

PDF conversion courtesy of www.appsdissected.com

Welcome to Swift

PDF conversion courtesy of www.appsdissected.com

About Swift

Swift is a fantastic way to write software, whether it’s for phones,
desktops, servers, or anything else that runs code. It’s a safe, fast,
and interactive programming language that combines the best in
modern language thinking with wisdom from the wider Apple
engineering culture and the diverse contributions from its open-
source community. The compiler is optimized for performance and
the language is optimized for development, without compromising on
either.

Swift is friendly to new programmers. It’s an industrial-quality
programming language that’s as expressive and enjoyable as a
scripting language. Writing Swift code in a playground lets you
experiment with code and see the results immediately, without the
overhead of building and running an app.

Swift defines away large classes of common programming errors by
adopting modern programming patterns:

Variables are always initialized before use.

Array indices are checked for out-of-bounds errors.

Integers are checked for overflow.

Optionals ensure that nil values are handled explicitly.

Memory is managed automatically.

Error handling allows controlled recovery from unexpected
failures.

Swift code is compiled and optimized to get the most out of modern
hardware. The syntax and standard library have been designed
based on the guiding principle that the obvious way to write your code

PDF conversion courtesy of www.appsdissected.com

should also perform the best. Its combination of safety and speed
make Swift an excellent choice for everything from “Hello, world!” to
an entire operating system.

Swift combines powerful type inference and pattern matching with a
modern, lightweight syntax, allowing complex ideas to be expressed
in a clear and concise manner. As a result, code is not just easier to
write, but easier to read and maintain as well.

Swift has been years in the making, and it continues to evolve with
new features and capabilities. Our goals for Swift are ambitious. We
can’t wait to see what you create with it.

PDF conversion courtesy of www.appsdissected.com

Version Compatibility

This book describes Swift 5.7, the default version of Swift that’s
included in Xcode 14. You can use Xcode 14 to build targets that are
written in either Swift 5.7, Swift 4.2, or Swift 4.

When you use Xcode 14 to build Swift 4 and Swift 4.2 code, most
Swift 5.7 functionality is available. That said, the following changes
are available only to code that uses Swift 5.7 or later:

Functions that return an opaque type require the Swift 5.1
runtime.

The try? expression doesn’t introduce an extra level of
optionality to expressions that already return optionals.

Large integer literal initialization expressions are inferred to be of
the correct integer type. For example,
UInt64(0xffff_ffff_ffff_ffff) evaluates to the correct value
rather than overflowing.

Concurrency requires Swift 5.7 or later, and a version of the Swift
standard library that provides the corresponding concurrency types.
On Apple platforms, set a deployment target of at least iOS 15,
macOS 12, tvOS 15, or watchOS 8.0.

A target written in Swift 5.7 can depend on a target that’s written in
Swift 4.2 or Swift 4, and vice versa. This means, if you have a large
project that’s divided into multiple frameworks, you can migrate your
code from Swift 4 to Swift 5.7 one framework at a time.

PDF conversion courtesy of www.appsdissected.com

A Swift Tour

Tradition suggests that the first program in a new language should
print the words “Hello, world!” on the screen. In Swift, this can be
done in a single line:

1 print("Hello, world!")

2 // Prints "Hello, world!"

If you have written code in C or Objective-C, this syntax looks familiar
to you—in Swift, this line of code is a complete program. You don’t
need to import a separate library for functionality like input/output or
string handling. Code written at global scope is used as the entry
point for the program, so you don’t need a main() function. You also
don’t need to write semicolons at the end of every statement.

This tour gives you enough information to start writing code in Swift
by showing you how to accomplish a variety of programming tasks.
Don’t worry if you don’t understand something—everything
introduced in this tour is explained in detail in the rest of this book.

NOTE

On a Mac with Xcode installed, or on an iPad with Swift Playgrounds, you can
open this chapter as a playground.
Playgrounds allow you to edit the code
listings and see the result immediately.

Download Playground

Simple Values

https://docs.swift.org/swift-book/GuidedTour/GuidedTour.playground.zip

PDF conversion courtesy of www.appsdissected.com

Use let to make a constant and var to make a variable. The value of
a constant doesn’t need to be known at compile time, but you must
assign it a value exactly once. This means you can use constants to
name a value that you determine once but use in many places.

1 var myVariable = 42

2 myVariable = 50

3 let myConstant = 42

A constant or variable must have the same type as the value you
want to assign to it. However, you don’t always have to write the type
explicitly. Providing a value when you create a constant or variable
lets the compiler infer its type. In the example above, the compiler
infers that myVariable is an integer because its initial value is an
integer.

If the initial value doesn’t provide enough information (or if there isn’t
an initial value), specify the type by writing it after the variable,
separated by a colon.

1 let implicitInteger = 70

2 let implicitDouble = 70.0

3 let explicitDouble: Double = 70

EXPER IMENT

Create a constant with an explicit type of Float and a value of 4.

Values are never implicitly converted to another type. If you need to
convert a value to a different type, explicitly make an instance of the
desired type.

PDF conversion courtesy of www.appsdissected.com

1 let label = "The width is "

2 let width = 94

3 let widthLabel = label + String(width)

EXPER IMENT

Try removing the conversion to String from the last line. What error do you
get?

There’s an even simpler way to include values in strings: Write the
value in parentheses, and write a backslash (\) before the
parentheses. For example:

1 let apples = 3

2 let oranges = 5

3 let appleSummary = "I have \(apples) apples."

4 let fruitSummary = "I have \(apples + oranges)

pieces of fruit."

EXPER IMENT

Use \() to include a floating-point calculation in a string and to include
someone’s name in a greeting.

Use three double quotation marks (""") for strings that take up
multiple lines. Indentation at the start of each quoted line is removed,
as long as it matches the indentation of the closing quotation marks.
For example:

PDF conversion courtesy of www.appsdissected.com

1 let quotation = """

2 I said "I have \(apples) apples."

3 And then I said "I have \(apples + oranges) pieces

of fruit."

4 """

Create arrays and dictionaries using brackets ([]), and access their
elements by writing the index or key in brackets. A comma is allowed
after the last element.

1 var fruits = ["strawberries", "limes", "tangerines"]

2 fruits[1] = "grapes"

3

4 var occupations = [

5 "Malcolm": "Captain",

6 "Kaylee": "Mechanic",

7]

8 occupations["Jayne"] = "Public Relations"

Arrays automatically grow as you add elements.

1 fruits.append("blueberries")

2 print(fruits)

To create an empty array or dictionary, use the initializer syntax.

1 let emptyArray: [String] = []

2 let emptyDictionary: [String: Float] = [:]

PDF conversion courtesy of www.appsdissected.com

If type information can be inferred, you can write an empty array as []
and an empty dictionary as [:]—for example, when you set a new
value for a variable or pass an argument to a function.

1 fruits = []

2 occupations = [:]

Control Flow
Use if and switch to make conditionals, and use for-in, while, and
repeat-while to make loops. Parentheses around the condition or
loop variable are optional. Braces around the body are required.

1 let individualScores = [75, 43, 103, 87, 12]

2 var teamScore = 0

3 for score in individualScores {

4 if score > 50 {

5 teamScore += 3

6 } else {

7 teamScore += 1

8 }

9 }

10 print(teamScore)

11 // Prints "11"

In an if statement, the conditional must be a Boolean expression—
this means that code such as if score { ... } is an error, not an

PDF conversion courtesy of www.appsdissected.com

implicit comparison to zero.

You can use if and let together to work with values that might be
missing. These values are represented as optionals. An optional
value either contains a value or contains nil to indicate that a value
is missing. Write a question mark (?) after the type of a value to mark
the value as optional.

1 var optionalString: String? = "Hello"

2 print(optionalString == nil)

3 // Prints "false"

4

5 var optionalName: String? = "John Appleseed"

6 var greeting = "Hello!"

7 if let name = optionalName {

8 greeting = "Hello, \(name)"

9 }

EXPER IMENT

Change optionalName to nil. What greeting do you get? Add an else clause
that sets a different greeting if optionalName is nil.

If the optional value is nil, the conditional is false and the code in
braces is skipped. Otherwise, the optional value is unwrapped and
assigned to the constant after let, which makes the unwrapped value
available inside the block of code.

Another way to handle optional values is to provide a default value
using the ?? operator. If the optional value is missing, the default
value is used instead.

PDF conversion courtesy of www.appsdissected.com

1 let nickname: String? = nil

2 let fullName: String = "John Appleseed"

3 let informalGreeting = "Hi \(nickname ?? fullName)"

You can use a shorter spelling to unwrap a value, using the same
name for that unwrapped value.

1 if let nickname {

2 print("Hey, \(nickname)")

3 }

Switches support any kind of data and a wide variety of comparison
operations—they aren’t limited to integers and tests for equality.

1 let vegetable = "red pepper"

2 switch vegetable {

3 case "celery":

4 print("Add some raisins and make ants on a

log.")

5 case "cucumber", "watercress":

6 print("That would make a good tea sandwich.")

7 case let x where x.hasSuffix("pepper"):

8 print("Is it a spicy \(x)?")

9 default:

10 print("Everything tastes good in soup.")

11 }

12 // Prints "Is it a spicy red pepper?"

PDF conversion courtesy of www.appsdissected.com

EXPER IMENT

Try removing the default case. What error do you get?

Notice how let can be used in a pattern to assign the value that
matched the pattern to a constant.

After executing the code inside the switch case that matched, the
program exits from the switch statement. Execution doesn’t continue
to the next case, so you don’t need to explicitly break out of the
switch at the end of each case’s code.

You use for-in to iterate over items in a dictionary by providing a pair
of names to use for each key-value pair. Dictionaries are an
unordered collection, so their keys and values are iterated over in an
arbitrary order.

PDF conversion courtesy of www.appsdissected.com

1 let interestingNumbers = [

2 "Prime": [2, 3, 5, 7, 11, 13],

3 "Fibonacci": [1, 1, 2, 3, 5, 8],

4 "Square": [1, 4, 9, 16, 25],

5]

6 var largest = 0

7 for (_, numbers) in interestingNumbers {

8 for number in numbers {

9 if number > largest {

10 largest = number

11 }

12 }

13 }

14 print(largest)

15 // Prints "25"

EXPER IMENT

Replace the _ with a variable name, and keep track of which kind of number
was the largest.

Use while to repeat a block of code until a condition changes. The
condition of a loop can be at the end instead, ensuring that the loop is
run at least once.

PDF conversion courtesy of www.appsdissected.com

1 var n = 2

2 while n < 100 {

3 n *= 2

4 }

5 print(n)

6 // Prints "128"

7

8 var m = 2

9 repeat {

10 m *= 2

11 } while m < 100

12 print(m)

13 // Prints "128"

You can keep an index in a loop by using ..< to make a range of
indexes.

1 var total = 0

2 for i in 0..<4 {

3 total += i

4 }

5 print(total)

6 // Prints "6"

Use ..< to make a range that omits its upper value, and use ... to
make a range that includes both values.

PDF conversion courtesy of www.appsdissected.com

Functions and Closures
Use func to declare a function. Call a function by following its name
with a list of arguments in parentheses. Use -> to separate the
parameter names and types from the function’s return type.

1 func greet(person: String, day: String) -> String {

2 return "Hello \(person), today is \(day)."

3 }

4 greet(person: "Bob", day: "Tuesday")

EXPER IMENT

Remove the day parameter. Add a parameter to include today’s lunch special
in the greeting.

By default, functions use their parameter names as labels for their
arguments. Write a custom argument label before the parameter
name, or write _ to use no argument label.

1 func greet(_ person: String, on day: String) ->

String {

2 return "Hello \(person), today is \(day)."

3 }

4 greet("John", on: "Wednesday")

Use a tuple to make a compound value—for example, to return
multiple values from a function. The elements of a tuple can be
referred to either by name or by number.

PDF conversion courtesy of www.appsdissected.com

1 func calculateStatistics(scores: [Int]) -> (min:

Int, max: Int, sum: Int) {

2 var min = scores[0]

3 var max = scores[0]

4 var sum = 0

5

6 for score in scores {

7 if score > max {

8 max = score

9 } else if score < min {

10 min = score

11 }

12 sum += score

13 }

14

15 return (min, max, sum)

16 }

17 let statistics = calculateStatistics(scores: [5, 3,

100, 3, 9])

18 print(statistics.sum)

19 // Prints "120"

20 print(statistics.2)

21 // Prints "120"

Functions can be nested. Nested functions have access to variables
that were declared in the outer function. You can use nested
functions to organize the code in a function that’s long or complex.

PDF conversion courtesy of www.appsdissected.com

1 func returnFifteen() -> Int {

2 var y = 10

3 func add() {

4 y += 5

5 }

6 add()

7 return y

8 }

9 returnFifteen()

Functions are a first-class type. This means that a function can return
another function as its value.

1 func makeIncrementer() -> ((Int) -> Int) {

2 func addOne(number: Int) -> Int {

3 return 1 + number

4 }

5 return addOne

6 }

7 var increment = makeIncrementer()

8 increment(7)

A function can take another function as one of its arguments.

PDF conversion courtesy of www.appsdissected.com

1 func hasAnyMatches(list: [Int], condition: (Int) ->

Bool) -> Bool {

2 for item in list {

3 if condition(item) {

4 return true

5 }

6 }

7 return false

8 }

9 func lessThanTen(number: Int) -> Bool {

10 return number < 10

11 }

12 var numbers = [20, 19, 7, 12]

13 hasAnyMatches(list: numbers, condition: lessThanTen)

Functions are actually a special case of closures: blocks of code that
can be called later. The code in a closure has access to things like
variables and functions that were available in the scope where the
closure was created, even if the closure is in a different scope when
it’s executed—you saw an example of this already with nested
functions. You can write a closure without a name by surrounding
code with braces ({}). Use in to separate the arguments and return
type from the body.

1 numbers.map({ (number: Int) -> Int in

2 let result = 3 * number

3 return result

4 })

PDF conversion courtesy of www.appsdissected.com

EXPER IMENT

Rewrite the closure to return zero for all odd numbers.

You have several options for writing closures more concisely. When a
closure’s type is already known, such as the callback for a delegate,
you can omit the type of its parameters, its return type, or both. Single
statement closures implicitly return the value of their only statement.

1 let mappedNumbers = numbers.map({ number in 3 *

number })

2 print(mappedNumbers)

3 // Prints "[60, 57, 21, 36]"

You can refer to parameters by number instead of by name—this
approach is especially useful in very short closures. A closure passed
as the last argument to a function can appear immediately after the
parentheses. When a closure is the only argument to a function, you
can omit the parentheses entirely.

1 let sortedNumbers = numbers.sorted { $0 > $1 }

2 print(sortedNumbers)

3 // Prints "[20, 19, 12, 7]"

Objects and Classes
Use class followed by the class’s name to create a class. A property
declaration in a class is written the same way as a constant or
variable declaration, except that it’s in the context of a class.
Likewise, method and function declarations are written the same way.

PDF conversion courtesy of www.appsdissected.com

1 class Shape {

2 var numberOfSides = 0

3 func simpleDescription() -> String {

4 return "A shape with \(numberOfSides)

sides."

5 }

6 }

EXPER IMENT

Add a constant property with let, and add another method that takes an
argument.

Create an instance of a class by putting parentheses after the class
name. Use dot syntax to access the properties and methods of the
instance.

1 var shape = Shape()

2 shape.numberOfSides = 7

3 var shapeDescription = shape.simpleDescription()

This version of the Shape class is missing something important: an
initializer to set up the class when an instance is created. Use init to
create one.

PDF conversion courtesy of www.appsdissected.com

1 class NamedShape {

2 var numberOfSides: Int = 0

3 var name: String

4

5 init(name: String) {

6 self.name = name

7 }

8

9 func simpleDescription() -> String {

10 return "A shape with \(numberOfSides)

sides."

11 }

12 }

Notice how self is used to distinguish the name property from the
name argument to the initializer. The arguments to the initializer are
passed like a function call when you create an instance of the class.
Every property needs a value assigned—either in its declaration (as
with numberOfSides) or in the initializer (as with name).

Use deinit to create a deinitializer if you need to perform some
cleanup before the object is deallocated.

Subclasses include their superclass name after their class name,
separated by a colon. There’s no requirement for classes to subclass
any standard root class, so you can include or omit a superclass as
needed.

Methods on a subclass that override the superclass’s implementation
are marked with override—overriding a method by accident, without
override, is detected by the compiler as an error. The compiler also

PDF conversion courtesy of www.appsdissected.com

detects methods with override that don’t actually override any
method in the superclass.

1 class Square: NamedShape {

2 var sideLength: Double

3

4 init(sideLength: Double, name: String) {

5 self.sideLength = sideLength

6 super.init(name: name)

7 numberOfSides = 4

8 }

9

10 func area() -> Double {

11 return sideLength * sideLength

12 }

13

14 override func simpleDescription() -> String {

15 return "A square with sides of length \

(sideLength)."

16 }

17 }

18 let test = Square(sideLength: 5.2, name: "my test

square")

19 test.area()

20 test.simpleDescription()

PDF conversion courtesy of www.appsdissected.com

EXPER IMENT

Make another subclass of NamedShape called Circle that takes a radius and
a name as arguments to its initializer. Implement an area() and a
simpleDescription() method on the Circle class.

In addition to simple properties that are stored, properties can have a
getter and a setter.

PDF conversion courtesy of www.appsdissected.com

1 class EquilateralTriangle: NamedShape {

2 var sideLength: Double = 0.0

3

4 init(sideLength: Double, name: String) {

5 self.sideLength = sideLength

6 super.init(name: name)

7 numberOfSides = 3

8 }

9

10 var perimeter: Double {

11 get {

12 return 3.0 * sideLength

13 }

14 set {

15 sideLength = newValue / 3.0

16 }

17 }

18

19 override func simpleDescription() -> String {

20 return "An equilateral triangle with sides

of length \(sideLength)."

21 }

22 }

23 var triangle = EquilateralTriangle(sideLength: 3.1,

name: "a triangle")

24 print(triangle.perimeter)

PDF conversion courtesy of www.appsdissected.com

25 // Prints "9.3"

26 triangle.perimeter = 9.9

27 print(triangle.sideLength)

28 // Prints "3.3000000000000003"

In the setter for perimeter, the new value has the implicit name
newValue. You can provide an explicit name in parentheses after set.

Notice that the initializer for the EquilateralTriangle class has three
different steps:

1. Setting the value of properties that the subclass declares.

2. Calling the superclass’s initializer.

3. Changing the value of properties defined by the superclass. Any
additional setup work that uses methods, getters, or setters can
also be done at this point.

If you don’t need to compute the property but still need to provide
code that’s run before and after setting a new value, use willSet and
didSet. The code you provide is run any time the value changes
outside of an initializer. For example, the class below ensures that the
side length of its triangle is always the same as the side length of its
square.

PDF conversion courtesy of www.appsdissected.com

1 class TriangleAndSquare {

2 var triangle: EquilateralTriangle {

3 willSet {

4 square.sideLength = newValue.sideLength

5 }

6 }

7 var square: Square {

8 willSet {

9 triangle.sideLength =

newValue.sideLength

10 }

11 }

12 init(size: Double, name: String) {

13 square = Square(sideLength: size, name:

name)

14 triangle = EquilateralTriangle(sideLength:

size, name: name)

15 }

16 }

17 var triangleAndSquare = TriangleAndSquare(size: 10,

name: "another test shape")

18 print(triangleAndSquare.square.sideLength)

19 // Prints "10.0"

20 print(triangleAndSquare.triangle.sideLength)

21 // Prints "10.0"

PDF conversion courtesy of www.appsdissected.com

22 triangleAndSquare.square = Square(sideLength: 50,

name: "larger square")

23 print(triangleAndSquare.triangle.sideLength)

24 // Prints "50.0"

When working with optional values, you can write ? before operations
like methods, properties, and subscripting. If the value before the ? is
nil, everything after the ? is ignored and the value of the whole
expression is nil. Otherwise, the optional value is unwrapped, and
everything after the ? acts on the unwrapped value. In both cases, the
value of the whole expression is an optional value.

1 let optionalSquare: Square? = Square(sideLength:

2.5, name: "optional square")

2 let sideLength = optionalSquare?.sideLength

Enumerations and Structures
Use enum to create an enumeration. Like classes and all other named
types, enumerations can have methods associated with them.

PDF conversion courtesy of www.appsdissected.com

1 enum Rank: Int {

2 case ace = 1

3 case two, three, four, five, six, seven, eight,

nine, ten

4 case jack, queen, king

5

6 func simpleDescription() -> String {

7 switch self {

8 case .ace:

9 return "ace"

10 case .jack:

11 return "jack"

12 case .queen:

13 return "queen"

14 case .king:

15 return "king"

16 default:

17 return String(self.rawValue)

18 }

19 }

20 }

21 let ace = Rank.ace

22 let aceRawValue = ace.rawValue

PDF conversion courtesy of www.appsdissected.com

EXPER IMENT

Write a function that compares two Rank values by comparing their raw
values.

By default, Swift assigns the raw values starting at zero and
incrementing by one each time, but you can change this behavior by
explicitly specifying values. In the example above, Ace is explicitly
given a raw value of 1, and the rest of the raw values are assigned in
order. You can also use strings or floating-point numbers as the raw
type of an enumeration. Use the rawValue property to access the raw
value of an enumeration case.

Use the init?(rawValue:) initializer to make an instance of an
enumeration from a raw value. It returns either the enumeration case
matching the raw value or nil if there’s no matching Rank.

1 if let convertedRank = Rank(rawValue: 3) {

2 let threeDescription =

convertedRank.simpleDescription()

3 }

The case values of an enumeration are actual values, not just
another way of writing their raw values. In fact, in cases where there
isn’t a meaningful raw value, you don’t have to provide one.

PDF conversion courtesy of www.appsdissected.com

1 enum Suit {

2 case spades, hearts, diamonds, clubs

3

4 func simpleDescription() -> String {

5 switch self {

6 case .spades:

7 return "spades"

8 case .hearts:

9 return "hearts"

10 case .diamonds:

11 return "diamonds"

12 case .clubs:

13 return "clubs"

14 }

15 }

16 }

17 let hearts = Suit.hearts

18 let heartsDescription = hearts.simpleDescription()

EXPER IMENT

Add a color() method to Suit that returns “black” for spades and clubs, and
returns “red” for hearts and diamonds.

Notice the two ways that the hearts case of the enumeration is
referred to above: When assigning a value to the hearts constant, the
enumeration case Suit.hearts is referred to by its full name because
the constant doesn’t have an explicit type specified. Inside the switch,
the enumeration case is referred to by the abbreviated form .hearts

PDF conversion courtesy of www.appsdissected.com

because the value of self is already known to be a suit. You can use
the abbreviated form anytime the value’s type is already known.

If an enumeration has raw values, those values are determined as
part of the declaration, which means every instance of a particular
enumeration case always has the same raw value. Another choice for
enumeration cases is to have values associated with the case—
these values are determined when you make the instance, and they
can be different for each instance of an enumeration case. You can
think of the associated values as behaving like stored properties of
the enumeration case instance. For example, consider the case of
requesting the sunrise and sunset times from a server. The server
either responds with the requested information, or it responds with a
description of what went wrong.

PDF conversion courtesy of www.appsdissected.com

1 enum ServerResponse {

2 case result(String, String)

3 case failure(String)

4 }

5

6 let success = ServerResponse.result("6:00 am", "8:09

pm")

7 let failure = ServerResponse.failure("Out of

cheese.")

8

9 switch success {

10 case let .result(sunrise, sunset):

11 print("Sunrise is at \(sunrise) and sunset is at

\(sunset).")

12 case let .failure(message):

13 print("Failure... \(message)")

14 }

15 // Prints "Sunrise is at 6:00 am and sunset is at

8:09 pm."

EXPER IMENT

Add a third case to ServerResponse and to the switch.

Notice how the sunrise and sunset times are extracted from the
ServerResponse value as part of matching the value against the
switch cases.

PDF conversion courtesy of www.appsdissected.com

Use struct to create a structure. Structures support many of the
same behaviors as classes, including methods and initializers. One of
the most important differences between structures and classes is that
structures are always copied when they’re passed around in your
code, but classes are passed by reference.

1 struct Card {

2 var rank: Rank

3 var suit: Suit

4 func simpleDescription() -> String {

5 return "The \(rank.simpleDescription()) of \

(suit.simpleDescription())"

6 }

7 }

8 let threeOfSpades = Card(rank: .three, suit:

.spades)

9 let threeOfSpadesDescription =

threeOfSpades.simpleDescription()

EXPER IMENT

Write a function that returns an array containing a full deck of cards, with one
card of each combination of rank and suit.

Concurrency
Use async to mark a function that runs asynchronously.

PDF conversion courtesy of www.appsdissected.com

1 func fetchUserID(from server: String) async -> Int {

2 if server == "primary" {

3 return 97

4 }

5 return 501

6 }

You mark a call to an asynchronous function by writing await in front
of it.

1 func fetchUsername(from server: String) async ->

String {

2 let userID = await fetchUserID(from: server)

3 if userID == 501 {

4 return "John Appleseed"

5 }

6 return "Guest"

7 }

Use async let to call an asynchronous function, letting it run in
parallel with other asynchronous code. When you use the value it
returns, write await.

PDF conversion courtesy of www.appsdissected.com

1 func connectUser(to server: String) async {

2 async let userID = fetchUserID(from: server)

3 async let username = fetchUsername(from: server)

4 let greeting = await "Hello \(username), user ID

\(userID)"

5 print(greeting)

6 }

Use Task to call asynchronous functions from synchronous code,
without waiting for them to return.

1 Task {

2 await connectUser(to: "primary")

3 }

4 // Prints "Hello Guest, user ID 97"

Protocols and Extensions
Use protocol to declare a protocol.

1 protocol ExampleProtocol {

2 var simpleDescription: String { get }

3 mutating func adjust()

4 }

Classes, enumerations, and structures can all adopt protocols.

PDF conversion courtesy of www.appsdissected.com

1 class SimpleClass: ExampleProtocol {

2 var simpleDescription: String = "A very simple

class."

3 var anotherProperty: Int = 69105

4 func adjust() {

5 simpleDescription += " Now 100% adjusted."

6 }

7 }

8 var a = SimpleClass()

9 a.adjust()

10 let aDescription = a.simpleDescription

11

12 struct SimpleStructure: ExampleProtocol {

13 var simpleDescription: String = "A simple

structure"

14 mutating func adjust() {

15 simpleDescription += " (adjusted)"

16 }

17 }

18 var b = SimpleStructure()

19 b.adjust()

20 let bDescription = b.simpleDescription

EXPER IMENT

Add another requirement to ExampleProtocol. What changes do you need to
make to SimpleClass and SimpleStructure so that they still conform to the
protocol?

PDF conversion courtesy of www.appsdissected.com

Notice the use of the mutating keyword in the declaration of
SimpleStructure to mark a method that modifies the structure. The
declaration of SimpleClass doesn’t need any of its methods marked
as mutating because methods on a class can always modify the
class.

Use extension to add functionality to an existing type, such as new
methods and computed properties. You can use an extension to add
protocol conformance to a type that’s declared elsewhere, or even to
a type that you imported from a library or framework.

1 extension Int: ExampleProtocol {

2 var simpleDescription: String {

3 return "The number \(self)"

4 }

5 mutating func adjust() {

6 self += 42

7 }

8 }

9 print(7.simpleDescription)

10 // Prints "The number 7"

EXPER IMENT

Write an extension for the Double type that adds an absoluteValue property.

You can use a protocol name just like any other named type—for
example, to create a collection of objects that have different types but
that all conform to a single protocol. When you work with values
whose type is a protocol type, methods outside the protocol definition
aren’t available.

PDF conversion courtesy of www.appsdissected.com

1 let protocolValue: ExampleProtocol = a

2 print(protocolValue.simpleDescription)

3 // Prints "A very simple class. Now 100% adjusted."

4 // print(protocolValue.anotherProperty) //

Uncomment to see the error

Even though the variable protocolValue has a runtime type of
SimpleClass, the compiler treats it as the given type of
ExampleProtocol. This means that you can’t accidentally access
methods or properties that the class implements in addition to its
protocol conformance.

Error Handling
You represent errors using any type that adopts the Error protocol.

1 enum PrinterError: Error {

2 case outOfPaper

3 case noToner

4 case onFire

5 }

Use throw to throw an error and throws to mark a function that can
throw an error. If you throw an error in a function, the function returns
immediately and the code that called the function handles the error.

PDF conversion courtesy of www.appsdissected.com

1 func send(job: Int, toPrinter printerName: String)

throws -> String {

2 if printerName == "Never Has Toner" {

3 throw PrinterError.noToner

4 }

5 return "Job sent"

6 }

There are several ways to handle errors. One way is to use do-catch.
Inside the do block, you mark code that can throw an error by writing
try in front of it. Inside the catch block, the error is automatically
given the name error unless you give it a different name.

1 do {

2 let printerResponse = try send(job: 1040,

toPrinter: "Bi Sheng")

3 print(printerResponse)

4 } catch {

5 print(error)

6 }

7 // Prints "Job sent"

EXPER IMENT

Change the printer name to "Never Has Toner", so that the
send(job:toPrinter:) function throws an error.

You can provide multiple catch blocks that handle specific errors. You
write a pattern after catch just as you do after case in a switch.

PDF conversion courtesy of www.appsdissected.com

1 do {

2 let printerResponse = try send(job: 1440,

toPrinter: "Gutenberg")

3 print(printerResponse)

4 } catch PrinterError.onFire {

5 print("I'll just put this over here, with the

rest of the fire.")

6 } catch let printerError as PrinterError {

7 print("Printer error: \(printerError).")

8 } catch {

9 print(error)

10 }

11 // Prints "Job sent"

EXPER IMENT

Add code to throw an error inside the do block. What kind of error do you need
to throw so that the error is handled by the first catch block? What about the
second and third blocks?

Another way to handle errors is to use try? to convert the result to an
optional. If the function throws an error, the specific error is discarded
and the result is nil. Otherwise, the result is an optional containing
the value that the function returned.

1 let printerSuccess = try? send(job: 1884, toPrinter:

"Mergenthaler")

2 let printerFailure = try? send(job: 1885, toPrinter:

"Never Has Toner")

PDF conversion courtesy of www.appsdissected.com

Use defer to write a block of code that’s executed after all other code
in the function, just before the function returns. The code is executed
regardless of whether the function throws an error. You can use
defer to write setup and cleanup code next to each other, even
though they need to be executed at different times.

1 var fridgeIsOpen = false

2 let fridgeContent = ["milk", "eggs", "leftovers"]

3

4 func fridgeContains(_ food: String) -> Bool {

5 fridgeIsOpen = true

6 defer {

7 fridgeIsOpen = false

8 }

9

10 let result = fridgeContent.contains(food)

11 return result

12 }

13 fridgeContains("banana")

14 print(fridgeIsOpen)

15 // Prints "false"

Generics
Write a name inside angle brackets to make a generic function or
type.

PDF conversion courtesy of www.appsdissected.com

1 func makeArray<Item>(repeating item: Item,

numberOfTimes: Int) -> [Item] {

2 var result: [Item] = []

3 for _ in 0..<numberOfTimes {

4 result.append(item)

5 }

6 return result

7 }

8 makeArray(repeating: "knock", numberOfTimes: 4)

You can make generic forms of functions and methods, as well as
classes, enumerations, and structures.

1 // Reimplement the Swift standard library's optional

type

2 enum OptionalValue<Wrapped> {

3 case none

4 case some(Wrapped)

5 }

6 var possibleInteger: OptionalValue<Int> = .none

7 possibleInteger = .some(100)

Use where right before the body to specify a list of requirements—for
example, to require the type to implement a protocol, to require two
types to be the same, or to require a class to have a particular
superclass.

PDF conversion courtesy of www.appsdissected.com

1 func anyCommonElements<T: Sequence, U: Sequence>(_

lhs: T, _ rhs: U) -> Bool

2 where T.Element: Equatable, T.Element ==

U.Element

3 {

4 for lhsItem in lhs {

5 for rhsItem in rhs {

6 if lhsItem == rhsItem {

7 return true

8 }

9 }

10 }

11 return false

12 }

13 anyCommonElements([1, 2, 3], [3])

EXPER IMENT

Modify the anyCommonElements(_:_:) function to make a function that
returns an array of the elements that any two sequences have in common.

Writing <T: Equatable> is the same as writing <T> ... where T:
Equatable.

PDF conversion courtesy of www.appsdissected.com

Language Guide

PDF conversion courtesy of www.appsdissected.com

The Basics

Swift is a new programming language for iOS, macOS, watchOS, and
tvOS app development. Nonetheless, many parts of Swift will be
familiar from your experience of developing in C and Objective-C.

Swift provides its own versions of all fundamental C and Objective-C
types, including Int for integers, Double and Float for floating-point
values, Bool for Boolean values, and String for textual data. Swift
also provides powerful versions of the three primary collection types,
Array, Set, and Dictionary, as described in Collection Types.

Like C, Swift uses variables to store and refer to values by an
identifying name. Swift also makes extensive use of variables whose
values can’t be changed. These are known as constants, and are
much more powerful than constants in C. Constants are used
throughout Swift to make code safer and clearer in intent when you
work with values that don’t need to change.

In addition to familiar types, Swift introduces advanced types not
found in Objective-C, such as tuples. Tuples enable you to create and
pass around groupings of values. You can use a tuple to return
multiple values from a function as a single compound value.

Swift also introduces optional types, which handle the absence of a
value. Optionals say either “there is a value, and it equals x” or “there
isn’t a value at all”. Using optionals is similar to using nil with
pointers in Objective-C, but they work for any type, not just classes.
Not only are optionals safer and more expressive than nil pointers in
Objective-C, they’re at the heart of many of Swift’s most powerful
features.

Swift is a type-safe language, which means the language helps you
to be clear about the types of values your code can work with. If part
of your code requires a String, type safety prevents you from

PDF conversion courtesy of www.appsdissected.com

passing it an Int by mistake. Likewise, type safety prevents you from
accidentally passing an optional String to a piece of code that
requires a non-optional String. Type safety helps you catch and fix
errors as early as possible in the development process.

Constants and Variables
Constants and variables associate a name (such as
maximumNumberOfLoginAttempts or welcomeMessage) with a value of a
particular type (such as the number 10 or the string "Hello"). The
value of a constant can’t be changed once it’s set, whereas a variable
can be set to a different value in the future.

Declaring Constants and Variables
Constants and variables must be declared before they’re used. You
declare constants with the let keyword and variables with the var
keyword. Here’s an example of how constants and variables can be
used to track the number of login attempts a user has made:

1 let maximumNumberOfLoginAttempts = 10

2 var currentLoginAttempt = 0

This code can be read as:

“Declare a new constant called maximumNumberOfLoginAttempts, and
give it a value of 10. Then, declare a new variable called
currentLoginAttempt, and give it an initial value of 0.”

In this example, the maximum number of allowed login attempts is
declared as a constant, because the maximum value never changes.

PDF conversion courtesy of www.appsdissected.com

The current login attempt counter is declared as a variable, because
this value must be incremented after each failed login attempt.

You can declare multiple constants or multiple variables on a single
line, separated by commas:

 var x = 0.0, y = 0.0, z = 0.0

NOTE

If a stored value in your code won’t change, always declare it as a constant
with the let keyword. Use variables only for storing values that need to be
able to change.

Type Annotations
You can provide a type annotation when you declare a constant or
variable, to be clear about the kind of values the constant or variable
can store. Write a type annotation by placing a colon after the
constant or variable name, followed by a space, followed by the name
of the type to use.

This example provides a type annotation for a variable called
welcomeMessage, to indicate that the variable can store String values:

 var welcomeMessage: String

The colon in the declaration means “…of type…,” so the code above
can be read as:

“Declare a variable called welcomeMessage that’s of type String.”

The phrase “of type String” means “can store any String value.”
Think of it as meaning “the type of thing” (or “the kind of thing”) that
can be stored.

PDF conversion courtesy of www.appsdissected.com

The welcomeMessage variable can now be set to any string value
without error:

 welcomeMessage = "Hello"

You can define multiple related variables of the same type on a single
line, separated by commas, with a single type annotation after the
final variable name:

 var red, green, blue: Double

NOTE

It’s rare that you need to write type annotations in practice. If you provide an
initial value for a constant or variable at the point that it’s defined, Swift can
almost always infer the type to be used for that constant or variable, as
described in Type Safety and Type Inference. In the welcomeMessage
example above, no initial value is provided, and so the type of the
welcomeMessage variable is specified with a type annotation rather than being
inferred from an initial value.

Naming Constants and Variables
Constant and variable names can contain almost any character,
including Unicode characters:

1 let π = 3.14159

2 let 你好 = "你好世界"

3 let 🐶🐮 = "dogcow"

Constant and variable names can’t contain whitespace characters,
mathematical symbols, arrows, private-use Unicode scalar values, or
line- and box-drawing characters. Nor can they begin with a number,
although numbers may be included elsewhere within the name.

PDF conversion courtesy of www.appsdissected.com

Once you’ve declared a constant or variable of a certain type, you
can’t declare it again with the same name, or change it to store
values of a different type. Nor can you change a constant into a
variable or a variable into a constant.

NOTE

If you need to give a constant or variable the same name as a reserved Swift
keyword, surround the keyword with backticks (`) when using it as a name.
However, avoid using keywords as names unless you have absolutely no
choice.

You can change the value of an existing variable to another value of a
compatible type. In this example, the value of friendlyWelcome is
changed from "Hello!" to "Bonjour!":

1 var friendlyWelcome = "Hello!"

2 friendlyWelcome = "Bonjour!"

3 // friendlyWelcome is now "Bonjour!"

Unlike a variable, the value of a constant can’t be changed after it’s
set. Attempting to do so is reported as an error when your code is
compiled:

1 let languageName = "Swift"

2 languageName = "Swift++"

3 // This is a compile-time error: languageName cannot

be changed.

Printing Constants and Variables
You can print the current value of a constant or variable with the
print(_:separator:terminator:) function:

PDF conversion courtesy of www.appsdissected.com

1 print(friendlyWelcome)

2 // Prints "Bonjour!"

The print(_:separator:terminator:) function is a global function
that prints one or more values to an appropriate output. In Xcode, for
example, the print(_:separator:terminator:) function prints its
output in Xcode’s “console” pane. The separator and terminator
parameter have default values, so you can omit them when you call
this function. By default, the function terminates the line it prints by
adding a line break. To print a value without a line break after it, pass
an empty string as the terminator—for example, print(someValue,
terminator: ""). For information about parameters with default
values, see Default Parameter Values.

Swift uses string interpolation to include the name of a constant or
variable as a placeholder in a longer string, and to prompt Swift to
replace it with the current value of that constant or variable. Wrap the
name in parentheses and escape it with a backslash before the
opening parenthesis:

1 print("The current value of friendlyWelcome is \

(friendlyWelcome)")

2 // Prints "The current value of friendlyWelcome is

Bonjour!"

NOTE

All options you can use with string interpolation are described in String
Interpolation.

PDF conversion courtesy of www.appsdissected.com

Comments
Use comments to include nonexecutable text in your code, as a note
or reminder to yourself. Comments are ignored by the Swift compiler
when your code is compiled.

Comments in Swift are very similar to comments in C. Single-line
comments begin with two forward-slashes (//):

 // This is a comment.

Multiline comments start with a forward-slash followed by an asterisk
(/*) and end with an asterisk followed by a forward-slash (*/):

1 /* This is also a comment

2 but is written over multiple lines. */

Unlike multiline comments in C, multiline comments in Swift can be
nested inside other multiline comments. You write nested comments
by starting a multiline comment block and then starting a second
multiline comment within the first block. The second block is then
closed, followed by the first block:

1 /* This is the start of the first multiline comment.

2 /* This is the second, nested multiline comment. */

3 This is the end of the first multiline comment. */

Nested multiline comments enable you to comment out large blocks
of code quickly and easily, even if the code already contains multiline
comments.

PDF conversion courtesy of www.appsdissected.com

Semicolons
Unlike many other languages, Swift doesn’t require you to write a
semicolon (;) after each statement in your code, although you can do
so if you wish. However, semicolons are required if you want to write
multiple separate statements on a single line:

1 let cat = "🐱 "; print(cat)

2 // Prints "🐱 "

Integers
Integers are whole numbers with no fractional component, such as 42
and -23. Integers are either signed (positive, zero, or negative) or
unsigned (positive or zero).

Swift provides signed and unsigned integers in 8, 16, 32, and 64 bit
forms. These integers follow a naming convention similar to C, in that
an 8-bit unsigned integer is of type UInt8, and a 32-bit signed integer
is of type Int32. Like all types in Swift, these integer types have
capitalized names.

Integer Bounds
You can access the minimum and maximum values of each integer
type with its min and max properties:

PDF conversion courtesy of www.appsdissected.com

1 let minValue = UInt8.min // minValue is equal to 0,

and is of type UInt8

2 let maxValue = UInt8.max // maxValue is equal to

255, and is of type UInt8

The values of these properties are of the appropriate-sized number
type (such as UInt8 in the example above) and can therefore be used
in expressions alongside other values of the same type.

Int
In most cases, you don’t need to pick a specific size of integer to use
in your code. Swift provides an additional integer type, Int, which has
the same size as the current platform’s native word size:

On a 32-bit platform, Int is the same size as Int32.

On a 64-bit platform, Int is the same size as Int64.

Unless you need to work with a specific size of integer, always use
Int for integer values in your code. This aids code consistency and
interoperability. Even on 32-bit platforms, Int can store any value
between -2,147,483,648 and 2,147,483,647, and is large enough for
many integer ranges.

UInt
Swift also provides an unsigned integer type, UInt, which has the
same size as the current platform’s native word size:

On a 32-bit platform, UInt is the same size as UInt32.

On a 64-bit platform, UInt is the same size as UInt64.

PDF conversion courtesy of www.appsdissected.com

NOTE

Use UInt only when you specifically need an unsigned integer type with the
same size as the platform’s native word size. If this isn’t the case, Int is
preferred, even when the values to be stored are known to be nonnegative. A
consistent use of Int for integer values aids code interoperability, avoids the
need to convert between different number types, and matches integer type
inference, as described in Type Safety and Type Inference.

Floating-Point Numbers
Floating-point numbers are numbers with a fractional component,
such as 3.14159, 0.1, and -273.15.

Floating-point types can represent a much wider range of values than
integer types, and can store numbers that are much larger or smaller
than can be stored in an Int. Swift provides two signed floating-point
number types:

Double represents a 64-bit floating-point number.

Float represents a 32-bit floating-point number.

NOTE

Double has a precision of at least 15 decimal digits, whereas the precision of
Float can be as little as 6 decimal digits. The appropriate floating-point type
to use depends on the nature and range of values you need to work with in
your code. In situations where either type would be appropriate, Double is
preferred.

Type Safety and Type Inference

PDF conversion courtesy of www.appsdissected.com

Swift is a type-safe language. A type safe language encourages you
to be clear about the types of values your code can work with. If part
of your code requires a String, you can’t pass it an Int by mistake.

Because Swift is type safe, it performs type checks when compiling
your code and flags any mismatched types as errors. This enables
you to catch and fix errors as early as possible in the development
process.

Type-checking helps you avoid errors when you’re working with
different types of values. However, this doesn’t mean that you have to
specify the type of every constant and variable that you declare. If
you don’t specify the type of value you need, Swift uses type
inference to work out the appropriate type. Type inference enables a
compiler to deduce the type of a particular expression automatically
when it compiles your code, simply by examining the values you
provide.

Because of type inference, Swift requires far fewer type declarations
than languages such as C or Objective-C. Constants and variables
are still explicitly typed, but much of the work of specifying their type
is done for you.

Type inference is particularly useful when you declare a constant or
variable with an initial value. This is often done by assigning a literal
value (or literal) to the constant or variable at the point that you
declare it. (A literal value is a value that appears directly in your
source code, such as 42 and 3.14159 in the examples below.)

For example, if you assign a literal value of 42 to a new constant
without saying what type it is, Swift infers that you want the constant
to be an Int, because you have initialized it with a number that looks
like an integer:

PDF conversion courtesy of www.appsdissected.com

1 let meaningOfLife = 42

2 // meaningOfLife is inferred to be of type Int

Likewise, if you don’t specify a type for a floating-point literal, Swift
infers that you want to create a Double:

1 let pi = 3.14159

2 // pi is inferred to be of type Double

Swift always chooses Double (rather than Float) when inferring the
type of floating-point numbers.

If you combine integer and floating-point literals in an expression, a
type of Double will be inferred from the context:

1 let anotherPi = 3 + 0.14159

2 // anotherPi is also inferred to be of type Double

The literal value of 3 has no explicit type in and of itself, and so an
appropriate output type of Double is inferred from the presence of a
floating-point literal as part of the addition.

Numeric Literals
Integer literals can be written as:

A decimal number, with no prefix

A binary number, with a 0b prefix

An octal number, with a 0o prefix

PDF conversion courtesy of www.appsdissected.com

A hexadecimal number, with a 0x prefix

All of these integer literals have a decimal value of 17:

1 let decimalInteger = 17

2 let binaryInteger = 0b10001 // 17 in binary

notation

3 let octalInteger = 0o21 // 17 in octal

notation

4 let hexadecimalInteger = 0x11 // 17 in

hexadecimal notation

Floating-point literals can be decimal (with no prefix), or hexadecimal
(with a 0x prefix). They must always have a number (or hexadecimal
number) on both sides of the decimal point. Decimal floats can also
have an optional exponent, indicated by an uppercase or lowercase
e; hexadecimal floats must have an exponent, indicated by an
uppercase or lowercase p.

For decimal numbers with an exponent of exp, the base number is
multiplied by 10exp:

1.25e2 means 1.25 x 102, or 125.0.

1.25e-2 means 1.25 x 10-2, or 0.0125.

For hexadecimal numbers with an exponent of exp, the base number
is multiplied by 2exp:

0xFp2 means 15 x 22, or 60.0.

0xFp-2 means 15 x 2-2, or 3.75.

PDF conversion courtesy of www.appsdissected.com

All of these floating-point literals have a decimal value of 12.1875:

1 let decimalDouble = 12.1875

2 let exponentDouble = 1.21875e1

3 let hexadecimalDouble = 0xC.3p0

Numeric literals can contain extra formatting to make them easier to
read. Both integers and floats can be padded with extra zeros and
can contain underscores to help with readability. Neither type of
formatting affects the underlying value of the literal:

1 let paddedDouble = 000123.456

2 let oneMillion = 1_000_000

3 let justOverOneMillion = 1_000_000.000_000_1

Numeric Type Conversion
Use the Int type for all general-purpose integer constants and
variables in your code, even if they’re known to be nonnegative.
Using the default integer type in everyday situations means that
integer constants and variables are immediately interoperable in your
code and will match the inferred type for integer literal values.

Use other integer types only when they’re specifically needed for the
task at hand, because of explicitly sized data from an external source,
or for performance, memory usage, or other necessary optimization.
Using explicitly sized types in these situations helps to catch any
accidental value overflows and implicitly documents the nature of the
data being used.

PDF conversion courtesy of www.appsdissected.com

Integer Conversion
The range of numbers that can be stored in an integer constant or
variable is different for each numeric type. An Int8 constant or
variable can store numbers between -128 and 127, whereas a UInt8
constant or variable can store numbers between 0 and 255. A number
that won’t fit into a constant or variable of a sized integer type is
reported as an error when your code is compiled:

1 let cannotBeNegative: UInt8 = -1

2 // UInt8 can't store negative numbers, and so this

will report an error

3 let tooBig: Int8 = Int8.max + 1

4 // Int8 can't store a number larger than its maximum

value,

5 // and so this will also report an error

Because each numeric type can store a different range of values, you
must opt in to numeric type conversion on a case-by-case basis. This
opt-in approach prevents hidden conversion errors and helps make
type conversion intentions explicit in your code.

To convert one specific number type to another, you initialize a new
number of the desired type with the existing value. In the example
below, the constant twoThousand is of type UInt16, whereas the
constant one is of type UInt8. They can’t be added together directly,
because they’re not of the same type. Instead, this example calls
UInt16(one) to create a new UInt16 initialized with the value of one,
and uses this value in place of the original:

1 let twoThousand: UInt16 = 2_000

2 let one: UInt8 = 1

3 let twoThousandAndOne = twoThousand + UInt16(one)

PDF conversion courtesy of www.appsdissected.com

Because both sides of the addition are now of type UInt16, the
addition is allowed. The output constant (twoThousandAndOne) is
inferred to be of type UInt16, because it’s the sum of two UInt16
values.

SomeType(ofInitialValue) is the default way to call the initializer of a
Swift type and pass in an initial value. Behind the scenes, UInt16 has
an initializer that accepts a UInt8 value, and so this initializer is used
to make a new UInt16 from an existing UInt8. You can’t pass in any
type here, however—it has to be a type for which UInt16 provides an
initializer. Extending existing types to provide initializers that accept
new types (including your own type definitions) is covered in
Extensions.

Integer and Floating-Point Conversion
Conversions between integer and floating-point numeric types must
be made explicit:

1 let three = 3

2 let pointOneFourOneFiveNine = 0.14159

3 let pi = Double(three) + pointOneFourOneFiveNine

4 // pi equals 3.14159, and is inferred to be of type

Double

Here, the value of the constant three is used to create a new value of
type Double, so that both sides of the addition are of the same type.
Without this conversion in place, the addition would not be allowed.

Floating-point to integer conversion must also be made explicit. An
integer type can be initialized with a Double or Float value:

PDF conversion courtesy of www.appsdissected.com

1 let integerPi = Int(pi)

2 // integerPi equals 3, and is inferred to be of type

Int

Floating-point values are always truncated when used to initialize a
new integer value in this way. This means that 4.75 becomes 4, and
-3.9 becomes -3.

NOTE

The rules for combining numeric constants and variables are different from the
rules for numeric literals. The literal value 3 can be added directly to the literal
value 0.14159, because number literals don’t have an explicit type in and of
themselves. Their type is inferred only at the point that they’re evaluated by
the compiler.

Type Aliases
Type aliases define an alternative name for an existing type. You
define type aliases with the typealias keyword.

Type aliases are useful when you want to refer to an existing type by
a name that’s contextually more appropriate, such as when working
with data of a specific size from an external source:

 typealias AudioSample = UInt16

Once you define a type alias, you can use the alias anywhere you
might use the original name:

PDF conversion courtesy of www.appsdissected.com

1 var maxAmplitudeFound = AudioSample.min

2 // maxAmplitudeFound is now 0

Here, AudioSample is defined as an alias for UInt16. Because it’s an
alias, the call to AudioSample.min actually calls UInt16.min, which
provides an initial value of 0 for the maxAmplitudeFound variable.

Booleans
Swift has a basic Boolean type, called Bool. Boolean values are
referred to as logical, because they can only ever be true or false.
Swift provides two Boolean constant values, true and false:

1 let orangesAreOrange = true

2 let turnipsAreDelicious = false

The types of orangesAreOrange and turnipsAreDelicious have been
inferred as Bool from the fact that they were initialized with Boolean
literal values. As with Int and Double above, you don’t need to
declare constants or variables as Bool if you set them to true or
false as soon as you create them. Type inference helps make Swift
code more concise and readable when it initializes constants or
variables with other values whose type is already known.

Boolean values are particularly useful when you work with conditional
statements such as the if statement:

PDF conversion courtesy of www.appsdissected.com

1 if turnipsAreDelicious {

2 print("Mmm, tasty turnips!")

3 } else {

4 print("Eww, turnips are horrible.")

5 }

6 // Prints "Eww, turnips are horrible."

Conditional statements such as the if statement are covered in more
detail in Control Flow.

Swift’s type safety prevents non-Boolean values from being
substituted for Bool. The following example reports a compile-time
error:

1 let i = 1

2 if i {

3 // this example will not compile, and will

report an error

4 }

However, the alternative example below is valid:

1 let i = 1

2 if i == 1 {

3 // this example will compile successfully

4 }

The result of the i == 1 comparison is of type Bool, and so this
second example passes the type-check. Comparisons like i == 1 are
discussed in Basic Operators.

PDF conversion courtesy of www.appsdissected.com

As with other examples of type safety in Swift, this approach avoids
accidental errors and ensures that the intention of a particular section
of code is always clear.

Tuples
Tuples group multiple values into a single compound value. The
values within a tuple can be of any type and don’t have to be of the
same type as each other.

In this example, (404, "Not Found") is a tuple that describes an
HTTP status code. An HTTP status code is a special value returned
by a web server whenever you request a web page. A status code of
404 Not Found is returned if you request a webpage that doesn’t
exist.

1 let http404Error = (404, "Not Found")

2 // http404Error is of type (Int, String), and equals

(404, "Not Found")

The (404, "Not Found") tuple groups together an Int and a String
to give the HTTP status code two separate values: a number and a
human-readable description. It can be described as “a tuple of type
(Int, String)”.

You can create tuples from any permutation of types, and they can
contain as many different types as you like. There’s nothing stopping
you from having a tuple of type (Int, Int, Int), or (String, Bool),
or indeed any other permutation you require.

