

static bool ValidateMinutes(int minutes)

{
bool result = (minutes >= @) && (minutes <= 59);
return result;

}

Since we are done with the most complicated part of the task, we declare the
Main() method. In its body we print out the question according to the task -
"What time is it?". Then by the method int.Parse(..), we read from the
console the numbers for hours and minutes, then the results are kept in the
integer variables hours and minutes:

Console.WriteLine("What time is it?");

Console.Write("Hours: ");
int hours = int.Parse(Console.ReadLine());

Console.Write("Minutes: ");
int minutes = int.Parse(Console.ReadlLine());

The result from the validation is kept in a variable of type bool -
isvValidTime, as we sequentially invoke the methods we have already
declared - ValidateHours() and ValidateMinutes(), as of course we pass

Chapter 9. Methods 341

the appropriate variables hours and minutes to each of them. To validate the
input data as a whole, we unite the results from the methods invocation with
the operator for logical "and" &&:

bool isValidTime =
ValidateHours(hours) && ValidateMinutes(minutes);

After we stored the result, telling us whether the input data is valid or not, in
the variable isValidTime, we use the conditional statement if, cope with the
last problem for the given task — Printing the information to the user, whether
the input is valid or not. With the method Console.WritelLine(..), if
isValidTime is true, we print on the console "The time is hh:mm now."
where hh is respectively the value of the variable hours, and mm - of the
variable minutes. In the else part of the conditional statement we print that
the input time was invalid - "Incorrect time!".

A possible output of the program, with correct data, is shown below:

What time is it?
Hours: 17

Minutes: 33

The time is 17:33 now.

And here’s how the program behaves, when the data is incorrect:

What time is it?
Hours: 33
Minutes: -2
Incorrect time!

Sorting - Example

Let’s try to create a method that sorts (puts in order) a set of values in
ascending order. The result will be a string with the sorted numbers.

With this in mind, we suppose that the subtasks we have to cope with are
two:

- How to give the numbers to our method, so it could sort them
- How to sort those numbers

Our method has to take an array on numbers as a parameter, create a sort of
that array and return it:

static int[] Sort(int[] numbers)
{

// The sorting logic comes here ..

342 Fundamentals of Computer Programming with C#

return numbers;

}

This solution seems to satisfy the task requirements. However, it seems that
we could optimize it more, and instead of the argument to be an integer
array, we can declare it in such way that it could accept a variable count of
integer parameters.

This will save us the need to initialize the array in advance when we invoke
the method with a small set of numbers. In case of bigger sets of input
numbers, as we saw in the subsection for method declaration with a variable
number of arguments, we could directly pass an already initialized array of
integers, instead of passing them as parameters of the method. Hence, the
initial declaration turns into:

static int[] Sort(params int[] numbers)

{

// The sorting logic comes here ..

return numbers;

}

Now we must to decide how to sort our array. One of the easiest ways for this
to be done is to use the so-called "selection sort" algorithm. This method
considers the array as two parts - sorted and unsorted. The sorted part is in
the left side of the array, while the unsorted is in the right. For each step of
the algorithm, the sorted part expands to the right with one element and the
unsorted shrinks with one element from its left part.

Let’s take a look at an example. So assume we have the following unsorted
array and we want to order its elements by selection sorting:

10 (3 5 -1 0 12 8

On each step our algorithms must find the minimal element in the unsorted
part of the array:

10| 3 5]-1) 0]12(8

T

min

Then the minimal element must swap with the first element from the unsorted
part of the array:

Chapter 9. Methods 343

10| 3 51-1] 01112} 8

Then we look for the minimal element again, from the rest of the unsorted
part of the array (all elements except the first one):

-1{(3 5110 0 [12] 8

T

min
That minimal element now exchanges with the first from the unsorted part:
-1 3|5 }10| 0 [12] 8
min

-1 0 51101 3 12 8
min

So this step is repeated until the unsorted part of the array reaches a length
of 0, i.e. it is empty:

-1(0 3 5 8 [12] 10

T

min

¥

-1(0 3 5 8 [12] 10
A

min

As a result the array is sorted:

-1]1 0 3 5 8 [10] 12

This is a variant of a code, which implements the algorithm explained above
(selection sort):

static int[] Sort(params int[] numbers)

{
// The sorting logic:

344 Fundamentals of Computer Programming with C#

for (int i = ©; i < numbers.Length - 1; i++)
{
// Loop operating over the unsorted part of the array
for (int j = i + 1; j < numbers.Length; j++)
{
// Swapping the values
if (numbers[i] > numbers[j])

int temp = numbers[i];
numbers[i] = numbers[j];
numbers[j] temp;

}

}
} // End of the sorting logic
return numbers;

}

Let's declare a method PrintNumbers(params int[]) that outputs the list
with numbers to the console, and then to test this example by writing a few
lines directly into the Main(..) method:

SortingEngine.cs

using System;

class SortingEngine

{
static int[] Sort(params int[] numbers)
{
// The sorting logic:
for (int i = @; i < numbers.Length - 1; i++)
{
// Loop that is operating over the un-sorted part of
// the array
for (int j = 1 + 1; j < numbers.Length; j++)
{
// Swapping the values
if (numbers[i] > numbers[j])

{
int oldNum = numbers[i];
numbers[i] = numbers[j];
numbers[j] = oldNum;

}

}

Chapter 9. Methods 345

} // End of the sorting logic
return numbers;

}

static void PrintNumbers(params int[] numbers)
{
for (int i = 0; i < numbers.Length; i++)
{
Console.Write("{0}", numbers[i]);
if (i < (numbers.Length - 1))
{
Console.Write(", ");
}
}
}

static void Main()

{
int[] numbers = Sort(10, 3, 5, -1, 0, 12, 8);
PrintNumbers(numbers);

}

}

After this code is compiled and executed, the result is exactly as the one that
was expected - the array is ordered ascending:

-1, @, 3, 5, 8, 10, 12

Best Practices when Using Methods

In the chapter "High-Quality Programming Code" we will explain in details
about the good practices for writing methods. None the less, we will look at
some of them right now, so we can start applying the good practices and start
developing a good programming style:

- Each method must resolve a distinct, well defined task. This feature
is also known as strong cohesion, i.e. to give a focus onto one single
task, not to several tasks no strongly related logically. A single method
should perform a single task, its code should be well structured, easy to
understand, and easy to be maintained. One method must NOT solve
several tasks!

- A method has to have a good name, i.e. name that is descriptive and
from which becomes clear what the method does. As an example: a
method that sorts numbers should be named SortNumbers(), but
should not be named Number() or Processing() or Method2(). If it

346

Fundamentals of Computer Programming with C#

cannot be given a good name, this may indicate that the method solves
more than one task and, hence, it must be separated into sub-methods.

Method names should describe an action, so they should contain a
verb or a verb + noun (possibly with an adjective to supplement the
noun). For example good method names are FindSmallestElement(),
Sort(int[] arr) and ReadInputData().

It is assumed that all the method names in C# will start with capital
letter. PascalCase rule is used, i.e. each new word that is concatenated
to the end of the method name must start with capital letter. For
example: SendEmail(..), but not sendEmail(...) or send_email(...).

A method must do whatever is described with its name, or it must
return an error (throws an exception). It is not correct that the methods
return wrong or unusual result when it has received invalid input data.
The method resolves the task it is created for, or returns an
error. Any other behavior is incorrect. We will discuss this principle in
"High-Quality Programming Code", section "What a Method Should Do".

A method must have minimum dependency to the class in which the
method is declared and to other methods and classes. This feature of
the methods is also known as loose coupling. This means that the
method must do its job by using the data that passed to it as
parameters, but not data that can be accessed from other places.
Methods should not have side effects (for example to change some
global variable or print something on the console in the meantime).

It is recommended that the methods must be short. Methods that are
longer than a computer screen must be avoided. To do so, the logic
implemented in the method is divided by functionality, to several
smaller sub-methods. These sub-methods are then called from the
original place they were cut off.

To improve the readability of a method and the code structure, it is good
idea a functionality that is well detached logically, to be placed in a
separate method. For example if we have a method that calculates the
volume of a dam lake, the process of calculating the volume of a
parallelepiped can be defined in a separate method. Then that new
method can be invoked as many times as necessary. Hence, the sub-
task is separated from the main task. Since the dam lake can be
taken as set of many different parallelepipeds, calculating the volume of
each one of them is logical detached functionality.

The last but most important rule is that a method should either do
what it name says or throw an exception. If a method cannot
perform its job (e.g. due to incorrect input), it should throw an
exception, not return invalid or neutral result. How to throw an
exception will be explained in the chapter “Exception Handling”, but for
now you should remember that returning an incorrect result or
having a side effect are bad practices. If a method cannot do its job,

Chapter 9. Methods 347

it should inform its caller about this by throwing appropriate exception.
Methods should never return wrong result!

Exercises

1.

10.

11.

Write a code that by given name prints on the console "Hello, <name>!"
(for example: "Hello, Peter!").

Create a method GetMax() with two integer (int) parameters, that
returns maximal of the two numbers. Write a program that reads three
numbers from the console and prints the biggest of them. Use the
GetMax() method you just created. Write a test program that validates
that the methods works correctly.

Write a method that returns the English name of the last digit of a
given number. Example: for 512 prints "two"; for 1024 > "four".

Write a method that finds how many times certain number can be
found in a given array. Write a program to test that the method works
correctly.

Write a method that checks whether an element, from a certain position
in an array is greater than its two neighbors. Test whether the
method works correctly.

Write a method that returns the position of the first occurrence of an
element from an array, such that it is greater than its two neighbors
simultaneously. Otherwise the result must be -1.

Write a method that prints the digits of a given decimal number in a
reversed order. For example 256, must be printed as 652.

Write a method that calculates the sum of two very long positive
integer numbers. The numbers are represented as array digits and
the last digit (the ones) is stored in the array at index 0. Make the
method work for all numbers with length up to 10,000 digits.

Write a method that finds the biggest element of an array. Use that
method to implement sorting in descending order.

Write a program that calculates and prints the n! for any n in the range
[1..100].

Write a program that solves the following tasks:
- Put the digits from an integer number into a reversed order.
- Calculate the average of given sequence of numbers.
- Solve the linear equationa * x + b = 0.

Create appropriate methods for each of the above tasks.

Make the program show a text menu to the user. By choosing an option
of that menu, the user will be able to choose which task to be invoked.

348 Fundamentals of Computer Programming with C#

Perform validation of the input data:
- The integer number must be a positive in the range [1...50,000,000].
- The sequence of numbers cannot be empty.
- The coefficient a must be non-zero.

12. Write a method that calculates the sum of two polynomials with integer
coefficients, for example (3x2 + x - 3) + (x - 1) = (3x2 + 2x - 4).

13. * Write a method that calculates the product of two polynomials with
integer coefficients, for example (3x? + x - 3) * (x - 1) = (3x3 -
2x? - 4x + 3).

Solutions and Guidelines
1. Use a method that takes the name as parameter of type string.
2. Use the expression Max(a, b, c¢) = Max(Max(a, b), c).

To test the code check whether the results from the invoked methods is
correct for a set of examples that cover the most interesting cases, e.g.
Max(1,2)=2; Max(3,-1)=3; Max(-1,-1)=-1; Max(1,2,444444)=444444;
Max(5,2,1)=5; Max(-1,6,5)=6; Max(0,0,0)=0; Max(-10,-10,-10)=-10;
Max (2000000000, - 2000000001 , 2000000002) =2000000002; etc.

You may write a generic method that works not just for int but for any
other type T using the following declaration:

static T Max<T>(T a, Tb) where T : IComparable<T> { .. }

Read more about the concept of generic methods in the section
“Generic Methods” of chapter “"Defining Classes”.

Instead of creating a program that checks whether the method works
correctly, you can search in Internet for information about "unit testing"
and write unit tests for your methods. You may also read about unit
testing in the section “Unit Testing” of chapter “High-Quality Code”.

Use the reminder of division by 10 and then a switch statement.

4. The method must take as parameter an array of integer numbers (int[])
and the number that has to be counted (int). Test it with few examples
like this: CountOccurences(new int[]{3,2,2,5,1,-8,7,2}, 2) = 3.

5. Just perform a check. The elements of the first and the last position in
the array will be compared only with their left and right neighbor. Test
examples like GreaterThanNeighbours(new int[]{1,3,2}, 1) 2> true
and GreaterThanNeighbours(new int[]{1}, @) 2 true.

6. Invoke the method from the previous problem in a for-loop.

There are two solutions:

Chapter 9. Methods 349

10.

11.

12.

13.

First solution: Let the number is num. So while num # 0 we print its last
digit (num % 10) and then divide num by 10.

Second solution: Convert the number into a string string and print it
in a reverse order with a for-loop. This is a bit cheater’s approach.

The reader must implement own method that calculates the sum of
very big numbers. The digits on position zero will keep the ones; the
digit on the first position will keep the tenths and so on. When two very
big numbers are about to be calculated, the ones of their sum will be
equal to (firstNumber[@] + secondNumber[@]) % 1@, the tenths on
other side will be equal to (firstNumber[1] + secondNumber[1]) % 10
+ (firstNumber[@] + secondNumber[0])/10 and so on.

First write a method that finds the biggest element in array and then
modify it to find the biggest element in given range of the array, e.g.
in the elements at indexes [3...10]. Finally find the biggest number in
the range [1...n-1] and swap it with the first element, then find the
biggest element in the range [2..n-1] and swap it with the second
element of the array and so on. Think when the algorithm should finish.

The reader must implement own method that calculates the product of
very big numbers, because the value of 100! does not fit in variable of
type ulong or decimal. The numbers can be represented in an array of
reversed digits (one digit in each element). For example, the number 512
can be represented as {2, 1, 5}. Then the multiplication can be
implemented in the way done in the elementary school (multiply digit by
digit and then calculate the sum).

Another easier way to work with extremely large numbers such as 100! is
by using the library System.Numerics.d1ll (you have to add a reference
to it in your project). Look for Information in internet about how to use
the class System.Numerics.BigInteger.

Finally calculate in a loop k! fork =1, 2, ..., n.

Firstly, create the necessary methods. To create the menu display a
list in which the actions are represented as numbers (1 - reverse, 2 -
average, 3 - equation). Ask the user to choose from 1 to 3.

Use arrays to represent the polynomial and the arithmetic rules that
you know from math. For example the polynomial (3x> + x - 5) can be
represented as an array of the numbers {-5, 1, 3}. Bear in mind that it
is useful at the zero position to put the coefficient for x° (in our case -5),
at the first position - the coefficient for x* (in our case 1) and so on.

Use the instructions from the previous task and the rules for polynomial
multiplication that you know from math. How to multiple polynomials
can be read here: http://www.purplemath.com/modules/polymult.htm.

http://www.purplemath.com/modules/polymult.htm

Chapter 10. Recursion

In This Chapter

In this chapter we are going to get familiar with recursion and its
applications. Recursion represents a powerful programming technique in
which a method makes a call to itself from within its own method body. By
means of recursion we can solve complicated combinatorial problems, in
which we can easily exhaust different combinatorial configurations, e.g.
generating permutations and variations and simulating nested loops.
We are going to demonstrate many examples of correct and incorrect usage
of recursion and convince you how useful it can be.

What Is Recursion?
We call an object recursive if it contains itself, or if it is defined by itself.

Recursion is a programming technique in which a method makes a call to
itself to solve a particular problem. Such methods are called recursive.

Recursion is a programming technique whose correct usage leads to elegant
solutions to certain problems. Sometimes its usage could considerably
simplify the programming code and its readability.

Example of Recursion

Let's consider the Fibonacci numbers. These are the elements of the
following sequence:

1,1, 2,3,5, 8, 13, 21, 34, 55, 89, 144, ..

Each element of the sequence is formed by the sum of the previous two
elements. The first two elements are equal to 1 by definition, i.e. the next two
rules apply:

Fi=F2=1
Fi = Fi-1 + Fi2 (fori > 2)

Proceeding directly from the definition, we can implement the following
recursive method for finding the nt" Fibonacci number:

static long Fib(int n)
{

if (n <= 2)

{

352 Fundamentals of Computer Programming with C#

return 1;

}
return Fib(n - 1) + Fib(n - 2);

}

This example shows how simple and natural the implementation of a solution
can be when using recursion.

On the other hand, it can serve as an example of how attentive we have to be
while programming with recursion. Although it is intuitive, the present
solution is one of the classical examples when the usage of recursion is
highly inefficient as there are many excessive calculations (of one and the
same element of the sequence) due to the recursive calls.

We are going to consider the advantages and the disadvantages of using
recursion later in this chapter.

Direct and Indirect Recursion

When in the body of a method there is a call to the same method, we say that
the method is directly recursive.

If method A calls method B, method B calls method C, and method C calls
method A we call the methods A, B and C indirectly recursive or mutually
recursive.

Chains of calls in indirect recursion can contain multiple methods, as well as
branches, i.e. in the presence of one condition one method to be called, and
provided a different condition another to be called.

Bottom of Recursion

When using recursion, we have to be totally sure that after a certain count of
steps we get a concrete result. For this reason we should have one or more
cases in which the solution could be found directly, without a recursive call.
These cases are called bottom of recursion.

In the example with Fibonacci numbers the bottom of recursion is when n is
less than or equal to 2. In this base case we can directly return result without
making recursive calls, because by definition the first two elements of the
sequence of Fibonacci are equal to 1.

If a recursive method has no base case, i.e. bottom, it will become infinite
and the result will be StackOverflowException.
Creating Recursive Methods

When we create recursive methods, it is necessary that we break the task we
are trying to solve in subtasks, for the solution of which we can use the

Chapter 10. Recursion 353

same algorithm (recursively). The combination of solutions of all subtasks
should lead to the solution of the initial problem.

In each recursive call the problem area should be limited so that at some
point the bottom of the recursion is reached, i.e. breaking of each subtask
must lead eventually to the bottom of the recursion.

Recursive Calculation of Factorial

The usage of recursion we will illustrate with a classic example - recursive
calculation of factorial.

Factorial of n (written n!) is the product of all integers between 1 and n
inclusive. By definition 0! = 1.

=1.2.3..n

Recurrent Definition

When creating our solution, it is much more convenient to use the
corresponding recurrent definition of factorial:

nl=1forn=20

n! = n.(n-1)!, for n>0

Finding a Recurrent Dependence

The presence of recurrent dependence is not always obvious. Sometimes we
have to find it ourselves. In our case we can do this by analyzing the problem
and calculating the values of the factorial for the first few integers.

0!
1!
2!
3!
41
51

=

.0!

Il
uhWNHEE
HPUWNHE
NN
=l W
AN

3
5.4

From here you can easily see the recurrent dependability:

n! = n.(n-1)!

Algorithm Implementation

The bottom of our recursion is the simplest case n = 0, in which the value of
the factorial is 1.

In the other cases we solve the problem for n-1 and multiply the result by n.
Thus after a certain count of steps we are definitely going to reach the bottom

354 Fundamentals of Computer Programming with C#

of the recursion, because between 0 and n there is a certain count of integer
numbers.

Once we have these substantial conditions we can write a method, which
computes factorial:

static decimal Factorial(int n)
{
// The bottom of the recursion
if (n == 0)
{
return 1;
}
// Recursive call: the method calls itself
else
{
return n * Factorial(n - 1);
}
}

By using this method we can create an application, which reads an integer
from the console computes its factorial and then prints the obtained value:

RecursiveFactorial.cs

using System;

class RecursiveFactorial

{

static void Main()

{

Console.Write("n = ");
int n = int.Parse(Console.ReadLine());

decimal factorial = Factorial(n);
Console.WriteLine("{0}! = {1}", n, factorial);
}

static decimal Factorial(int n)

{

// The bottom of the recursion
if (n == 9)
{

}
// Recursive call: the method calls itself

return 1;

Chapter 10. Recursion 355

else

{

}
}

return n * Factorial(n - 1);

}

Here is what the result of the execution of the application would be like if we
enter 5 for n:

n=>5
5! =120

Recursion or Iteration?

