
LECTURE NOTE

on

PROGRAMMING IN “C”
COURSE CODE: MCA 101

By

Asst. Professor Mrs Etuari Oram
Asst. Prof. Mr Bighnaraj Naik

 SYLLABUS

Module –I
C Language Fundamentals.
Character set, Identifiers, keyword, data types, Constants and variables, statements,
expression, operators, precedence of operators, Input-output, Assignments, control structures
decision making and branching.

Module -II

Arrays, Functions and Strings: Declaration, manipulation and String – handling
functions, monolithic vs. Modular programs, user defined vs. standard functions, formal vs. actual
arguments, function – category, function prototypes, parameter passing, recursion, and storage classes:
auto, extern, global, static.

Module –III

Pointers, Structures, Unions, File handling:
Pointer variable and its importance, pointer arithmetic, passing parameters, Declaration of structures,
pointer to pointer, pointer to structure, pointer to function, union, dynamic memory allocation, file
managements.

 2 *Under revision

CONTENTS

Module: 1

Lecture 1: Introduction to C

 Lecture 2: Structure of C, compilation, execution

 Lecture 3:character set, identifiers, keywords

 Lecture 4: constants, variables

 Lecture 5: expression, operators

Lecture 6: operators continue…

 Lecture 7: loops: do while, while

 Lecture 8: for loop, break, continue statement

 Lecture 9: control Statements

 Lecture 10: nesting of if else…, if else ladder

Lecture 11: arrays

 Lecture 12: 2-diamensional array

Module: 2

 3 *Under revision

 Lecture 13: String library functions

 Lecture 14: functions, categories

 Lecture 15: functions categories cont..
Lecture 16: Actual arguments and Formal arguments, call by value call by
reference

 Lecture 17:local, global, static variable

 Lecture 18: monolithic vs modular programming, Storage classes

 Lecture 19:storage class cont.., pointer

 Lecture 20: pointer comparison, increment decrement

 Lecture 21: precedence level of pointer, pointer comparison

 Lecture 22: pointer to pointer, pointer to structure

 Lecture 23: pointer initialization, accessing elements

Module: 3

 Lecture 24: size of Structure in, array vs structure, array within structure
Lecture 25: passing structure to function, Nested Structure

 Lecture 26: Union

 Lecture 27: nesting of unions, dynamic memory allocation

Lecture 28: dynamic memory allocation conti…

Lecture 29: dynamic array, file

 Lecture 30: file operation

 Lecture 31: file operation on string

Lecture 32:

 Lecture 33:

 4 *Under revision

 Lecture Note: 1

 Introduction to C

 C is a programming language developed at AT & T’s Bell Laboratories of USA
in 1972. It was designed and written by a man named Dennis Ritchie. In the late
seventies C began to replace the more familiar languages of that time like PL/I,
ALGOL, etc

 ANSI C standard emerged in the early 1980s, this book was split into two
titles: The original was still called Programming in C, and the title that covered
ANSI C was called Programming in ANSI C. This was done because it took
several years for the compiler vendors to release their ANSI C compilers and for
them to become ubiquitous. It was initially designed for programming UNIX
operating system. Now the software tool as well as the C compiler is written in C.
Major parts of popular operating systems like Windows, UNIX, Linux is still
written in C. This is because even today when it comes to performance (speed of
execution) nothing beats C. Moreover, if one is to extend the operating system to
work with new devices one needs to write device driver programs. These
programs are exclusively written in C. C seems so popular is because it is reliable,
simple and easy to use. often heard today is – “C has been already superceded
by languages like C++, C# and Java.

Program

 5 *Under revision

There is a close analogy between learning English language and learning C
language. The classical method of learning English is to first learn the alphabets
used in the language, then learn to combine these alphabets to form words, which
in turn are combined to form sentences and sentences are combined to form
paragraphs. Learning C is similar and easier. Instead of straight-away learning how
to write programs, we must first know what alphabets, numbers and special
symbols are used in C, then how using them constants, variables and keywords are
constructed, and finally how are these combined to form an instruction. A group
of instructions would be combined later on to form a program. So

 a computer program is just a collection of the instructions necessary to solve a
specific problem. The basic operations of a computer system form what is known
as the computer’s instruction set. And the approach or method that is used to solve
the problem is known as an algorithm.

So for as programming language concern these are of two types.

 1) Low level language

 2) High level language

Low level language:

 6 *Under revision

 Low level languages are machine level and assembly level language. In
machine level language computer only understand digital numbers i.e. in the form
of 0 and 1. So, instruction given to the computer is in the form binary digit, which
is difficult to implement instruction in binary code. This type of program is not
portable, difficult to maintain and also error prone. The assembly language is on
other hand modified version of machine level language. Where instructions are
given in English like word as ADD, SUM, MOV etc. It is easy to write and
understand but not understand by the machine. So the translator used here is
assembler to translate into machine level. Although language is bit easier,
programmer has to know low level details related to low level language. In the
assembly level language the data are stored in the computer register, which varies
for different computer. Hence it is not portable.

High level language:

 These languages are machine independent, means it is portable. The language in
this category is Pascal, Cobol, Fortran etc. High level languages are understood by
the machine. So it need to translate by the translator into machine level. A
translator is software which is used to translate high level language as well as low
level language in to machine level language.

 Three types of translator are there:

Compiler

Interpreter

Assembler

 Compiler and interpreter are used to convert the high level language into machine
level language. The program written in high level language is known as source
program and the corresponding machine level language program is called as object
program. Both compiler and interpreter perform the same task but there working is
different. Compiler read the program at-a-time and searches the error and lists
them. If the program is error free then it is converted into object program. When
program size is large then compiler is preferred. Whereas interpreter read only one
line of the source code and convert it to object code. If it check error, statement by
statement and hence of take more time.

 7 *Under revision

Integrated Development Environments (IDE)

The process of editing, compiling, running, and debugging programs is often
managed by a single integrated application known as an Integrated Development
Environment, or IDE for short. An IDE is a windows-based program that allows us
to easily manage large software programs, edit files in windows, and compile, link,
run, and debug programs.

On Mac OS X, CodeWarrior and Xcode are two IDEs that are used by many
programmers. Under Windows, Microsoft Visual Studio is a good example of a
popular IDE. Kylix is a popular IDE for developing applications under Linux.
Most IDEs also support program development in several different programming
languages in addition to C, such as C# and C++.

 8 *Under revision

 Lecture Note: 2

Structure of C Language program

1) Comment line

2) Preprocessor directive

3) Global variable declaration

4) main function()

 {

 Local variables;

 Statements;

 }

 User defined function

 }

}

Comment line

It indicates the purpose of the program. It is represented as

/*……………………………..*/

Comment line is used for increasing the readability of the program. It is useful in
explaining the program and generally used for documentation. It is enclosed within
the decimeters. Comment line can be single or multiple line but should not be
nested. It can be anywhere in the program except inside string constant & character
constant.

Preprocessor Directive:

 9 *Under revision

#include<stdio.h> tells the compiler to include information about the standard
input/output library. It is also used in symbolic constant such as #define PI
3.14(value). The stdio.h (standard input output header file) contains definition
&declaration of system defined function such as printf(), scanf(), pow() etc.
Generally printf() function used to display and scanf() function used to read value

Global Declaration:

This is the section where variable are declared globally so that it can be access by
all the functions used in the program. And it is generally declared outside the
function :

main()

It is the user defined function and every function has one main() function from
where actually program is started and it is encloses within the pair of curly braces.

The main() function can be anywhere in the program but in general practice it is
placed in the first position.

Syntax :

 main()

{

……..

……..

……..

}

The main() function return value when it declared by data type as

 int main()

{

return 0

 10 *Under revision

}

The main function does not return any value when void (means null/empty) as

void main(void) or void main()

{

 printf (“C language”);

}

Output: C language

The program execution start with opening braces and end with closing brace.

And in between the two braces declaration part as well as executable part is
mentioned. And at the end of each line, the semi-colon is given which indicates
statement termination.

/*First c program with return statement*/

#include <stdio.h>

int main (void)

{

printf ("welcome to c Programming language.\n");

return 0;

}

Output: welcome to c programming language.

Steps for Compiling and executing the Programs

A compiler is a software program that analyzes a program developed in a particular
computer language and then translates it into a form that is suitable for execution

 11 *Under revision

on a particular computer system. Figure below shows the steps that are involved in
entering, compiling, and executing a

computer program developed in the C programming language and the typical Unix
commands that would be entered from the command line.

 Step 1: The program that is to be compiled is first typed into a file on the
computer system. There are various conventions that are used for naming files,
typically be any name provided the last two characters are “.c” or file with
extension .c. So, the file name prog1.c might be a valid filename for a C program.
A text editor is usually used to enter the C program into a file. For example, vi is a
popular text editor used on Unix systems. The program that is entered into the file
is known as the source program because it represents the original form of the
program expressed in the C language.

Step 2: After the source program has been entered into a file, then proceed to have
it compiled. The compilation process is initiated by typing a special command on
the system. When this command is entered, the name of the file that contains the
source program must also be specified. For example, under Unix, the command to
initiate program compilation is called cc. If we are using the popular GNU C
compiler, the command we use is gcc.

 Typing the line

 gcc prog1.c or cc prog1.c

In the first step of the compilation process, the compiler examines each program

statement contained in the source program and checks it to ensure that it conforms
to the syntax and semantics of the language. If any mistakes are discovered by the
compiler during this phase, they are reported to the user and the compilation
process ends right there. The errors then have to be corrected in the source program
(with the use of an editor), and the compilation process must be restarted. Typical
errors reported during this phase of compilation might be due to an expression that
has unbalanced parentheses (syntactic error), or due to the use of a variable that is
not “defined” (semantic error).

 12 *Under revision

Step 3: When all the syntactic and semantic errors have been removed from the
program, the compiler then proceeds to take each statement of the program and
translate it into a “lower” form that is equivalent to assembly language program
needed to perform the identical task.

Step 4: After the program has been translated the next step in the compilation
process is to translate the assembly language statements into actual machine
instructions. The assembler takes each assembly language statement and converts it
into a binary format known as object code, which is then written into another file
on the system. This file has the same name as the source file under Unix, with the
last letter an “o” (for object) instead of a “c”.

Step 5: After the program has been translated into object code, it is ready to be
linked. This process is once again performed automatically whenever the cc or gcc
command is issued under Unix. The purpose of the linking phase is to get the
program into a final form for execution on the computer.

 If the program uses other programs that were previously
processed by the compiler, then during this phase the programs are linked together.
Programs that are used from the system’s program library are also searched and
linked together with the object program during this phase.

The process of compiling and linking a program is often called building.