You can decompose a tuple’s contents into separate constants or
variables, which you then access as usual:

PDF conversion courtesy of www.appsdissected.com

1 let (statusCode, statusMessage) = http404Error

2 print("The status code is \(statusCode)")

3 // Prints "The status code is 404"

4 print("The status message is \(statusMessage)")

5 // Prints "The status message is Not Found"

If you only need some of the tuple’s values, ignore parts of the tuple
with an underscore (_) when you decompose the tuple:

1 let (justTheStatusCode, _) = http404Error

2 print("The status code is \(justTheStatusCode)")

3 // Prints "The status code is 404"

Alternatively, access the individual element values in a tuple using
index numbers starting at zero:

1 print("The status code is \(http404Error.0)")

2 // Prints "The status code is 404"

3 print("The status message is \(http404Error.1)")

4 // Prints "The status message is Not Found"

You can name the individual elements in a tuple when the tuple is
defined:

 let http200Status = (statusCode: 200, description:

"OK")

If you name the elements in a tuple, you can use the element names
to access the values of those elements:

PDF conversion courtesy of www.appsdissected.com

1 print("The status code is \

(http200Status.statusCode)")

2 // Prints "The status code is 200"

3 print("The status message is \

(http200Status.description)")

4 // Prints "The status message is OK"

Tuples are particularly useful as the return values of functions. A
function that tries to retrieve a web page might return the (Int,
String) tuple type to describe the success or failure of the page
retrieval. By returning a tuple with two distinct values, each of a
different type, the function provides more useful information about its
outcome than if it could only return a single value of a single type. For
more information, see Functions with Multiple Return Values.

NOTE

Tuples are useful for simple groups of related values. They’re not suited to the
creation of complex data structures. If your data structure is likely to be more
complex, model it as a class or structure, rather than as a tuple. For more
information, see Structures and Classes.

Optionals
You use optionals in situations where a value may be absent. An
optional represents two possibilities: Either there is a value, and you
can unwrap the optional to access that value, or there isn’t a value at
all.

PDF conversion courtesy of www.appsdissected.com

NOTE

The concept of optionals doesn’t exist in C or Objective-C. The nearest thing
in Objective-C is the ability to return nil from a method that would otherwise
return an object, with nil meaning “the absence of a valid object.” However,
this only works for objects—it doesn’t work for structures, basic C types, or
enumeration values. For these types, Objective-C methods typically return a
special value (such as NSNotFound) to indicate the absence of a value. This
approach assumes that the method’s caller knows there’s a special value to
test against and remembers to check for it. Swift’s optionals let you indicate
the absence of a value for any type at all, without the need for special
constants.

Here’s an example of how optionals can be used to cope with the
absence of a value. Swift’s Int type has an initializer which tries to
convert a String value into an Int value. However, not every string
can be converted into an integer. The string "123" can be converted
into the numeric value 123, but the string "hello, world" doesn’t
have an obvious numeric value to convert to.

The example below uses the initializer to try to convert a String into
an Int:

1 let possibleNumber = "123"

2 let convertedNumber = Int(possibleNumber)

3 // convertedNumber is inferred to be of type "Int?",

or "optional Int"

Because the initializer might fail, it returns an optional Int, rather than
an Int. An optional Int is written as Int?, not Int. The question mark
indicates that the value it contains is optional, meaning that it might
contain some Int value, or it might contain no value at all. (It can’t
contain anything else, such as a Bool value or a String value. It’s
either an Int, or it’s nothing at all.)

PDF conversion courtesy of www.appsdissected.com

nil
You set an optional variable to a valueless state by assigning it the
special value nil:

1 var serverResponseCode: Int? = 404

2 // serverResponseCode contains an actual Int value

of 404

3 serverResponseCode = nil

4 // serverResponseCode now contains no value

NOTE

You can’t use nil with non-optional constants and variables. If a constant or
variable in your code needs to work with the absence of a value under certain
conditions, always declare it as an optional value of the appropriate type.

If you define an optional variable without providing a default value,
the variable is automatically set to nil for you:

1 var surveyAnswer: String?

2 // surveyAnswer is automatically set to nil

NOTE

Swift’s nil isn’t the same as nil in Objective-C. In Objective-C, nil is a
pointer to a nonexistent object. In Swift, nil isn’t a pointer—it’s the absence of
a value of a certain type. Optionals of any type can be set to nil, not just
object types.

If Statements and Forced Unwrapping
You can use an if statement to find out whether an optional contains
a value by comparing the optional against nil. You perform this

PDF conversion courtesy of www.appsdissected.com

comparison with the “equal to” operator (==) or the “not equal to”
operator (!=).

If an optional has a value, it’s considered to be “not equal to” nil:

1 if convertedNumber != nil {

2 print("convertedNumber contains some integer

value.")

3 }

4 // Prints "convertedNumber contains some integer

value."

Once you’re sure that the optional does contain a value, you can
access its underlying value by adding an exclamation point (!) to the
end of the optional’s name. The exclamation point effectively says, “I
know that this optional definitely has a value; please use it.” This is
known as forced unwrapping of the optional’s value:

1 if convertedNumber != nil {

2 print("convertedNumber has an integer value of \

(convertedNumber!).")

3 }

4 // Prints "convertedNumber has an integer value of

123."

For more about the if statement, see Control Flow.

PDF conversion courtesy of www.appsdissected.com

NOTE

Trying to use ! to access a nonexistent optional value triggers a runtime error.
Always make sure that an optional contains a non-nil value before using ! to
force-unwrap its value.

Optional Binding
You use optional binding to find out whether an optional contains a
value, and if so, to make that value available as a temporary constant
or variable. Optional binding can be used with if and while
statements to check for a value inside an optional, and to extract that
value into a constant or variable, as part of a single action. if and
while statements are described in more detail in Control Flow.

Write an optional binding for an if statement as follows:

 if let constantName = someOptional {

 statements

 }

You can rewrite the possibleNumber example from the Optionals
section to use optional binding rather than forced unwrapping:

PDF conversion courtesy of www.appsdissected.com

1 if let actualNumber = Int(possibleNumber) {

2 print("The string \"\(possibleNumber)\" has an

integer value of \(actualNumber)")

3 } else {

4 print("The string \"\(possibleNumber)\" couldn't

be converted to an integer")

5 }

6 // Prints "The string "123" has an integer value of

123"

This code can be read as:

“If the optional Int returned by Int(possibleNumber) contains a
value, set a new constant called actualNumber to the value contained
in the optional.”

If the conversion is successful, the actualNumber constant becomes
available for use within the first branch of the if statement. It has
already been initialized with the value contained within the optional,
and so you don’t use the ! suffix to access its value. In this example,
actualNumber is simply used to print the result of the conversion.

If you don’t need to refer to the original, optional constant or variable
after accessing the value it contains, you can use the same name for
the new constant or variable:

PDF conversion courtesy of www.appsdissected.com

1 let myNumber = Int(possibleNumber)

2 // Here, myNumber is an optional integer

3 if let myNumber = myNumber {

4 // Here, myNumber is a non-optional integer

5 print("My number is \(myNumber)")

6 }

7 // Prints "My number is 123"

This code starts by checking whether myNumber contains a value, just
like the code in the previous example. If myNumber has a value, the
value of a new constant named myNumber is set to that value. Inside
the body of the if statement, writing myNumber refers to that new non-
optional constant. Before the beginning of the if statement and after
its end, writing myNumber refers to the optional integer constant.

Because this kind of code is so common, you can use a shorter
spelling to unwrap an optional value: write just the name of the
constant or variable that you’re unwrapping. The new, unwrapped
constant or variable implicitly uses the same name as the optional
value.

1 if let myNumber {

2 print("My number is \(myNumber)")

3 }

4 // Prints "My number is 123"

You can use both constants and variables with optional binding. If you
wanted to manipulate the value of myNumber within the first branch of
the if statement, you could write if var myNumber instead, and the
value contained within the optional would be made available as a
variable rather than a constant. Changes you make to myNumber

PDF conversion courtesy of www.appsdissected.com

inside the body of the if statement apply only to that local variable,
not to the original, optional constant or variable that you unwrapped.

You can include as many optional bindings and Boolean conditions in
a single if statement as you need to, separated by commas. If any of
the values in the optional bindings are nil or any Boolean condition
evaluates to false, the whole if statement’s condition is considered
to be false. The following if statements are equivalent:

1 if let firstNumber = Int("4"), let secondNumber =

Int("42"), firstNumber < secondNumber &&

secondNumber < 100 {

2 print("\(firstNumber) < \(secondNumber) < 100")

3 }

4 // Prints "4 < 42 < 100"

5

6 if let firstNumber = Int("4") {

7 if let secondNumber = Int("42") {

8 if firstNumber < secondNumber &&

secondNumber < 100 {

9 print("\(firstNumber) < \(secondNumber)

< 100")

10 }

11 }

12 }

13 // Prints "4 < 42 < 100"

PDF conversion courtesy of www.appsdissected.com

NOTE

Constants and variables created with optional binding in an if statement are
available only within the body of the if statement. In contrast, the constants
and variables created with a guard statement are available in the lines of code
that follow the guard statement, as described in Early Exit.

Implicitly Unwrapped Optionals
As described above, optionals indicate that a constant or variable is
allowed to have “no value”. Optionals can be checked with an if
statement to see if a value exists, and can be conditionally
unwrapped with optional binding to access the optional’s value if it
does exist.

Sometimes it’s clear from a program’s structure that an optional will
always have a value, after that value is first set. In these cases, it’s
useful to remove the need to check and unwrap the optional’s value
every time it’s accessed, because it can be safely assumed to have a
value all of the time.

These kinds of optionals are defined as implicitly unwrapped
optionals. You write an implicitly unwrapped optional by placing an
exclamation point (String!) rather than a question mark (String?)
after the type that you want to make optional. Rather than placing an
exclamation point after the optional’s name when you use it, you
place an exclamation point after the optional’s type when you declare
it.

Implicitly unwrapped optionals are useful when an optional’s value is
confirmed to exist immediately after the optional is first defined and
can definitely be assumed to exist at every point thereafter. The
primary use of implicitly unwrapped optionals in Swift is during class
initialization, as described in Unowned References and Implicitly
Unwrapped Optional Properties.

PDF conversion courtesy of www.appsdissected.com

An implicitly unwrapped optional is a normal optional behind the
scenes, but can also be used like a non-optional value, without the
need to unwrap the optional value each time it’s accessed. The
following example shows the difference in behavior between an
optional string and an implicitly unwrapped optional string when
accessing their wrapped value as an explicit String:

1 let possibleString: String? = "An optional string."

2 let forcedString: String = possibleString! //

requires an exclamation point

3

4 let assumedString: String! = "An implicitly

unwrapped optional string."

5 let implicitString: String = assumedString // no

need for an exclamation point

You can think of an implicitly unwrapped optional as giving
permission for the optional to be force-unwrapped if needed. When
you use an implicitly unwrapped optional value, Swift first tries to use
it as an ordinary optional value; if it can’t be used as an optional, Swift
force-unwraps the value. In the code above, the optional value
assumedString is force-unwrapped before assigning its value to
implicitString because implicitString has an explicit, non-
optional type of String. In code below, optionalString doesn’t have
an explicit type so it’s an ordinary optional.

1 let optionalString = assumedString

2 // The type of optionalString is "String?" and

assumedString isn't force-unwrapped.

PDF conversion courtesy of www.appsdissected.com

If an implicitly unwrapped optional is nil and you try to access its
wrapped value, you’ll trigger a runtime error. The result is exactly the
same as if you place an exclamation point after a normal optional that
doesn’t contain a value.

You can check whether an implicitly unwrapped optional is nil the
same way you check a normal optional:

1 if assumedString != nil {

2 print(assumedString!)

3 }

4 // Prints "An implicitly unwrapped optional string."

You can also use an implicitly unwrapped optional with optional
binding, to check and unwrap its value in a single statement:

1 if let definiteString = assumedString {

2 print(definiteString)

3 }

4 // Prints "An implicitly unwrapped optional string."

NOTE

Don’t use an implicitly unwrapped optional when there’s a possibility of a
variable becoming nil at a later point. Always use a normal optional type if
you need to check for a nil value during the lifetime of a variable.

Error Handling

PDF conversion courtesy of www.appsdissected.com

You use error handling to respond to error conditions your program
may encounter during execution.

In contrast to optionals, which can use the presence or absence of a
value to communicate success or failure of a function, error handling
allows you to determine the underlying cause of failure, and, if
necessary, propagate the error to another part of your program.

When a function encounters an error condition, it throws an error.
That function’s caller can then catch the error and respond
appropriately.

1 func canThrowAnError() throws {

2 // this function may or may not throw an error

3 }

A function indicates that it can throw an error by including the throws
keyword in its declaration. When you call a function that can throw an
error, you prepend the try keyword to the expression.

Swift automatically propagates errors out of their current scope until
they’re handled by a catch clause.

1 do {

2 try canThrowAnError()

3 // no error was thrown

4 } catch {

5 // an error was thrown

6 }

A do statement creates a new containing scope, which allows errors
to be propagated to one or more catch clauses.

PDF conversion courtesy of www.appsdissected.com

Here’s an example of how error handling can be used to respond to
different error conditions:

1 func makeASandwich() throws {

2 // ...

3 }

4

5 do {

6 try makeASandwich()

7 eatASandwich()

8 } catch SandwichError.outOfCleanDishes {

9 washDishes()

10 } catch SandwichError.missingIngredients(let

ingredients) {

11 buyGroceries(ingredients)

12 }

In this example, the makeASandwich() function will throw an error if no
clean dishes are available or if any ingredients are missing. Because
makeASandwich() can throw an error, the function call is wrapped in a
try expression. By wrapping the function call in a do statement, any
errors that are thrown will be propagated to the provided catch
clauses.

If no error is thrown, the eatASandwich() function is called. If an error
is thrown and it matches the SandwichError.outOfCleanDishes case,
then the washDishes() function will be called. If an error is thrown and
it matches the SandwichError.missingIngredients case, then the
buyGroceries(_:) function is called with the associated [String]
value captured by the catch pattern.

PDF conversion courtesy of www.appsdissected.com

Throwing, catching, and propagating errors is covered in greater
detail in Error Handling.

Assertions and Preconditions
Assertions and preconditions are checks that happen at runtime. You
use them to make sure an essential condition is satisfied before
executing any further code. If the Boolean condition in the assertion
or precondition evaluates to true, code execution continues as usual.
If the condition evaluates to false, the current state of the program is
invalid; code execution ends, and your app is terminated.

You use assertions and preconditions to express the assumptions
you make and the expectations you have while coding, so you can
include them as part of your code. Assertions help you find mistakes
and incorrect assumptions during development, and preconditions
help you detect issues in production.

In addition to verifying your expectations at runtime, assertions and
preconditions also become a useful form of documentation within the
code. Unlike the error conditions discussed in Error Handling above,
assertions and preconditions aren’t used for recoverable or expected
errors. Because a failed assertion or precondition indicates an invalid
program state, there’s no way to catch a failed assertion.

Using assertions and preconditions isn’t a substitute for designing
your code in such a way that invalid conditions are unlikely to arise.
However, using them to enforce valid data and state causes your app
to terminate more predictably if an invalid state occurs, and helps
make the problem easier to debug. Stopping execution as soon as an
invalid state is detected also helps limit the damage caused by that
invalid state.

PDF conversion courtesy of www.appsdissected.com

The difference between assertions and preconditions is in when
they’re checked: Assertions are checked only in debug builds, but
preconditions are checked in both debug and production builds. In
production builds, the condition inside an assertion isn’t evaluated.
This means you can use as many assertions as you want during your
development process, without impacting performance in production.

Debugging with Assertions
You write an assertion by calling the assert(_:_:file:line:)
function from the Swift standard library. You pass this function an
expression that evaluates to true or false and a message to display
if the result of the condition is false. For example:

1 let age = -3

2 assert(age >= 0, "A person's age can't be less than

zero.")

3 // This assertion fails because -3 isn't >= 0.

In this example, code execution continues if age >= 0 evaluates to
true, that is, if the value of age is nonnegative. If the value of age is
negative, as in the code above, then age >= 0 evaluates to false,
and the assertion fails, terminating the application.

You can omit the assertion message—for example, when it would just
repeat the condition as prose.

 assert(age >= 0)

If the code already checks the condition, you use the
assertionFailure(_:file:line:) function to indicate that an
assertion has failed. For example:

https://developer.apple.com/documentation/swift/1541112-assert
https://developer.apple.com/documentation/swift/1539616-assertionfailure

PDF conversion courtesy of www.appsdissected.com

1 if age > 10 {

2 print("You can ride the roller-coaster or the

ferris wheel.")

3 } else if age >= 0 {

4 print("You can ride the ferris wheel.")

5 } else {

6 assertionFailure("A person's age can't be less

than zero.")

7 }

Enforcing Preconditions
Use a precondition whenever a condition has the potential to be false,
but must definitely be true for your code to continue execution. For
example, use a precondition to check that a subscript isn’t out of
bounds, or to check that a function has been passed a valid value.

You write a precondition by calling the
precondition(_:_:file:line:) function. You pass this function an
expression that evaluates to true or false and a message to display
if the result of the condition is false. For example:

1 // In the implementation of a subscript...

2 precondition(index > 0, "Index must be greater than

zero.")

You can also call the preconditionFailure(_:file:line:) function
to indicate that a failure has occurred—for example, if the default
case of a switch was taken, but all valid input data should have been
handled by one of the switch’s other cases.

https://developer.apple.com/documentation/swift/1540960-precondition
https://developer.apple.com/documentation/swift/1539374-preconditionfailure

PDF conversion courtesy of www.appsdissected.com

NOTE

If you compile in unchecked mode (-Ounchecked), preconditions aren’t
checked. The compiler assumes that preconditions are always true, and it
optimizes your code accordingly. However, the fatalError(_:file:line:)
function always halts execution, regardless of optimization settings.

You can use the fatalError(_:file:line:) function during prototyping and
early development to create stubs for functionality that hasn’t been
implemented yet, by writing fatalError("Unimplemented") as the stub
implementation. Because fatal errors are never optimized out, unlike
assertions or preconditions, you can be sure that execution always halts if it
encounters a stub implementation.

PDF conversion courtesy of www.appsdissected.com

Basic Operators

An operator is a special symbol or phrase that you use to check,
change, or combine values. For example, the addition operator (+)
adds two numbers, as in let i = 1 + 2, and the logical AND
operator (&&) combines two Boolean values, as in if
enteredDoorCode && passedRetinaScan.

Swift supports the operators you may already know from languages
like C, and improves several capabilities to eliminate common coding
errors. The assignment operator (=) doesn’t return a value, to prevent
it from being mistakenly used when the equal to operator (==) is
intended. Arithmetic operators (+, -, *, /, % and so forth) detect and
disallow value overflow, to avoid unexpected results when working
with numbers that become larger or smaller than the allowed value
range of the type that stores them. You can opt in to value overflow
behavior by using Swift’s overflow operators, as described in
Overflow Operators.

Swift also provides range operators that aren’t found in C, such as
a..<b and a...b, as a shortcut for expressing a range of values.

This chapter describes the common operators in Swift. Advanced
Operators covers Swift’s advanced operators, and describes how to
define your own custom operators and implement the standard
operators for your own custom types.

Terminology
Operators are unary, binary, or ternary:

PDF conversion courtesy of www.appsdissected.com

Unary operators operate on a single target (such as -a). Unary
prefix operators appear immediately before their target (such as
!b), and unary postfix operators appear immediately after their
target (such as c!).

Binary operators operate on two targets (such as 2 + 3) and are
infix because they appear in between their two targets.

Ternary operators operate on three targets. Like C, Swift has
only one ternary operator, the ternary conditional operator (a ? b
: c).

The values that operators affect are operands. In the expression 1 +
2, the + symbol is an infix operator and its two operands are the
values 1 and 2.

Assignment Operator
The assignment operator (a = b) initializes or updates the value of a
with the value of b:

1 let b = 10

2 var a = 5

3 a = b

4 // a is now equal to 10

If the right side of the assignment is a tuple with multiple values, its
elements can be decomposed into multiple constants or variables at
once:

PDF conversion courtesy of www.appsdissected.com

1 let (x, y) = (1, 2)

2 // x is equal to 1, and y is equal to 2

Unlike the assignment operator in C and Objective-C, the assignment
operator in Swift doesn’t itself return a value. The following statement
isn’t valid:

1 if x = y {

2 // This isn't valid, because x = y doesn't

return a value.

3 }

This feature prevents the assignment operator (=) from being used by
accident when the equal to operator (==) is actually intended. By
making if x = y invalid, Swift helps you to avoid these kinds of
errors in your code.

Arithmetic Operators
Swift supports the four standard arithmetic operators for all number
types:

Addition (+)

Subtraction (-)

Multiplication (*)

Division (/)

PDF conversion courtesy of www.appsdissected.com

1 1 + 2 // equals 3

2 5 - 3 // equals 2

3 2 * 3 // equals 6

4 10.0 / 2.5 // equals 4.0

Unlike the arithmetic operators in C and Objective-C, the Swift
arithmetic operators don’t allow values to overflow by default. You
can opt in to value overflow behavior by using Swift’s overflow
operators (such as a &+ b). See Overflow Operators.

The addition operator is also supported for String concatenation:

 "hello, " + "world" // equals "hello, world"

Remainder Operator
The remainder operator (a % b) works out how many multiples of b
will fit inside a and returns the value that’s left over (known as the
remainder).

NOTE

The remainder operator (%) is also known as a modulo operator in other
languages. However, its behavior in Swift for negative numbers means that,
strictly speaking, it’s a remainder rather than a modulo operation.

Here’s how the remainder operator works. To calculate 9 % 4, you
first work out how many 4s will fit inside 9:

You can fit two 4s inside 9, and the remainder is 1 (shown in orange).

PDF conversion courtesy of www.appsdissected.com

In Swift, this would be written as:

 9 % 4 // equals 1

To determine the answer for a % b, the % operator calculates the
following equation and returns remainder as its output:

a = (b x some multiplier) + remainder

where some multiplier is the largest number of multiples of b that
will fit inside a.

Inserting 9 and 4 into this equation yields:

9 = (4 x 2) + 1

The same method is applied when calculating the remainder for a
negative value of a:

 -9 % 4 // equals -1

Inserting -9 and 4 into the equation yields:

-9 = (4 x -2) + -1

giving a remainder value of -1.

The sign of b is ignored for negative values of b. This means that a %
b and a % -b always give the same answer.

Unary Minus Operator
The sign of a numeric value can be toggled using a prefixed -, known
as the unary minus operator:

PDF conversion courtesy of www.appsdissected.com

1 let three = 3

2 let minusThree = -three // minusThree equals

-3

3 let plusThree = -minusThree // plusThree equals 3,

or "minus minus three"

The unary minus operator (-) is prepended directly before the value it
operates on, without any white space.

Unary Plus Operator
The unary plus operator (+) simply returns the value it operates on,
without any change:

1 let minusSix = -6

2 let alsoMinusSix = +minusSix // alsoMinusSix equals

-6

Although the unary plus operator doesn’t actually do anything, you
can use it to provide symmetry in your code for positive numbers
when also using the unary minus operator for negative numbers.

Compound Assignment Operators
Like C, Swift provides compound assignment operators that combine
assignment (=) with another operation. One example is the addition
assignment operator (+=):

PDF conversion courtesy of www.appsdissected.com

1 var a = 1

2 a += 2

3 // a is now equal to 3

The expression a += 2 is shorthand for a = a + 2. Effectively, the
addition and the assignment are combined into one operator that
performs both tasks at the same time.

NOTE

The compound assignment operators don’t return a value. For example, you
can’t write let b = a += 2.

For information about the operators provided by the Swift standard
library, see Operator Declarations.

Comparison Operators
Swift supports the following comparison operators:

Equal to (a == b)

Not equal to (a != b)

Greater than (a > b)

Less than (a < b)

Greater than or equal to (a >= b)

Less than or equal to (a <= b)

https://developer.apple.com/documentation/swift/operator_declarations

PDF conversion courtesy of www.appsdissected.com

NOTE

Swift also provides two identity operators (=== and !==), which you use to test
whether two object references both refer to the same object instance. For
more information, see Identity Operators.

Each of the comparison operators returns a Bool value to indicate
whether or not the statement is true:

1 1 == 1 // true because 1 is equal to 1

2 2 != 1 // true because 2 isn't equal to 1

3 2 > 1 // true because 2 is greater than 1

4 1 < 2 // true because 1 is less than 2

5 1 >= 1 // true because 1 is greater than or equal

to 1

6 2 <= 1 // false because 2 isn't less than or equal

to 1

Comparison operators are often used in conditional statements, such
as the if statement:

PDF conversion courtesy of www.appsdissected.com

1 let name = "world"

2 if name == "world" {

3 print("hello, world")

4 } else {

5 print("I'm sorry \(name), but I don't recognize

you")

6 }

7 // Prints "hello, world", because name is indeed

equal to "world".

For more about the if statement, see Control Flow.

You can compare two tuples if they have the same type and the same
number of values. Tuples are compared from left to right, one value at
a time, until the comparison finds two values that aren’t equal. Those
two values are compared, and the result of that comparison
determines the overall result of the tuple comparison. If all the
elements are equal, then the tuples themselves are equal. For
example:

1 (1, "zebra") < (2, "apple") // true because 1 is

less than 2; "zebra" and "apple" aren't

compared

2 (3, "apple") < (3, "bird") // true because 3 is

equal to 3, and "apple" is less than "bird"

3 (4, "dog") == (4, "dog") // true because 4 is

equal to 4, and "dog" is equal to "dog"

PDF conversion courtesy of www.appsdissected.com

In the example above, you can see the left-to-right comparison
behavior on the first line. Because 1 is less than 2, (1, "zebra") is
considered less than (2, "apple"), regardless of any other values in
the tuples. It doesn’t matter that "zebra" isn’t less than "apple",
because the comparison is already determined by the tuples’ first
elements. However, when the tuples’ first elements are the same,
their second elements are compared—this is what happens on the
second and third line.

Tuples can be compared with a given operator only if the operator
can be applied to each value in the respective tuples. For example,
as demonstrated in the code below, you can compare two tuples of
type (String, Int) because both String and Int values can be
compared using the < operator. In contrast, two tuples of type
(String, Bool) can’t be compared with the < operator because the <
operator can’t be applied to Bool values.

1 ("blue", -1) < ("purple", 1) // OK, evaluates

to true

2 ("blue", false) < ("purple", true) // Error because

< can't compare Boolean values

NOTE

The Swift standard library includes tuple comparison operators for tuples with
fewer than seven elements. To compare tuples with seven or more elements,
you must implement the comparison operators yourself.

Ternary Conditional Operator
The ternary conditional operator is a special operator with three parts,
which takes the form question ? answer1 : answer2. It’s a shortcut

PDF conversion courtesy of www.appsdissected.com

for evaluating one of two expressions based on whether question is
true or false. If question is true, it evaluates answer1 and returns its
value; otherwise, it evaluates answer2 and returns its value.

The ternary conditional operator is shorthand for the code below:

1 if question {

2 answer1

3 } else {

4 answer2

5 }

Here’s an example, which calculates the height for a table row. The
row height should be 50 points taller than the content height if the row
has a header, and 20 points taller if the row doesn’t have a header:

1 let contentHeight = 40

2 let hasHeader = true

3 let rowHeight = contentHeight + (hasHeader ? 50 :

20)

4 // rowHeight is equal to 90

The example above is shorthand for the code below:

PDF conversion courtesy of www.appsdissected.com

1 let contentHeight = 40

2 let hasHeader = true

3 let rowHeight: Int

4 if hasHeader {

5 rowHeight = contentHeight + 50

6 } else {

7 rowHeight = contentHeight + 20

8 }

9 // rowHeight is equal to 90

The first example’s use of the ternary conditional operator means that
rowHeight can be set to the correct value on a single line of code,
which is more concise than the code used in the second example.

The ternary conditional operator provides an efficient shorthand for
deciding which of two expressions to consider. Use the ternary
conditional operator with care, however. Its conciseness can lead to
hard-to-read code if overused. Avoid combining multiple instances of
the ternary conditional operator into one compound statement.

Nil-Coalescing Operator
The nil-coalescing operator (a ?? b) unwraps an optional a if it
contains a value, or returns a default value b if a is nil. The
expression a is always of an optional type. The expression b must
match the type that’s stored inside a.

The nil-coalescing operator is shorthand for the code below:

PDF conversion courtesy of www.appsdissected.com

 a != nil ? a! : b

The code above uses the ternary conditional operator and forced
unwrapping (a!) to access the value wrapped inside a when a isn’t
nil, and to return b otherwise. The nil-coalescing operator provides a
more elegant way to encapsulate this conditional checking and
unwrapping in a concise and readable form.

NOTE

If the value of a is non-nil, the value of b isn’t evaluated. This is known as
short-circuit evaluation.

The example below uses the nil-coalescing operator to choose
between a default color name and an optional user-defined color
name:

1 let defaultColorName = "red"

2 var userDefinedColorName: String? // defaults to

nil

3

4 var colorNameToUse = userDefinedColorName ??

defaultColorName

5 // userDefinedColorName is nil, so colorNameToUse is

set to the default of "red"

The userDefinedColorName variable is defined as an optional String,
with a default value of nil. Because userDefinedColorName is of an
optional type, you can use the nil-coalescing operator to consider its
value. In the example above, the operator is used to determine an
initial value for a String variable called colorNameToUse. Because
userDefinedColorName is nil, the expression userDefinedColorName

PDF conversion courtesy of www.appsdissected.com

?? defaultColorName returns the value of defaultColorName, or
"red".

If you assign a non-nil value to userDefinedColorName and perform
the nil-coalescing operator check again, the value wrapped inside
userDefinedColorName is used instead of the default:

1 userDefinedColorName = "green"

2 colorNameToUse = userDefinedColorName ??

defaultColorName

3 // userDefinedColorName isn't nil, so colorNameToUse

is set to "green"

Range Operators
Swift includes several range operators, which are shortcuts for
expressing a range of values.

Closed Range Operator
The closed range operator (a...b) defines a range that runs from a to
b, and includes the values a and b. The value of a must not be greater
than b.

The closed range operator is useful when iterating over a range in
which you want all of the values to be used, such as with a for-in
loop:

PDF conversion courtesy of www.appsdissected.com

1 for index in 1...5 {

2 print("\(index) times 5 is \(index * 5)")

3 }

4 // 1 times 5 is 5

5 // 2 times 5 is 10

6 // 3 times 5 is 15

7 // 4 times 5 is 20

8 // 5 times 5 is 25

For more about for-in loops, see Control Flow.

Half-Open Range Operator
The half-open range operator (a..<b) defines a range that runs from
a to b, but doesn’t include b. It’s said to be half-open because it
contains its first value, but not its final value. As with the closed range
operator, the value of a must not be greater than b. If the value of a is
equal to b, then the resulting range will be empty.

Half-open ranges are particularly useful when you work with zero-
based lists such as arrays, where it’s useful to count up to (but not
including) the length of the list:

PDF conversion courtesy of www.appsdissected.com

1 let names = ["Anna", "Alex", "Brian", "Jack"]

2 let count = names.count

3 for i in 0..<count {

4 print("Person \(i + 1) is called \(names[i])")

5 }

6 // Person 1 is called Anna

7 // Person 2 is called Alex

8 // Person 3 is called Brian

9 // Person 4 is called Jack

Note that the array contains four items, but 0..<count only counts as
far as 3 (the index of the last item in the array), because it’s a half-
open range. For more about arrays, see Arrays.

One-Sided Ranges
The closed range operator has an alternative form for ranges that
continue as far as possible in one direction—for example, a range
that includes all the elements of an array from index 2 to the end of
the array. In these cases, you can omit the value from one side of the
range operator. This kind of range is called a one-sided range
because the operator has a value on only one side. For example:

PDF conversion courtesy of www.appsdissected.com

1 for name in names[2...] {

2 print(name)

3 }

4 // Brian

5 // Jack

6

7 for name in names[...2] {

8 print(name)

9 }

10 // Anna

11 // Alex

12 // Brian

The half-open range operator also has a one-sided form that’s written
with only its final value. Just like when you include a value on both
sides, the final value isn’t part of the range. For example:

1 for name in names[..<2] {

2 print(name)

3 }

4 // Anna

5 // Alex

One-sided ranges can be used in other contexts, not just in
subscripts. You can’t iterate over a one-sided range that omits a first
value, because it isn’t clear where iteration should begin. You can
iterate over a one-sided range that omits its final value; however,
because the range continues indefinitely, make sure you add an

PDF conversion courtesy of www.appsdissected.com

explicit end condition for the loop. You can also check whether a one-
sided range contains a particular value, as shown in the code below.

1 let range = ...5

2 range.contains(7) // false

3 range.contains(4) // true

4 range.contains(-1) // true

Logical Operators
Logical operators modify or combine the Boolean logic values true
and false. Swift supports the three standard logical operators found
in C-based languages:

Logical NOT (!a)

Logical AND (a && b)

Logical OR (a || b)

Logical NOT Operator
The logical NOT operator (!a) inverts a Boolean value so that true
becomes false, and false becomes true.

The logical NOT operator is a prefix operator, and appears
immediately before the value it operates on, without any white space.
It can be read as “not a”, as seen in the following example:

PDF conversion courtesy of www.appsdissected.com

1 let allowedEntry = false

2 if !allowedEntry {

3 print("ACCESS DENIED")

4 }

5 // Prints "ACCESS DENIED"

The phrase if !allowedEntry can be read as “if not allowed entry.”
The subsequent line is only executed if “not allowed entry” is true;
that is, if allowedEntry is false.

As in this example, careful choice of Boolean constant and variable
names can help to keep code readable and concise, while avoiding
double negatives or confusing logic statements.

Logical AND Operator
The logical AND operator (a && b) creates logical expressions where
both values must be true for the overall expression to also be true.

If either value is false, the overall expression will also be false. In
fact, if the first value is false, the second value won’t even be
evaluated, because it can’t possibly make the overall expression
equate to true. This is known as short-circuit evaluation.

This example considers two Bool values and only allows access if
both values are true:

PDF conversion courtesy of www.appsdissected.com

1 let enteredDoorCode = true

2 let passedRetinaScan = false

3 if enteredDoorCode && passedRetinaScan {

4 print("Welcome!")

5 } else {

6 print("ACCESS DENIED")

7 }

8 // Prints "ACCESS DENIED"

Logical OR Operator
The logical OR operator (a || b) is an infix operator made from two
adjacent pipe characters. You use it to create logical expressions in
which only one of the two values has to be true for the overall
expression to be true.

Like the Logical AND operator above, the Logical OR operator uses
short-circuit evaluation to consider its expressions. If the left side of a
Logical OR expression is true, the right side isn’t evaluated, because
it can’t change the outcome of the overall expression.

In the example below, the first Bool value (hasDoorKey) is false, but
the second value (knowsOverridePassword) is true. Because one
value is true, the overall expression also evaluates to true, and
access is allowed:

PDF conversion courtesy of www.appsdissected.com

1 let hasDoorKey = false

2 let knowsOverridePassword = true

3 if hasDoorKey || knowsOverridePassword {

4 print("Welcome!")

5 } else {

6 print("ACCESS DENIED")

7 }

8 // Prints "Welcome!"

Combining Logical Operators
You can combine multiple logical operators to create longer
compound expressions:

1 if enteredDoorCode && passedRetinaScan || hasDoorKey

|| knowsOverridePassword {

2 print("Welcome!")

3 } else {

4 print("ACCESS DENIED")

5 }

6 // Prints "Welcome!"

This example uses multiple && and || operators to create a longer
compound expression. However, the && and || operators still operate
on only two values, so this is actually three smaller expressions
chained together. The example can be read as:

If we’ve entered the correct door code and passed the retina scan, or
if we have a valid door key, or if we know the emergency override

PDF conversion courtesy of www.appsdissected.com

password, then allow access.

Based on the values of enteredDoorCode, passedRetinaScan, and
hasDoorKey, the first two subexpressions are false. However, the
emergency override password is known, so the overall compound
expression still evaluates to true.

NOTE

The Swift logical operators && and || are left-associative, meaning that
compound expressions with multiple logical operators evaluate the leftmost
subexpression first.

Explicit Parentheses
It’s sometimes useful to include parentheses when they’re not strictly
needed, to make the intention of a complex expression easier to
read. In the door access example above, it’s useful to add
parentheses around the first part of the compound expression to
make its intent explicit:

1 if (enteredDoorCode && passedRetinaScan) ||

hasDoorKey || knowsOverridePassword {

2 print("Welcome!")

3 } else {

4 print("ACCESS DENIED")

5 }

6 // Prints "Welcome!"

The parentheses make it clear that the first two values are
considered as part of a separate possible state in the overall logic.
The output of the compound expression doesn’t change, but the
overall intention is clearer to the reader. Readability is always

PDF conversion courtesy of www.appsdissected.com

preferred over brevity; use parentheses where they help to make
your intentions clear.

PDF conversion courtesy of www.appsdissected.com

Strings and Characters

A string is a series of characters, such as "hello, world" or
"albatross". Swift strings are represented by the String type. The
contents of a String can be accessed in various ways, including as a
collection of Character values.

Swift’s String and Character types provide a fast, Unicode-compliant
way to work with text in your code. The syntax for string creation and
manipulation is lightweight and readable, with a string literal syntax
that’s similar to C. String concatenation is as simple as combining two
strings with the + operator, and string mutability is managed by
choosing between a constant or a variable, just like any other value in
Swift. You can also use strings to insert constants, variables, literals,
and expressions into longer strings, in a process known as string
interpolation. This makes it easy to create custom string values for
display, storage, and printing.

Despite this simplicity of syntax, Swift’s String type is a fast, modern
string implementation. Every string is composed of encoding-
independent Unicode characters, and provides support for accessing
those characters in various Unicode representations.

NOTE

Swift’s String type is bridged with Foundation’s NSString class. Foundation
also extends String to expose methods defined by NSString. This means, if
you import Foundation, you can access those NSString methods on String
without casting.

For more information about using String with Foundation and Cocoa, see
Bridging Between String and NSString.

String Literals

https://developer.apple.com/documentation/swift/string#2919514

PDF conversion courtesy of www.appsdissected.com

You can include predefined String values within your code as string
literals. A string literal is a sequence of characters surrounded by
double quotation marks (").

Use a string literal as an initial value for a constant or variable:

 let someString = "Some string literal value"

Note that Swift infers a type of String for the someString constant
because it’s initialized with a string literal value.

Multiline String Literals
If you need a string that spans several lines, use a multiline string
literal—a sequence of characters surrounded by three double
quotation marks:

1 let quotation = """

2 The White Rabbit put on his spectacles. "Where shall

I begin,

3 please your Majesty?" he asked.

4

5 "Begin at the beginning," the King said gravely, "and

go on

6 till you come to the end; then stop."

7 """

A multiline string literal includes all of the lines between its opening
and closing quotation marks. The string begins on the first line after
the opening quotation marks (""") and ends on the line before the

PDF conversion courtesy of www.appsdissected.com

closing quotation marks, which means that neither of the strings below
start or end with a line break:

1 let singleLineString = "These are the same."

2 let multilineString = """

3 These are the same.

4 """

When your source code includes a line break inside of a multiline
string literal, that line break also appears in the string’s value. If you
want to use line breaks to make your source code easier to read, but
you don’t want the line breaks to be part of the string’s value, write a
backslash (\) at the end of those lines:

1 let softWrappedQuotation = """

2 The White Rabbit put on his spectacles. "Where shall

I begin, \

3 please your Majesty?" he asked.

4

5 "Begin at the beginning," the King said gravely, "and

go on \

6 till you come to the end; then stop."

7 """

To make a multiline string literal that begins or ends with a line feed,
write a blank line as the first or last line. For example:

PDF conversion courtesy of www.appsdissected.com

1 let lineBreaks = """

2

3 This string starts with a line break.

4 It also ends with a line break.

5

6 """

A multiline string can be indented to match the surrounding code. The
whitespace before the closing quotation marks (""") tells Swift what
whitespace to ignore before all of the other lines. However, if you write
whitespace at the beginning of a line in addition to what’s before the
closing quotation marks, that whitespace is included.

In the example above, even though the entire multiline string literal is
indented, the first and last lines in the string don’t begin with any
whitespace. The middle line has more indentation than the closing
quotation marks, so it starts with that extra four-space indentation.

Special Characters in String Literals
String literals can include the following special characters:

The escaped special characters \0 (null character), \\
(backslash), \t (horizontal tab), \n (line feed), \r (carriage return),
\" (double quotation mark) and \' (single quotation mark)

PDF conversion courtesy of www.appsdissected.com

An arbitrary Unicode scalar value, written as \u{n}, where n is a
1–8 digit hexadecimal number (Unicode is discussed in Unicode
below)

The code below shows four examples of these special characters. The
wiseWords constant contains two escaped double quotation marks.
The dollarSign, blackHeart, and sparklingHeart constants
demonstrate the Unicode scalar format:

1 let wiseWords = "\"Imagination is more important than

knowledge\" - Einstein"

2 // "Imagination is more important than knowledge" -

Einstein

3 let dollarSign = "\u{24}" // $, Unicode

scalar U+0024

4 let blackHeart = "\u{2665}" // ♥, Unicode

scalar U+2665

5 let sparklingHeart = "\u{1F496}" // 💖 , Unicode

scalar U+1F496

Because multiline string literals use three double quotation marks
instead of just one, you can include a double quotation mark (") inside
of a multiline string literal without escaping it. To include the text """ in
a multiline string, escape at least one of the quotation marks. For
example:

1 let threeDoubleQuotationMarks = """

2 Escaping the first quotation mark \"""

3 Escaping all three quotation marks \"\"\"

4 """

PDF conversion courtesy of www.appsdissected.com

Extended String Delimiters
You can place a string literal within extended delimiters to include
special characters in a string without invoking their effect. You place
your string within quotation marks (") and surround that with number
signs (#). For example, printing the string literal #"Line 1\nLine 2"#
prints the line feed escape sequence (\n) rather than printing the
string across two lines.

If you need the special effects of a character in a string literal, match
the number of number signs within the string following the escape
character (\). For example, if your string is #"Line 1\nLine 2"# and
you want to break the line, you can use #"Line 1\#nLine 2"# instead.
Similarly, ###"Line1\###nLine2"### also breaks the line.

String literals created using extended delimiters can also be multiline
string literals. You can use extended delimiters to include the text """
in a multiline string, overriding the default behavior that ends the
literal. For example:

1 let threeMoreDoubleQuotationMarks = #"""

2 Here are three more double quotes: """

3 """#

Initializing an Empty String
To create an empty String value as the starting point for building a
longer string, either assign an empty string literal to a variable, or
initialize a new String instance with initializer syntax:

PDF conversion courtesy of www.appsdissected.com

1 var emptyString = "" // empty string

literal

2 var anotherEmptyString = String() // initializer

syntax

3 // these two strings are both empty, and are

equivalent to each other

Find out whether a String value is empty by checking its Boolean
isEmpty property:

1 if emptyString.isEmpty {

2 print("Nothing to see here")

3 }

4 // Prints "Nothing to see here"

String Mutability
You indicate whether a particular String can be modified (or mutated)
by assigning it to a variable (in which case it can be modified), or to a
constant (in which case it can’t be modified):

PDF conversion courtesy of www.appsdissected.com

1 var variableString = "Horse"

2 variableString += " and carriage"

3 // variableString is now "Horse and carriage"

4

5 let constantString = "Highlander"

6 constantString += " and another Highlander"

7 // this reports a compile-time error - a constant

string cannot be modified

NOTE

This approach is different from string mutation in Objective-C and Cocoa,
where you choose between two classes (NSString and NSMutableString) to
indicate whether a string can be mutated.

Strings Are Value Types
Swift’s String type is a value type. If you create a new String value,
that String value is copied when it’s passed to a function or method,
or when it’s assigned to a constant or variable. In each case, a new
copy of the existing String value is created, and the new copy is
passed or assigned, not the original version. Value types are
described in Structures and Enumerations Are Value Types.

Swift’s copy-by-default String behavior ensures that when a function
or method passes you a String value, it’s clear that you own that
exact String value, regardless of where it came from. You can be
confident that the string you are passed won’t be modified unless you
modify it yourself.

PDF conversion courtesy of www.appsdissected.com

Behind the scenes, Swift’s compiler optimizes string usage so that
actual copying takes place only when absolutely necessary. This
means you always get great performance when working with strings
as value types.

Working with Characters
You can access the individual Character values for a String by
iterating over the string with a for-in loop:

1 for character in "Dog!🐶 " {

2 print(character)

3 }

4 // D

5 // o

6 // g

7 // !

8 // 🐶

The for-in loop is described in For-In Loops.

Alternatively, you can create a stand-alone Character constant or
variable from a single-character string literal by providing a Character
type annotation:

 let exclamationMark: Character = "!"

String values can be constructed by passing an array of Character
values as an argument to its initializer:

PDF conversion courtesy of www.appsdissected.com

1 let catCharacters: [Character] = ["C", "a", "t", "!",

"🐱 "]

2 let catString = String(catCharacters)

3 print(catString)

4 // Prints "Cat!🐱 "

Concatenating Strings and Characters
String values can be added together (or concatenated) with the
addition operator (+) to create a new String value:

1 let string1 = "hello"

2 let string2 = " there"

3 var welcome = string1 + string2

4 // welcome now equals "hello there"

You can also append a String value to an existing String variable
with the addition assignment operator (+=):

1 var instruction = "look over"

2 instruction += string2

3 // instruction now equals "look over there"

You can append a Character value to a String variable with the
String type’s append() method:

PDF conversion courtesy of www.appsdissected.com

1 let exclamationMark: Character = "!"

2 welcome.append(exclamationMark)

3 // welcome now equals "hello there!"

NOTE

You can’t append a String or Character to an existing Character variable,
because a Character value must contain a single character only.

If you’re using multiline string literals to build up the lines of a longer
string, you want every line in the string to end with a line break,
including the last line. For example:

PDF conversion courtesy of www.appsdissected.com

1 let badStart = """

2 one

3 two

4 """

5 let end = """

6 three

7 """

8 print(badStart + end)

9 // Prints two lines:

10 // one

11 // twothree

12

13 let goodStart = """

14 one

15 two

16

17 """

18 print(goodStart + end)

19 // Prints three lines:

20 // one

21 // two

22 // three

In the code above, concatenating badStart with end produces a two-
line string, which isn’t the desired result. Because the last line of
badStart doesn’t end with a line break, that line gets combined with
the first line of end. In contrast, both lines of goodStart end with a line

PDF conversion courtesy of www.appsdissected.com

break, so when it’s combined with end the result has three lines, as
expected.

String Interpolation
String interpolation is a way to construct a new String value from a
mix of constants, variables, literals, and expressions by including their
values inside a string literal. You can use string interpolation in both
single-line and multiline string literals. Each item that you insert into
the string literal is wrapped in a pair of parentheses, prefixed by a
backslash (\):

1 let multiplier = 3

2 let message = "\(multiplier) times 2.5 is \

(Double(multiplier) * 2.5)"

3 // message is "3 times 2.5 is 7.5"

In the example above, the value of multiplier is inserted into a string
literal as \(multiplier). This placeholder is replaced with the actual
value of multiplier when the string interpolation is evaluated to
create an actual string.

The value of multiplier is also part of a larger expression later in the
string. This expression calculates the value of Double(multiplier) *
2.5 and inserts the result (7.5) into the string. In this case, the
expression is written as \(Double(multiplier) * 2.5) when it’s
included inside the string literal.

You can use extended string delimiters to create strings containing
characters that would otherwise be treated as a string interpolation.
For example:

PDF conversion courtesy of www.appsdissected.com

1 print(#"Write an interpolated string in Swift using \

(multiplier)."#)

2 // Prints "Write an interpolated string in Swift

using \(multiplier)."

To use string interpolation inside a string that uses extended
delimiters, match the number of number signs after the backslash to
the number of number signs at the beginning and end of the string.
For example:

1 print(#"6 times 7 is \#(6 * 7)."#)

2 // Prints "6 times 7 is 42."

NOTE

The expressions you write inside parentheses within an interpolated string
can’t contain an unescaped backslash (\), a carriage return, or a line feed.
However, they can contain other string literals.

Unicode
Unicode is an international standard for encoding, representing, and
processing text in different writing systems. It enables you to represent
almost any character from any language in a standardized form, and
to read and write those characters to and from an external source
such as a text file or web page. Swift’s String and Character types
are fully Unicode-compliant, as described in this section.

Unicode Scalar Values

PDF conversion courtesy of www.appsdissected.com

Behind the scenes, Swift’s native String type is built from Unicode
scalar values. A Unicode scalar value is a unique 21-bit number for a
character or modifier, such as U+0061 for LATIN SMALL LETTER A ("a"),
or U+1F425 for FRONT-FACING BABY CHICK ("🐥 ").

Note that not all 21-bit Unicode scalar values are assigned to a
character—some scalars are reserved for future assignment or for use
in UTF-16 encoding. Scalar values that have been assigned to a
character typically also have a name, such as LATIN SMALL LETTER A
and FRONT-FACING BABY CHICK in the examples above.

Extended Grapheme Clusters
Every instance of Swift’s Character type represents a single extended
grapheme cluster. An extended grapheme cluster is a sequence of
one or more Unicode scalars that (when combined) produce a single
human-readable character.

Here’s an example. The letter é can be represented as the single
Unicode scalar é (LATIN SMALL LETTER E WITH ACUTE, or U+00E9).
However, the same letter can also be represented as a pair of scalars
—a standard letter e (LATIN SMALL LETTER E, or U+0065), followed by
the COMBINING ACUTE ACCENT scalar (U+0301). The COMBINING ACUTE
ACCENT scalar is graphically applied to the scalar that precedes it,
turning an e into an é when it’s rendered by a Unicode-aware text-
rendering system.

In both cases, the letter é is represented as a single Swift Character
value that represents an extended grapheme cluster. In the first case,
the cluster contains a single scalar; in the second case, it’s a cluster of
two scalars:

PDF conversion courtesy of www.appsdissected.com

1 let eAcute: Character = "\u{E9}"

// é

2 let combinedEAcute: Character = "\u{65}\u{301}"

// e followed by
́

3 // eAcute is é, combinedEAcute is é

Extended grapheme clusters are a flexible way to represent many
complex script characters as a single Character value. For example,
Hangul syllables from the Korean alphabet can be represented as
either a precomposed or decomposed sequence. Both of these
representations qualify as a single Character value in Swift:

1 let precomposed: Character = "\u{D55C}"

// 한

2 let decomposed: Character =

"\u{1112}\u{1161}\u{11AB}" // ᄒ, ᅡ, ᆫ

3 // precomposed is 한, decomposed is 한

Extended grapheme clusters enable scalars for enclosing marks
(such as COMBINING ENCLOSING CIRCLE, or U+20DD) to enclose other
Unicode scalars as part of a single Character value:

1 let enclosedEAcute: Character = "\u{E9}\u{20DD}"

2 // enclosedEAcute is é⃝

Unicode scalars for regional indicator symbols can be combined in
pairs to make a single Character value, such as this combination of
REGIONAL INDICATOR SYMBOL LETTER U (U+1F1FA) and REGIONAL
INDICATOR SYMBOL LETTER S (U+1F1F8):

PDF conversion courtesy of www.appsdissected.com

1 let regionalIndicatorForUS: Character =

"\u{1F1FA}\u{1F1F8}"

2 // regionalIndicatorForUS is 🇺🇸

Counting Characters
To retrieve a count of the Character values in a string, use the count
property of the string:

1 let unusualMenagerie = "Koala 🐨 , Snail 🐌 , Penguin

🐧 , Dromedary 🐪 "

2 print("unusualMenagerie has \(unusualMenagerie.count)

characters")

3 // Prints "unusualMenagerie has 40 characters"

Note that Swift’s use of extended grapheme clusters for Character
values means that string concatenation and modification may not
always affect a string’s character count.

For example, if you initialize a new string with the four-character word
cafe, and then append a COMBINING ACUTE ACCENT (U+0301) to the end
of the string, the resulting string will still have a character count of 4,
with a fourth character of é, not e:

PDF conversion courtesy of www.appsdissected.com

1 var word = "cafe"

2 print("the number of characters in \(word) is \

(word.count)")

3 // Prints "the number of characters in cafe is 4"

4

5 word += "\u{301}" // COMBINING ACUTE ACCENT,

U+0301

6

7 print("the number of characters in \(word) is \

(word.count)")

8 // Prints "the number of characters in café is 4"

NOTE

Extended grapheme clusters can be composed of multiple Unicode scalars.
This means that different characters—and different representations of the
same character—can require different amounts of memory to store. Because
of this, characters in Swift don’t each take up the same amount of memory
within a string’s representation. As a result, the number of characters in a string
can’t be calculated without iterating through the string to determine its
extended grapheme cluster boundaries. If you are working with particularly
long string values, be aware that the count property must iterate over the
Unicode scalars in the entire string in order to determine the characters for that
string.

The count of the characters returned by the count property isn’t always the
same as the length property of an NSString that contains the same
characters. The length of an NSString is based on the number of 16-bit code
units within the string’s UTF-16 representation and not the number of Unicode
extended grapheme clusters within the string.

Accessing and Modifying a String

PDF conversion courtesy of www.appsdissected.com

You access and modify a string through its methods and properties, or
by using subscript syntax.

String Indices
Each String value has an associated index type, String.Index, which
corresponds to the position of each Character in the string.

As mentioned above, different characters can require different
amounts of memory to store, so in order to determine which Character
is at a particular position, you must iterate over each Unicode scalar
from the start or end of that String. For this reason, Swift strings can’t
be indexed by integer values.

Use the startIndex property to access the position of the first
Character of a String. The endIndex property is the position after the
last character in a String. As a result, the endIndex property isn’t a
valid argument to a string’s subscript. If a String is empty, startIndex
and endIndex are equal.

You access the indices before and after a given index using the
index(before:) and index(after:) methods of String. To access an
index farther away from the given index, you can use the
index(_:offsetBy:) method instead of calling one of these methods
multiple times.