The calculation of factorial is often given as an example when explaining the
concept of recursion, but in this case, as in many others, recursion is not the
best approach.

Very often, if we are given a recurrent definition of the problem, the
recurrent solution is intuitive and not posing any difficulty, while iterative
(consecutive) solution is not always obvious.

In this particular case the implementation of the iterative solution is as short
and simple, but is a bit more efficient:

static decimal Factorial(int n)
{ decimal result = 1;
for (int i = 1; i <= n; i++)
{ result = result * i;
}
return result;
}

We are going to consider the advantages and disadvantages of using
recursion and iteration later in this chapter.

For the moment we should remember that before proceeding with recursive
implementation we should think about an iterative variant, after which we
should choose the better solution according to the situation.

Let's look at another example where we could use recursion to solve the
problem. This time we are going to consider an iterative solution, too.

356 Fundamentals of Computer Programming with C#

Simulation of N Nested Loops

Very often we have to write nested loops. It is very easy when they are two,
three or any number previously assigned. However, if their count is not
known in advance, we have to think of an alternative approach. This is the
case with the following task.

Write a program that simulates the execution of N nested loops from 1 to K,
where N and K are entered by the user. The result of the performance of the
program should be equivalent to the execution of following fragment:

for (al = 1; al <= K; al++)
for (a2 = 1; a2 <= K; a2++)
for (a3 = 1; a3 <= K; a3++)

for (aN = 1; aN <= K; aN++)
Console.WriteLine("{0} {1} {2} .. {N}",
al, a2, a3, .., aN);

For example, when N = 2 and K = 3 (which is equivalent to 2 nested loops
from 1 to 3) and when N = 3 and K = 3, the results would be as follows:

11 111
12 112
13 113
N =2 21 N=3 121
K=3 -> 22 K=3 -> .
2 3 323
31 331
3 2 33 2
33 333

The algorithm for solving this problem is not as obvious as in the previous
example. Let’s consider two different solutions - one recursive, and one
iterative.

Each row of the result can be regarded as ordered sequence of N numbers.
The first one represents the current value of the counter of the loop, the
second one - of the second loop, etc. On each position we can have value
between 1 and K. The solution of our task boils down to finding all ordered
sequences of N elements for N and K given.

Nested Loops — Recursive Version

If we are looking for a recursive solution to the problem, the first problem we
are going to face is finding a recurrent dependence. Let’s look more carefully
at the example from the assignment and put some further consideration.

Chapter 10. Recursion 357

Notice that, if we have calculated the answer for N = 2, then the answer for N
= 3 can be obtained if we put on the first position each of the values of K (in
this case from 1 to 3), and on the other two positions we put each of the
couples of numbers, produced for N = 2. We can check that this rule applies
for numbers greater than 3.

Solution for N = 3 Solution for N = 2 Solution forN =1
! ! !
AR []

A oo
I Solution for N = 2 | Solution for N = 1 |
BEE [2]
Y oo
I Solution for N = 2 I Solution for N = 1 |
3> an =]
Y LA
Solution for N = 2 Solution for N = 1

This way we have obtained the following dependence - starting from the first
position, we put on the current position each of the values from 1 to K and
continue recursively with the next position. This goes on until we reach
position N, after which we print the obtained result (bottom of the
recursion). Here is how the method looks implemented in C#:

static void NestedLoops(int currentLoop)

{

if (currentLoop == numberOfLoops)
{

PrintLoops();

return;

}

for (int counter=1; counter<=numberOfIterations; counter++)
{
loops[currentLoop] = counter;
NestedLoops(currentLoop + 1);
}
¥

We are going to keep the sequence of values in an array called loops, which
would be printed on the console by the method PrintLoops() when needed.

The method NestedLoops(..) takes one parameter, indicating the position in
which we are going to place values.

358 Fundamentals of Computer Programming with C#

In the loop we place consecutively on the current position each of the possible
values (the variable numberOfIterations contains the value of K entered by
the user), after which we call recursively the method NestedLoops(...) for the
next position.

The bottom of the recursion is reached when the current position becomes N
(the variable numberOfIterations contains the value of N, entered by the
user). In this moment we have values on all positions and we print the
sequence.

Here is a complete implementation of the recursive nested loops solution:

RecursiveNestedLoops.cs

using System;

class RecursiveNestedLoops

{

static int numberOfLoops;
static int numberOfIterations;
static int[] loops;

static void Main()

{

Console.Write("N = ");
numberOfLoops = int.Parse(Console.ReadlLine());

Console.Write("K = ");
numberOfIterations = int.Parse(Console.ReadlLine());

loops = new int[numberOfLoops];

NestedLoops(0);
}
static void NestedLoops(int currentLoop)
{
if (currentLoop == numberOfLoops)
{
PrintLoops();
return;
}

for (int counter=1; counter<=numberOfIterations; counter++)

{

loops[currentLoop] = counter;

Chapter 10. Recursion

359

NestedLoops(currentLoop + 1);

}
}

static void PrintLoops()

{

for (int i = 0; i < numberOfLoops; i++)

{
}

Console.WriteLine();

}

Console.Write("{@} ", loops[i]);

}

If we run the application and enter for N and K respectively 2 and 4 as

follows, we are going to obtain the following result:

AN

A DRADMDPDWWWWNNMNNMNNRPRRRRLRRXRZ
PWNRERPPAPWNRERPPPWNREPAMWNDEREIO

In the Main() method we enter values for N and K, create an array in which
we are going to keep the sequence of values, after which we call the method

NestedLoops(...), starting from the first position.

Notice that as a parameter of the array we give 0 because we keep the
sequence of values in an array, and as we already know, counting of array

elements starts from 0.

The method PrintLoops() iterates all elements of the array and prints them

on the console.

360

Fundamentals of Computer Programming with C#

Nested Loops — Iterative Version

For the implementation of an iterative solution of the nested loops we can
use the following algorithm, which finds the next sequence of numbers and
prints it at each iteration:

1.
2.
3.

5.

In the beginning on each position place the number 1.

Print the current sequence of numbers.

Increment with 1 the number on position N. If the obtained value is
greater than K replace it with 1 and increment with 1 the value on

position N - 1. If its value has become greater then K, too,

with 1 and increment with 1 the value on position N - 2, etc.

algorithm ends its work.

Go on with step 2.

Below we propose a straightforward implementation of the
iterative nested loops algorithm:

replace it

. If the value on the first position has become greater than K, the

described

IterativeNestedLoops.cs

using System;

class IterativeNestedLoops

{

static int numberOfLoops;
static int numberOfIterations;
static int[] loops;

static void Main()

{

}

Console.Write("N = ");
numberOfLoops = int.Parse(Console.ReadLine());

Console.Write("K = ");
numberOfIterations = int.Parse(Console.ReadLine());

loops = new int[numberOfLoops];

NestedLoops();

static void NestedLoops()

{

InitLoops();

Chapter 10. Recursion 361

int currentPosition;

while (true)

{
PrintLoops();
currentPosition = numberOfLoops - 1;
loops[currentPosition] = loops[currentPosition] + 1;
while (loops[currentPosition] > numberOfIterations)
{
loops[currentPosition] = 1;
currentPosition--;
if (currentPosition < 0)
{
return;
}
loops[currentPosition] = loops[currentPosition] + 1;
}
}
}
static void InitLoops()
{
for (int i = @; i < numberOfLoops; i++)
{
loops[i] = 1;
}
}
static void PrintLoops()
{
for (int i = ©; i < numberOfLoops; i++)
{
Console.Write("{0} ", loops[i]);
}
Console.WriteLine();
}

}

The methods Main() and PrintLoops() are the same as in the
implementation of the recursive solution.

362 Fundamentals of Computer Programming with C#

The NestedLoops() method is different. It now implements the algorithm for
iterative solution of the problem and for this reason does not get any
parameters, unlike in the recursive version.

In the very beginning of this method we call the method InitLoops(), which
iterates the elements of the array and places in each position 1.

The steps of the algorithm we perform in an infinite loop, from which we are
going to escape in an appropriate moment by ending the execution of the
methods via the operator return.

The way we implement step 3 of the algorithm is very interesting. The
verification of the values greater than K, their substitution with 1 and the
incrementing with 1 the value on the previous position (after which we make
the same verification for it too) we implement by using one while loop, which
we enter only if the value is greater than K.

For this purpose we first replace the value of the current position with 1. After
that the position before it becomes current. Next we increment the value on
the new position with 1 and go back to the beginning of the loop. These
actions continue until the value on the current position is not less than or
equal to K (the variable numberOfIterations contains the value of K), which
is when we escape the loop.

When the value on the first position becomes greater than K (this is the
moment when we have to end the execution), on its place we put 1 and try to
increment the value on the previous position. In this moment the value of the
variable currentPosition becomes negative (as the first position of the array
is 0) and we end the execution of the method using the operator return. This
is the end of our task.

We can now test it whit N = 3 and K = 2, for example:

NNNNRRRRLRXZ
NNRRNNRPRI
NRPFNRNRNRPNDW

Which is Better: Recursion or Iteration?

If the algorithm solving of the problem is recursive, the implementation of
recursive solution can be much more readable and elegant than iterative
solution to the same problem.

Chapter 10. Recursion 363

Sometimes defining equivalent algorithm is considerably more difficult and it
is not easy to be proven that the two algorithms are equivalent.

In certain cases by using recursion we can accomplish much simpler,
shorter and easy to understand solutions.

On the other hand, recursive calls can consume much more resources (CPU
time and memory). On each recursive call in the stack new memory is set
aside for arguments, local variables and returned results. If there are too
many recursive calls, a stack overflow could happen because of lack of
memory.

In certain situations the recursive solutions can be much more difficult to
understand and follow than the relevant iterative solutions.

Recursion is powerful programming technique, but we have to think
carefully before using it. If used incorrectly, it can lead to inefficient and
tough to understand and maintain solutions.

If by using recursion we reach a simpler, shorter and easier
& for understanding solution, not causing inefficiency and

other side effects, then we can prefer recursive solution.
Otherwise, it is better to think of iteration.

Fibonacci Numbers - Inefficient Recursion

Let’s go back to the example with finding the n* Fibonacci number and
look more carefully at the recursive solution:

static long Fib(int n)
{

if (n <= 2)

{

return 1;

}
return Fib(n - 1) + Fib(n - 2);

}

This solution is intuitive, short and easy to understand. At first sight it seems
that this is a great example for applying recursion. The truth is that this is one
of the classical examples of inappropriate usage of recursion. Let’s run the
following application:

RecursiveFibonacci.cs

using System;

class RecursiveFibonacci

364 Fundamentals of Computer Programming with C#

{ static void Main()
{ Console.Write("n = ");
int n = int.Parse(Console.ReadLine());
long result = Fib(n);
Console.WriteLine("fib({@0}) = {1}", n, result);
}
static long Fib(int n)
{
if (n <= 2)
{
return 1;
}
return Fib(n - 1) + Fib(n - 2);
}
}

If we set the value of n = 100, the calculations would take so much time that
no one would wait to see the result. The reason is that similar implementation
is extremely inefficient. Each recursive call leads to two more calls and each
of these calls causes two more calls and so on. That's why the tree of calls
grows exponentially as shown on the figure below.

The count of steps for computing of fib(100) is of the order of 1.6 raised to
the power 100 (this could be mathematically proven), whereas, if the solution
is linear, the count of steps would be only 100.

The problem comes from the fact that there are a lot of excessive
calculations. You can notice that fib(2) appears below many times on the
Fibonacci tree:

fib(7)
fib(é)////\fib(a
fib{5) fib(4) fibm&)
fibmw) fibﬁ@) fibm(Z) fibmm)

fib(3) fib2) fib(2) fib(1) fib(2) fib(1) fib(2) fib(1)

N

fib(2) fib(1)

Chapter 10. Recursion 365

Fibonacci Numbers - Efficient Recursion

We can optimize the recursive method for calculating the Fibonacci
numbers by remembering (saving) the already calculated numbers in an array
and making recursive call only if the number we are trying to calculate has
not been calculated yet. Thanks to this small optimization technique (also
known in computer science and dynamic optimization as memoization (not
to be confused with memorization) the recursive solution would work for
linear count of steps. Here is a sample implementation:

RecursiveFibonacciMemoization.cs

using System;

class RecursiveFibonacciMemoization

{

static long[] numbers;

static void Main()

{

Console.Write("n = ");
int n = int.Parse(Console.ReadLine());

numbers = new long[n + 2];
numbers[1] = 1;
numbers[2] = 1;

long result = Fib(n);
Console.WriteLine("fib({@0}) = {1}", n, result);
}

static long Fib(int n)

{
if (@ == numbers[n])

{
}

numbers[n] = Fib(n - 1) + Fib(n - 2);

return numbers[n];

}

}

Do you notice the difference? While with the initial version if n = 100 it seems
like the computation goes on forever, with the optimized solution we get an
answer instantly. As we will learn later in chapter "Algorithm Complexity", the
first solution runs in exponential time while the second is linear.

366 Fundamentals of Computer Programming with C#

n = 100
fib(100) = 3736710778780434371

Fibonacci Numbers - Iterative Solution

It is not hard to notice that we can solve the problem without using recursion,
by calculating the Fibonacci numbers consecutively. For this purpose we are
going to keep only the last two calculated elements of the sequence and use
them to get the next element. Bellow you can see an implementation of the
iterative Fibonacci numbers calculation algorithm:

IterativeFibonacci.cs

using System;

class IterativeFibonacci

{

static void Main()

{

Console.Write("n = ");
int n = int.Parse(Console.ReadLine());

long result = Fib(n);
Console.WriteLine("fib({@}) = {1}", n, result);
}

static long Fib(int n)

{
long fn = 0;
long fnMinusl = 1;
long fnMinus2 = 1;

for (int i = 2; i < n; i++)

{
fn = fnMinusl + fnMinus2;
fnMinus2 = fnMinusl;
fnMinusl = fn;

}

return fn;

Chapter 10. Recursion 367

This solution is as short and elegant, but does not hide risks of using
recursion. Besides, it is efficient and does not require extra memory.

Concluding the previous examples we can give you the next recommendation:

Avoid recursion, unless you are certain about how it works
& and what has to happen behind the scenes. Recursion is a

great and powerful weapon, with which you can easily shoot
yourself in the leg. Use it carefully!

If you follow this rule, you considerably will reduce the possibility of incorrect
usage of recursion and the consequences, created by it.

More about Recursion and Iteration

Generally, when we have a linear computational process, we do not have
to use recursion, because iteration can be constructed easily and leads to
simple and efficient calculations. An example of linear computational
process is the calculation of factorial. In it we calculate the elements of the
sequence in which every next element depends only on the previous ones.

What is distinctive about the linear computational processes is that on each
step of the calculating recursion is called only once, only in one direction.
Schematically, a linear computational process we can describe as follows:

void Recursion(parameters)
do some calculations;
Recursion(some parameters);
do some calculations;

}

In such a process, when we have only one recursive call in the body of the
recursive method, it is not necessary to use recursion, because the iteration
is obvious.

Sometimes, however, we have a branched computational process (like a
tree). For example, the imitation of N nested loops cannot be easily replaced
with iteration. You have probably noticed that our iterative algorithm, which
imitates nested loops, works in a completely different principle. Try to
implement the same without recursion and you will see it is not easy.

Ordinarily each recursion could boil down to iteration by using a stack of
the calls (which is created through program execution), but this is
complicated and there is no benefit from doing this. Recursion has to be used
when it provides simple, easy-to-understand and efficient solution to a
problem, for which we have no obvious iterative solution.

In tree-like (branched) computational processes on each step of the
recursion a couple of recursive calls are made and the scheme of calculations

368 Fundamentals of Computer Programming with C#

could be visualized as a tree (and not as a list like in linear calculations). For
example, we saw what the tree of recursive calls would be like when we
calculate the Fibonacci numbers.

A typical scheme of a tree computational process could be described with a
pseudo-code in the following way:

void Recursion(parameters)

do some calculations;
Recursion(some parameters);

Recursion(some other parameters);
do some calculations;

}

Tree computational processes could not be directly boiled down to
recursive (unlike the linear processes). The case of Fibonacci is simple,
because each next number is calculated via the previous, which we can
calculate in advance. Sometimes, however, each next number is calculated
not only via the previous, but via the next, and the recursive dependence is
not so simple. In this case recursion turns out very efficient, if implemented
correctly by avoiding duplicated calculations through memoization.

Use recursion for branched recursive calculations (and
& ensure each value is calculated only once). For linear
recursive calculations prefer using iteration.

We are going to demonstrate the last statement with one classic example.

Searching for Paths in a Labyrinth - Example

We are given a labyrinth with a rectangular shape, consisting of N*M
squares. Each square is either passable or impassable. An adventurer enters
the labyrinth from its top left corner (there is the entrance) and has to reach
the bottom right corner of the labyrinth (there is the exit). At each turn the
adventurer can move up, down, left or right with one position and he has no
right to go outside the binderies of the labyrinth, or step on impassable
square. Passing through one and the same position is also forbidden (it is
considered that the adventurer is lost if after a several turns he goes back to
a position he has already been).

Write a computer program, which prints all possible paths from the
beginning of the labyrinth to the exit.

This is a typical example of a problem, which can be easily solved with
recursion, while with iteration the solution will be more complex and harder to
implement.

Chapter 10. Recursion 369

Let’s first draw an example in order to illustrate the problem and think about
finding a solution:

e

You can see that there are 3 different paths from the starting position to the
end, which meets the requirements of the task (movement only on passable
squares and not passing twice through any of the squares). Here you can see
how these three paths look like:

On the figure above with numbers from 1 to 14 are marked the numbers of
the corresponding turns of the paths.

Paths in a Labyrinth — Recursive Algorithm

How can we solve the problem? We can consider searching from a position in
the labyrinth to the end of the labyrinth as a recursive process as follows:

- Let the current position in the labyrinth be (row, col). In the beginning
we go from the starting position (0, 0).

- If the current position is the searched position (N-1, M-1), then we have
found a path and we should print it.

- If the current position is impassable, we go back (we have no right to
step on it).

- If the current position is already visited, we go back (we have no right
to step on it twice.

- Otherwise, we look for a path in four possible directions. We search
recursively (with the same algorithm) a path to the exit from the
labyrinth by trying to go in all possible directions:

- We try left: position (row, col-1).
- We try up: position (row-1, col).
- We try right: position (row, col+1).

- We try down: position (row+1, col).

370 Fundamentals of Computer Programming with C#

In order to reach this algorithmic solution we think recursively. We have the
problem "searching for a path from given position to the exit". It can be boiled
down to the following four sub problems:

- searching for a path from the position on the left from the current
position to the exit;

- searching for a path from the position above the current position to the
exit;

- searching for a path from the position on the right from the current
position to the exit;

- searching for a path from the position below the current position to the
exit.

If from each possible position, which we reach, we check the four possible
directions and do not move in a circle (avoid passing through positions, on
which we have already stepped on), we should find a path to the exit sooner
or later (if such exists).

This time the recursion is not as simple as in the previous problems. On each
step we have to check whether we have reached the exit and whether we are
on a forbidden position; after that we should mark the position as visited and
recursively call searching in the four directions. After returning from the
recursive calls we have to mark as unvisited the starting point. In informatics
such crawl is known as searching with backtracking.