The final linked file, which is in an executable object code format, is stored in
another file on the system, ready to be run or executed. Under Unix, this file is
called a.out by default. Under Windows, the executable file usually has the same
name as the source file, with the c extension replaced by an exe extension.

 13 *Under revision

Step 6: To subsequently execute the program, the command a.out has the effect
of loading the program called a.out into the computer’s memory and initiating its
execution.

When the program is executed, each of the statements of the program is
sequentially executed in turn. If the program requests any data from the user,
known as input, the program temporarily suspends its execution so that the input
can be entered. Or, the program might simply wait for an event, such as a mouse
being clicked, to occur. Results that are displayed by the program, known as
output, appear in a window, sometimes called the console. If the program does not
produce the desired results, it is necessary to go back and reanalyze the program’s
logic. This is known as the debugging phase, during which an attempt is made to
remove all the known problems or bugs from the program. To do this, it will most

 14 *Under revision

likely be necessary to make changes to original source program.

 15 *Under revision

/* Simple program to add two numbers…………………….*/

 16 *Under revision

#include <stdio.h>

int main (void)

{

int v1, v2, sum; //v1,v2,sum are variables and int is data type declared

v1 = 150;

v2 = 25;

sum = v1 + v2;

printf ("The sum of %i and %i is= %i\n", v1, v2, sum);

return 0;

}

Output:

 The sum of 150 and 25 is=175

 Lectu
re Note: 3

 Character set

A character denotes any alphabet, digit or special symbol used to represent
information. Valid alphabets, numbers and special symbols allowed in C are

 17 *Under revision

The alphabets, numbers and special symbols when properly combined form
constants, variables and keywords.

 Identifiers

 Identifiers are user defined word used to name of entities like variables, arrays,
functions, structures etc. Rules for naming identifiers are:

1) name should only consists of alphabets (both upper and lower case), digits
and underscore (_) sign.
2) first characters should be alphabet or underscore
3) name should not be a keyword
4) since C is a case sensitive, the upper case and lower case considered
differently, for example code, Code, CODE etc. are different identifiers.

 5) identifiers are generally given in some meaningful name such as value,
net_salary, age, data etc. An identifier name may be long, some implementation
recognizes only first eight characters, most recognize 31 characters. ANSI
standard compiler recognize 31 characters. Some invalid identifiers are 5cb, int,
res#, avg no etc.

 Keyword

 18 *Under revision

 There are certain words reserved for doing specific task, these words
are known as reserved word or keywords. These words are predefined and always
written in lower case or small letter. These keywords cann’t be used as a variable
name as it assigned with fixed meaning. Some examples are int, short, signed,
unsigned, default, volatile, float, long, double, break, continue, typedef, static,
do, for, union, return, while, do, extern, register, enum, case, goto, struct,
char, auto, const etc.

 data types

Data types refer to an extensive system used for declaring variables or functions of
different types before its use. The type of a variable determines how much space it
occupies in storage and how the bit pattern stored is interpreted. The value of a
variable can be changed any time.

C has the following 4 types of data types

basic built-in data types: int, float, double, char

Enumeration data type: enum

Derived data type: pointer, array, structure, union

Void data type: void

 A variable declared to be of type int can be used to contain integral values
only—that is, values that do not contain decimal places. A variable declared to be
of type float can be used for storing floating- point numbers (values containing
decimal places). The double type is the same as type float, only with roughly twice
the precision. The char data type can be used to store a single character, such as the
letter a, the digit character 6, or a semicolon similarly A variable declared char can
only store character type value.

There are two types of type qualifier in c

 Size qualifier: short, long

Sign qualifier: signed, unsigned

 19 *Under revision

 When the qualifier unsigned is used the number is always positive, and when
signed is used number may be positive or negative. If the sign qualifier is not
mentioned, then by default sign qualifier is assumed. The range of values for
signed data types is less than that of unsigned data type. Because in signed type,
the left most bit is used to represent sign, while in unsigned type this bit is also
used to represent the value. The size and range of the different data types on a 16
bit machine is given below:

Basic data type Data type with type
qualifier

Size
(byte)

Range

char char or signed char
Unsigned char

1
1

-128 to 127
0 to 255

int int or signed int
unsigned int
short int or signed short int
unsigned short int
long int or signed long int
unsigned long int

2
2
1
1
4
4

-32768 to 32767
0 to 65535
-128 to 127
0 to 255
-2147483648 to 2147483647
0 to 4294967295

float float 4 -3.4E-38 to 3.4E+38
double double

Long double
8
10

1.7E-308 to 1.7E+308
3.4E-4932 to 1.1E+4932

 20 *Under revision

 Lecture Note: 4

 Constants

Constant is a any value that cannot be changed during program execution. In C,
any number, single character, or character string is known as a constant. A constant
is an entity that doesn’t change whereas a variable is an entity that may change.
For example, the number 50 represents a constant integer value. The character
string "Programming in C is fun.\n" is an example of a constant character string. C
constants can be divided into two major categories:
Primary Constants
Secondary Constants

These constants are further categorized as

 Numeric constant
 Character constant
 String constant

 21 *Under revision

Numeric constant: Numeric constant consists of digits. It required minimum size
of 2 bytes and max 4 bytes. It may be positive or negative but by default sign is
always positive. No comma or space is allowed within the numeric constant and it
must have at least 1 digit. The allowable range for integer constants is -32768 to
32767. Truly speaking the range of an Integer constant depends upon the compiler.
For a 16-bit compiler like Turbo C or Turbo C++ the range is –32768 to 32767.
For a 32-bit compiler the range would be even greater. Mean by a 16-bit or a 32-
bit compiler, what range of an Integer constant has to do with the type of compiler.

It is categorized a integer constant and real constant. An integer constants are
whole number which have no decimal point. Types of integer constants are:
 Decimal constant: 0-------9(base 10)
 Octal constant: 0-------7(base 8)
 Hexa decimal constant: 0----9, A------F(base 16)

 In decimal constant first digit should not be zero unlike octal constant first digit
must be zero(as 076, 0127) and in hexadecimal constant first two digit should be
0x/ 0X (such as 0x24, 0x87A). By default type of integer constant is integer but if
the value of integer constant is exceeds range then value represented by integer
type is taken to be unsigned integer or long integer. It can also be explicitly
mention integer and unsigned integer type by suffix l/L and u/U.

Real constant is also called floating point constant. To construct real constant we
must follow the rule of ,
 -real constant must have at least one digit.
 -It must have a decimal point.
 -It could be either positive or negative.
 -Default sign is positive.
 -No commas or blanks are allowed within a real constant. Ex.: +325.34

426.0
-32.76

To express small/large real constant exponent(scientific) form is used where
number is written in mantissa and exponent form separated by e/E. Exponent can
be positive or negative integer but mantissa can be real/integer type, for example
3.6*105=3.6e+5. By default type of floating point constant is double, it can also be
explicitly defined it by suffix of f/F.

Character constant

 22 *Under revision

 Character constant represented as a single character enclosed within a single
quote. These can be single digit, single special symbol or white spaces such as
‘9’,’c’,’$’, ‘ ’ etc. Every character constant has a unique integer like value in
machine’s character code as if machine using ASCII (American standard code for
information interchange). Some numeric value associated with each upper and
lower case alphabets and decimal integers are as:

 A------------ Z ASCII value (65-90)

 a-------------z ASCII value (97-122)

 0-------------9 ASCII value (48-59)

 ; ASCII value (59)

 String constant

 Set of characters are called string and when sequence of characters are
enclosed within a double quote (it may be combination of all kind of symbols) is a
string constant. String constant has zero, one or more than one character and at the
end of the string null character(\0) is automatically placed by compiler. Some
examples are “,sarathina” , “908”, “3”,” ”, “A” etc. In C although same characters
are enclosed within single and double quotes it represents different meaning such
as “A” and ‘A’ are different because first one is string attached with null character
at the end but second one is character constant with its corresponding ASCII value
is 65.

Symbolic constant
Symbolic constant is a name that substitute for a sequence of characters and,
characters may be numeric, character or string constant. These constant are
generally defined at the beginning of the program as

 #define name value , here name generally written in
upper case for example

 23 *Under revision

 #define MAX 10

 #define CH ‘b’

 #define NAME “sony”

 Variables

Variable is a data name which is used to store some data value or symbolic names
for storing program
computations and results. The value of the variable can be change during the
execution. The rule for naming the variables is same as the naming identifier.
Before used in the program it must be declared. Declaration of variables specify its
name, data types and range of the value that variables can store depends upon its
data types.

Syntax:

 int a;

char c;

float f;

Variable initialization

 When we assign any initial value to variable during the declaration, is called
initialization of variables. When variable is declared but contain undefined value
then it is called garbage value. The variable is initialized with the assignment
operator such as

 Data type variable name=constant;

 Example: int a=20;

 Or int a;

 a=20;

 24 *Under revision

statements

 Lecture Note: 5

Expressions

An expression is a combination of variables, constants, operators and function call.
It can be arithmetic, logical and relational for example:-

 int z= x+y // arithmatic expression

 a>b //relational

 a==b // logical
 func(a, b) // function call
Expressions consisting entirely of constant values are called constant expressions.
So, the expression
121 + 17 - 110
is a constant expression because each of the terms of the expression is a constant
value. But if i were declared to be an integer variable, the expression
180 + 2 – j
would not represent a constant expression.

 Operator

This is a symbol use to perform some operation on variables, operands or with the
constant. Some operator required 2 operand to perform operation or Some
required single operation.

Several operators are there those are, arithmetic operator, assignment, increment ,
decrement, logical, conditional, comma, size of , bitwise and others.

 1. Arithmatic Operator

This operator used for numeric calculation. These are of either Unary arithmetic
operator, Binary arithmetic operator. Where Unary arithmetic operator required

 25 *Under revision

only one operand such as +,-, ++, --,!, tiled. And these operators are addition,
subtraction, multiplication, division. Binary arithmetic operator on other hand
required two operand and its operators are +(addition), -(subtraction),
*(multiplication), /(division), %(modulus). But modulus cannot applied with
floating point operand as well as there are no exponent operator in c.

Unary (+) and Unary (-) is different from addition and subtraction.

When both the operand are integer then it is called integer arithmetic and the result
is always integer. When both the operand are floating point then it is called floating
arithmetic and when operand is of integer and floating point then it is called mix
type or mixed mode arithmetic . And the result is in float type.