You can use subscript syntax to access the Character at a particular
String index.

PDF conversion courtesy of www.appsdissected.com

1 let greeting = "Guten Tag!"

2 greeting[greeting.startIndex]

3 // G

4 greeting[greeting.index(before: greeting.endIndex)]

5 // !

6 greeting[greeting.index(after: greeting.startIndex)]

7 // u

8 let index = greeting.index(greeting.startIndex,

offsetBy: 7)

9 greeting[index]

10 // a

Attempting to access an index outside of a string’s range or a
Character at an index outside of a string’s range will trigger a runtime
error.

1 greeting[greeting.endIndex] // Error

2 greeting.index(after: greeting.endIndex) // Error

Use the indices property to access all of the indices of individual
characters in a string.

1 for index in greeting.indices {

2 print("\(greeting[index]) ", terminator: "")

3 }

4 // Prints "G u t e n T a g ! "

PDF conversion courtesy of www.appsdissected.com

NOTE

You can use the startIndex and endIndex properties and the
index(before:), index(after:), and index(_:offsetBy:) methods on any
type that conforms to the Collection protocol. This includes String, as
shown here, as well as collection types such as Array, Dictionary, and Set.

Inserting and Removing
To insert a single character into a string at a specified index, use the
insert(_:at:) method, and to insert the contents of another string at
a specified index, use the insert(contentsOf:at:) method.

1 var welcome = "hello"

2 welcome.insert("!", at: welcome.endIndex)

3 // welcome now equals "hello!"

4

5 welcome.insert(contentsOf: " there", at:

welcome.index(before: welcome.endIndex))

6 // welcome now equals "hello there!"

To remove a single character from a string at a specified index, use
the remove(at:) method, and to remove a substring at a specified
range, use the removeSubrange(_:) method:

PDF conversion courtesy of www.appsdissected.com

1 welcome.remove(at: welcome.index(before:

welcome.endIndex))

2 // welcome now equals "hello there"

3

4 let range = welcome.index(welcome.endIndex, offsetBy:

-6)..<welcome.endIndex

5 welcome.removeSubrange(range)

6 // welcome now equals "hello"

NOTE

You can use the insert(_:at:), insert(contentsOf:at:), remove(at:),
and removeSubrange(_:) methods on any type that conforms to the
RangeReplaceableCollection protocol. This includes String, as shown
here, as well as collection types such as Array, Dictionary, and Set.

Substrings
When you get a substring from a string—for example, using a
subscript or a method like prefix(_:)—the result is an instance of
Substring, not another string. Substrings in Swift have most of the
same methods as strings, which means you can work with substrings
the same way you work with strings. However, unlike strings, you use
substrings for only a short amount of time while performing actions on
a string. When you’re ready to store the result for a longer time, you
convert the substring to an instance of String. For example:

https://developer.apple.com/documentation/swift/substring

PDF conversion courtesy of www.appsdissected.com

1 let greeting = "Hello, world!"

2 let index = greeting.firstIndex(of: ",") ??

greeting.endIndex

3 let beginning = greeting[..<index]

4 // beginning is "Hello"

5

6 // Convert the result to a String for long-term

storage.

7 let newString = String(beginning)

Like strings, each substring has a region of memory where the
characters that make up the substring are stored. The difference
between strings and substrings is that, as a performance optimization,
a substring can reuse part of the memory that’s used to store the
original string, or part of the memory that’s used to store another
substring. (Strings have a similar optimization, but if two strings share
memory, they’re equal.) This performance optimization means you
don’t have to pay the performance cost of copying memory until you
modify either the string or substring. As mentioned above, substrings
aren’t suitable for long-term storage—because they reuse the storage
of the original string, the entire original string must be kept in memory
as long as any of its substrings are being used.

In the example above, greeting is a string, which means it has a
region of memory where the characters that make up the string are
stored. Because beginning is a substring of greeting, it reuses the
memory that greeting uses. In contrast, newString is a string—when
it’s created from the substring, it has its own storage. The figure below
shows these relationships:

PDF conversion courtesy of www.appsdissected.com

NOTE

Both String and Substring conform to the StringProtocol protocol, which
means it’s often convenient for string-manipulation functions to accept a
StringProtocol value. You can call such functions with either a String or
Substring value.

Comparing Strings
Swift provides three ways to compare textual values: string and
character equality, prefix equality, and suffix equality.

String and Character Equality
String and character equality is checked with the “equal to” operator
(==) and the “not equal to” operator (!=), as described in Comparison
Operators:

https://developer.apple.com/documentation/swift/stringprotocol

PDF conversion courtesy of www.appsdissected.com

1 let quotation = "We're a lot alike, you and I."

2 let sameQuotation = "We're a lot alike, you and I."

3 if quotation == sameQuotation {

4 print("These two strings are considered equal")

5 }

6 // Prints "These two strings are considered equal"

Two String values (or two Character values) are considered equal if
their extended grapheme clusters are canonically equivalent.
Extended grapheme clusters are canonically equivalent if they have
the same linguistic meaning and appearance, even if they’re
composed from different Unicode scalars behind the scenes.

For example, LATIN SMALL LETTER E WITH ACUTE (U+00E9) is
canonically equivalent to LATIN SMALL LETTER E (U+0065) followed by
COMBINING ACUTE ACCENT (U+0301). Both of these extended grapheme
clusters are valid ways to represent the character é, and so they’re
considered to be canonically equivalent:

PDF conversion courtesy of www.appsdissected.com

1 // "Voulez-vous un café?" using LATIN SMALL LETTER E

WITH ACUTE

2 let eAcuteQuestion = "Voulez-vous un caf\u{E9}?"

3

4 // "Voulez-vous un café?" using LATIN SMALL LETTER E

and COMBINING ACUTE ACCENT

5 let combinedEAcuteQuestion = "Voulez-vous un

caf\u{65}\u{301}?"

6

7 if eAcuteQuestion == combinedEAcuteQuestion {

8 print("These two strings are considered equal")

9 }

10 // Prints "These two strings are considered equal"

Conversely, LATIN CAPITAL LETTER A (U+0041, or "A"), as used in
English, is not equivalent to CYRILLIC CAPITAL LETTER A (U+0410, or
"А"), as used in Russian. The characters are visually similar, but don’t
have the same linguistic meaning:

1 let latinCapitalLetterA: Character = "\u{41}"

2

3 let cyrillicCapitalLetterA: Character = "\u{0410}"

4

5 if latinCapitalLetterA != cyrillicCapitalLetterA {

6 print("These two characters aren't equivalent.")

7 }

8 // Prints "These two characters aren't equivalent."

PDF conversion courtesy of www.appsdissected.com

NOTE

String and character comparisons in Swift aren’t locale-sensitive.

Prefix and Suffix Equality
To check whether a string has a particular string prefix or suffix, call
the string’s hasPrefix(_:) and hasSuffix(_:) methods, both of which
take a single argument of type String and return a Boolean value.

The examples below consider an array of strings representing the
scene locations from the first two acts of Shakespeare’s Romeo and
Juliet:

1 let romeoAndJuliet = [

2 "Act 1 Scene 1: Verona, A public place",

3 "Act 1 Scene 2: Capulet's mansion",

4 "Act 1 Scene 3: A room in Capulet's mansion",

5 "Act 1 Scene 4: A street outside Capulet's

mansion",

6 "Act 1 Scene 5: The Great Hall in Capulet's

mansion",

7 "Act 2 Scene 1: Outside Capulet's mansion",

8 "Act 2 Scene 2: Capulet's orchard",

9 "Act 2 Scene 3: Outside Friar Lawrence's cell",

10 "Act 2 Scene 4: A street in Verona",

11 "Act 2 Scene 5: Capulet's mansion",

12 "Act 2 Scene 6: Friar Lawrence's cell"

13]

PDF conversion courtesy of www.appsdissected.com

You can use the hasPrefix(_:) method with the romeoAndJuliet array
to count the number of scenes in Act 1 of the play:

1 var act1SceneCount = 0

2 for scene in romeoAndJuliet {

3 if scene.hasPrefix("Act 1 ") {

4 act1SceneCount += 1

5 }

6 }

7 print("There are \(act1SceneCount) scenes in Act 1")

8 // Prints "There are 5 scenes in Act 1"

Similarly, use the hasSuffix(_:) method to count the number of
scenes that take place in or around Capulet’s mansion and Friar
Lawrence’s cell:

PDF conversion courtesy of www.appsdissected.com

1 var mansionCount = 0

2 var cellCount = 0

3 for scene in romeoAndJuliet {

4 if scene.hasSuffix("Capulet's mansion") {

5 mansionCount += 1

6 } else if scene.hasSuffix("Friar Lawrence's

cell") {

7 cellCount += 1

8 }

9 }

10 print("\(mansionCount) mansion scenes; \(cellCount)

cell scenes")

11 // Prints "6 mansion scenes; 2 cell scenes"

NOTE

The hasPrefix(_:) and hasSuffix(_:) methods perform a character-by-
character canonical equivalence comparison between the extended grapheme
clusters in each string, as described in String and Character Equality.

Unicode Representations of Strings
When a Unicode string is written to a text file or some other storage,
the Unicode scalars in that string are encoded in one of several
Unicode-defined encoding forms. Each form encodes the string in
small chunks known as code units. These include the UTF-8 encoding
form (which encodes a string as 8-bit code units), the UTF-16
encoding form (which encodes a string as 16-bit code units), and the
UTF-32 encoding form (which encodes a string as 32-bit code units).

PDF conversion courtesy of www.appsdissected.com

Swift provides several different ways to access Unicode
representations of strings. You can iterate over the string with a for-in
statement, to access its individual Character values as Unicode
extended grapheme clusters. This process is described in Working
with Characters.

Alternatively, access a String value in one of three other Unicode-
compliant representations:

A collection of UTF-8 code units (accessed with the string’s utf8
property)

A collection of UTF-16 code units (accessed with the string’s
utf16 property)

A collection of 21-bit Unicode scalar values, equivalent to the
string’s UTF-32 encoding form (accessed with the string’s
unicodeScalars property)

Each example below shows a different representation of the following
string, which is made up of the characters D, o, g, ‼ (DOUBLE
EXCLAMATION MARK, or Unicode scalar U+203C), and the 🐶 character
(DOG FACE, or Unicode scalar U+1F436):

 let dogString = "Dog‼🐶 "

UTF-8 Representation
You can access a UTF-8 representation of a String by iterating over
its utf8 property. This property is of type String.UTF8View, which is a
collection of unsigned 8-bit (UInt8) values, one for each byte in the
string’s UTF-8 representation:

PDF conversion courtesy of www.appsdissected.com

1 for codeUnit in dogString.utf8 {

2 print("\(codeUnit) ", terminator: "")

3 }

4 print("")

5 // Prints "68 111 103 226 128 188 240 159 144 182 "

In the example above, the first three decimal codeUnit values (68, 111,
103) represent the characters D, o, and g, whose UTF-8 representation
is the same as their ASCII representation. The next three decimal
codeUnit values (226, 128, 188) are a three-byte UTF-8 representation
of the DOUBLE EXCLAMATION MARK character. The last four codeUnit
values (240, 159, 144, 182) are a four-byte UTF-8 representation of the
DOG FACE character.

UTF-16 Representation
You can access a UTF-16 representation of a String by iterating over
its utf16 property. This property is of type String.UTF16View, which is
a collection of unsigned 16-bit (UInt16) values, one for each 16-bit
code unit in the string’s UTF-16 representation:

PDF conversion courtesy of www.appsdissected.com

1 for codeUnit in dogString.utf16 {

2 print("\(codeUnit) ", terminator: "")

3 }

4 print("")

5 // Prints "68 111 103 8252 55357 56374 "

Again, the first three codeUnit values (68, 111, 103) represent the
characters D, o, and g, whose UTF-16 code units have the same
values as in the string’s UTF-8 representation (because these
Unicode scalars represent ASCII characters).

The fourth codeUnit value (8252) is a decimal equivalent of the
hexadecimal value 203C, which represents the Unicode scalar U+203C
for the DOUBLE EXCLAMATION MARK character. This character can be
represented as a single code unit in UTF-16.

The fifth and sixth codeUnit values (55357 and 56374) are a UTF-16
surrogate pair representation of the DOG FACE character. These values
are a high-surrogate value of U+D83D (decimal value 55357) and a low-
surrogate value of U+DC36 (decimal value 56374).

Unicode Scalar Representation

PDF conversion courtesy of www.appsdissected.com

You can access a Unicode scalar representation of a String value by
iterating over its unicodeScalars property. This property is of type
UnicodeScalarView, which is a collection of values of type
UnicodeScalar.

Each UnicodeScalar has a value property that returns the scalar’s 21-
bit value, represented within a UInt32 value:

1 for scalar in dogString.unicodeScalars {

2 print("\(scalar.value) ", terminator: "")

3 }

4 print("")

5 // Prints "68 111 103 8252 128054 "

The value properties for the first three UnicodeScalar values (68, 111,
103) once again represent the characters D, o, and g.

The fourth codeUnit value (8252) is again a decimal equivalent of the
hexadecimal value 203C, which represents the Unicode scalar U+203C
for the DOUBLE EXCLAMATION MARK character.

The value property of the fifth and final UnicodeScalar, 128054, is a
decimal equivalent of the hexadecimal value 1F436, which represents

PDF conversion courtesy of www.appsdissected.com

the Unicode scalar U+1F436 for the DOG FACE character.

As an alternative to querying their value properties, each
UnicodeScalar value can also be used to construct a new String
value, such as with string interpolation:

1 for scalar in dogString.unicodeScalars {

2 print("\(scalar) ")

3 }

4 // D

5 // o

6 // g

7 // ‼

8 // 🐶

PDF conversion courtesy of www.appsdissected.com

Collection Types

Swift provides three primary collection types, known as arrays, sets,
and dictionaries, for storing collections of values. Arrays are ordered
collections of values. Sets are unordered collections of unique values.
Dictionaries are unordered collections of key-value associations.

Arrays, sets, and dictionaries in Swift are always clear about the types
of values and keys that they can store. This means that you can’t
insert a value of the wrong type into a collection by mistake. It also
means you can be confident about the type of values you will retrieve
from a collection.

NOTE

Swift’s array, set, and dictionary types are implemented as generic collections.
For more about generic types and collections, see Generics.

Mutability of Collections
If you create an array, a set, or a dictionary, and assign it to a variable,
the collection that’s created will be mutable. This means that you can
change (or mutate) the collection after it’s created by adding,

PDF conversion courtesy of www.appsdissected.com

removing, or changing items in the collection. If you assign an array, a
set, or a dictionary to a constant, that collection is immutable, and its
size and contents can’t be changed.

NOTE

It’s good practice to create immutable collections in all cases where the
collection doesn’t need to change. Doing so makes it easier for you to reason
about your code and enables the Swift compiler to optimize the performance of
the collections you create.

Arrays
An array stores values of the same type in an ordered list. The same
value can appear in an array multiple times at different positions.

NOTE

Swift’s Array type is bridged to Foundation’s NSArray class.

For more information about using Array with Foundation and Cocoa, see
Bridging Between Array and NSArray.

Array Type Shorthand Syntax
The type of a Swift array is written in full as Array<Element>, where
Element is the type of values the array is allowed to store. You can
also write the type of an array in shorthand form as [Element].
Although the two forms are functionally identical, the shorthand form is
preferred and is used throughout this guide when referring to the type
of an array.

Creating an Empty Array

https://developer.apple.com/documentation/swift/array#2846730

PDF conversion courtesy of www.appsdissected.com

You can create an empty array of a certain type using initializer
syntax:

1 var someInts: [Int] = []

2 print("someInts is of type [Int] with \

(someInts.count) items.")

3 // Prints "someInts is of type [Int] with 0 items."

Note that the type of the someInts variable is inferred to be [Int] from
the type of the initializer.

Alternatively, if the context already provides type information, such as
a function argument or an already typed variable or constant, you can
create an empty array with an empty array literal, which is written as
[] (an empty pair of square brackets):

1 someInts.append(3)

2 // someInts now contains 1 value of type Int

3 someInts = []

4 // someInts is now an empty array, but is still of

type [Int]

Creating an Array with a Default Value
Swift’s Array type also provides an initializer for creating an array of a
certain size with all of its values set to the same default value. You
pass this initializer a default value of the appropriate type (called
repeating): and the number of times that value is repeated in the new
array (called count):

PDF conversion courtesy of www.appsdissected.com

1 var threeDoubles = Array(repeating: 0.0, count: 3)

2 // threeDoubles is of type [Double], and equals [0.0,

0.0, 0.0]

Creating an Array by Adding Two Arrays Together
You can create a new array by adding together two existing arrays
with compatible types with the addition operator (+). The new array’s
type is inferred from the type of the two arrays you add together:

1 var anotherThreeDoubles = Array(repeating: 2.5,

count: 3)

2 // anotherThreeDoubles is of type [Double], and

equals [2.5, 2.5, 2.5]

3

4 var sixDoubles = threeDoubles + anotherThreeDoubles

5 // sixDoubles is inferred as [Double], and equals

[0.0, 0.0, 0.0, 2.5, 2.5, 2.5]

Creating an Array with an Array Literal
You can also initialize an array with an array literal, which is a
shorthand way to write one or more values as an array collection. An
array literal is written as a list of values, separated by commas,
surrounded by a pair of square brackets:

 [value 1 , value 2 , value 3]

The example below creates an array called shoppingList to store
String values:

PDF conversion courtesy of www.appsdissected.com

1 var shoppingList: [String] = ["Eggs", "Milk"]

2 // shoppingList has been initialized with two initial

items

The shoppingList variable is declared as “an array of string values”,
written as [String]. Because this particular array has specified a
value type of String, it’s allowed to store String values only. Here, the
shoppingList array is initialized with two String values ("Eggs" and
"Milk"), written within an array literal.

NOTE

The shoppingList array is declared as a variable (with the var introducer)
and not a constant (with the let introducer) because more items are added to
the shopping list in the examples below.

In this case, the array literal contains two String values and nothing
else. This matches the type of the shoppingList variable’s declaration
(an array that can only contain String values), and so the assignment
of the array literal is permitted as a way to initialize shoppingList with
two initial items.

Thanks to Swift’s type inference, you don’t have to write the type of
the array if you’re initializing it with an array literal containing values of
the same type. The initialization of shoppingList could have been
written in a shorter form instead:

 var shoppingList = ["Eggs", "Milk"]

Because all values in the array literal are of the same type, Swift can
infer that [String] is the correct type to use for the shoppingList
variable.

PDF conversion courtesy of www.appsdissected.com

Accessing and Modifying an Array
You access and modify an array through its methods and properties,
or by using subscript syntax.

To find out the number of items in an array, check its read-only count
property:

1 print("The shopping list contains \

(shoppingList.count) items.")

2 // Prints "The shopping list contains 2 items."

Use the Boolean isEmpty property as a shortcut for checking whether
the count property is equal to 0:

1 if shoppingList.isEmpty {

2 print("The shopping list is empty.")

3 } else {

4 print("The shopping list isn't empty.")

5 }

6 // Prints "The shopping list isn't empty."

You can add a new item to the end of an array by calling the array’s
append(_:) method:

1 shoppingList.append("Flour")

2 // shoppingList now contains 3 items, and someone is

making pancakes

Alternatively, append an array of one or more compatible items with
the addition assignment operator (+=):

PDF conversion courtesy of www.appsdissected.com

1 shoppingList += ["Baking Powder"]

2 // shoppingList now contains 4 items

3 shoppingList += ["Chocolate Spread", "Cheese",

"Butter"]

4 // shoppingList now contains 7 items

Retrieve a value from the array by using subscript syntax, passing the
index of the value you want to retrieve within square brackets
immediately after the name of the array:

1 var firstItem = shoppingList[0]

2 // firstItem is equal to "Eggs"

NOTE

The first item in the array has an index of 0, not 1. Arrays in Swift are always
zero-indexed.

You can use subscript syntax to change an existing value at a given
index:

1 shoppingList[0] = "Six eggs"

2 // the first item in the list is now equal to "Six

eggs" rather than "Eggs"

When you use subscript syntax, the index you specify needs to be
valid. For example, writing shoppingList[shoppingList.count] =
"Salt" to try to append an item to the end of the array results in a
runtime error.

You can also use subscript syntax to change a range of values at
once, even if the replacement set of values has a different length than

PDF conversion courtesy of www.appsdissected.com

the range you are replacing. The following example replaces
"Chocolate Spread", "Cheese", and "Butter" with "Bananas" and
"Apples":

1 shoppingList[4...6] = ["Bananas", "Apples"]

2 // shoppingList now contains 6 items

To insert an item into the array at a specified index, call the array’s
insert(_:at:) method:

1 shoppingList.insert("Maple Syrup", at: 0)

2 // shoppingList now contains 7 items

3 // "Maple Syrup" is now the first item in the list

This call to the insert(_:at:) method inserts a new item with a value
of "Maple Syrup" at the very beginning of the shopping list, indicated
by an index of 0.

Similarly, you remove an item from the array with the remove(at:)
method. This method removes the item at the specified index and
returns the removed item (although you can ignore the returned value
if you don’t need it):

1 let mapleSyrup = shoppingList.remove(at: 0)

2 // the item that was at index 0 has just been removed

3 // shoppingList now contains 6 items, and no Maple

Syrup

4 // the mapleSyrup constant is now equal to the

removed "Maple Syrup" string

PDF conversion courtesy of www.appsdissected.com

NOTE

If you try to access or modify a value for an index that’s outside of an array’s
existing bounds, you will trigger a runtime error. You can check that an index is
valid before using it by comparing it to the array’s count property. The largest
valid index in an array is count - 1 because arrays are indexed from zero—
however, when count is 0 (meaning the array is empty), there are no valid
indexes.

Any gaps in an array are closed when an item is removed, and so the
value at index 0 is once again equal to "Six eggs":

1 firstItem = shoppingList[0]

2 // firstItem is now equal to "Six eggs"

If you want to remove the final item from an array, use the
removeLast() method rather than the remove(at:) method to avoid
the need to query the array’s count property. Like the remove(at:)
method, removeLast() returns the removed item:

1 let apples = shoppingList.removeLast()

2 // the last item in the array has just been removed

3 // shoppingList now contains 5 items, and no apples

4 // the apples constant is now equal to the removed

"Apples" string

Iterating Over an Array
You can iterate over the entire set of values in an array with the for-in
loop:

PDF conversion courtesy of www.appsdissected.com

1 for item in shoppingList {

2 print(item)

3 }

4 // Six eggs

5 // Milk

6 // Flour

7 // Baking Powder

8 // Bananas

If you need the integer index of each item as well as its value, use the
enumerated() method to iterate over the array instead. For each item
in the array, the enumerated() method returns a tuple composed of an
integer and the item. The integers start at zero and count up by one for
each item; if you enumerate over a whole array, these integers match
the items’ indices. You can decompose the tuple into temporary
constants or variables as part of the iteration:

1 for (index, value) in shoppingList.enumerated() {

2 print("Item \(index + 1): \(value)")

3 }

4 // Item 1: Six eggs

5 // Item 2: Milk

6 // Item 3: Flour

7 // Item 4: Baking Powder

8 // Item 5: Bananas

For more about the for-in loop, see For-In Loops.

PDF conversion courtesy of www.appsdissected.com

Sets
A set stores distinct values of the same type in a collection with no
defined ordering. You can use a set instead of an array when the order
of items isn’t important, or when you need to ensure that an item only
appears once.

NOTE

Swift’s Set type is bridged to Foundation’s NSSet class.

For more information about using Set with Foundation and Cocoa, see
Bridging Between Set and NSSet.

Hash Values for Set Types
A type must be hashable in order to be stored in a set—that is, the
type must provide a way to compute a hash value for itself. A hash
value is an Int value that’s the same for all objects that compare
equally, such that if a == b, the hash value of a is equal to the hash
value of b.

All of Swift’s basic types (such as String, Int, Double, and Bool) are
hashable by default, and can be used as set value types or dictionary
key types. Enumeration case values without associated values (as
described in Enumerations) are also hashable by default.

NOTE

You can use your own custom types as set value types or dictionary key types
by making them conform to the Hashable protocol from the Swift standard
library. For information about implementing the required hash(into:) method,
see Hashable. For information about conforming to protocols, see Protocols.

Set Type Syntax

https://developer.apple.com/documentation/swift/set#2845530
https://developer.apple.com/documentation/swift/hashable

PDF conversion courtesy of www.appsdissected.com

The type of a Swift set is written as Set<Element>, where Element is
the type that the set is allowed to store. Unlike arrays, sets don’t have
an equivalent shorthand form.

Creating and Initializing an Empty Set
You can create an empty set of a certain type using initializer syntax:

1 var letters = Set<Character>()

2 print("letters is of type Set<Character> with \

(letters.count) items.")

3 // Prints "letters is of type Set<Character> with 0

items."

NOTE

The type of the letters variable is inferred to be Set<Character>, from the
type of the initializer.

Alternatively, if the context already provides type information, such as
a function argument or an already typed variable or constant, you can
create an empty set with an empty array literal:

1 letters.insert("a")

2 // letters now contains 1 value of type Character

3 letters = []

4 // letters is now an empty set, but is still of type

Set<Character>

Creating a Set with an Array Literal

PDF conversion courtesy of www.appsdissected.com

You can also initialize a set with an array literal, as a shorthand way to
write one or more values as a set collection.

The example below creates a set called favoriteGenres to store
String values:

1 var favoriteGenres: Set<String> = ["Rock",

"Classical", "Hip hop"]

2 // favoriteGenres has been initialized with three

initial items

The favoriteGenres variable is declared as “a set of String values”,
written as Set<String>. Because this particular set has specified a
value type of String, it’s only allowed to store String values. Here, the
favoriteGenres set is initialized with three String values ("Rock",
"Classical", and "Hip hop"), written within an array literal.

NOTE

The favoriteGenres set is declared as a variable (with the var introducer)
and not a constant (with the let introducer) because items are added and
removed in the examples below.

A set type can’t be inferred from an array literal alone, so the type Set
must be explicitly declared. However, because of Swift’s type
inference, you don’t have to write the type of the set’s elements if
you’re initializing it with an array literal that contains values of just one
type. The initialization of favoriteGenres could have been written in a
shorter form instead:

 var favoriteGenres: Set = ["Rock", "Classical", "Hip

hop"]

PDF conversion courtesy of www.appsdissected.com

Because all values in the array literal are of the same type, Swift can
infer that Set<String> is the correct type to use for the
favoriteGenres variable.

Accessing and Modifying a Set
You access and modify a set through its methods and properties.

To find out the number of items in a set, check its read-only count
property:

1 print("I have \(favoriteGenres.count) favorite music

genres.")

2 // Prints "I have 3 favorite music genres."

Use the Boolean isEmpty property as a shortcut for checking whether
the count property is equal to 0:

1 if favoriteGenres.isEmpty {

2 print("As far as music goes, I'm not picky.")

3 } else {

4 print("I have particular music preferences.")

5 }

6 // Prints "I have particular music preferences."

You can add a new item into a set by calling the set’s insert(_:)
method:

1 favoriteGenres.insert("Jazz")

2 // favoriteGenres now contains 4 items

PDF conversion courtesy of www.appsdissected.com

You can remove an item from a set by calling the set’s remove(_:)
method, which removes the item if it’s a member of the set, and
returns the removed value, or returns nil if the set didn’t contain it.
Alternatively, all items in a set can be removed with its removeAll()
method.

1 if let removedGenre = favoriteGenres.remove("Rock") {

2 print("\(removedGenre)? I'm over it.")

3 } else {

4 print("I never much cared for that.")

5 }

6 // Prints "Rock? I'm over it."

To check whether a set contains a particular item, use the
contains(_:) method.

1 if favoriteGenres.contains("Funk") {

2 print("I get up on the good foot.")

3 } else {

4 print("It's too funky in here.")

5 }

6 // Prints "It's too funky in here."

Iterating Over a Set
You can iterate over the values in a set with a for-in loop.

PDF conversion courtesy of www.appsdissected.com

1 for genre in favoriteGenres {

2 print("\(genre)")

3 }

4 // Classical

5 // Jazz

6 // Hip hop

For more about the for-in loop, see For-In Loops.

Swift’s Set type doesn’t have a defined ordering. To iterate over the
values of a set in a specific order, use the sorted() method, which
returns the set’s elements as an array sorted using the < operator.

1 for genre in favoriteGenres.sorted() {

2 print("\(genre)")

3 }

4 // Classical

5 // Hip hop

6 // Jazz

Performing Set Operations
You can efficiently perform fundamental set operations, such as
combining two sets together, determining which values two sets have
in common, or determining whether two sets contain all, some, or
none of the same values.

PDF conversion courtesy of www.appsdissected.com

Fundamental Set Operations
The illustration below depicts two sets—a and b—with the results of
various set operations represented by the shaded regions.

Use the intersection(_:) method to create a new set with only
the values common to both sets.

Use the symmetricDifference(_:) method to create a new set
with values in either set, but not both.

Use the union(_:) method to create a new set with all of the
values in both sets.

Use the subtracting(_:) method to create a new set with values
not in the specified set.

PDF conversion courtesy of www.appsdissected.com

1 let oddDigits: Set = [1, 3, 5, 7, 9]

2 let evenDigits: Set = [0, 2, 4, 6, 8]

3 let singleDigitPrimeNumbers: Set = [2, 3, 5, 7]

4

5 oddDigits.union(evenDigits).sorted()

6 // [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

7 oddDigits.intersection(evenDigits).sorted()

8 // []

9 oddDigits.subtracting(singleDigitPrimeNumbers).sorted

()

10 // [1, 9]

11 oddDigits.symmetricDifference(singleDigitPrimeNumbers

).sorted()

12 // [1, 2, 9]

Set Membership and Equality
The illustration below depicts three sets—a, b and c—with overlapping
regions representing elements shared among sets. Set a is a superset
of set b, because a contains all elements in b. Conversely, set b is a
subset of set a, because all elements in b are also contained by a. Set
b and set c are disjoint with one another, because they share no
elements in common.

PDF conversion courtesy of www.appsdissected.com

Use the “is equal” operator (==) to determine whether two sets
contain all of the same values.

Use the isSubset(of:) method to determine whether all of the
values of a set are contained in the specified set.

Use the isSuperset(of:) method to determine whether a set
contains all of the values in a specified set.

Use the isStrictSubset(of:) or isStrictSuperset(of:)
methods to determine whether a set is a subset or superset, but
not equal to, a specified set.

Use the isDisjoint(with:) method to determine whether two
sets have no values in common.

PDF conversion courtesy of www.appsdissected.com

1 let houseAnimals: Set = ["🐶 ", "🐱 "]

2 let farmAnimals: Set = ["🐮 ", "🐔 ", "🐑 ", "🐶 ", "🐱 "]

3 let cityAnimals: Set = ["🐦 ", "🐭 "]

4

5 houseAnimals.isSubset(of: farmAnimals)

6 // true

7 farmAnimals.isSuperset(of: houseAnimals)

8 // true

9 farmAnimals.isDisjoint(with: cityAnimals)

10 // true

Dictionaries
A dictionary stores associations between keys of the same type and
values of the same type in a collection with no defined ordering. Each
value is associated with a unique key, which acts as an identifier for
that value within the dictionary. Unlike items in an array, items in a
dictionary don’t have a specified order. You use a dictionary when you
need to look up values based on their identifier, in much the same way
that a real-world dictionary is used to look up the definition for a
particular word.

NOTE

Swift’s Dictionary type is bridged to Foundation’s NSDictionary class.

For more information about using Dictionary with Foundation and Cocoa,
see Bridging Between Dictionary and NSDictionary.

https://developer.apple.com/documentation/swift/dictionary#2846239

PDF conversion courtesy of www.appsdissected.com

Dictionary Type Shorthand Syntax
The type of a Swift dictionary is written in full as Dictionary<Key,
Value>, where Key is the type of value that can be used as a dictionary
key, and Value is the type of value that the dictionary stores for those
keys.

NOTE

A dictionary Key type must conform to the Hashable protocol, like a set’s value
type.

You can also write the type of a dictionary in shorthand form as [Key:
Value]. Although the two forms are functionally identical, the
shorthand form is preferred and is used throughout this guide when
referring to the type of a dictionary.

Creating an Empty Dictionary
As with arrays, you can create an empty Dictionary of a certain type
by using initializer syntax:

1 var namesOfIntegers: [Int: String] = [:]

2 // namesOfIntegers is an empty [Int: String]

dictionary

This example creates an empty dictionary of type [Int: String] to
store human-readable names of integer values. Its keys are of type
Int, and its values are of type String.

If the context already provides type information, you can create an
empty dictionary with an empty dictionary literal, which is written as
[:] (a colon inside a pair of square brackets):

PDF conversion courtesy of www.appsdissected.com

1 namesOfIntegers[16] = "sixteen"

2 // namesOfIntegers now contains 1 key-value pair

3 namesOfIntegers = [:]

4 // namesOfIntegers is once again an empty dictionary

of type [Int: String]

Creating a Dictionary with a Dictionary Literal
You can also initialize a dictionary with a dictionary literal, which has a
similar syntax to the array literal seen earlier. A dictionary literal is a
shorthand way to write one or more key-value pairs as a Dictionary
collection.

A key-value pair is a combination of a key and a value. In a dictionary
literal, the key and value in each key-value pair are separated by a
colon. The key-value pairs are written as a list, separated by commas,
surrounded by a pair of square brackets:

 [key 1 : value 1 , key 2 : value 2 , key 3 :

 value 3]

The example below creates a dictionary to store the names of
international airports. In this dictionary, the keys are three-letter
International Air Transport Association codes, and the values are
airport names:

 var airports: [String: String] = ["YYZ": "Toronto

Pearson", "DUB": "Dublin"]

The airports dictionary is declared as having a type of [String:
String], which means “a Dictionary whose keys are of type String,
and whose values are also of type String”.

PDF conversion courtesy of www.appsdissected.com

NOTE

The airports dictionary is declared as a variable (with the var introducer),
and not a constant (with the let introducer), because more airports are added
to the dictionary in the examples below.

The airports dictionary is initialized with a dictionary literal containing
two key-value pairs. The first pair has a key of "YYZ" and a value of
"Toronto Pearson". The second pair has a key of "DUB" and a value
of "Dublin".

This dictionary literal contains two String: String pairs. This key-
value type matches the type of the airports variable declaration (a
dictionary with only String keys, and only String values), and so the
assignment of the dictionary literal is permitted as a way to initialize
the airports dictionary with two initial items.

As with arrays, you don’t have to write the type of the dictionary if
you’re initializing it with a dictionary literal whose keys and values
have consistent types. The initialization of airports could have been
written in a shorter form instead:

 var airports = ["YYZ": "Toronto Pearson", "DUB":

"Dublin"]

Because all keys in the literal are of the same type as each other, and
likewise all values are of the same type as each other, Swift can infer
that [String: String] is the correct type to use for the airports
dictionary.

Accessing and Modifying a Dictionary
You access and modify a dictionary through its methods and
properties, or by using subscript syntax.

PDF conversion courtesy of www.appsdissected.com

As with an array, you find out the number of items in a Dictionary by
checking its read-only count property:

1 print("The airports dictionary contains \

(airports.count) items.")

2 // Prints "The airports dictionary contains 2 items."

Use the Boolean isEmpty property as a shortcut for checking whether
the count property is equal to 0:

1 if airports.isEmpty {

2 print("The airports dictionary is empty.")

3 } else {

4 print("The airports dictionary isn't empty.")

5 }

6 // Prints "The airports dictionary isn't empty."

You can add a new item to a dictionary with subscript syntax. Use a
new key of the appropriate type as the subscript index, and assign a
new value of the appropriate type:

1 airports["LHR"] = "London"

2 // the airports dictionary now contains 3 items

You can also use subscript syntax to change the value associated with
a particular key:

1 airports["LHR"] = "London Heathrow"

2 // the value for "LHR" has been changed to "London

Heathrow"

PDF conversion courtesy of www.appsdissected.com

As an alternative to subscripting, use a dictionary’s
updateValue(_:forKey:) method to set or update the value for a
particular key. Like the subscript examples above, the
updateValue(_:forKey:) method sets a value for a key if none exists,
or updates the value if that key already exists. Unlike a subscript,
however, the updateValue(_:forKey:) method returns the old value
after performing an update. This enables you to check whether or not
an update took place.

The updateValue(_:forKey:) method returns an optional value of the
dictionary’s value type. For a dictionary that stores String values, for
example, the method returns a value of type String?, or “optional
String”. This optional value contains the old value for that key if one
existed before the update, or nil if no value existed:

1 if let oldValue = airports.updateValue("Dublin

Airport", forKey: "DUB") {

2 print("The old value for DUB was \(oldValue).")

3 }

4 // Prints "The old value for DUB was Dublin."

You can also use subscript syntax to retrieve a value from the
dictionary for a particular key. Because it’s possible to request a key
for which no value exists, a dictionary’s subscript returns an optional
value of the dictionary’s value type. If the dictionary contains a value
for the requested key, the subscript returns an optional value
containing the existing value for that key. Otherwise, the subscript
returns nil:

PDF conversion courtesy of www.appsdissected.com

1 if let airportName = airports["DUB"] {

2 print("The name of the airport is \

(airportName).")

3 } else {

4 print("That airport isn't in the airports

dictionary.")

5 }

6 // Prints "The name of the airport is Dublin

Airport."

You can use subscript syntax to remove a key-value pair from a
dictionary by assigning a value of nil for that key:

1 airports["APL"] = "Apple International"

2 // "Apple International" isn't the real airport for

APL, so delete it

3 airports["APL"] = nil

4 // APL has now been removed from the dictionary

Alternatively, remove a key-value pair from a dictionary with the
removeValue(forKey:) method. This method removes the key-value
pair if it exists and returns the removed value, or returns nil if no
value existed:

PDF conversion courtesy of www.appsdissected.com

1 if let removedValue = airports.removeValue(forKey:

"DUB") {

2 print("The removed airport's name is \

(removedValue).")

3 } else {

4 print("The airports dictionary doesn't contain a

value for DUB.")

5 }

6 // Prints "The removed airport's name is Dublin

Airport."

Iterating Over a Dictionary
You can iterate over the key-value pairs in a dictionary with a for-in
loop. Each item in the dictionary is returned as a (key, value) tuple,
and you can decompose the tuple’s members into temporary
constants or variables as part of the iteration:

1 for (airportCode, airportName) in airports {

2 print("\(airportCode): \(airportName)")

3 }

4 // LHR: London Heathrow

5 // YYZ: Toronto Pearson

For more about the for-in loop, see For-In Loops.

You can also retrieve an iterable collection of a dictionary’s keys or
values by accessing its keys and values properties:

PDF conversion courtesy of www.appsdissected.com

1 for airportCode in airports.keys {

2 print("Airport code: \(airportCode)")

3 }

4 // Airport code: LHR

5 // Airport code: YYZ

6

7 for airportName in airports.values {

8 print("Airport name: \(airportName)")

9 }

10 // Airport name: London Heathrow

11 // Airport name: Toronto Pearson

If you need to use a dictionary’s keys or values with an API that takes
an Array instance, initialize a new array with the keys or values
property:

1 let airportCodes = [String](airports.keys)

2 // airportCodes is ["LHR", "YYZ"]

3

4 let airportNames = [String](airports.values)

5 // airportNames is ["London Heathrow", "Toronto

Pearson"]

Swift’s Dictionary type doesn’t have a defined ordering. To iterate
over the keys or values of a dictionary in a specific order, use the
sorted() method on its keys or values property.

PDF conversion courtesy of www.appsdissected.com

Control Flow

Swift provides a variety of control flow statements. These include while loops to
perform a task multiple times; if, guard, and switch statements to execute
different branches of code based on certain conditions; and statements such as
break and continue to transfer the flow of execution to another point in your
code.

Swift also provides a for-in loop that makes it easy to iterate over arrays,
dictionaries, ranges, strings, and other sequences.

Swift’s switch statement is considerably more powerful than its counterpart in
many C-like languages. Cases can match many different patterns, including
interval matches, tuples, and casts to a specific type. Matched values in a
switch case can be bound to temporary constants or variables for use within the
case’s body, and complex matching conditions can be expressed with a where
clause for each case.

For-In Loops
You use the for-in loop to iterate over a sequence, such as items in an array,
ranges of numbers, or characters in a string.

This example uses a for-in loop to iterate over the items in an array:

1 let names = ["Anna", "Alex", "Brian", "Jack"]

2 for name in names {

3 print("Hello, \(name)!")

4 }

5 // Hello, Anna!

6 // Hello, Alex!

7 // Hello, Brian!

8 // Hello, Jack!

PDF conversion courtesy of www.appsdissected.com

You can also iterate over a dictionary to access its key-value pairs. Each item in
the dictionary is returned as a (key, value) tuple when the dictionary is
iterated, and you can decompose the (key, value) tuple’s members as
explicitly named constants for use within the body of the for-in loop. In the code
example below, the dictionary’s keys are decomposed into a constant called
animalName, and the dictionary’s values are decomposed into a constant called
legCount.

1 let numberOfLegs = ["spider": 8, "ant": 6, "cat": 4]

2 for (animalName, legCount) in numberOfLegs {

3 print("\(animalName)s have \(legCount) legs")

4 }

5 // cats have 4 legs

6 // ants have 6 legs

7 // spiders have 8 legs

The contents of a Dictionary are inherently unordered, and iterating over them
doesn’t guarantee the order in which they will be retrieved. In particular, the
order you insert items into a Dictionary doesn’t define the order they’re
iterated. For more about arrays and dictionaries, see Collection Types.

You can also use for-in loops with numeric ranges. This example prints the first
few entries in a five-times table:

1 for index in 1...5 {

2 print("\(index) times 5 is \(index * 5)")

3 }

4 // 1 times 5 is 5

5 // 2 times 5 is 10

6 // 3 times 5 is 15

7 // 4 times 5 is 20

8 // 5 times 5 is 25

The sequence being iterated over is a range of numbers from 1 to 5, inclusive,
as indicated by the use of the closed range operator (...). The value of index is

PDF conversion courtesy of www.appsdissected.com

set to the first number in the range (1), and the statements inside the loop are
executed. In this case, the loop contains only one statement, which prints an
entry from the five-times table for the current value of index. After the statement
is executed, the value of index is updated to contain the second value in the
range (2), and the print(_:separator:terminator:) function is called again.
This process continues until the end of the range is reached.

In the example above, index is a constant whose value is automatically set at
the start of each iteration of the loop. As such, index doesn’t have to be
declared before it’s used. It’s implicitly declared simply by its inclusion in the
loop declaration, without the need for a let declaration keyword.

If you don’t need each value from a sequence, you can ignore the values by
using an underscore in place of a variable name.

1 let base = 3

2 let power = 10

3 var answer = 1

4 for _ in 1...power {

5 answer *= base

6 }

7 print("\(base) to the power of \(power) is \(answer)")

8 // Prints "3 to the power of 10 is 59049"

The example above calculates the value of one number to the power of another
(in this case, 3 to the power of 10). It multiplies a starting value of 1 (that is, 3 to
the power of 0) by 3, ten times, using a closed range that starts with 1 and ends
with 10. For this calculation, the individual counter values each time through the
loop are unnecessary—the code simply executes the loop the correct number of
times. The underscore character (_) used in place of a loop variable causes the
individual values to be ignored and doesn’t provide access to the current value
during each iteration of the loop.

In some situations, you might not want to use closed ranges, which include both
endpoints. Consider drawing the tick marks for every minute on a watch face.
You want to draw 60 tick marks, starting with the 0 minute. Use the half-open
range operator (..<) to include the lower bound but not the upper bound. For
more about ranges, see Range Operators.

PDF conversion courtesy of www.appsdissected.com

1 let minutes = 60

2 for tickMark in 0..<minutes {

3 // render the tick mark each minute (60 times)

4 }

Some users might want fewer tick marks in their UI. They could prefer one mark
every 5 minutes instead. Use the stride(from:to:by:) function to skip the
unwanted marks.

1 let minuteInterval = 5

2 for tickMark in stride(from: 0, to: minutes, by:

minuteInterval) {

3 // render the tick mark every 5 minutes (0, 5, 10, 15 ...

45, 50, 55)

4 }

Closed ranges are also available, by using stride(from:through:by:) instead:

1 let hours = 12

2 let hourInterval = 3

3 for tickMark in stride(from: 3, through: hours, by:

hourInterval) {

4 // render the tick mark every 3 hours (3, 6, 9, 12)

5 }

The examples above use a for-in loop to iterate ranges, arrays, dictionaries,
and strings. However, you can use this syntax to iterate any collection, including
your own classes and collection types, as long as those types conform to the
Sequence protocol.

While Loops

https://developer.apple.com/documentation/swift/sequence

PDF conversion courtesy of www.appsdissected.com

A while loop performs a set of statements until a condition becomes false.
These kinds of loops are best used when the number of iterations isn’t known
before the first iteration begins. Swift provides two kinds of while loops:

while evaluates its condition at the start of each pass through the loop.

repeat-while evaluates its condition at the end of each pass through the
loop.

While
A while loop starts by evaluating a single condition. If the condition is true, a set
of statements is repeated until the condition becomes false.

Here’s the general form of a while loop:

 while condition {

 statements

 }

This example plays a simple game of Snakes and Ladders (also known as
Chutes and Ladders):

The rules of the game are as follows:

The board has 25 squares, and the aim is to land on or beyond square 25.

The player’s starting square is “square zero”, which is just off the bottom-
left corner of the board.

PDF conversion courtesy of www.appsdissected.com

Each turn, you roll a six-sided dice and move by that number of squares,
following the horizontal path indicated by the dotted arrow above.

If your turn ends at the bottom of a ladder, you move up that ladder.

If your turn ends at the head of a snake, you move down that snake.

The game board is represented by an array of Int values. Its size is based on a
constant called finalSquare, which is used to initialize the array and also to
check for a win condition later in the example. Because the players start off the
board, on “square zero”, the board is initialized with 26 zero Int values, not 25.

1 let finalSquare = 25

2 var board = [Int](repeating: 0, count: finalSquare + 1)

Some squares are then set to have more specific values for the snakes and
ladders. Squares with a ladder base have a positive number to move you up the
board, whereas squares with a snake head have a negative number to move
you back down the board.

1 board[03] = +08; board[06] = +11; board[09] = +09; board[10]

= +02

2 board[14] = -10; board[19] = -11; board[22] = -02; board[24]

= -08

Square 3 contains the bottom of a ladder that moves you up to square 11. To
represent this, board[03] is equal to +08, which is equivalent to an integer value
of 8 (the difference between 3 and 11). To align the values and statements, the
unary plus operator (+i) is explicitly used with the unary minus operator (-i) and
numbers lower than 10 are padded with zeros. (Neither stylistic technique is
strictly necessary, but they lead to neater code.)

PDF conversion courtesy of www.appsdissected.com

1 var square = 0

2 var diceRoll = 0

3 while square < finalSquare {

4 // roll the dice

5 diceRoll += 1

6 if diceRoll == 7 { diceRoll = 1 }

7 // move by the rolled amount

8 square += diceRoll

9 if square < board.count {

10 // if we're still on the board, move up or down for a

snake or a ladder

11 square += board[square]

12 }

13 }

14 print("Game over!")

The example above uses a very simple approach to dice rolling. Instead of
generating a random number, it starts with a diceRoll value of 0. Each time
through the while loop, diceRoll is incremented by one and is then checked to
see whether it has become too large. Whenever this return value equals 7, the
dice roll has become too large and is reset to a value of 1. The result is a
sequence of diceRoll values that’s always 1, 2, 3, 4, 5, 6, 1, 2 and so on.

After rolling the dice, the player moves forward by diceRoll squares. It’s
possible that the dice roll may have moved the player beyond square 25, in
which case the game is over. To cope with this scenario, the code checks that
square is less than the board array’s count property. If square is valid, the value
stored in board[square] is added to the current square value to move the player
up or down any ladders or snakes.

NOTE

If this check isn’t performed, board[square] might try to access a value outside the
bounds of the board array, which would trigger a runtime error.

PDF conversion courtesy of www.appsdissected.com

The current while loop execution then ends, and the loop’s condition is checked
to see if the loop should be executed again. If the player has moved on or
beyond square number 25, the loop’s condition evaluates to false and the game
ends.

A while loop is appropriate in this case, because the length of the game isn’t
clear at the start of the while loop. Instead, the loop is executed until a particular
condition is satisfied.

Repeat-While
The other variation of the while loop, known as the repeat-while loop, performs
a single pass through the loop block first, before considering the loop’s
condition. It then continues to repeat the loop until the condition is false.

NOTE

The repeat-while loop in Swift is analogous to a do-while loop in other languages.

Here’s the general form of a repeat-while loop:

 repeat {

 statements

 } while condition

Here’s the Snakes and Ladders example again, written as a repeat-while loop
rather than a while loop. The values of finalSquare, board, square, and
diceRoll are initialized in exactly the same way as with a while loop.

1 let finalSquare = 25

2 var board = [Int](repeating: 0, count: finalSquare + 1)

3 board[03] = +08; board[06] = +11; board[09] = +09; board[10]

= +02

4 board[14] = -10; board[19] = -11; board[22] = -02; board[24]

= -08

5 var square = 0

6 var diceRoll = 0

PDF conversion courtesy of www.appsdissected.com

In this version of the game, the first action in the loop is to check for a ladder or a
snake. No ladder on the board takes the player straight to square 25, and so it
isn’t possible to win the game by moving up a ladder. Therefore, it’s safe to
check for a snake or a ladder as the first action in the loop.

At the start of the game, the player is on “square zero”. board[0] always equals
0 and has no effect.

1 repeat {

2 // move up or down for a snake or ladder

3 square += board[square]

4 // roll the dice

5 diceRoll += 1

6 if diceRoll == 7 { diceRoll = 1 }

7 // move by the rolled amount

8 square += diceRoll

9 } while square < finalSquare

10 print("Game over!")

After the code checks for snakes and ladders, the dice is rolled and the player is
moved forward by diceRoll squares. The current loop execution then ends.

The loop’s condition (while square < finalSquare) is the same as before, but
this time it’s not evaluated until the end of the first run through the loop. The
structure of the repeat-while loop is better suited to this game than the while
loop in the previous example. In the repeat-while loop above, square +=
board[square] is always executed immediately after the loop’s while condition
confirms that square is still on the board. This behavior removes the need for the
array bounds check seen in the while loop version of the game described
earlier.

Conditional Statements

PDF conversion courtesy of www.appsdissected.com

It’s often useful to execute different pieces of code based on certain conditions.
You might want to run an extra piece of code when an error occurs, or to display
a message when a value becomes too high or too low. To do this, you make
parts of your code conditional.

Swift provides two ways to add conditional branches to your code: the if
statement and the switch statement. Typically, you use the if statement to
evaluate simple conditions with only a few possible outcomes. The switch
statement is better suited to more complex conditions with multiple possible
permutations and is useful in situations where pattern matching can help select
an appropriate code branch to execute.

If
In its simplest form, the if statement has a single if condition. It executes a set
of statements only if that condition is true.

1 var temperatureInFahrenheit = 30

2 if temperatureInFahrenheit <= 32 {

3 print("It's very cold. Consider wearing a scarf.")

4 }

5 // Prints "It's very cold. Consider wearing a scarf."

The example above checks whether the temperature is less than or equal to 32
degrees Fahrenheit (the freezing point of water). If it is, a message is printed.
Otherwise, no message is printed, and code execution continues after the if
statement’s closing brace.

The if statement can provide an alternative set of statements, known as an
else clause, for situations when the if condition is false. These statements are
indicated by the else keyword.

PDF conversion courtesy of www.appsdissected.com

1 temperatureInFahrenheit = 40

2 if temperatureInFahrenheit <= 32 {

3 print("It's very cold. Consider wearing a scarf.")

4 } else {

5 print("It's not that cold. Wear a t-shirt.")

6 }

7 // Prints "It's not that cold. Wear a t-shirt."

One of these two branches is always executed. Because the temperature has
increased to 40 degrees Fahrenheit, it’s no longer cold enough to advise
wearing a scarf and so the else branch is triggered instead.

You can chain multiple if statements together to consider additional clauses.

1 temperatureInFahrenheit = 90

2 if temperatureInFahrenheit <= 32 {

3 print("It's very cold. Consider wearing a scarf.")

4 } else if temperatureInFahrenheit >= 86 {

5 print("It's really warm. Don't forget to wear

sunscreen.")

6 } else {

7 print("It's not that cold. Wear a t-shirt.")

8 }

9 // Prints "It's really warm. Don't forget to wear sunscreen."

Here, an additional if statement was added to respond to particularly warm
temperatures. The final else clause remains, and it prints a response for any
temperatures that are neither too warm nor too cold.

The final else clause is optional, however, and can be excluded if the set of
conditions doesn’t need to be complete.

PDF conversion courtesy of www.appsdissected.com

1 temperatureInFahrenheit = 72

2 if temperatureInFahrenheit <= 32 {

3 print("It's very cold. Consider wearing a scarf.")

4 } else if temperatureInFahrenheit >= 86 {

5 print("It's really warm. Don't forget to wear

sunscreen.")

6 }

Because the temperature is neither too cold nor too warm to trigger the if or
else if conditions, no message is printed.

Switch
A switch statement considers a value and compares it against several possible
matching patterns. It then executes an appropriate block of code, based on the
first pattern that matches successfully. A switch statement provides an
alternative to the if statement for responding to multiple potential states.