Paths in a Labyrinth — Implementation

For the implementation of the algorithm we need to represent the labyrinth in
a suitable way. We are going to use a two-dimensional array of characters, as
in it we are going to mark with the character ' ' (space) the passable
positions, with 'e' the exit from the labyrinth and with '*' the impassable
positions. The starting position is marked as passable position. The positions
we have already visited we are going to mark with the character 's'. Here is
how the definition of the labyrinth is going to look like for our example:

static char[,] lab =

{l ' ' '] v gt 1 1 1 1 1 |}
J J J))))
{|*| []] [V] 1 [V] I}

I J J))))
{l ' ' '] v 1 1 1 1 1 1 1 |}
J J J))))
{l ' 1t 1t [V [V [V] |}
J J J))))
] 1] 1] 1 1 1 1 1 1 1 1 1
{ I J J))) e }J
}s

Let's try to implement the recursive method for searching in a labyrinth. It
should be something like this:

Chapter 10. Recursion

371

static char[,] lab =

{l]]]] [] [PV]]]] [] |}
J J J Bl Bl Bl)
{l*l [PV] [] [PV]] [PV [] |}

J J J Bl Bl Bl)
{l]]]]]]]]]]]] I}
J J J 3 3 3 J
{l] [PV [PV [PV [PV [PV [] |}
J J J Bl Bl Bl)
]]]]] []]]]]]] []]
{ 3 J J Bl Bl 3 e })
}s

static void FindPath(int row, int col)
{
if ((col < @) || (row < @) ||
(col >= lab.GetLength(1)) || (row >= lab.GetLength(9)))

{
// We are out of the labyrinth
return;
}
// Check if we have found the exit
if (lab[row, col] == 'e'")
{
Console.WriteLine("Found the exit!");
}
if (lab[row, col] != " ")
{
// The current cell is not free
return;
}

// Mark the current cell as visited
lab[row, col] = 's';

// Invoke recursion to explore all possible directions
FindPath(row, col - 1); // left

FindPath(row - 1, col);
FindPath(row, col + 1);
FindPath(row + 1, col);

// Mark back the current cell as free

lab[row, col] = ' ';

}

static void Main()

// up
// right
// down

372 Fundamentals of Computer Programming with C#

{
}

FindPath(@, 0);

The implementation strictly follows the description from the above. In this
case the size of the labyrinth is not stored in variables N and M, but is derived
from the two-dimensional array lab, which stores the labyrinth: the count of
the columns is 1lab.GetLength(1), and the count of the rows is
lab.GetLength(0).

When entering the recursive method for searching, firstly we check if we go
outside the labyrinth. In this case the searching is terminated, because going
outside the boundaries of the labyrinth is forbidden.

After that we check whether we have found the exit. If we have, we print
an appropriate message and the searching from the current position onward is
terminated.

Next, we check if the current square is available. The square is available if
the position is passable and we have not been on it on some of the previous
steps (if it is not part of the current path from the starting position to the
current cell of the labyrinth).

If the cell is available, we step on it. This is performed by marking it as
visited (with the character 's'). After that we recursively search for a path in
the four possible directions. After returning from the recursive search of the
four possible directions, we step back from the current cell and mark it as
available.

The marking back of the current position as available when leaving the
current position is substantial because, when we go back, it is not a part of
the current path. If we skip this action, not all paths to the exit would be
found, but only some of them.

This is how the recursive method for searching for the exit from the labyrinth
looks like. We should now only call the method from the Main() method,
beginning the search from the starting position (0, 0).

If we run the program, we are going to see the following result:

Found the exit!
Found the exit!
Found the exit!

You can see that the exit has been found exactly three times. It seems that
the algorithm works correctly. However, we are missing the printing of the
path as a sequence of positions.

Chapter 10. Recursion 373

Paths in a Labyrinth - Saving the Paths

In order to print the paths we have found by our recursive algorithm, we can
use an array, in which at every step we keep the direction taken (L - left, U -
up, R - right, D - down). This array will keep in every moment the current
path from the start of the labyrinth to the current position.

We are going to need an array of characters and a counter for the steps
we have taken. The counter will keep how many times we have moved to the
next position recursively, i.e. the current depth of recursion.

In order to work correctly, our program has to increment the counter when
entering recursion and save the direction we have taken in the position in the
array. When returning from a recursion, the counter should be reduced by 1.
When an exit I found, the path can be printed (it consists of all the characters
in the array from 0 to the position pointed by the counter).

What should be the size of the array? The answer to this question is easy;
since we can enter one cell at most once, than the path would never be longer
than the count of all cells (N*M). In our case the size of the maze is 7*5, i.e.
the size of the array has to be 35.

Note: if you know the List<T> data structure is might be more appropriate to
use List<char> instead of the array of chars. We will learn about lists in the
chapter "Linear Data Structures".

This is an example implementation of the described idea:

static char[,] lab =

{l v ' v [v gt ' v ' v ' l}
J J J))))
{|*| [PV 1] [PV] 1 [PV] I}

J J J))))
{l ' ' '] v 1 1 1 1 1 1 1 |}
J J J))))
{l ' Tt Tt Tt Tt Tt 1 |}
J J J))))
] 1] 1] 1] 1] 1] 1] 1
{ I J J))) S })
}s

static char[] path =
new char[lab.GetLength(®) * lab.GetLength(1)];
static int position = 0;

static void FindPath(int row, int col, char direction)
{
if ((col < @) || (row < @) ||
(col >= lab.GetLength(1)) || (row >= lab.GetLength(9)))
{
// We are out of the labyrinth
return;

}

374

Fundamentals of Computer Programming with C#

}

static void PrintPath(char[] path, int startPos, int endPos)

{

}

// Append the direction to the path
path[position] = direction;
position++;

// Check if we have found the exit
if (lab[row, col] == 'e'")

{
PrintPath(path, 1, position - 1);

}

if (lab[row, col] == " ")
{

// The current cell is free. Mark it as visited

lab[row, col] = 's';

// Invoke recursion to explore all possible directions

FindPath(row, col - 1, 'L"); // left
FindPath(row - 1, col, 'U"); // up
FindPath(row, col + 1, 'R"); // right
FindPath(row + 1, col, 'D'); // down

// Mark back the current cell as free

lab[row, col] = ' ';

}

// Remove the last direction from the path
position--;

Console.Write("Found path to the exit: ");

for (int pos = startPos; pos <= endPos; pos++)

{
Console.Write(path[pos]);
}

Console.WriteLine();

static void Main()

{
}

FindPath(@, @, 'S'");

Chapter 10. Recursion 375

To make it easier we added one more parameter to the recursive method for
searching path to the exit of the labyrinth: the direction we have taken to in
order to reach the current position. This parameter has no meaning when
going from the starting position. For this reason in the beginning we put a
meaningless value 'S'. After that, when printing, we skip the first element of
the path.

If we start the program, we are going to get the three possible paths from the
beginning to the end of the labyrinth:

Found path to the exit: RRDDLLDDRRRRRR
Found path to the exit: RRDDRRUURRDDDD
Found path to the exit: RRDDRRRRDD

Paths in a Labyrinth — Testing the Program

It seems like the algorithm works properly. It remains to test it with some
more examples in order to make sure we have not made a stupid mistake. We
can test the program with an empty labyrinth with size 1x1, with an empty
labyrinth with size 3x3, or for instance with a labyrinth in which there is no
path to the exit, and in the end with an enormous labyrinth, where there are
a lot of paths.

If we run the tests, we are going to be convinced that in each case the
program is working correctly.

Example input (labyrinth 1 x 1):

static char[,] lab =
{

}s

{'e'},

Example output:

Found path to the exit:

You can see that the output is correct, but the path is empty (with length 0),
because the starting position coincides with the exit. We could improve the
visualization in this case (for example print "Empty path"). Example input
(empty labyrinth 3x3):

static char[,] lab =

{
{l I’] I’] I},
{l I’] I’] I},
{l |.,] |., lel}.’

376 Fundamentals of Computer Programming with C#

Example output for the above labyrinth:

Found path to the exit: RRDLLDRR
Found path to the exit: RRDLDR
Found path to the exit: RRDD
Found path to the exit: RDLDRR
Found path to the exit: RDRD
Found path to the exit: RDDR
Found path to the exit: DRURDD
Found path to the exit: DRRD
Found path to the exit: DRDR
Found path to the exit: DDRUURDD
Found path to the exit: DDRURD
Found path to the exit: DDRR

You can check that the output is correct - these are all the paths to the exit.

Let’s try another example input (labyrinth 5x3 without a path to the exit):

static char[,] lab =

{
{' l: '*lJ '*lJ ' l: ' l}:
{' IJ ' IJ ' IJ '*IJ ' I}J
{'*l.v ' l: ' l: '*lJ 'el}J
s

Example output:

(there is no output)

You can see that the output is correct, but again we could add a more friendly
message (for example "No exit!"), instead of any output.

Now we have to check what would happen when we have an enormously big
labyrinth. Here is a sample input (labyrinth with size 15x9):

static char[,] lab =

{{l ' Tt v 1 1 1 1 Tt 1 1 1] 1 1 1 1 Pt 1t T] T |}
J J J)) I 3))))))))
{l 1] 1 Tkt]] 1 1] 1] 1 1] 1] 1 1] 1] 1]]]]] l}
I I J J J 3 3) J J))) J J

] 1] 1]]]] 1 1] 1] 1 1] 1] 1 1] 1] 1]]]]]]
{ I I J J J 3 3) J J)))) }J
{l '] ' 1] 1] 1 1] 1 [V 1] 1] 1 1] 1] 1 1] 1] 1 |}
J J J J) 3 3))))))))

{l 1] 1 1] 1] 1 1 Tt 1 1 1 1 1] 1 1 1 1 1 1 T 1] 1] l}
I I J 3) J J))) J J

{l 1] 1 1] 1] 1 1 Tt 1 1 1 1 1] 1 1 1 1 1 1 T 1] 1] l}
I I J J J 3 3) J J))) J J

{l ' 1t [[1 1 [] 1 1] 1] 1 1] 1 [V L] 1t |*|}
J J J J) 3 3))))))))

{l 1] 1 1] 1] 1 1 Tt 1 1 1 1 1] 1 1 1 1 1 1 T 1] 1]]
I I J J J 3 3) J J))) J J
{l 1] 1 1] 1] 1 1 Tt 1 1 1 1 1] 1 1 1 1 1 1 T 1] 1 lel}},
I I J J J 3 3) J J))) J J

Chapter 10. Recursion 377

We run the program and it starts typing paths to the exit, but it does not
end because there are too many paths. Here is how a small part of the

output looks like:

Found path to the exit:
Found path to the exit:

Found path to the exit:

DRDLDRRURUURRDLDRRURURRRDLLDLDRRURRURRURDDLLDLLDLLLDRRDLDRDRRURDRR

DRDLDRRURUURRDLDRRURURRRDLLDLDRRURRURRURDDLLDLLDLLLDRRDLDRDRRRURRD

DRDLDRRURUURRDLDRRURURRRDLLDLDRRURRURRURDDLLDLLDLLLDRRDLDRDRRRURDR

Now, let’s try one last example — labyrinth with big size (15x9), in which there

is no path to the exit:

static char[,] lab =

{l] [PV 1] 1] 1 1] 1 [V T] 1 [PV LV T] T l}
) J) J J) J))) J
{l]]] Tk 1] 1 1] 1] 1 T] 1] 1 T] T] T l}
))) J J) J))) J
] 1] 1 1 1 1 1 1 1] 1] 1 1 1 1 1 1 1] 1] 1 1
{)))) J) J))) }J
{l v ' v v T v T 1 1 ' v Tt T ' 1 ' 1 T 1 T 1 T l}
J J J J J J J J J J J
{l v ' v v T v T 1 1 L] ' v T ' 1 ' 1 T 1 T 1 T l}
J J J J J J J J J J J
{l 1] 1]]]] 1 1 Tkt] 1 1] 1] 1 1] 1] 1 |}
J J) J J) J))) J
{l v Tt [P [L] ' v T ' 1 L] L] L] l*l}
J J) J
{l v ' v v T v T L] ' v T ' 1 L] L] T 1 T l}
J J) J
] 1] 1]]]]] 1] 1 1] 1] 1 1] 1] 1 1
{ J * J))) * e }J
};

We run the program and it hangs, without printing anything. It actually
works very long for us to wait for it. It seems like there is a problem.

What is the problem? The problem is that the possible paths, analyzed by the
algorithm are too many and their research takes too much time. Let’s think
how many these paths are. If a path to the exit is average 20 steps long and
on each step there are 4 possible directions to be take, then 42° paths have to
be researched, which is a very big number. This evaluation of the count of
possibilities is very inaccurate, but it gives orientation on the approximate
order of possibilities.

What is the conclusion? The backtracking method does not work, when the
variants are too many, and the fact they are too many can be easily
concluded.

We are not going to torture you by making you find solution to the task. The
problem of searching all paths in a labyrinth has no efficient solution
for big labyrinths.

The problem has an efficient solution if it is formulated in a slightly different
way: find at least one exit from the labyrinth. This task is far easier and

378 Fundamentals of Computer Programming with C#

can be solved with one very small correction in the sample code: when
escaping the recursion, we do not mark the current cell as available. This
means to delete the following lines from the code:

// Mark back the current cell as free

lab[row, col] = ' ';

We can convince ourselves that after this change the program finds out very
quickly if there is no path to the exit, and if there is, it very quickly finds one
of them. It is not the shortest or longest, just the first path found.

Using Recursion — Conclusions

The general conclusion from the problem searching a path in a labyrinth is
already formulated: if you do not understand how recursion works,
avoid using it!

Be careful when you write recursive methods. Recursion is a powerful
programming technique for solving combinatorial problems (problems in
which we have to go through all variants), but it is not for everyone. We
can easily make mistakes when using recursion. You may make the program
"hang", or cause stack overflow with bottomless recursion. Always look for
iterative solutions, unless you deeply understand how to use recursion.

As to the problem searching shortest path in a labyrinth you can solve it
elegantly without recursion with the so called BFS (breadth-first search),
also known as the wavefront algorithm, which is elementary implemented
with a queue. You can read more about the "BFS" algorithm in this article in
Wikipedia: http://en.wikipedia.org/wiki/Breadth-first search.

Exercises
1. Write a program to simulate n nested loops from 1 to n.

2. Write a program to generate all variations with duplicates of n
elements class k. Sample input:

n=3
k =2

Sample output:

(11), (12), (13), (21), (22), (23), (31), (32), (33)

Think about and implement an iterative algorithm for the same task.

3. Write a program to generate and print all combinations with
duplicates of k elements from a set with n elements. Sample input:

http://en.wikipedia.org/wiki/Breadth-first_search

Chapter 10. Recursion 379

n=3
k =2

Sample output:

(11), (12), (13), (22), (23), (33)

Think about and implement an iterative algorithm for the same task.

You are given a set of strings. Write a recursive program, which
generates all subsets, consisting exactly k strings chosen among the
elements of this set. Sample input:

strings = {'test', 'rock', 'fun'}
k =2

Sample output:

(test rock), (test fun), (rock fun)

Think about and implement an iterative algorithm as well.

Write a recursive program, which prints all subsets of a given set of
N words. Example input:

words = {'test', 'rock', 'fun'}

Example output:

(), (test), (rock), (fun), (test rock), (test fun),
(rock fun), (test rock fun)

Think about and implement an iterative algorithm for the same task.

Implement the merge-sort algorithm recursively. In it the initial array
is divided into two equal in size parts, which are sorted (recursively via
merge-sort) and after that the two sorted parts are merged in order to
get the whole sorted array.

Write a recursive program, which generates and prints all permutations
of the numbers 1, 2, .., n, for a given integer n. Example input:

n=3

Example output:

(1, 2, 3), (1, 3,2), (2,1,3), (2,3,1), (3,1, 2), (3,2,1)

Try to find an iterative solution for generating permutations.

380 Fundamentals of Computer Programming with C#

8. You are given an array of integers and a number N. Write a recursive
program that finds all subsets of numbers in the array, which have a
sum N. For example, if we have the array {2, 3, 1, -1} and N=4, we can
obtain N=4 as a sum in the following two ways: 4=2+3-1; 4=3+1.

9. You are given an array of positive integers. Write a program that checks
whether there is one or more numbers in the array (subset), whose
sum is equal to S. Can you solve the task efficiently for large arrays?

10. You are given a matrix with passable and impassable cells. Write a
recursive program that finds all paths between two cells in the matrix.

11. Implement the algorithm BFS (breadth-first search) for finding the
shortest path in a labyrinth.

12. Modify the previous program to check whether a path exists between
two cells without finding all possible paths. Test the program with a
matrix 100x100 filled only with passable cells.

13. You are given a matrix with passable and impassable cells. Write a
program that finds the largest area of neighboring passable cells.

14. Write a recursive program that traverses the whole hard disk C:\
recursively and prints all folders and files.

Solutions and Guidelines

1. Create a recursive method Loops(int k), perform a for-loop from 1 to
n and make a recursive call Loops(k-1) in the loop. The bottom of the
recursion is when k < @. Initially invoke Loops(n-1).

2. The recursive solution is to modify the algorithm for generating N
nested loops. In fact you need k nested loops from 1 to n.

The iterative solution is as follows: start from the first variation in the
lexicographical order: {1, 1, ..., 1} k times. To obtain the next
variation, increase the last nhumber. If it becomes greater than n,
change it to 1 and increase the next number on the left. Do the same on
the left until the first number goes greater than n.

3. Modify the algorithms from the previous problem and always keep
each number equal or greater than the number on the left of it. The
easiest way to achieve this is to generate k nested loops from 1 to n
and print only these combinations in which each number is greater or
equal than the number on its left. You may optimize this approach to get
generate directly an increasing sequence for better performance.

4. Let the strings’ count be n. Use the implementation of k nested loops
(recursive or iterative) with additional limitation that each number is
greater than the previous one. Thus you will generate all different
subsets of k elements in the range [0..n-1]. For each set consider the
numbers from it as indices in the array of strings and print for each

Chapter 10. Recursion 381

number the corresponding string. For the example above, the set {0, 2}
corresponds to the strings at position 0 and position 2, i.e. (test, fun).

The iterative algorithm is similar to the iterative algorithm for
generating n nested loops, but is more complicated because it needs to
guarantee that each number is greater than the number on its left.

You can use the previous task and call it N times in order to generate
consequently the empty set (k=0), followed by the all subsets with one
element (k=1), all subsets with 2 elements (k=2), all subsets with 3
elements (k=3), etc.

The problem has another very smart iterative solution: run a loop
from 0 to 2N-1 and convert each of these numbers to binary numeral
system. For example, for N=3 you will have the following binary
representations of the numbers between 0 to 2N-1:

000, 001, 010, 011, 100, 101, 110, 111

Now for each binary representation take those words from the subset for
which have bit 1 on the corresponding position in the binary
representation. For instance, for the binary representation "101" take
the first and the last string (at these positions there is 1) and omit the
second string (at this position there is 0). Smart, isn’t it?

In case you have any difficulties search in Internet for "merge sort".
You are going to find hundreds of implementations, including in C#. The
challenge is to avoid allocating a new array for the result at each
recursive call, because this is inefficient, and to use only three arrays
in the whole program: two arrays to be merged merge and a third for
the result from the merging. You will have to implement merging of two
ranges of an array into a range of another array.

Recursive algorithm: suppose that the method Perm(k) permutes in all
possible ways the elements of the array p[] at positions from 0 to k-1
(inclusive). Firstly, initialize the array p with the numbers from 1 to N.
Implement recursively Perm(k) in the following way:

1. If k == @, print the current permutation and exit the recursion (bottom
of the recursion).

2. Call Pperm(k-1).

3. For each position i from @ to k-1 do the following:
a. Swap p[i] with p[k].
b. Recursively call Perm(k-1).
c. Swap back p[i] with p[k].

In the beginning call Perm(n-1) to start the recursive generation.

382

Fundamentals of Computer Programming with C#

Iterative algorithm: read in Wikipedia how to generate from given
permutation the next permutation in the lexicographic order iteratively:
en.wikipedia.org/wiki/Permutation#Generation in lexicographic order.

The problem is not very different from the task with finding all subsets
among a given list of strings. Shall it work fast enough with 500
numbers? Pay attention that we have to print all subsets with sum N
which can be really big amount if N is very big and proper numbers exist
in the array. For this reason the task has no efficient solution.