 2.Assignment Operator

A value can be stored in a variable with the use of assignment operator. The
assignment operator(=) is used in assignment statement and assignment expression.
Operand on the left hand side should be variable and the operand on the right hand
side should be variable or constant or any expression. When variable on the left
hand side is occur on the right hand side then we can avoid by writing the
compound statement. For example,

 int x= y;

 int Sum=x+y+z;

 3.Increment and Decrement

The Unary operator ++, --, is used as increment and decrement which acts upon
single operand. Increment operator increases the value of variable by one
.Similarly decrement operator decrease the value of the variable by one. And these
operator can only used with the variable, but cann't use with expression and
constant as ++6 or ++(x+y+z).

 26 *Under revision

It again categories into prefix post fix . In the prefix the value of the variable is
incremented 1st, then the new value is used, where as in postfix the operator is
written after the operand(such as m++,m--).

EXAMPLE

let y=12;

z= ++y;

y= y+1;

z= y;

Similarly in the postfix increment and decrement operator is used in the operation .
And then increment and decrement is perform.

EXAMPLE

let x= 5;

y= x++;

y=x;

x= x+1;

 4.Relational Operator

It is use to compared value of two expressions depending on their relation.
Expression that contain relational operator is called relational expression.

Here the value is assign according to true or false value.

a.(a>=b) || (b>20)

b.(b>a) && (e>b)

c. 0(b!=7)

 5. Conditional Operator

 27 *Under revision

It sometimes called as ternary operator. Since it required three expressions as
operand and it is represented as (? , :).

SYNTAX

exp1 ? exp2 :exp3

Here exp1 is first evaluated. It is true then value return will be exp2 . If false then
exp3.

EXAMPLE

void main()

{

 int a=10, b=2

 int s= (a>b) ? a:b;

 printf(“value is:%d”);

 }

Output:

 Value is:10

 6. Comma Operator

 Comma operator is use to permit different expression to be appear in a situation
where only one expression would be used. All the expression are separator by
comma and are evaluated from left to right.

EXAMPLE

int i, j, k, l;

for(i=1,j=2;i<=5;j<=10;i++;j++)

 28 *Under revision

 7. Sizeof Operator

Size of operator is a Unary operator, which gives size of operand in terms of byte
that occupied in the memory. An operand may be variable, constant or data type
qualifier.

Generally it is used make portable program(program that can be run on different
machine) . It determines the length of entities, arrays and structures when their size
are not known to the programmer. It is also use to allocate size of memory
dynamically during execution of the program.

EXAMPLE

main()

{

int sum;

float f;

printf("%d%d" ,size of(f), size of (sum));

printf("%d%d", size of(235 L), size of(A));

}

 29 *Under revision

 Lecture Note: 6

8. Bitwise Operator

Bitwise operator permit programmer to access and manipulate of data at bit level.
Various bitwise operator enlisted are

 one's complement (~)

bitwise AND (&)

bitwise OR (|)

 bitwise XOR (^)

left shift (<<)

right shift (>>)

These operator can operate on integer and character value but not on float and
double. In bitwise operator the function showbits() function is used to display the
binary representation of any integer or character value.

In one's complement all 0 changes to 1 and all 1 changes to 0. In the bitwise OR its
value would obtaining by 0 to 2 bits.

As the bitwise OR operator is used to set on a particular bit in a number. Bitwise
AND the logical AND.

It operate on 2operands and operands are compared on bit by bit basic. And hence
both the operands are of same type.

Logical or Boolean Operator

Operator used with one or more operand and return either value zero (for false) or
one (for true). The operand may be constant, variables or expressions. And the
expression that combines two or more expressions is termed as logical expression.
C has three logical operators :

 30 *Under revision

 Operator Meaning

 && AND
 || OR
 ! NOT
Where logical NOT is a unary operator and other two are binary operator. Logical
AND gives result true if both the conditions are true, otherwise result is false. And
logial OR gives result false if both the condition false, otherwise result is true.

Precedence and associativity of operators

Operators Description Precedence level Associativity

() function call 1 left to right

[] array subscript

 arrow operator
. dot operator

+ unary plus 2 right to left
 - unary minus
++ increment
 - - decrement
! logical not
~ 1’s complement
* indirection
& address
(data type) type cast
sizeof size in byte
 * multiplication 3 left to right
/ division
% modulus
--
+ addition 4 left to right

 31 *Under revision

 - subtraction
--
<< left shift 5 left to right
>> right shift
--
<= less than equal to 6 left to right
>= greater than equal to
< less than
 > greater than
--
== equal to 7 left to right
!= not equal to
--
& bitwise AND 8 left to right
--
^ bitwise XOR 9 left to right

| bitwise OR 10 left to right
&& logical AND 11
|| logical OR 12
?: conditional operator 13
--
=, *=, /=, %= assignment operator 14 right to left
&=, ^=, <<=
>>=

, comma operator 15
--

 Lecture Note: 7

 Control Statement

 Generally C program statement is executed in a order in which they appear
in the program. But sometimes we use decision making condition for execution
only a part of program, that is called control statement. Control statement defined

 32 *Under revision

how the control is transferred from one part to the other part of the program. There
are several control statement like if...else, switch, while, do....while, for loop,
break, continue, goto etc.

Loops in C

Loop:-it is a block of statement that performs set of instructions. In loops

Repeating particular portion of the program either a specified number of time or
until a particular no of condition is being satisfied.

There are three types of loops in c

1.While loop

2.do while loop

3.for loop

While loop

Syntax:-

while(condition)

{

Statement 1;

Statement 2;

}

Or while(test condition)

Statement;

 33 *Under revision

The test condition may be any expression .when we want to do something a fixed
no of times but not known about the number of iteration, in a program then while
loop is used.

Here first condition is checked if, it is true body of the loop is executed else, If
condition is false control will be come out of loop.

Example:-

/* wap to print 5 times welcome to C” */

#include<stdio.h>

void main()

{

int p=1;

While(p<=5)

{

printf(“Welcome to C\n”);

P=p+1;

}

}

Output: Welcome to C

 Welcome to C

 Welcome to C

 Welcome to C

 Welcome to C

 34 *Under revision

So as long as condition remains true statements within the body of while loop will
get executed repeatedly.

do while loop

This (do while loop) statement is also used for looping. The body of this loop may
contain single statement or block of statement. The syntax for writing this
statement is:

Syntax:-

Do

{

Statement;

}

while(condition);

Example:-

#include<stdio.h>

void main()

{

int X=4;

 do

{

 Printf(“%d”,X);

X=X+1;

 35 *Under revision

 }whie(X<=10);

 Printf(“ ”);

}

Output: 4 5 6 7 8 9 10

 Here firstly statement inside body is executed then condition is checked. If the
condition is true again body of loop is executed and this process continue until the
condition becomes false. Unlike while loop semicolon is placed at the end of
while.

 There is minor difference between while and do while loop, while loop test the
condition before executing any of the statement of loop. Whereas do while loop
test condition after having executed the statement at least one within the loop.

If initial condition is false while loop would not executed it’s statement on other
hand do while loop executed it’s statement at least once even If condition fails for
first time. It means do while loop always executes at least once. Notes:

Do while loop used rarely when we want to execute a loop at least once.

 Lecture Note: 8

for loop

 In a program, for loop is generally used when number of iteration are known in
advance. The body of the loop can be single statement or multiple statements. Its
syntax for writing is:

Syntax:-

 36 *Under revision

for(exp1;exp2;exp3)

{

Statement;

}

Or

for(initialized counter; test counter; update counter)

{

Statement;

}

Here exp1 is an initialization expression, exp2 is test expression or condition and
exp3 is an update expression. Expression 1 is executed only once when loop
started and used to initialize the loop variables. Condition expression generally
uses relational and logical operators. And updation part executed only when after
body of the loop is executed.

Example:-

void main()

{

int i;

for(i=1;i<10;i++)

{

 37 *Under revision

 Printf(“ %d ”, i);

 }

}

Output:-1 2 3 4 5 6 7 8 9

Nesting of loop

When a loop written inside the body of another loop then, it is known as nesting of
loop. Any type of loop can be nested in any type such as while, do while, for. For
example nesting of for loop can be represented as :

void main()

{

int i,j;

for(i=0;i<2;i++)

 for(j=0;j<5; j++)

printf(“%d %d”, i, j);

 }

Output: i=0

 j=0 1 2 3 4

 i=1

 j=0 1 2 3 4

 38 *Under revision

Break statement(break)

 Sometimes it becomes necessary to come out of the loop even before loop
condition becomes false then break statement is used. Break statement is used
inside loop and switch statements. It cause immediate exit from that loop in which
it appears and it is generally written with condition. It is written with the keyword
as break. When break statement is encountered loop is terminated and control is
transferred to the statement, immediately after loop or situation where we want to
jump out of the loop instantly without waiting to get back to conditional state.

When break is encountered inside any loop, control automatically passes to the
first statement after the loop. This break statement is usually associated with if
statement.

Example :

void main()

{

int j=0;

for(;j<6;j++)

if(j==4)

break;

}

Output:

0 1 2 3

Continue statement (key word continue)

 39 *Under revision

Continue statement is used for continuing next iteration of loop after skipping
some statement of loop. When it encountered control automatically passes
through the beginning of the loop. It is usually associated with the if statement. It is
useful when we want to continue the program without executing any part of the
program.

The difference between break and continue is, when the break encountered loop is
terminated and it transfer to the next statement and when continue is encounter
control come back to the beginning position.

In while and do while loop after continue statement control transfer to the test
condition and then loop continue where as in, for loop after continue control
transferred to the updating expression and condition is tested.

Example:-

void main()

{

int n;

for(n=2; n<=9; n++)

{

if(n==4)

continue;

printf(“%d”, n);

 }

}

Printf(“out of loop”);

}

Output: 2 3 5 6 7 8 9 out of loop

 40 *Under revision

 Lecture Note: 9

if statement

Statement execute set of command like when condition is true and its syntax is

 If (condition)

 Statement;

The statement is executed only when condition is true. If the if statement body is
consists of several statement then better to use pair of curly braces. Here in case
condition is false then compiler skip the line within the if block.

void main()

{

 int n;

 printf (“ enter a number:”);

 scanf(“%d”,&n);

 If (n>10)

 Printf(“ number is grater”);

 }

Output:

 Enter a number:12

 Number is greater

 41 *Under revision

if…..else ... Statement

it is bidirectional conditional control statement that contains one condition & two
possible action. Condition may be true or false, where non-zero value regarded as
true & zero value regarded as false. If condition are satisfy true, then a single or
block of statement executed otherwise another single or block of statement is
executed.

Its syntax is:-

 if (condition)

{

Statement1;

 Statement2;

}

 else

 {

 Statement1;

 Statement2;

 }

Else statement cannot be used without if or no multiple else statement are allowed
within one if statement. It means there must be a if statement with in an else
statement.