In its simplest form, a switch statement compares a value against one or more
values of the same type.

 switch some value to consider {

 case value 1 :

 respond to value 1

 case value 2 ,

 value 3 :

 respond to value 2 or 3

 default:

 otherwise, do something else

 }

Every switch statement consists of multiple possible cases, each of which
begins with the case keyword. In addition to comparing against specific values,
Swift provides several ways for each case to specify more complex matching
patterns. These options are described later in this chapter.

PDF conversion courtesy of www.appsdissected.com

Like the body of an if statement, each case is a separate branch of code
execution. The switch statement determines which branch should be selected.
This procedure is known as switching on the value that’s being considered.

Every switch statement must be exhaustive. That is, every possible value of the
type being considered must be matched by one of the switch cases. If it’s not
appropriate to provide a case for every possible value, you can define a default
case to cover any values that aren’t addressed explicitly. This default case is
indicated by the default keyword, and must always appear last.

This example uses a switch statement to consider a single lowercase character
called someCharacter:

1 let someCharacter: Character = "z"

2 switch someCharacter {

3 case "a":

4 print("The first letter of the alphabet")

5 case "z":

6 print("The last letter of the alphabet")

7 default:

8 print("Some other character")

9 }

10 // Prints "The last letter of the alphabet"

The switch statement’s first case matches the first letter of the English alphabet,
a, and its second case matches the last letter, z. Because the switch must have
a case for every possible character, not just every alphabetic character, this
switch statement uses a default case to match all characters other than a and
z. This provision ensures that the switch statement is exhaustive.

No Implicit Fallthrough

In contrast with switch statements in C and Objective-C, switch statements in
Swift don’t fall through the bottom of each case and into the next one by default.
Instead, the entire switch statement finishes its execution as soon as the first
matching switch case is completed, without requiring an explicit break

PDF conversion courtesy of www.appsdissected.com

statement. This makes the switch statement safer and easier to use than the
one in C and avoids executing more than one switch case by mistake.

NOTE

Although break isn’t required in Swift, you can use a break statement to match and ignore
a particular case or to break out of a matched case before that case has completed its
execution. For details, see Break in a Switch Statement.

The body of each case must contain at least one executable statement. It isn’t
valid to write the following code, because the first case is empty:

1 let anotherCharacter: Character = "a"

2 switch anotherCharacter {

3 case "a": // Invalid, the case has an empty body

4 case "A":

5 print("The letter A")

6 default:

7 print("Not the letter A")

8 }

9 // This will report a compile-time error.

Unlike a switch statement in C, this switch statement doesn’t match both "a"
and "A". Rather, it reports a compile-time error that case "a": doesn’t contain
any executable statements. This approach avoids accidental fallthrough from
one case to another and makes for safer code that’s clearer in its intent.

To make a switch with a single case that matches both "a" and "A", combine
the two values into a compound case, separating the values with commas.

PDF conversion courtesy of www.appsdissected.com

1 let anotherCharacter: Character = "a"

2 switch anotherCharacter {

3 case "a", "A":

4 print("The letter A")

5 default:

6 print("Not the letter A")

7 }

8 // Prints "The letter A"

For readability, a compound case can also be written over multiple lines. For
more information about compound cases, see Compound Cases.

NOTE

To explicitly fall through at the end of a particular switch case, use the fallthrough
keyword, as described in Fallthrough.

Interval Matching

Values in switch cases can be checked for their inclusion in an interval. This
example uses number intervals to provide a natural-language count for
numbers of any size:

PDF conversion courtesy of www.appsdissected.com

1 let approximateCount = 62

2 let countedThings = "moons orbiting Saturn"

3 let naturalCount: String

4 switch approximateCount {

5 case 0:

6 naturalCount = "no"

7 case 1..<5:

8 naturalCount = "a few"

9 case 5..<12:

10 naturalCount = "several"

11 case 12..<100:

12 naturalCount = "dozens of"

13 case 100..<1000:

14 naturalCount = "hundreds of"

15 default:

16 naturalCount = "many"

17 }

18 print("There are \(naturalCount) \(countedThings).")

19 // Prints "There are dozens of moons orbiting Saturn."

In the above example, approximateCount is evaluated in a switch statement.
Each case compares that value to a number or interval. Because the value of
approximateCount falls between 12 and 100, naturalCount is assigned the value
"dozens of", and execution is transferred out of the switch statement.

Tuples

You can use tuples to test multiple values in the same switch statement. Each
element of the tuple can be tested against a different value or interval of values.
Alternatively, use the underscore character (_), also known as the wildcard
pattern, to match any possible value.

The example below takes an (x, y) point, expressed as a simple tuple of type
(Int, Int), and categorizes it on the graph that follows the example.

PDF conversion courtesy of www.appsdissected.com

1 let somePoint = (1, 1)

2 switch somePoint {

3 case (0, 0):

4 print("\(somePoint) is at the origin")

5 case (_, 0):

6 print("\(somePoint) is on the x-axis")

7 case (0, _):

8 print("\(somePoint) is on the y-axis")

9 case (-2...2, -2...2):

10 print("\(somePoint) is inside the box")

11 default:

12 print("\(somePoint) is outside of the box")

13 }

14 // Prints "(1, 1) is inside the box"

PDF conversion courtesy of www.appsdissected.com

The switch statement determines whether the point is at the origin (0, 0), on the
red x-axis, on the green y-axis, inside the blue 4-by-4 box centered on the origin,
or outside of the box.

Unlike C, Swift allows multiple switch cases to consider the same value or
values. In fact, the point (0, 0) could match all four of the cases in this example.
However, if multiple matches are possible, the first matching case is always
used. The point (0, 0) would match case (0, 0) first, and so all other matching
cases would be ignored.

Value Bindings

A switch case can name the value or values it matches to temporary constants
or variables, for use in the body of the case. This behavior is known as value
binding, because the values are bound to temporary constants or variables
within the case’s body.

The example below takes an (x, y) point, expressed as a tuple of type (Int,
Int), and categorizes it on the graph that follows:

PDF conversion courtesy of www.appsdissected.com

1 let anotherPoint = (2, 0)

2 switch anotherPoint {

3 case (let x, 0):

4 print("on the x-axis with an x value of \(x)")

5 case (0, let y):

6 print("on the y-axis with a y value of \(y)")

7 case let (x, y):

8 print("somewhere else at (\(x), \(y))")

9 }

10 // Prints "on the x-axis with an x value of 2"

The switch statement determines whether the point is on the red x-axis, on the
green y-axis, or elsewhere (on neither axis).

PDF conversion courtesy of www.appsdissected.com

The three switch cases declare placeholder constants x and y, which
temporarily take on one or both tuple values from anotherPoint. The first case,
case (let x, 0), matches any point with a y value of 0 and assigns the point’s
x value to the temporary constant x. Similarly, the second case, case (0, let
y), matches any point with an x value of 0 and assigns the point’s y value to the
temporary constant y.

After the temporary constants are declared, they can be used within the case’s
code block. Here, they’re used to print the categorization of the point.

This switch statement doesn’t have a default case. The final case, case let
(x, y), declares a tuple of two placeholder constants that can match any value.
Because anotherPoint is always a tuple of two values, this case matches all
possible remaining values, and a default case isn’t needed to make the switch
statement exhaustive.

Where

A switch case can use a where clause to check for additional conditions.

The example below categorizes an (x, y) point on the following graph:

1 let yetAnotherPoint = (1, -1)

2 switch yetAnotherPoint {

3 case let (x, y) where x == y:

4 print("(\(x), \(y)) is on the line x == y")

5 case let (x, y) where x == -y:

6 print("(\(x), \(y)) is on the line x == -y")

7 case let (x, y):

8 print("(\(x), \(y)) is just some arbitrary point")

9 }

10 // Prints "(1, -1) is on the line x == -y"

PDF conversion courtesy of www.appsdissected.com

The switch statement determines whether the point is on the green diagonal
line where x == y, on the purple diagonal line where x == -y, or neither.

The three switch cases declare placeholder constants x and y, which
temporarily take on the two tuple values from yetAnotherPoint. These
constants are used as part of a where clause, to create a dynamic filter. The
switch case matches the current value of point only if the where clause’s
condition evaluates to true for that value.

As in the previous example, the final case matches all possible remaining
values, and so a default case isn’t needed to make the switch statement
exhaustive.

Compound Cases

Multiple switch cases that share the same body can be combined by writing
several patterns after case, with a comma between each of the patterns. If any
of the patterns match, then the case is considered to match. The patterns can
be written over multiple lines if the list is long. For example:

PDF conversion courtesy of www.appsdissected.com

1 let someCharacter: Character = "e"

2 switch someCharacter {

3 case "a", "e", "i", "o", "u":

4 print("\(someCharacter) is a vowel")

5 case "b", "c", "d", "f", "g", "h", "j", "k", "l", "m",

6 "n", "p", "q", "r", "s", "t", "v", "w", "x", "y", "z":

7 print("\(someCharacter) is a consonant")

8 default:

9 print("\(someCharacter) isn't a vowel or a consonant")

10 }

11 // Prints "e is a vowel"

The switch statement’s first case matches all five lowercase vowels in the
English language. Similarly, its second case matches all lowercase English
consonants. Finally, the default case matches any other character.

Compound cases can also include value bindings. All of the patterns of a
compound case have to include the same set of value bindings, and each
binding has to get a value of the same type from all of the patterns in the
compound case. This ensures that, no matter which part of the compound case
matched, the code in the body of the case can always access a value for the
bindings and that the value always has the same type.

1 let stillAnotherPoint = (9, 0)

2 switch stillAnotherPoint {

3 case (let distance, 0), (0, let distance):

4 print("On an axis, \(distance) from the origin")

5 default:

6 print("Not on an axis")

7 }

8 // Prints "On an axis, 9 from the origin"

The case above has two patterns: (let distance, 0) matches points on the x-
axis and (0, let distance) matches points on the y-axis. Both patterns include

PDF conversion courtesy of www.appsdissected.com

a binding for distance and distance is an integer in both patterns—which
means that the code in the body of the case can always access a value for
distance.

Control Transfer Statements
Control transfer statements change the order in which your code is executed, by
transferring control from one piece of code to another. Swift has five control
transfer statements:

continue

break

fallthrough

return

throw

The continue, break, and fallthrough statements are described below. The
return statement is described in Functions, and the throw statement is
described in Propagating Errors Using Throwing Functions.

Continue
The continue statement tells a loop to stop what it’s doing and start again at the
beginning of the next iteration through the loop. It says “I am done with the
current loop iteration” without leaving the loop altogether.

The following example removes all vowels and spaces from a lowercase string
to create a cryptic puzzle phrase:

PDF conversion courtesy of www.appsdissected.com

1 let puzzleInput = "great minds think alike"

2 var puzzleOutput = ""

3 let charactersToRemove: [Character] = ["a", "e", "i", "o",

"u", " "]

4 for character in puzzleInput {

5 if charactersToRemove.contains(character) {

6 continue

7 }

8 puzzleOutput.append(character)

9 }

10 print(puzzleOutput)

11 // Prints "grtmndsthnklk"

The code above calls the continue keyword whenever it matches a vowel or a
space, causing the current iteration of the loop to end immediately and to jump
straight to the start of the next iteration.

Break
The break statement ends execution of an entire control flow statement
immediately. The break statement can be used inside a switch or loop
statement when you want to terminate the execution of the switch or loop
statement earlier than would otherwise be the case.

Break in a Loop Statement

When used inside a loop statement, break ends the loop’s execution
immediately and transfers control to the code after the loop’s closing brace (}).
No further code from the current iteration of the loop is executed, and no further
iterations of the loop are started.

Break in a Switch Statement

When used inside a switch statement, break causes the switch statement to
end its execution immediately and to transfer control to the code after the

PDF conversion courtesy of www.appsdissected.com

switch statement’s closing brace (}).

This behavior can be used to match and ignore one or more cases in a switch
statement. Because Swift’s switch statement is exhaustive and doesn’t allow
empty cases, it’s sometimes necessary to deliberately match and ignore a case
in order to make your intentions explicit. You do this by writing the break
statement as the entire body of the case you want to ignore. When that case is
matched by the switch statement, the break statement inside the case ends the
switch statement’s execution immediately.

NOTE

A switch case that contains only a comment is reported as a compile-time error.
Comments aren’t statements and don’t cause a switch case to be ignored. Always use a
break statement to ignore a switch case.

The following example switches on a Character value and determines whether
it represents a number symbol in one of four languages. For brevity, multiple
values are covered in a single switch case.

PDF conversion courtesy of www.appsdissected.com

1 let numberSymbol: Character = "三" // Chinese symbol for the

number 3

2 var possibleIntegerValue: Int?

3 switch numberSymbol {

4 case "1", "١", "一", "๑":

5 possibleIntegerValue = 1

6 case "2", "٢", "二", "๒":

7 possibleIntegerValue = 2

8 case "3", "٣", "三", "๓":

9 possibleIntegerValue = 3

10 case "4", "٤", "四", "๔":

11 possibleIntegerValue = 4

12 default:

13 break

14 }

15 if let integerValue = possibleIntegerValue {

16 print("The integer value of \(numberSymbol) is \

(integerValue).")

17 } else {

18 print("An integer value couldn't be found for \

(numberSymbol).")

19 }

20 // Prints "The integer value of 三 is 3."

This example checks numberSymbol to determine whether it’s a Latin, Arabic,
Chinese, or Thai symbol for the numbers 1 to 4. If a match is found, one of the
switch statement’s cases sets an optional Int? variable called
possibleIntegerValue to an appropriate integer value.

After the switch statement completes its execution, the example uses optional
binding to determine whether a value was found. The possibleIntegerValue
variable has an implicit initial value of nil by virtue of being an optional type,

PDF conversion courtesy of www.appsdissected.com

and so the optional binding will succeed only if possibleIntegerValue was set
to an actual value by one of the switch statement’s first four cases.

Because it’s not practical to list every possible Character value in the example
above, a default case handles any characters that aren’t matched. This
default case doesn’t need to perform any action, and so it’s written with a
single break statement as its body. As soon as the default case is matched, the
break statement ends the switch statement’s execution, and code execution
continues from the if let statement.

Fallthrough
In Swift, switch statements don’t fall through the bottom of each case and into
the next one. That is, the entire switch statement completes its execution as
soon as the first matching case is completed. By contrast, C requires you to
insert an explicit break statement at the end of every switch case to prevent
fallthrough. Avoiding default fallthrough means that Swift switch statements are
much more concise and predictable than their counterparts in C, and thus they
avoid executing multiple switch cases by mistake.

If you need C-style fallthrough behavior, you can opt in to this behavior on a
case-by-case basis with the fallthrough keyword. The example below uses
fallthrough to create a textual description of a number.

1 let integerToDescribe = 5

2 var description = "The number \(integerToDescribe) is"

3 switch integerToDescribe {

4 case 2, 3, 5, 7, 11, 13, 17, 19:

5 description += " a prime number, and also"

6 fallthrough

7 default:

8 description += " an integer."

9 }

10 print(description)

11 // Prints "The number 5 is a prime number, and also an

integer."

PDF conversion courtesy of www.appsdissected.com

This example declares a new String variable called description and assigns it
an initial value. The function then considers the value of integerToDescribe
using a switch statement. If the value of integerToDescribe is one of the prime
numbers in the list, the function appends text to the end of description, to note
that the number is prime. It then uses the fallthrough keyword to “fall into” the
default case as well. The default case adds some extra text to the end of the
description, and the switch statement is complete.

Unless the value of integerToDescribe is in the list of known prime numbers, it
isn’t matched by the first switch case at all. Because there are no other specific
cases, integerToDescribe is matched by the default case.

After the switch statement has finished executing, the number’s description is
printed using the print(_:separator:terminator:) function. In this example,
the number 5 is correctly identified as a prime number.

NOTE

The fallthrough keyword doesn’t check the case conditions for the switch case that it
causes execution to fall into. The fallthrough keyword simply causes code execution to
move directly to the statements inside the next case (or default case) block, as in C’s
standard switch statement behavior.

Labeled Statements
In Swift, you can nest loops and conditional statements inside other loops and
conditional statements to create complex control flow structures. However,
loops and conditional statements can both use the break statement to end their
execution prematurely. Therefore, it’s sometimes useful to be explicit about
which loop or conditional statement you want a break statement to terminate.
Similarly, if you have multiple nested loops, it can be useful to be explicit about
which loop the continue statement should affect.

To achieve these aims, you can mark a loop statement or conditional statement
with a statement label. With a conditional statement, you can use a statement
label with the break statement to end the execution of the labeled statement.
With a loop statement, you can use a statement label with the break or continue
statement to end or continue the execution of the labeled statement.

A labeled statement is indicated by placing a label on the same line as the
statement’s introducer keyword, followed by a colon. Here’s an example of this

PDF conversion courtesy of www.appsdissected.com

syntax for a while loop, although the principle is the same for all loops and
switch statements:

 label name : while condition {

 statements

 }

The following example uses the break and continue statements with a labeled
while loop for an adapted version of the Snakes and Ladders game that you
saw earlier in this chapter. This time around, the game has an extra rule:

To win, you must land exactly on square 25.

If a particular dice roll would take you beyond square 25, you must roll again
until you roll the exact number needed to land on square 25.

The game board is the same as before.

The values of finalSquare, board, square, and diceRoll are initialized in the
same way as before:

PDF conversion courtesy of www.appsdissected.com

1 let finalSquare = 25

2 var board = [Int](repeating: 0, count: finalSquare + 1)

3 board[03] = +08; board[06] = +11; board[09] = +09; board[10]

= +02

4 board[14] = -10; board[19] = -11; board[22] = -02; board[24]

= -08

5 var square = 0

6 var diceRoll = 0

This version of the game uses a while loop and a switch statement to
implement the game’s logic. The while loop has a statement label called
gameLoop to indicate that it’s the main game loop for the Snakes and Ladders
game.

The while loop’s condition is while square != finalSquare, to reflect that you
must land exactly on square 25.

PDF conversion courtesy of www.appsdissected.com

1 gameLoop: while square != finalSquare {

2 diceRoll += 1

3 if diceRoll == 7 { diceRoll = 1 }

4 switch square + diceRoll {

5 case finalSquare:

6 // diceRoll will move us to the final square, so the

game is over

7 break gameLoop

8 case let newSquare where newSquare > finalSquare:

9 // diceRoll will move us beyond the final square, so

roll again

10 continue gameLoop

11 default:

12 // this is a valid move, so find out its effect

13 square += diceRoll

14 square += board[square]

15 }

16 }

17 print("Game over!")

The dice is rolled at the start of each loop. Rather than moving the player
immediately, the loop uses a switch statement to consider the result of the
move and to determine whether the move is allowed:

If the dice roll will move the player onto the final square, the game is over.
The break gameLoop statement transfers control to the first line of code
outside of the while loop, which ends the game.

If the dice roll will move the player beyond the final square, the move is
invalid and the player needs to roll again. The continue gameLoop
statement ends the current while loop iteration and begins the next
iteration of the loop.

PDF conversion courtesy of www.appsdissected.com

In all other cases, the dice roll is a valid move. The player moves forward by
diceRoll squares, and the game logic checks for any snakes and ladders.
The loop then ends, and control returns to the while condition to decide
whether another turn is required.

NOTE

If the break statement above didn’t use the gameLoop label, it would break out of the
switch statement, not the while statement. Using the gameLoop label makes it clear which
control statement should be terminated.

It isn’t strictly necessary to use the gameLoop label when calling continue gameLoop to
jump to the next iteration of the loop. there’s only one loop in the game, and therefore no
ambiguity as to which loop the continue statement will affect. However, there’s no harm in
using the gameLoop label with the continue statement. Doing so is consistent with the
label’s use alongside the break statement and helps make the game’s logic clearer to read
and understand.

Early Exit
A guard statement, like an if statement, executes statements depending on the
Boolean value of an expression. You use a guard statement to require that a
condition must be true in order for the code after the guard statement to be
executed. Unlike an if statement, a guard statement always has an else clause
—the code inside the else clause is executed if the condition isn’t true.

PDF conversion courtesy of www.appsdissected.com

1 func greet(person: [String: String]) {

2 guard let name = person["name"] else {

3 return

4 }

5

6 print("Hello \(name)!")

7

8 guard let location = person["location"] else {

9 print("I hope the weather is nice near you.")

10 return

11 }

12

13 print("I hope the weather is nice in \(location).")

14 }

15

16 greet(person: ["name": "John"])

17 // Prints "Hello John!"

18 // Prints "I hope the weather is nice near you."

19 greet(person: ["name": "Jane", "location": "Cupertino"])

20 // Prints "Hello Jane!"

21 // Prints "I hope the weather is nice in Cupertino."

If the guard statement’s condition is met, code execution continues after the
guard statement’s closing brace. Any variables or constants that were assigned
values using an optional binding as part of the condition are available for the
rest of the code block that the guard statement appears in.

If that condition isn’t met, the code inside the else branch is executed. That
branch must transfer control to exit the code block in which the guard statement
appears. It can do this with a control transfer statement such as return, break,
continue, or throw, or it can call a function or method that doesn’t return, such
as fatalError(_:file:line:).

PDF conversion courtesy of www.appsdissected.com

Using a guard statement for requirements improves the readability of your code,
compared to doing the same check with an if statement. It lets you write the
code that’s typically executed without wrapping it in an else block, and it lets
you keep the code that handles a violated requirement next to the requirement.

Checking API Availability
Swift has built-in support for checking API availability, which ensures that you
don’t accidentally use APIs that are unavailable on a given deployment target.

The compiler uses availability information in the SDK to verify that all of the APIs
used in your code are available on the deployment target specified by your
project. Swift reports an error at compile time if you try to use an API that isn’t
available.

You use an availability condition in an if or guard statement to conditionally
execute a block of code, depending on whether the APIs you want to use are
available at runtime. The compiler uses the information from the availability
condition when it verifies that the APIs in that block of code are available.

1 if #available(iOS 10, macOS 10.12, *) {

2 // Use iOS 10 APIs on iOS, and use macOS 10.12 APIs on

macOS

3 } else {

4 // Fall back to earlier iOS and macOS APIs

5 }

The availability condition above specifies that in iOS, the body of the if
statement executes only in iOS 10 and later; in macOS, only in macOS 10.12
and later. The last argument, *, is required and specifies that on any other
platform, the body of the if executes on the minimum deployment target
specified by your target.

In its general form, the availability condition takes a list of platform names and
versions. You use platform names such as iOS, macOS, watchOS, and tvOS—for
the full list, see Declaration Attributes. In addition to specifying major version

PDF conversion courtesy of www.appsdissected.com

numbers like iOS 8 or macOS 10.10, you can specify minor versions numbers
like iOS 11.2.6 and macOS 10.13.3.

 if #available(platform name version , ... , *) {

 statements to execute if the APIs are available

 } else {

 fallback statements to execute if the APIs are unavailable

 }

When you use an availability condition with a guard statement, it refines the
availability information that’s used for the rest of the code in that code block.

1 @available(macOS 10.12, *)

2 struct ColorPreference {

3 var bestColor = "blue"

4 }

5

6 func chooseBestColor() -> String {

7 guard #available(macOS 10.12, *) else {

8 return "gray"

9 }

10 let colors = ColorPreference()

11 return colors.bestColor

12 }

In the example above, the ColorPreference structure requires macOS 10.12 or
later. The chooseBestColor() function begins with an availability guard. If the
platform version is too old to use ColorPreference, it falls back to behavior that’s
always available. After the guard statement, you can use APIs that require
macOS 10.12 or later.

PDF conversion courtesy of www.appsdissected.com

In addition to #available, Swift also supports the opposite check using an
unavailability condition. For example, the following two checks do the same
thing:

1 if #available(iOS 10, *) {

2 } else {

3 // Fallback code

4 }

5

6 if #unavailable(iOS 10) {

7 // Fallback code

8 }

Using the #unavailable form helps make your code more readable when the
check contains only fallback code.

PDF conversion courtesy of www.appsdissected.com

Functions

Functions are self-contained chunks of code that perform a specific
task. You give a function a name that identifies what it does, and this
name is used to “call” the function to perform its task when needed.

Swift’s unified function syntax is flexible enough to express anything
from a simple C-style function with no parameter names to a complex
Objective-C-style method with names and argument labels for each
parameter. Parameters can provide default values to simplify function
calls and can be passed as in-out parameters, which modify a passed
variable once the function has completed its execution.

Every function in Swift has a type, consisting of the function’s
parameter types and return type. You can use this type like any other
type in Swift, which makes it easy to pass functions as parameters to
other functions, and to return functions from functions. Functions can
also be written within other functions to encapsulate useful
functionality within a nested function scope.

Defining and Calling Functions
When you define a function, you can optionally define one or more
named, typed values that the function takes as input, known as
parameters. You can also optionally define a type of value that the
function will pass back as output when it’s done, known as its return
type.

Every function has a function name, which describes the task that the
function performs. To use a function, you “call” that function with its
name and pass it input values (known as arguments) that match the

PDF conversion courtesy of www.appsdissected.com

types of the function’s parameters. A function’s arguments must
always be provided in the same order as the function’s parameter list.

The function in the example below is called greet(person:), because
that’s what it does—it takes a person’s name as input and returns a
greeting for that person. To accomplish this, you define one input
parameter—a String value called person—and a return type of
String, which will contain a greeting for that person:

1 func greet(person: String) -> String {

2 let greeting = "Hello, " + person + "!"

3 return greeting

4 }

All of this information is rolled up into the function’s definition, which is
prefixed with the func keyword. You indicate the function’s return type
with the return arrow -> (a hyphen followed by a right angle bracket),
which is followed by the name of the type to return.

The definition describes what the function does, what it expects to
receive, and what it returns when it’s done. The definition makes it
easy for the function to be called unambiguously from elsewhere in
your code:

1 print(greet(person: "Anna"))

2 // Prints "Hello, Anna!"

3 print(greet(person: "Brian"))

4 // Prints "Hello, Brian!"

You call the greet(person:) function by passing it a String value
after the person argument label, such as greet(person: "Anna").
Because the function returns a String value, greet(person:) can be

PDF conversion courtesy of www.appsdissected.com

wrapped in a call to the print(_:separator:terminator:) function to
print that string and see its return value, as shown above.

NOTE

The print(_:separator:terminator:) function doesn’t have a label for its
first argument, and its other arguments are optional because they have a
default value. These variations on function syntax are discussed below in
Function Argument Labels and Parameter Names and Default Parameter
Values.

The body of the greet(person:) function starts by defining a new
String constant called greeting and setting it to a simple greeting
message. This greeting is then passed back out of the function using
the return keyword. In the line of code that says return greeting,
the function finishes its execution and returns the current value of
greeting.

You can call the greet(person:) function multiple times with different
input values. The example above shows what happens if it’s called
with an input value of "Anna", and an input value of "Brian". The
function returns a tailored greeting in each case.

To make the body of this function shorter, you can combine the
message creation and the return statement into one line:

1 func greetAgain(person: String) -> String {

2 return "Hello again, " + person + "!"

3 }

4 print(greetAgain(person: "Anna"))

5 // Prints "Hello again, Anna!"

PDF conversion courtesy of www.appsdissected.com

Function Parameters and Return Values
Function parameters and return values are extremely flexible in Swift.
You can define anything from a simple utility function with a single
unnamed parameter to a complex function with expressive parameter
names and different parameter options.

Functions Without Parameters
Functions aren’t required to define input parameters. Here’s a
function with no input parameters, which always returns the same
String message whenever it’s called:

1 func sayHelloWorld() -> String {

2 return "hello, world"

3 }

4 print(sayHelloWorld())

5 // Prints "hello, world"

The function definition still needs parentheses after the function’s
name, even though it doesn’t take any parameters. The function
name is also followed by an empty pair of parentheses when the
function is called.

Functions With Multiple Parameters
Functions can have multiple input parameters, which are written
within the function’s parentheses, separated by commas.

This function takes a person’s name and whether they have already
been greeted as input, and returns an appropriate greeting for that
person:

PDF conversion courtesy of www.appsdissected.com

1 func greet(person: String, alreadyGreeted: Bool) ->

String {

2 if alreadyGreeted {

3 return greetAgain(person: person)

4 } else {

5 return greet(person: person)

6 }

7 }

8 print(greet(person: "Tim", alreadyGreeted: true))

9 // Prints "Hello again, Tim!"

You call the greet(person:alreadyGreeted:) function by passing it
both a String argument value labeled person and a Bool argument
value labeled alreadyGreeted in parentheses, separated by commas.
Note that this function is distinct from the greet(person:) function
shown in an earlier section. Although both functions have names that
begin with greet, the greet(person:alreadyGreeted:) function takes
two arguments but the greet(person:) function takes only one.

Functions Without Return Values
Functions aren’t required to define a return type. Here’s a version of
the greet(person:) function, which prints its own String value rather
than returning it:

PDF conversion courtesy of www.appsdissected.com

1 func greet(person: String) {

2 print("Hello, \(person)!")

3 }

4 greet(person: "Dave")

5 // Prints "Hello, Dave!"

Because it doesn’t need to return a value, the function’s definition
doesn’t include the return arrow (->) or a return type.

NOTE

Strictly speaking, this version of the greet(person:) function does still return
a value, even though no return value is defined. Functions without a defined
return type return a special value of type Void. This is simply an empty tuple,
which is written as ().

The return value of a function can be ignored when it’s called:

1 func printAndCount(string: String) -> Int {

2 print(string)

3 return string.count

4 }

5 func printWithoutCounting(string: String) {

6 let _ = printAndCount(string: string)

7 }

8 printAndCount(string: "hello, world")

9 // prints "hello, world" and returns a value of 12

10 printWithoutCounting(string: "hello, world")

11 // prints "hello, world" but doesn't return a value

PDF conversion courtesy of www.appsdissected.com

The first function, printAndCount(string:), prints a string, and then
returns its character count as an Int. The second function,
printWithoutCounting(string:), calls the first function, but ignores
its return value. When the second function is called, the message is
still printed by the first function, but the returned value isn’t used.

NOTE

Return values can be ignored, but a function that says it will return a value
must always do so. A function with a defined return type can’t allow control to
fall out of the bottom of the function without returning a value, and attempting
to do so will result in a compile-time error.

Functions with Multiple Return Values
You can use a tuple type as the return type for a function to return
multiple values as part of one compound return value.

The example below defines a function called minMax(array:), which
finds the smallest and largest numbers in an array of Int values:

PDF conversion courtesy of www.appsdissected.com

1 func minMax(array: [Int]) -> (min: Int, max: Int) {

2 var currentMin = array[0]

3 var currentMax = array[0]

4 for value in array[1..<array.count] {

5 if value < currentMin {

6 currentMin = value

7 } else if value > currentMax {

8 currentMax = value

9 }

10 }

11 return (currentMin, currentMax)

12 }

The minMax(array:) function returns a tuple containing two Int
values. These values are labeled min and max so that they can be
accessed by name when querying the function’s return value.

The body of the minMax(array:) function starts by setting two
working variables called currentMin and currentMax to the value of
the first integer in the array. The function then iterates over the
remaining values in the array and checks each value to see if it’s
smaller or larger than the values of currentMin and currentMax
respectively. Finally, the overall minimum and maximum values are
returned as a tuple of two Int values.

Because the tuple’s member values are named as part of the
function’s return type, they can be accessed with dot syntax to
retrieve the minimum and maximum found values:

PDF conversion courtesy of www.appsdissected.com

1 let bounds = minMax(array: [8, -6, 2, 109, 3, 71])

2 print("min is \(bounds.min) and max is \

(bounds.max)")

3 // Prints "min is -6 and max is 109"

Note that the tuple’s members don’t need to be named at the point
that the tuple is returned from the function, because their names are
already specified as part of the function’s return type.

Optional Tuple Return Types

If the tuple type to be returned from a function has the potential to
have “no value” for the entire tuple, you can use an optional tuple
return type to reflect the fact that the entire tuple can be nil. You
write an optional tuple return type by placing a question mark after
the tuple type’s closing parenthesis, such as (Int, Int)? or (String,
Int, Bool)?.

NOTE

An optional tuple type such as (Int, Int)? is different from a tuple that
contains optional types such as (Int?, Int?). With an optional tuple type,
the entire tuple is optional, not just each individual value within the tuple.

The minMax(array:) function above returns a tuple containing two
Int values. However, the function doesn’t perform any safety checks
on the array it’s passed. If the array argument contains an empty
array, the minMax(array:) function, as defined above, will trigger a
runtime error when attempting to access array[0].

To handle an empty array safely, write the minMax(array:) function
with an optional tuple return type and return a value of nil when the
array is empty:

PDF conversion courtesy of www.appsdissected.com

1 func minMax(array: [Int]) -> (min: Int, max: Int)? {

2 if array.isEmpty { return nil }

3 var currentMin = array[0]

4 var currentMax = array[0]

5 for value in array[1..<array.count] {

6 if value < currentMin {

7 currentMin = value

8 } else if value > currentMax {

9 currentMax = value

10 }

11 }

12 return (currentMin, currentMax)

13 }

You can use optional binding to check whether this version of the
minMax(array:) function returns an actual tuple value or nil:

1 if let bounds = minMax(array: [8, -6, 2, 109, 3,

71]) {

2 print("min is \(bounds.min) and max is \

(bounds.max)")

3 }

4 // Prints "min is -6 and max is 109"

Functions With an Implicit Return
If the entire body of the function is a single expression, the function
implicitly returns that expression. For example, both functions below

PDF conversion courtesy of www.appsdissected.com

have the same behavior:

1 func greeting(for person: String) -> String {

2 "Hello, " + person + "!"

3 }

4 print(greeting(for: "Dave"))

5 // Prints "Hello, Dave!"

6

7 func anotherGreeting(for person: String) -> String {

8 return "Hello, " + person + "!"

9 }

10 print(anotherGreeting(for: "Dave"))

11 // Prints "Hello, Dave!"

The entire definition of the greeting(for:) function is the greeting
message that it returns, which means it can use this shorter form. The
anotherGreeting(for:) function returns the same greeting message,
using the return keyword like a longer function. Any function that you
write as just one return line can omit the return.

As you’ll see in Shorthand Getter Declaration, property getters can
also use an implicit return.

NOTE

The code you write as an implicit return value needs to return some value. For
example, you can’t use print(13) as an implicit return value. However, you
can use a function that never returns like fatalError("Oh no!") as an
implicit return value, because Swift knows that the implicit return doesn’t
happen.

PDF conversion courtesy of www.appsdissected.com

Function Argument Labels and Parameter Names
Each function parameter has both an argument label and a
parameter name. The argument label is used when calling the
function; each argument is written in the function call with its
argument label before it. The parameter name is used in the
implementation of the function. By default, parameters use their
parameter name as their argument label.

1 func someFunction(firstParameterName: Int,

secondParameterName: Int) {

2 // In the function body, firstParameterName and

secondParameterName

3 // refer to the argument values for the first

and second parameters.

4 }

5 someFunction(firstParameterName: 1,

secondParameterName: 2)

All parameters must have unique names. Although it’s possible for
multiple parameters to have the same argument label, unique
argument labels help make your code more readable.

Specifying Argument Labels
You write an argument label before the parameter name, separated
by a space:

PDF conversion courtesy of www.appsdissected.com

1 func someFunction(argumentLabel parameterName: Int)

{

2 // In the function body, parameterName refers to

the argument value

3 // for that parameter.

4 }

Here’s a variation of the greet(person:) function that takes a
person’s name and hometown and returns a greeting:

1 func greet(person: String, from hometown: String) ->

String {

2 return "Hello \(person)! Glad you could visit

from \(hometown)."

3 }

4 print(greet(person: "Bill", from: "Cupertino"))

5 // Prints "Hello Bill! Glad you could visit from

Cupertino."

The use of argument labels can allow a function to be called in an
expressive, sentence-like manner, while still providing a function
body that’s readable and clear in intent.

Omitting Argument Labels
If you don’t want an argument label for a parameter, write an
underscore (_) instead of an explicit argument label for that
parameter.

PDF conversion courtesy of www.appsdissected.com

1 func someFunction(_ firstParameterName: Int,

secondParameterName: Int) {

2 // In the function body, firstParameterName and

secondParameterName

3 // refer to the argument values for the first

and second parameters.

4 }

5 someFunction(1, secondParameterName: 2)

If a parameter has an argument label, the argument must be labeled
when you call the function.

Default Parameter Values
You can define a default value for any parameter in a function by
assigning a value to the parameter after that parameter’s type. If a
default value is defined, you can omit that parameter when calling the
function.

PDF conversion courtesy of www.appsdissected.com

1 func someFunction(parameterWithoutDefault: Int,

parameterWithDefault: Int = 12) {

2 // If you omit the second argument when calling

this function, then

3 // the value of parameterWithDefault is 12

inside the function body.

4 }

5 someFunction(parameterWithoutDefault: 3,

parameterWithDefault: 6) //

parameterWithDefault is 6

6 someFunction(parameterWithoutDefault: 4) //

parameterWithDefault is 12

Place parameters that don’t have default values at the beginning of a
function’s parameter list, before the parameters that have default
values. Parameters that don’t have default values are usually more
important to the function’s meaning—writing them first makes it
easier to recognize that the same function is being called, regardless
of whether any default parameters are omitted.

Variadic Parameters
A variadic parameter accepts zero or more values of a specified type.
You use a variadic parameter to specify that the parameter can be
passed a varying number of input values when the function is called.
Write variadic parameters by inserting three period characters (...)
after the parameter’s type name.

The values passed to a variadic parameter are made available within
the function’s body as an array of the appropriate type. For example,
a variadic parameter with a name of numbers and a type of Double...

PDF conversion courtesy of www.appsdissected.com

is made available within the function’s body as a constant array called
numbers of type [Double].

The example below calculates the arithmetic mean (also known as
the average) for a list of numbers of any length:

1 func arithmeticMean(_ numbers: Double...) -> Double

{

2 var total: Double = 0

3 for number in numbers {

4 total += number

5 }

6 return total / Double(numbers.count)

7 }

8 arithmeticMean(1, 2, 3, 4, 5)

9 // returns 3.0, which is the arithmetic mean of

these five numbers

10 arithmeticMean(3, 8.25, 18.75)

11 // returns 10.0, which is the arithmetic mean of

these three numbers

A function can have multiple variadic parameters. The first parameter
that comes after a variadic parameter must have an argument label.
The argument label makes it unambiguous which arguments are
passed to the variadic parameter and which arguments are passed to
the parameters that come after the variadic parameter.

In-Out Parameters

PDF conversion courtesy of www.appsdissected.com

Function parameters are constants by default. Trying to change the
value of a function parameter from within the body of that function
results in a compile-time error. This means that you can’t change the
value of a parameter by mistake. If you want a function to modify a
parameter’s value, and you want those changes to persist after the
function call has ended, define that parameter as an in-out parameter
instead.

You write an in-out parameter by placing the inout keyword right
before a parameter’s type. An in-out parameter has a value that’s
passed in to the function, is modified by the function, and is passed
back out of the function to replace the original value. For a detailed
discussion of the behavior of in-out parameters and associated
compiler optimizations, see In-Out Parameters.

You can only pass a variable as the argument for an in-out
parameter. You can’t pass a constant or a literal value as the
argument, because constants and literals can’t be modified. You
place an ampersand (&) directly before a variable’s name when you
pass it as an argument to an in-out parameter, to indicate that it can
be modified by the function.

NOTE

In-out parameters can’t have default values, and variadic parameters can’t be
marked as inout.

Here’s an example of a function called swapTwoInts(_:_:), which has
two in-out integer parameters called a and b:

PDF conversion courtesy of www.appsdissected.com

1 func swapTwoInts(_ a: inout Int, _ b: inout Int) {

2 let temporaryA = a

3 a = b

4 b = temporaryA

5 }

The swapTwoInts(_:_:) function simply swaps the value of b into a,
and the value of a into b. The function performs this swap by storing
the value of a in a temporary constant called temporaryA, assigning
the value of b to a, and then assigning temporaryA to b.

You can call the swapTwoInts(_:_:) function with two variables of
type Int to swap their values. Note that the names of someInt and
anotherInt are prefixed with an ampersand when they’re passed to
the swapTwoInts(_:_:) function:

1 var someInt = 3

2 var anotherInt = 107

3 swapTwoInts(&someInt, &anotherInt)

4 print("someInt is now \(someInt), and anotherInt is

now \(anotherInt)")

5 // Prints "someInt is now 107, and anotherInt is now

3"

The example above shows that the original values of someInt and
anotherInt are modified by the swapTwoInts(_:_:) function, even
though they were originally defined outside of the function.

PDF conversion courtesy of www.appsdissected.com

NOTE

In-out parameters aren’t the same as returning a value from a function. The
swapTwoInts example above doesn’t define a return type or return a value,
but it still modifies the values of someInt and anotherInt. In-out parameters
are an alternative way for a function to have an effect outside of the scope of
its function body.

Function Types
Every function has a specific function type, made up of the parameter
types and the return type of the function.

For example:

1 func addTwoInts(_ a: Int, _ b: Int) -> Int {

2 return a + b

3 }

4 func multiplyTwoInts(_ a: Int, _ b: Int) -> Int {

5 return a * b

6 }

This example defines two simple mathematical functions called
addTwoInts and multiplyTwoInts. These functions each take two Int
values, and return an Int value, which is the result of performing an
appropriate mathematical operation.

The type of both of these functions is (Int, Int) -> Int. This can
be read as:

“A function that has two parameters, both of type Int, and that returns
a value of type Int.”

PDF conversion courtesy of www.appsdissected.com

Here’s another example, for a function with no parameters or return
value:

1 func printHelloWorld() {

2 print("hello, world")

3 }

The type of this function is () -> Void, or “a function that has no
parameters, and returns Void.”

Using Function Types
You use function types just like any other types in Swift. For example,
you can define a constant or variable to be of a function type and
assign an appropriate function to that variable:

 var mathFunction: (Int, Int) -> Int = addTwoInts

This can be read as:

“Define a variable called mathFunction, which has a type of ‘a
function that takes two Int values, and returns an Int value.’ Set this
new variable to refer to the function called addTwoInts.”

The addTwoInts(_:_:) function has the same type as the
mathFunction variable, and so this assignment is allowed by Swift’s
type-checker.

You can now call the assigned function with the name mathFunction:

1 print("Result: \(mathFunction(2, 3))")

2 // Prints "Result: 5"

PDF conversion courtesy of www.appsdissected.com

A different function with the same matching type can be assigned to
the same variable, in the same way as for nonfunction types:

1 mathFunction = multiplyTwoInts

2 print("Result: \(mathFunction(2, 3))")

3 // Prints "Result: 6"

As with any other type, you can leave it to Swift to infer the function
type when you assign a function to a constant or variable:

1 let anotherMathFunction = addTwoInts

2 // anotherMathFunction is inferred to be of type

(Int, Int) -> Int

Function Types as Parameter Types
You can use a function type such as (Int, Int) -> Int as a
parameter type for another function. This enables you to leave some
aspects of a function’s implementation for the function’s caller to
provide when the function is called.

Here’s an example to print the results of the math functions from
above:

1 func printMathResult(_ mathFunction: (Int, Int) ->

Int, _ a: Int, _ b: Int) {

2 print("Result: \(mathFunction(a, b))")

3 }

4 printMathResult(addTwoInts, 3, 5)

5 // Prints "Result: 8"

PDF conversion courtesy of www.appsdissected.com

This example defines a function called printMathResult(_:_:_:),
which has three parameters. The first parameter is called
mathFunction, and is of type (Int, Int) -> Int. You can pass any
function of that type as the argument for this first parameter. The
second and third parameters are called a and b, and are both of type
Int. These are used as the two input values for the provided math
function.

When printMathResult(_:_:_:) is called, it’s passed the
addTwoInts(_:_:) function, and the integer values 3 and 5. It calls the
provided function with the values 3 and 5, and prints the result of 8.

The role of printMathResult(_:_:_:) is to print the result of a call to
a math function of an appropriate type. It doesn’t matter what that
function’s implementation actually does—it matters only that the
function is of the correct type. This enables
printMathResult(_:_:_:) to hand off some of its functionality to the
caller of the function in a type-safe way.

Function Types as Return Types
You can use a function type as the return type of another function.
You do this by writing a complete function type immediately after the
return arrow (->) of the returning function.

The next example defines two simple functions called
stepForward(_:) and stepBackward(_:). The stepForward(_:)
function returns a value one more than its input value, and the
stepBackward(_:) function returns a value one less than its input
value. Both functions have a type of (Int) -> Int:

PDF conversion courtesy of www.appsdissected.com

1 func stepForward(_ input: Int) -> Int {

2 return input + 1

3 }

4 func stepBackward(_ input: Int) -> Int {

5 return input - 1

6 }

Here’s a function called chooseStepFunction(backward:), whose
return type is (Int) -> Int. The chooseStepFunction(backward:)
function returns the stepForward(_:) function or the
stepBackward(_:) function based on a Boolean parameter called
backward:

1 func chooseStepFunction(backward: Bool) -> (Int) ->

Int {

2 return backward ? stepBackward : stepForward

3 }

You can now use chooseStepFunction(backward:) to obtain a
function that will step in one direction or the other:

1 var currentValue = 3

2 let moveNearerToZero = chooseStepFunction(backward:

currentValue > 0)

3 // moveNearerToZero now refers to the stepBackward()

function

The example above determines whether a positive or negative step is
needed to move a variable called currentValue progressively closer

PDF conversion courtesy of www.appsdissected.com

to zero. currentValue has an initial value of 3, which means that
currentValue > 0 returns true, causing
chooseStepFunction(backward:) to return the stepBackward(_:)
function. A reference to the returned function is stored in a constant
called moveNearerToZero.

Now that moveNearerToZero refers to the correct function, it can be
used to count to zero:

1 print("Counting to zero:")

2 // Counting to zero:

3 while currentValue != 0 {

4 print("\(currentValue)... ")

5 currentValue = moveNearerToZero(currentValue)

6 }

7 print("zero!")

8 // 3...

9 // 2...

10 // 1...

11 // zero!

Nested Functions
All of the functions you have encountered so far in this chapter have
been examples of global functions, which are defined at a global
scope. You can also define functions inside the bodies of other
functions, known as nested functions.

PDF conversion courtesy of www.appsdissected.com

Nested functions are hidden from the outside world by default, but
can still be called and used by their enclosing function. An enclosing
function can also return one of its nested functions to allow the
nested function to be used in another scope.

You can rewrite the chooseStepFunction(backward:) example above
to use and return nested functions:

PDF conversion courtesy of www.appsdissected.com

1 func chooseStepFunction(backward: Bool) -> (Int) ->

Int {

2 func stepForward(input: Int) -> Int { return

input + 1 }

3 func stepBackward(input: Int) -> Int { return

input - 1 }

4 return backward ? stepBackward : stepForward

5 }

6 var currentValue = -4

7 let moveNearerToZero = chooseStepFunction(backward:

currentValue > 0)

8 // moveNearerToZero now refers to the nested

stepForward() function

9 while currentValue != 0 {

10 print("\(currentValue)... ")

11 currentValue = moveNearerToZero(currentValue)

12 }

13 print("zero!")

14 // -4...

15 // -3...

16 // -2...

17 // -1...

18 // zero!

PDF conversion courtesy of www.appsdissected.com

Closures

Closures are self-contained blocks of functionality that can be passed
around and used in your code. Closures in Swift are similar to blocks
in C and Objective-C and to lambdas in other programming
languages.

Closures can capture and store references to any constants and
variables from the context in which they’re defined. This is known as
closing over those constants and variables. Swift handles all of the
memory management of capturing for you.

NOTE

Don’t worry if you aren’t familiar with the concept of capturing. It’s explained in
detail below in Capturing Values.

Global and nested functions, as introduced in Functions, are actually
special cases of closures. Closures take one of three forms:

Global functions are closures that have a name and don’t
capture any values.

Nested functions are closures that have a name and can capture
values from their enclosing function.

Closure expressions are unnamed closures written in a
lightweight syntax that can capture values from their surrounding
context.

Swift’s closure expressions have a clean, clear style, with
optimizations that encourage brief, clutter-free syntax in common
scenarios. These optimizations include:

Inferring parameter and return value types from context

PDF conversion courtesy of www.appsdissected.com

Implicit returns from single-expression closures

Shorthand argument names

Trailing closure syntax

Closure Expressions
Nested functions, as introduced in Nested Functions, are a
convenient means of naming and defining self-contained blocks of
code as part of a larger function. However, it’s sometimes useful to
write shorter versions of function-like constructs without a full
declaration and name. This is particularly true when you work with
functions or methods that take functions as one or more of their
arguments.

Closure expressions are a way to write inline closures in a brief,
focused syntax. Closure expressions provide several syntax
optimizations for writing closures in a shortened form without loss of
clarity or intent. The closure expression examples below illustrate
these optimizations by refining a single example of the sorted(by:)
method over several iterations, each of which expresses the same
functionality in a more succinct way.

The Sorted Method
Swift’s standard library provides a method called sorted(by:), which
sorts an array of values of a known type, based on the output of a
sorting closure that you provide. Once it completes the sorting
process, the sorted(by:) method returns a new array of the same
type and size as the old one, with its elements in the correct sorted
order. The original array isn’t modified by the sorted(by:) method.

PDF conversion courtesy of www.appsdissected.com

The closure expression examples below use the sorted(by:) method
to sort an array of String values in reverse alphabetical order. Here’s
the initial array to be sorted:

 let names = ["Chris", "Alex", "Ewa", "Barry",

"Daniella"]

The sorted(by:) method accepts a closure that takes two arguments
of the same type as the array’s contents, and returns a Bool value to
say whether the first value should appear before or after the second
value once the values are sorted. The sorting closure needs to return
true if the first value should appear before the second value, and
false otherwise.

This example is sorting an array of String values, and so the sorting
closure needs to be a function of type (String, String) -> Bool.

One way to provide the sorting closure is to write a normal function of
the correct type, and to pass it in as an argument to the sorted(by:)
method:

1 func backward(_ s1: String, _ s2: String) -> Bool {

2 return s1 > s2

3 }

4 var reversedNames = names.sorted(by: backward)

5 // reversedNames is equal to ["Ewa", "Daniella",

"Chris", "Barry", "Alex"]

If the first string (s1) is greater than the second string (s2), the
backward(_:_:) function will return true, indicating that s1 should
appear before s2 in the sorted array. For characters in strings,
“greater than” means “appears later in the alphabet than”. This
means that the letter "B" is “greater than” the letter "A", and the string

PDF conversion courtesy of www.appsdissected.com

"Tom" is greater than the string "Tim". This gives a reverse
alphabetical sort, with "Barry" being placed before "Alex", and so
on.

However, this is a rather long-winded way to write what is essentially
a single-expression function (a > b). In this example, it would be
preferable to write the sorting closure inline, using closure expression
syntax.

Closure Expression Syntax
Closure expression syntax has the following general form:

 { (parameters) -> return type in

 statements

 }

The parameters in closure expression syntax can be in-out
parameters, but they can’t have a default value. Variadic parameters
can be used if you name the variadic parameter. Tuples can also be
used as parameter types and return types.

The example below shows a closure expression version of the
backward(_:_:) function from above:

1 reversedNames = names.sorted(by: { (s1: String, s2:

String) -> Bool in

2 return s1 > s2

3 })

Note that the declaration of parameters and return type for this inline
closure is identical to the declaration from the backward(_:_:)
function. In both cases, it’s written as (s1: String, s2: String) ->

PDF conversion courtesy of www.appsdissected.com

Bool. However, for the inline closure expression, the parameters and
return type are written inside the curly braces, not outside of them.

The start of the closure’s body is introduced by the in keyword. This
keyword indicates that the definition of the closure’s parameters and
return type has finished, and the body of the closure is about to begin.

Because the body of the closure is so short, it can even be written on
a single line:

 reversedNames = names.sorted(by: { (s1: String, s2:

String) -> Bool in return s1 > s2 })

This illustrates that the overall call to the sorted(by:) method has
remained the same. A pair of parentheses still wrap the entire
argument for the method. However, that argument is now an inline
closure.

Inferring Type From Context
Because the sorting closure is passed as an argument to a method,
Swift can infer the types of its parameters and the type of the value it
returns. The sorted(by:) method is being called on an array of
strings, so its argument must be a function of type (String, String)
-> Bool. This means that the (String, String) and Bool types don’t
need to be written as part of the closure expression’s definition.
Because all of the types can be inferred, the return arrow (->) and the
parentheses around the names of the parameters can also be
omitted:

 reversedNames = names.sorted(by: { s1, s2 in return

s1 > s2 })

PDF conversion courtesy of www.appsdissected.com

It’s always possible to infer the parameter types and return type when
passing a closure to a function or method as an inline closure
expression. As a result, you never need to write an inline closure in its
fullest form when the closure is used as a function or method
argument.

Nonetheless, you can still make the types explicit if you wish, and
doing so is encouraged if it avoids ambiguity for readers of your code.
In the case of the sorted(by:) method, the purpose of the closure is
clear from the fact that sorting is taking place, and it’s safe for a
reader to assume that the closure is likely to be working with String
values, because it’s assisting with the sorting of an array of strings.

Implicit Returns from Single-Expression Closures
Single-expression closures can implicitly return the result of their
single expression by omitting the return keyword from their
declaration, as in this version of the previous example:

 reversedNames = names.sorted(by: { s1, s2 in s1 > s2

})

Here, the function type of the sorted(by:) method’s argument makes
it clear that a Bool value must be returned by the closure. Because
the closure’s body contains a single expression (s1 > s2) that returns
a Bool value, there’s no ambiguity, and the return keyword can be
omitted.

Shorthand Argument Names
Swift automatically provides shorthand argument names to inline
closures, which can be used to refer to the values of the closure’s
arguments by the names $0, $1, $2, and so on.