If we approach the problem by the method of generating of all
possibilities, the solution will not work for more than 20-30
numbers. That's why we may approach it in a very different way in case
the elements of the array are only positive, or are limited in a certain
range (for example [-50..50]). Then we could use the following
optimized algorithm based on dynamic programming:

Assume we are given an array of numbers p[]. Let's denote by
possible(k, sum) whether we could obtain sum by using only the
numbers first k numbers (p[@], p[1], .., p[k]). Then, the following
recurrent dependencies are valid:

- possible(®@, sum) = true if p[@] == sum

- possible(k, sum) = true if possible[k-1, sum] == true or
possible[k-1, sum-p[k]] == true

The formula above shows that we can obtain sum from the elements of
the array at positions @ to k if one of the following two statements
remains:

- The element p[k] does not participate in the sum and the sum is
obtained from the rest of the elements (from 0 to k-1);

- The element p[k] participates in sum and the remainder sum-p[k] is
obtained from the rest of the elements (from 0 to k-1).

The implementation is not complex. Just calculate the recursive formulas
by recursive method. We should be careful and not let already
calculated values from the two-dimensional array possible[,] to be
calculated twice. For this purpose we should keep for each possible k and
sum the value possible[k, sum]. Otherwise the algorithm will not work
for more than 20-30 elements.

The regeneration of the numbers, which compose the found sum, may be
implemented if we go backwards from the sum n, obtained from the
first kK numbers. At each step we examine how this sum can be obtained
from the first k-1 numbers (by taking the k* number or omitting it).

Bear in mind that in the general case all possible sums of the numbers
from the input array may be an awful lot. For instance, possible sums of
50 int numbers in the range [Int32.MinValue ... Int32.MaxValue] are

http://en.wikipedia.org/wiki/Permutation#Generation_in_lexicographic_order

Chapter 10. Recursion 383

10.

11.

12.

13.

14.

enough so that we could not sum them in whatever data structure. If,
however, all numbers in the input array are positive (as in our case), we
could keep the sums in the range [1..S] because from the rest we could
not obtain sum S by adding one or more numbers from the input array.

If the numbers in the input array are not mandatory positive, but are
limited in a range, then all possible sums are limited in some range too
and we could use the algorithm described above. For example, if the
range of numbers is from -50 to 50, then the least sum is -50*S and the
greatest is 50*S.

If the numbers in the input array are random and not limited in a range,
then the problem has no efficient solution.

You could read more about this classical optimization problem in
computer science called “Subset Sum Problem” in the following article
in Wikipedia: http://en.wikipedia.org/wiki/Subset sum problem.

Follow the algorithms described in the section “Searching for Paths in a
Labyrinth”. Note that you need to find all possible paths (not just one
of them) so don‘t expect your program to run fast for large input data.

Read the article about BFS in Wikipedia: http://en.wikipedia.org/wiki/
Breadth-first search. There are enough explanations and sample code. In
order to implement a queue in C#, just an array or the .NET system class
System.Collections.Generics.Queue<T>. For the elements of the
queue you could use your own structure Point, containing x and y
coordinates, or use two queues (one for each of the coordinates). You
may also check the section BFS in the chapter “Trees and Graphs”.

Follow the algorithms described in the section “Searching for Paths in a
Labyrinth”. You should run some graph traversal algorithm like Depth-
First Search (DFS) or Breadth-First Search (BFS). You may read
about them in Internet or check the sections about DFS and BFS in the
chapter “Trees and Graphs”. Your program should visit each cell at most
once and should be fast, even on large matrices (like 1,000 x 1,000).

The same like the previous exercise: use DFS or BFS. By a recursive
traversal or BFS traversal, find the areas of neighbor cells in the matrix
one after another and mark each area’s cells as visited. Do not visit again
a visited cell. From all the areas found, remember the largest.

For each folder (starting from C:\) print the name and the files from the
current folder and call a recursion for each subfolder. The problem is
solved as example in the sections DFS and BFS in the chapter “Trees and
Graphs”. Your program may crash with UnauthorizedAccessException
in case you do not have access permissions for some folders on the hard
disk. This is typical for some Windows installations so you could start the
traversal from another directory or catch the exception (see the
“Catching Exceptions” section in the “"Exception Handling” chapter).

http://en.wikipedia.org/wiki/Subset_sum_problem
http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search

Chapter 11. Creating
and Using Objects

In This Chapter

In this chapter we are going to get familiar with the basic concepts of object-
oriented programming — classes and objects - and we are going to explain
how to use classes from the standard libraries of .NET Framework. We are
going to mention some commonly used system classes and see how to create
and use their instances (objects). We are going to discuss how we can
access fields of an object, how to call constructors and how to work with
static fields in classes. Finally, we are going to get familiar with the term
"namespaces" - how they help us, how to include them and use them.

Classes and Objects

Over the last few decades programming and informatics have experienced
incredible growth and concepts, which have changed the way programs, are
built. Object-oriented programming (OOP) introduces such radical idea.
We are going to make a short introduction to the principles of OOP and the
concepts used in it. Firstly, we are going to explain what classes and objects
are. These two terms are basic for OOP and inseparable part from the life of
any modern programmer.

What Is Object-Oriented Programming?

Object-oriented programming (OOP) is a programming paradigm, which uses
objects and their interactions for building computer programs. Thus an easy
to understand, simple model of the subject area is achieved, which gives an
opportunity to the programmer to solve intuitively (by simple logic) many of
the problems, which occur in the real world.

For now we are not going to get into details what the goals and the
advantages of OOP are, as well as explaining in details the principles for
building hierarchies of classes and objects. We are going to mention only that
programming techniques of OOP often include encapsulation, abstraction,
polymorphism and inheritance. These techniques are out of the goals of
the current chapter and we are going to consider them later in the chapter
"Principles of Object-Oriented Programming". Now we will focus on objects as
a basic concept in OOP.

386 Fundamentals of Computer Programming with C#

What Is an Object?

We are going to introduce the concept object in the context of OOP. Software
objects model real world objects or abstract concepts (which are also
regarded as objects).

Examples of real-world objects are people, cars, goods, purchases, etc.
abstract objects are concepts in an object area, which we have to model and
use in a computer program. Examples of abstract objects are the data
structures stack, queue, list and tree. They are not going to be a subject in
this chapter, but we are going to see them in details in the next chapters.

In objects from the real world (as well as in the abstract objects) we can
distinguish the following two groups of their characteristics:

- States - these are the characteristics of the object which define it in a
way and describe it in general or in a specific moment

- Behavior - these are the specific distinctive actions, which can be done
by the object.

Let’s take for example an object from the real world - "dog". The states of the
dog can be "name", "fur color" and "breed", and its behavior - "barking",
"sitting" and "walking".

Objects in OOP combine data and the means for their processing in one. They
correspond to objects in real world and contain data and actions:

- Data members - embedded in objects variables, which describe their
states.

- Methods - we have already considered them in details. They are a tool
for building the objects.

What Is a Class?

The class defines abstract characteristics of objects. It provides a structure
for objects or a pattern which we use to describe the nature of something
(some object). Classes are building blocks of OOP and are inseparably
related to the objects. Furthermore, each object is an instance of exactly
one specific class.

We are going to give as an example a class and an object, which is its
instance. We have a class Dog and an object Lassie, which is an instance of
the class Dog (we say it is an object of type Dog). The class Dog describes the
characteristics of all dogs whereas Lassie is a certain dog.

Classes provide modularity in object-oriented programs. Their characteristics
have to be meaningful in a common context so that they could be understood
by people who are familiar with the problem area and are not programmers.
For instance, the class Dog cannot have (or at least should not) a
characteristic "RAM" because in the context of this class such characteristic
has no meaning.

Chapter 11. Creating and Using Objects 387

Classes, Attributes and Behavior

The class defines the characteristics of an object (which we are going to
call attributes) and its behavior (actions that can be performed by the
object). The attributes of the class are defined as its own variables in its body
(called member variables). The behavior of objects is modeled by the
definition of methods in classes.

We are going to illustrate the foregoing explanations through an example of
a real-world definition of a class. Let’s return to the example with the dog.
We would like to define a class Dog that models the real object "dog". The
class is going to include characteristics which are common for all dogs (such
as breed and fur color), as well as typical for the dog behavior (such are
barking, sitting, walking). In this case we are going to have attributes breed
and furColor, and the behavior is going to be implemented by the methods
Bark(), Sit() and Walk().

Objects - Instances of Classes

From what has been said till now we know that each object is an instance of
just one class and is created according to a pattern of this class. Creating the
object of a defined class is called instantiation (creation). The instance is
the object itself, which is created runtime.

Each object is in instance of a specific class. This instance is characterized by
state - set of values, associated with class attributes.

In the context of such behavior the object consists of two things: current
state and behavior defined in the class of the object. The state is specific for
the instance (the object), but the behavior is common for all objects which
are instances of this class.

Classes in C#

So far we have considered several common characteristics of OOP. A great
part of the modern programming languages are object-oriented. Each of
them has particular features for working with classes and objects. In this book
we are going to focus only one of these languages - C#. It is good to know
that the knowledge of OOP in C# would be useful to the reader no matter
which object-oriented language he uses in practice. That is because OOP is a
fundamental concept in programming, used by virtually all modern prog-
ramming languages.

What Are Classes in C#?

A class in C# is defined by the keyword class, followed by an identifier
(name) of the class and a set of data members and methods in a separate
code block.

Classes in C# can contain the following elements:

388 Fundamentals of Computer Programming with C#

- Fields - member-variables from a certain type;

- Properties - these are a special type of elements, which extend the
functionality of the fields by giving the ability of extra data management
when extracting and recording it in the class fields. We are going to
focus on them in the chapter "Defining Classes";

- Methods - they implement the manipulation of the data.

An Example Class

We are going to give an example of a class in C#, which contains the listed
elements. The class Cat models the real-world object "cat" and has the
properties name and color. The given class defines several fields, properties
and methods, which we are going to use later. You can now see the definition
of the class (we are not going to consider in details the definition of the
classes — we are going to focus on that in the chapter "Defining Classes"):

public class Cat

{
// Field name

private string name;
// Field color
private string color;

public string Name

{ // Getter of the property "Name"
get
{
return this.name;
}/ Setter of the property "Name"
set
{
this.name = value;
}
}
public string Color
{ // Getter of the property "Color"
get
{
return this.color;
}

// Setter of the property "Color"

Chapter 11. Creating and Using Objects 389

set

{

}
}

this.color = value;

// Default constructor
public Cat()
{
this.name = "Unnamed";
this.color = "gray";

}

// Constructor with parameters
public Cat(string name, string color)
{

this.name = name;

this.color = color;

}

// Method SayMiau
public void SayMiau()
{

Console.WritelLine("Cat {@} said: Miauuuuuu!", name);

}
}

The example class Cat defines the properties Name and Color, which keep
their values in the hidden (private) fields name and color. Furthermore, two
constructors are defined for creating instances of the class Cat, respectively
with and without parameters, and a method of the class SayMiau().

After the example class is defined we can now use it in the following way:

static void Main()

{
Cat firstCat = new Cat();
firstCat.Name = "Tony";
firstCat.SayMiau();

Cat secondCat = new Cat("Pepy", "red");

secondCat.SayMiau();

Console.WriteLine("Cat {0} is {1}.",
secondCat.Name, secondCat.Color);

390 Fundamentals of Computer Programming with C#

If we execute the example, we are going to get the following output:

Cat Tony said: Miauuuuuu!
Cat Pepy said: Miauuuuuu!
Cat Pepy is Red.

We saw a simple example for defining and using classes, and in the section
"Creating and Using Objects" we are going to explain in details how to create
objects, how to access their properties and how to call their methods and this
is going to allow us to understand how this example works.

System Classes

Calling the method Console.WriteLine(..) of the class System.Console is
an example of usage of a system class in C#. We call system classes the
classes defined in standard libraries for building applications with C# (or
another programming language). They can be used in all our .NET
applications (in particular those written in C#). Such are for example the
classes String, Environment and Math, which we are going to consider later.

As we already know from chapter "Introduction to Programming" the .NET
Framework SDK comes with a set of programming languages (like C# and
VB.NET), compilers and standard class library which provides thousands of
system classes for accomplishing the most common tasks in programming like
console-based input / output, text processing, collection classes, parallel
execution, networking, database access, data processing, as well as creating
Web-based, GUI and mobile applications.

It is important to know that the implementation of the logic in classes is
encapsulated (hidden) inside them. For the programmer it is important what
they do, not how they do it and for this reason a great part of the classes is
not publicly available (public). With system classes the implementation is
often not available at all to the programmer. Thus, new layers of
abstraction are created which is one of the basic principles in OOP.

We are going to pay special attention to system classes later. Now it is time to
get familiar with creating and using objects in programs.

Creating and Using Objects

For now we are going to focus on creating and using objects in our
programs. We are going to work with already defined classes and mostly with
system classes from .NET Framework. The specificities of defining our own
classes we are going to consider later in the chapter "Defining Classes".

Creating and Releasing Objects

The creation of objects from preliminarily defined classes during program
execution is performed by the operator new. The newly created object is
usually assigned to the variable from type coinciding with the class of the

Chapter 11. Creating and Using Objects 391

object (this, however, is not mandatory — read chapter "Principles of Object-
Oriented Programming"). We are going to note that in this assignment the
object is not copied, and only a reference to the newly created object is
recorded in the variable (its address in the memory). Here is a simple
example of how it works:

Cat someCat = new Cat();

The variable someCat of type Cat we assign the newly created instance of
the class Cat. The variable someCat remains in the stack, and its value (the
instance of the class Cat) remains in the managed heap:

Stack Heap
someCat
Cat@6e278a | »((Cat members)

Creating Objects with Set Parameters

Now we are going to consider a slightly different variant of the example above
in which we set parameters when creating the object:

Cat someCat = new Cat("Johnny", "brown");

In this case we would like the objects someCat to represent a cat whose name
is "Johnny" and is brown. We indicate this by using the words "Johnny" and
"brown", written in the brackets after the name of the class.

When creating an object with the operator new, two things happen: memory is
set aside for this object and its data members are initialized. The
initialization is performed by a special method called constructor. In the
example above the initializing parameters are actually parameters of the
constructor of the class.

We are going to discuss constructors after a while. As the member variables
name and color of the class Cat are of reference type (of the class String),
they are also recorded in the dynamic memory (heap) and in the object
itself are kept their references (addresses / pointers).

The following figure illustrates how the Cat object is represented in the
computer memory (arrows illustrated the references from one object to
another):

392 Fundamentals of Computer Programming with C#

Stack Heap
someCat name :
String@a272e8 -
Cat@6e278a >
color:
- String@852fa4
Johny
brown

Releasing the Objects

An important feature of working with objects in C# is that usually there is no
need to manually destroy them and release the memory taken up by them.
This is possible because of the embedded in .NET CLR system for cleaning the
memory (garbage collector) which takes care of releasing unused objects
instead of us. Objects to which there is no reference in the program at certain
moment are automatically released and the memory they take up is
released. This way many potential bugs and problems are prevented. If we
would like to manually release a certain object, we have to destroy the
reference to it, for example this way:

someCat = null;

This does not destroy the object immediately, but puts it in a state in which it
is inaccessible to the program and the next time the garbage collector cleans
the memory it is going to be released:

Stack Heap
someCat nage:
Strihg@ 2e8
Cat@6e278a *»
colgf”
L ing@852
a Py
Johny
v g
| P
brown
v g

Chapter 11. Creating and Using Objects 393

Access to Fields of an Object

The access to the fields and properties of a given object is done by the
operator . (dot) placed between the names of the object and the name of
the field (or the property). The operator . is not necessary in case we access
field or property of given class in the body of a method of the same class.

We can access the fields and the properties either to extract data from
them, or to assign new data. In the case of a property the access is
implemented in exactly the same way as in the case of a field - C# give us
this ability. This is achieved by the keywords get and set in the definition of
the property, which perform respectively extraction of the value of the
property and assignment of a new value. In the definition of the class Cat
(given above) the properties are Name and Color.

Access to the Memory and Properties of an Object - Example

We are going to give an example of using a property of an object, as well as
using the already defined above class Cat. We create an instance myCat of the
class Cat and assign "Alfred" to the property Name. After that we print on
the standard output a formatted string with the name of our cat. You can see
an implementation of the example:

class CatManipulating

{

static void Main()

{
Cat myCat = new Cat();

myCat.Name = "Alfred";

Console.WriteLine("The name of my cat is {0}.",
myCat.Name);

Calling Methods of Objects

Calling the methods of a given object is done through the invocation
operator () and with the help of the operator . (dot). The operator dot is
not obligatory only in case the method is called in the body of another method
of the same class. Calling a method is performed by its name followed by ()
or (<parameters>) for the case when we pass it some arguments. We
already know how to invoke methods from the chapter "Methods".

Now is the moment to mention the fact that methods of classes have access
modifiers public, private or protected with which the ability to call them
could be restricted. We are going to consider these modifiers in the chapter
"Defining Classes". For now it enough to know that the access modifier

394 Fundamentals of Computer Programming with C#

public does not introduce any restrictions for calling the method, i.e. makes
it publicly available.

Calling Methods of Objects — Example

We are going to complement the example we already gave as we call the
method SayMiau of the class Cat. Here is the result:

class CatManipulating

{

static void Main()

{
Cat myCat = new Cat();
myCat.Name = "Alfred";

Console.WriteLine("The name of my cat is {@}.",myCat.Name);
myCat.SayMiau();
}
}

After executing the program above the following text is going to be printed on
the standard output:

The name of my cat is Alfred.
Cat Alfred said: Miauuuuuu!

Constructors

The constructor is a special method of the class, which is called
automatically when creating an object of this class, and performs
initialization of its data (this is its purpose). The constructor has no type of
returned value and its name is not random, and mandatorily coincides with
the class name. The constructor can be with or without parameters. A
constructor without parameters is also called parameterless constructor.

Constructor with Parameters

The constructor can take parameters as well as any other method. Each
class can have different count of constructors with one only restriction - the
count and type of their parameters have to be different (different signature).
When creating an object of this class, one of the constructors is called.

In the presence of several constructors in a class naturally occurs the question
which of them is called when the object is created. This problem is solved in a
very intuitive way as with methods. The appropriate constructor is chosen
automatically by the compiler according to the given set of parameters when
creating the object. We use the principle of the best match.

Chapter 11. Creating and Using Objects 395

Calling Constructors — Example

Lets' take a look again at the definition of the class Cat and more particularly
at the two constructors of the class:

public class Cat

{
// Field name
private string name;
// Field color
private string color;

// Parameterless constructor
public Cat()
{
this.name = "Unnamed";
this.color = "gray";

}

// Constructor with parameters
public Cat(string name, string color)

{

this.name = name;
this.color = color;

}

}

We are going to use these constructors to illustrate the usage of constructors
with and without parameters. For the class Cat defined that way we are going
to give an example of creating its instances by each of the two constructors.
One of the objects is going to be an ordinary undefined cat, and the other -
our brown cat Johnny. After that we are going to execute the method SayMiau
for each of the cats and analyze the result. Source code follows:

class CatManipulating

{

static void Main()

{

Cat someCat = new Cat();

someCat.SayMiau();
Console.WriteLine("The color of cat {@} is {1}.",

396 Fundamentals of Computer Programming with C#

someCat.Name, someCat.Color);
Cat someCat = new Cat("Johnny", "brown");
someCat.SayMiau();

Console.WriteLine("The color of cat {@} is {1}.",
someCat.Name, someCat.Color);
}

}

As a result of the program’s execution the following text is printed on the
standard output:

Cat Unnamed said: Miauuuuuul!
The color of cat Unnamed is gray.
Cat Johnny said: Miauuuuuu!
The color of cat Johnny is brown.

Static Fields and Methods

The data members, which we considered up until, now implement states of
the objects and are directly related to specific instances of the classes. In
OOP there are special categories fields and methods, which are associated
with the data type (class), and not with the specific instance (object). We call
them static members because are independent of concrete objects.
Furthermore, they are used without the need of creating an instance of the
class in which they are defined. They can be fields, methods and constructors.
Let’s consider shortly static members in C#.

A static field or method in a given class is defined with the keyword
static, placed before the type of the field or the type of returned value of the
method. When defining a static constructor, the word static is placed before
the name of the constructor. Static constructors are not going to be discussed
in this chapter - for now we are going to consider only static fields and
methods (the more curious readers can look up in MSDN).