Example:-

/* To check a number is eve or odd */

 42 *Under revision

 void main()

{

 int n;

 printf (“enter a number:”);

 sacnf (“%d”, &n);

 If (n%2==0)

 printf (“even number”);

else

 printf(“odd number”);

}

Output: enter a number:121

odd number

 Lecture Note: 10

Nesting of if …else

When there are another if else statement in if-block or else-block, then it is called
nesting of if-else statement.

Syntax is :-

 if (condition)

 {

 43 *Under revision

 If (condition)

 Statement1;

 else

 statement2;

 }

 Statement3;

If….else LADDER

In this type of nesting there is an if else statement in every else part except the last
part. If condition is false control pass to block where condition is again checked
with its if statement.

Syntax is :-

 if (condition)

 Statement1;

 else if (condition)

 statement2;

 else if (condition)

 statement3;

 else

 statement4;

This process continue until there is no if statement in the last block. if one of the
condition is satisfy the condition other nested “else if” would not executed.

 44 *Under revision

But it has disadvantage over if else statement that, in if else statement whenever
the condition is true, other condition are not checked. While in this case, all
condition are checked.

 Lecture Note: 11

 ARRAY

Array is the collection of similar data types or collection of similar entity stored in
contiguous memory location. Array of character is a string. Each data item of an
array is called an element. And each element is unique and located in separated
memory location. Each of elements of an array share a variable but each element
having different index no. known as subscript.

An array can be a single dimensional or multi-dimensional and number of
subscripts determines its dimension. And number of subscript is always starts with
zero. One dimensional array is known as vector and two dimensional arrays are
known as matrix.

ADVANTAGES: array variable can store more than one value at a time where
other variable can store one value at a time.

Example:

 int arr[100];

 45 *Under revision

 int mark[100];

 DECLARATION OF AN ARRAY :

 Its syntax is :

 Data type array name [size];

 int arr[100];

 int mark[100];

int a[5]={10,20,30,100,5}

The declaration of an array tells the compiler that, the data type, name of the array,
size of the array and for each element it occupies memory space. Like for int data
type, it occupies 2 bytes for each element and for float it occupies 4 byte for each
element etc. The size of the array operates the number of elements that can be
stored in an array and it may be a int constant or constant int expression.

We can represent individual array as :

 int ar[5];

 ar[0], ar[1], ar[2], ar[3], ar[4];

Symbolic constant can also be used to specify the size of the array as:

 #define SIZE 10;

INITIALIZATION OF AN ARRAY:

After declaration element of local array has garbage value. If it is global or static
array then it will be automatically initialize with zero. An explicitly it can be
initialize that

 Data type array name [size] = {value1, value2, value3…}

Example:

 in ar[5]={20,60,90, 100,120}

 46 *Under revision

Array subscript always start from zero which is known as lower bound and upper
value is known as upper bound and the last subscript value is one less than the size
of array. Subscript can be an expression i.e. integer value. It can be any integer,
integer constant, integer variable, integer expression or return value from
functional call that yield integer value.

So if i & j are not variable then the valid subscript are
 ar [i*7],ar[i*i],ar[i++],ar[3];

 The array elements are standing in continuous memory locations and the
amount of storage required for hold the element depend in its size & type.

 Total size in byte for 1D array is:

 Total bytes=size of (data type) * size of array.

 Example : if an array declared is:

 int [20];

 Total byte= 2 * 20 =40 byte.

ACCESSING OF ARRAY ELEMENT:

/*Write a program to input values into an array and display them*/

#include<stdio.h>

int main()

{

int arr[5],i;

for(i=0;i<5;i++)

{

printf(“enter a value for arr[%d] \n”,i);

scanf(“%d”,&arr[i]);

}

 47 *Under revision

printf(“the array elements are: \n”);

for (i=0;i<5;i++)

{

printf(“%d\t”,arr[i]);

}

return 0;

}

OUTPUT:

Enter a value for arr[0] = 12

Enter a value for arr[1] =45

Enter a value for arr[2] =59

Enter a value for arr[3] =98

Enter a value for arr[4] =21

The array elements are 12 45 59 98 21

Example: From the above example value stored in an array are and occupy its
memory addresses 2000, 2002, 2004, 2006, 2008 respectively.

 a[0]=12, a[1]=45, a[2]=59, a[3]=98, a[4]=21

 ar[0] ar[1] ar[2] ar[3] ar[4]

12 45 59 98 21
 2000 2002 2004 2006 2008

Example 2:

 48 *Under revision

 /* Write a program to add 10 array elements */

 #include<stdio.h>

 void main()

{

 int i ;

int arr [10];

int sum=o;

for (i=0; i<=9; i++)

{

printf (“enter the %d element \n”, i+1);

scanf (“%d”, &arr[i]);

}

for (i=0; i<=9; i++)

{

sum = sum + a[i];

}

printf (“the sum of 10 array elements is %d”, sum);

}

OUTPUT:

Enter a value for arr[0] =5

Enter a value for arr[1] =10

Enter a value for arr[2] =15

Enter a value for arr[3] =20

 49 *Under revision

Enter a value for arr[4] =25

Enter a value for arr[5] =30

Enter a value for arr[6] =35

Enter a value for arr[7] =40

Enter a value for arr[8] =45

Enter a value for arr[9] =50

Sum = 275

 while initializing a single dimensional array, it is optional to specify the size of
array. If the size is omitted during initialization then the compiler assumes the size
of array equal to the number of initializers.

For example:-

 int marks[]={99,78,50,45,67,89};

If during the initialization of the number the initializers is less then size of array,
then all the remaining elements of array are assigned value zero .

For example:-

 int marks[5]={99,78};

Here the size of the array is 5 while there are only two initializers so After this
initialization, the value of the rest elements are automatically occupied by zeros
such as

Marks[0]=99 , Marks[1]=78 , Marks[2]=0, Marks[3]=0, Marks[4]=0

Again if we initialize an array like

int array[100]={0};

Then the all the element of the array will be initialized to zero. If the number of
initializers is more than the size given in brackets then the compiler will show an
error.

 50 *Under revision

For example:-

 int arr[5]={1,2,3,4,5,6,7,8};//error

we cannot copy all the elements of an array to another array by simply assigning it
to the other array like, by initializing or declaring as

 int a[5] ={1,2,3,4,5};

 int b[5];

 b=a;//not valid

(note:-here we will have to copy all the elements of array one by one, using for
loop.)

Single dimensional arrays and functions

/*program to pass array elements to a function*/

#include<stdio.h>

void main()

{

int arr[10],i;

printf(“enter the array elements\n”);

for(i=0;i<10;i++)

{

scanf(“%d”,&arr[i]);

check(arr[i]);

}

}

 51 *Under revision

void check(int num)

{

if(num%2=0)

{

printf(”%d is even \n”,num);

}

else

{

printf(”%d is odd \n”,num);

}

}

 Lecture Note: 12

Two dimensional arrays

Two dimensional array is known as matrix. The array declaration in both the array
i.e.in single dimensional array single subscript is used and in two dimensional
array two subscripts are is used.

Its syntax is

Data-type array name[row][column];

Or we can say 2-d array is a collection of 1-D array placed one below the other.

 52 *Under revision

Total no. of elements in 2-D array is calculated as row*column

Example:-

 int a[2][3];

 Total no of elements=row*column is 2*3 =6

It means the matrix consist of 2 rows and 3 columns

For example:-

 20 2 7

8 3 15

Positions of 2-D array elements in an array are as below

00 01 02

10 11 12

a [0][0] a [0][0] a [0][0] a [0][0] a [0][0] a [0][0]

20 2 7 8 3 15

 2000 2002 2004 2006 2008

Accessing 2-d array /processing 2-d arrays

For processing 2-d array, we use two nested for loops. The outer for loop
corresponds to the row and the inner for loop corresponds to the column.

For example

int a[4][5];

for reading value:-

 53 *Under revision

for(i=0;i<4;i++)

{

for(j=0;j<5;j++)

{

scanf(“%d”,&a[i][j]);

}

}

For displaying value:-

for(i=0;i<4;i++)

{

for(j=0;j<5;j++)

{

printf(“%d”,a[i][j]);

}

}

Initialization of 2-d array:

2-D array can be initialized in a way similar to that of 1-D array. for example:-

int mat[4][3]={11,12,13,14,15,16,17,18,19,20,21,22};

These values are assigned to the elements row wise, so the values of
elements after this initialization are

Mat[0][0]=11, Mat[1][0]=14, Mat[2][0]=17 Mat[3][0]=20

Mat[0][1]=12, Mat[1][1]=15, Mat[2][1]=18 Mat[3][1]=21

Mat[0][2]=13, Mat[1][2]=16, Mat[2][2]=19 Mat[3][2]=22

 54 *Under revision

While initializing we can group the elements row wise using inner braces.

for example:-

 int mat[4][3]={{11,12,13},{14,15,16},{17,18,19},{20,21,22}};

And while initializing , it is necessary to mention the 2nd dimension where 1st

dimension is optional.

int mat[][3];

int mat[2][3];

int mat[][];

int mat[2][]; invalid

If we initialize an array as

 int mat[4][3]={{11},{12,13},{14,15,16},{17}};

Then the compiler will assume its all rest value as 0,which are not defined.

Mat[0][0]=11, Mat[1][0]=12, Mat[2][0]=14, Mat[3][0]=17

Mat[0][1]=0, Mat[1][1]=13, Mat[2][1]=15 Mat[3][1]=0

Mat[0][2]=0, Mat[1][2]=0, Mat[2][2]=16, Mat[3][2]=0

In memory map whether it is 1-D or 2-D, elements are stored in one
contiguous manner.

We can also give the size of the 2-D array by using symbolic constant

Such as

 #define ROW 2;

 55 *Under revision

 #define COLUMN 3;

 int mat[ROW][COLUMN];

String

Array of character is called a string. It is always terminated by the NULL
character. String is a one dimensional array of character.

We can initialize the string as

char name[]={‘j’,’o’,’h’,’n’,’\o’};

Here each character occupies 1 byte of memory and last character is always NULL
character. Where ’\o’ and 0 (zero) are not same, where ASCII value of ‘\o’ is 0
and ASCII value of 0 is 48. Array elements of character array are also stored in
contiguous memory allocation.

From the above we can represent as;

 J o h N ‘\o’

 The terminating NULL is important because it is only the way that the
function that work with string can know, where string end.

String can also be initialized as;

char name[]=”John”;

Here the NULL character is not necessary and the compiler will assume it
automatically.

String constant (string literal)

 56 *Under revision

A string constant is a set of character that enclosed within the double quotes
and is also called a literal. Whenever a string constant is written anywhere in a
program it is stored somewhere in a memory as an array of characters terminated
by a NULL character (‘\o’).