PDF conversion courtesy of www.appsdissected.com

If you use these shorthand argument names within your closure
expression, you can omit the closure’s argument list from its
definition. The type of the shorthand argument names is inferred from
the expected function type, and the highest numbered shorthand
argument you use determines the number of arguments that the
closure takes. The in keyword can also be omitted, because the
closure expression is made up entirely of its body:

 reversedNames = names.sorted(by: { $0 > $1 })

Here, $0 and $1 refer to the closure’s first and second String
arguments. Because $1 is the shorthand argument with highest
number, the closure is understood to take two arguments. Because
the sorted(by:) function here expects a closure whose arguments
are both strings, the shorthand arguments $0 and $1 are both of type
String.

Operator Methods
There’s actually an even shorter way to write the closure expression
above. Swift’s String type defines its string-specific implementation
of the greater-than operator (>) as a method that has two parameters
of type String, and returns a value of type Bool. This exactly matches
the method type needed by the sorted(by:) method. Therefore, you
can simply pass in the greater-than operator, and Swift will infer that
you want to use its string-specific implementation:

 reversedNames = names.sorted(by: >)

For more about operator methods, see Operator Methods.

PDF conversion courtesy of www.appsdissected.com

Trailing Closures
If you need to pass a closure expression to a function as the
function’s final argument and the closure expression is long, it can be
useful to write it as a trailing closure instead. You write a trailing
closure after the function call’s parentheses, even though the trailing
closure is still an argument to the function. When you use the trailing
closure syntax, you don’t write the argument label for the first closure
as part of the function call. A function call can include multiple trailing
closures; however, the first few examples below use a single trailing
closure.

PDF conversion courtesy of www.appsdissected.com

1 func someFunctionThatTakesAClosure(closure: () ->

Void) {

2 // function body goes here

3 }

4

5 // Here's how you call this function without using a

trailing closure:

6

7 someFunctionThatTakesAClosure(closure: {

8 // closure's body goes here

9 })

10

11 // Here's how you call this function with a trailing

closure instead:

12

13 someFunctionThatTakesAClosure() {

14 // trailing closure's body goes here

15 }

The string-sorting closure from the Closure Expression Syntax
section above can be written outside of the sorted(by:) method’s
parentheses as a trailing closure:

 reversedNames = names.sorted() { $0 > $1 }

If a closure expression is provided as the function’s or method’s only
argument and you provide that expression as a trailing closure, you

PDF conversion courtesy of www.appsdissected.com

don’t need to write a pair of parentheses () after the function or
method’s name when you call the function:

 reversedNames = names.sorted { $0 > $1 }

Trailing closures are most useful when the closure is sufficiently long
that it isn’t possible to write it inline on a single line. As an example,
Swift’s Array type has a map(_:) method, which takes a closure
expression as its single argument. The closure is called once for each
item in the array, and returns an alternative mapped value (possibly
of some other type) for that item. You specify the nature of the
mapping and the type of the returned value by writing code in the
closure that you pass to map(_:).

After applying the provided closure to each array element, the
map(_:) method returns a new array containing all of the new
mapped values, in the same order as their corresponding values in
the original array.

Here’s how you can use the map(_:) method with a trailing closure to
convert an array of Int values into an array of String values. The
array [16, 58, 510] is used to create the new array ["OneSix",
"FiveEight", "FiveOneZero"]:

1 let digitNames = [

2 0: "Zero", 1: "One", 2: "Two", 3: "Three", 4:

"Four",

3 5: "Five", 6: "Six", 7: "Seven", 8: "Eight", 9:

"Nine"

4]

5 let numbers = [16, 58, 510]

PDF conversion courtesy of www.appsdissected.com

The code above creates a dictionary of mappings between the
integer digits and English-language versions of their names. It also
defines an array of integers, ready to be converted into strings.

You can now use the numbers array to create an array of String
values, by passing a closure expression to the array’s map(_:)
method as a trailing closure:

1 let strings = numbers.map { (number) -> String in

2 var number = number

3 var output = ""

4 repeat {

5 output = digitNames[number % 10]! + output

6 number /= 10

7 } while number > 0

8 return output

9 }

10 // strings is inferred to be of type [String]

11 // its value is ["OneSix", "FiveEight",

"FiveOneZero"]

The map(_:) method calls the closure expression once for each item
in the array. You don’t need to specify the type of the closure’s input
parameter, number, because the type can be inferred from the values
in the array to be mapped.

In this example, the variable number is initialized with the value of the
closure’s number parameter, so that the value can be modified within
the closure body. (The parameters to functions and closures are
always constants.) The closure expression also specifies a return

PDF conversion courtesy of www.appsdissected.com

type of String, to indicate the type that will be stored in the mapped
output array.

The closure expression builds a string called output each time it’s
called. It calculates the last digit of number by using the remainder
operator (number % 10), and uses this digit to look up an appropriate
string in the digitNames dictionary. The closure can be used to create
a string representation of any integer greater than zero.

NOTE

The call to the digitNames dictionary’s subscript is followed by an
exclamation point (!), because dictionary subscripts return an optional value
to indicate that the dictionary lookup can fail if the key doesn’t exist. In the
example above, it’s guaranteed that number % 10 will always be a valid
subscript key for the digitNames dictionary, and so an exclamation point is
used to force-unwrap the String value stored in the subscript’s optional
return value.

The string retrieved from the digitNames dictionary is added to the
front of output, effectively building a string version of the number in
reverse. (The expression number % 10 gives a value of 6 for 16, 8 for
58, and 0 for 510.)

The number variable is then divided by 10. Because it’s an integer, it’s
rounded down during the division, so 16 becomes 1, 58 becomes 5,
and 510 becomes 51.

The process is repeated until number is equal to 0, at which point the
output string is returned by the closure, and is added to the output
array by the map(_:) method.

The use of trailing closure syntax in the example above neatly
encapsulates the closure’s functionality immediately after the function
that closure supports, without needing to wrap the entire closure
within the map(_:) method’s outer parentheses.

PDF conversion courtesy of www.appsdissected.com

If a function takes multiple closures, you omit the argument label for
the first trailing closure and you label the remaining trailing closures.
For example, the function below loads a picture for a photo gallery:

1 func loadPicture(from server: Server, completion:

(Picture) -> Void, onFailure: () -> Void) {

2 if let picture = download("photo.jpg", from:

server) {

3 completion(picture)

4 } else {

5 onFailure()

6 }

7 }

When you call this function to load a picture, you provide two
closures. The first closure is a completion handler that displays a
picture after a successful download. The second closure is an error
handler that displays an error to the user.

1 loadPicture(from: someServer) { picture in

2 someView.currentPicture = picture

3 } onFailure: {

4 print("Couldn't download the next picture.")

5 }

In this example, the loadPicture(from:completion:onFailure:)
function dispatches its network task into the background, and calls
one of the two completion handlers when the network task finishes.
Writing the function this way lets you cleanly separate the code that’s
responsible for handling a network failure from the code that updates

PDF conversion courtesy of www.appsdissected.com

the user interface after a successful download, instead of using just
one closure that handles both circumstances.

NOTE

Completion handlers can become hard to read, especially when you have to
nest multiple handlers. An alternate approach is to use asynchronous code,
as described in Concurrency.

Capturing Values
A closure can capture constants and variables from the surrounding
context in which it’s defined. The closure can then refer to and modify
the values of those constants and variables from within its body, even
if the original scope that defined the constants and variables no
longer exists.

In Swift, the simplest form of a closure that can capture values is a
nested function, written within the body of another function. A nested
function can capture any of its outer function’s arguments and can
also capture any constants and variables defined within the outer
function.

Here’s an example of a function called makeIncrementer, which
contains a nested function called incrementer. The nested
incrementer() function captures two values, runningTotal and
amount, from its surrounding context. After capturing these values,
incrementer is returned by makeIncrementer as a closure that
increments runningTotal by amount each time it’s called.

PDF conversion courtesy of www.appsdissected.com

1 func makeIncrementer(forIncrement amount: Int) -> ()

-> Int {

2 var runningTotal = 0

3 func incrementer() -> Int {

4 runningTotal += amount

5 return runningTotal

6 }

7 return incrementer

8 }

The return type of makeIncrementer is () -> Int. This means that it
returns a function, rather than a simple value. The function it returns
has no parameters, and returns an Int value each time it’s called. To
learn how functions can return other functions, see Function Types as
Return Types.

The makeIncrementer(forIncrement:) function defines an integer
variable called runningTotal, to store the current running total of the
incrementer that will be returned. This variable is initialized with a
value of 0.

The makeIncrementer(forIncrement:) function has a single Int
parameter with an argument label of forIncrement, and a parameter
name of amount. The argument value passed to this parameter
specifies how much runningTotal should be incremented by each
time the returned incrementer function is called. The
makeIncrementer function defines a nested function called
incrementer, which performs the actual incrementing. This function
simply adds amount to runningTotal, and returns the result.

When considered in isolation, the nested incrementer() function
might seem unusual:

PDF conversion courtesy of www.appsdissected.com

1 func incrementer() -> Int {

2 runningTotal += amount

3 return runningTotal

4 }

The incrementer() function doesn’t have any parameters, and yet it
refers to runningTotal and amount from within its function body. It
does this by capturing a reference to runningTotal and amount from
the surrounding function and using them within its own function body.
Capturing by reference ensures that runningTotal and amount don’t
disappear when the call to makeIncrementer ends, and also ensures
that runningTotal is available the next time the incrementer function
is called.

NOTE

As an optimization, Swift may instead capture and store a copy of a value if
that value isn’t mutated by a closure, and if the value isn’t mutated after the
closure is created.

Swift also handles all memory management involved in disposing of variables
when they’re no longer needed.

Here’s an example of makeIncrementer in action:

 let incrementByTen = makeIncrementer(forIncrement:

10)

This example sets a constant called incrementByTen to refer to an
incrementer function that adds 10 to its runningTotal variable each
time it’s called. Calling the function multiple times shows this behavior
in action:

PDF conversion courtesy of www.appsdissected.com

1 incrementByTen()

2 // returns a value of 10

3 incrementByTen()

4 // returns a value of 20

5 incrementByTen()

6 // returns a value of 30

If you create a second incrementer, it will have its own stored
reference to a new, separate runningTotal variable:

1 let incrementBySeven = makeIncrementer(forIncrement:

7)

2 incrementBySeven()

3 // returns a value of 7

Calling the original incrementer (incrementByTen) again continues to
increment its own runningTotal variable, and doesn’t affect the
variable captured by incrementBySeven:

1 incrementByTen()

2 // returns a value of 40

NOTE

If you assign a closure to a property of a class instance, and the closure
captures that instance by referring to the instance or its members, you will
create a strong reference cycle between the closure and the instance. Swift
uses capture lists to break these strong reference cycles. For more
information, see Strong Reference Cycles for Closures.

PDF conversion courtesy of www.appsdissected.com

Closures Are Reference Types
In the example above, incrementBySeven and incrementByTen are
constants, but the closures these constants refer to are still able to
increment the runningTotal variables that they have captured. This is
because functions and closures are reference types.

Whenever you assign a function or a closure to a constant or a
variable, you are actually setting that constant or variable to be a
reference to the function or closure. In the example above, it’s the
choice of closure that incrementByTen refers to that’s constant, and
not the contents of the closure itself.

This also means that if you assign a closure to two different constants
or variables, both of those constants or variables refer to the same
closure.

1 let alsoIncrementByTen = incrementByTen

2 alsoIncrementByTen()

3 // returns a value of 50

4

5 incrementByTen()

6 // returns a value of 60

The example above shows that calling alsoIncrementByTen is the
same as calling incrementByTen. Because both of them refer to the
same closure, they both increment and return the same running total.

Escaping Closures

PDF conversion courtesy of www.appsdissected.com

A closure is said to escape a function when the closure is passed as
an argument to the function, but is called after the function returns.
When you declare a function that takes a closure as one of its
parameters, you can write @escaping before the parameter’s type to
indicate that the closure is allowed to escape.

One way that a closure can escape is by being stored in a variable
that’s defined outside the function. As an example, many functions
that start an asynchronous operation take a closure argument as a
completion handler. The function returns after it starts the operation,
but the closure isn’t called until the operation is completed—the
closure needs to escape, to be called later. For example:

1 var completionHandlers: [() -> Void] = []

2 func

someFunctionWithEscapingClosure(completionHandl

er: @escaping () -> Void) {

3 completionHandlers.append(completionHandler)

4 }

The someFunctionWithEscapingClosure(_:) function takes a closure
as its argument and adds it to an array that’s declared outside the
function. If you didn’t mark the parameter of this function with
@escaping, you would get a compile-time error.

An escaping closure that refers to self needs special consideration if
self refers to an instance of a class. Capturing self in an escaping
closure makes it easy to accidentally create a strong reference cycle.
For information about reference cycles, see Automatic Reference
Counting.

Normally, a closure captures variables implicitly by using them in the
body of the closure, but in this case you need to be explicit. If you
want to capture self, write self explicitly when you use it, or include

PDF conversion courtesy of www.appsdissected.com

self in the closure’s capture list. Writing self explicitly lets you
express your intent, and reminds you to confirm that there isn’t a
reference cycle. For example, in the code below, the closure passed
to someFunctionWithEscapingClosure(_:) refers to self explicitly. In
contrast, the closure passed to
someFunctionWithNonescapingClosure(_:) is a nonescaping closure,
which means it can refer to self implicitly.

PDF conversion courtesy of www.appsdissected.com

1 func someFunctionWithNonescapingClosure(closure: ()

-> Void) {

2 closure()

3 }

4

5 class SomeClass {

6 var x = 10

7 func doSomething() {

8 someFunctionWithEscapingClosure { self.x =

100 }

9 someFunctionWithNonescapingClosure { x = 200

}

10 }

11 }

12

13 let instance = SomeClass()

14 instance.doSomething()

15 print(instance.x)

16 // Prints "200"

17

18 completionHandlers.first?()

19 print(instance.x)

20 // Prints "100"

Here’s a version of doSomething() that captures self by including it
in the closure’s capture list, and then refers to self implicitly:

PDF conversion courtesy of www.appsdissected.com

1 class SomeOtherClass {

2 var x = 10

3 func doSomething() {

4 someFunctionWithEscapingClosure { [self] in

x = 100 }

5 someFunctionWithNonescapingClosure { x = 200

}

6 }

7 }

If self is an instance of a structure or an enumeration, you can
always refer to self implicitly. However, an escaping closure can’t
capture a mutable reference to self when self is an instance of a
structure or an enumeration. Structures and enumerations don’t allow
shared mutability, as discussed in Structures and Enumerations Are
Value Types.

1 struct SomeStruct {

2 var x = 10

3 mutating func doSomething() {

4 someFunctionWithNonescapingClosure { x = 200

} // Ok

5 someFunctionWithEscapingClosure { x = 100 }

// Error

6 }

7 }

PDF conversion courtesy of www.appsdissected.com

The call to the someFunctionWithEscapingClosure function in the
example above is an error because it’s inside a mutating method, so
self is mutable. That violates the rule that escaping closures can’t
capture a mutable reference to self for structures.

Autoclosures
An autoclosure is a closure that’s automatically created to wrap an
expression that’s being passed as an argument to a function. It
doesn’t take any arguments, and when it’s called, it returns the value
of the expression that’s wrapped inside of it. This syntactic
convenience lets you omit braces around a function’s parameter by
writing a normal expression instead of an explicit closure.

It’s common to call functions that take autoclosures, but it’s not
common to implement that kind of function. For example, the
assert(condition:message:file:line:) function takes an
autoclosure for its condition and message parameters; its condition
parameter is evaluated only in debug builds and its message
parameter is evaluated only if condition is false.

An autoclosure lets you delay evaluation, because the code inside
isn’t run until you call the closure. Delaying evaluation is useful for
code that has side effects or is computationally expensive, because it
lets you control when that code is evaluated. The code below shows
how a closure delays evaluation.

PDF conversion courtesy of www.appsdissected.com

1 var customersInLine = ["Chris", "Alex", "Ewa",

"Barry", "Daniella"]

2 print(customersInLine.count)

3 // Prints "5"

4

5 let customerProvider = { customersInLine.remove(at:

0) }

6 print(customersInLine.count)

7 // Prints "5"

8

9 print("Now serving \(customerProvider())!")

10 // Prints "Now serving Chris!"

11 print(customersInLine.count)

12 // Prints "4"

Even though the first element of the customersInLine array is
removed by the code inside the closure, the array element isn’t
removed until the closure is actually called. If the closure is never
called, the expression inside the closure is never evaluated, which
means the array element is never removed. Note that the type of
customerProvider isn’t String but () -> String—a function with no
parameters that returns a string.

You get the same behavior of delayed evaluation when you pass a
closure as an argument to a function.

PDF conversion courtesy of www.appsdissected.com

1 // customersInLine is ["Alex", "Ewa", "Barry",

"Daniella"]

2 func serve(customer customerProvider: () -> String)

{

3 print("Now serving \(customerProvider())!")

4 }

5 serve(customer: { customersInLine.remove(at: 0) })

6 // Prints "Now serving Alex!"

The serve(customer:) function in the listing above takes an explicit
closure that returns a customer’s name. The version of
serve(customer:) below performs the same operation but, instead of
taking an explicit closure, it takes an autoclosure by marking its
parameter’s type with the @autoclosure attribute. Now you can call
the function as if it took a String argument instead of a closure. The
argument is automatically converted to a closure, because the
customerProvider parameter’s type is marked with the @autoclosure
attribute.

1 // customersInLine is ["Ewa", "Barry", "Daniella"]

2 func serve(customer customerProvider: @autoclosure

() -> String) {

3 print("Now serving \(customerProvider())!")

4 }

5 serve(customer: customersInLine.remove(at: 0))

6 // Prints "Now serving Ewa!"

PDF conversion courtesy of www.appsdissected.com

NOTE

Overusing autoclosures can make your code hard to understand. The context
and function name should make it clear that evaluation is being deferred.

If you want an autoclosure that’s allowed to escape, use both the
@autoclosure and @escaping attributes. The @escaping attribute is
described above in Escaping Closures.

1 // customersInLine is ["Barry", "Daniella"]

2 var customerProviders: [() -> String] = []

3 func collectCustomerProviders(_ customerProvider:

@autoclosure @escaping () -> String) {

4 customerProviders.append(customerProvider)

5 }

6 collectCustomerProviders(customersInLine.remove(at:

0))

7 collectCustomerProviders(customersInLine.remove(at:

0))

8

9 print("Collected \(customerProviders.count)

closures.")

10 // Prints "Collected 2 closures."

11 for customerProvider in customerProviders {

12 print("Now serving \(customerProvider())!")

13 }

14 // Prints "Now serving Barry!"

15 // Prints "Now serving Daniella!"

PDF conversion courtesy of www.appsdissected.com

In the code above, instead of calling the closure passed to it as its
customerProvider argument, the collectCustomerProviders(_:)
function appends the closure to the customerProviders array. The
array is declared outside the scope of the function, which means the
closures in the array can be executed after the function returns. As a
result, the value of the customerProvider argument must be allowed
to escape the function’s scope.

PDF conversion courtesy of www.appsdissected.com

Enumerations

An enumeration defines a common type for a group of related values
and enables you to work with those values in a type-safe way within
your code.

If you are familiar with C, you will know that C enumerations assign
related names to a set of integer values. Enumerations in Swift are
much more flexible, and don’t have to provide a value for each case
of the enumeration. If a value (known as a raw value) is provided for
each enumeration case, the value can be a string, a character, or a
value of any integer or floating-point type.

Alternatively, enumeration cases can specify associated values of
any type to be stored along with each different case value, much as
unions or variants do in other languages. You can define a common
set of related cases as part of one enumeration, each of which has a
different set of values of appropriate types associated with it.

Enumerations in Swift are first-class types in their own right. They
adopt many features traditionally supported only by classes, such as
computed properties to provide additional information about the
enumeration’s current value, and instance methods to provide
functionality related to the values the enumeration represents.
Enumerations can also define initializers to provide an initial case
value; can be extended to expand their functionality beyond their
original implementation; and can conform to protocols to provide
standard functionality.

For more about these capabilities, see Properties, Methods,
Initialization, Extensions, and Protocols.

PDF conversion courtesy of www.appsdissected.com

Enumeration Syntax
You introduce enumerations with the enum keyword and place their
entire definition within a pair of braces:

1 enum SomeEnumeration {

2 // enumeration definition goes here

3 }

Here’s an example for the four main points of a compass:

1 enum CompassPoint {

2 case north

3 case south

4 case east

5 case west

6 }

The values defined in an enumeration (such as north, south, east,
and west) are its enumeration cases. You use the case keyword to
introduce new enumeration cases.

NOTE

Swift enumeration cases don’t have an integer value set by default, unlike
languages like C and Objective-C. In the CompassPoint example above,
north, south, east and west don’t implicitly equal 0, 1, 2 and 3. Instead, the
different enumeration cases are values in their own right, with an explicitly
defined type of CompassPoint.

Multiple cases can appear on a single line, separated by commas:

PDF conversion courtesy of www.appsdissected.com

1 enum Planet {

2 case mercury, venus, earth, mars, jupiter,

saturn, uranus, neptune

3 }

Each enumeration definition defines a new type. Like other types in
Swift, their names (such as CompassPoint and Planet) start with a
capital letter. Give enumeration types singular rather than plural
names, so that they read as self-evident:

 var directionToHead = CompassPoint.west

The type of directionToHead is inferred when it’s initialized with one
of the possible values of CompassPoint. Once directionToHead is
declared as a CompassPoint, you can set it to a different CompassPoint
value using a shorter dot syntax:

 directionToHead = .east

The type of directionToHead is already known, and so you can drop
the type when setting its value. This makes for highly readable code
when working with explicitly typed enumeration values.

Matching Enumeration Values with a Switch
Statement
You can match individual enumeration values with a switch
statement:

PDF conversion courtesy of www.appsdissected.com

1 directionToHead = .south

2 switch directionToHead {

3 case .north:

4 print("Lots of planets have a north")

5 case .south:

6 print("Watch out for penguins")

7 case .east:

8 print("Where the sun rises")

9 case .west:

10 print("Where the skies are blue")

11 }

12 // Prints "Watch out for penguins"

You can read this code as:

“Consider the value of directionToHead. In the case where it equals
.north, print "Lots of planets have a north". In the case where it
equals .south, print "Watch out for penguins".”

…and so on.

As described in Control Flow, a switch statement must be exhaustive
when considering an enumeration’s cases. If the case for .west is
omitted, this code doesn’t compile, because it doesn’t consider the
complete list of CompassPoint cases. Requiring exhaustiveness
ensures that enumeration cases aren’t accidentally omitted.

When it isn’t appropriate to provide a case for every enumeration
case, you can provide a default case to cover any cases that aren’t
addressed explicitly:

PDF conversion courtesy of www.appsdissected.com

1 let somePlanet = Planet.earth

2 switch somePlanet {

3 case .earth:

4 print("Mostly harmless")

5 default:

6 print("Not a safe place for humans")

7 }

8 // Prints "Mostly harmless"

Iterating over Enumeration Cases
For some enumerations, it’s useful to have a collection of all of that
enumeration’s cases. You enable this by writing : CaseIterable after
the enumeration’s name. Swift exposes a collection of all the cases
as an allCases property of the enumeration type. Here’s an example:

1 enum Beverage: CaseIterable {

2 case coffee, tea, juice

3 }

4 let numberOfChoices = Beverage.allCases.count

5 print("\(numberOfChoices) beverages available")

6 // Prints "3 beverages available"

In the example above, you write Beverage.allCases to access a
collection that contains all of the cases of the Beverage enumeration.
You can use allCases like any other collection—the collection’s
elements are instances of the enumeration type, so in this case

PDF conversion courtesy of www.appsdissected.com

they’re Beverage values. The example above counts how many cases
there are, and the example below uses a for-in loop to iterate over
all the cases.

1 for beverage in Beverage.allCases {

2 print(beverage)

3 }

4 // coffee

5 // tea

6 // juice

The syntax used in the examples above marks the enumeration as
conforming to the CaseIterable protocol. For information about
protocols, see Protocols.

Associated Values
The examples in the previous section show how the cases of an
enumeration are a defined (and typed) value in their own right. You
can set a constant or variable to Planet.earth, and check for this
value later. However, it’s sometimes useful to be able to store values
of other types alongside these case values. This additional
information is called an associated value, and it varies each time you
use that case as a value in your code.

You can define Swift enumerations to store associated values of any
given type, and the value types can be different for each case of the
enumeration if needed. Enumerations similar to these are known as
discriminated unions, tagged unions, or variants in other
programming languages.

https://developer.apple.com/documentation/swift/caseiterable

PDF conversion courtesy of www.appsdissected.com

For example, suppose an inventory tracking system needs to track
products by two different types of barcode. Some products are
labeled with 1D barcodes in UPC format, which uses the numbers 0
to 9. Each barcode has a number system digit, followed by five
manufacturer code digits and five product code digits. These are
followed by a check digit to verify that the code has been scanned
correctly:

Other products are labeled with 2D barcodes in QR code format,
which can use any ISO 8859-1 character and can encode a string up
to 2,953 characters long:

It’s convenient for an inventory tracking system to store UPC
barcodes as a tuple of four integers, and QR code barcodes as a
string of any length.

In Swift, an enumeration to define product barcodes of either type
might look like this:

PDF conversion courtesy of www.appsdissected.com

1 enum Barcode {

2 case upc(Int, Int, Int, Int)

3 case qrCode(String)

4 }

This can be read as:

“Define an enumeration type called Barcode, which can take either a
value of upc with an associated value of type (Int, Int, Int, Int), or a
value of qrCode with an associated value of type String.”

This definition doesn’t provide any actual Int or String values—it just
defines the type of associated values that Barcode constants and
variables can store when they’re equal to Barcode.upc or
Barcode.qrCode.

You can then create new barcodes using either type:

 var productBarcode = Barcode.upc(8, 85909, 51226, 3)

This example creates a new variable called productBarcode and
assigns it a value of Barcode.upc with an associated tuple value of
(8, 85909, 51226, 3).

You can assign the same product a different type of barcode:

 productBarcode = .qrCode("ABCDEFGHIJKLMNOP")

At this point, the original Barcode.upc and its integer values are
replaced by the new Barcode.qrCode and its string value. Constants
and variables of type Barcode can store either a .upc or a .qrCode
(together with their associated values), but they can store only one of
them at any given time.

PDF conversion courtesy of www.appsdissected.com

You can check the different barcode types using a switch statement,
similar to the example in Matching Enumeration Values with a Switch
Statement. This time, however, the associated values are extracted
as part of the switch statement. You extract each associated value as
a constant (with the let prefix) or a variable (with the var prefix) for
use within the switch case’s body:

1 switch productBarcode {

2 case .upc(let numberSystem, let manufacturer, let

product, let check):

3 print("UPC: \(numberSystem), \(manufacturer), \

(product), \(check).")

4 case .qrCode(let productCode):

5 print("QR code: \(productCode).")

6 }

7 // Prints "QR code: ABCDEFGHIJKLMNOP."

If all of the associated values for an enumeration case are extracted
as constants, or if all are extracted as variables, you can place a
single var or let annotation before the case name, for brevity:

PDF conversion courtesy of www.appsdissected.com

1 switch productBarcode {

2 case let .upc(numberSystem, manufacturer, product,

check):

3 print("UPC : \(numberSystem), \(manufacturer), \

(product), \(check).")

4 case let .qrCode(productCode):

5 print("QR code: \(productCode).")

6 }

7 // Prints "QR code: ABCDEFGHIJKLMNOP."

Raw Values
The barcode example in Associated Values shows how cases of an
enumeration can declare that they store associated values of
different types. As an alternative to associated values, enumeration
cases can come prepopulated with default values (called raw values),
which are all of the same type.

Here’s an example that stores raw ASCII values alongside named
enumeration cases:

1 enum ASCIIControlCharacter: Character {

2 case tab = "\t"

3 case lineFeed = "\n"

4 case carriageReturn = "\r"

5 }

PDF conversion courtesy of www.appsdissected.com

Here, the raw values for an enumeration called
ASCIIControlCharacter are defined to be of type Character, and are
set to some of the more common ASCII control characters. Character
values are described in Strings and Characters.

Raw values can be strings, characters, or any of the integer or
floating-point number types. Each raw value must be unique within its
enumeration declaration.

NOTE

Raw values are not the same as associated values. Raw values are set to
prepopulated values when you first define the enumeration in your code, like
the three ASCII codes above. The raw value for a particular enumeration case
is always the same. Associated values are set when you create a new
constant or variable based on one of the enumeration’s cases, and can be
different each time you do so.

Implicitly Assigned Raw Values
When you’re working with enumerations that store integer or string
raw values, you don’t have to explicitly assign a raw value for each
case. When you don’t, Swift automatically assigns the values for you.

For example, when integers are used for raw values, the implicit
value for each case is one more than the previous case. If the first
case doesn’t have a value set, its value is 0.

The enumeration below is a refinement of the earlier Planet
enumeration, with integer raw values to represent each planet’s order
from the sun:

PDF conversion courtesy of www.appsdissected.com

1 enum Planet: Int {

2 case mercury = 1, venus, earth, mars, jupiter,

saturn, uranus, neptune

3 }

In the example above, Planet.mercury has an explicit raw value of 1,
Planet.venus has an implicit raw value of 2, and so on.

When strings are used for raw values, the implicit value for each case
is the text of that case’s name.

The enumeration below is a refinement of the earlier CompassPoint
enumeration, with string raw values to represent each direction’s
name:

1 enum CompassPoint: String {

2 case north, south, east, west

3 }

In the example above, CompassPoint.south has an implicit raw value
of "south", and so on.

You access the raw value of an enumeration case with its rawValue
property:

1 let earthsOrder = Planet.earth.rawValue

2 // earthsOrder is 3

3

4 let sunsetDirection = CompassPoint.west.rawValue

5 // sunsetDirection is "west"

PDF conversion courtesy of www.appsdissected.com

Initializing from a Raw Value
If you define an enumeration with a raw-value type, the enumeration
automatically receives an initializer that takes a value of the raw
value’s type (as a parameter called rawValue) and returns either an
enumeration case or nil. You can use this initializer to try to create a
new instance of the enumeration.

This example identifies Uranus from its raw value of 7:

1 let possiblePlanet = Planet(rawValue: 7)

2 // possiblePlanet is of type Planet? and equals

Planet.uranus

Not all possible Int values will find a matching planet, however.
Because of this, the raw value initializer always returns an optional
enumeration case. In the example above, possiblePlanet is of type
Planet?, or “optional Planet.”

NOTE

The raw value initializer is a failable initializer, because not every raw value
will return an enumeration case. For more information, see Failable
Initializers.

If you try to find a planet with a position of 11, the optional Planet
value returned by the raw value initializer will be nil:

PDF conversion courtesy of www.appsdissected.com

1 let positionToFind = 11

2 if let somePlanet = Planet(rawValue: positionToFind)

{

3 switch somePlanet {

4 case .earth:

5 print("Mostly harmless")

6 default:

7 print("Not a safe place for humans")

8 }

9 } else {

10 print("There isn't a planet at position \

(positionToFind)")

11 }

12 // Prints "There isn't a planet at position 11"

This example uses optional binding to try to access a planet with a
raw value of 11. The statement if let somePlanet =
Planet(rawValue: 11) creates an optional Planet, and sets
somePlanet to the value of that optional Planet if it can be retrieved.
In this case, it isn’t possible to retrieve a planet with a position of 11,
and so the else branch is executed instead.

Recursive Enumerations
A recursive enumeration is an enumeration that has another instance
of the enumeration as the associated value for one or more of the
enumeration cases. You indicate that an enumeration case is

PDF conversion courtesy of www.appsdissected.com

recursive by writing indirect before it, which tells the compiler to
insert the necessary layer of indirection.

For example, here is an enumeration that stores simple arithmetic
expressions:

1 enum ArithmeticExpression {

2 case number(Int)

3 indirect case addition(ArithmeticExpression,

ArithmeticExpression)

4 indirect case

multiplication(ArithmeticExpression,

ArithmeticExpression)

5 }

You can also write indirect before the beginning of the enumeration
to enable indirection for all of the enumeration’s cases that have an
associated value:

1 indirect enum ArithmeticExpression {

2 case number(Int)

3 case addition(ArithmeticExpression,

ArithmeticExpression)

4 case multiplication(ArithmeticExpression,

ArithmeticExpression)

5 }

This enumeration can store three kinds of arithmetic expressions: a
plain number, the addition of two expressions, and the multiplication
of two expressions. The addition and multiplication cases have

PDF conversion courtesy of www.appsdissected.com

associated values that are also arithmetic expressions—these
associated values make it possible to nest expressions. For example,
the expression (5 + 4) * 2 has a number on the right-hand side of
the multiplication and another expression on the left-hand side of the
multiplication. Because the data is nested, the enumeration used to
store the data also needs to support nesting—this means the
enumeration needs to be recursive. The code below shows the
ArithmeticExpression recursive enumeration being created for (5 +
4) * 2:

1 let five = ArithmeticExpression.number(5)

2 let four = ArithmeticExpression.number(4)

3 let sum = ArithmeticExpression.addition(five, four)

4 let product =

ArithmeticExpression.multiplication(sum,

ArithmeticExpression.number(2))

A recursive function is a straightforward way to work with data that
has a recursive structure. For example, here’s a function that
evaluates an arithmetic expression:

PDF conversion courtesy of www.appsdissected.com

1 func evaluate(_ expression: ArithmeticExpression) ->

Int {

2 switch expression {

3 case let .number(value):

4 return value

5 case let .addition(left, right):

6 return evaluate(left) + evaluate(right)

7 case let .multiplication(left, right):

8 return evaluate(left) * evaluate(right)

9 }

10 }

11

12 print(evaluate(product))

13 // Prints "18"

This function evaluates a plain number by simply returning the
associated value. It evaluates an addition or multiplication by
evaluating the expression on the left-hand side, evaluating the
expression on the right-hand side, and then adding them or
multiplying them.

PDF conversion courtesy of www.appsdissected.com

Structures and Classes

Structures and classes are general-purpose, flexible constructs that
become the building blocks of your program’s code. You define
properties and methods to add functionality to your structures and
classes using the same syntax you use to define constants, variables,
and functions.

Unlike other programming languages, Swift doesn’t require you to
create separate interface and implementation files for custom
structures and classes. In Swift, you define a structure or class in a
single file, and the external interface to that class or structure is
automatically made available for other code to use.

NOTE

An instance of a class is traditionally known as an object. However, Swift
structures and classes are much closer in functionality than in other languages,
and much of this chapter describes functionality that applies to instances of
either a class or a structure type. Because of this, the more general term
instance is used.

Comparing Structures and Classes
Structures and classes in Swift have many things in common. Both
can:

Define properties to store values

Define methods to provide functionality

Define subscripts to provide access to their values using
subscript syntax

PDF conversion courtesy of www.appsdissected.com

Define initializers to set up their initial state

Be extended to expand their functionality beyond a default
implementation

Conform to protocols to provide standard functionality of a certain
kind

For more information, see Properties, Methods, Subscripts,
Initialization, Extensions, and Protocols.

Classes have additional capabilities that structures don’t have:

Inheritance enables one class to inherit the characteristics of
another.

Type casting enables you to check and interpret the type of a
class instance at runtime.

Deinitializers enable an instance of a class to free up any
resources it has assigned.

Reference counting allows more than one reference to a class
instance.

For more information, see Inheritance, Type Casting, Deinitialization,
and Automatic Reference Counting.

The additional capabilities that classes support come at the cost of
increased complexity. As a general guideline, prefer structures
because they’re easier to reason about, and use classes when they’re
appropriate or necessary. In practice, this means most of the custom
data types you define will be structures and enumerations. For a more
detailed comparison, see Choosing Between Structures and Classes.

https://developer.apple.com/documentation/swift/choosing_between_structures_and_classes

PDF conversion courtesy of www.appsdissected.com

NOTE

Classes and actors share many of the same characteristics and behaviors. For
information about actors, see Concurrency.

Definition Syntax
Structures and classes have a similar definition syntax. You introduce
structures with the struct keyword and classes with the class
keyword. Both place their entire definition within a pair of braces:

1 struct SomeStructure {

2 // structure definition goes here

3 }

4 class SomeClass {

5 // class definition goes here

6 }

NOTE

Whenever you define a new structure or class, you define a new Swift type.
Give types UpperCamelCase names (such as SomeStructure and SomeClass
here) to match the capitalization of standard Swift types (such as String, Int,
and Bool). Give properties and methods lowerCamelCase names (such as
frameRate and incrementCount) to differentiate them from type names.

Here’s an example of a structure definition and a class definition:

PDF conversion courtesy of www.appsdissected.com

1 struct Resolution {

2 var width = 0

3 var height = 0

4 }

5 class VideoMode {

6 var resolution = Resolution()

7 var interlaced = false

8 var frameRate = 0.0

9 var name: String?

10 }

The example above defines a new structure called Resolution, to
describe a pixel-based display resolution. This structure has two
stored properties called width and height. Stored properties are
constants or variables that are bundled up and stored as part of the
structure or class. These two properties are inferred to be of type Int
by setting them to an initial integer value of 0.

The example above also defines a new class called VideoMode, to
describe a specific video mode for video display. This class has four
variable stored properties. The first, resolution, is initialized with a
new Resolution structure instance, which infers a property type of
Resolution. For the other three properties, new VideoMode instances
will be initialized with an interlaced setting of false (meaning
“noninterlaced video”), a playback frame rate of 0.0, and an optional
String value called name. The name property is automatically given a
default value of nil, or “no name value”, because it’s of an optional
type.

Structure and Class Instances

PDF conversion courtesy of www.appsdissected.com

The Resolution structure definition and the VideoMode class definition
only describe what a Resolution or VideoMode will look like. They
themselves don’t describe a specific resolution or video mode. To do
that, you need to create an instance of the structure or class.

The syntax for creating instances is very similar for both structures
and classes:

1 let someResolution = Resolution()

2 let someVideoMode = VideoMode()

Structures and classes both use initializer syntax for new instances.
The simplest form of initializer syntax uses the type name of the class
or structure followed by empty parentheses, such as Resolution() or
VideoMode(). This creates a new instance of the class or structure,
with any properties initialized to their default values. Class and
structure initialization is described in more detail in Initialization.

Accessing Properties
You can access the properties of an instance using dot syntax. In dot
syntax, you write the property name immediately after the instance
name, separated by a period (.), without any spaces:

1 print("The width of someResolution is \

(someResolution.width)")

2 // Prints "The width of someResolution is 0"

In this example, someResolution.width refers to the width property of
someResolution, and returns its default initial value of 0.

You can drill down into subproperties, such as the width property in
the resolution property of a VideoMode:

PDF conversion courtesy of www.appsdissected.com

1 print("The width of someVideoMode is \

(someVideoMode.resolution.width)")

2 // Prints "The width of someVideoMode is 0"

You can also use dot syntax to assign a new value to a variable
property:

1 someVideoMode.resolution.width = 1280

2 print("The width of someVideoMode is now \

(someVideoMode.resolution.width)")

3 // Prints "The width of someVideoMode is now 1280"

Memberwise Initializers for Structure Types
All structures have an automatically generated memberwise initializer,
which you can use to initialize the member properties of new structure
instances. Initial values for the properties of the new instance can be
passed to the memberwise initializer by name:

 let vga = Resolution(width: 640, height: 480)

Unlike structures, class instances don’t receive a default memberwise
initializer. Initializers are described in more detail in Initialization.

Structures and Enumerations Are Value Types
A value type is a type whose value is copied when it’s assigned to a
variable or constant, or when it’s passed to a function.

PDF conversion courtesy of www.appsdissected.com

You’ve actually been using value types extensively throughout the
previous chapters. In fact, all of the basic types in Swift—integers,
floating-point numbers, Booleans, strings, arrays and dictionaries—
are value types, and are implemented as structures behind the
scenes.

All structures and enumerations are value types in Swift. This means
that any structure and enumeration instances you create—and any
value types they have as properties—are always copied when they’re
passed around in your code.

NOTE

Collections defined by the standard library like arrays, dictionaries, and strings
use an optimization to reduce the performance cost of copying. Instead of
making a copy immediately, these collections share the memory where the
elements are stored between the original instance and any copies. If one of the
copies of the collection is modified, the elements are copied just before the
modification. The behavior you see in your code is always as if a copy took
place immediately.

Consider this example, which uses the Resolution structure from the
previous example:

1 let hd = Resolution(width: 1920, height: 1080)

2 var cinema = hd

This example declares a constant called hd and sets it to a Resolution
instance initialized with the width and height of full HD video (1920
pixels wide by 1080 pixels high).

It then declares a variable called cinema and sets it to the current
value of hd. Because Resolution is a structure, a copy of the existing
instance is made, and this new copy is assigned to cinema. Even
though hd and cinema now have the same width and height, they’re
two completely different instances behind the scenes.

PDF conversion courtesy of www.appsdissected.com

Next, the width property of cinema is amended to be the width of the
slightly wider 2K standard used for digital cinema projection (2048
pixels wide and 1080 pixels high):

 cinema.width = 2048

Checking the width property of cinema shows that it has indeed
changed to be 2048:

1 print("cinema is now \(cinema.width) pixels wide")

2 // Prints "cinema is now 2048 pixels wide"

However, the width property of the original hd instance still has the old
value of 1920:

1 print("hd is still \(hd.width) pixels wide")

2 // Prints "hd is still 1920 pixels wide"

When cinema was given the current value of hd, the values stored in hd
were copied into the new cinema instance. The end result was two
completely separate instances that contained the same numeric
values. However, because they’re separate instances, setting the
width of cinema to 2048 doesn’t affect the width stored in hd, as shown
in the figure below:

PDF conversion courtesy of www.appsdissected.com

The same behavior applies to enumerations:

1 enum CompassPoint {

2 case north, south, east, west

3 mutating func turnNorth() {

4 self = .north

5 }

6 }

7 var currentDirection = CompassPoint.west

8 let rememberedDirection = currentDirection

9 currentDirection.turnNorth()

10

11 print("The current direction is \(currentDirection)")

12 print("The remembered direction is \

(rememberedDirection)")

13 // Prints "The current direction is north"

14 // Prints "The remembered direction is west"

When rememberedDirection is assigned the value of
currentDirection, it’s actually set to a copy of that value. Changing

PDF conversion courtesy of www.appsdissected.com

the value of currentDirection thereafter doesn’t affect the copy of the
original value that was stored in rememberedDirection.

Classes Are Reference Types
Unlike value types, reference types are not copied when they’re
assigned to a variable or constant, or when they’re passed to a
function. Rather than a copy, a reference to the same existing
instance is used.

Here’s an example, using the VideoMode class defined above:

1 let tenEighty = VideoMode()

2 tenEighty.resolution = hd

3 tenEighty.interlaced = true

4 tenEighty.name = "1080i"

5 tenEighty.frameRate = 25.0

This example declares a new constant called tenEighty and sets it to
refer to a new instance of the VideoMode class. The video mode is
assigned a copy of the HD resolution of 1920 by 1080 from before. It’s
set to be interlaced, its name is set to "1080i", and its frame rate is set
to 25.0 frames per second.

Next, tenEighty is assigned to a new constant, called alsoTenEighty,
and the frame rate of alsoTenEighty is modified:

1 let alsoTenEighty = tenEighty

2 alsoTenEighty.frameRate = 30.0

PDF conversion courtesy of www.appsdissected.com

Because classes are reference types, tenEighty and alsoTenEighty
actually both refer to the same VideoMode instance. Effectively, they’re
just two different names for the same single instance, as shown in the
figure below:

Checking the frameRate property of tenEighty shows that it correctly
reports the new frame rate of 30.0 from the underlying VideoMode
instance:

1 print("The frameRate property of tenEighty is now \

(tenEighty.frameRate)")

2 // Prints "The frameRate property of tenEighty is now

30.0"

This example also shows how reference types can be harder to
reason about. If tenEighty and alsoTenEighty were far apart in your
program’s code, it could be difficult to find all the ways that the video
mode is changed. Wherever you use tenEighty, you also have to
think about the code that uses alsoTenEighty, and vice versa. In
contrast, value types are easier to reason about because all of the
code that interacts with the same value is close together in your
source files.

Note that tenEighty and alsoTenEighty are declared as constants,
rather than variables. However, you can still change
tenEighty.frameRate and alsoTenEighty.frameRate because the
values of the tenEighty and alsoTenEighty constants themselves
don’t actually change. tenEighty and alsoTenEighty themselves don’t

PDF conversion courtesy of www.appsdissected.com

“store” the VideoMode instance—instead, they both refer to a
VideoMode instance behind the scenes. It’s the frameRate property of
the underlying VideoMode that’s changed, not the values of the
constant references to that VideoMode.

Identity Operators
Because classes are reference types, it’s possible for multiple
constants and variables to refer to the same single instance of a class
behind the scenes. (The same isn’t true for structures and
enumerations, because they’re always copied when they’re assigned
to a constant or variable, or passed to a function.)

It can sometimes be useful to find out whether two constants or
variables refer to exactly the same instance of a class. To enable this,
Swift provides two identity operators:

Identical to (===)

Not identical to (!==)

Use these operators to check whether two constants or variables refer
to the same single instance:

1 if tenEighty === alsoTenEighty {

2 print("tenEighty and alsoTenEighty refer to the

same VideoMode instance.")

3 }

4 // Prints "tenEighty and alsoTenEighty refer to the

same VideoMode instance."

Note that identical to (represented by three equals signs, or ===)
doesn’t mean the same thing as equal to (represented by two equals
signs, or ==). Identical to means that two constants or variables of

PDF conversion courtesy of www.appsdissected.com

class type refer to exactly the same class instance. Equal to means
that two instances are considered equal or equivalent in value, for
some appropriate meaning of equal, as defined by the type’s designer.

When you define your own custom structures and classes, it’s your
responsibility to decide what qualifies as two instances being equal.
The process of defining your own implementations of the == and !=
operators is described in Equivalence Operators.

Pointers
If you have experience with C, C++, or Objective-C, you may know
that these languages use pointers to refer to addresses in memory. A
Swift constant or variable that refers to an instance of some reference
type is similar to a pointer in C, but isn’t a direct pointer to an address
in memory, and doesn’t require you to write an asterisk (*) to indicate
that you are creating a reference. Instead, these references are
defined like any other constant or variable in Swift. The standard
library provides pointer and buffer types that you can use if you need
to interact with pointers directly—see Manual Memory Management.

https://developer.apple.com/documentation/swift/swift_standard_library/manual_memory_management

PDF conversion courtesy of www.appsdissected.com

Properties

Properties associate values with a particular class, structure, or
enumeration. Stored properties store constant and variable values as
part of an instance, whereas computed properties calculate (rather
than store) a value. Computed properties are provided by classes,
structures, and enumerations. Stored properties are provided only by
classes and structures.

Stored and computed properties are usually associated with
instances of a particular type. However, properties can also be
associated with the type itself. Such properties are known as type
properties.

In addition, you can define property observers to monitor changes in
a property’s value, which you can respond to with custom actions.
Property observers can be added to stored properties you define
yourself, and also to properties that a subclass inherits from its
superclass.

You can also use a property wrapper to reuse code in the getter and
setter of multiple properties.

Stored Properties
In its simplest form, a stored property is a constant or variable that’s
stored as part of an instance of a particular class or structure. Stored
properties can be either variable stored properties (introduced by the
var keyword) or constant stored properties (introduced by the let
keyword).

PDF conversion courtesy of www.appsdissected.com

You can provide a default value for a stored property as part of its
definition, as described in Default Property Values. You can also set
and modify the initial value for a stored property during initialization.
This is true even for constant stored properties, as described in
Assigning Constant Properties During Initialization.

The example below defines a structure called FixedLengthRange,
which describes a range of integers whose range length can’t be
changed after it’s created:

1 struct FixedLengthRange {

2 var firstValue: Int

3 let length: Int

4 }

5 var rangeOfThreeItems = FixedLengthRange(firstValue:

0, length: 3)

6 // the range represents integer values 0, 1, and 2

7 rangeOfThreeItems.firstValue = 6

8 // the range now represents integer values 6, 7, and

8

Instances of FixedLengthRange have a variable stored property called
firstValue and a constant stored property called length. In the
example above, length is initialized when the new range is created
and can’t be changed thereafter, because it’s a constant property.

Stored Properties of Constant Structure Instances
If you create an instance of a structure and assign that instance to a
constant, you can’t modify the instance’s properties, even if they were
declared as variable properties:

PDF conversion courtesy of www.appsdissected.com

1 let rangeOfFourItems = FixedLengthRange(firstValue:

0, length: 4)

2 // this range represents integer values 0, 1, 2, and

3

3 rangeOfFourItems.firstValue = 6

4 // this will report an error, even though firstValue

is a variable property

Because rangeOfFourItems is declared as a constant (with the let
keyword), it isn’t possible to change its firstValue property, even
though firstValue is a variable property.

This behavior is due to structures being value types. When an
instance of a value type is marked as a constant, so are all of its
properties.

The same isn’t true for classes, which are reference types. If you
assign an instance of a reference type to a constant, you can still
change that instance’s variable properties.

Lazy Stored Properties
A lazy stored property is a property whose initial value isn’t calculated
until the first time it’s used. You indicate a lazy stored property by
writing the lazy modifier before its declaration.

NOTE

You must always declare a lazy property as a variable (with the var keyword),
because its initial value might not be retrieved until after instance initialization
completes. Constant properties must always have a value before initialization
completes, and therefore can’t be declared as lazy.

PDF conversion courtesy of www.appsdissected.com

Lazy properties are useful when the initial value for a property is
dependent on outside factors whose values aren’t known until after
an instance’s initialization is complete. Lazy properties are also useful
when the initial value for a property requires complex or
computationally expensive setup that shouldn’t be performed unless
or until it’s needed.

The example below uses a lazy stored property to avoid unnecessary
initialization of a complex class. This example defines two classes
called DataImporter and DataManager, neither of which is shown in
full:

PDF conversion courtesy of www.appsdissected.com

1 class DataImporter {

2 /*

3 DataImporter is a class to import data from an

external file.

4 The class is assumed to take a nontrivial amount

of time to initialize.

5 */

6 var filename = "data.txt"

7 // the DataImporter class would provide data

importing functionality here

8 }

9

10 class DataManager {

11 lazy var importer = DataImporter()

12 var data: [String] = []

13 // the DataManager class would provide data

management functionality here

14 }

15

16 let manager = DataManager()

17 manager.data.append("Some data")

18 manager.data.append("Some more data")

19 // the DataImporter instance for the importer

property hasn't yet been created

PDF conversion courtesy of www.appsdissected.com

The DataManager class has a stored property called data, which is
initialized with a new, empty array of String values. Although the rest
of its functionality isn’t shown, the purpose of this DataManager class
is to manage and provide access to this array of String data.

Part of the functionality of the DataManager class is the ability to
import data from a file. This functionality is provided by the
DataImporter class, which is assumed to take a nontrivial amount of
time to initialize. This might be because a DataImporter instance
needs to open a file and read its contents into memory when the
DataImporter instance is initialized.

Because it’s possible for a DataManager instance to manage its data
without ever importing data from a file, DataManager doesn’t create a
new DataImporter instance when the DataManager itself is created.
Instead, it makes more sense to create the DataImporter instance if
and when it’s first used.

Because it’s marked with the lazy modifier, the DataImporter
instance for the importer property is only created when the importer
property is first accessed, such as when its filename property is
queried:

1 print(manager.importer.filename)

2 // the DataImporter instance for the importer

property has now been created

3 // Prints "data.txt"

NOTE

If a property marked with the lazy modifier is accessed by multiple threads
simultaneously and the property hasn’t yet been initialized, there’s no
guarantee that the property will be initialized only once.

PDF conversion courtesy of www.appsdissected.com

Stored Properties and Instance Variables
If you have experience with Objective-C, you may know that it
provides two ways to store values and references as part of a class
instance. In addition to properties, you can use instance variables as
a backing store for the values stored in a property.

Swift unifies these concepts into a single property declaration. A Swift
property doesn’t have a corresponding instance variable, and the
backing store for a property isn’t accessed directly. This approach
avoids confusion about how the value is accessed in different
contexts and simplifies the property’s declaration into a single,
definitive statement. All information about the property—including its
name, type, and memory management characteristics—is defined in
a single location as part of the type’s definition.

Computed Properties
In addition to stored properties, classes, structures, and
enumerations can define computed properties, which don’t actually
store a value. Instead, they provide a getter and an optional setter to
retrieve and set other properties and values indirectly.

PDF conversion courtesy of www.appsdissected.com

1 struct Point {

2 var x = 0.0, y = 0.0

3 }

4 struct Size {

5 var width = 0.0, height = 0.0

6 }

7 struct Rect {

8 var origin = Point()

9 var size = Size()

10 var center: Point {

11 get {

12 let centerX = origin.x + (size.width /

2)

13 let centerY = origin.y + (size.height /

2)

14 return Point(x: centerX, y: centerY)

15 }

16 set(newCenter) {

17 origin.x = newCenter.x - (size.width /

2)

18 origin.y = newCenter.y - (size.height /

2)

19 }

20 }

21 }

22 var square = Rect(origin: Point(x: 0.0, y: 0.0),

PDF conversion courtesy of www.appsdissected.com

23 size: Size(width: 10.0, height:

10.0))

24 let initialSquareCenter = square.center

25 // initialSquareCenter is at (5.0, 5.0)

26 square.center = Point(x: 15.0, y: 15.0)

27 print("square.origin is now at (\(square.origin.x),

\(square.origin.y))")

28 // Prints "square.origin is now at (10.0, 10.0)"

This example defines three structures for working with geometric
shapes:

Point encapsulates the x- and y-coordinate of a point.