When to Use Static Fields and Methods?

To find the answers of this question we have to understand very well the
difference between static and non-static members. We are going to consider
into details what it is.

We have already explained the main difference between the two types of
members. Let’s interpret the class as a category of objects, and the
object as a representative of this category. Then the static members
reflect the state and the behavior of the category itself, and the non-static the
state and the behavior of the separate representatives of the category.

Chapter 11. Creating and Using Objects 397

Now we are going to pay special attention to the initialization of static and
non-static fields. We already know that non-static fields are initialized with
the call to the constructor of the class when creating an instance of it - either
inside the body of the constructor, or outside. However, the initialization of
static fields cannot be performed when the object of the class is created,
because they can be used without a created instance of the class. It is
important to know the following:

& Static fields are initialized when the data type (the class) is
used for the first time, during the execution of the program.

Now we shall see how to use static fields and methods in practice.

Static Fields and Methods - Example

The example, which we are going to give, solves the following simple
problem: we need a method that every time returns a value greater with one
than the value returned at the previous call of the method. We choose the
first returned value to be 0. Obviously this method generates the sequence of
natural number. Similar functionality is widely used in practice, for example,
for uniform numbering of objects. Now we are going to see how this could be
implemented with the means of OOP.

Let's assume that the method is called NextValue() and is defined in a class
called Sequence. The class has a field currentValue from type int, which
contains the last returned value by the method. We would like the following
two actions to be performed consecutively in the method body: the value of
the field to be increased and its new value to be returned as a result.
Obviously the returned by the method value does not depend on the concrete
instance of the class Sequence. For this reason the method and the field are
static. You can now see the described implementation of the class:

public class Sequence

{
// Static field, holding the current sequence value
private static int currentValue = 9;

// Intentionally deny instantiation of this class
private Sequence()

{

}

// Static method for taking the next sequence value
public static int NextValue()
{

currentValue++;

return currentValue;

398 Fundamentals of Computer Programming with C#

}
}

The observant reader has noticed that the so defined class has a default
constructor, which is declared as private. This usage of a constructor may
seem strange, but is quite deliberate. It is good to know the following:

A class that has only private constructors cannot be
& instantiated. Such class usually has only static members and
is called "utility class".

For now we are not going to go into details about the access modifiers
public, private and protected. We shall explain them comprehensively in
the chapter "Defining Classes".

Let’s take a look at a simple program, which uses the class Sequence:

class SequenceManipulating
{

static void Main()

{

Console.WritelLine("Sequence[1...3]: {0}, {1}, {2}",
Sequence.NextValue(), Sequence.NextValue(),
Sequence.NextValue());

}
}

The example prints on the standard output the first three natural numbers by
triple consecutive call of the method NextValue() of the class Sequence. The
result from this code is the following:

Sequence[l...3]: 1, 2, 3

If we try to create several different sequences, as the constructor of the class
Sequence is declared private, we are going to get compile time error.

Examples of System C# Classes

After we got acquainted with the basic functionality of objects, we are going
to consider briefly several commonly used system classes from the
standard library of .NET Framework. This way we are going to see in practice
the so far explained material, and also show how system classes ease our
every-day work.

The System.Environment Class

We start with one of the basic system classes in .NET Framework:
System.Environment. It contains a set of useful fields and methods, which

Chapter 11. Creating and Using Objects 399

ease getting information about the hardware and the operating system, and
some of them, give the ability to interact with the program environment. Here
is a part of the functionality provided by this class:

- Information about the processors count, the computer network name,
the version of the operating system, the name of the current user, the
current directory, etc.

- Access to externally defined properties and environment variables,
which we are not going to consider in this book.

Now we are going to show one interesting application of a method of the class
Environment, which is commonly used in practice when developing programs
with critical fast performance. We are going to detect the time needed for the
execution of the source code with the help of the property TickCount. Here it
is how it works:

class SystemTest

{
static void Main()
{
int sum = ©;
int startTime = Environment.TickCount;
// The code fragment to be tested
for (int i = @; i < 10000000; i++)
{
sum++;
}
int endTime = Environment.TickCount;
Console.WriteLine("The time elapsed is {0} sec.",
(endTime - startTime) / 1000.0);
}
}

The static property TickCount of the class Environment returns as a result
the count of milliseconds that have passed since the computer is on until the
time of the method call. With its help we detect the milliseconds past before
and after the execution of the source code. Their difference is the wanted
time for the execution of the fragment source code measured in milliseconds.

As a result of the execution of the program on the standard output we print
the result of the following type (the measured time varies according to the
current computer configuration and its load):

The time elapsed is 0.031 sec.

400 Fundamentals of Computer Programming with C#

In the example we have used two static members of two system classes: the
static property Environment.TickCount and the static method Console.
WriteLine(..).

The System.String Class

We have already met the String (System.String) class of .NET Framework,
which represents strings. Let’s recall that we can think of strings as a
primitive data type in C#, although the work with them is different from the
work with different primitive data types (integers, floating point numbers,
Boolean variables, etc.). We are going to describe them in details in the
chapter "Strings and Text Processing".

The System.Math Class

The System.Math class contains methods for performing basic humeric and
mathematical operations such as raising a number to a power, taking a
logarithm and square root, and some trigonometric functions. We are going to
give a simple example, which illustrates its usage.

We want to make a program, which calculates the area of a triangle by given
two sides and an angle between them in degrees. Therefore we need the
method Sin(..) and the constant PI of the class Math. With the help of the n
number we can easily convert to radians the entered in degrees angle. You
can see an example implementation of the described logic:

class MathTest

{

static void Main()

{
Console.WriteLine("Length of the first side:");
double a = double.Parse(Console.ReadLine());
Console.WritelLine("Length of the second side:");
double b = double.Parse(Console.ReadLine());
Console.WritelLine("Size of the angle in degrees:");
int angle = int.Parse(Console.ReadlLine());

double angleInRadians = Math.PI * angle / 180.0;

Console.WritelLine("Area of the triangle: {0}",
0.5 * a * b * Math.Sin(angleInRadians));
}

}

We can easily test the program if we check whether it calculates correctly the
area of an equilateral triangle. For further convenience we choose the
length of the side to be 2 - then we find the area with the well-known
formula:

Chapter 11. Creating and Using Objects 401

S = ?22 = /3 =1,7320508...

We enter consecutively the numbers 2, 2, 60 and on the standard output we
can see:

Face of the triangle: 1.73205080756888

Depending on your system localization (Region and Language Settings) your
output might be "1,73205080756888" or "1.73205080756888". You might fix
the decimal point to "." by this line of code, executed at your program start:

System.Threading.Thread.CurrentThread.CurrentCulture =
System.Globalization.CultureInfo.InvariantCulture;

The System.Math Class — More Examples

As we already saw, apart from mathematical methods, the Math class also
defines two well known in mathematics constants: the trigonometric constant
nt and the Euler’s number e. Here is an example with them:

Console.WriteLine(Math.PI);
Console.WriteLine(Math.E);

When executing the code above, we get the following output:

3.141592653589793
2.718281828459045

The System.Random Class

Sometimes in programming we have to use random numbers. For instance,
we would like to generate 6 random numbers in the range 1 to 49 (not
necessarily unequal). This could be done by using the System.Random class
and its method Next(). Before we use the Random class we have to create
instance of it, at which point it is initialized with a random value (derived from
the current system time in the operating system). After that we can randomly
generate a number in the range [0..n) by calling the method Next(n). Notice
that this method can return zero, but always returns a random number
smaller than the set value n. Therefore, if we would like to get a number in
the range [1..49], we have to use the expression Next(49) + 1.

Below is an example source code of a program, which generates 6 random
numbers in the range from 1 to 49 by using the Random class (note that it is
not guaranteed that the numbers are unique like in the classical Bulgarian
lottery TOTO 6/49):

402 Fundamentals of Computer Programming with C#

class RandomNumbersBetweenlAnd49

{

static void Main()
{
Random rand = new Random();
for (int number = 1; number <= 6; number++)
{
int randomNumber = rand.Next(49) + 1;
Console.Write("{@} ", randomNumber);
}
}
}

Here is how a possible output of the program looks like:

16 49 7 29 1 28

The System.Random Class - Generating a Random Password

To show you how useful the random numbers generator in .NET
Framework can be, we are going to set as a task to generate a random
password which is between 8 and 15 characters long, contains at least two
capital letters, at least two small letters, at least one digit and at least three
special chars. For this purpose we are going to use the following algorithm:

1. We start with an empty password. We create a generator of random
numbers.

2. We generate twice a random capital letter and place it at a random
position in the password.

3. We generate twice a random small letter and place it at a random
position in the password.

4. We generate twice a random digit and place it at a random position in
the password.

5. We generate three times a random special character and place it at a
random position in the password.

6. Until this moment the password should consist of 8 characters. In order
to supplement it to 15 characters at most, we can insert random count
of times (between 0 and 7) at a random position in the password a
random character (a capital letter, a small letter or a special char).

An implementation of the described algorithm is given below:

class RandomPasswordGenerator

{

private const string CapitallLetters =

Chapter 11. Creating and Using Objects

403

"ABCDEFGHIJKLMNOPQRSTUVWXYZ" ;

private const string SmalllLetters =
"abcdefghijklmnopgrstuvwxyz";

private const string Digits = "0123456789";

private const string SpecialChars =
1@ () _+="{FI\\| 55, /200"

private const string AllChars =
CapitalLetters + SmalllLetters + Digits + SpecialChars;

private static Random rnd = new Random();

static void Main()

{

StringBuilder password = new StringBuilder();

// Generate two random capital letters

for (int i = 1; i <= 2; i++)

{
char capitalLetter = GenerateChar(CapitallLetters);
InsertAtRandomPosition(password, capitallLetter);

}

// Generate two random small letters

for (int i = 1; i <= 2; i++)

{
char smallLetter = GenerateChar(SmallLetters);
InsertAtRandomPosition(password, smalllLetter);

}

// Generate one random digit
char digit = GenerateChar(Digits);
InsertAtRandomPosition(password, digit);

// Generate 3 special characters

for (int i = 1; i <= 3; i++)

{
char specialChar = GenerateChar(SpecialChars);
InsertAtRandomPosition(password, specialChar);

}

// Generate few random characters (between @ and 7)
int count = rnd.Next(8);
for (int i = 1; i <= count; i++)

{

404 Fundamentals of Computer Programming with C#

char specialChar = GenerateChar(AllChars);
InsertAtRandomPosition(password, specialChar);

}

Console.WritelLine(password);

}

private static void InsertAtRandomPosition(
StringBuilder password, char character)

{
int randomPosition = rnd.Next(password.Length + 1);
password.Insert(randomPosition, character);

}

private static char GenerateChar(string availableChars)
{
int randomIndex = rnd.Next(availableChars.Length);
char randomChar = availableChars[randomIndex];
return randomChar;

}

}

Let’s explain several unclear moments in the source code. Let’s start from the
definition of the constants:

private const string Capitalletters =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ" ;

private const string SmalllLetters =
"abcdefghijklmnopqgrstuvwxyz";

private const string Digits = "0123456789";

private const string SpecialChars =
"1 @#$%NEX () _+=" {1\ "5, /207

private const string AllChars =
CapitallLetters + Smallletters + Digits + SpecialChars;

Constants in C# are immutable variables whose values are assigned during
their initialization in the source code of the program and after that they
cannot be changed. They are declared with the modifier const. They are used
for defining a number or a string, which afterwards is used many times in the
program. This way repetition of certain values in the code is avoided and
these values can be easily altered by changing only one place in the code. For
example, if in a certain moment we decide that the character "," (comma)
should not be used when generating a password, we can change only one row
in the program (the corresponding constant) and the change is going to
reflect on every row where the constant is being used. In C# constants are

Chapter 11. Creating and Using Objects 405

written in Pascal Case (the words in the name, merged together, each of
them starts with an uppercase letter, and the rest of them are lowercase).
More about constants we will learn in the section "Constants" in the chapter
"Defining Classes".

Let’s explain how the other parts of the program work. In the beginning, as a
static member variable in the class RandomPasswordGenerator is created the
random number generator rnd. As this variable rnd is defined in the class
(not in the Main() method), it is accessible by the whole class (by each of its
methods), and as it is defined static, it is accessible by the static methods,
too. Thus, anywhere the program needs a random integer variable the same
random number generator is used. It is initialized when the class
RandomPasswordGenerator is loaded.

The method GenerateChar() returns a randomly chosen character in a set of
characters given as a parameter. It works very simply: it chooses a random
position in the set of characters (between 0 and the count of characters minus
1) and returns the characters at this position.

The method InsertAtRandomPosition() is not complicated too. It chooses a
random position in the StringBuilder object, which is passed and inserts on
this position the returned character. We are going to pay special attention to
the class StringBuilder in the chapter "Strings and Text Processing".

Here is a sample output of the program for generating passwords, which we
just considered (this output is different at each program run due to its
randomness by nature):

8p#RV*yT1{tN4

Namespaces

Namespace (package) in OOP we call a container for a group of classes,
which are united by a common feature or are used in a common context. The
namespaces contribute to a better logical organization of the source code by
creating a semantic division of the classes in categories and makes easier
their usage in the source code. Now we are going to consider namespaces in
C# and are going to see how we can use them.

What Are Namespaces in C#?

Namespaces in C# are named groups of classes, which are logically
related without any specific requirement on how to be placed in the file
system. However, it is considered that the folder name should match the
namespace name and the names of the files should match the names of the
classes, which are defined in them. We have to note that in some
programming languages the compilation of the source code in a given
namespace depends on the distribution of the elements of the namespace in
folders and files on the disk. In Java, for instance, the described file

406 Fundamentals of Computer Programming with C#

organization is mandatory (if it is not followed, compilation errors occur). C#
is not so strict regarding this.

Now, let’s consider the mechanism for defining namespaces.

Defining Namespaces

In case we like to create a new namespace or a new class which belongs to a
given namespace, in Visual Studio this happens automatically by the
commands in the context menu of the Solution Explorer (on right click on the
corresponding folder). By default the Solution Explorer is visualized like a
Dock in the right part of the integrated environment. We are going to
illustrate how we could add a new class in the already existing namespace
MyNamespace by the context menu of Solution Explorer in Visual Studio:

Solution Explorer

@ o-20d@m &H

Search Solution Explorer (Ctrl+;)

fa] Solution 'OutOfRange’ (1 project)
P OutOfRange
I M Properties
=B References
<] MyNamespace

Add F 'O Newltem... Ctrl+Shift+A

Scope to This in| Existing ltem... Shift+Alt+4
Mew Solution Explorer View ‘W MNew Folder

Exclude From Project 8 Windows Form...
¥ cut Crl+X 11 User Contral...
Ol Copy Ctrl+C *1 Component..

% Class. Shift+ Alt+C

X Delete Del

£ Rename
¢* Open Folder in File Explorer
&

Properties Alt+Enter

As the project is called MyConsoleApplication and we are adding in its folder
MyNamespace, the newly created class is going to be in the following
namespace:

namespace MyConsoleApplication.MyNamespace

If we have defined a class in its own file and we like to add it in a new or
already existing namespace, it is not hard to do it manually. It is enough to
change the named block with a keyword namespace in the class:

Chapter 11. Creating and Using Objects 407

namespace <namespace_name>

{
}

In the definition we use the keyword namespace, followed by the full name of
the namespace. It is considered that the namespaces in C# start with a
capital letter and are written in Pascal Case. For example, if we have to make
a namespace containing classes for string processing, it is desirable we name
it StringUtils, and not string_utils.

Nested Namespaces

Except classes, namespaces can contain other namespaces in themselves
(nested namespaces). This way, intuitively we create a hierarchy of
namespaces, which allows even more precise distribution of classes according
to their semantics.

When naming namespaces in the hierarchy we use the character . as a
separator (dot notation). For example, the namespace System from .NET
Framework contains in itself the sub-namespace Collections and thus the
full name of the nested namespace Collections is System.Collections.

Full Names of Classes

In order to absolutely understand the meaning of namespaces, it is important
for us to know the following:

& Classes are required to have unique names only within the
namespaces, in which they are defined.

Outside a given namespace we can have classes with random names
regardless of whether they match with any of the names of classes in the
namespace. This is because classes in the namespace are uniquely defined in
its context. It is time to see how to define syntactically this uniqueness.

Full name of the class we call the first name of the class, preceded by the
name of the namespace in which it is defined. The full hame of each class is
unique. Again we use dot notation:

<namespace_name>.<class_name>

Let’'s take, for example, the system class CultureInfo, defined in the
namespace System.Globalization (we have already used it in the chapter
"Console Input and Output"). According to the definition, the full name of the
class is System.Globalization.CultureInfo.

408 Fundamentals of Computer Programming with C#

In .NET Framework sometimes there are classes from different namespaces
with matching names, for example:

System.Windows.Forms.Control
System.Web.UI.Control
System.Windows.Controls.Control

Inclusion of a Namespace

When building an application according to the object area, very often it is
necessary to use the classes of a namespace multiple times. For the
programmer’s convenience there is a mechanism for inclusion of a
namespace in the current file with a source code. After the given namespace
is included, all classes defined in it may be used without the need to use their
full names.

The inclusion of a namespace in the current source code file is executed with
the keyword using in the following way:

using <namespace_name>;

We are going to pay attention to an important feature of including
namespaces in the described way. All classes defined directly in the
namespace <namespace_name> are included and can be used, but we have to
know the following:

Inclusion of namespaces is not recursive, i.e. when including
& a namespace the classes from the nested namespaces are
not included.

For example, the inclusion of namespaces System.Collections does not
automatically include the classes from its nested namespace System.
Collections.Generic. When used, either we have to apply their full names,
or to include the namespace, which contains them.

Using a Namespace - Example

In order to illustrate the principle of inclusion of a nhamespace, we are going to
consider the following program which reads numbers, saves them in lists and
counts how many of them are integer numbers and how many are double:

class NamespaceImportTest

{

static void Main()

{

System.Collections.Generic.List<int> ints =
new System.Collections.Generic.List<int>();

Chapter 11. Creating and Using Objects 409

System.Collections.Generic.List<double> doubles =
new System.Collections.Generic.List<double>();

while (true)
{
int intResult;
double doubleResult;
Console.WriteLine("Enter an int or a double:");
string input = Console.ReadlLine();

if (int.TryParse(input, out intResult))
{
ints.Add(intResult);

}
else if (double.TryParse(input, out doubleResult))

{
doubles.Add(doubleResult);

}

else

{

break;

}
}

Console.Write("You entered {0} ints:", ints.Count);
foreach (var i in ints)

{
}

Console.WriteLine();

Console.Write(+ 1);

Console.Write("You entered {0} doubles:", doubles.Count);
foreach (var d in doubles)

{
Console.Write(" " + d);
}
Console.WriteLine();
}
}
For this purpose the program uses the class System.Collections.

Generic.List as it calls it by its full name.

Let's see how the program above works: we enter consecutively the values 4,
1.53,0.26, 7, 2, end. We get the following result on the standard output:

410 Fundamentals of Computer Programming with C#

You entered 3 ints: 4 7 2
You entered 2 doubles: 1.53 0.26

The program does the following: it gives the user the opportunity to enter
consecutively numbers, which may be integer or double. This continues until
the moment in which a value different from a number is entered. Then on the
standard output two rows are displayed, respectively with integer and double
numbers.

For the implementation of the described actions we use two helping objects
respectively of type System.Collections.Generic.List<int> and System.
Collections.Generic.List<double>. Obviously, the full names of the
classes make the code unreadable, and cause inconveniences. We can easily
avoid this effect by including the namespace System.Collections.Generic
and use directly the classes by name. You can now see the shortened version
of the program above:

using System.Collections.Generic;

class NamespaceImportTest

{
static void Main()
{
List<int> ints = new List<int>();
List<double> doubles = new List<double>();
}
}
Exercises

1. Write a program, which reads from the console a year and checks if it is
a leap year.

2. Write a program, which generates and prints on the console 10 random
numbers in the range [100, 200].

3. Write a program, which prints, on the console which day of the week is
today.

4. Write a program, which prints on the standard output the count of days,
hours, and minutes, which have passes since the computer is
started until the moment of the program execution. For the
implementation use the class Environment.