Example – “m”

 “Tajmahal”

 “My age is %d and height is %f\n”

The string constant itself becomes a pointer to the first character in array.

Example-char crr[20]=”Taj mahal”;

 It is called base address.

 Lecture Note: 13

String library function

There are several string library functions used to manipulate string and the
prototypes for these functions are in header file “string.h”. Several string functions
are

strlen()

This function return the length of the string. i.e. the number of characters in the
string excluding the terminating NULL character.

It accepts a single argument which is pointer to the first character of the string.

 57 *Under revision

1000 1001 1002 1003 1004 1005 1006 1007 100 1009
 T a j M A H a l \o

For example-

strlen(“suresh”);

It return the value 6.

In array version to calculate legnth:-

int str(char str[])

{

int i=0;

while(str[i]!=’\o’)

{

i++;

}

return i;

}

Example:-

#include<stdio.h>

 #include<string.h>

void main()

{

char str[50];

print(”Enter a string:”);

 58 *Under revision

gets(str);

printf(“Length of the string is %d\n”,strlen(str));

}

Output:

Enter a string: C in Depth

Length of the string is 8

strcmp()

This function is used to compare two strings. If the two string match, strcmp()
return a value 0 otherwise it return a non-zero value. It compare the strings
character by character and the comparison stops when the end of the string is
reached or the corresponding characters in the two string are not same.

strcmp(s1,s2)

return a value:

<0 when s1<s2

=0 when s1=s2

>0 when s1>s2

The exact value returned in case of dissimilar strings is not defined. We only know
that if s1<s2 then a negative value will be returned and if s1>s2 then a positive
value will be returned.

For example:

 59 *Under revision

/*String comparison…………………….*/

#include<stdio.h>

#include<string.h>

void main()

{

char str1[10],str2[10];

printf(“Enter two strings:”);

gets(str1);

gets(str2);

if(strcmp(str1,str2)==0)

{

printf(“String are same\n”);

}

else

{

printf(“String are not same\n”);

}

}

strcpy()

 60 *Under revision

This function is used to copying one string to another string. The function
strcpy(str1,str2) copies str2 to str1 including the NULL character. Here str2 is the
source string and str1 is the destination string.

The old content of the destination string str1 are lost. The function returns a pointer
to destination string str1.

Example:-

#include<stdio.h>

#include<string.h>

void main()

{

char str1[10],str2[10];

printf(“Enter a string:”);

scanf(“%s”,str2);

strcpy(str1,str2);

printf(“First string:%s\t\tSecond string:%s\n”,str1,str2);

strcpy(str,”Delhi”);

strcpy(str2,”Bangalore”);

printf(“First string :%s\t\tSecond string:%s”,str1,str2);

strcat()

 61 *Under revision

This function is used to append a copy of a string at the end of the other string. If
the first string is “”Purva” and second string is “Belmont” then after using this
function the string becomes “PusvaBelmont”. The NULL character from str1 is
moved and str2 is added at the end of str1. The 2nd string str2 remains unaffected.
A pointer to the first string str1 is returned by the function.

Example:-

#include<stdio.h>

#include<string.h>

void main()

{

char str1[20],str[20];

printf(“Enter two strings:”);

gets(str1);

gets(str2);

strcat(str1,str2);

printf(“First string:%s\t second string:%s\n”,str1,str2);

strcat(str1,”-one”);

printf(“Now first string is %s\n”,str1);

}

Output

Enter two strings: data

Base

 62 *Under revision

First string: database second string: database

` Now first string is: database-one

 Lecture Note: 14

 FUNCTION

A function is a self contained block of codes or sub programs with a set of
statements that perform some specific task or coherent task when it is called.

It is something like to hiring a person to do some specific task like, every six
months servicing a bike and hand over to it.

Any ‘C’ program contain at least one function i.e main().

There are basically two types of function those are

 1. Library function

 2. User defined function

The user defined functions defined by the user according to its requirement

System defined function can’t be modified, it can only read and can be used.
These function are supplied with every C compiler

Source of these library function are pre complied and only object code get used by
the user by linking to the code by linker

Here in system defined function description:

 Function definition : predefined, precompiled, stored in the library

 63 *Under revision

 Function declaration : In header file with or function prototype.

 Function call : By the programmer

User defined function

Syntax:-

 Return type name of function (type 1 arg 1, type2 arg2, type3 arg3)

 Return type function name argument list of the above syntax

So when user gets his own function three thing he has to know, these are.

Function declaration

Function definition

Function call

These three things are represented like

 int function(int, int, int); /*function declaration*/

 main() /* calling function*/

 {

 function(arg1,arg2,arg3);

 }

 int function(type 1 arg 1,type2 arg2,type3, arg3) /*function definition/*

 {

 Local variable declaration;

 Statement;

 Return value;

 }

 64 *Under revision

Function declaration:-
 Function declaration is also known as function prototype. It inform the compiler
about three thing, those are name of the function, number and type of argument
received by the function and the type of value returned by the function.

While declaring the name of the argument is optional and the function prototype
always terminated by the semicolon.

Function definition:-

Function definition consists of the whole description and code of the function.

It tells about what function is doing what are its inputs and what are its out put

It consists of two parts function header and function body

Syntax:-

 return type function(type 1 arg1, type2 arg2, type3 arg3) /*function header*/

 {

 Local variable declaration;

 Statement 1;

 Statement 2;

 Return value

 }

The return type denotes the type of the value that function will return and it is
optional and if it is omitted, it is assumed to be int by default. The body of the
function is the compound statements or block which consists of local variable
declaration statement and optional return statement.

 65 *Under revision

The local variable declared inside a function is local to that function only. It can’t
be used anywhere in the program and its existence is only within this function.

The arguments of the function definition are known as formal arguments.

Function Call

When the function get called by the calling function then that is called, function
call. The compiler execute these functions when the semicolon is followed by the
function name.

Example:-

 function(arg1,arg2,arg3);

The argument that are used inside the function call are called actual argument

Ex:-

 int S=sum(a, b); //actual arguments

Actual argument

The arguments which are mentioned or used inside the function call is knows as
actual argument and these are the original values and copy of these are actually
sent to the called function

It can be written as constant, expression or any function call like

 Function (x);

 Function (20, 30);

 Function (a*b, c*d);

 Function(2,3,sum(a, b));

Formal Arguments

The arguments which are mentioned in function definition are called formal
arguments or dummy arguments.

 66 *Under revision

These arguments are used to just hold the copied of the values that are sent by the
calling function through the function call.

These arguments are like other local variables which are created when the function
call starts and destroyed when the function ends.

The basic difference between the formal argument and the actual argument are

 1) The formal argument are declared inside the parenthesis where as the
local variable declared at the beginning of the function block.

2). The formal argument are automatically initialized when the copy of actual
arguments are passed while other local variable are assigned values through the
statements.

Order number and type of actual arguments in the function call should be match
with the order number and type of the formal arguments.

Return type

It is used to return value to the calling function. It can be used in two way as

 return

 Or return(expression);

 Ex:- return (a);

 return (a*b);

 return (a*b+c);

Here the 1st return statement used to terminate the function without returning any
value

Ex:- /*summation of two values*/

 int sum (int a1, int a2);

 main()

 67 *Under revision

 {

 int a,b;

 printf(“enter two no”);

 scanf(“%d%d”,&a,&b);

 int S=sum(a,b);

 printf(“summation is = %d”,s);

 }

 int sum(intx1,int y1)

 {

 int z=x1+y1;

 Return z;

 }

Advantage of function

By using function large and difficult program can be divided in to sub programs
and solved. When we want to perform some task repeatedly or some code is to be
used more than once at different place in the program, then function avoids this
repeatition or rewritten over and over.

Due to reducing size, modular function it is easy to modify and test

Notes:-

C program is a collection of one or more function.

A function is get called when function is followed by the semicolon.

A function is defined when a function name followed by a pair of curly braces

 68 *Under revision

Any function can be called by another function even main() can be called by other
function.

main()
{

function1()

}

function1()

{

Statement;

function2;

}

function 2()

{

}

So every function in a program must be called directly or indirectly by the main()
function. A function can be called any number of times.

A function can call itself again and again and this process is called recursion.

A function can be called from other function but a function can’t be defined in
another function

 Lecture Note: 15
 Category of Function based on argument and return type

 i) Function with no argument & no return value

 69 *Under revision

 Function that have no argument and no return value is written as:-

 void function(void);

 main()

 {

 void function()

 {

 Statement;

 }

 Example:-

 void me();

 main()

 {

 me();

 printf(“in main”);

 }

 void me()

 {

 printf(“come on”);

 }

Output: come on

 inn main

 70 *Under revision

ii) Function with no argument but return value

 Syntax:-

 int fun(void);

 main()

 {

 int r;

 r=fun();

 }

 int fun()

 {

 reurn(exp);

 }

 Example:-

 int sum();

 main()

 {

 int b=sum();

 printf(“entered %d\n, b”);

 }

 int sum()

 {

 int a,b,s;

 71 *Under revision

 s=a+b;

 return s;

 }

Here called function is independent and are initialized. The values aren’t passed by
the calling function .Here the calling function and called function are
communicated partly with each other.

 Lecture Note: 16

iii) function with argument but no return value

Here the function have argument so the calling function send data to the called
function but called function dose n’t return value.

 Syntax:-

 void fun (int,int);

 main()

 {

 int (a,b);

 }

 void fun(int x, int y);

 {

 Statement;

 }

 72 *Under revision

Here the result obtained by the called function.

 iv) function with argument and return value

Here the calling function has the argument to pass to the called function and the
called function returned value to the calling function.

 Syntax:-

 fun(int,int);

 main()

 {

 int r=fun(a,b);

 }

 int fun(intx,inty)

 {

 return(exp);

 }

 Example:

 main()

 {

 int fun(int);

 int a,num;

 printf(“enter value:\n”);

 scanf(“%d”,&a)

 73 *Under revision

 int num=fun(a);

 }

 int fun(int x)

 {

 ++x;

 return x;

 }

Call by value and call by reference

There are two way through which we can pass the arguments to the function such
as call by value and call by reference.

1. Call by value

In the call by value copy of the actual argument is passed to the formal argument
and the operation is done on formal argument.

When the function is called by ‘call by value’ method, it doesn’t affect content of
the actual argument.

Changes made to formal argument are local to block of called function so when the
control back to calling function the changes made is vanish.

 Example:-

 main()

 {

 int x,y;

 change(int,int);

 74 *Under revision

 printf(“enter two values:\n”);

 scanf(“%d%d”,&x,&y);

 change(x ,y);

printf(“value of x=%d and y=%d\n”,x ,y);

 }

change(int a,int b);

 {

int k;

k=a;

a=b;

b=k;

 }

Output: enter two values: 12

 23

Value of x=12 and y=23

2. Call by reference

Instead of passing the value of variable, address or reference is passed and the
function operate on address of the variable rather than value.