Size encapsulates a width and a height.

Rect defines a rectangle by an origin point and a size.

The Rect structure also provides a computed property called center.
The current center position of a Rect can always be determined from
its origin and size, and so you don’t need to store the center point
as an explicit Point value. Instead, Rect defines a custom getter and
setter for a computed variable called center, to enable you to work
with the rectangle’s center as if it were a real stored property.

The example above creates a new Rect variable called square. The
square variable is initialized with an origin point of (0, 0), and a width
and height of 10. This square is represented by the light green square
in the diagram below.

The square variable’s center property is then accessed through dot
syntax (square.center), which causes the getter for center to be
called, to retrieve the current property value. Rather than returning an

PDF conversion courtesy of www.appsdissected.com

existing value, the getter actually calculates and returns a new Point
to represent the center of the square. As can be seen above, the
getter correctly returns a center point of (5, 5).

The center property is then set to a new value of (15, 15), which
moves the square up and to the right, to the new position shown by
the dark green square in the diagram below. Setting the center
property calls the setter for center, which modifies the x and y values
of the stored origin property, and moves the square to its new
position.

Shorthand Setter Declaration

PDF conversion courtesy of www.appsdissected.com

If a computed property’s setter doesn’t define a name for the new
value to be set, a default name of newValue is used. Here’s an
alternative version of the Rect structure that takes advantage of this
shorthand notation:

1 struct AlternativeRect {

2 var origin = Point()

3 var size = Size()

4 var center: Point {

5 get {

6 let centerX = origin.x + (size.width /

2)

7 let centerY = origin.y + (size.height /

2)

8 return Point(x: centerX, y: centerY)

9 }

10 set {

11 origin.x = newValue.x - (size.width / 2)

12 origin.y = newValue.y - (size.height /

2)

13 }

14 }

15 }

Shorthand Getter Declaration
If the entire body of a getter is a single expression, the getter implicitly
returns that expression. Here’s an another version of the Rect

PDF conversion courtesy of www.appsdissected.com

structure that takes advantage of this shorthand notation and the
shorthand notation for setters:

1 struct CompactRect {

2 var origin = Point()

3 var size = Size()

4 var center: Point {

5 get {

6 Point(x: origin.x + (size.width / 2),

7 y: origin.y + (size.height / 2))

8 }

9 set {

10 origin.x = newValue.x - (size.width / 2)

11 origin.y = newValue.y - (size.height /

2)

12 }

13 }

14 }

Omitting the return from a getter follows the same rules as omitting
return from a function, as described in Functions With an Implicit
Return.

Read-Only Computed Properties
A computed property with a getter but no setter is known as a read-
only computed property. A read-only computed property always
returns a value, and can be accessed through dot syntax, but can’t be
set to a different value.

PDF conversion courtesy of www.appsdissected.com

NOTE

You must declare computed properties—including read-only computed
properties—as variable properties with the var keyword, because their value
isn’t fixed. The let keyword is only used for constant properties, to indicate
that their values can’t be changed once they’re set as part of instance
initialization.

You can simplify the declaration of a read-only computed property by
removing the get keyword and its braces:

1 struct Cuboid {

2 var width = 0.0, height = 0.0, depth = 0.0

3 var volume: Double {

4 return width * height * depth

5 }

6 }

7 let fourByFiveByTwo = Cuboid(width: 4.0, height:

5.0, depth: 2.0)

8 print("the volume of fourByFiveByTwo is \

(fourByFiveByTwo.volume)")

9 // Prints "the volume of fourByFiveByTwo is 40.0"

This example defines a new structure called Cuboid, which
represents a 3D rectangular box with width, height, and depth
properties. This structure also has a read-only computed property
called volume, which calculates and returns the current volume of the
cuboid. It doesn’t make sense for volume to be settable, because it
would be ambiguous as to which values of width, height, and depth
should be used for a particular volume value. Nonetheless, it’s useful
for a Cuboid to provide a read-only computed property to enable
external users to discover its current calculated volume.

PDF conversion courtesy of www.appsdissected.com

Property Observers
Property observers observe and respond to changes in a property’s
value. Property observers are called every time a property’s value is
set, even if the new value is the same as the property’s current value.

You can add property observers in the following places:

Stored properties that you define

Stored properties that you inherit

Computed properties that you inherit

For an inherited property, you add a property observer by overriding
that property in a subclass. For a computed property that you define,
use the property’s setter to observe and respond to value changes,
instead of trying to create an observer. Overriding properties is
described in Overriding.

You have the option to define either or both of these observers on a
property:

willSet is called just before the value is stored.

didSet is called immediately after the new value is stored.

If you implement a willSet observer, it’s passed the new property
value as a constant parameter. You can specify a name for this
parameter as part of your willSet implementation. If you don’t write
the parameter name and parentheses within your implementation,
the parameter is made available with a default parameter name of
newValue.

Similarly, if you implement a didSet observer, it’s passed a constant
parameter containing the old property value. You can name the
parameter or use the default parameter name of oldValue. If you

PDF conversion courtesy of www.appsdissected.com

assign a value to a property within its own didSet observer, the new
value that you assign replaces the one that was just set.

NOTE

The willSet and didSet observers of superclass properties are called when
a property is set in a subclass initializer, after the superclass initializer has
been called. They aren’t called while a class is setting its own properties,
before the superclass initializer has been called.

For more information about initializer delegation, see Initializer Delegation for
Value Types and Initializer Delegation for Class Types.

Here’s an example of willSet and didSet in action. The example
below defines a new class called StepCounter, which tracks the total
number of steps that a person takes while walking. This class might
be used with input data from a pedometer or other step counter to
keep track of a person’s exercise during their daily routine.

PDF conversion courtesy of www.appsdissected.com

1 class StepCounter {

2 var totalSteps: Int = 0 {

3 willSet(newTotalSteps) {

4 print("About to set totalSteps to \

(newTotalSteps)")

5 }

6 didSet {

7 if totalSteps > oldValue {

8 print("Added \(totalSteps -

oldValue) steps")

9 }

10 }

11 }

12 }

13 let stepCounter = StepCounter()

14 stepCounter.totalSteps = 200

15 // About to set totalSteps to 200

16 // Added 200 steps

17 stepCounter.totalSteps = 360

18 // About to set totalSteps to 360

19 // Added 160 steps

20 stepCounter.totalSteps = 896

21 // About to set totalSteps to 896

22 // Added 536 steps

PDF conversion courtesy of www.appsdissected.com

The StepCounter class declares a totalSteps property of type Int.
This is a stored property with willSet and didSet observers.

The willSet and didSet observers for totalSteps are called
whenever the property is assigned a new value. This is true even if
the new value is the same as the current value.

This example’s willSet observer uses a custom parameter name of
newTotalSteps for the upcoming new value. In this example, it simply
prints out the value that’s about to be set.

The didSet observer is called after the value of totalSteps is
updated. It compares the new value of totalSteps against the old
value. If the total number of steps has increased, a message is
printed to indicate how many new steps have been taken. The didSet
observer doesn’t provide a custom parameter name for the old value,
and the default name of oldValue is used instead.

NOTE

If you pass a property that has observers to a function as an in-out parameter,
the willSet and didSet observers are always called. This is because of the
copy-in copy-out memory model for in-out parameters: The value is always
written back to the property at the end of the function. For a detailed
discussion of the behavior of in-out parameters, see In-Out Parameters.

Property Wrappers
A property wrapper adds a layer of separation between code that
manages how a property is stored and the code that defines a
property. For example, if you have properties that provide thread-
safety checks or store their underlying data in a database, you have
to write that code on every property. When you use a property
wrapper, you write the management code once when you define the

PDF conversion courtesy of www.appsdissected.com

wrapper, and then reuse that management code by applying it to
multiple properties.

To define a property wrapper, you make a structure, enumeration, or
class that defines a wrappedValue property. In the code below, the
TwelveOrLess structure ensures that the value it wraps always
contains a number less than or equal to 12. If you ask it to store a
larger number, it stores 12 instead.

1 @propertyWrapper

2 struct TwelveOrLess {

3 private var number = 0

4 var wrappedValue: Int {

5 get { return number }

6 set { number = min(newValue, 12) }

7 }

8 }

The setter ensures that new values are less than or equal to 12, and
the getter returns the stored value.

NOTE

The declaration for number in the example above marks the variable as
private, which ensures number is used only in the implementation of
TwelveOrLess. Code that’s written anywhere else accesses the value using
the getter and setter for wrappedValue, and can’t use number directly. For
information about private, see Access Control.

You apply a wrapper to a property by writing the wrapper’s name
before the property as an attribute. Here’s a structure that stores a
rectangle that uses the TwelveOrLess property wrapper to ensure its
dimensions are always 12 or less:

PDF conversion courtesy of www.appsdissected.com

1 struct SmallRectangle {

2 @TwelveOrLess var height: Int

3 @TwelveOrLess var width: Int

4 }

5

6 var rectangle = SmallRectangle()

7 print(rectangle.height)

8 // Prints "0"

9

10 rectangle.height = 10

11 print(rectangle.height)

12 // Prints "10"

13

14 rectangle.height = 24

15 print(rectangle.height)

16 // Prints "12"

The height and width properties get their initial values from the
definition of TwelveOrLess, which sets TwelveOrLess.number to zero.
The setter in TwelveOrLess treats 10 as a valid value so storing the
number 10 in rectangle.height proceeds as written. However, 24 is
larger than TwelveOrLess allows, so trying to store 24 end up setting
rectangle.height to 12 instead, the largest allowed value.

When you apply a wrapper to a property, the compiler synthesizes
code that provides storage for the wrapper and code that provides
access to the property through the wrapper. (The property wrapper is
responsible for storing the wrapped value, so there’s no synthesized
code for that.) You could write code that uses the behavior of a
property wrapper, without taking advantage of the special attribute

PDF conversion courtesy of www.appsdissected.com

syntax. For example, here’s a version of SmallRectangle from the
previous code listing that wraps its properties in the TwelveOrLess
structure explicitly, instead of writing @TwelveOrLess as an attribute:

1 struct SmallRectangle {

2 private var _height = TwelveOrLess()

3 private var _width = TwelveOrLess()

4 var height: Int {

5 get { return _height.wrappedValue }

6 set { _height.wrappedValue = newValue }

7 }

8 var width: Int {

9 get { return _width.wrappedValue }

10 set { _width.wrappedValue = newValue }

11 }

12 }

The _height and _width properties store an instance of the property
wrapper, TwelveOrLess. The getter and setter for height and width
wrap access to the wrappedValue property.

Setting Initial Values for Wrapped Properties
The code in the examples above sets the initial value for the wrapped
property by giving number an initial value in the definition of
TwelveOrLess. Code that uses this property wrapper can’t specify a
different initial value for a property that’s wrapped by TwelveOrLess—
for example, the definition of SmallRectangle can’t give height or
width initial values. To support setting an initial value or other
customization, the property wrapper needs to add an initializer.

PDF conversion courtesy of www.appsdissected.com

Here’s an expanded version of TwelveOrLess called SmallNumber that
defines initializers that set the wrapped and maximum value:

1 @propertyWrapper

2 struct SmallNumber {

3 private var maximum: Int

4 private var number: Int

5

6 var wrappedValue: Int {

7 get { return number }

8 set { number = min(newValue, maximum) }

9 }

10

11 init() {

12 maximum = 12

13 number = 0

14 }

15 init(wrappedValue: Int) {

16 maximum = 12

17 number = min(wrappedValue, maximum)

18 }

19 init(wrappedValue: Int, maximum: Int) {

20 self.maximum = maximum

21 number = min(wrappedValue, maximum)

22 }

23 }

PDF conversion courtesy of www.appsdissected.com

The definition of SmallNumber includes three initializers—init(),
init(wrappedValue:), and init(wrappedValue:maximum:)—which
the examples below use to set the wrapped value and the maximum
value. For information about initialization and initializer syntax, see
Initialization.

When you apply a wrapper to a property and you don’t specify an
initial value, Swift uses the init() initializer to set up the wrapper. For
example:

1 struct ZeroRectangle {

2 @SmallNumber var height: Int

3 @SmallNumber var width: Int

4 }

5

6 var zeroRectangle = ZeroRectangle()

7 print(zeroRectangle.height, zeroRectangle.width)

8 // Prints "0 0"

The instances of SmallNumber that wrap height and width are
created by calling SmallNumber(). The code inside that initializer sets
the initial wrapped value and the initial maximum value, using the
default values of zero and 12. The property wrapper still provides all
of the initial values, like the earlier example that used TwelveOrLess in
SmallRectangle. Unlike that example, SmallNumber also supports
writing those initial values as part of declaring the property.

When you specify an initial value for the property, Swift uses the
init(wrappedValue:) initializer to set up the wrapper. For example:

PDF conversion courtesy of www.appsdissected.com

1 struct UnitRectangle {

2 @SmallNumber var height: Int = 1

3 @SmallNumber var width: Int = 1

4 }

5

6 var unitRectangle = UnitRectangle()

7 print(unitRectangle.height, unitRectangle.width)

8 // Prints "1 1"

When you write = 1 on a property with a wrapper, that’s translated
into a call to the init(wrappedValue:) initializer. The instances of
SmallNumber that wrap height and width are created by calling
SmallNumber(wrappedValue: 1). The initializer uses the wrapped
value that’s specified here, and it uses the default maximum value of
12.

When you write arguments in parentheses after the custom attribute,
Swift uses the initializer that accepts those arguments to set up the
wrapper. For example, if you provide an initial value and a maximum
value, Swift uses the init(wrappedValue:maximum:) initializer:

PDF conversion courtesy of www.appsdissected.com

1 struct NarrowRectangle {

2 @SmallNumber(wrappedValue: 2, maximum: 5) var

height: Int

3 @SmallNumber(wrappedValue: 3, maximum: 4) var

width: Int

4 }

5

6 var narrowRectangle = NarrowRectangle()

7 print(narrowRectangle.height, narrowRectangle.width)

8 // Prints "2 3"

9

10 narrowRectangle.height = 100

11 narrowRectangle.width = 100

12 print(narrowRectangle.height, narrowRectangle.width)

13 // Prints "5 4"

The instance of SmallNumber that wraps height is created by calling
SmallNumber(wrappedValue: 2, maximum: 5), and the instance that
wraps width is created by calling SmallNumber(wrappedValue: 3,
maximum: 4).

By including arguments to the property wrapper, you can set up the
initial state in the wrapper or pass other options to the wrapper when
it’s created. This syntax is the most general way to use a property
wrapper. You can provide whatever arguments you need to the
attribute, and they’re passed to the initializer.

When you include property wrapper arguments, you can also specify
an initial value using assignment. Swift treats the assignment like a

PDF conversion courtesy of www.appsdissected.com

wrappedValue argument and uses the initializer that accepts the
arguments you include. For example:

1 struct MixedRectangle {

2 @SmallNumber var height: Int = 1

3 @SmallNumber(maximum: 9) var width: Int = 2

4 }

5

6 var mixedRectangle = MixedRectangle()

7 print(mixedRectangle.height)

8 // Prints "1"

9

10 mixedRectangle.height = 20

11 print(mixedRectangle.height)

12 // Prints "12"

The instance of SmallNumber that wraps height is created by calling
SmallNumber(wrappedValue: 1), which uses the default maximum
value of 12. The instance that wraps width is created by calling
SmallNumber(wrappedValue: 2, maximum: 9).

Projecting a Value From a Property Wrapper
In addition to the wrapped value, a property wrapper can expose
additional functionality by defining a projected value—for example, a
property wrapper that manages access to a database can expose a
flushDatabaseConnection() method on its projected value. The
name of the projected value is the same as the wrapped value,
except it begins with a dollar sign ($). Because your code can’t define

PDF conversion courtesy of www.appsdissected.com

properties that start with $ the projected value never interferes with
properties you define.

In the SmallNumber example above, if you try to set the property to a
number that’s too large, the property wrapper adjusts the number
before storing it. The code below adds a projectedValue property to
the SmallNumber structure to keep track of whether the property
wrapper adjusted the new value for the property before storing that
new value.

PDF conversion courtesy of www.appsdissected.com

1 @propertyWrapper

2 struct SmallNumber {

3 private var number: Int

4 private(set) var projectedValue: Bool

5

6 var wrappedValue: Int {

7 get { return number }

8 set {

9 if newValue > 12 {

10 number = 12

11 projectedValue = true

12 } else {

13 number = newValue

14 projectedValue = false

15 }

16 }

17 }

18

19 init() {

20 self.number = 0

21 self.projectedValue = false

22 }

23 }

24 struct SomeStructure {

25 @SmallNumber var someNumber: Int

26 }

PDF conversion courtesy of www.appsdissected.com

27 var someStructure = SomeStructure()

28

29 someStructure.someNumber = 4

30 print(someStructure.$someNumber)

31 // Prints "false"

32

33 someStructure.someNumber = 55

34 print(someStructure.$someNumber)

35 // Prints "true"

Writing someStructure.$someNumber accesses the wrapper’s
projected value. After storing a small number like four, the value of
someStructure.$someNumber is false. However, the projected value
is true after trying to store a number that’s too large, like 55.

A property wrapper can return a value of any type as its projected
value. In this example, the property wrapper exposes only one piece
of information—whether the number was adjusted—so it exposes
that Boolean value as its projected value. A wrapper that needs to
expose more information can return an instance of some other data
type, or it can return self to expose the instance of the wrapper as its
projected value.

When you access a projected value from code that’s part of the type,
like a property getter or an instance method, you can omit self.
before the property name, just like accessing other properties. The
code in the following example refers to the projected value of the
wrapper around height and width as $height and $width:

PDF conversion courtesy of www.appsdissected.com

1 enum Size {

2 case small, large

3 }

4

5 struct SizedRectangle {

6 @SmallNumber var height: Int

7 @SmallNumber var width: Int

8

9 mutating func resize(to size: Size) -> Bool {

10 switch size {

11 case .small:

12 height = 10

13 width = 20

14 case .large:

15 height = 100

16 width = 100

17 }

18 return $height || $width

19 }

20 }

Because property wrapper syntax is just syntactic sugar for a
property with a getter and a setter, accessing height and width
behaves the same as accessing any other property. For example, the
code in resize(to:) accesses height and width using their property
wrapper. If you call resize(to: .large), the switch case for .large
sets the rectangle’s height and width to 100. The wrapper prevents
the value of those properties from being larger than 12, and it sets the

PDF conversion courtesy of www.appsdissected.com

projected value to true, to record the fact that it adjusted their values.
At the end of resize(to:), the return statement checks $height and
$width to determine whether the property wrapper adjusted either
height or width.

Global and Local Variables
The capabilities described above for computing and observing
properties are also available to global variables and local variables.
Global variables are variables that are defined outside of any
function, method, closure, or type context. Local variables are
variables that are defined within a function, method, or closure
context.

The global and local variables you have encountered in previous
chapters have all been stored variables. Stored variables, like stored
properties, provide storage for a value of a certain type and allow that
value to be set and retrieved.

However, you can also define computed variables and define
observers for stored variables, in either a global or local scope.
Computed variables calculate their value, rather than storing it, and
they’re written in the same way as computed properties.

NOTE

Global constants and variables are always computed lazily, in a similar
manner to Lazy Stored Properties. Unlike lazy stored properties, global
constants and variables don’t need to be marked with the lazy modifier.
Local constants and variables are never computed lazily.

You can apply a property wrapper to a local stored variable, but not to
a global variable or a computed variable. For example, in the code

PDF conversion courtesy of www.appsdissected.com

below, myNumber uses SmallNumber as a property wrapper.

1 func someFunction() {

2 @SmallNumber var myNumber: Int = 0

3

4 myNumber = 10

5 // now myNumber is 10

6

7 myNumber = 24

8 // now myNumber is 12

9 }

Like when you apply SmallNumber to a property, setting the value of
myNumber to 10 is valid. Because the property wrapper doesn’t allow
values higher than 12, it sets myNumber to 12 instead of 24.

Type Properties
Instance properties are properties that belong to an instance of a
particular type. Every time you create a new instance of that type, it
has its own set of property values, separate from any other instance.

You can also define properties that belong to the type itself, not to any
one instance of that type. There will only ever be one copy of these
properties, no matter how many instances of that type you create.
These kinds of properties are called type properties.

Type properties are useful for defining values that are universal to all
instances of a particular type, such as a constant property that all

PDF conversion courtesy of www.appsdissected.com

instances can use (like a static constant in C), or a variable property
that stores a value that’s global to all instances of that type (like a
static variable in C).

Stored type properties can be variables or constants. Computed type
properties are always declared as variable properties, in the same
way as computed instance properties.

NOTE

Unlike stored instance properties, you must always give stored type properties
a default value. This is because the type itself doesn’t have an initializer that
can assign a value to a stored type property at initialization time.

Stored type properties are lazily initialized on their first access. They’re
guaranteed to be initialized only once, even when accessed by multiple
threads simultaneously, and they don’t need to be marked with the lazy
modifier.

Type Property Syntax
In C and Objective-C, you define static constants and variables
associated with a type as global static variables. In Swift, however,
type properties are written as part of the type’s definition, within the
type’s outer curly braces, and each type property is explicitly scoped
to the type it supports.

You define type properties with the static keyword. For computed
type properties for class types, you can use the class keyword
instead to allow subclasses to override the superclass’s
implementation. The example below shows the syntax for stored and
computed type properties:

PDF conversion courtesy of www.appsdissected.com

1 struct SomeStructure {

2 static var storedTypeProperty = "Some value."

3 static var computedTypeProperty: Int {

4 return 1

5 }

6 }

7 enum SomeEnumeration {

8 static var storedTypeProperty = "Some value."

9 static var computedTypeProperty: Int {

10 return 6

11 }

12 }

13 class SomeClass {

14 static var storedTypeProperty = "Some value."

15 static var computedTypeProperty: Int {

16 return 27

17 }

18 class var overrideableComputedTypeProperty: Int

{

19 return 107

20 }

21 }

NOTE

The computed type property examples above are for read-only computed type
properties, but you can also define read-write computed type properties with
the same syntax as for computed instance properties.

PDF conversion courtesy of www.appsdissected.com

Querying and Setting Type Properties
Type properties are queried and set with dot syntax, just like instance
properties. However, type properties are queried and set on the type,
not on an instance of that type. For example:

1 print(SomeStructure.storedTypeProperty)

2 // Prints "Some value."

3 SomeStructure.storedTypeProperty = "Another value."

4 print(SomeStructure.storedTypeProperty)

5 // Prints "Another value."

6 print(SomeEnumeration.computedTypeProperty)

7 // Prints "6"

8 print(SomeClass.computedTypeProperty)

9 // Prints "27"

The examples that follow use two stored type properties as part of a
structure that models an audio level meter for a number of audio
channels. Each channel has an integer audio level between 0 and 10
inclusive.

The figure below illustrates how two of these audio channels can be
combined to model a stereo audio level meter. When a channel’s
audio level is 0, none of the lights for that channel are lit. When the
audio level is 10, all of the lights for that channel are lit. In this figure,
the left channel has a current level of 9, and the right channel has a
current level of 7:

PDF conversion courtesy of www.appsdissected.com

The audio channels described above are represented by instances of
the AudioChannel structure:

PDF conversion courtesy of www.appsdissected.com

1 struct AudioChannel {

2 static let thresholdLevel = 10

3 static var maxInputLevelForAllChannels = 0

4 var currentLevel: Int = 0 {

5 didSet {

6 if currentLevel >

AudioChannel.thresholdLevel {

7 // cap the new audio level to the

threshold level

8 currentLevel =

AudioChannel.thresholdLevel

9 }

10 if currentLevel >

AudioChannel.maxInputLevelForAllChannels {

11 // store this as the new overall

maximum input level

12

AudioChannel.maxInputLevelForAllChannels =

currentLevel

13 }

14 }

15 }

16 }

The AudioChannel structure defines two stored type properties to
support its functionality. The first, thresholdLevel, defines the
maximum threshold value an audio level can take. This is a constant

PDF conversion courtesy of www.appsdissected.com

value of 10 for all AudioChannel instances. If an audio signal comes in
with a higher value than 10, it will be capped to this threshold value
(as described below).

The second type property is a variable stored property called
maxInputLevelForAllChannels. This keeps track of the maximum
input value that has been received by any AudioChannel instance. It
starts with an initial value of 0.

The AudioChannel structure also defines a stored instance property
called currentLevel, which represents the channel’s current audio
level on a scale of 0 to 10.

The currentLevel property has a didSet property observer to check
the value of currentLevel whenever it’s set. This observer performs
two checks:

If the new value of currentLevel is greater than the allowed
thresholdLevel, the property observer caps currentLevel to
thresholdLevel.

If the new value of currentLevel (after any capping) is higher
than any value previously received by any AudioChannel
instance, the property observer stores the new currentLevel
value in the maxInputLevelForAllChannels type property.

NOTE

In the first of these two checks, the didSet observer sets currentLevel to a
different value. This doesn’t, however, cause the observer to be called again.

You can use the AudioChannel structure to create two new audio
channels called leftChannel and rightChannel, to represent the
audio levels of a stereo sound system:

PDF conversion courtesy of www.appsdissected.com

1 var leftChannel = AudioChannel()

2 var rightChannel = AudioChannel()

If you set the currentLevel of the left channel to 7, you can see that
the maxInputLevelForAllChannels type property is updated to equal
7:

1 leftChannel.currentLevel = 7

2 print(leftChannel.currentLevel)

3 // Prints "7"

4 print(AudioChannel.maxInputLevelForAllChannels)

5 // Prints "7"

If you try to set the currentLevel of the right channel to 11, you can
see that the right channel’s currentLevel property is capped to the
maximum value of 10, and the maxInputLevelForAllChannels type
property is updated to equal 10:

1 rightChannel.currentLevel = 11

2 print(rightChannel.currentLevel)

3 // Prints "10"

4 print(AudioChannel.maxInputLevelForAllChannels)

5 // Prints "10"

PDF conversion courtesy of www.appsdissected.com

Methods

Methods are functions that are associated with a particular type.
Classes, structures, and enumerations can all define instance
methods, which encapsulate specific tasks and functionality for
working with an instance of a given type. Classes, structures, and
enumerations can also define type methods, which are associated
with the type itself. Type methods are similar to class methods in
Objective-C.

The fact that structures and enumerations can define methods in
Swift is a major difference from C and Objective-C. In Objective-C,
classes are the only types that can define methods. In Swift, you can
choose whether to define a class, structure, or enumeration, and still
have the flexibility to define methods on the type you create.

Instance Methods
Instance methods are functions that belong to instances of a
particular class, structure, or enumeration. They support the
functionality of those instances, either by providing ways to access
and modify instance properties, or by providing functionality related to
the instance’s purpose. Instance methods have exactly the same
syntax as functions, as described in Functions.

You write an instance method within the opening and closing braces
of the type it belongs to. An instance method has implicit access to all
other instance methods and properties of that type. An instance
method can be called only on a specific instance of the type it
belongs to. It can’t be called in isolation without an existing instance.

PDF conversion courtesy of www.appsdissected.com

Here’s an example that defines a simple Counter class, which can be
used to count the number of times an action occurs:

1 class Counter {

2 var count = 0

3 func increment() {

4 count += 1

5 }

6 func increment(by amount: Int) {

7 count += amount

8 }

9 func reset() {

10 count = 0

11 }

12 }

The Counter class defines three instance methods:

increment() increments the counter by 1.

increment(by: Int) increments the counter by a specified
integer amount.

reset() resets the counter to zero.

The Counter class also declares a variable property, count, to keep
track of the current counter value.

You call instance methods with the same dot syntax as properties:

PDF conversion courtesy of www.appsdissected.com

1 let counter = Counter()

2 // the initial counter value is 0

3 counter.increment()

4 // the counter's value is now 1

5 counter.increment(by: 5)

6 // the counter's value is now 6

7 counter.reset()

8 // the counter's value is now 0

Function parameters can have both a name (for use within the
function’s body) and an argument label (for use when calling the
function), as described in Function Argument Labels and Parameter
Names. The same is true for method parameters, because methods
are just functions that are associated with a type.

The self Property
Every instance of a type has an implicit property called self, which is
exactly equivalent to the instance itself. You use the self property to
refer to the current instance within its own instance methods.

The increment() method in the example above could have been
written like this:

1 func increment() {

2 self.count += 1

3 }

In practice, you don’t need to write self in your code very often. If you
don’t explicitly write self, Swift assumes that you are referring to a
property or method of the current instance whenever you use a

PDF conversion courtesy of www.appsdissected.com

known property or method name within a method. This assumption is
demonstrated by the use of count (rather than self.count) inside the
three instance methods for Counter.

The main exception to this rule occurs when a parameter name for an
instance method has the same name as a property of that instance.
In this situation, the parameter name takes precedence, and it
becomes necessary to refer to the property in a more qualified way.
You use the self property to distinguish between the parameter
name and the property name.

Here, self disambiguates between a method parameter called x and
an instance property that’s also called x:

1 struct Point {

2 var x = 0.0, y = 0.0

3 func isToTheRightOf(x: Double) -> Bool {

4 return self.x > x

5 }

6 }

7 let somePoint = Point(x: 4.0, y: 5.0)

8 if somePoint.isToTheRightOf(x: 1.0) {

9 print("This point is to the right of the line

where x == 1.0")

10 }

11 // Prints "This point is to the right of the line

where x == 1.0"

Without the self prefix, Swift would assume that both uses of x
referred to the method parameter called x.

PDF conversion courtesy of www.appsdissected.com

Modifying Value Types from Within Instance Methods
Structures and enumerations are value types. By default, the
properties of a value type can’t be modified from within its instance
methods.

However, if you need to modify the properties of your structure or
enumeration within a particular method, you can opt in to mutating
behavior for that method. The method can then mutate (that is,
change) its properties from within the method, and any changes that
it makes are written back to the original structure when the method
ends. The method can also assign a completely new instance to its
implicit self property, and this new instance will replace the existing
one when the method ends.

You can opt in to this behavior by placing the mutating keyword
before the func keyword for that method:

1 struct Point {

2 var x = 0.0, y = 0.0

3 mutating func moveBy(x deltaX: Double, y deltaY:

Double) {

4 x += deltaX

5 y += deltaY

6 }

7 }

8 var somePoint = Point(x: 1.0, y: 1.0)

9 somePoint.moveBy(x: 2.0, y: 3.0)

10 print("The point is now at (\(somePoint.x), \

(somePoint.y))")

11 // Prints "The point is now at (3.0, 4.0)"

PDF conversion courtesy of www.appsdissected.com

The Point structure above defines a mutating moveBy(x:y:) method,
which moves a Point instance by a certain amount. Instead of
returning a new point, this method actually modifies the point on
which it’s called. The mutating keyword is added to its definition to
enable it to modify its properties.

Note that you can’t call a mutating method on a constant of structure
type, because its properties can’t be changed, even if they’re variable
properties, as described in Stored Properties of Constant Structure
Instances:

1 let fixedPoint = Point(x: 3.0, y: 3.0)

2 fixedPoint.moveBy(x: 2.0, y: 3.0)

3 // this will report an error

Assigning to self Within a Mutating Method
Mutating methods can assign an entirely new instance to the implicit
self property. The Point example shown above could have been
written in the following way instead:

1 struct Point {

2 var x = 0.0, y = 0.0

3 mutating func moveBy(x deltaX: Double, y deltaY:

Double) {

4 self = Point(x: x + deltaX, y: y + deltaY)

5 }

6 }

This version of the mutating moveBy(x:y:) method creates a new
structure whose x and y values are set to the target location. The end

PDF conversion courtesy of www.appsdissected.com

result of calling this alternative version of the method will be exactly
the same as for calling the earlier version.

Mutating methods for enumerations can set the implicit self
parameter to be a different case from the same enumeration:

1 enum TriStateSwitch {

2 case off, low, high

3 mutating func next() {

4 switch self {

5 case .off:

6 self = .low

7 case .low:

8 self = .high

9 case .high:

10 self = .off

11 }

12 }

13 }

14 var ovenLight = TriStateSwitch.low

15 ovenLight.next()

16 // ovenLight is now equal to .high

17 ovenLight.next()

18 // ovenLight is now equal to .off

This example defines an enumeration for a three-state switch. The
switch cycles between three different power states (off, low and
high) every time its next() method is called.

PDF conversion courtesy of www.appsdissected.com

Type Methods
Instance methods, as described above, are methods that you call on
an instance of a particular type. You can also define methods that are
called on the type itself. These kinds of methods are called type
methods. You indicate type methods by writing the static keyword
before the method’s func keyword. Classes can use the class
keyword instead, to allow subclasses to override the superclass’s
implementation of that method.

NOTE

In Objective-C, you can define type-level methods only for Objective-C
classes. In Swift, you can define type-level methods for all classes, structures,
and enumerations. Each type method is explicitly scoped to the type it
supports.

Type methods are called with dot syntax, like instance methods.
However, you call type methods on the type, not on an instance of
that type. Here’s how you call a type method on a class called
SomeClass:

1 class SomeClass {

2 class func someTypeMethod() {

3 // type method implementation goes here

4 }

5 }

6 SomeClass.someTypeMethod()

Within the body of a type method, the implicit self property refers to
the type itself, rather than an instance of that type. This means that
you can use self to disambiguate between type properties and type
method parameters, just as you do for instance properties and
instance method parameters.

PDF conversion courtesy of www.appsdissected.com

More generally, any unqualified method and property names that you
use within the body of a type method will refer to other type-level
methods and properties. A type method can call another type method
with the other method’s name, without needing to prefix it with the
type name. Similarly, type methods on structures and enumerations
can access type properties by using the type property’s name without
a type name prefix.

The example below defines a structure called LevelTracker, which
tracks a player’s progress through the different levels or stages of a
game. It’s a single-player game, but can store information for multiple
players on a single device.

All of the game’s levels (apart from level one) are locked when the
game is first played. Every time a player finishes a level, that level is
unlocked for all players on the device. The LevelTracker structure
uses type properties and methods to keep track of which levels of the
game have been unlocked. It also tracks the current level for an
individual player.

PDF conversion courtesy of www.appsdissected.com

1 struct LevelTracker {

2 static var highestUnlockedLevel = 1

3 var currentLevel = 1

4

5 static func unlock(_ level: Int) {

6 if level > highestUnlockedLevel {

highestUnlockedLevel = level }

7 }

8

9 static func isUnlocked(_ level: Int) -> Bool {

10 return level <= highestUnlockedLevel

11 }

12

13 @discardableResult

14 mutating func advance(to level: Int) -> Bool {

15 if LevelTracker.isUnlocked(level) {

16 currentLevel = level

17 return true

18 } else {

19 return false

20 }

21 }

22 }

The LevelTracker structure keeps track of the highest level that any
player has unlocked. This value is stored in a type property called
highestUnlockedLevel.

PDF conversion courtesy of www.appsdissected.com

LevelTracker also defines two type functions to work with the
highestUnlockedLevel property. The first is a type function called
unlock(_:), which updates the value of highestUnlockedLevel
whenever a new level is unlocked. The second is a convenience type
function called isUnlocked(_:), which returns true if a particular
level number is already unlocked. (Note that these type methods can
access the highestUnlockedLevel type property without your needing
to write it as LevelTracker.highestUnlockedLevel.)

In addition to its type property and type methods, LevelTracker
tracks an individual player’s progress through the game. It uses an
instance property called currentLevel to track the level that a player
is currently playing.

To help manage the currentLevel property, LevelTracker defines an
instance method called advance(to:). Before updating currentLevel,
this method checks whether the requested new level is already
unlocked. The advance(to:) method returns a Boolean value to
indicate whether or not it was actually able to set currentLevel.
Because it’s not necessarily a mistake for code that calls the
advance(to:) method to ignore the return value, this function is
marked with the @discardableResult attribute. For more information
about this attribute, see Attributes.

The LevelTracker structure is used with the Player class, shown
below, to track and update the progress of an individual player:

PDF conversion courtesy of www.appsdissected.com

1 class Player {

2 var tracker = LevelTracker()

3 let playerName: String

4 func complete(level: Int) {

5 LevelTracker.unlock(level + 1)

6 tracker.advance(to: level + 1)

7 }

8 init(name: String) {

9 playerName = name

10 }

11 }

The Player class creates a new instance of LevelTracker to track
that player’s progress. It also provides a method called
complete(level:), which is called whenever a player completes a
particular level. This method unlocks the next level for all players and
updates the player’s progress to move them to the next level. (The
Boolean return value of advance(to:) is ignored, because the level is
known to have been unlocked by the call to
LevelTracker.unlock(_:) on the previous line.)

You can create an instance of the Player class for a new player, and
see what happens when the player completes level one:

1 var player = Player(name: "Argyrios")

2 player.complete(level: 1)

3 print("highest unlocked level is now \

(LevelTracker.highestUnlockedLevel)")

4 // Prints "highest unlocked level is now 2"

PDF conversion courtesy of www.appsdissected.com

If you create a second player, whom you try to move to a level that’s
not yet unlocked by any player in the game, the attempt to set the
player’s current level fails:

1 player = Player(name: "Beto")

2 if player.tracker.advance(to: 6) {

3 print("player is now on level 6")

4 } else {

5 print("level 6 hasn't yet been unlocked")

6 }

7 // Prints "level 6 hasn't yet been unlocked"

PDF conversion courtesy of www.appsdissected.com

Subscripts

Classes, structures, and enumerations can define subscripts, which
are shortcuts for accessing the member elements of a collection, list,
or sequence. You use subscripts to set and retrieve values by index
without needing separate methods for setting and retrieval. For
example, you access elements in an Array instance as
someArray[index] and elements in a Dictionary instance as
someDictionary[key].

You can define multiple subscripts for a single type, and the
appropriate subscript overload to use is selected based on the type of
index value you pass to the subscript. Subscripts aren’t limited to a
single dimension, and you can define subscripts with multiple input
parameters to suit your custom type’s needs.

Subscript Syntax
Subscripts enable you to query instances of a type by writing one or
more values in square brackets after the instance name. Their syntax
is similar to both instance method syntax and computed property
syntax. You write subscript definitions with the subscript keyword,
and specify one or more input parameters and a return type, in the
same way as instance methods. Unlike instance methods, subscripts
can be read-write or read-only. This behavior is communicated by a
getter and setter in the same way as for computed properties:

PDF conversion courtesy of www.appsdissected.com

1 subscript(index: Int) -> Int {

2 get {

3 // Return an appropriate subscript value

here.

4 }

5 set(newValue) {

6 // Perform a suitable setting action here.

7 }

8 }

The type of newValue is the same as the return value of the subscript.
As with computed properties, you can choose not to specify the
setter’s (newValue) parameter. A default parameter called newValue
is provided to your setter if you don’t provide one yourself.

As with read-only computed properties, you can simplify the
declaration of a read-only subscript by removing the get keyword and
its braces:

1 subscript(index: Int) -> Int {

2 // Return an appropriate subscript value here.

3 }

Here’s an example of a read-only subscript implementation, which
defines a TimesTable structure to represent an n-times-table of
integers:

PDF conversion courtesy of www.appsdissected.com

1 struct TimesTable {

2 let multiplier: Int

3 subscript(index: Int) -> Int {

4 return multiplier * index

5 }

6 }

7 let threeTimesTable = TimesTable(multiplier: 3)

8 print("six times three is \(threeTimesTable[6])")

9 // Prints "six times three is 18"

In this example, a new instance of TimesTable is created to represent
the three-times-table. This is indicated by passing a value of 3 to the
structure’s initializer as the value to use for the instance’s
multiplier parameter.

You can query the threeTimesTable instance by calling its subscript,
as shown in the call to threeTimesTable[6]. This requests the sixth
entry in the three-times-table, which returns a value of 18, or 3 times
6.

NOTE

An n-times-table is based on a fixed mathematical rule. It isn’t appropriate to
set threeTimesTable[someIndex] to a new value, and so the subscript for
TimesTable is defined as a read-only subscript.

Subscript Usage
The exact meaning of “subscript” depends on the context in which it’s
used. Subscripts are typically used as a shortcut for accessing the

PDF conversion courtesy of www.appsdissected.com

member elements in a collection, list, or sequence. You are free to
implement subscripts in the most appropriate way for your particular
class or structure’s functionality.

For example, Swift’s Dictionary type implements a subscript to set
and retrieve the values stored in a Dictionary instance. You can set
a value in a dictionary by providing a key of the dictionary’s key type
within subscript brackets, and assigning a value of the dictionary’s
value type to the subscript:

1 var numberOfLegs = ["spider": 8, "ant": 6, "cat": 4]

2 numberOfLegs["bird"] = 2

The example above defines a variable called numberOfLegs and
initializes it with a dictionary literal containing three key-value pairs.
The type of the numberOfLegs dictionary is inferred to be [String:
Int]. After creating the dictionary, this example uses subscript
assignment to add a String key of "bird" and an Int value of 2 to
the dictionary.

For more information about Dictionary subscripting, see Accessing
and Modifying a Dictionary.

NOTE

Swift’s Dictionary type implements its key-value subscripting as a subscript
that takes and returns an optional type. For the numberOfLegs dictionary
above, the key-value subscript takes and returns a value of type Int?, or
“optional int”. The Dictionary type uses an optional subscript type to model
the fact that not every key will have a value, and to give a way to delete a
value for a key by assigning a nil value for that key.

Subscript Options

PDF conversion courtesy of www.appsdissected.com

Subscripts can take any number of input parameters, and these input
parameters can be of any type. Subscripts can also return a value of
any type.

Like functions, subscripts can take a varying number of parameters
and provide default values for their parameters, as discussed in
Variadic Parameters and Default Parameter Values. However, unlike
functions, subscripts can’t use in-out parameters.

A class or structure can provide as many subscript implementations
as it needs, and the appropriate subscript to be used will be inferred
based on the types of the value or values that are contained within
the subscript brackets at the point that the subscript is used. This
definition of multiple subscripts is known as subscript overloading.

While it’s most common for a subscript to take a single parameter,
you can also define a subscript with multiple parameters if it’s
appropriate for your type. The following example defines a Matrix
structure, which represents a two-dimensional matrix of Double
values. The Matrix structure’s subscript takes two integer
parameters:

PDF conversion courtesy of www.appsdissected.com

1 struct Matrix {

2 let rows: Int, columns: Int

3 var grid: [Double]

4 init(rows: Int, columns: Int) {

5 self.rows = rows

6 self.columns = columns

7 grid = Array(repeating: 0.0, count: rows *

columns)

8 }

9 func indexIsValid(row: Int, column: Int) -> Bool

{

10 return row >= 0 && row < rows && column >= 0

&& column < columns

11 }

12 subscript(row: Int, column: Int) -> Double {

13 get {

14 assert(indexIsValid(row: row, column:

column), "Index out of range")

15 return grid[(row * columns) + column]

16 }

17 set {

18 assert(indexIsValid(row: row, column:

column), "Index out of range")

19 grid[(row * columns) + column] =

newValue

20 }

PDF conversion courtesy of www.appsdissected.com

21 }

22 }

Matrix provides an initializer that takes two parameters called rows
and columns, and creates an array that’s large enough to store rows *
columns values of type Double. Each position in the matrix is given an
initial value of 0.0. To achieve this, the array’s size, and an initial cell
value of 0.0, are passed to an array initializer that creates and
initializes a new array of the correct size. This initializer is described
in more detail in Creating an Array with a Default Value.

You can construct a new Matrix instance by passing an appropriate
row and column count to its initializer:

 var matrix = Matrix(rows: 2, columns: 2)

The example above creates a new Matrix instance with two rows and
two columns. The grid array for this Matrix instance is effectively a
flattened version of the matrix, as read from top left to bottom right:

PDF conversion courtesy of www.appsdissected.com

Values in the matrix can be set by passing row and column values
into the subscript, separated by a comma:

1 matrix[0, 1] = 1.5

2 matrix[1, 0] = 3.2

These two statements call the subscript’s setter to set a value of 1.5
in the top right position of the matrix (where row is 0 and column is 1),
and 3.2 in the bottom left position (where row is 1 and column is 0):

The Matrix subscript’s getter and setter both contain an assertion to
check that the subscript’s row and column values are valid. To assist
with these assertions, Matrix includes a convenience method called
indexIsValid(row:column:), which checks whether the requested
row and column are inside the bounds of the matrix:

1 func indexIsValid(row: Int, column: Int) -> Bool {

2 return row >= 0 && row < rows && column >= 0 &&

column < columns

3 }

An assertion is triggered if you try to access a subscript that’s outside
of the matrix bounds:

PDF conversion courtesy of www.appsdissected.com

1 let someValue = matrix[2, 2]

2 // This triggers an assert, because [2, 2] is

outside of the matrix bounds.

Type Subscripts
Instance subscripts, as described above, are subscripts that you call
on an instance of a particular type. You can also define subscripts
that are called on the type itself. This kind of subscript is called a type
subscript. You indicate a type subscript by writing the static keyword
before the subscript keyword. Classes can use the class keyword
instead, to allow subclasses to override the superclass’s
implementation of that subscript. The example below shows how you
define and call a type subscript:

1 enum Planet: Int {

2 case mercury = 1, venus, earth, mars, jupiter,

saturn, uranus, neptune

3 static subscript(n: Int) -> Planet {

4 return Planet(rawValue: n)!

5 }

6 }

7 let mars = Planet[4]

8 print(mars)

PDF conversion courtesy of www.appsdissected.com

Inheritance

A class can inherit methods, properties, and other characteristics
from another class. When one class inherits from another, the
inheriting class is known as a subclass, and the class it inherits from
is known as its superclass. Inheritance is a fundamental behavior that
differentiates classes from other types in Swift.

Classes in Swift can call and access methods, properties, and
subscripts belonging to their superclass and can provide their own
overriding versions of those methods, properties, and subscripts to
refine or modify their behavior. Swift helps to ensure your overrides
are correct by checking that the override definition has a matching
superclass definition.

Classes can also add property observers to inherited properties in
order to be notified when the value of a property changes. Property
observers can be added to any property, regardless of whether it was
originally defined as a stored or computed property.

Defining a Base Class
Any class that doesn’t inherit from another class is known as a base
class.

NOTE

Swift classes don’t inherit from a universal base class. Classes you define
without specifying a superclass automatically become base classes for you to
build upon.

PDF conversion courtesy of www.appsdissected.com

The example below defines a base class called Vehicle. This base
class defines a stored property called currentSpeed, with a default
value of 0.0 (inferring a property type of Double). The currentSpeed
property’s value is used by a read-only computed String property
called description to create a description of the vehicle.

The Vehicle base class also defines a method called makeNoise. This
method doesn’t actually do anything for a base Vehicle instance, but
will be customized by subclasses of Vehicle later on:

1 class Vehicle {

2 var currentSpeed = 0.0

3 var description: String {

4 return "traveling at \(currentSpeed) miles

per hour"

5 }

6 func makeNoise() {

7 // do nothing - an arbitrary vehicle doesn't

necessarily make a noise

8 }

9 }

You create a new instance of Vehicle with initializer syntax, which is
written as a type name followed by empty parentheses:

 let someVehicle = Vehicle()

Having created a new Vehicle instance, you can access its
description property to print a human-readable description of the
vehicle’s current speed:

PDF conversion courtesy of www.appsdissected.com

1 print("Vehicle: \(someVehicle.description)")

2 // Vehicle: traveling at 0.0 miles per hour

The Vehicle class defines common characteristics for an arbitrary
vehicle, but isn’t much use in itself. To make it more useful, you need
to refine it to describe more specific kinds of vehicles.

Subclassing
Subclassing is the act of basing a new class on an existing class. The
subclass inherits characteristics from the existing class, which you
can then refine. You can also add new characteristics to the subclass.

To indicate that a subclass has a superclass, write the subclass name
before the superclass name, separated by a colon:

1 class SomeSubclass: SomeSuperclass {

2 // subclass definition goes here

3 }

The following example defines a subclass called Bicycle, with a
superclass of Vehicle:

1 class Bicycle: Vehicle {

2 var hasBasket = false

3 }

The new Bicycle class automatically gains all of the characteristics of
Vehicle, such as its currentSpeed and description properties and its

PDF conversion courtesy of www.appsdissected.com

makeNoise() method.

In addition to the characteristics it inherits, the Bicycle class defines
a new stored property, hasBasket, with a default value of false
(inferring a type of Bool for the property).

By default, any new Bicycle instance you create will not have a
basket. You can set the hasBasket property to true for a particular
Bicycle instance after that instance is created:

1 let bicycle = Bicycle()

2 bicycle.hasBasket = true

You can also modify the inherited currentSpeed property of a Bicycle
instance, and query the instance’s inherited description property:

1 bicycle.currentSpeed = 15.0

2 print("Bicycle: \(bicycle.description)")

3 // Bicycle: traveling at 15.0 miles per hour

Subclasses can themselves be subclassed. The next example
creates a subclass of Bicycle for a two-seater bicycle known as a
“tandem”:

1 class Tandem: Bicycle {

2 var currentNumberOfPassengers = 0

3 }

Tandem inherits all of the properties and methods from Bicycle, which
in turn inherits all of the properties and methods from Vehicle. The
Tandem subclass also adds a new stored property called
currentNumberOfPassengers, with a default value of 0.

PDF conversion courtesy of www.appsdissected.com

If you create an instance of Tandem, you can work with any of its new
and inherited properties, and query the read-only description
property it inherits from Vehicle:

1 let tandem = Tandem()

2 tandem.hasBasket = true

3 tandem.currentNumberOfPassengers = 2

4 tandem.currentSpeed = 22.0

5 print("Tandem: \(tandem.description)")

6 // Tandem: traveling at 22.0 miles per hour

Overriding
A subclass can provide its own custom implementation of an instance
method, type method, instance property, type property, or subscript
that it would otherwise inherit from a superclass. This is known as
overriding.

To override a characteristic that would otherwise be inherited, you
prefix your overriding definition with the override keyword. Doing so
clarifies that you intend to provide an override and haven’t provided a
matching definition by mistake. Overriding by accident can cause
unexpected behavior, and any overrides without the override
keyword are diagnosed as an error when your code is compiled.

The override keyword also prompts the Swift compiler to check that
your overriding class’s superclass (or one of its parents) has a
declaration that matches the one you provided for the override. This
check ensures that your overriding definition is correct.

PDF conversion courtesy of www.appsdissected.com

Accessing Superclass Methods, Properties, and Subscripts
When you provide a method, property, or subscript override for a
subclass, it’s sometimes useful to use the existing superclass
implementation as part of your override. For example, you can refine
the behavior of that existing implementation, or store a modified value
in an existing inherited variable.

Where this is appropriate, you access the superclass version of a
method, property, or subscript by using the super prefix:

An overridden method named someMethod() can call the
superclass version of someMethod() by calling
super.someMethod() within the overriding method
implementation.

An overridden property called someProperty can access the
superclass version of someProperty as super.someProperty
within the overriding getter or setter implementation.

An overridden subscript for someIndex can access the superclass
version of the same subscript as super[someIndex] from within
the overriding subscript implementation.

Overriding Methods
You can override an inherited instance or type method to provide a
tailored or alternative implementation of the method within your
subclass.

The following example defines a new subclass of Vehicle called
Train, which overrides the makeNoise() method that Train inherits
from Vehicle:

PDF conversion courtesy of www.appsdissected.com

1 class Train: Vehicle {

2 override func makeNoise() {

3 print("Choo Choo")

4 }

5 }

If you create a new instance of Train and call its makeNoise()
method, you can see that the Train subclass version of the method is
called:

1 let train = Train()

2 train.makeNoise()

3 // Prints "Choo Choo"

Overriding Properties
You can override an inherited instance or type property to provide
your own custom getter and setter for that property, or to add
property observers to enable the overriding property to observe when
the underlying property value changes.

Overriding Property Getters and Setters

You can provide a custom getter (and setter, if appropriate) to
override any inherited property, regardless of whether the inherited
property is implemented as a stored or computed property at source.
The stored or computed nature of an inherited property isn’t known
by a subclass—it only knows that the inherited property has a certain
name and type. You must always state both the name and the type of
the property you are overriding, to enable the compiler to check that
your override matches a superclass property with the same name
and type.

PDF conversion courtesy of www.appsdissected.com

You can present an inherited read-only property as a read-write
property by providing both a getter and a setter in your subclass
property override. You can’t, however, present an inherited read-write
property as a read-only property.

NOTE

If you provide a setter as part of a property override, you must also provide a
getter for that override. If you don’t want to modify the inherited property’s
value within the overriding getter, you can simply pass through the inherited
value by returning super.someProperty from the getter, where
someProperty is the name of the property you are overriding.

The following example defines a new class called Car, which is a
subclass of Vehicle. The Car class introduces a new stored property
called gear, with a default integer value of 1. The Car class also
overrides the description property it inherits from Vehicle, to
provide a custom description that includes the current gear:

1 class Car: Vehicle {

2 var gear = 1

3 override var description: String {

4 return super.description + " in gear \

(gear)"

5 }

6 }

The override of the description property starts by calling
super.description, which returns the Vehicle class’s description
property. The Car class’s version of description then adds some
extra text onto the end of this description to provide information about
the current gear.

PDF conversion courtesy of www.appsdissected.com

If you create an instance of the Car class and set its gear and
currentSpeed properties, you can see that its description property
returns the tailored description defined within the Car class:

1 let car = Car()

2 car.currentSpeed = 25.0

3 car.gear = 3

4 print("Car: \(car.description)")

5 // Car: traveling at 25.0 miles per hour in gear 3

Overriding Property Observers

You can use property overriding to add property observers to an
inherited property. This enables you to be notified when the value of
an inherited property changes, regardless of how that property was
originally implemented. For more information on property observers,
see Property Observers.