5. Write a program which by given two sides finds the hypotenuse of a
right triangle. Implement entering of the lengths of the sides from the

Chapter 11. Creating and Using Objects 411

10.

11.

standard input, and for the calculation of the hypotenuse use methods of
the class Math.

Write a program which calculates the area of a triangle with the
following given:

- three sides;
- side and the altitude to it;
- two sides and the angle between them in degrees.

Define your own namespace CreatingAndUsingObjects and place in it
two classes Cat and Sequence, which we used in the examples of the
current chapter. Define one more namespace and make a class, which
calls the classes Cat and Sequence, in it.

Write a program which creates 10 objects of type Cat, gives them names
CatN, where N is a unique serial number of the object, and in the end call
the method SayMiau() for each of them. For the implementation use the
namespace CreatingAndUsingObjects.

Write a program, which calculates the count of workdays between
the current date and another given date after the current (inclusive).
Consider that workdays are all days from Monday to Friday, which are not
public holidays, except when Saturday is a working day. The program
should keep a list of predefined public holidays, as well as a list of
predefined working Saturdays.

You are given a sequence of positive integer numbers given as string
of numbers separated by a space. Write a program, which calculates
their sum. Example: "43 68 9 23 318" - 461.

Write a program, which generates a random advertising message for
some product. The message has to consist of laudatory phrase, followed
by a laudatory story, followed by author (first and last name) and city,
which are selected from predefined lists. For example, let's have the
following lists:

- Laudatory phrases: {"The product is excellent.", "This is a great
product.", "I use this product constantly.", "This is the best product
from this category."}.

- Laudatory stories: {"Now I feel better.", "I managed to change.",
"It made some miracle.", "I can’t believe it, but now I am feeling
great.”, "You should try it, too. I am very satisfied."}.

- First name of the author: {"Dayan", "Stella", "Hellen", "Kate"}.
- Last name of the author: {"Johnson", "Peterson", "Charls"}.
- Cities: {"London", "Paris", "Berlin", "New York", "Madrid"}.

Then the program would print randomly generated advertising message
like the following:

412 Fundamentals of Computer Programming with C#
I use this product constantly. You should try it, too. I am
very satisfied. -- Hellen Peterson, Berlin

12. * Write a program, which calculates the value of a given numeral

expression given as a string. The numeral expression consists of:
- real numbers, for example 5, 18.33, 3.14159, 12.6;
- arithmetic operations: +, -, *, / (with their standard priorities);
- mathematical functions: 1n(x), sqrt(x), pow(x, y);

- brackets for changing the priorities of the operations: (and).

Note that the numeral expressions have priorities, for example the expression
-1+2+3*%4-0.5=(-1)+2+(3*4) -0.5=12.5.

Solutions and Guidelines

1.
2.

Use DateTime.IsLeapYear(year).

Use the class Random. You may generate random numbers in the range
[100, 200] by calling Random.Next (100, 201).

Use DateTime.Today.DayOfWeek.

Use the property Environment.TickCount, in order to get the count of
passed milliseconds. Use the fact that one second has 1,000 milliseconds;
one minute has 60 seconds; one hour has 60 minutes and one day has
24 hours.

The hypotenuse of a rectangular triangle could be found with the
Pythagorean Theorem a2 + b? = c?, where a and b are the two sides,
and c is the hypotenuse. Take square root of the two sides of the
equation in order to get the length of the hypotenuse. Use the Sqrt(..)
methods of the Math class.

For the first sub-problem of the task use the Heron’s Formula S =
a+b+c

Jp(@ —a)(p —b)(p —), where p= -— For the second sub-problem use

axhg

the formula: S = = For the third sub-problem use the formula: § =

%Sm(y) For the sine use the System.Math class.

Make a new project in Visual Studio, right click on the folder and
choose the menu Add > New Folder. Then enter the name of the folder
and press [Enter], right click on the newly made folder and choose Add
- New Item... from the list choose Class, for the name of the new class
enter Cat and press [Add]. Change the definition of the newly created
class with the definition, which we gave to this chapter, to put the classes
in a namespace. Make the same to the class Sequence.

Chapter 11. Creating and Using Objects 413

10.

11.

12.

Create an array with 10 elements of type Cat. Create 10 objects of type
Cat in a loop (use a constructor with parameters) and assign them to the
corresponding element of the array. For the serial number of the objects
use the method NextValue() of the Sequence class. In the end again in
an array use the method SayMiau() for each of the array elements.

Use the class System.DateTime and the methods in it. You can execute a
loop from the current date (DateTime.Now.Date) to the end date,
consecutively incrementing the day by the method AddDays(1) and count
the working days according to your country (e.g. all days except
Saturday and Sunday and a few fixed non-working official holidays).

Another approach that might work is to subtract the dates to find the
TimeSpan between them (DateTime values can be subtracted, just like a
numbers). This will give you the count of days between the dates. You
will need to perform some additional calculations to find how much
weekends are included in this count and discard them.

Use String.Split(' ') to split the string by spaces. Then use
Int32.Parse(..) to extract the separate numbers from the obtained
string array as int values and sum them.

Use the class System.Random and its method Next(..) to select a random
laudatory phrase, laudatory story, first name, last name and city and
combine them.

Calculating a numeral expression is quite hard and is unlikely a
beginner programmer to solve it correctly without external help. As a
start check out the article in Wikipedia about the "Shunting-yard
algorithm" (en.wikipedia.org/wiki/Shunting-yard algorithm) describing
how to convert an expression from to postfix notation (reversed Polish
notation), and the article about calculating a postfix expression
(en.wikipedia.org/wiki/Reverse Polish notation). There are really much
special cases, so be sure to test your solution carefully.

http://en.wikipedia.org/wiki/Shunting-yard_algorithm
http://en.wikipedia.org/wiki/Reverse_Polish_notation

Chapter 12. Exception
Handling

In This Chapter

In this chapter we will discuss exceptions in the object-oriented
programming and in C# in particular. We will learn how to handle
exceptions using the try-catch construct, how to pass them to the calling
methods and how to throw standard or our own exceptions using the
throw construct. We will give various examples for using exceptions. We will
look at the types of exceptions and the exceptions hierarchy in the .NET
Framework. At the end, we will look at the advantages of using exceptions,
best practices and how to apply them in different situations.

What Is an Exception?

When we write a program, we describe step-by-step what the computer must
do (at least in imperative programming; in the functional programming things
look a bit different) and in most of the cases we rely that the program will
execute normally. Indeed, most of the time, programs are following this
normal pattern, but there are some exceptions. Let's say we want to read a
file and display its contents on the screen. Let’s assume the file is located on
a remote server and during the process of reading it, the connection goes
down. The file then will be only partially loaded. The program will not be able
to execute normally and show file’s contents on the screen. In this case, we
have an exception from the normal (and correct) program execution and this
exception must be reported to the user and/or the administrator.

Exceptions

Exception is a notification that something interrupts the normal
program execution. Exceptions provide a programming paradigm for
detecting and reacting to unexpected events. When an exception arises, the
state of the program is saved, the normal flow is interrupted and the control
is passed to an exception handler (if such exists in the current context).

Exceptions are raised or thrown by programming code that must send a
signal to the executing program about an error or an unusual situation.
For example, if we try to open a file, which doesn’t exist, the code responsible
for opening the file will detect this and will throw an exception with a proper
error message.

416 Fundamentals of Computer Programming with C#

Exceptions are one of the main paradigms of object-oriented programming
(O0OP), which is described in details in the chapter "Object-Oriented
Programming Principles".

Catching and Handling Exceptions

Exception handling is a mechanism, which allows exceptions to be
thrown and caught. This mechanism is provided internally by the CLR
(Common Language Runtime). Parts of the exception handling infrastructure
are the language constructs in C# for throwing and catching exceptions.
CLR takes care to propagate each exception to the code that can handle it.

Exceptions in the Object-Oriented Programming

In Object-Oriented Programming (OOP), exceptions are a powerful mecha-
nism for centralized processing of errors and exceptional situations. This
mechanism replaces the procedure-oriented method of error handling in which
each function returns a code indicating an error or a successful execution.

Usually in OOP, a code executing some operation will cause an exception if
there is a problem and the operation could not be successfully
completed. The method causing the operation could catch the exception
(and handle the error) or pass the exception through to the calling method.
This allows handling errors to be delegated to some upper level in the call
stack and in general, allows flexible management of errors and unexpected
situations.

Another fundamental concept is exceptions hierarchy. In OOP, exceptions
are classes and they can be inherited to build hierarchies. When an exception
is handled (caught), the handling mechanism could catch a whole class of
exceptions and not just a particular error (as in the traditional procedural
programming).

In OOP, it is recommended to use exceptions for managing error
situations or unexpected events that may arise during a program
execution. This replaces the procedural error-handling approach and gives
important advantages such as centralized error processing, handling multiple
errors in one place and ability to pass errors to a higher-level handler.
Another important advantage is that exceptions self-describe themselves and
can create hierarchies.

Sometimes exceptions are used not so much to signal a problem but to
handle some expected event. This is not considered a good practice as
exceptions should not control the normal flow of the program. At the end of
the chapter we will look in more details into this.

Exceptions in .NET

Exception in .NET is an object, which signals an error or an event, which is
not anticipated in the normal program flow. When such unusual event takes
place, the executing method ‘throws' a special object containing information

Chapter 12. Exception Handling 417
about the type of the error, the place in the program where the error occurred
as well as the program state at the moment of the error.

Each exception in .NET contains the so-called stack trace, which gives
information of where exactly the error occurred. This will be discussed in more
details later in this chapter.

An Example Code Throwing an Exception

Here is an example for a code that will throw an exception:

class ExceptionsDemo

{

static void Main()

{
string fileName = "WrongTextFile.txt";
ReadFile(fileName);

}

static void ReadFile(string fileName)

{
TextReader reader = new StreamReader(fileName);
string line = reader.ReadLine();
Console.WriteLine(line);
reader.Close();

}
}

This program will compile successfully but if you run it, the result will look like
the following (FileNotFoundException dumped on the console):

= Ch\Windows\system32\cmd.exe = = “

nhandled Exception: Syszstem.I0_FileMotFoundException: Could
ot find file ‘GC:“\Projects“OutOfRange“0utOfRangesbin“Dehbug-l
rongTextFile.txt’ .

at System.I0._ Error WinIOError<Int32 errorCode, String m
ybeFullFath>

at Sysztem_.I0_FileStream_Init<{String path, FileMode mode.
FileAccess access, Intd2 rights,. Boolean useRights, FileShar
e share, Int32 bufferSize. FileOptions options. SECURITY_ATT
IBUTES secAttrs, String msgPath, Boolean bFromProxy, Boolea

uzeLongPath, Boolean checkHost2>

at System_.I0_FileStream..ctor{String path, FileMode mode.
FileAccess access. FileShare share. Int32 bufferfSize. FileO|
ptions options. String msgPath,. Boolean bFromProxy,. Boolean
wselongPath, Boolean checkHost)

at System.I0_StreanmReader..ctor<String path,., Encoding enc
oding,., Boolean detectEncodingFromByteOrderMarks,. Int32 bhuffe
Size,. Boolean checkHost)

at System_I0_StreamReader..ctoriString path?

at ExceptionsDemo.ReadFile<String filename? in c:“Project
“OutOf Range“\0utOf Range“ExceptionsDemo.cs:1line 14

at ExceptionsDemo_-Main<)} in c::sProjectss»0utOf Range-~OutOf R
nge“ExceptionszDemo.cs:1line 9
rezs any key to continue . . .

418 Fundamentals of Computer Programming with C#

In this example, we have a code trying to open a text file for reading and then
display the first line of this file on the screen. We will discuss working with
files in more details in the chapter "Text Files".

The first two lines of ReadFile() contain code that throws an exception. In
this example, if the file WrongTextFile.txt doesn’t exist, the constructor
StreamReader(string, fileName) will throw a FileNotFoundException. If
an unexpected problem occurs during the input-output operations, the stream
methods, such as ReadLine() will throw an IOException.

The code above will successfully compile but at run-time it will throw an
exception if the WrongTextFile.txt file does not exist. The end result in this
case is an error message displayed on the console. The console output also
contains information of where and how the error occurred.

How Do Exceptions Work?

If during the normal program execution one of the methods throws an
exception, the normal flow of the program is interrupted. In the example
above this happens when the StreamReader is initialized. Let’s take a look on
the following line:

TextReader reader = new StreamReader("WrongTextFile.txt");

If this line triggers an error, the reader local variable will not be initialized and
it will have its default value of null. None of the lines that follow in the
method will be executed. The program will be interrupted until the CLR finds a
handler that can process the exception.

Catching Exceptions in C#

After a method throws an exception, CLR is looking for an exception handler
that can process the error. To understand how this works, we will take a
closer look on the concept of a call-stack. The program call-stack is a stack
structure that holds information about method calls, their local variables,
method parameters and the memory for value types.

.NET programs start from the Main(..) method, which is the entry point of
the program. Another method, let's name it "Method 1" could be called from
Main. Let "Method 1" call "Method 2" and so on until "Method N" is called.

When "Method N" finishes, the program flow returns back to its calling
method (in our example it would be "Method N-1"), then back to its calling
method and so on. This goes on until the Main(..) method is reached. Once
Main(...) finishes, the entire program exits.

The general principle is that when a new method is called, it is pushed on
top of the stack. When the method finishes, it is pulled back from the
stack. At any given point in time, the call-stack contains all the methods
called during the execution - from the starting method Main(..) to the last

Chapter 12. Exception Handling 419

called method, which is currently executing, along with their local variables
and arguments taken as input.

The exception handling mechanism follows a reversed process. When an
exception is thrown, CLR begins searching an exception handler in the call-
stack starting from the method that has thrown the exception. This is
repeated for each of the methods down the call-stack until a handler is found
which catches the exception. If Main(...) is reached and no handler is found,
CLR catches the exception and usually displays an error message (either in
the console or in a special error dialog box).

The described method call and exception handling process could be
visualized in the following diagram (steps 1 through 5):

5. Throw an exception

e N

Method N Method N
4. Method call 6. Find handler
Method 2 Method 2
3. Method call 7. Find handler
Method 1 Method 1
2. Method call 8. Find handler
Main() Main()

et
1. AN
EX@CUte the -\“6“

prOgram

Sample Application =]

med in your application. F you cick
Zttempt to continue.

Unhandled exception ha
Continue, the application

‘Q‘ you click Qu

The try-catch Programming Construct

To handle an exception, we must surround the code that could throw an
exception with a try-catch block:

try
{

}
catch (ExceptionType objectName)

// Some code that may throw an exception

420 Fundamentals of Computer Programming with C#

{
}
catch (ExceptionType objectName)
{

}

// Code handling an Exception

// Code handling an Exception

The try-catch construct consists of one try block and one or more catch
blocks. Within the try block we put the code that could throw exceptions. The
ExceptionType in the catch block must be a type, derived from
System.Exception or the code wouldn’t compile. The expression within
brackets after catch is also a declaration of a variable, thus inside the catch
block we can use objectName to use the properties of the exception or call its
methods.

Catching Exceptions — Example

Let’'s now modify the code in our previous example to make it handle its
exceptions. To do this, we wrap the code that could create problems in try-
catch and then we add catch blocks to handle the two types of exceptions we
know could arise.

static void ReadFile(string fileName)
{
// Exceptions could be thrown in the code below
try
{
TextReader reader = new StreamReader(fileName);
string line = reader.ReadlLine();
Console.WriteLine(line);
reader.Close();

}
catch (FileNotFoundException fnfe)

{
// Exception handler for FileNotFoundException
// We just inform the user that there is no such file
Console.WritelLine(
"The file '{@}' is not found.", fileName);
}

catch (IOException ioe)

{
// Exception handler for other input/output exceptions
// We just print the stack trace on the console
Console.WriteLine(ioe.StackTrace);

Chapter 12. Exception Handling 421

}
}

Now our method works in a different way. When FileNotFoundException is
thrown during the StreamReader initialization when executing the constructor
new StreamReader(filename), the CLR will not execute the following lines
but will jump to the row where we catch the exception catch
(FileNotFoundException fnfe):

catch (FileNotFoundException fnfe)

{
// Exception handler for FileNotFoundException
// We just inform the user that there is no such file
Console.WriteLine("The file '{@}' is not found.", fileName);
}

In our example, users will simply be informed that such file does not exist by
a message printed on the standard output:

The file 'WrongTextFile.txt' is not found.

Similarly, if an IOException is thrown during reader.ReadLine(), it is
handled by the block below:

catch (IOException ioe)

{
// Exception handler for FileNotFoundException
// We just print the stack trace on the screen
Console.WritelLine(ioe.StackTrace);

}

In this case, we display the exception stack trace on the standard output.

The lines between where the exception is thrown and the catch block that
processed it are not executed.

& Showing the full information about the exception to the end
user is not always a good practice!

We will discuss the best practices in exception handling later in this chapter.

Stack Trace

The stack trace contains detailed information about the exception
including where exactly it occurred in the program. The stack trace is very
useful for programmers when they try to understand the problem causing the
exception. The information in the stack trace is very technical and is designed

422 Fundamentals of Computer Programming with C#

to be used by programmers and system administrators and not by the end
users. During debugging the stack trace is a priceless tool.

Stack Trace - Example

Here is the stack trace from our first example:

Unhandled Exception: System.IO.FileNotFoundException: Could not
find file '.\WrongTextFile.txt'.

at System.IO._ Error.WinIOError(Int32 errorCode, String
maybeFullPath)

at System.IO.FileStream.Init(String path, FileMode mode,
FileAccess access, Int32 rights, Boolean useRights, FileShare
share, Int32 bufferSize, FileOptions options,
SECURITY_ATTRIBUTES secAttrs, String msgPath, Boolean
bFromProxy, Boolean uselLongPath)

at System.IO.FileStream..ctor(String path, FileMode mode,
FileAccess access, FileShare share, Int32 bufferSize,
FileOptions options)

at System.IO.StreamReader..ctor(String path, Encoding
encoding, Boolean detectEncodingFromByteOrderMarks, Int32
bufferSize)

at System.IO.StreamReader..ctor(String path)

at Exceptions.Demol.ReadFile(String fileName) in
Program.cs:line 17

at Exceptions.Demol.Main() in Program.cs:line 11

The system cannot find the file named “WrongTextfile.txt” and the
FileNotFoundException is thrown.

Reading the Stack Trace
To be able to use the stack trace, we must be familiar with its structure.
The stack trace contains the following information:

- The full name of the exception class;

- A message with additional information about the error;

- Information about the call-stack;

In our example above, the full name of the exception is
System.IO.FileNotFoundException. The error message follows: "Could not
find file '...\WrongTextFile.txt'." What follows is a full call-stack dump,
which is usually the longest part of the stack trace. Each line of the call stack
dump contains something similar to the following:

at <namespace>.<class>.<method> in <source file>.cs:line <line>

Chapter 12. Exception Handling 423

Every method is shown in a separate line. On the first line is the method that
threw the exception and on the least line - the Main() method (notice that
the Main() method might not be present in case of an exception thrown by a
thread which is not the main thread of the program). Every method is given
with full information about the class that contains it and (if possible) even the
line in the source code:

at Exceptions.Demol.ReadFile(String fileName) in
..\Program.cs:1line 17

The line numbers are included only if the respective class is compiled with
debug information (this information contains line numbers, variable names
and other technical information). The debug information is not included in the
.NET assemblies but is in separate files called 'debug symbols' (.pdb). As you
can see in the example stack trace, debug information is available for some
assemblies, while for others (like the .NET assemblies) it is not. This is why
some entries in the stack trace have line numbers and others - not.