Here formal argument is alter to the actual argument, it means formal arguments
calls the actual arguments.

Example:-

void main()

 75 *Under revision

{

int a,b;

change(int *,int*);

printf(“enter two values:\n”);

scanf(“%d%d”,&a,&b);

change(&a,&b);

printf(“after changing two value of a=%d and b=%d\n:”a,b);

}

change(int *a, int *b)

 {

int k;

 k=*a;

*a=*b;

 *b= k;

printf(“value in this function a=%d and b=%d\n”,*a,*b);

}

Output: enter two values: 12

32

Value in this function a=32 and b=12

After changing two value of a=32 and b=12

So here instead of passing value of the variable, directly passing address of the
variables. Formal argument directly access the value and swapping is possible even
after calling a function.

 76 *Under revision

 Lecture Note: 17

Local, Global and Static variable

Local variable:-

 variables that are defined with in a body of function or block. The local
variables can be used only in that function or block in which they are declared.
Same variables may be used in different functions such as

function()

{

 int a,b;

function 1();

}

function2 ()

{

int a=0;

b=20;

}

Global variable:-

 77 *Under revision

the variables that are defined outside of the function is called global variable. All
functions in the program can access and modify global variables. Global variables
are automatically initialized at the time of initialization.

Example:

#include<stdio.h>

void function(void);

void function1(void);

void function2(void);

int a, b=20;

void main()

{

printf(“inside main a=%d,b=%d \n”,a,b);

function();

function1();

function2();

}

 function()

{

Prinf(“inside function a=%d,b=%d\n”,a,b);

}

function 1()

{

 78 *Under revision

prinf(“inside function a=%d,b=%d\n”,a,b);

}

function 2()

{

prinf(“inside function a=%d,b=%d\n”,a,);

}

Static variables: static variables are declared by writing the key word static.

-syntax:-

static data type variable name;

static int a;

-the static variables initialized only once and it retain between the function call. If
its variable is not initialized, then it is automatically initialized to zero.

Example:

void fun1(void);

void fun2(void);

void main()

{

fun1();

fun2();

}

void fun1()

{

 79 *Under revision

int a=10, static int b=2;

printf(“a=%d, b=%d”,a,b);

a++;

b++;

}

 Output:a= 10 b= 2

 a=10 b= 3

 Recursion

 When function calls itself (inside function body) again and again then it is
called as recursive function. In recursion calling function and called function are
same. It is powerful technique of writing complicated algorithm in easiest way.
According to recursion problem is defined in term of itself. Here statement with in
body of the function calls the same function and same times it is called as circular
definition. In other words recursion is the process of defining something in form of
itself.

 Syntax:

main ()

{

rec(); /*function call*/

rec();

rec();

Ex:- /*calculate factorial of a no.using recursion*/

int fact(int);

void main()

 80 *Under revision

{

int num;

printf(“enter a number”);

scanf(“%d”,&num);

f=fact(num);

printf(“factorial is =%d\n”f);

}

fact (int num)

{

If (num==0||num==1)

return 1;

else

return(num*fact(num-1));

}

 Lecture Note: 18

Monolithic Programming

The program which contains a single function for the large program is called
monolithic program. In monolithic program not divided the program, it is huge
long pieces of code that jump back and forth doing all the tasks like single thread
of execution, the program requires. Problem arise in monolithic program is that,
when the program size increases it leads inconvenience and difficult to maintain

 81 *Under revision

http://www.answers.com/Q/What_is_a_monolithic_program

such as testing, debugging etc. Many disadvantages of monolithic programming
are:

 1. Difficult to check error on large programs size.

 2. Difficult to maintain because of huge size.

 3. Code can be specific to a particular problem. i.e. it cannot be reused.

 Many early languages (FORTRAN, COBOL, BASIC, C) required one huge
workspace with labelled areas that may does specific tasks but are not isolated.

Modular Programming

The process of subdividing a computer program into separate sub-programs such
as functions and subroutines is called Modular programming. Modular
programming sometimes also called as structured programming. It
enables multiple programmers to divide up the large program and debug
pieces of program independently and tested.

. Then the linker will link all these modules to form the complete program. This
principle dividing software up into parts, or modules, where a module can be
changed, replaced, or removed, with minimal effect on the other software it works
with. Segmenting the program into modules clearly defined functions, it can
determine the source of program errors more easily. Breaking down program
functions into modules, where each of which accomplishes one function and
contains all the source code and variables needed to accomplish that function.
Modular program is the solution to the problem of very large program that are
difficult to debug, test and maintain. A program module may be rewritten while its
inputs and outputs remain the same. The person making a change may only
understand a small portion of the original program.

Object-oriented programming (OOP) is compatible with the modular programming
concept to a large extent.

. , Less code has to be written that makes shorter.

 82 *Under revision

• A single procedure can be developed for reuse, eliminating the need to
retype the code many times.

• Programs can be designed more easily because a small team deals with only
a small part of the entire code.

• Modular programming allows many programmers to collaborate on the same
application.

• The code is stored across multiple files.
• Code is short, simple and easy to understand and modify, make simple to

figure out how the program is operate and reduce likely hood of bugs.
• Errors can easily be identified, as they are localized to a subroutine or

function or isolated to specific module.
• The same code can be reused in many applications.
• The scoping of variables and functions can easily be controlled.

Disadvantages
However it may takes longer to develop the program using this technique.

Storage Classes

Storage class in c language is a specifier which tells the compiler where and how to
store variables, its initial value and scope of the variables in a program. Or
attributes of variable is known as storage class or in compiler point of view a
variable identify some physical location within a computer where its string of bits
value can be stored is known as storage class.

The kind of location in the computer, where value can be stored is either in the
memory or in the register. There are various storage class which determined, in
which of the two location value would be stored.

Syntax of declaring storage classes is:-

 storageclass datatype variable name;

There are four types of storage classes and all are keywords:-

1) Automatic (auto)

 83 *Under revision

2) Register (register)

3) Static (static)

4) External (extern)

 Examples:-

 auto float x; or float x;

 extern int x;

 register char c;

 static int y;

Compiler assume different storage class based on:-

1) Storage class:- tells us about storage place(where variable would be stored).

2) Intial value :-what would be the initial value of the variable.

If initial value not assigned, then what value taken by uninitialized variable.

 3) Scope of the variable:-what would be the value of the variable of the program.

 4) Life time :- It is the time between the creation and distribution of a variable
or how long would variable exists.

1. Automatic storage class

The keyword used to declare automatic storage class is auto.

Its features:-

Storage-memory location

Default initial value:-unpredictable value or garbage value.

 84 *Under revision

Scope:-local to the block or function in which variable is defined.

Life time:-Till the control remains within function or block in which it is defined.
It terminates when function is released.

The variable without any storage class specifier is called automatic variable.

Example:-

main()

{

auto int i;

printf(“i=”,i);

}

 Lecture Note: 19

 2. Register storage class

The keyword used to declare this storage class is register.

The features are:-

Storage:-CPU register.

Default initial value :-garbage value

Scope :-local to the function or block in which it is defined.

Life time :-till controls remains within function or blocks in which it is defined.

Register variable don’t have memory address so we can’t apply address operator
on it. CPU register generally of 16 bits or 2 bytes. So we can apply storage classes
only for integers, characters, pointer type.

 85 *Under revision

Variable stored in register storage class always access faster than,which is always
stored in the memory. But to store all variable in the CPU register is not possible
because of limitation of the register pair.

And when variable is used at many places like loop counter, then it is better to
declare it as register class.

Example:-

main()

{

register int i;

for(i=1;i<=12;i++)

printf(“%d”,i);

}

 3 Static storage class

The keyword used to declare static storage class is static.

Its feature are:-

Storage:-memory location

Default initial value:- zero

Scope :- local to the block or function in which it is defined.

Life time:- value of the variable persist or remain between different function call.

Example:-

main()

 86 *Under revision

{

reduce();

reduce();

reduce ();

}

reduce()

{

static int x=10;

printf(“%d”,x);

x++;

}

Output:-10,11,12

External storage classes

The keyword used for this class is extern.

Features are:-

Storage:- memory area

Default initial value:-zero

Scope :- global

Life time:-as long as program execution remains it retains.

 87 *Under revision

Declaration does not create variables, only it refer that already been created at
somewhere else. So, memory is not allocated at a time of declaration and the
external variables are declared at outside of all the function.

 Example:-

 int i,j;

 void main()

 {

 printf(“i=%d”,i);

 receive();

 receive ();

 reduce();

 reduce();

 }

 receive()

 {

 i=i+2;

 printf(“on increase i=%d”,i);

 }

 reduce()

 {

 i=i-1;

 printf(“on reduce i=%d”,i);

 }

 88 *Under revision

 Output:-i=0,2,4,3,2.

When there is large program i.e divided into several files, then external variable
should be preferred. External variable extend the scope of variable.

 Lecture Note: 20

POINTER

A pointer is a variable that store memory address or that contains address of
another variable where addresses are the location number always contains whole
number. So, pointer contain always the whole number. It is called pointer because
it points to a particular location in memory by storing address of that location.

 Syntax-

 Data type *pointer name;

Here * before pointer indicate the compiler that variable declared as a pointer.

e.g.

 int *p1; //pointer to integer type

 float *p2; //pointer to float type

 char *p3; //pointer to character type

When pointer declared, it contains garbage value i.e. it may point any value in the
memory.

 89 *Under revision

Two operators are used in the pointer i.e. address operator(&) and indirection
operator or dereference operator (*).

Indirection operator gives the values stored at a particular address.

Address operator cannot be used in any constant or any expression.

Example:

 void main()

 {

 int i=105;

 int *p;

 p=&i;

t

printf(“value of i=%d”,*p);

printf(“value of i=%d”,*/&i);

printf(“address of i=%d”,&i);

printf(“address of i=%d”,p);

printf(“address of p=%u”,&p);

}

Pointer Expression

Pointer assignment

int i=10;

int *p=&i;//value assigning to the pointer

 90 *Under revision

Here declaration tells the compiler that P will be used to store the address of
integer value or in other word P is a pointer to an integer and *p reads the value at
the address contain in p.

P++;

printf(“value of p=%d”);

We can assign value of 1 pointer variable to other when their base type and data
type is same or both the pointer points to the same variable as in the array.

 Int *p1,*p2;

P1=&a[1];

P2=&a[3];

We can assign constant 0 to a pointer of any type for that symbolic constant
‘NULL’ is used such as

 *p=NULL;

It means pointer doesn’t point to any valid memory location.