NOTE

You can’t add property observers to inherited constant stored properties or
inherited read-only computed properties. The value of these properties can’t
be set, and so it isn’t appropriate to provide a willSet or didSet
implementation as part of an override.

Note also that you can’t provide both an overriding setter and an overriding
property observer for the same property. If you want to observe changes to a
property’s value, and you are already providing a custom setter for that
property, you can simply observe any value changes from within the custom
setter.

The following example defines a new class called AutomaticCar,
which is a subclass of Car. The AutomaticCar class represents a car
with an automatic gearbox, which automatically selects an
appropriate gear to use based on the current speed:

PDF conversion courtesy of www.appsdissected.com

1 class AutomaticCar: Car {

2 override var currentSpeed: Double {

3 didSet {

4 gear = Int(currentSpeed / 10.0) + 1

5 }

6 }

7 }

Whenever you set the currentSpeed property of an AutomaticCar
instance, the property’s didSet observer sets the instance’s gear
property to an appropriate choice of gear for the new speed.
Specifically, the property observer chooses a gear that’s the new
currentSpeed value divided by 10, rounded down to the nearest
integer, plus 1. A speed of 35.0 produces a gear of 4:

1 let automatic = AutomaticCar()

2 automatic.currentSpeed = 35.0

3 print("AutomaticCar: \(automatic.description)")

4 // AutomaticCar: traveling at 35.0 miles per hour in

gear 4

Preventing Overrides
You can prevent a method, property, or subscript from being
overridden by marking it as final. Do this by writing the final modifier
before the method, property, or subscript’s introducer keyword (such
as final var, final func, final class func, and final subscript).

PDF conversion courtesy of www.appsdissected.com

Any attempt to override a final method, property, or subscript in a
subclass is reported as a compile-time error. Methods, properties, or
subscripts that you add to a class in an extension can also be marked
as final within the extension’s definition.

You can mark an entire class as final by writing the final modifier
before the class keyword in its class definition (final class). Any
attempt to subclass a final class is reported as a compile-time error.

PDF conversion courtesy of www.appsdissected.com

Initialization

Initialization is the process of preparing an instance of a class,
structure, or enumeration for use. This process involves setting an
initial value for each stored property on that instance and performing
any other setup or initialization that’s required before the new
instance is ready for use.

You implement this initialization process by defining initializers, which
are like special methods that can be called to create a new instance
of a particular type. Unlike Objective-C initializers, Swift initializers
don’t return a value. Their primary role is to ensure that new
instances of a type are correctly initialized before they’re used for the
first time.

Instances of class types can also implement a deinitializer, which
performs any custom cleanup just before an instance of that class is
deallocated. For more information about deinitializers, see
Deinitialization.

Setting Initial Values for Stored Properties
Classes and structures must set all of their stored properties to an
appropriate initial value by the time an instance of that class or
structure is created. Stored properties can’t be left in an
indeterminate state.

You can set an initial value for a stored property within an initializer, or
by assigning a default property value as part of the property’s
definition. These actions are described in the following sections.

PDF conversion courtesy of www.appsdissected.com

NOTE

When you assign a default value to a stored property, or set its initial value
within an initializer, the value of that property is set directly, without calling any
property observers.

Initializers
Initializers are called to create a new instance of a particular type. In
its simplest form, an initializer is like an instance method with no
parameters, written using the init keyword:

1 init() {

2 // perform some initialization here

3 }

The example below defines a new structure called Fahrenheit to
store temperatures expressed in the Fahrenheit scale. The
Fahrenheit structure has one stored property, temperature, which is
of type Double:

PDF conversion courtesy of www.appsdissected.com

1 struct Fahrenheit {

2 var temperature: Double

3 init() {

4 temperature = 32.0

5 }

6 }

7 var f = Fahrenheit()

8 print("The default temperature is \(f.temperature)°

Fahrenheit")

9 // Prints "The default temperature is 32.0°

Fahrenheit"

The structure defines a single initializer, init, with no parameters,
which initializes the stored temperature with a value of 32.0 (the
freezing point of water in degrees Fahrenheit).

Default Property Values
You can set the initial value of a stored property from within an
initializer, as shown above. Alternatively, specify a default property
value as part of the property’s declaration. You specify a default
property value by assigning an initial value to the property when it’s
defined.

PDF conversion courtesy of www.appsdissected.com

NOTE

If a property always takes the same initial value, provide a default value rather
than setting a value within an initializer. The end result is the same, but the
default value ties the property’s initialization more closely to its declaration. It
makes for shorter, clearer initializers and enables you to infer the type of the
property from its default value. The default value also makes it easier for you
to take advantage of default initializers and initializer inheritance, as described
later in this chapter.

You can write the Fahrenheit structure from above in a simpler form
by providing a default value for its temperature property at the point
that the property is declared:

1 struct Fahrenheit {

2 var temperature = 32.0

3 }

Customizing Initialization
You can customize the initialization process with input parameters
and optional property types, or by assigning constant properties
during initialization, as described in the following sections.

Initialization Parameters
You can provide initialization parameters as part of an initializer’s
definition, to define the types and names of values that customize the
initialization process. Initialization parameters have the same
capabilities and syntax as function and method parameters.

PDF conversion courtesy of www.appsdissected.com

The following example defines a structure called Celsius, which
stores temperatures expressed in degrees Celsius. The Celsius
structure implements two custom initializers called
init(fromFahrenheit:) and init(fromKelvin:), which initialize a
new instance of the structure with a value from a different
temperature scale:

1 struct Celsius {

2 var temperatureInCelsius: Double

3 init(fromFahrenheit fahrenheit: Double) {

4 temperatureInCelsius = (fahrenheit - 32.0) /

1.8

5 }

6 init(fromKelvin kelvin: Double) {

7 temperatureInCelsius = kelvin - 273.15

8 }

9 }

10 let boilingPointOfWater = Celsius(fromFahrenheit:

212.0)

11 // boilingPointOfWater.temperatureInCelsius is 100.0

12 let freezingPointOfWater = Celsius(fromKelvin:

273.15)

13 // freezingPointOfWater.temperatureInCelsius is 0.0

The first initializer has a single initialization parameter with an
argument label of fromFahrenheit and a parameter name of
fahrenheit. The second initializer has a single initialization
parameter with an argument label of fromKelvin and a parameter
name of kelvin. Both initializers convert their single argument into

PDF conversion courtesy of www.appsdissected.com

the corresponding Celsius value and store this value in a property
called temperatureInCelsius.

Parameter Names and Argument Labels
As with function and method parameters, initialization parameters
can have both a parameter name for use within the initializer’s body
and an argument label for use when calling the initializer.

However, initializers don’t have an identifying function name before
their parentheses in the way that functions and methods do.
Therefore, the names and types of an initializer’s parameters play a
particularly important role in identifying which initializer should be
called. Because of this, Swift provides an automatic argument label
for every parameter in an initializer if you don’t provide one.

The following example defines a structure called Color, with three
constant properties called red, green, and blue. These properties
store a value between 0.0 and 1.0 to indicate the amount of red,
green, and blue in the color.

Color provides an initializer with three appropriately named
parameters of type Double for its red, green, and blue components.
Color also provides a second initializer with a single white
parameter, which is used to provide the same value for all three color
components.

PDF conversion courtesy of www.appsdissected.com

1 struct Color {

2 let red, green, blue: Double

3 init(red: Double, green: Double, blue: Double) {

4 self.red = red

5 self.green = green

6 self.blue = blue

7 }

8 init(white: Double) {

9 red = white

10 green = white

11 blue = white

12 }

13 }

Both initializers can be used to create a new Color instance, by
providing named values for each initializer parameter:

1 let magenta = Color(red: 1.0, green: 0.0, blue: 1.0)

2 let halfGray = Color(white: 0.5)

Note that it isn’t possible to call these initializers without using
argument labels. Argument labels must always be used in an
initializer if they’re defined, and omitting them is a compile-time error:

1 let veryGreen = Color(0.0, 1.0, 0.0)

2 // this reports a compile-time error - argument

labels are required

PDF conversion courtesy of www.appsdissected.com

Initializer Parameters Without Argument Labels
If you don’t want to use an argument label for an initializer parameter,
write an underscore (_) instead of an explicit argument label for that
parameter to override the default behavior.

Here’s an expanded version of the Celsius example from
Initialization Parameters above, with an additional initializer to create
a new Celsius instance from a Double value that’s already in the
Celsius scale:

1 struct Celsius {

2 var temperatureInCelsius: Double

3 init(fromFahrenheit fahrenheit: Double) {

4 temperatureInCelsius = (fahrenheit - 32.0) /

1.8

5 }

6 init(fromKelvin kelvin: Double) {

7 temperatureInCelsius = kelvin - 273.15

8 }

9 init(_ celsius: Double) {

10 temperatureInCelsius = celsius

11 }

12 }

13 let bodyTemperature = Celsius(37.0)

14 // bodyTemperature.temperatureInCelsius is 37.0

The initializer call Celsius(37.0) is clear in its intent without the need
for an argument label. It’s therefore appropriate to write this initializer
as init(_ celsius: Double) so that it can be called by providing an
unnamed Double value.

PDF conversion courtesy of www.appsdissected.com

Optional Property Types
If your custom type has a stored property that’s logically allowed to
have “no value”—perhaps because its value can’t be set during
initialization, or because it’s allowed to have “no value” at some later
point—declare the property with an optional type. Properties of
optional type are automatically initialized with a value of nil,
indicating that the property is deliberately intended to have “no value
yet” during initialization.

The following example defines a class called SurveyQuestion, with an
optional String property called response:

1 class SurveyQuestion {

2 var text: String

3 var response: String?

4 init(text: String) {

5 self.text = text

6 }

7 func ask() {

8 print(text)

9 }

10 }

11 let cheeseQuestion = SurveyQuestion(text: "Do you

like cheese?")

12 cheeseQuestion.ask()

13 // Prints "Do you like cheese?"

14 cheeseQuestion.response = "Yes, I do like cheese."

The response to a survey question can’t be known until it’s asked,
and so the response property is declared with a type of String?, or

PDF conversion courtesy of www.appsdissected.com

“optional String”. It’s automatically assigned a default value of nil,
meaning “no string yet”, when a new instance of SurveyQuestion is
initialized.

Assigning Constant Properties During Initialization
You can assign a value to a constant property at any point during
initialization, as long as it’s set to a definite value by the time
initialization finishes. Once a constant property is assigned a value, it
can’t be further modified.

NOTE

For class instances, a constant property can be modified during initialization
only by the class that introduces it. It can’t be modified by a subclass.

You can revise the SurveyQuestion example from above to use a
constant property rather than a variable property for the text property
of the question, to indicate that the question doesn’t change once an
instance of SurveyQuestion is created. Even though the text
property is now a constant, it can still be set within the class’s
initializer:

PDF conversion courtesy of www.appsdissected.com

1 class SurveyQuestion {

2 let text: String

3 var response: String?

4 init(text: String) {

5 self.text = text

6 }

7 func ask() {

8 print(text)

9 }

10 }

11 let beetsQuestion = SurveyQuestion(text: "How about

beets?")

12 beetsQuestion.ask()

13 // Prints "How about beets?"

14 beetsQuestion.response = "I also like beets. (But

not with cheese.)"

Default Initializers
Swift provides a default initializer for any structure or class that
provides default values for all of its properties and doesn’t provide at
least one initializer itself. The default initializer simply creates a new
instance with all of its properties set to their default values.

This example defines a class called ShoppingListItem, which
encapsulates the name, quantity, and purchase state of an item in a
shopping list:

PDF conversion courtesy of www.appsdissected.com

1 class ShoppingListItem {

2 var name: String?

3 var quantity = 1

4 var purchased = false

5 }

6 var item = ShoppingListItem()

Because all properties of the ShoppingListItem class have default
values, and because it’s a base class with no superclass,
ShoppingListItem automatically gains a default initializer
implementation that creates a new instance with all of its properties
set to their default values. (The name property is an optional String
property, and so it automatically receives a default value of nil, even
though this value isn’t written in the code.) The example above uses
the default initializer for the ShoppingListItem class to create a new
instance of the class with initializer syntax, written as
ShoppingListItem(), and assigns this new instance to a variable
called item.

Memberwise Initializers for Structure Types
Structure types automatically receive a memberwise initializer if they
don’t define any of their own custom initializers. Unlike a default
initializer, the structure receives a memberwise initializer even if it
has stored properties that don’t have default values.

The memberwise initializer is a shorthand way to initialize the
member properties of new structure instances. Initial values for the
properties of the new instance can be passed to the memberwise
initializer by name.

The example below defines a structure called Size with two
properties called width and height. Both properties are inferred to be

PDF conversion courtesy of www.appsdissected.com

of type Double by assigning a default value of 0.0.

The Size structure automatically receives an init(width:height:)
memberwise initializer, which you can use to initialize a new Size
instance:

1 struct Size {

2 var width = 0.0, height = 0.0

3 }

4 let twoByTwo = Size(width: 2.0, height: 2.0)

When you call a memberwise initializer, you can omit values for any
properties that have default values. In the example above, the Size
structure has a default value for both its height and width properties.
You can omit either property or both properties, and the initializer
uses the default value for anything you omit. For example:

1 let zeroByTwo = Size(height: 2.0)

2 print(zeroByTwo.width, zeroByTwo.height)

3 // Prints "0.0 2.0"

4

5 let zeroByZero = Size()

6 print(zeroByZero.width, zeroByZero.height)

7 // Prints "0.0 0.0"

Initializer Delegation for Value Types

PDF conversion courtesy of www.appsdissected.com

Initializers can call other initializers to perform part of an instance’s
initialization. This process, known as initializer delegation, avoids
duplicating code across multiple initializers.

The rules for how initializer delegation works, and for what forms of
delegation are allowed, are different for value types and class types.
Value types (structures and enumerations) don’t support inheritance,
and so their initializer delegation process is relatively simple, because
they can only delegate to another initializer that they provide
themselves. Classes, however, can inherit from other classes, as
described in Inheritance. This means that classes have additional
responsibilities for ensuring that all stored properties they inherit are
assigned a suitable value during initialization. These responsibilities
are described in Class Inheritance and Initialization below.

For value types, you use self.init to refer to other initializers from
the same value type when writing your own custom initializers. You
can call self.init only from within an initializer.

Note that if you define a custom initializer for a value type, you will no
longer have access to the default initializer (or the memberwise
initializer, if it’s a structure) for that type. This constraint prevents a
situation in which additional essential setup provided in a more
complex initializer is accidentally circumvented by someone using
one of the automatic initializers.

NOTE

If you want your custom value type to be initializable with the default initializer
and memberwise initializer, and also with your own custom initializers, write
your custom initializers in an extension rather than as part of the value type’s
original implementation. For more information, see Extensions.

The following example defines a custom Rect structure to represent a
geometric rectangle. The example requires two supporting structures
called Size and Point, both of which provide default values of 0.0 for
all of their properties:

PDF conversion courtesy of www.appsdissected.com

1 struct Size {

2 var width = 0.0, height = 0.0

3 }

4 struct Point {

5 var x = 0.0, y = 0.0

6 }

You can initialize the Rect structure below in one of three ways—by
using its default zero-initialized origin and size property values, by
providing a specific origin point and size, or by providing a specific
center point and size. These initialization options are represented by
three custom initializers that are part of the Rect structure’s definition:

PDF conversion courtesy of www.appsdissected.com

1 struct Rect {

2 var origin = Point()

3 var size = Size()

4 init() {}

5 init(origin: Point, size: Size) {

6 self.origin = origin

7 self.size = size

8 }

9 init(center: Point, size: Size) {

10 let originX = center.x - (size.width / 2)

11 let originY = center.y - (size.height / 2)

12 self.init(origin: Point(x: originX, y:

originY), size: size)

13 }

14 }

The first Rect initializer, init(), is functionally the same as the default
initializer that the structure would have received if it didn’t have its
own custom initializers. This initializer has an empty body,
represented by an empty pair of curly braces {}. Calling this initializer
returns a Rect instance whose origin and size properties are both
initialized with the default values of Point(x: 0.0, y: 0.0) and
Size(width: 0.0, height: 0.0) from their property definitions:

1 let basicRect = Rect()

2 // basicRect's origin is (0.0, 0.0) and its size is

(0.0, 0.0)

PDF conversion courtesy of www.appsdissected.com

The second Rect initializer, init(origin:size:), is functionally the
same as the memberwise initializer that the structure would have
received if it didn’t have its own custom initializers. This initializer
simply assigns the origin and size argument values to the
appropriate stored properties:

1 let originRect = Rect(origin: Point(x: 2.0, y: 2.0),

2 size: Size(width: 5.0, height:

5.0))

3 // originRect's origin is (2.0, 2.0) and its size is

(5.0, 5.0)

The third Rect initializer, init(center:size:), is slightly more
complex. It starts by calculating an appropriate origin point based on
a center point and a size value. It then calls (or delegates) to the
init(origin:size:) initializer, which stores the new origin and size
values in the appropriate properties:

1 let centerRect = Rect(center: Point(x: 4.0, y: 4.0),

2 size: Size(width: 3.0, height:

3.0))

3 // centerRect's origin is (2.5, 2.5) and its size is

(3.0, 3.0)

The init(center:size:) initializer could have assigned the new
values of origin and size to the appropriate properties itself.
However, it’s more convenient (and clearer in intent) for the
init(center:size:) initializer to take advantage of an existing
initializer that already provides exactly that functionality.

PDF conversion courtesy of www.appsdissected.com

NOTE

For an alternative way to write this example without defining the init() and
init(origin:size:) initializers yourself, see Extensions.

Class Inheritance and Initialization
All of a class’s stored properties—including any properties the class
inherits from its superclass—must be assigned an initial value during
initialization.

Swift defines two kinds of initializers for class types to help ensure all
stored properties receive an initial value. These are known as
designated initializers and convenience initializers.

Designated Initializers and Convenience Initializers
Designated initializers are the primary initializers for a class. A
designated initializer fully initializes all properties introduced by that
class and calls an appropriate superclass initializer to continue the
initialization process up the superclass chain.

Classes tend to have very few designated initializers, and it’s quite
common for a class to have only one. Designated initializers are
“funnel” points through which initialization takes place, and through
which the initialization process continues up the superclass chain.

Every class must have at least one designated initializer. In some
cases, this requirement is satisfied by inheriting one or more
designated initializers from a superclass, as described in Automatic
Initializer Inheritance below.

PDF conversion courtesy of www.appsdissected.com

Convenience initializers are secondary, supporting initializers for a
class. You can define a convenience initializer to call a designated
initializer from the same class as the convenience initializer with
some of the designated initializer’s parameters set to default values.
You can also define a convenience initializer to create an instance of
that class for a specific use case or input value type.

You don’t have to provide convenience initializers if your class
doesn’t require them. Create convenience initializers whenever a
shortcut to a common initialization pattern will save time or make
initialization of the class clearer in intent.

Syntax for Designated and Convenience Initializers
Designated initializers for classes are written in the same way as
simple initializers for value types:

 init(parameters) {

 statements

 }

Convenience initializers are written in the same style, but with the
convenience modifier placed before the init keyword, separated by
a space:

 convenience init(parameters) {

 statements

 }

Initializer Delegation for Class Types
To simplify the relationships between designated and convenience
initializers, Swift applies the following three rules for delegation calls

PDF conversion courtesy of www.appsdissected.com

between initializers:

Rule 1

A designated initializer must call a designated initializer from its
immediate superclass.

Rule 2

A convenience initializer must call another initializer from the
same class.

Rule 3

A convenience initializer must ultimately call a designated
initializer.

A simple way to remember this is:

Designated initializers must always delegate up.

Convenience initializers must always delegate across.

These rules are illustrated in the figure below:

PDF conversion courtesy of www.appsdissected.com

Here, the superclass has a single designated initializer and two
convenience initializers. One convenience initializer calls another
convenience initializer, which in turn calls the single designated
initializer. This satisfies rules 2 and 3 from above. The superclass
doesn’t itself have a further superclass, and so rule 1 doesn’t apply.

The subclass in this figure has two designated initializers and one
convenience initializer. The convenience initializer must call one of
the two designated initializers, because it can only call another
initializer from the same class. This satisfies rules 2 and 3 from
above. Both designated initializers must call the single designated
initializer from the superclass, to satisfy rule 1 from above.

NOTE

These rules don’t affect how users of your classes create instances of each
class. Any initializer in the diagram above can be used to create a fully
initialized instance of the class they belong to. The rules only affect how you
write the implementation of the class’s initializers.

The figure below shows a more complex class hierarchy for four
classes. It illustrates how the designated initializers in this hierarchy
act as “funnel” points for class initialization, simplifying the
interrelationships among classes in the chain:

PDF conversion courtesy of www.appsdissected.com

Two-Phase Initialization
Class initialization in Swift is a two-phase process. In the first phase,
each stored property is assigned an initial value by the class that
introduced it. Once the initial state for every stored property has been
determined, the second phase begins, and each class is given the
opportunity to customize its stored properties further before the new
instance is considered ready for use.

The use of a two-phase initialization process makes initialization safe,
while still giving complete flexibility to each class in a class hierarchy.
Two-phase initialization prevents property values from being
accessed before they’re initialized, and prevents property values from
being set to a different value by another initializer unexpectedly.

PDF conversion courtesy of www.appsdissected.com

NOTE

Swift’s two-phase initialization process is similar to initialization in Objective-C.
The main difference is that during phase 1, Objective-C assigns zero or null
values (such as 0 or nil) to every property. Swift’s initialization flow is more
flexible in that it lets you set custom initial values, and can cope with types for
which 0 or nil isn’t a valid default value.

Swift’s compiler performs four helpful safety-checks to make sure that
two-phase initialization is completed without error:

Safety check 1

A designated initializer must ensure that all of the properties
introduced by its class are initialized before it delegates up to a
superclass initializer.

As mentioned above, the memory for an object is only considered
fully initialized once the initial state of all of its stored properties is
known. In order for this rule to be satisfied, a designated initializer
must make sure that all of its own properties are initialized before it
hands off up the chain.

Safety check 2

A designated initializer must delegate up to a superclass
initializer before assigning a value to an inherited property. If it
doesn’t, the new value the designated initializer assigns will be
overwritten by the superclass as part of its own initialization.

Safety check 3

A convenience initializer must delegate to another initializer
before assigning a value to any property (including properties
defined by the same class). If it doesn’t, the new value the
convenience initializer assigns will be overwritten by its own
class’s designated initializer.

PDF conversion courtesy of www.appsdissected.com

Safety check 4

An initializer can’t call any instance methods, read the values of
any instance properties, or refer to self as a value until after the
first phase of initialization is complete.

The class instance isn’t fully valid until the first phase ends.
Properties can only be accessed, and methods can only be called,
once the class instance is known to be valid at the end of the first
phase.

Here’s how two-phase initialization plays out, based on the four
safety checks above:

Phase 1

A designated or convenience initializer is called on a class.

Memory for a new instance of that class is allocated. The
memory isn’t yet initialized.

A designated initializer for that class confirms that all stored
properties introduced by that class have a value. The memory for
these stored properties is now initialized.

The designated initializer hands off to a superclass initializer to
perform the same task for its own stored properties.

This continues up the class inheritance chain until the top of the
chain is reached.

Once the top of the chain is reached, and the final class in the
chain has ensured that all of its stored properties have a value,
the instance’s memory is considered to be fully initialized, and
phase 1 is complete.

Phase 2

PDF conversion courtesy of www.appsdissected.com

Working back down from the top of the chain, each designated
initializer in the chain has the option to customize the instance
further. Initializers are now able to access self and can modify
its properties, call its instance methods, and so on.

Finally, any convenience initializers in the chain have the option
to customize the instance and to work with self.

Here’s how phase 1 looks for an initialization call for a hypothetical
subclass and superclass:

In this example, initialization begins with a call to a convenience
initializer on the subclass. This convenience initializer can’t yet
modify any properties. It delegates across to a designated initializer
from the same class.

The designated initializer makes sure that all of the subclass’s
properties have a value, as per safety check 1. It then calls a
designated initializer on its superclass to continue the initialization up
the chain.

The superclass’s designated initializer makes sure that all of the
superclass properties have a value. There are no further
superclasses to initialize, and so no further delegation is needed.

PDF conversion courtesy of www.appsdissected.com

As soon as all properties of the superclass have an initial value, its
memory is considered fully initialized, and phase 1 is complete.

Here’s how phase 2 looks for the same initialization call:

The superclass’s designated initializer now has an opportunity to
customize the instance further (although it doesn’t have to).

Once the superclass’s designated initializer is finished, the subclass’s
designated initializer can perform additional customization (although
again, it doesn’t have to).

Finally, once the subclass’s designated initializer is finished, the
convenience initializer that was originally called can perform
additional customization.

Initializer Inheritance and Overriding
Unlike subclasses in Objective-C, Swift subclasses don’t inherit their
superclass initializers by default. Swift’s approach prevents a
situation in which a simple initializer from a superclass is inherited by
a more specialized subclass and is used to create a new instance of
the subclass that isn’t fully or correctly initialized.

PDF conversion courtesy of www.appsdissected.com

NOTE

Superclass initializers are inherited in certain circumstances, but only when
it’s safe and appropriate to do so. For more information, see Automatic
Initializer Inheritance below.

If you want a custom subclass to present one or more of the same
initializers as its superclass, you can provide a custom
implementation of those initializers within the subclass.

When you write a subclass initializer that matches a superclass
designated initializer, you are effectively providing an override of that
designated initializer. Therefore, you must write the override modifier
before the subclass’s initializer definition. This is true even if you are
overriding an automatically provided default initializer, as described in
Default Initializers.

As with an overridden property, method or subscript, the presence of
the override modifier prompts Swift to check that the superclass has
a matching designated initializer to be overridden, and validates that
the parameters for your overriding initializer have been specified as
intended.

NOTE

You always write the override modifier when overriding a superclass
designated initializer, even if your subclass’s implementation of the initializer
is a convenience initializer.

Conversely, if you write a subclass initializer that matches a
superclass convenience initializer, that superclass convenience
initializer can never be called directly by your subclass, as per the
rules described above in Initializer Delegation for Class Types.
Therefore, your subclass is not (strictly speaking) providing an
override of the superclass initializer. As a result, you don’t write the
override modifier when providing a matching implementation of a
superclass convenience initializer.

PDF conversion courtesy of www.appsdissected.com

The example below defines a base class called Vehicle. This base
class declares a stored property called numberOfWheels, with a default
Int value of 0. The numberOfWheels property is used by a computed
property called description to create a String description of the
vehicle’s characteristics:

1 class Vehicle {

2 var numberOfWheels = 0

3 var description: String {

4 return "\(numberOfWheels) wheel(s)"

5 }

6 }

The Vehicle class provides a default value for its only stored
property, and doesn’t provide any custom initializers itself. As a
result, it automatically receives a default initializer, as described in
Default Initializers. The default initializer (when available) is always a
designated initializer for a class, and can be used to create a new
Vehicle instance with a numberOfWheels of 0:

1 let vehicle = Vehicle()

2 print("Vehicle: \(vehicle.description)")

3 // Vehicle: 0 wheel(s)

The next example defines a subclass of Vehicle called Bicycle:

PDF conversion courtesy of www.appsdissected.com

1 class Bicycle: Vehicle {

2 override init() {

3 super.init()

4 numberOfWheels = 2

5 }

6 }

The Bicycle subclass defines a custom designated initializer, init().
This designated initializer matches a designated initializer from the
superclass of Bicycle, and so the Bicycle version of this initializer is
marked with the override modifier.

The init() initializer for Bicycle starts by calling super.init(),
which calls the default initializer for the Bicycle class’s superclass,
Vehicle. This ensures that the numberOfWheels inherited property is
initialized by Vehicle before Bicycle has the opportunity to modify
the property. After calling super.init(), the original value of
numberOfWheels is replaced with a new value of 2.

If you create an instance of Bicycle, you can call its inherited
description computed property to see how its numberOfWheels
property has been updated:

1 let bicycle = Bicycle()

2 print("Bicycle: \(bicycle.description)")

3 // Bicycle: 2 wheel(s)

If a subclass initializer performs no customization in phase 2 of the
initialization process, and the superclass has a synchronous, zero-
argument designated initializer, you can omit a call to super.init()
after assigning values to all of the subclass’s stored properties. If the

PDF conversion courtesy of www.appsdissected.com

superclass’s initializer is asynchronous, you need to write await
super.init() explicitly.

This example defines another subclass of Vehicle, called
Hoverboard. In its initializer, the Hoverboard class sets only its color
property. Instead of making an explicit call to super.init(), this
initializer relies on an implicit call to its superclass’s initializer to
complete the process.

1 class Hoverboard: Vehicle {

2 var color: String

3 init(color: String) {

4 self.color = color

5 // super.init() implicitly called here

6 }

7 override var description: String {

8 return "\(super.description) in a beautiful

\(color)"

9 }

10 }

An instance of Hoverboard uses the default number of wheels
supplied by the Vehicle initializer.

1 let hoverboard = Hoverboard(color: "silver")

2 print("Hoverboard: \(hoverboard.description)")

3 // Hoverboard: 0 wheel(s) in a beautiful silver

PDF conversion courtesy of www.appsdissected.com

NOTE

Subclasses can modify inherited variable properties during initialization, but
can’t modify inherited constant properties.

Automatic Initializer Inheritance
As mentioned above, subclasses don’t inherit their superclass
initializers by default. However, superclass initializers are
automatically inherited if certain conditions are met. In practice, this
means that you don’t need to write initializer overrides in many
common scenarios, and can inherit your superclass initializers with
minimal effort whenever it’s safe to do so.

Assuming that you provide default values for any new properties you
introduce in a subclass, the following two rules apply:

Rule 1

If your subclass doesn’t define any designated initializers, it
automatically inherits all of its superclass designated initializers.

Rule 2

If your subclass provides an implementation of all of its
superclass designated initializers—either by inheriting them as
per rule 1, or by providing a custom implementation as part of its
definition—then it automatically inherits all of the superclass
convenience initializers.

These rules apply even if your subclass adds further convenience
initializers.

NOTE

A subclass can implement a superclass designated initializer as a subclass
convenience initializer as part of satisfying rule 2.

PDF conversion courtesy of www.appsdissected.com

Designated and Convenience Initializers in Action
The following example shows designated initializers, convenience
initializers, and automatic initializer inheritance in action. This
example defines a hierarchy of three classes called Food,
RecipeIngredient, and ShoppingListItem, and demonstrates how
their initializers interact.

The base class in the hierarchy is called Food, which is a simple class
to encapsulate the name of a foodstuff. The Food class introduces a
single String property called name and provides two initializers for
creating Food instances:

1 class Food {

2 var name: String

3 init(name: String) {

4 self.name = name

5 }

6 convenience init() {

7 self.init(name: "[Unnamed]")

8 }

9 }

The figure below shows the initializer chain for the Food class:

PDF conversion courtesy of www.appsdissected.com

Classes don’t have a default memberwise initializer, and so the Food
class provides a designated initializer that takes a single argument
called name. This initializer can be used to create a new Food instance
with a specific name:

1 let namedMeat = Food(name: "Bacon")

2 // namedMeat's name is "Bacon"

The init(name: String) initializer from the Food class is provided as
a designated initializer, because it ensures that all stored properties
of a new Food instance are fully initialized. The Food class doesn’t
have a superclass, and so the init(name: String) initializer doesn’t
need to call super.init() to complete its initialization.

The Food class also provides a convenience initializer, init(), with
no arguments. The init() initializer provides a default placeholder
name for a new food by delegating across to the Food class’s
init(name: String) with a name value of [Unnamed]:

1 let mysteryMeat = Food()

2 // mysteryMeat's name is "[Unnamed]"

The second class in the hierarchy is a subclass of Food called
RecipeIngredient. The RecipeIngredient class models an ingredient
in a cooking recipe. It introduces an Int property called quantity (in
addition to the name property it inherits from Food) and defines two
initializers for creating RecipeIngredient instances:

PDF conversion courtesy of www.appsdissected.com

1 class RecipeIngredient: Food {

2 var quantity: Int

3 init(name: String, quantity: Int) {

4 self.quantity = quantity

5 super.init(name: name)

6 }

7 override convenience init(name: String) {

8 self.init(name: name, quantity: 1)

9 }

10 }

The figure below shows the initializer chain for the RecipeIngredient
class:

The RecipeIngredient class has a single designated initializer,
init(name: String, quantity: Int), which can be used to populate

PDF conversion courtesy of www.appsdissected.com

all of the properties of a new RecipeIngredient instance. This
initializer starts by assigning the passed quantity argument to the
quantity property, which is the only new property introduced by
RecipeIngredient. After doing so, the initializer delegates up to the
init(name: String) initializer of the Food class. This process
satisfies safety check 1 from Two-Phase Initialization above.

RecipeIngredient also defines a convenience initializer, init(name:
String), which is used to create a RecipeIngredient instance by
name alone. This convenience initializer assumes a quantity of 1 for
any RecipeIngredient instance that’s created without an explicit
quantity. The definition of this convenience initializer makes
RecipeIngredient instances quicker and more convenient to create,
and avoids code duplication when creating several single-quantity
RecipeIngredient instances. This convenience initializer simply
delegates across to the class’s designated initializer, passing in a
quantity value of 1.

The init(name: String) convenience initializer provided by
RecipeIngredient takes the same parameters as the init(name:
String) designated initializer from Food. Because this convenience
initializer overrides a designated initializer from its superclass, it must
be marked with the override modifier (as described in Initializer
Inheritance and Overriding).

Even though RecipeIngredient provides the init(name: String)
initializer as a convenience initializer, RecipeIngredient has
nonetheless provided an implementation of all of its superclass’s
designated initializers. Therefore, RecipeIngredient automatically
inherits all of its superclass’s convenience initializers too.

In this example, the superclass for RecipeIngredient is Food, which
has a single convenience initializer called init(). This initializer is
therefore inherited by RecipeIngredient. The inherited version of
init() functions in exactly the same way as the Food version, except

PDF conversion courtesy of www.appsdissected.com

that it delegates to the RecipeIngredient version of init(name:
String) rather than the Food version.

All three of these initializers can be used to create new
RecipeIngredient instances:

1 let oneMysteryItem = RecipeIngredient()

2 let oneBacon = RecipeIngredient(name: "Bacon")

3 let sixEggs = RecipeIngredient(name: "Eggs",

quantity: 6)

The third and final class in the hierarchy is a subclass of
RecipeIngredient called ShoppingListItem. The ShoppingListItem
class models a recipe ingredient as it appears in a shopping list.

Every item in the shopping list starts out as “unpurchased”. To
represent this fact, ShoppingListItem introduces a Boolean property
called purchased, with a default value of false. ShoppingListItem
also adds a computed description property, which provides a textual
description of a ShoppingListItem instance:

1 class ShoppingListItem: RecipeIngredient {

2 var purchased = false

3 var description: String {

4 var output = "\(quantity) x \(name)"

5 output += purchased ? " ✔" : " ✘"

6 return output

7 }

8 }

PDF conversion courtesy of www.appsdissected.com

NOTE

ShoppingListItem doesn’t define an initializer to provide an initial value for
purchased, because items in a shopping list (as modeled here) always start
out unpurchased.

Because it provides a default value for all of the properties it
introduces and doesn’t define any initializers itself, ShoppingListItem
automatically inherits all of the designated and convenience
initializers from its superclass.

The figure below shows the overall initializer chain for all three
classes:

PDF conversion courtesy of www.appsdissected.com

You can use all three of the inherited initializers to create a new
ShoppingListItem instance:

PDF conversion courtesy of www.appsdissected.com

1 var breakfastList = [

2 ShoppingListItem(),

3 ShoppingListItem(name: "Bacon"),

4 ShoppingListItem(name: "Eggs", quantity: 6),

5]

6 breakfastList[0].name = "Orange juice"

7 breakfastList[0].purchased = true

8 for item in breakfastList {

9 print(item.description)

10 }

11 // 1 x Orange juice ✔

12 // 1 x Bacon ✘

13 // 6 x Eggs ✘

Here, a new array called breakfastList is created from an array
literal containing three new ShoppingListItem instances. The type of
the array is inferred to be [ShoppingListItem]. After the array is
created, the name of the ShoppingListItem at the start of the array is
changed from "[Unnamed]" to "Orange juice" and it’s marked as
having been purchased. Printing the description of each item in the
array shows that their default states have been set as expected.

Failable Initializers
It’s sometimes useful to define a class, structure, or enumeration for
which initialization can fail. This failure might be triggered by invalid
initialization parameter values, the absence of a required external

PDF conversion courtesy of www.appsdissected.com

resource, or some other condition that prevents initialization from
succeeding.

To cope with initialization conditions that can fail, define one or more
failable initializers as part of a class, structure, or enumeration
definition. You write a failable initializer by placing a question mark
after the init keyword (init?).

NOTE

You can’t define a failable and a nonfailable initializer with the same
parameter types and names.

A failable initializer creates an optional value of the type it initializes.
You write return nil within a failable initializer to indicate a point at
which initialization failure can be triggered.

NOTE

Strictly speaking, initializers don’t return a value. Rather, their role is to ensure
that self is fully and correctly initialized by the time that initialization ends.
Although you write return nil to trigger an initialization failure, you don’t use
the return keyword to indicate initialization success.

For instance, failable initializers are implemented for numeric type
conversions. To ensure conversion between numeric types maintains
the value exactly, use the init(exactly:) initializer. If the type
conversion can’t maintain the value, the initializer fails.

PDF conversion courtesy of www.appsdissected.com

1 let wholeNumber: Double = 12345.0

2 let pi = 3.14159

3

4 if let valueMaintained = Int(exactly: wholeNumber) {

5 print("\(wholeNumber) conversion to Int

maintains value of \(valueMaintained)")

6 }

7 // Prints "12345.0 conversion to Int maintains value

of 12345"

8

9 let valueChanged = Int(exactly: pi)

10 // valueChanged is of type Int?, not Int

11

12 if valueChanged == nil {

13 print("\(pi) conversion to Int doesn't maintain

value")

14 }

15 // Prints "3.14159 conversion to Int doesn't

maintain value"

The example below defines a structure called Animal, with a constant
String property called species. The Animal structure also defines a
failable initializer with a single parameter called species. This
initializer checks if the species value passed to the initializer is an
empty string. If an empty string is found, an initialization failure is
triggered. Otherwise, the species property’s value is set, and
initialization succeeds:

PDF conversion courtesy of www.appsdissected.com

1 struct Animal {

2 let species: String

3 init?(species: String) {

4 if species.isEmpty { return nil }

5 self.species = species

6 }

7 }

You can use this failable initializer to try to initialize a new Animal
instance and to check if initialization succeeded:

1 let someCreature = Animal(species: "Giraffe")

2 // someCreature is of type Animal?, not Animal

3

4 if let giraffe = someCreature {

5 print("An animal was initialized with a species

of \(giraffe.species)")

6 }

7 // Prints "An animal was initialized with a species

of Giraffe"

If you pass an empty string value to the failable initializer’s species
parameter, the initializer triggers an initialization failure:

PDF conversion courtesy of www.appsdissected.com

1 let anonymousCreature = Animal(species: "")

2 // anonymousCreature is of type Animal?, not Animal

3

4 if anonymousCreature == nil {

5 print("The anonymous creature couldn't be

initialized")

6 }

7 // Prints "The anonymous creature couldn't be

initialized"

NOTE

Checking for an empty string value (such as "" rather than "Giraffe") isn’t
the same as checking for nil to indicate the absence of an optional String
value. In the example above, an empty string ("") is a valid, non-optional
String. However, it’s not appropriate for an animal to have an empty string as
the value of its species property. To model this restriction, the failable
initializer triggers an initialization failure if an empty string is found.

Failable Initializers for Enumerations
You can use a failable initializer to select an appropriate enumeration
case based on one or more parameters. The initializer can then fail if
the provided parameters don’t match an appropriate enumeration
case.

The example below defines an enumeration called TemperatureUnit,
with three possible states (kelvin, celsius, and fahrenheit). A
failable initializer is used to find an appropriate enumeration case for
a Character value representing a temperature symbol:

PDF conversion courtesy of www.appsdissected.com

1 enum TemperatureUnit {

2 case kelvin, celsius, fahrenheit

3 init?(symbol: Character) {

4 switch symbol {

5 case "K":

6 self = .kelvin

7 case "C":

8 self = .celsius

9 case "F":

10 self = .fahrenheit

11 default:

12 return nil

13 }

14 }

15 }

You can use this failable initializer to choose an appropriate
enumeration case for the three possible states and to cause
initialization to fail if the parameter doesn’t match one of these states:

PDF conversion courtesy of www.appsdissected.com

1 let fahrenheitUnit = TemperatureUnit(symbol: "F")

2 if fahrenheitUnit != nil {

3 print("This is a defined temperature unit, so

initialization succeeded.")

4 }

5 // Prints "This is a defined temperature unit, so

initialization succeeded."

6

7 let unknownUnit = TemperatureUnit(symbol: "X")

8 if unknownUnit == nil {

9 print("This isn't a defined temperature unit, so

initialization failed.")

10 }

11 // Prints "This isn't a defined temperature unit, so

initialization failed."

Failable Initializers for Enumerations with Raw Values
Enumerations with raw values automatically receive a failable
initializer, init?(rawValue:), that takes a parameter called rawValue
of the appropriate raw-value type and selects a matching
enumeration case if one is found, or triggers an initialization failure if
no matching value exists.

You can rewrite the TemperatureUnit example from above to use raw
values of type Character and to take advantage of the init?
(rawValue:) initializer:

PDF conversion courtesy of www.appsdissected.com

1 enum TemperatureUnit: Character {

2 case kelvin = "K", celsius = "C", fahrenheit =

"F"

3 }

4

5 let fahrenheitUnit = TemperatureUnit(rawValue: "F")

6 if fahrenheitUnit != nil {

7 print("This is a defined temperature unit, so

initialization succeeded.")

8 }

9 // Prints "This is a defined temperature unit, so

initialization succeeded."

10

11 let unknownUnit = TemperatureUnit(rawValue: "X")

12 if unknownUnit == nil {

13 print("This isn't a defined temperature unit, so

initialization failed.")

14 }

15 // Prints "This isn't a defined temperature unit, so

initialization failed."

Propagation of Initialization Failure
A failable initializer of a class, structure, or enumeration can delegate
across to another failable initializer from the same class, structure, or
enumeration. Similarly, a subclass failable initializer can delegate up
to a superclass failable initializer.

PDF conversion courtesy of www.appsdissected.com

In either case, if you delegate to another initializer that causes
initialization to fail, the entire initialization process fails immediately,
and no further initialization code is executed.

NOTE

A failable initializer can also delegate to a nonfailable initializer. Use this
approach if you need to add a potential failure state to an existing initialization
process that doesn’t otherwise fail.

The example below defines a subclass of Product called CartItem.
The CartItem class models an item in an online shopping cart.
CartItem introduces a stored constant property called quantity and
ensures that this property always has a value of at least 1:

PDF conversion courtesy of www.appsdissected.com

1 class Product {

2 let name: String

3 init?(name: String) {

4 if name.isEmpty { return nil }

5 self.name = name

6 }

7 }

8

9 class CartItem: Product {

10 let quantity: Int

11 init?(name: String, quantity: Int) {

12 if quantity < 1 { return nil }

13 self.quantity = quantity

14 super.init(name: name)

15 }

16 }

The failable initializer for CartItem starts by validating that it has
received a quantity value of 1 or more. If the quantity is invalid, the
entire initialization process fails immediately and no further
initialization code is executed. Likewise, the failable initializer for
Product checks the name value, and the initializer process fails
immediately if name is the empty string.

If you create a CartItem instance with a nonempty name and a
quantity of 1 or more, initialization succeeds:

PDF conversion courtesy of www.appsdissected.com

1 if let twoSocks = CartItem(name: "sock", quantity:

2) {

2 print("Item: \(twoSocks.name), quantity: \

(twoSocks.quantity)")

3 }

4 // Prints "Item: sock, quantity: 2"

If you try to create a CartItem instance with a quantity value of 0, the
CartItem initializer causes initialization to fail:

1 if let zeroShirts = CartItem(name: "shirt",

quantity: 0) {

2 print("Item: \(zeroShirts.name), quantity: \

(zeroShirts.quantity)")

3 } else {

4 print("Unable to initialize zero shirts")

5 }

6 // Prints "Unable to initialize zero shirts"

Similarly, if you try to create a CartItem instance with an empty name
value, the superclass Product initializer causes initialization to fail:

PDF conversion courtesy of www.appsdissected.com

1 if let oneUnnamed = CartItem(name: "", quantity: 1)

{

2 print("Item: \(oneUnnamed.name), quantity: \

(oneUnnamed.quantity)")

3 } else {

4 print("Unable to initialize one unnamed

product")

5 }

6 // Prints "Unable to initialize one unnamed product"

Overriding a Failable Initializer
You can override a superclass failable initializer in a subclass, just
like any other initializer. Alternatively, you can override a superclass
failable initializer with a subclass nonfailable initializer. This enables
you to define a subclass for which initialization can’t fail, even though
initialization of the superclass is allowed to fail.

Note that if you override a failable superclass initializer with a
nonfailable subclass initializer, the only way to delegate up to the
superclass initializer is to force-unwrap the result of the failable
superclass initializer.

NOTE

You can override a failable initializer with a nonfailable initializer but not the
other way around.

The example below defines a class called Document. This class
models a document that can be initialized with a name property that’s
either a nonempty string value or nil, but can’t be an empty string:

PDF conversion courtesy of www.appsdissected.com

1 class Document {

2 var name: String?

3 // this initializer creates a document with a

nil name value

4 init() {}

5 // this initializer creates a document with a

nonempty name value

6 init?(name: String) {

7 if name.isEmpty { return nil }

8 self.name = name

9 }

10 }

The next example defines a subclass of Document called
AutomaticallyNamedDocument. The AutomaticallyNamedDocument
subclass overrides both of the designated initializers introduced by
Document. These overrides ensure that an
AutomaticallyNamedDocument instance has an initial name value of "
[Untitled]" if the instance is initialized without a name, or if an
empty string is passed to the init(name:) initializer:

PDF conversion courtesy of www.appsdissected.com

1 class AutomaticallyNamedDocument: Document {

2 override init() {

3 super.init()

4 self.name = "[Untitled]"

5 }

6 override init(name: String) {

7 super.init()

8 if name.isEmpty {

9 self.name = "[Untitled]"

10 } else {

11 self.name = name

12 }

13 }

14 }

The AutomaticallyNamedDocument overrides its superclass’s failable
init?(name:) initializer with a nonfailable init(name:) initializer.
Because AutomaticallyNamedDocument copes with the empty string
case in a different way than its superclass, its initializer doesn’t need
to fail, and so it provides a nonfailable version of the initializer
instead.

You can use forced unwrapping in an initializer to call a failable
initializer from the superclass as part of the implementation of a
subclass’s nonfailable initializer. For example, the UntitledDocument
subclass below is always named "[Untitled]", and it uses the
failable init(name:) initializer from its superclass during initialization.

PDF conversion courtesy of www.appsdissected.com

1 class UntitledDocument: Document {

2 override init() {

3 super.init(name: "[Untitled]")!

4 }

5 }

In this case, if the init(name:) initializer of the superclass were ever
called with an empty string as the name, the forced unwrapping
operation would result in a runtime error. However, because it’s
called with a string constant, you can see that the initializer won’t fail,
so no runtime error can occur in this case.

The init! Failable Initializer
You typically define a failable initializer that creates an optional
instance of the appropriate type by placing a question mark after the
init keyword (init?). Alternatively, you can define a failable
initializer that creates an implicitly unwrapped optional instance of the
appropriate type. Do this by placing an exclamation point after the
init keyword (init!) instead of a question mark.

You can delegate from init? to init! and vice versa, and you can
override init? with init! and vice versa. You can also delegate from
init to init!, although doing so will trigger an assertion if the init!
initializer causes initialization to fail.

Required Initializers
Write the required modifier before the definition of a class initializer
to indicate that every subclass of the class must implement that

PDF conversion courtesy of www.appsdissected.com

initializer:

1 class SomeClass {

2 required init() {

3 // initializer implementation goes here

4 }

5 }

You must also write the required modifier before every subclass
implementation of a required initializer, to indicate that the initializer
requirement applies to further subclasses in the chain. You don’t write
the override modifier when overriding a required designated
initializer:

1 class SomeSubclass: SomeClass {

2 required init() {

3 // subclass implementation of the required

initializer goes here

4 }

5 }

NOTE

You don’t have to provide an explicit implementation of a required initializer if
you can satisfy the requirement with an inherited initializer.

Setting a Default Property Value with a Closure or
Function

PDF conversion courtesy of www.appsdissected.com

If a stored property’s default value requires some customization or
setup, you can use a closure or global function to provide a
customized default value for that property. Whenever a new instance
of the type that the property belongs to is initialized, the closure or
function is called, and its return value is assigned as the property’s
default value.

These kinds of closures or functions typically create a temporary
value of the same type as the property, tailor that value to represent
the desired initial state, and then return that temporary value to be
used as the property’s default value.

Here’s a skeleton outline of how a closure can be used to provide a
default property value:

1 class SomeClass {

2 let someProperty: SomeType = {

3 // create a default value for someProperty

inside this closure

4 // someValue must be of the same type as

SomeType

5 return someValue

6 }()

7 }

Note that the closure’s end curly brace is followed by an empty pair of
parentheses. This tells Swift to execute the closure immediately. If
you omit these parentheses, you are trying to assign the closure itself
to the property, and not the return value of the closure.

PDF conversion courtesy of www.appsdissected.com

NOTE

If you use a closure to initialize a property, remember that the rest of the
instance hasn’t yet been initialized at the point that the closure is executed.
This means that you can’t access any other property values from within your
closure, even if those properties have default values. You also can’t use the
implicit self property, or call any of the instance’s methods.

The example below defines a structure called Chessboard, which
models a board for the game of chess. Chess is played on an 8 x 8
board, with alternating black and white squares.

To represent this game board, the Chessboard structure has a single
property called boardColors, which is an array of 64 Bool values. A
value of true in the array represents a black square and a value of
false represents a white square. The first item in the array
represents the top left square on the board and the last item in the
array represents the bottom right square on the board.

The boardColors array is initialized with a closure to set up its color
values:

PDF conversion courtesy of www.appsdissected.com

1 struct Chessboard {

2 let boardColors: [Bool] = {

3 var temporaryBoard: [Bool] = []

4 var isBlack = false

5 for i in 1...8 {

6 for j in 1...8 {

7 temporaryBoard.append(isBlack)

8 isBlack = !isBlack

9 }

10 isBlack = !isBlack

11 }

12 return temporaryBoard

13 }()

14 func squareIsBlackAt(row: Int, column: Int) ->

Bool {

15 return boardColors[(row * 8) + column]

16 }

17 }

Whenever a new Chessboard instance is created, the closure is
executed, and the default value of boardColors is calculated and
returned. The closure in the example above calculates and sets the
appropriate color for each square on the board in a temporary array
called temporaryBoard, and returns this temporary array as the
closure’s return value once its setup is complete. The returned array
value is stored in boardColors and can be queried with the
squareIsBlackAt(row:column:) utility function:

PDF conversion courtesy of www.appsdissected.com

1 let board = Chessboard()

2 print(board.squareIsBlackAt(row: 0, column: 1))

3 // Prints "true"

4 print(board.squareIsBlackAt(row: 7, column: 7))

5 // Prints "false"

PDF conversion courtesy of www.appsdissected.com

Deinitialization

A deinitializer is called immediately before a class instance is
deallocated. You write deinitializers with the deinit keyword, similar
to how initializers are written with the init keyword. Deinitializers are
only available on class types.

How Deinitialization Works
Swift automatically deallocates your instances when they’re no longer
needed, to free up resources. Swift handles the memory
management of instances through automatic reference counting
(ARC), as described in Automatic Reference Counting. Typically you
don’t need to perform manual cleanup when your instances are
deallocated. However, when you are working with your own
resources, you might need to perform some additional cleanup
yourself. For example, if you create a custom class to open a file and
write some data to it, you might need to close the file before the class
instance is deallocated.

Class definitions can have at most one deinitializer per class. The
deinitializer doesn’t take any parameters and is written without
parentheses:

1 deinit {

2 // perform the deinitialization

3 }

Deinitializers are called automatically, just before instance
deallocation takes place. You aren’t allowed to call a deinitializer

PDF conversion courtesy of www.appsdissected.com

yourself. Superclass deinitializers are inherited by their subclasses,
and the superclass deinitializer is called automatically at the end of a
subclass deinitializer implementation. Superclass deinitializers are
always called, even if a subclass doesn’t provide its own deinitializer.

Because an instance isn’t deallocated until after its deinitializer is
called, a deinitializer can access all properties of the instance it’s
called on and can modify its behavior based on those properties
(such as looking up the name of a file that needs to be closed).

Deinitializers in Action
Here’s an example of a deinitializer in action. This example defines
two new types, Bank and Player, for a simple game. The Bank class
manages a made-up currency, which can never have more than
10,000 coins in circulation. There can only ever be one Bank in the
game, and so the Bank is implemented as a class with type properties
and methods to store and manage its current state:

PDF conversion courtesy of www.appsdissected.com

1 class Bank {

2 static var coinsInBank = 10_000

3 static func distribute(coins

numberOfCoinsRequested: Int) -> Int {

4 let numberOfCoinsToVend =

min(numberOfCoinsRequested, coinsInBank)

5 coinsInBank -= numberOfCoinsToVend

6 return numberOfCoinsToVend

7 }

8 static func receive(coins: Int) {

9 coinsInBank += coins

10 }

11 }

Bank keeps track of the current number of coins it holds with its
coinsInBank property. It also offers two methods—
distribute(coins:) and receive(coins:)—to handle the distribution
and collection of coins.