If the method throwing the exception is a constructor, then instead of method
name, the stack trace contains the word .ctor, like in System.IO.
StreamReader..ctor(String path).

This rich information in the stack trace allows quickly and easily to find the
class, the method and even the source line where the error has occurred.
Then usually it is relatively straightforward to analyze the problem causing the
error and fixing it. This is not the same in primitive languages such as C and
Pascal where the concept of stack trace is not supported.

Throwing Exceptions (the throw Construct)

Exceptions in C# are thrown using the keyword throw. We need to provide an
instance of the exception, containing all the necessary information about the
error. Exceptions are normal classes and the only requirement is that they
inherit directly or indirectly from the System.Exception class.

Here is an example:

static void Main()

{

Exception e = new Exception("There was a problem");
throw e;

}

The result from running this program is:

Unhandled Exception: System.Exception: There was a problem
at Exceptions.Demol.Main() in Program.cs:line 11

424 Fundamentals of Computer Programming with C#

Exceptions Hierarchy

There are two types of exceptions in .NET Framework: exceptions thrown by
the applications we develop (ApplicationException) and exceptions thrown
by the runtime (SystemException). Each of these is a base class for a
hierarchy of exception classes:

Exception

Application System
Exception Exception

— 7 L

As all of these classes have different characteristics, we will examine them
one by one.

The Exception Class

In .NET Framework, Exception is the base class for all exceptions. Several
classes inherit directly from it, including ApplicationException and
SystemException. These two classes are base classes for almost all
exceptions that occur during the program execution.

The Exception class contains a copy of the call-stack at the time the
exception instance was created. The class also has a (usually) short message
describing the error (filled in by the method throwing the exception). Every
exception could have a nested exception also sometimes called an inner
exception, wrapped exception or internal exception.

The ability to wrap an exception with another exception is very useful in some
cases and allows exceptions to be linked in the so called exception chain.

Exception — Constructors, Methods and Properties

Here is how the System.Exception class looks like:

[SerializableAttribute]
[ComVisibleAttribute(true)]
[ClassInterfaceAttribute(ClassInterfaceType.None)]
public class Exception : ISerializable, Exception
{

public Exception();

public Exception(string message);

Chapter 12. Exception Handling 425

public Exception(string message, Exception innerException);
public virtual IDictionary Data { get; }

public virtual string HelpLink { get; set; }

protected int HResult { get; set; }

public Exception InnerException { get; }

public virtual string Message { get; }

public virtual string Source { get; set; }

public virtual string StackTrace { get; }

public MethodBase TargetSite { get; }

public virtual Exception GetBaseException();

}

The full specification of the Exception class given above is complex to be
explained, so we will discuss only its most important methods and properties
as they are inherited by all exceptions in .NET Framework.

- We have three constructors with different combinations for message and
inner exception.

- The Message property returns a text description of the exception. For
example if the exception is FileNotFoundException, the message could
provide information which file was not found. In most of the cases, the
code throwing the exception passes the message in the constructor.
Once set, the Message property cannot be changed.

- The InnerException property returns the inner (wrapped, nested)
exception or null if such doesn’t exist.

- The GetBaseException() returns the innermost exception from a given
exception chain. By definition, calling this method for every exception
within an exception chain will always yield the same result - the first
exception that happened.

- The StackTrace property returns information for the entire stack
contained in the exception (we have already seen how this information
looks like).

Application vs. System Exceptions

Exceptions in .NET are two types — system and application. System exceptions
are defined in .NET libraries and are used by the framework, while application
exceptions are defined by application developers and are used by the
application software. When we, as developers, design our own exception
classes, it is a good practice to inherit from ApplicationException and not
directly from SystemException (or even worse - directly from Exception).
SystemException should only be inherited internally within the .NET
Framework.

426 Fundamentals of Computer Programming with C#

Some of the worst system exceptions include ExecutionEngineException
(which is thrown on internal error within CLR), StackOverflowException
(call-stack overflow, most probably due to infinite recursion) and
OutOfMemoryException (insufficient memory). In all of these cases, our
application could hardly recover or react in some reasonable manner. Most
frequently, when such exception occurs, the application just crashes.

Exceptions related to interaction with external components (like COM
components) inherit from ExternalException. Examples are COMException
and Win32Exception.

Throwing and Catching Exceptions

Let’s look in more details at throwing and catching exceptions.

Nested Exceptions

We've already seen that each exception could contain a nested (inner)
exception. Let's explain in more details why it is a common practice in OOP
error handling to wrap exceptions in this way.

In software engineering, it is a good practice for every software component to
define small number of specific application exceptions. The component
then would throw only these specific application exceptions and not the
standard .NET exceptions. In this way the users of the software component
would know what exceptions could expect from it.

For instance, if we have a banking software and we have a component dealing
with interests, this component would define (and throw) exceptions like
InterestCalculationException and InvalidPeriodException. The interest
component should not throw exceptions like FileNotFoundException,
DivideByZeroException and NullReferenceException. When an error
occurs, which is not directly related to interest calculation, the respective
exception is wrapped in InterestCalculationException and the calling code
will be informed that the interest calculation was not correctly done.

Still, these business application exceptions usually do not have detailed
technical information about the nature of the problem. This is why, it is
considered a good practice to include technical details about the problem and
this is where inner exceptions come in handy. When the component throws its
application exception, it should keep the original exception as an inner
exception in order to preserve the technical details about the error.

Another example is when a software component (let’s call it Component A)
defines its own application exceptions (A-exceptions). This component
internally uses another component (called Component B). If for some reason B
throws a B exception (an exception defined in B), perhaps A will have to
propagate the error because it will not be able to do its task. And because A
cannot simply throw a B-exception, it must throw an A-exception, containing
the B-exception as a nested exception.

Chapter 12. Exception Handling 427

There could be various reasons why A cannot simply throw a B exception:

- Component A users should not even know Component B exists (see the
discussion regarding abstractions in the "Principles of OOP" chapter);

- Component A had not declared it would throw Component B exceptions;

- Component A users are not prepared to receive Component B
exceptions. They expect component A exceptions only.

How to Read the Stack Trace with Nested Exceptions?

Below we have an example that creates an exception chain. We will
demonstrate how such exception chain is created and how the stack trace
looks like in the output:

37 | static void Main()

38| {

39 try

40 {

41 string fileName = "WrongFileName.txt";

42 ReadFile(fileName);

43 }

44 catch (Exception e)

45 {

46 throw new ApplicationException("Smth. bad happened", e);
47 }

48 | }

49 | static void ReadFile(string fileName)

50 | {

51 TextReader reader = new StreamReader(fileName);
52 string line = reader.ReadlLine();

53 Console.WriteLine(line);

54 reader.Close();

55 | }

In this example, we call the ReadFile() method (line 42), which will throw an
exception (line 51) because the file "WrongFileName.txt" does not exist. In
the Main() method we catch all exceptions (line 44), wrap them into a new
exception of type ApplicationException and throw them again (line 46). As
we shall see later in the section "Grouping Different Error Types", caching an
Exception also catches all its descendant exceptions in its hierarchy. Finally
the thrown exception (at line 46) is caught by .NET Framework and its stack
trace is dumped on the console.

The result of running the above example is shown below:

428 Fundamentals of Computer Programming with C#

= C:\Windows\system32\cmd.exe o= -

nhandled Exception: System.ApplicationException: Smth. bad
happened ——2» System.[0.FileMotFoundException: Could not fin

file ‘C:~Projects ~0utOf Range*0utdf Rangesxhin~Debug“WrongFil
eMame . txt’ .

at System.I0._ _Error WinlOError{Int32 errorCode, String m
yheFullPath2

at System.I0_FileStream.Init{String path, FileMode mode.
FileAccess access,. Int32 rights,. Boolean wseRights,. FileShar
e share, Int32 bufferfSize,. FileOptions options, SECURITY_ATT
RIBUTES secAttrs,. String msgPath,. Boolean hFromProxy. Boolea

useLongPath, Boolean checkHost>

at System.I0.FileStrean..ctor{String path, FileMode mode.
Fileficcess access,. FileShare share,. Int32 hufferfSize, FileO
ptions options, String msgPath, Boolean bhFromProxy,. Boolean
wzelongPath, Boolean checkHost)

at System.I0.8treamBeader. . .ctor{String path. Encoding enc
pding, Boolean detectEncodingFromByteOrderMarks, Int32 huffe
r3ize,. Boolean checkHost2

at Sustem.I0_StreamBeader. . ctor{String pathd

at ExceptionsDemo.ReadFiledS8tring fileMame?» in c:“Project
“0utOf Range~0OutOf Range“ExceptionszDemo.cs:1line 52

at ExceptionsDemo.Main<>» in c:“Projects“~0utOf Range~0utOfR
nge~ExceptionzDemo.cs:line 42

—— End of inner exception stack trace ———

at ExceptionsDemo.Main<{> in c:“Projects“0utOfRange~0utOfR
nge~ExceptionsDemo.cs:1line 46
ress any key to continue . . .

Let’s look more carefully at the stack trace. We now see an additional section
marking the end of the nested exception:

--- End of inner exception stack trace ---

This gives useful information about how the exception was thrown.

If you look more closely on the first line, you will notice it contains information
in the following format:

Unhandled Exception: Exceptionl: Msgl ---> Exception2: Msg2

This shows that an exception of type Exceptionl is wrapped around an
exception of type Exception2. After each exception type, we can see the
message of the respective exception (as contained in the Message property).
Using the information in the stack-trace (the file name, the method and the
line number), we can find out how the exceptions occurred and where.

Visualizing Exceptions

In console applications errors are usually printed in the output although
this might not be the most user-friendly way to notify the user for problems.

Chapter 12. Exception Handling 429

In Web applications, errors are frequently shown in the beginning or at the
bottom of the page or near the Ul field related to the error.

In GUI applications we should show the errors in a dialog window containing
user-friendly description of the error. An example of user-friendly error
message dialog box is given below:

i '

ol Tax Calculator = | = &

Tax Calculator

Chonose:

EET_D_ | Calculate |
‘I_l PLC ‘ | Emors |
I:_I LLC I —_—

Options
rUnexpec!Ed Error l,,. e

An unexpected error has occurred, Please try again. Do you want to send the
technical details to the systern administrator?

Yes | l Mo

As you can see, there is no single 'right' way to handle and visualize
exceptions as it depends on the type of the application and its intended
audience. Still there are some recommendations regarding how to handle
exceptions and what is the best way to show them to the users. We will
discuss these recommendations in the "Best Practices" section.

Which Exceptions to Handle and Which Not?

There is one universal rule regarding exception handling:

A method should only handle exceptions which it expects and
& which it knows how to process. All the other exceptions must
be left to the calling method.

If we follow this rule and every method leaves the exceptions it is not
competent to process to the calling method, eventually we would reach the
Main() method (or the starting method of the respective thread of execution)
and if this method does not catch the exception, the CLR will display the error

430 Fundamentals of Computer Programming with C#

on the console (or visualize it in some other way) and will terminate the
program.

A method is competent to handle an exception if it expects this exception, it
has the information why the exception has been thrown and what to do in this
situation. If we have a method that must read a text file and return its
contents as a string, that method might catch FileNotFoundException and
return an empty string in this case. Still, this same method will hardly be able
to correctly handle OutOfMemoryException. What should the method do in
case of insufficient memory? Return an empty string? Throw some other
exception? Do something completely different? So apparently the method is
not competent to handle such exception and thus the best way is to pass the
exception up to the calling method so it could (hopefully) be handled at some
other level by a method competent to do it. Using this simple philosophy
allows exception handling to be done in a structured and systematic way.

Throwing Exceptions from the Main() Method -
Example

Throwing exceptions from the Main() method is generally not a good
practice. Instead, it is better all exceptions to be caught in Main(). Still it is of
course possible to throw exceptions from Main() just as from any other
method:

static void Main()

{
}

throw new Exception("Ooops!");

Every exception which is not handled in Main() is eventually caught by the
CLR and visualized by printing the stack trace on the console output or in
some other way. While for small applications it is not such a problem, big and
complex applications generally should not crash in such ungraceful manner.

Catching Exceptions at Different Levels — Example

The ability to pass (or bubble) exceptions through a given method up to the
calling method allows structured exception handling to be done at multiple
levels. This means that we can catch certain types of exceptions in given
methods and pass all other exceptions to the previous levels in the call-stack.
In the example below, the exceptions in the ReadFile() method are handled
at two levels (in the try-catch block of the ReadFile() method itself and in
the try-catch block of the Main() method):

static void Main()

{
try

Chapter 12. Exception Handling 431

{

string fileName = "WrongFileName.txt";
ReadFile(fileName);
}

catch (Exception e)

{
throw new ApplicationException("Bad thing happened”, e);
}
}

static void ReadFile(string fileName)
{
try
{
TextReader reader = new StreamReader(fileName);
string line = reader.ReadlLine();
Console.WriteLine(line);
reader.Close();

}
catch (FileNotFoundException fnfe)

{
Console.WriteLine("The file {©} does not exist!",
filename);
}
}

In this example the ReadFile() method catches and handles only
FileNotFoundException while passing all other exceptions up to the Main()
method. In the Main() method we handle only exceptions of type
IOException and will let the CLR to handle all other exceptions (for instance,
if OutOfMemoryException is thrown during program’s execution, it will be
handled by the CLR).

If the Main() method passes a wrong filename, FileNotFoundException will
be thrown while initializing the TextReader in ReadFile(). This exception will
be handled by the ReadFile() method itself. If on the other hand the file
exists but there is some problem reading it (insufficient permissions, damaged
file contents etc.), the respective exception that will be thrown will be handled
in the Main() method.

Handling exceptions at different levels allows the error conditions to be
handled at the most suitable place for the particular error. This allows the
program code to be clear and structured and the flexibility achieved is
enormous.

432 Fundamentals of Computer Programming with C#

The try-finally Construct

Every try block could contain a respective finally block. The code within the
finally block is always executed, no matter how the program flow leaves the
try block. This guarantees that the finally block will be executed even if an
exception is thrown or a return statement is executed within the try block.

The code in the finally block will not be executed if while
& executing the try block, CLR is unexpectedly terminated, e.g.
if we stop the program through Windows Task Manager.

The basic form of the finally block is given below:

try
{

// Some code that could or could not cause an exception

}
finally

{

// Code here will always execute

}

Every try block may have zero or more catch blocks and at most one
finally block. It is possible to have multiple catch blocks and a finally
block in the same try-catch-finally construct.

try
{
some code
}
catch (..)
{
// Code handling an exception
}
catch (..)
{
// Code handling another exception
}
finally
{

// This code will always execute

}

Chapter 12. Exception Handling 433

When Should We Use try-finally?

In many applications we have to work with external for our programs
resources. Examples for external resources include files, network
connections, graphical elements, pipes and streams to or from different
hardware devices (like printers, card readers and others). When we deal with
such external resources, it is critically important to free up the resources as
early as possible when the resource is no longer needed. For example, when
we open a file to read its contents (let's say to load a JPG image), we must
close the file right after we have read the contents. If we leave the file open,
the operating system will prevent other users and applications to make
certain operations on the file. Perhaps you faced such a situation when you
could not delete some directory or a file because it is being used by a running
process.

The finally block is priceless when we need to free an external resource or
make any other cleanup. The finally block guarantees that the cleanup
operations will not be accidentally skipped because of an unexpected
exception or because of execution of return, continue or break.

Because proper resource management is an important concept in
programming, we will look at it in some more details.

Resource Cleanup - Defining the Problem

In our example, we want to read a file. To accomplish this, we have a reader
that must be closed when the file has been read. The best way to do this is to
surround the lines using the reader in a try-finally block. Here is a refresh
of how our example looks like:

static void ReadFile(string fileName)

{
TextReader reader = new StreamReader(fileName);
string line = reader.ReadlLine();
Console.WriteLine(line);
reader.Close();

}

What is the problem with this code? Well, what the code is supposed to do
is to open up a file reader, read the data and then close the reader before the
method returns. This last part is a problem because the method could finish in
one of several ways:

- An exception could be thrown when the reader is initialized (say if the
file is missing).

- During reading the file, an exception could arise (imagine a file on a
remote network device which goes offline during file reading).

434 Fundamentals of Computer Programming with C#

- A return statement could be executed before the reader is closed (in
our trivial example this would be obvious but it is not always as
apparent).

- Everything goes as expected and the method is executed normally.

So our method as written in the example above has a critical flaw: it will
close the reader only in the last scenario. In all of the other cases, the code
closing the reader will not be executed. And if this code is within a loop,
things get even more complex as continue and break operators must be
considered too.

Resource Cleanup - Solving the Problem

In the previous section we explained the fundamental flaw of the solution
'open the file © read - close'. If an error occurs during opening or reading
the file, we will leave the file open.

To solve this, we can use the try-finally construct. We will first discuss the
case in which we have one resource to clean-up (in this case a file). Then we
will give an example when we have two or more resources.

Closing a file stream could be done using the following pattern:

static void ReadFile(string fileName)
{
TextReader reader = null;
try
{
reader = new StreamReader(fileName);
string line = reader.ReadlLine();
Console.WriteLine(line);

}
finally

{

// Always close "reader" (if it was opened)
if (reader != null)

{

}
}

reader.Close();

}

In this example we first declare the reader variable, and then initialize the
TextReader in a try block. Then in the finally block we close the reader.
Whatever happens during TextReader’s initialization or during reading, it is
guaranteed that the file will be closed. If there is a problem initializing the
reader (say the file is missing), then reader will remain null and this is why
we do a check for null in the finally block before calling Close(). If the value

Chapter 12. Exception Handling 435

is indeed null, then the reader has not been initialized and there is no need
to close it. The code above guarantees that if the file has been opened, then it
will be closed no matter how the method exits.

The example above should, in principle, properly handle all exceptions related
to opening and initialization of the reader (like FileNotFoundException). In
our example, these exceptions are not handled and are simply propagated to
the caller.

We have chosen file streams for our example for freeing resources up but the
same principle applies to all resources that require proper cleanup. These
could be remote connections, operating system resources, database
connections and so on.

Resource Cleanup - Better Solution

While the above solution is correct, it is unnecessary complex. Let’s look at a
simplified version:

static void ReadFile(string fileName)
{
TextReader reader = new StreamReader(fileName);
try
{
string line = reader.ReadlLine();
Console.WriteLine(line);
}
finally
{
reader.Close();
}
}

This code has the advantage of being simpler and shorter. We avoid the
preliminary declaration of the reader variable and the check for null in the
finally block. The null check is how not necessary because the initialization of
the reader is outside of the try block and if an exception occurs during the
initialization, the finally block will not be executed at all.

This code is cleaner, shorter and clearer and is known as "dispose pattern".
However, note that this way the exception will go up to the method calling
ReadFile(...).

Multiple Resources Cleanup

Sometimes we need to free more than one resource. It is a good practice to
free the resources in in reverse order in respect to their allocation.

436 Fundamentals of Computer Programming with C#

We can use the same approach outlined above, nesting the try-finally
blocks inside each other:

static void ReadFile(string filename)
{
Resource rl = new Resourcel();
try
{
Resource r2 = new Resource2();
try
{
// Use rl and r2
}
finally

{

r2.Release();

}

}
finally

{
}

rl.Release();

}

Another option is to declare all of the resources in advance and then make the
cleanup in a single finally block with respective null checks:

static void ReadFile(string filename)
{
Resource rl = null;
Resource r2 = null;
try
{
Resource ril
Resource r2

new Resourcel();
new Resource2();

// Use rl and r2

}
finally
{
if (r1 != null)
{
rl.Release();
}

if (r2 != null)

Chapter 12. Exception Handling 437

{

}
}

r2.Release();

}

Both of these options are correct and both are applied depending on the
situation and programmer’s preference. The second approach is a little bit
riskier as if an exception occurs in the finally block, some of the resources
will not be cleaned up. In the example above, if an exception is thrown during
rl.Release(), r2 will not be cleaned up. If we use the first option, there is
no such problem but the code is a bit longer.