Pointer Arithmetic

Pointer arithmetic is different from ordinary arithmetic and it is perform relative to
the data type(base type of a pointer).

Example:-

If integer pointer contain address of 2000 on incrementing we get address of 2002
instead of 2001, because, size of the integer is of 2 bytes.

Note:-

When we move a pointer, somewhere else in memory by incrementing or
decrement or adding or subtracting integer, it is not necessary that, pointer still
pointer to a variable of same data, because, memory allocation to the variable are
done by the compiler.

 91 *Under revision

But in case of array it is possible, since there data are stored in a consecutive
manner.

Ex:-

void main()

{

static int a[]={20,30,105,82,97,72,66,102};

int *p,*p1;

P=&a[1];

P1=&a[6];

printf(“%d”,*p1-*p);

printf(“%d”,p1-p);

}

Arithmetic operation never perform on pointer are:

 addition, multiplication and division of two pointer.

 multiplication between the pointer by any number.

 division of pointer by any number

-add of float or double value to the pointer.

Operation performed in pointer are:-

/* Addition of a number through pointer */

Example

int i=100;

int *p;

 92 *Under revision

p=&i;

p=p+2;

p=p+3;

p=p+9;

ii /* Subtraction of a number from a pointer’*/

Ex:-

int i=22;

*p1=&a;

p1=p1-10;

p1=p1-2;

iii- Subtraction of one pointer to another is possible when pointer variable point to
an element of same type such as an array.

Ex:-

in tar[]={2,3,4,5,6,7};

int *ptr1,*ptr1;

ptr1=&a[3]; //2000+4

ptr2=&a[6]; //2000+6

 Lecture Note: 21

 93 *Under revision

Precedence of dereference (*) Operator and increment operator and
decrement operator

The precedence level of difference operator increment or decrement operator
is same and their associatively from right to left.

Example :-

int x=25;

int *p=&x;

Let us calculate int y=*p++;

Equivalent to *(p++)

Since the operator associate from right to left, increment operator will applied to
the pointer p.

 i) int y=*p++; equivalent to *(p++)

 p =p++ or p=p+1

ii) *++p;→*(++p)→p=p+1

 y=*p

iii) int y=++*p

equivalent to ++(*p)

p=p+1 then *p

iv) y=(*p)++→equivalent to *p++

 y=*p then

 P=p+1 ;

 Since it is postfix increment the value of p.

Pointer Comparison

 94 *Under revision

Pointer variable can be compared when both variable, object of same data type
and it is useful when both pointers variable points to element of same array.

Moreover pointer variable are compared with zero which is usually expressed as
null, so several operators are used for comparison like the relational operator.

==,!=,<=,<,>,>=, can be used with pointer. Equal and not equal operators used to
compare two pointer should finding whether they contain same address or not and
they will equal only if are null or contains address of same variable.

Ex:-

 void main()

{

static int arr[]={20,25,15,27,105,96}

int *x,*y;

x=&a[5];

y=&(a+5);

if(x==y)

printf(“same”);

else

printf(“not”);

}

 Lecture Note: 22

 95 *Under revision

Pointer to pointer

Addition of pointer variable stored in some other variable is called pointer to
pointer variable.

Or

Pointer within another pointer is called pointer to pointer.

Syntax:-

 Data type **p;

 int x=22;

 int *p=&x;

 int **p1=&p;

printf(“value of x=%d”,x);

printf(“value of x=%d”,*p);

printf(“value of x=%d”,*&x);

printf(“value of x=%d”,**p1);

printf(“value of p=%u”,&p);

printf(“address of p=%u”,p1);

printf(“address of x=%u”,p);

printf(“address of p1=%u”,&p1);

printf(“value of p=%u”,p);

printf(“value of p=%u”,&x);

 p1

 96 *Under revision

P 2000

X 1000

22

 3000

Pointer vs array

Example :-

 void main()

{

static char arr[]=”Rama”;

char*p=”Rama”;

printf(“%s%s”, arr, p);

In the above example, at the first time printf(), print the same value array and
pointer.

Here array arr, as pointer to character and p act as a pointer to array of
character . When we are trying to increase the value of arr it would give the error
because its known to compiler about an array and its base address which is always
printed to base address is known as constant pointer and the base address of array
which is not allowed by the compiler.

printf(“size of (p)”,size of (ar));

size of (p) 2/4 bytes

size of(ar) 5 byes

 97 *Under revision

Sructure

It is the collection of dissimilar data types or heterogenous data types grouped
together. It means the data types may or may not be of same type.

Structure declaration-

struct tagname

{

Data type member1;

Data type member2;

Data type member3;

………

………

Data type member n;

};

OR

struct

{

Data type member1;

Data type member2;

 98 *Under revision

Data type member3;

………

………

Data type member n;

};

OR

struct tagname

{

struct element 1;

struct element 2;

struct element 3;

………

………

struct element n;

};

Structure variable declaration;

struct student

{

int age;

char name[20];

char branch[20];

 99 *Under revision

}; struct student s;

Initialization of structure variable-

Like primary variables structure variables can also be initialized when they are
declared. Structure templates can be defined locally or globally. If it is local it can
be used within that function. If it is global it can be used by all other functions of
the program.

We cant initialize structure members while defining the structure

struct student

{

int age=20;

char name[20]=”sona”;

}s1;

The above is invalid.

A structure can be initialized as

struct student

{

int age,roll;

char name[20];

} struct student s1={16,101,”sona”};

 struct student s2={17,102,”rupa”};

If initialiser is less than no.of structure variable, automatically rest values are taken
as zero.

 100 *Under revision

Accessing structure elements-

Dot operator is used to access the structure elements. Its associativety is from left
to right.

structure variable ;

s1.name[];

s1.roll;

s1.age;

Elements of structure are stored in contiguous memory locations. Value of
structure variable can be assigned to another structure variable of same type using
assignment operator.

Example:

#include<stdio.h>

#include<conio.h>

void main()

{

int roll, age;

char branch;

} s1,s2;

printf(“\n enter roll, age, branch=”);

scanf(“%d %d %c”, &s1.roll, &s1.age, &s1.branch);

s2.roll=s1.roll;

printf(“ students details=\n”);

printf(“%d %d %c”, s1.roll, s1.age, s1.branch);

printf(“%d”, s2.roll);

 101 *Under revision

}

Unary, relational, arithmetic, bitwise operators are not allowed within structure
variables.

 Lecture Note:24

Size of structure-

Size of structure can be found out using sizeof() operator with structure variable
name or tag name with keyword.

sizeof(struct student); or

sizeof(s1);

sizeof(s2);

Size of structure is different in different machines. So size of whole structure may
not be equal to sum of size of its members.

Array of structures

When database of any element is used in huge amount, we prefer Array of
structures.

Example: suppose we want to maintain data base of 200 students, Array of
structures is used.

#include<stdio.h>

#include<string.h>

struct student

{

 102 *Under revision

char name[30];

char branch[25];

int roll;

};

void main()

{

struct student s[200];

int i;

s[i].roll=i+1;

printf("\nEnter information of students:");

for(i=0;i<200;i++)

{

printf("\nEnter the roll no:%d\n",s[i].roll);

printf("\nEnter the name:");

scanf("%s",s[i].name);

printf("\nEnter the branch:");

scanf("%s",s[i].branch);

printf("\n");

}

printf("\nDisplaying information of students:\n\n");

for(i=0;i<200;i++)

{

printf("\n\nInformation for roll no%d:\n",i+1);

 103 *Under revision

printf("\nName:");

puts(s[i].name);

printf("\nBranch:");

puts(s[i].branch);

}

}

In Array of structures each element of array is of structure type as in above
example.

Array within structures

struct student

{

char name[30];

int roll,age,marks[5];

}; struct student s[200];

We can also initialize using same syntax as in array.

Nested structure

When a structure is within another structure, it is called Nested structure. A
structure variable can be a member of another structure and it is represented as

struct student

 104 *Under revision

{

element 1;

element 2;

………

………

struct student1

{

member 1;

member 2;

}variable 1;

……….

……….

element n;

}variable 2;

It is possible to define structure outside & declare its variable inside other
structure.

struct date

{

int date,month;

};

struct student

{

 105 *Under revision

 char nm[20];

int roll;

struct date d;

}; struct student s1;

 struct student s2,s3;

Nested structure may also be initialized at the time of declaration like in above
example.

struct student s={“name”,200, {date, month}};

 {“ram”,201, {12,11}};

Nesting of structure within itself is not valid. Nesting of structure can be
extended to any level.

struct time

{

int hr,min;

};

struct day

{

int date,month;

struct time t1;

};

struct student

 106 *Under revision

{

char nm[20];

struct day d;

}stud1, stud2, stud3;

 Lecture Note: 25

Passing structure elements to function

We can pass each element of the structure through function but passing individual
element is difficult when number of structure element increases. To overcome this,
we use to pass the whole structure through function instead of passing individual
element.

#include<stdio.h>

#include<string.h>

void main()

{

struct student

{

char name[30];

char branch[25];

int roll;

}struct student s;

printf(“\n enter name=”);

 107 *Under revision

gets(s.name);

printf("\nEnter roll:");

scanf("%d",&s.roll);

printf("\nEnter branch:");

gets(s.branch);

display(name,roll,branch);

}

display(char name, int roll, char branch)

{

printf(“\n name=%s,\n roll=%d, \n branch=%s”, s.name, s.roll. s.branch);

}

Passing entire structure to function

#include<stdio.h>

#include<string.h>

struct student

{

char name[30];

int age,roll;

};

display(struct student); //passing entire structure

void main()

 108 *Under revision

{

 struct student s1={”sona”,16,101 };

 struct student s2={”rupa”,17,102 };

display(s1);

display(s2);

}

display(struct student s)

{

printf(“\n name=%s, \n age=%d ,\n roll=%d”, s.name, s.age, s.roll);

}

Output: name=sona

 roll=16

 Lecture Note: 26

 UNION

Union is derived data type contains collection of different data type or dissimilar
elements. All definition declaration of union variable and accessing member is
similar to structure, but instead of keyword struct the keyword union is used, the
main difference between union and structure is

 109 *Under revision

 Each member of structure occupy the memory location, but in the unions
members share memory. Union is used for saving memory and concept is useful
when it is not necessary to use all members of union at a time.

Where union offers a memory treated as variable of one type on one occasion
where (struct), it read number of different variables stored at different place of
memory.

Syntax of union:

union student

{

datatype member1;

datatype member2;

};

Like structure variable, union variable can be declared with definition or separately
such as

union union name

{

Datatype member1;

}var1;

Example:- union student s;

Union members can also be accessed by the dot operator with union variable and if
we have pointer to union then member can be accessed by using (arrow) operator
as with structure.

 110 *Under revision

Example:- struct student

struct student

{

int i;

char ch[10];

};struct student s;

Here datatype/member structure occupy 12 byte of location is memory, where as in
the union side it occupy only 10 byte.

 Lecture Note:27

Nested of Union

When one union is inside the another union it is called nested of union.

Example:-

union a

{

int i;

int age;

};

union b

 111 *Under revision

{

char name[10];

union a aa;

}; union b bb;

There can also be union inside structure or structure in union.

Example:-

 void main()

 {

 struct a

 {

int i;

char ch[20];

};

struct b

{

int i;

char d[10];

};

union z

{

struct a a1;

struct b b1;

 112 *Under revision

}; union z z1;

z1.b1.j=20;

z1.a1.i=10;

z1.a1.ch[10]= “ i“;

z1.b1.d[0]=”j “;

printf(“ “);

Dynamic memory Allocation

The process of allocating memory at the time of execution or at the runtime, is
called dynamic memory location.

Two types of problem may occur in static memory allocation.

If number of values to be stored is less than the size of memory, there would be
wastage of memory.

If we would want to store more values by increase in size during the execution on
assigned size then it fails.

Allocation and release of memory space can be done with the help of some library
function called dynamic memory allocation function. These library function are
called as dynamic memory allocation function. These library function prototype
are found in the header file, “alloc.h” where it has defined.

Function take memory from memory area is called heap and release when not
required.

Pointer has important role in the dynamic memory allocation to allocate memory.

malloc():

 113 *Under revision

This function use to allocate memory during run time, its declaration is
void*malloc(size);

malloc ()

 returns the pointer to the 1st byte and allocate memory, and its return type is void,
which can be type cast such as:

int *p=(datatype*)malloc(size)

If memory location is successful, it returns the address of the memory chunk that
was allocated and it returns null on unsuccessful and from the above declaration a
pointer of type(datatype) and size in byte.

And datatype pointer used to typecast the pointer returned by malloc and this
typecasting is necessary since, malloc() by default returns a pointer to void.

Example int*p=(int*)malloc(10);

So, from the above pointer p, allocated IO contigious memory space address of 1st

byte and is stored in the variable.

We can also use, the size of operator to specify the the size, such as
p=(int)malloc(5*size of int) Here, 5 is the no. of data.

Moreover , it returns null, if no sufficient memory available , we should always
check the malloc return such as, if(p==null)

printf(“not sufficient memory”);

Example:

/*calculate the average of mark*/

void main()

{

int n , avg,i,*p,sum=0;

 114 *Under revision

printf("enter the no. of marks ”);

scanf(“%d”,&n);

p=(int *)malloc(n*size(int));

if(p==null)

printf(“not sufficient”);

exit();

}

for(i=0;i<n;i++)

scanf(“%d”,(p+i));

for(i=0;i<n;i++)

Printf(“%d”,*(p+i));

sum=sum+*p;

avg=sum/n;

printf(“avg=%d”,avg);

 Lecture Note: 28

calloc()

Similar to malloc only difference is that calloc function use to allocate multiple
block of memory .

two arguments are there

1st argument specify number of blocks

 115 *Under revision

2nd argument specify size of each block.

Example:-

 int *p= (int*) calloc(5, 2);

int*p=(int *)calloc(5, size of (int));

Another difference between malloc and calloc is by default memory allocated by
malloc contains garbage value, where as memory allocated by calloc is initialised
by zero(but this initialisation) is not reliable.

realloc()

The function realloc use to change the size of the memory block and it alter the
size of the memory block without loosing the old data, it is called reallocation of
memory.

It takes two argument such as;

int *ptr=(int *)malloc(size);

int*p=(int *)realloc(ptr, new size);

The new size allocated may be larger or smaller.

If new size is larger than the old size, then old data is not lost and newly allocated
bytes are uninitialized. If old address is not sufficient then starting address
contained in pointer may be changed and this reallocation function moves content
of old block into the new block and data on the old block is not lost.

Example:

#include<stdio.h>

#include<alloc.h>

void main()

int i,*p;

 116 *Under revision

p=(int*)malloc(5*size of (int));

if(p==null)

{

printf(“space not available”);

exit();

printf(“enter 5 integer”);

for(i=0;i<5;i++)

{

scanf(“%d”,(p+i));

int*ptr=(int*)realloc(9*size of (int));

if(ptr==null)

{

printf(“not available”);

exit();

}

printf(“enter 4 more integer”);

for(i=5;i<9;i++)

scanf(“%d”,(p+i));

for(i=0;i<9;i++)

 printf(“%d”,*(p+i));

}

free()

 117 *Under revision

Function free() is used to release space allocated dynamically, the memory
released by free() is made available to heap again. It can be used for further
purpose.

Syntax for free declaration .

void(*ptr)

Or

free(p)

When program is terminated, memory released automatically by the operating
system. Even we don’t free the memory, it doesn’t give error, thus lead to memory
leak.

We can’t free the memory, those didn’t allocated.

 Lecture Note: 29

Dynamic array

Array is the example where memory is organized in contiguous way, in the
dynamic memory allocation function used such as malloc(), calloc(), realloc()
always made up of contiguous way and as usual we can access the element in two
ways as:

Subscript notation

Pointer notation

Example:

 118 *Under revision

#include<stdio.h>

#include<alloc.h>

void main()

{

printf(“enter the no.of values”);

scanf(“%d”,&n);

p=(int*)malloc(n*size of int);

If(p==null)

printf(“not available memory”);

exit();

}

for(i=0;i<n;i++)

{

printf(“enter an integer”);

scanf(“%d”,&p[i]);

for(i=0;i<n;i++)

{

printf(“%d”,p[i]);

}

}

File handling

 119 *Under revision

File: the file is a permanent storage medium in which we can store the data
permanently.

Types of file can be handled

we can handle three type of file as

(1) sequential file

(2) random access file

(3) binary file

File Operation

opening a file:

Before performing any type of operation, a file must be opened and for this
fopen() function is used.

syntax:

file-pointer=fopen(“FILE NAME ”,”Mode of open”);

example:

 FILE *fp=fopen(“ar.c”,”r”);

If fopen() unable to open a file than it will return NULL to the file pointer.

File-pointer: The file pointer is a pointer variable which can be store the address
of a special file that means it is based upon the file pointer a file gets opened.

Declaration of a file pointer:-

FILE* var;

Modes of open

The file can be open in three different ways as

 120 *Under revision

Read mode ’ r’/rt

Write mode ’w’/wt

Appened Mode ’a’/at

Reading a character from a file

getc() is used to read a character into a file

Syntax:

character_variable=getc(file_ptr);

Writing acharacter into a file

putc() is used to write a character into a file

puts(character-var,file-ptr);

 ClOSING A FILE

fclose() function close a file.

fclose(file-ptr);

fcloseall () is used to close all the opened file at a time

 File Operation

 The following file operation carried out the file

 (1)creation of a new file

 (3)writing a file

 (4)closing a file

 121 *Under revision

Before performing any type of operation we must have to open the file.c, language
communicate with file using A new type called file pointer.

Operation with fopen()

File pointer=fopen(“FILE NAME”,”mode of open”);

If fopen() unable to open a file then it will return NULL to the file-pointer.

 Lecture Note: 30

Reading and writing a characters from/to a file

fgetc() is used for reading a character from the file

 Syntax:

 character variable= fgetc(file pointer);

fputc() is used to writing a character to a file

Syntax:

 fputc(character,file_pointer);

 122 *Under revision

/*Program to copy a file to another*/

#include<stdio.h>

void main()

{

FILE *fs,*fd;

char ch;

If(fs=fopen(“scr.txt”,”r”)==0)

{

printf(“sorry….The source file cannot be opened”);

return;

}

If(fd=fopen(“dest.txt”,”w”)==0)

{

printf(“Sorry…..The destination file cannot be opened”);

fclose(fs);

return;

}

while(ch=fgets(fs)!=EOF)

fputc(ch,fd);

fcloseall();

}

 123 *Under revision

 Reading and writing a string from/to a file

 getw() is used for reading a string from the file

Syntax:

 gets(file pointer);

putw() is used to writing a character to a file

Syntax:

 fputs(integer,file_pointer);

#include<stdio.h>

#include<stdlib.h>

void main()

{

FILE *fp;

int word;

/*place the word in a file*/

fp=fopen(“dgt.txt”,”wb”);

If(fp==NULL)

{

printf(“Error opening file”);

exit(1);

}

word=94;

putw(word,fp);

If(ferror(fp))

 124 *Under revision

printf(“Error writing to file\n”);

else

printf(“Successful write\n”);

fclose(fp);

/*reopen the file*/

fp=fopen(“dgt.txt”,”rb”);

If(fp==NULL)

{

printf(“Error opening file”);

exit(1);

}

/*extract the word*/

word=getw(fp);

If(ferror(fp))

printf(“Error reading file\n”);

else

printf(“Successful read:word=%d\n”,word);

/*clean up*/

fclose(fp);

}

 Lecture Note: 31

 125 *Under revision

Reading and writing a string from/to a file

fgets() is used for reading a string from the file

Syntax:

 fgets(string, length, file pointer);

fputs() is used to writing a character to a file

Syntax:

 fputs(string,file_pointer);

#include<string.h>

#include<stdio.h>

void main(void)

{

FILE*stream;

char string[]=”This is a test”;

char msg[20];

/*open a file for update*/

stream=fopen(“DUMMY.FIL”,”w+”);

/*write a string into the file*/

fwrite(string,strlen(string),1,stream);

/*seek to the start of the file*/

fseek(stream,0,SEEK_SET);

 126 *Under revision

/*read a string from the file*/

fgets(msg,strlen(string)+1,stream);

/*display the string*/

printf(“%s”,msg);

fclose(stream);

}

 BOOKS:

1 E.Balagurusamy “Programming in C”. Tata McGraw Hill

2 Y. Kanetkar “Let Us C”. BPB publication

3 Ashok N. Kamthane “Programming with ANSI and TURBO C”. Pearson
Education

4 Programming in C, a complete introduction to the programming language,
Stephan G. Kocham, third edition

5 C in Depth, S.K Srivastava and Deepali Srivastava

 127 *Under revision

	Modular Programming
	The process of subdividing a computer program into separate sub-programs such as functions and subroutines is called Modular programming. Modular programming sometimes also called as structured programming. It enables multiple programmers to divide up the large program and debug pieces of program independently and tested.
	Object-oriented programming (OOP) is compatible with the modular programming concept to a large extent.