IDisposable and the "using" Statement

It is time to present a new shorter and simplified way to release some kinds
of resources in C#. We will demonstrate which resources can use this special
programming construct and how it looks like.

IDisposable

The main use of IDisposable interface is to release resources. In .NET
such resources are window handles, files, streams and others. We will talk
about interfaces in "OOP Principles” chapter. Now we may consider interface
as an indication that given type of objects (for example streams for reading
files) support a certain number of operations (for example closing the stream
and releasing related resources).

We will not go into details how to implement IDisposable since we have to
go much deeper and explain how the garbage collector works, how to use
destructors, unmanaged resources and so on.

The important method in IDisposable interface is Dispose(). The main thing
we need to know about the method is that it releases the resources of the
class that implements it. In cases when resources are streams, readers or
files releasing resources can be done using the Dispose() method from
IDisposable interface, which calls their Close() method. This method closes
them and releases their resources. So to close a stream we can do the
following:

StreamReader reader = new StreamReader(fileName);
try
{

}
finally

{

// Use the reader here

438 Fundamentals of Computer Programming with C#

if (reader != null)

{

reader.Dispose();

}
}

The Keyword "using"

The previous example can be written in shorter form with the help of the
using keyword in C#, as shown in the following example:

using (StreamReader reader = new StreamReader(fileName))

{
}

// Use the reader here

The above simplified form of the "dispose pattern” is simple to write,
simple to use and simple to read and is guaranteed to release correctly the
allocated resources specified in the brackets of the using statement.

It is not necessary to have try-finally or to explicitly call any method to
release the resources. The compiler takes care to automatically put try-
finally block and the used resources are released by calling the Dispose()
method after leaving the using block.

Later in chapter "Text Files" we will extensively use the using statement to
correctly read and write text files.
Nested "using" Statements

The using statements can be nested one within another:

using (ResourceType rl = ..)
using (ResourceType r2 = ..)
using (ResourceType rN = ..)
statements;

The previous example can be written like this:

using (ResourceType rl = .., r2 = .., .., PN = .)

{
}

statements;

Chapter 12. Exception Handling 439

It is important to mention that using statement is not related to exception
handling. Its only purpose is to release the resources no matter whether
exceptions are thrown or not. It does not handle exception.

When to Use the "using" Statement?

There is a simple rule when to use using with .NET classes:

& Use the using statement with all classes that implement the
IDisposable interface. Look for IDisposable in MSDN.

When a class implements IDisposable interface this means that the creator
of this class expects it can be used with the using statement and the class
contains some expensive resource that should not be left unreleased.
Implementing IDisposable also means that it should be released
immediately after we finish using the class and the easiest way to do this in
C# is with using statement.

Advantages of Using Exceptions

So far we reviewed the exceptions in details, their characteristics and how to
use them. Now let’s find out why they were introduced and why they are so
widely used.

Separation of the Exception Handling Code

Using exceptions allow us to separate the code, which describes the normal
execution of the program from the code required for unexpected execution
and the code for error handling. We will demonstrate this separation
concept in the following example:

void ReadFile()
{
OpenTheFile();
while (FileHasMorelLines)
{
ReadNextLineFromTheFile();
PrintTheLine();
}
CloseTheFile();

}

Let’s explore the example step by step. It does the following:
- Open the filg;
- While the file has more lines:

- Read the next line from the file;

440

Fundamentals of Computer Programming with C#

The

- Print the ling;
Close the file;
method looks good but a closer look brings up some questions:
What will happen if the file does not exist?
What will happen if the file cannot be opened?
What will happen if reading a line fails?

What will happen if the file cannot be closed?

Error Handling without Exceptions

Let’'s change the method having these questions in mind without using
exceptions. Let’s use error codes returned by any method that we use.
Using error codes is standard way for handling errors in procedure oriented
programming, where every method returns int, which provides information
whether the method was executed correctly. Error code 0 means that
everything is correct. Any other code means some error. Different kinds of

errors have different codes (usually it is a negative number).

{

int ReadFile()

errorCode = 0;
openFileErrorCode = OpenTheFile();

// Check whether the file is open
if (openFileErrorCode == 0)

{
while (FileHasMorelLines)
{
readLineErrorCode = ReadNextLineFromTheFile();
if (readLineErrorCode == 0)
{
// Line has been read properly
PrintTheLine();
}
else
{
// Error during line reading
errorCode = -1;
break;
}
}

closeFileErrorCode = CloseTheFile();
if (closeFileErrorCode != 0 && errorCode == 0)

Chapter 12. Exception Handling 441

{
errorCode

}

else

{
errorCode

}

1}
1
N
[N

_3;

}

else if (openFileErrorCode == -1)
{
// File does not exist
errorCode = -4;
}
else if (openFileErrorCode == -2)
{
// File can't be open
errorCode = -5;

}

return errorCode;

}

As a result we have a hard to understand and easy to break “spaghetti”
code. Program logic is mixed with the error handling logic. Big parts of the
code are the rules for error handling. Errors don’t have type, description or
stack trace and we have to wonder what the different error codes mean.

Error Handling with Exceptions

We can avoid all of the above spaghetti code just by using exceptions. Here
is how the same method will look like using exceptions instead:

void ReadFile()
{

try

{

OpenTheFile();

while (FileHasMorelines)

{
ReadNextLineFromTheFile();
PrintTheLine();

}

}
catch (FileNotFoundException)

{
DoSomething();

442 Fundamentals of Computer Programming with C#

}
catch (IOException)

{
DoSomethingElse();

}
finally

{
CloseTheFile();

}

}

In fact exceptions don’t save us the effort in finding and processing errors but
give us more elegant, short, clear and efficient way to do it.

Grouping Different Error Types

The hierarchical nature of exceptions allows us to catch and handle whole
groups of exceptions at one time. When using catch we are not only catching
the given type of exception but the whole hierarchy of exception types
that are inheritors of the declared type.

catch (IOException e)
{

}

// Handle IOException and all its descendants

The example above will catch not only the IOException, but all of its
descendants including FileNotFoundException, EndOfStreamException,
PathTooLongException and many others. In the same time exceptions like
UnauthorizedAccessException and OutOfMemoryException will not be
caught, because they don't inherit from IOException. We can look in MSDN
for the exceptions hierarchy if we wander which exceptions to catch.

It is not a good practice, but it is possible to catch all exceptions:

catch (Exception e)

{
}

// A (too) general exception handler

Catching Exception and all of its inheritors is not a good practice. It is better
to catch more specific groups of exceptions like IOException or just one type
of exception like for example FileNotFoundException.

Chapter 12. Exception Handling 443

Catching Exceptions at the Most Appropriate Place

The ability to catch exceptions at multiple locations is extremely
comfortable. It allows us to handle the exception at the most appropriate
place. Let's demonstrate this with a simple comparison with the old approach
using error codes. Let’s have the following method structure:

Method3()

{
Method2();

}

Method2()

{
Method1();

}

Method1()
{

}

ReadFile();

The method Method3() calls Method2(), which calls Methodl() where
ReadFile() is called. Let's suppose that Method3() is the method interested
in eventual error in the ReadFile() method. If such error occurs in
ReadFile() it wouldn't be easy to transfer the error to Method3() using the
traditional approach with error codes:

void Method3()
{
errorCode = Method2();
if (errorCode != 0)
process the error;
else
DoTheActuallWork();

}

int Method2()
{
errorCode = Methodl();
if (errorCode != 0)
return errorCode;
else
DoTheActuallWork();

444 Fundamentals of Computer Programming with C#

int Method1()
{
errorCode = ReadFile();
if (errorCode != 0)
return errorCode;
else
DoTheActualWork();

}

First in Methodl1() we have to analyze the error code returned by
ReadFile() method and eventually pass it to Method2(). In Method2() we
have to analyze the error code returned by Method1() and eventually pass it
to Method3() where to handle the error itself.

How can we avoid all this? Let’s remember that that the CLR searches for
exceptions back in the call stack of the methods and lets each of them to
define catching and handling of the exceptions. If the method is not interested
in catching some exception it is simply sent back in the stack:

void Method3()

{
try

{
Method2();

}

catch (Exception e)

{

process the exception;

}
}

void Method2()

{
Methodl();

}

void Method1()
{

}

ReadFile();

If an error occurs during reading the file it will be ignored in Method1() and
Method2() and will be caught and handled in Method3() where is the most

appropriate place to handle the error.

Let’'s remember again the most

Chapter 12. Exception Handling 445

important rule: every method should catch only exceptions that can handle
and skip all the others.

Best Practices when Using Exceptions

In this section we will give some recommendations and best practices for
correctly using exceptions for error handling and unexpected situations.
These are important rules that should be remembered and followed.

When to Rely on Exceptions?

To understand when it is good to rely on exceptions let's see the following
example: we have a program that opens a file by given path and file name.
While writing the user can write the file hame wrong. This should rather be
considered normal and not exceptional.

We can be prepared and first check if the file exists before we try to open it:

static void ReadFile(string fileName)

{
if (!File.Exists(fileName))

{
Console.WriteLine(
"The file '{@}' does not exist.", fileName);
return;

}

StreamReader reader = new StreamReader(fileName);
using (reader)

{
while (!reader.EndOfStream)

{
string line = reader.ReadlLine();
Console.WriteLine(line);

}
}

}

If we call the method and the file is missing we will see the following message
in the console:

The file 'WrongTextFile.txt' does not exist.

The other way to implement this is the following:

static void ReadFile(string filename)

{

446 Fundamentals of Computer Programming with C#

StreamReader reader = null;
try
{
reader = new StreamReader(filename);
while (!reader.EndOfStream)
{
string line = reader.ReadlLine();
Console.WriteLine(line);

}

reader.Close();

}
catch (FileNotFoundException)

{

Console.WriteLine(
"The file '{@}' does not exist.", filename);

}
finally
{
if (reader != null)
{
reader.Close();
}
}

}

We can consider the second option as worse because exceptions should be
used for unexpected situations and missing file is more or less usual.

It is not a good practice to rely on exceptions for expected events for another
reason: performance. Throwing an exception is time consuming operation.
An object has to be created to hold the exception, the stack trace has to be
initialized and handler for this exception has to be found and so on.

It is hard to define the exact border between expected and
unexpected. In general expected event is something related
& to the program functionality. Input of wrong file name for
example. Power cut during the execution of the program,
from the other hand, is unexpected event.

Throw Exceptions to the End User?

Exceptions are confusing for most users. They give the impression of a
poorly written program that “has bugs”. What will the user of our application
entering invoices think if suddenly the program shows this dialogue?

Chapter 12. Exception Handling

447

7
ol Tax Calculator | s(E)

Tax Calculator

Choose:

T

B P =

Tax Calculator

|83

h

Continue, the application will ignore this emor and attempt to continue.

. Unhandled exception has occumed in your application. i you click
§)
@’ you click Quit, the application will close immediately.

Some problem has occumed

| -

See the end of this message for details on invoking -
justintime (JIT) debugaing instead of this dialog box. E

=

1 Teadt

System Exception: Some problem has occumed.

at WindowsFormsApplication1.Form 1 button 1_Click{Object sender, Eventfrgs e} in

at System Windows.Forms.Control OnClick{EventArgs g)

at System Windows.Forms. Button OnClick{Event Args &)

gt System Windows Forms.Button OnMouse Up{Mouse Event Args mevent)

&t System. Windows.Forms Control. WmMouseUp{Message& m, MouseButtons buttc =
< | [|

K

.

This dialogue is very suitable for a developers or administrators for example,
but it is extremely inappropriate for the end users.

Instead of this dialogue we can show another one, much more user friendly
and understandable for the user:

7

P

a5 Tax Calculator = B8 =

Tax Calculator

Choose:

[LTD Calculate

[PLC
7] LLC

Oiptions

1]

Unexpected Error

ot

An unexpected error has occurred., Please try again. Do you want to send the
technical details to the systern administrator?

448 Fundamentals of Computer Programming with C#

This is the good way to show the error message to the end user. The
message is easy to understand from the user and also contains technical
details that can be used if required but is not visible at the beginning.

It is recommended when exceptions are not caught by anyone (such
exceptions can only be runtime errors) to be caught by a global exception
handler which saves them on the disk and shows user friendly message such
as “An error occurred, please try again later”. It is a good a practice to show
not only a user friendly message but also technical information (stack trace)
available on demand (e.g. through an additional button or link).

Throw Exceptions at the Appropriate Level of
Abstraction!

When we throw our own exceptions we must keep in mind the abstractions in
the context our methods work. For example if our method works with arrays
we can throw IndexOutOfRangeException or NullReferenceException
because our method works at low level and directly operates with the memory
and the array elements. But if our method is doing accumulating of interests
at all accounts in a bank it should not throw IndexOutOfRangeException
because this exception is not from the business area of the banking sector. It
would be normal accumulation of interests in a bank software to throw
InvalidInterestException exception with an appropriate error message
where the original IndexOutOfRangeException exception to be attached.

Let's give another example: we call a method that sorts an array of integers
and throws an exception TransactionAbortedException. This is also an
inappropriate exception just as NullReferenceException was in accumu-
lation of interests in the bank software. That is why we should consider the
abstraction level where our method works when we throw our exception.

If Your Exception Has a Source, Use It!

When we catch an exception and throw a new one with a higher level of
abstraction we should always attach the original exception to it. This way
the user of our code will be able to easily find the exact reason for the error
and the location where it occurred at the first place.

This rule is a special case of more general rule:

& Each exception should carry detailed information about the
problem.

From the rule above many more rules come out: we should have a relevant
error message, the error type should match the problem and the exceptions
should hold its source as inner exception.

Chapter 12. Exception Handling 449

Give a Detailed Descriptive Error Message!

The error message that every exceptions holds is extremely important. In
most cases it is enough to give us information what is the problem. If the
message is not good enough the users of your methods will not be able to
quickly solve the problem.

Let’'s take the following example: we have a method that reads the
applications settings from a file. For example size and position of all windows
in the application and others. There is a problem while reading the settings
file and we receive the following error message:

Error.

Is this enough to find the problem? Obviously not. What should be the
message so it is descriptive enough? Is this one better?

Error reading settings file.

Obviously the message above is better but it is still not good enough. It
explains what the error is but does not tell us what causes it. Let’s suppose
we change the program so it gives the following error information:

Error reading settings file:
C:\Users\Administrator\MyApp\MyApp.settings

This error message is better because it tells us which file caused the problem
(something that would save us time, especially if we are not familiar with the
application and don’t know where it keeps its settings files).

The situation could be even worse - we may not have the source code of the
application and don't have the access to the stack trace (if we have compiled
without debug information). That is why the error message should be even
better. For example like the following:

Error reading settings file:
C:\Users\Administrator\MyApp\MyApp.settings. Number expected at
line 17.

This message fully describes the problem. Obviously we have an error on line
17, in MyApp.settings file, which is in C:\Users\Administrator\MyApp
folder. On this line a number is expected but is not provided. If we open the
file we could quickly find the problem.

Always give adequate, detailed and correct error message
& when throwing exceptions! The user of your code should be

able to tell what and where is the problem and what caused
it when reading the error message.

450 Fundamentals of Computer Programming with C#

Let’s give some examples:

- We have a method that searches for an integer in an array. If it throws
IndexOutOfRangeException it is important to mention the index that
cannot be reached in the error message. For example index 18 when the
length of the array is 7. If we don't know the position we will hardly
understand why we are outside the array.

- We have a method that reads integers from a file. If in the file we have
a row without an integer we should get an error, which explains that at
row 17 for example an integer is expected instead of a string (and prints
the string).

- We have a method that calculates the sum of numeric expression. If we
find an error in the expression the exception should say what error
occurred and at what position. The code that causes the error may use
String.Format(..) to build the error message. Here is an example how
to implement this:

throw new FormatException(
string.Format("Invalid character at position {@}. " +
"Number expected but character '{1}' found.", index, ch));

Error Messages with Wrong Content

Even worse than throwing an exception with not enough information is
throwing one with wrong information. If in the last example we say the error
is at row 3 instead of row 17 this will be misleading and will be worse than
just showing an error and give no details.

& Be careful not to show messages with incorrect content!

Use English for All Exception Messages

Use English for the error messages when throwing an exception. This rule
is a sub-rule of the rule “use English in your entire source code. The reason:
English is the only language that is understood by programmers around the
world. One day your code could be used by foreigners. If you live in France
you probably won't be happy to get error messages in Chinese and vice-
versa, would you?

Note that error messages shown to the end user could be in his native
language, but the error messages in the exceptions should always be in
English. The exceptions are for the developer. The developers around the
world use English. The messages (errors / notifications / warnings) for the
end user are different story. These messages could be in the language which
is best suited for the end-users and may be customized through localization
techniques like resources, embedded resource files and resource strings (see

Chapter 12. Exception Handling 451

http://msdn.microsoft.com/en-us/magazine/cc163609.aspx for additional
information).

Never Ignore the Exceptions You Catch!

Never ignore the exceptions you catch without handling them. Here is an
example what we should not do:

try
{

string fileName = "WrongTextFile.txt";
ReadFile(fileName);

}

catch (Exception e)

1

In the example the exception is caught and ignored. This means that if the file
is missing the program will not read anything and there will not be any error
message. This gives the user wrong impression the file is read when it is in
fact missing. Don't do this!

If we ever need to ignore an exception on purpose we should add a comment,
which will help us when reading the code later. Here is an example:

int number = 0;

try

{
string line = Console.ReadlLine();
number = Int32.Parse(line);

}
catch (Exception)
{
// Incorrect numbers are intentionally considered ©
}

Console.WriteLine("The number is: " + number);

We can improve the code above by using Int32.TryParse(..) or by
initializing the number variable with 0 in the catch block, not outside of it. In
the second case the comment in the code and empty catch block are not
necessary.

Dump the Error Messages in Extreme Cases Only!

Let’s take our method, which is reading the application settings from a file. If
an error occurs it could print it in the console but what will happen with the
calling method? It will suppose that the settings are read correctly.

There is an important concept in programming:

http://msdn.microsoft.com/en-us/magazine/cc163609.aspx

452 Fundamentals of Computer Programming with C#

& A method should either do the work it is created for or throw
an exception. Any other behavior is incorrect!

This is a very important rule that is why we will repeat it and even extend it:

an exception. In case of wrong input the method should

2 A method should either do the work it is created for or throw
throw an exception and should not return a wrong resulit!

We can explain the rule in details: A method is created to do a certain job.
What the method is doing should be clear from its name. If we cannot give an
appropriate name to the method means that it is doing many things and we
should split it so everything is in separate method. If the method cannot do
the work it is created for it should throw an exception. For example if we have
a method for sorting of an array of integers. If the array is empty the method
should either return an empty array or return an error. Wrong input should
cause an exception and not return a wrong result! For example if we try to
take a substring from index 7 to 12 from a string with length 10, it should
cause an exception and not return fewer characters. This is how the
Substring() method in String works.

We will give another example, which confirms the rule that a method should
do the work it is created for or throw an exception. Let’s suppose we copy a
big file from the local disk to an USB flash drive. It could happen so that the
space on the flash drive is not enough and the file cannot be copied. Which of
the following is correct and the program for coping files (for example
Windows Explorer) should do?

The file is not copied and no error message is shown.

The file is partially copied and no error message is shown.

The file is partially copied and error message is shown.

The file is not copied and error message is shown.

From the user point of view the only correct behavior of the program is the
last one: if a problem occurs the file should not be copied partially and an
error message should be shown. We should do the same if we have to write a
method that copy files. It should fully copy the given file or throw an
exception. At the same time it should not leave any traces - it should delete
any partial result if such was created.

Don’t Catch All Exceptions!

A very common mistake with exceptions is to catch all exceptions no matter
what type they are. Here is an example where all exceptions are handled
wrong:

try

Chapter 12. Exception Handling 453

{
}
catch (Exception)
{

}

ReadFile("CorrectTextFile.txt");

Console.WritelLine("File not found.");

In the code we suppose that there is a method ReadFile(), which reads a
text file and returns the content as string. The catch block catches all
exceptions (regardless of their type), not only FileNotFoundException, and
in all cases