The distribute(coins:) method checks that there are enough coins
in the bank before distributing them. If there aren’t enough coins, Bank
returns a smaller number than the number that was requested (and
returns zero if no coins are left in the bank). It returns an integer value
to indicate the actual number of coins that were provided.

The receive(coins:) method simply adds the received number of
coins back into the bank’s coin store.

The Player class describes a player in the game. Each player has a
certain number of coins stored in their purse at any time. This is
represented by the player’s coinsInPurse property:

PDF conversion courtesy of www.appsdissected.com

1 class Player {

2 var coinsInPurse: Int

3 init(coins: Int) {

4 coinsInPurse = Bank.distribute(coins: coins)

5 }

6 func win(coins: Int) {

7 coinsInPurse += Bank.distribute(coins:

coins)

8 }

9 deinit {

10 Bank.receive(coins: coinsInPurse)

11 }

12 }

Each Player instance is initialized with a starting allowance of a
specified number of coins from the bank during initialization, although
a Player instance may receive fewer than that number if not enough
coins are available.

The Player class defines a win(coins:) method, which retrieves a
certain number of coins from the bank and adds them to the player’s
purse. The Player class also implements a deinitializer, which is
called just before a Player instance is deallocated. Here, the
deinitializer simply returns all of the player’s coins to the bank:

PDF conversion courtesy of www.appsdissected.com

1 var playerOne: Player? = Player(coins: 100)

2 print("A new player has joined the game with \

(playerOne!.coinsInPurse) coins")

3 // Prints "A new player has joined the game with 100

coins"

4 print("There are now \(Bank.coinsInBank) coins left

in the bank")

5 // Prints "There are now 9900 coins left in the

bank"

A new Player instance is created, with a request for 100 coins if
they’re available. This Player instance is stored in an optional Player
variable called playerOne. An optional variable is used here, because
players can leave the game at any point. The optional lets you track
whether there’s currently a player in the game.

Because playerOne is an optional, it’s qualified with an exclamation
point (!) when its coinsInPurse property is accessed to print its
default number of coins, and whenever its win(coins:) method is
called:

1 playerOne!.win(coins: 2_000)

2 print("PlayerOne won 2000 coins & now has \

(playerOne!.coinsInPurse) coins")

3 // Prints "PlayerOne won 2000 coins & now has 2100

coins"

4 print("The bank now only has \(Bank.coinsInBank)

coins left")

5 // Prints "The bank now only has 7900 coins left"

PDF conversion courtesy of www.appsdissected.com

Here, the player has won 2,000 coins. The player’s purse now
contains 2,100 coins, and the bank has only 7,900 coins left.

1 playerOne = nil

2 print("PlayerOne has left the game")

3 // Prints "PlayerOne has left the game"

4 print("The bank now has \(Bank.coinsInBank) coins")

5 // Prints "The bank now has 10000 coins"

The player has now left the game. This is indicated by setting the
optional playerOne variable to nil, meaning “no Player instance.” At
the point that this happens, the playerOne variable’s reference to the
Player instance is broken. No other properties or variables are still
referring to the Player instance, and so it’s deallocated in order to
free up its memory. Just before this happens, its deinitializer is called
automatically, and its coins are returned to the bank.

PDF conversion courtesy of www.appsdissected.com

Optional Chaining

Optional chaining is a process for querying and calling properties,
methods, and subscripts on an optional that might currently be nil. If
the optional contains a value, the property, method, or subscript call
succeeds; if the optional is nil, the property, method, or subscript call
returns nil. Multiple queries can be chained together, and the entire
chain fails gracefully if any link in the chain is nil.

NOTE

Optional chaining in Swift is similar to messaging nil in Objective-C, but in a
way that works for any type, and that can be checked for success or failure.

Optional Chaining as an Alternative to Forced
Unwrapping
You specify optional chaining by placing a question mark (?) after the
optional value on which you wish to call a property, method or
subscript if the optional is non-nil. This is very similar to placing an
exclamation point (!) after an optional value to force the unwrapping
of its value. The main difference is that optional chaining fails
gracefully when the optional is nil, whereas forced unwrapping
triggers a runtime error when the optional is nil.

To reflect the fact that optional chaining can be called on a nil value,
the result of an optional chaining call is always an optional value,
even if the property, method, or subscript you are querying returns a
non-optional value. You can use this optional return value to check
whether the optional chaining call was successful (the returned
optional contains a value), or didn’t succeed due to a nil value in the
chain (the returned optional value is nil).

PDF conversion courtesy of www.appsdissected.com

Specifically, the result of an optional chaining call is of the same type
as the expected return value, but wrapped in an optional. A property
that normally returns an Int will return an Int? when accessed
through optional chaining.

The next several code snippets demonstrate how optional chaining
differs from forced unwrapping and enables you to check for success.

First, two classes called Person and Residence are defined:

1 class Person {

2 var residence: Residence?

3 }

4

5 class Residence {

6 var numberOfRooms = 1

7 }

Residence instances have a single Int property called
numberOfRooms, with a default value of 1. Person instances have an
optional residence property of type Residence?.

If you create a new Person instance, its residence property is default
initialized to nil, by virtue of being optional. In the code below, john
has a residence property value of nil:

 let john = Person()

If you try to access the numberOfRooms property of this person’s
residence, by placing an exclamation point after residence to force
the unwrapping of its value, you trigger a runtime error, because
there’s no residence value to unwrap:

PDF conversion courtesy of www.appsdissected.com

1 let roomCount = john.residence!.numberOfRooms

2 // this triggers a runtime error

The code above succeeds when john.residence has a non-nil
value and will set roomCount to an Int value containing the
appropriate number of rooms. However, this code always triggers a
runtime error when residence is nil, as illustrated above.

Optional chaining provides an alternative way to access the value of
numberOfRooms. To use optional chaining, use a question mark in
place of the exclamation point:

1 if let roomCount = john.residence?.numberOfRooms {

2 print("John's residence has \(roomCount)

room(s).")

3 } else {

4 print("Unable to retrieve the number of rooms.")

5 }

6 // Prints "Unable to retrieve the number of rooms."

This tells Swift to “chain” on the optional residence property and to
retrieve the value of numberOfRooms if residence exists.

Because the attempt to access numberOfRooms has the potential to
fail, the optional chaining attempt returns a value of type Int?, or
“optional Int”. When residence is nil, as in the example above, this
optional Int will also be nil, to reflect the fact that it was not possible
to access numberOfRooms. The optional Int is accessed through
optional binding to unwrap the integer and assign the non-optional
value to the roomCount constant.

PDF conversion courtesy of www.appsdissected.com

Note that this is true even though numberOfRooms is a non-optional
Int. The fact that it’s queried through an optional chain means that
the call to numberOfRooms will always return an Int? instead of an Int.

You can assign a Residence instance to john.residence, so that it no
longer has a nil value:

 john.residence = Residence()

john.residence now contains an actual Residence instance, rather
than nil. If you try to access numberOfRooms with the same optional
chaining as before, it will now return an Int? that contains the default
numberOfRooms value of 1:

1 if let roomCount = john.residence?.numberOfRooms {

2 print("John's residence has \(roomCount)

room(s).")

3 } else {

4 print("Unable to retrieve the number of rooms.")

5 }

6 // Prints "John's residence has 1 room(s)."

Defining Model Classes for Optional Chaining
You can use optional chaining with calls to properties, methods, and
subscripts that are more than one level deep. This enables you to drill
down into subproperties within complex models of interrelated types,
and to check whether it’s possible to access properties, methods, and
subscripts on those subproperties.

PDF conversion courtesy of www.appsdissected.com

The code snippets below define four model classes for use in several
subsequent examples, including examples of multilevel optional
chaining. These classes expand upon the Person and Residence
model from above by adding a Room and Address class, with
associated properties, methods, and subscripts.

The Person class is defined in the same way as before:

1 class Person {

2 var residence: Residence?

3 }

The Residence class is more complex than before. This time, the
Residence class defines a variable property called rooms, which is
initialized with an empty array of type [Room]:

PDF conversion courtesy of www.appsdissected.com

1 class Residence {

2 var rooms: [Room] = []

3 var numberOfRooms: Int {

4 return rooms.count

5 }

6 subscript(i: Int) -> Room {

7 get {

8 return rooms[i]

9 }

10 set {

11 rooms[i] = newValue

12 }

13 }

14 func printNumberOfRooms() {

15 print("The number of rooms is \

(numberOfRooms)")

16 }

17 var address: Address?

18 }

Because this version of Residence stores an array of Room instances,
its numberOfRooms property is implemented as a computed property,
not a stored property. The computed numberOfRooms property simply
returns the value of the count property from the rooms array.

As a shortcut to accessing its rooms array, this version of Residence
provides a read-write subscript that provides access to the room at
the requested index in the rooms array.

PDF conversion courtesy of www.appsdissected.com

This version of Residence also provides a method called
printNumberOfRooms, which simply prints the number of rooms in the
residence.

Finally, Residence defines an optional property called address, with a
type of Address?. The Address class type for this property is defined
below.

The Room class used for the rooms array is a simple class with one
property called name, and an initializer to set that property to a
suitable room name:

1 class Room {

2 let name: String

3 init(name: String) { self.name = name }

4 }

The final class in this model is called Address. This class has three
optional properties of type String?. The first two properties,
buildingName and buildingNumber, are alternative ways to identify a
particular building as part of an address. The third property, street, is
used to name the street for that address:

PDF conversion courtesy of www.appsdissected.com

1 class Address {

2 var buildingName: String?

3 var buildingNumber: String?

4 var street: String?

5 func buildingIdentifier() -> String? {

6 if let buildingNumber = buildingNumber, let

street = street {

7 return "\(buildingNumber) \(street)"

8 } else if buildingName != nil {

9 return buildingName

10 } else {

11 return nil

12 }

13 }

14 }

The Address class also provides a method called
buildingIdentifier(), which has a return type of String?. This
method checks the properties of the address and returns
buildingName if it has a value, or buildingNumber concatenated with
street if both have values, or nil otherwise.

Accessing Properties Through Optional Chaining
As demonstrated in Optional Chaining as an Alternative to Forced
Unwrapping, you can use optional chaining to access a property on
an optional value, and to check if that property access is successful.

PDF conversion courtesy of www.appsdissected.com

Use the classes defined above to create a new Person instance, and
try to access its numberOfRooms property as before:

1 let john = Person()

2 if let roomCount = john.residence?.numberOfRooms {

3 print("John's residence has \(roomCount)

room(s).")

4 } else {

5 print("Unable to retrieve the number of rooms.")

6 }

7 // Prints "Unable to retrieve the number of rooms."

Because john.residence is nil, this optional chaining call fails in the
same way as before.

You can also attempt to set a property’s value through optional
chaining:

1 let someAddress = Address()

2 someAddress.buildingNumber = "29"

3 someAddress.street = "Acacia Road"

4 john.residence?.address = someAddress

In this example, the attempt to set the address property of
john.residence will fail, because john.residence is currently nil.

The assignment is part of the optional chaining, which means none of
the code on the right-hand side of the = operator is evaluated. In the
previous example, it’s not easy to see that someAddress is never
evaluated, because accessing a constant doesn’t have any side
effects. The listing below does the same assignment, but it uses a

PDF conversion courtesy of www.appsdissected.com

function to create the address. The function prints “Function was
called” before returning a value, which lets you see whether the right-
hand side of the = operator was evaluated.

1 func createAddress() -> Address {

2 print("Function was called.")

3

4 let someAddress = Address()

5 someAddress.buildingNumber = "29"

6 someAddress.street = "Acacia Road"

7

8 return someAddress

9 }

10 john.residence?.address = createAddress()

You can tell that the createAddress() function isn’t called, because
nothing is printed.

Calling Methods Through Optional Chaining
You can use optional chaining to call a method on an optional value,
and to check whether that method call is successful. You can do this
even if that method doesn’t define a return value.

The printNumberOfRooms() method on the Residence class prints the
current value of numberOfRooms. Here’s how the method looks:

PDF conversion courtesy of www.appsdissected.com

1 func printNumberOfRooms() {

2 print("The number of rooms is \(numberOfRooms)")

3 }

This method doesn’t specify a return type. However, functions and
methods with no return type have an implicit return type of Void, as
described in Functions Without Return Values. This means that they
return a value of (), or an empty tuple.

If you call this method on an optional value with optional chaining, the
method’s return type will be Void?, not Void, because return values
are always of an optional type when called through optional chaining.
This enables you to use an if statement to check whether it was
possible to call the printNumberOfRooms() method, even though the
method doesn’t itself define a return value. Compare the return value
from the printNumberOfRooms call against nil to see if the method
call was successful:

1 if john.residence?.printNumberOfRooms() != nil {

2 print("It was possible to print the number of

rooms.")

3 } else {

4 print("It was not possible to print the number

of rooms.")

5 }

6 // Prints "It was not possible to print the number

of rooms."

The same is true if you attempt to set a property through optional
chaining. The example above in Accessing Properties Through
Optional Chaining attempts to set an address value for

PDF conversion courtesy of www.appsdissected.com

john.residence, even though the residence property is nil. Any
attempt to set a property through optional chaining returns a value of
type Void?, which enables you to compare against nil to see if the
property was set successfully:

1 if (john.residence?.address = someAddress) != nil {

2 print("It was possible to set the address.")

3 } else {

4 print("It was not possible to set the address.")

5 }

6 // Prints "It was not possible to set the address."

Accessing Subscripts Through Optional Chaining
You can use optional chaining to try to retrieve and set a value from a
subscript on an optional value, and to check whether that subscript
call is successful.

NOTE

When you access a subscript on an optional value through optional chaining,
you place the question mark before the subscript’s brackets, not after. The
optional chaining question mark always follows immediately after the part of
the expression that’s optional.

The example below tries to retrieve the name of the first room in the
rooms array of the john.residence property using the subscript
defined on the Residence class. Because john.residence is currently
nil, the subscript call fails:

PDF conversion courtesy of www.appsdissected.com

1 if let firstRoomName = john.residence?[0].name {

2 print("The first room name is \

(firstRoomName).")

3 } else {

4 print("Unable to retrieve the first room name.")

5 }

6 // Prints "Unable to retrieve the first room name."

The optional chaining question mark in this subscript call is placed
immediately after john.residence, before the subscript brackets,
because john.residence is the optional value on which optional
chaining is being attempted.

Similarly, you can try to set a new value through a subscript with
optional chaining:

 john.residence?[0] = Room(name: "Bathroom")

This subscript setting attempt also fails, because residence is
currently nil.

If you create and assign an actual Residence instance to
john.residence, with one or more Room instances in its rooms array,
you can use the Residence subscript to access the actual items in the
rooms array through optional chaining:

PDF conversion courtesy of www.appsdissected.com

1 let johnsHouse = Residence()

2 johnsHouse.rooms.append(Room(name: "Living Room"))

3 johnsHouse.rooms.append(Room(name: "Kitchen"))

4 john.residence = johnsHouse

5

6 if let firstRoomName = john.residence?[0].name {

7 print("The first room name is \

(firstRoomName).")

8 } else {

9 print("Unable to retrieve the first room name.")

10 }

11 // Prints "The first room name is Living Room."

Accessing Subscripts of Optional Type
If a subscript returns a value of optional type—such as the key
subscript of Swift’s Dictionary type—place a question mark after the
subscript’s closing bracket to chain on its optional return value:

1 var testScores = ["Dave": [86, 82, 84], "Bev": [79,

94, 81]]

2 testScores["Dave"]?[0] = 91

3 testScores["Bev"]?[0] += 1

4 testScores["Brian"]?[0] = 72

5 // the "Dave" array is now [91, 82, 84] and the

"Bev" array is now [80, 94, 81]

PDF conversion courtesy of www.appsdissected.com

The example above defines a dictionary called testScores, which
contains two key-value pairs that map a String key to an array of Int
values. The example uses optional chaining to set the first item in the
"Dave" array to 91; to increment the first item in the "Bev" array by 1;
and to try to set the first item in an array for a key of "Brian". The first
two calls succeed, because the testScores dictionary contains keys
for "Dave" and "Bev". The third call fails, because the testScores
dictionary doesn’t contain a key for "Brian".

Linking Multiple Levels of Chaining
You can link together multiple levels of optional chaining to drill down
to properties, methods, and subscripts deeper within a model.
However, multiple levels of optional chaining don’t add more levels of
optionality to the returned value.

To put it another way:

If the type you are trying to retrieve isn’t optional, it will become
optional because of the optional chaining.

If the type you are trying to retrieve is already optional, it will not
become more optional because of the chaining.

Therefore:

If you try to retrieve an Int value through optional chaining, an
Int? is always returned, no matter how many levels of chaining
are used.

Similarly, if you try to retrieve an Int? value through optional
chaining, an Int? is always returned, no matter how many levels
of chaining are used.

PDF conversion courtesy of www.appsdissected.com

The example below tries to access the street property of the address
property of the residence property of john. There are two levels of
optional chaining in use here, to chain through the residence and
address properties, both of which are of optional type:

1 if let johnsStreet = john.residence?.address?.street

{

2 print("John's street name is \(johnsStreet).")

3 } else {

4 print("Unable to retrieve the address.")

5 }

6 // Prints "Unable to retrieve the address."

The value of john.residence currently contains a valid Residence
instance. However, the value of john.residence.address is currently
nil. Because of this, the call to john.residence?.address?.street
fails.

Note that in the example above, you are trying to retrieve the value of
the street property. The type of this property is String?. The return
value of john.residence?.address?.street is therefore also
String?, even though two levels of optional chaining are applied in
addition to the underlying optional type of the property.

If you set an actual Address instance as the value for
john.residence.address, and set an actual value for the address’s
street property, you can access the value of the street property
through multilevel optional chaining:

PDF conversion courtesy of www.appsdissected.com

1 let johnsAddress = Address()

2 johnsAddress.buildingName = "The Larches"

3 johnsAddress.street = "Laurel Street"

4 john.residence?.address = johnsAddress

5

6 if let johnsStreet = john.residence?.address?.street

{

7 print("John's street name is \(johnsStreet).")

8 } else {

9 print("Unable to retrieve the address.")

10 }

11 // Prints "John's street name is Laurel Street."

In this example, the attempt to set the address property of
john.residence will succeed, because the value of john.residence
currently contains a valid Residence instance.

Chaining on Methods with Optional Return Values
The previous example shows how to retrieve the value of a property
of optional type through optional chaining. You can also use optional
chaining to call a method that returns a value of optional type, and to
chain on that method’s return value if needed.

The example below calls the Address class’s buildingIdentifier()
method through optional chaining. This method returns a value of
type String?. As described above, the ultimate return type of this
method call after optional chaining is also String?:

PDF conversion courtesy of www.appsdissected.com

1 if let buildingIdentifier =

john.residence?.address?.buildingIdentifier() {

2 print("John's building identifier is \

(buildingIdentifier).")

3 }

4 // Prints "John's building identifier is The

Larches."

If you want to perform further optional chaining on this method’s
return value, place the optional chaining question mark after the
method’s parentheses:

1 if let beginsWithThe =

2

john.residence?.address?.buildingIdentifier()?.

hasPrefix("The") {

3 if beginsWithThe {

4 print("John's building identifier begins

with \"The\".")

5 } else {

6 print("John's building identifier doesn't

begin with \"The\".")

7 }

8 }

9 // Prints "John's building identifier begins with

"The"."

PDF conversion courtesy of www.appsdissected.com

NOTE

In the example above, you place the optional chaining question mark after the
parentheses, because the optional value you are chaining on is the
buildingIdentifier() method’s return value, and not the
buildingIdentifier() method itself.

PDF conversion courtesy of www.appsdissected.com

Error Handling

Error handling is the process of responding to and recovering from
error conditions in your program. Swift provides first-class support for
throwing, catching, propagating, and manipulating recoverable errors
at runtime.

Some operations aren’t guaranteed to always complete execution or
produce a useful output. Optionals are used to represent the absence
of a value, but when an operation fails, it’s often useful to understand
what caused the failure, so that your code can respond accordingly.

As an example, consider the task of reading and processing data
from a file on disk. There are a number of ways this task can fail,
including the file not existing at the specified path, the file not having
read permissions, or the file not being encoded in a compatible
format. Distinguishing among these different situations allows a
program to resolve some errors and to communicate to the user any
errors it can’t resolve.

NOTE

Error handling in Swift interoperates with error handling patterns that use the
NSError class in Cocoa and Objective-C. For more information about this
class, see Handling Cocoa Errors in Swift.

Representing and Throwing Errors
In Swift, errors are represented by values of types that conform to the
Error protocol. This empty protocol indicates that a type can be used
for error handling.

https://developer.apple.com/documentation/swift/cocoa_design_patterns/handling_cocoa_errors_in_swift

PDF conversion courtesy of www.appsdissected.com

Swift enumerations are particularly well suited to modeling a group of
related error conditions, with associated values allowing for additional
information about the nature of an error to be communicated. For
example, here’s how you might represent the error conditions of
operating a vending machine inside a game:

1 enum VendingMachineError: Error {

2 case invalidSelection

3 case insufficientFunds(coinsNeeded: Int)

4 case outOfStock

5 }

Throwing an error lets you indicate that something unexpected
happened and the normal flow of execution can’t continue. You use a
throw statement to throw an error. For example, the following code
throws an error to indicate that five additional coins are needed by the
vending machine:

 throw

VendingMachineError.insufficientFunds(coinsNeed

ed: 5)

Handling Errors
When an error is thrown, some surrounding piece of code must be
responsible for handling the error—for example, by correcting the
problem, trying an alternative approach, or informing the user of the
failure.

PDF conversion courtesy of www.appsdissected.com

There are four ways to handle errors in Swift. You can propagate the
error from a function to the code that calls that function, handle the
error using a do-catch statement, handle the error as an optional
value, or assert that the error will not occur. Each approach is
described in a section below.

When a function throws an error, it changes the flow of your program,
so it’s important that you can quickly identify places in your code that
can throw errors. To identify these places in your code, write the try
keyword—or the try? or try! variation—before a piece of code that
calls a function, method, or initializer that can throw an error. These
keywords are described in the sections below.

NOTE

Error handling in Swift resembles exception handling in other languages, with
the use of the try, catch and throw keywords. Unlike exception handling in
many languages—including Objective-C—error handling in Swift doesn’t
involve unwinding the call stack, a process that can be computationally
expensive. As such, the performance characteristics of a throw statement are
comparable to those of a return statement.

Propagating Errors Using Throwing Functions
To indicate that a function, method, or initializer can throw an error,
you write the throws keyword in the function’s declaration after its
parameters. A function marked with throws is called a throwing
function. If the function specifies a return type, you write the throws
keyword before the return arrow (->).

1 func canThrowErrors() throws -> String

2

3 func cannotThrowErrors() -> String

PDF conversion courtesy of www.appsdissected.com

A throwing function propagates errors that are thrown inside of it to
the scope from which it’s called.

NOTE

Only throwing functions can propagate errors. Any errors thrown inside a
nonthrowing function must be handled inside the function.

In the example below, the VendingMachine class has a
vend(itemNamed:) method that throws an appropriate
VendingMachineError if the requested item isn’t available, is out of
stock, or has a cost that exceeds the current deposited amount:

PDF conversion courtesy of www.appsdissected.com

1 struct Item {

2 var price: Int

3 var count: Int

4 }

5

6 class VendingMachine {

7 var inventory = [

8 "Candy Bar": Item(price: 12, count: 7),

9 "Chips": Item(price: 10, count: 4),

10 "Pretzels": Item(price: 7, count: 11)

11]

12 var coinsDeposited = 0

13

14 func vend(itemNamed name: String) throws {

15 guard let item = inventory[name] else {

16 throw

VendingMachineError.invalidSelection

17 }

18

19 guard item.count > 0 else {

20 throw VendingMachineError.outOfStock

21 }

22

23 guard item.price <= coinsDeposited else {

24 throw

VendingMachineError.insufficientFunds(coinsNeed

PDF conversion courtesy of www.appsdissected.com

ed: item.price - coinsDeposited)

25 }

26

27 coinsDeposited -= item.price

28

29 var newItem = item

30 newItem.count -= 1

31 inventory[name] = newItem

32

33 print("Dispensing \(name)")

34 }

35 }

The implementation of the vend(itemNamed:) method uses guard
statements to exit the method early and throw appropriate errors if
any of the requirements for purchasing a snack aren’t met. Because a
throw statement immediately transfers program control, an item will
be vended only if all of these requirements are met.

Because the vend(itemNamed:) method propagates any errors it
throws, any code that calls this method must either handle the errors
—using a do-catch statement, try?, or try!—or continue to
propagate them. For example, the
buyFavoriteSnack(person:vendingMachine:) in the example below
is also a throwing function, and any errors that the vend(itemNamed:)
method throws will propagate up to the point where the
buyFavoriteSnack(person:vendingMachine:) function is called.

PDF conversion courtesy of www.appsdissected.com

1 let favoriteSnacks = [

2 "Alice": "Chips",

3 "Bob": "Licorice",

4 "Eve": "Pretzels",

5]

6 func buyFavoriteSnack(person: String,

vendingMachine: VendingMachine) throws {

7 let snackName = favoriteSnacks[person] ?? "Candy

Bar"

8 try vendingMachine.vend(itemNamed: snackName)

9 }

In this example, the buyFavoriteSnack(person: vendingMachine:)
function looks up a given person’s favorite snack and tries to buy it for
them by calling the vend(itemNamed:) method. Because the
vend(itemNamed:) method can throw an error, it’s called with the try
keyword in front of it.

Throwing initializers can propagate errors in the same way as
throwing functions. For example, the initializer for the PurchasedSnack
structure in the listing below calls a throwing function as part of the
initialization process, and it handles any errors that it encounters by
propagating them to its caller.

PDF conversion courtesy of www.appsdissected.com

1 struct PurchasedSnack {

2 let name: String

3 init(name: String, vendingMachine:

VendingMachine) throws {

4 try vendingMachine.vend(itemNamed: name)

5 self.name = name

6 }

7 }

Handling Errors Using Do-Catch
You use a do-catch statement to handle errors by running a block of
code. If an error is thrown by the code in the do clause, it’s matched
against the catch clauses to determine which one of them can handle
the error.

Here is the general form of a do-catch statement:

PDF conversion courtesy of www.appsdissected.com

 do {

 try expression

 statements

 } catch pattern 1 {

 statements

 } catch pattern 2 where condition {

 statements

 } catch pattern 3 , pattern 4 where condition {

 statements

 } catch {

 statements

 }

You write a pattern after catch to indicate what errors that clause can
handle. If a catch clause doesn’t have a pattern, the clause matches
any error and binds the error to a local constant named error. For
more information about pattern matching, see Patterns.

For example, the following code matches against all three cases of
the VendingMachineError enumeration.

PDF conversion courtesy of www.appsdissected.com

1 var vendingMachine = VendingMachine()

2 vendingMachine.coinsDeposited = 8

3 do {

4 try buyFavoriteSnack(person: "Alice",

vendingMachine: vendingMachine)

5 print("Success! Yum.")

6 } catch VendingMachineError.invalidSelection {

7 print("Invalid Selection.")

8 } catch VendingMachineError.outOfStock {

9 print("Out of Stock.")

10 } catch VendingMachineError.insufficientFunds(let

coinsNeeded) {

11 print("Insufficient funds. Please insert an

additional \(coinsNeeded) coins.")

12 } catch {

13 print("Unexpected error: \(error).")

14 }

15 // Prints "Insufficient funds. Please insert an

additional 2 coins."

In the above example, the
buyFavoriteSnack(person:vendingMachine:) function is called in a
try expression, because it can throw an error. If an error is thrown,
execution immediately transfers to the catch clauses, which decide
whether to allow propagation to continue. If no pattern is matched,
the error gets caught by the final catch clause and is bound to a local
error constant. If no error is thrown, the remaining statements in the
do statement are executed.

PDF conversion courtesy of www.appsdissected.com

The catch clauses don’t have to handle every possible error that the
code in the do clause can throw. If none of the catch clauses handle
the error, the error propagates to the surrounding scope. However,
the propagated error must be handled by some surrounding scope. In
a nonthrowing function, an enclosing do-catch statement must handle
the error. In a throwing function, either an enclosing do-catch
statement or the caller must handle the error. If the error propagates
to the top-level scope without being handled, you’ll get a runtime
error.

For example, the above example can be written so any error that isn’t
a VendingMachineError is instead caught by the calling function:

PDF conversion courtesy of www.appsdissected.com

1 func nourish(with item: String) throws {

2 do {

3 try vendingMachine.vend(itemNamed: item)

4 } catch is VendingMachineError {

5 print("Couldn't buy that from the vending

machine.")

6 }

7 }

8

9 do {

10 try nourish(with: "Beet-Flavored Chips")

11 } catch {

12 print("Unexpected non-vending-machine-related

error: \(error)")

13 }

14 // Prints "Couldn't buy that from the vending

machine."

In the nourish(with:) function, if vend(itemNamed:) throws an error
that’s one of the cases of the VendingMachineError enumeration,
nourish(with:) handles the error by printing a message. Otherwise,
nourish(with:) propagates the error to its call site. The error is then
caught by the general catch clause.

Another way to catch several related errors is to list them after catch,
separated by commas. For example:

PDF conversion courtesy of www.appsdissected.com

1 func eat(item: String) throws {

2 do {

3 try vendingMachine.vend(itemNamed: item)

4 } catch VendingMachineError.invalidSelection,

VendingMachineError.insufficientFunds,

VendingMachineError.outOfStock {

5 print("Invalid selection, out of stock, or

not enough money.")

6 }

7 }

The eat(item:) function lists the vending machine errors to catch,
and its error text corresponds to the items in that list. If any of the
three listed errors are thrown, this catch clause handles them by
printing a message. Any other errors are propagated to the
surrounding scope, including any vending-machine errors that might
be added later.

Converting Errors to Optional Values
You use try? to handle an error by converting it to an optional value.
If an error is thrown while evaluating the try? expression, the value of
the expression is nil. For example, in the following code x and y
have the same value and behavior:

PDF conversion courtesy of www.appsdissected.com

1 func someThrowingFunction() throws -> Int {

2 // ...

3 }

4

5 let x = try? someThrowingFunction()

6

7 let y: Int?

8 do {

9 y = try someThrowingFunction()

10 } catch {

11 y = nil

12 }

If someThrowingFunction() throws an error, the value of x and y is
nil. Otherwise, the value of x and y is the value that the function
returned. Note that x and y are an optional of whatever type
someThrowingFunction() returns. Here the function returns an
integer, so x and y are optional integers.

Using try? lets you write concise error handling code when you want
to handle all errors in the same way. For example, the following code
uses several approaches to fetch data, or returns nil if all of the
approaches fail.

PDF conversion courtesy of www.appsdissected.com

1 func fetchData() -> Data? {

2 if let data = try? fetchDataFromDisk() { return

data }

3 if let data = try? fetchDataFromServer() {

return data }

4 return nil

5 }

Disabling Error Propagation
Sometimes you know a throwing function or method won’t, in fact,
throw an error at runtime. On those occasions, you can write try!
before the expression to disable error propagation and wrap the call
in a runtime assertion that no error will be thrown. If an error actually
is thrown, you’ll get a runtime error.

For example, the following code uses a loadImage(atPath:) function,
which loads the image resource at a given path or throws an error if
the image can’t be loaded. In this case, because the image is shipped
with the application, no error will be thrown at runtime, so it’s
appropriate to disable error propagation.

 let photo = try! loadImage(atPath: "./Resources/John

Appleseed.jpg")

Specifying Cleanup Actions
You use a defer statement to execute a set of statements just before
code execution leaves the current block of code. This statement lets

PDF conversion courtesy of www.appsdissected.com

you do any necessary cleanup that should be performed regardless
of how execution leaves the current block of code—whether it leaves
because an error was thrown or because of a statement such as
return or break. For example, you can use a defer statement to
ensure that file descriptors are closed and manually allocated
memory is freed.

A defer statement defers execution until the current scope is exited.
This statement consists of the defer keyword and the statements to
be executed later. The deferred statements may not contain any code
that would transfer control out of the statements, such as a break or a
return statement, or by throwing an error. Deferred actions are
executed in the reverse of the order that they’re written in your source
code. That is, the code in the first defer statement executes last, the
code in the second defer statement executes second to last, and so
on. The last defer statement in source code order executes first.

1 func processFile(filename: String) throws {

2 if exists(filename) {

3 let file = open(filename)

4 defer {

5 close(file)

6 }

7 while let line = try file.readline() {

8 // Work with the file.

9 }

10 // close(file) is called here, at the end of

the scope.

11 }

12 }

PDF conversion courtesy of www.appsdissected.com

The above example uses a defer statement to ensure that the
open(_:) function has a corresponding call to close(_:).

NOTE

You can use a defer statement even when no error handling code is involved.

PDF conversion courtesy of www.appsdissected.com

Concurrency

Swift has built-in support for writing asynchronous and parallel code
in a structured way. Asynchronous code can be suspended and
resumed later, although only one piece of the program executes at a
time. Suspending and resuming code in your program lets it continue
to make progress on short-term operations like updating its UI while
continuing to work on long-running operations like fetching data over
the network or parsing files. Parallel code means multiple pieces of
code run simultaneously—for example, a computer with a four-core
processor can run four pieces of code at the same time, with each
core carrying out one of the tasks. A program that uses parallel and
asynchronous code carries out multiple operations at a time; it
suspends operations that are waiting for an external system, and
makes it easier to write this code in a memory-safe way.

The additional scheduling flexibility from parallel or asynchronous
code also comes with a cost of increased complexity. Swift lets you
express your intent in a way that enables some compile-time
checking—for example, you can use actors to safely access mutable
state. However, adding concurrency to slow or buggy code isn’t a
guarantee that it will become fast or correct. In fact, adding
concurrency might even make your code harder to debug. However,
using Swift’s language-level support for concurrency in code that
needs to be concurrent means Swift can help you catch problems at
compile time.

The rest of this chapter uses the term concurrency to refer to this
common combination of asynchronous and parallel code.

PDF conversion courtesy of www.appsdissected.com

NOTE

If you’ve written concurrent code before, you might be used to working with
threads. The concurrency model in Swift is built on top of threads, but you
don’t interact with them directly. An asynchronous function in Swift can give
up the thread that it’s running on, which lets another asynchronous function
run on that thread while the first function is blocked. When an asynchronous
function resumes, Swift doesn’t make any guarantee about which thread that
function will run on.

Although it’s possible to write concurrent code without using Swift’s
language support, that code tends to be harder to read. For example,
the following code downloads a list of photo names, downloads the
first photo in that list, and shows that photo to the user:

1 listPhotos(inGallery: "Summer Vacation") {

photoNames in

2 let sortedNames = photoNames.sorted()

3 let name = sortedNames[0]

4 downloadPhoto(named: name) { photo in

5 show(photo)

6 }

7 }

Even in this simple case, because the code has to be written as a
series of completion handlers, you end up writing nested closures. In
this style, more complex code with deep nesting can quickly become
unwieldy.

Defining and Calling Asynchronous Functions

PDF conversion courtesy of www.appsdissected.com

An asynchronous function or asynchronous method is a special kind
of function or method that can be suspended while it’s partway
through execution. This is in contrast to ordinary, synchronous
functions and methods, which either run to completion, throw an
error, or never return. An asynchronous function or method still does
one of those three things, but it can also pause in the middle when it’s
waiting for something. Inside the body of an asynchronous function or
method, you mark each of these places where execution can be
suspended.

To indicate that a function or method is asynchronous, you write the
async keyword in its declaration after its parameters, similar to how
you use throws to mark a throwing function. If the function or method
returns a value, you write async before the return arrow (->). For
example, here’s how you might fetch the names of photos in a
gallery:

1 func listPhotos(inGallery name: String) async ->

[String] {

2 let result = // ... some asynchronous networking

code ...

3 return result

4 }

For a function or method that’s both asynchronous and throwing, you
write async before throws.

When calling an asynchronous method, execution suspends until that
method returns. You write await in front of the call to mark the
possible suspension point. This is like writing try when calling a
throwing function, to mark the possible change to the program’s flow
if there’s an error. Inside an asynchronous method, the flow of
execution is suspended only when you call another asynchronous

PDF conversion courtesy of www.appsdissected.com

method—suspension is never implicit or preemptive—which means
every possible suspension point is marked with await.

For example, the code below fetches the names of all the pictures in
a gallery and then shows the first picture:

1 let photoNames = await listPhotos(inGallery: "Summer

Vacation")

2 let sortedNames = photoNames.sorted()

3 let name = sortedNames[0]

4 let photo = await downloadPhoto(named: name)

5 show(photo)

Because the listPhotos(inGallery:) and downloadPhoto(named:)
functions both need to make network requests, they could take a
relatively long time to complete. Making them both asynchronous by
writing async before the return arrow lets the rest of the app’s code
keep running while this code waits for the picture to be ready.

To understand the concurrent nature of the example above, here’s
one possible order of execution:

1. The code starts running from the first line and runs up to the first
await. It calls the listPhotos(inGallery:) function and
suspends execution while it waits for that function to return.

2. While this code’s execution is suspended, some other concurrent
code in the same program runs. For example, maybe a long-
running background task continues updating a list of new photo
galleries. That code also runs until the next suspension point,
marked by await, or until it completes.

3. After listPhotos(inGallery:) returns, this code continues
execution starting at that point. It assigns the value that was

PDF conversion courtesy of www.appsdissected.com

returned to photoNames.

4. The lines that define sortedNames and name are regular,
synchronous code. Because nothing is marked await on these
lines, there aren’t any possible suspension points.

5. The next await marks the call to the downloadPhoto(named:)
function. This code pauses execution again until that function
returns, giving other concurrent code an opportunity to run.

6. After downloadPhoto(named:) returns, its return value is assigned
to photo and then passed as an argument when calling
show(_:).

The possible suspension points in your code marked with await
indicate that the current piece of code might pause execution while
waiting for the asynchronous function or method to return. This is also
called yielding the thread because, behind the scenes, Swift
suspends the execution of your code on the current thread and runs
some other code on that thread instead. Because code with await
needs to be able to suspend execution, only certain places in your
program can call asynchronous functions or methods:

Code in the body of an asynchronous function, method, or
property.

Code in the static main() method of a structure, class, or
enumeration that’s marked with @main.

Code in an unstructured child task, as shown in Unstructured
Concurrency below.

Code in between possible suspension points runs sequentially,
without the possibility of interruption from other concurrent code. For
example, the code below moves a picture from one gallery to
another.

PDF conversion courtesy of www.appsdissected.com

1 let firstPhoto = await listPhotos(inGallery: "Summer

Vacation")[0]

2 add(firstPhoto toGallery: "Road Trip")

3 // At this point, firstPhoto is temporarily in both

galleries.

4 remove(firstPhoto fromGallery: "Summer Vacation")

There’s no way for other code to run in between the call to
add(_:toGallery:) and remove(_:fromGallery:). During that time,
the first photo appears in both galleries, temporarily breaking one of
the app’s invariants. To make it even clearer that this chunk of code
must not have await added to it in the future, you can refactor that
code into a synchronous function:

1 func move(_ photoName: String, from source: String,

to destination: String) {

2 add(photoName, to: destination)

3 remove(photoName, from: source)

4 }

5 // ...

6 let firstPhoto = await listPhotos(inGallery: "Summer

Vacation")[0]

7 move(firstPhoto, from: "Summer Vacation", to: "Road

Trip")

In the example above, because the move(_:from:to:) function is
synchronous, you guarantee that it can never contain possible
suspension points. In the future, if you try to add concurrent code to

PDF conversion courtesy of www.appsdissected.com

this function, introducing a possible suspension point, you’ll get
compile-time error instead of introducing a bug.

NOTE

The Task.sleep(until:tolerance:clock:) method is useful when writing
simple code to learn how concurrency works. This method does nothing, but
waits at least the given number of nanoseconds before it returns. Here’s a
version of the listPhotos(inGallery:) function that uses
sleep(until:tolerance:clock:) to simulate waiting for a network
operation:

1 func listPhotos(inGallery name: String) async throws -

> [String] {

2 try await Task.sleep(until: .now + .seconds(2),

clock: .continuous)

3 return ["IMG001", "IMG99", "IMG0404"]

4 }

Asynchronous Sequences
The listPhotos(inGallery:) function in the previous section
asynchronously returns the whole array at once, after all of the
array’s elements are ready. Another approach is to wait for one
element of the collection at a time using an asynchronous sequence.
Here’s what iterating over an asynchronous sequence looks like:

https://developer.apple.com/documentation/swift/task/sleep(until:tolerance:clock:)

PDF conversion courtesy of www.appsdissected.com

1 import Foundation

2

3 let handle = FileHandle.standardInput

4 for try await line in handle.bytes.lines {

5 print(line)

6 }

Instead of using an ordinary for-in loop, the example above writes
for with await after it. Like when you call an asynchronous function
or method, writing await indicates a possible suspension point. A for-
await-in loop potentially suspends execution at the beginning of
each iteration, when it’s waiting for the next element to be available.

In the same way that you can use your own types in a for-in loop by
adding conformance to the Sequence protocol, you can use your own
types in a for-await-in loop by adding conformance to the
AsyncSequence protocol.

Calling Asynchronous Functions in Parallel
Calling an asynchronous function with await runs only one piece of
code at a time. While the asynchronous code is running, the caller
waits for that code to finish before moving on to run the next line of
code. For example, to fetch the first three photos from a gallery, you
could await three calls to the downloadPhoto(named:) function as
follows:

https://developer.apple.com/documentation/swift/sequence
https://developer.apple.com/documentation/swift/asyncsequence

PDF conversion courtesy of www.appsdissected.com

1 let firstPhoto = await downloadPhoto(named:

photoNames[0])

2 let secondPhoto = await downloadPhoto(named:

photoNames[1])

3 let thirdPhoto = await downloadPhoto(named:

photoNames[2])

4

5 let photos = [firstPhoto, secondPhoto, thirdPhoto]

6 show(photos)

This approach has an important drawback: Although the download is
asynchronous and lets other work happen while it progresses, only
one call to downloadPhoto(named:) runs at a time. Each photo
downloads completely before the next one starts downloading.
However, there’s no need for these operations to wait—each photo
can download independently, or even at the same time.

To call an asynchronous function and let it run in parallel with code
around it, write async in front of let when you define a constant, and
then write await each time you use the constant.

PDF conversion courtesy of www.appsdissected.com

1 async let firstPhoto = downloadPhoto(named:

photoNames[0])

2 async let secondPhoto = downloadPhoto(named:

photoNames[1])

3 async let thirdPhoto = downloadPhoto(named:

photoNames[2])

4

5 let photos = await [firstPhoto, secondPhoto,

thirdPhoto]

6 show(photos)

In this example, all three calls to downloadPhoto(named:) start without
waiting for the previous one to complete. If there are enough system
resources available, they can run at the same time. None of these
function calls are marked with await because the code doesn’t
suspend to wait for the function’s result. Instead, execution continues
until the line where photos is defined—at that point, the program
needs the results from these asynchronous calls, so you write await
to pause execution until all three photos finish downloading.

Here’s how you can think about the differences between these two
approaches:

Call asynchronous functions with await when the code on the
following lines depends on that function’s result. This creates
work that is carried out sequentially.

Call asynchronous functions with async-let when you don’t need
the result until later in your code. This creates work that can be
carried out in parallel.

PDF conversion courtesy of www.appsdissected.com

Both await and async-let allow other code to run while they’re
suspended.

In both cases, you mark the possible suspension point with
await to indicate that execution will pause, if needed, until an
asynchronous function has returned.

You can also mix both of these approaches in the same code.

Tasks and Task Groups
A task is a unit of work that can be run asynchronously as part of your
program. All asynchronous code runs as part of some task. The
async-let syntax described in the previous section creates a child
task for you. You can also create a task group and add child tasks to
that group, which gives you more control over priority and
cancellation, and lets you create a dynamic number of tasks.

Tasks are arranged in a hierarchy. Each task in a task group has the
same parent task, and each task can have child tasks. Because of
the explicit relationship between tasks and task groups, this approach
is called structured concurrency. Although you take on some of the
responsibility for correctness, the explicit parent-child relationships
between tasks lets Swift handle some behaviors like propagating
cancellation for you, and lets Swift detect some errors at compile
time.

PDF conversion courtesy of www.appsdissected.com

1 await withTaskGroup(of: Data.self) { taskGroup in

2 let photoNames = await listPhotos(inGallery:

"Summer Vacation")

3 for name in photoNames {

4 taskGroup.addTask { await

downloadPhoto(named: name) }

5 }

6 }

For more information about task groups, see TaskGroup.

Unstructured Concurrency
In addition to the structured approaches to concurrency described in
the previous sections, Swift also supports unstructured concurrency.
Unlike tasks that are part of a task group, an unstructured task
doesn’t have a parent task. You have complete flexibility to manage
unstructured tasks in whatever way your program needs, but you’re
also completely responsible for their correctness. To create an
unstructured task that runs on the current actor, call the
Task.init(priority:operation:) initializer. To create an
unstructured task that’s not part of the current actor, known more
specifically as a detached task, call the
Task.detached(priority:operation:) class method. Both of these
operations return a task that you can interact with—for example, to
wait for its result or to cancel it.

https://developer.apple.com/documentation/swift/taskgroup
https://developer.apple.com/documentation/swift/task/3856790-init
https://developer.apple.com/documentation/swift/task/3856786-detached

PDF conversion courtesy of www.appsdissected.com

1 let newPhoto = // ... some photo data ...

2 let handle = Task {

3 return await add(newPhoto, toGalleryNamed:

"Spring Adventures")

4 }

5 let result = await handle.value

For more information about managing detached tasks, see Task.

Task Cancellation
Swift concurrency uses a cooperative cancellation model. Each task
checks whether it has been canceled at the appropriate points in its
execution, and responds to cancellation in whatever way is
appropriate. Depending on the work you’re doing, that usually means
one of the following:

Throwing an error like CancellationError

Returning nil or an empty collection

Returning the partially completed work

To check for cancellation, either call Task.checkCancellation(),
which throws CancellationError if the task has been canceled, or
check the value of Task.isCancelled and handle the cancellation in
your own code. For example, a task that’s downloading photos from a
gallery might need to delete partial downloads and close network
connections.

To propagate cancellation manually, call Task.cancel().

https://developer.apple.com/documentation/swift/task
https://developer.apple.com/documentation/swift/task/3814826-checkcancellation
https://developer.apple.com/documentation/swift/task/3814832-iscancelled
https://developer.apple.com/documentation/swift/task/3851218-cancel

PDF conversion courtesy of www.appsdissected.com

Actors
You can use tasks to break up your program into isolated, concurrent
pieces. Tasks are isolated from each other, which is what makes it
safe for them to run at the same time, but sometimes you need to
share some information between tasks. Actors let you safely share
information between concurrent code.

Like classes, actors are reference types, so the comparison of value
types and reference types in Classes Are Reference Types applies to
actors as well as classes. Unlike classes, actors allow only one task
to access their mutable state at a time, which makes it safe for code
in multiple tasks to interact with the same instance of an actor. For
example, here’s an actor that records temperatures:

1 actor TemperatureLogger {

2 let label: String

3 var measurements: [Int]

4 private(set) var max: Int

5

6 init(label: String, measurement: Int) {

7 self.label = label

8 self.measurements = [measurement]

9 self.max = measurement

10 }

11 }

You introduce an actor with the actor keyword, followed by its
definition in a pair of braces. The TemperatureLogger actor has
properties that other code outside the actor can access, and restricts

PDF conversion courtesy of www.appsdissected.com

the max property so only code inside the actor can update the
maximum value.

You create an instance of an actor using the same initializer syntax as
structures and classes. When you access a property or method of an
actor, you use await to mark the potential suspension point. For
example:

1 let logger = TemperatureLogger(label: "Outdoors",

measurement: 25)

2 print(await logger.max)

3 // Prints "25"

In this example, accessing logger.max is a possible suspension
point. Because the actor allows only one task at a time to access its
mutable state, if code from another task is already interacting with the
logger, this code suspends while it waits to access the property.

In contrast, code that’s part of the actor doesn’t write await when
accessing the actor’s properties. For example, here’s a method that
updates a TemperatureLogger with a new temperature:

1 extension TemperatureLogger {

2 func update(with measurement: Int) {

3 measurements.append(measurement)

4 if measurement > max {

5 max = measurement

6 }

7 }

8 }

PDF conversion courtesy of www.appsdissected.com

The update(with:) method is already running on the actor, so it
doesn’t mark its access to properties like max with await. This method
also shows one of the reasons why actors allow only one task at a
time to interact with their mutable state: Some updates to an actor’s
state temporarily break invariants. The TemperatureLogger actor
keeps track of a list of temperatures and a maximum temperature,
and it updates the maximum temperature when you record a new
measurement. In the middle of an update, after appending the new
measurement but before updating max, the temperature logger is in a
temporary inconsistent state. Preventing multiple tasks from
interacting with the same instance simultaneously prevents problems
like the following sequence of events:

1. Your code calls the update(with:) method. It updates the
measurements array first.

2. Before your code can update max, code elsewhere reads the
maximum value and the array of temperatures.

3. Your code finishes its update by changing max.

In this case, the code running elsewhere would read incorrect
information because its access to the actor was interleaved in the
middle of the call to update(with:) while the data was temporarily
invalid. You can prevent this problem when using Swift actors
because they only allow one operation on their state at a time, and
because that code can be interrupted only in places where await
marks a suspension point. Because update(with:) doesn’t contain
any suspension points, no other code can access the data in the
middle of an update.

If you try to access those properties from outside the actor, like you
would with an instance of a class, you’ll get a compile-time error. For
example:

 print(logger.max) // Error

PDF conversion courtesy of www.appsdissected.com

Accessing logger.max without writing await fails because the
properties of an actor are part of that actor’s isolated local state. Swift
guarantees that only code inside an actor can access the actor’s local
state. This guarantee is known as actor isolation.

Sendable Types
Tasks and actors let you divide a program into pieces that can safely
run concurrently. Inside of a task or an instance of an actor, the part
of a program that contains mutable state, like variables and
properties, is called a concurrency domain. Some kinds of data can’t
be shared between concurrency domains, because that data
contains mutable state, but it doesn’t protect against overlapping
access.

A type that can be shared from one concurrency domain to another is
known as a sendable type. For example, it can be passed as an
argument when calling an actor method or be returned as the result
of a task. The examples earlier in this chapter didn’t discuss
sendability because those examples use simple value types that are
always safe to share for the data being passed between concurrency
domains. In contrast, some types aren’t safe to pass across
concurrency domains. For example, a class that contains mutable
properties and doesn’t serialize access to those properties can
produce unpredictable and incorrect results when you pass instances
of that class between different tasks.

You mark a type as being sendable by declaring conformance to the
Sendable protocol. That protocol doesn’t have any code
requirements, but it does have semantic requirements that Swift
enforces. In general, there are three ways for a type to be sendable:

PDF conversion courtesy of www.appsdissected.com

The type is a value type, and its mutable state is made up of
other sendable data—for example, a structure with stored
properties that are sendable or an enumeration with associated
values that are sendable.

The type doesn’t have any mutable state, and its immutable
state is made up of other sendable data—for example, a
structure or class that has only read-only properties.

The type has code that ensures the safety of its mutable state,
like a class that’s marked @MainActor or a class that serializes
access to its properties on a particular thread or queue.

For a detailed list of the semantic requirements, see the Sendable
protocol reference.

Some types are always sendable, like structures that have only
sendable properties and enumerations that have only sendable
associated values. For example:

https://developer.apple.com/documentation/swift/sendable

PDF conversion courtesy of www.appsdissected.com

1 struct TemperatureReading: Sendable {

2 var measurement: Int

3 }

4

5 extension TemperatureLogger {

6 func addReading(from reading:

TemperatureReading) {

7 measurements.append(reading.measurement)

8 }

9 }

10

11 let logger = TemperatureLogger(label: "Tea kettle",

measurement: 85)

12 let reading = TemperatureReading(measurement: 45)

13 await logger.addReading(from: reading)

Because TemperatureReading is a structure that has only sendable
properties, and the structure isn’t marked public or
@usableFromInline, it’s implicitly sendable. Here’s a version of the
structure where conformance to the Sendable protocol is implied:

1 struct TemperatureReading {

2 var measurement: Int

3 }

PDF conversion courtesy of www.appsdissected.com

Type Casting

Type casting is a way to check the type of an instance, or to treat that
instance as a different superclass or subclass from somewhere else
in its own class hierarchy.

Type casting in Swift is implemented with the is and as operators.
These two operators provide a simple and expressive way to check
the type of a value or cast a value to a different type.

You can also use type casting to check whether a type conforms to a
protocol, as described in Checking for Protocol Conformance.

Defining a Class Hierarchy for Type Casting
You can use type casting with a hierarchy of classes and subclasses
to check the type of a particular class instance and to cast that
instance to another class within the same hierarchy. The three code
snippets below define a hierarchy of classes and an array containing
instances of those classes, for use in an example of type casting.

The first snippet defines a new base class called MediaItem. This
class provides basic functionality for any kind of item that appears in
a digital media library. Specifically, it declares a name property of type
String, and an init name initializer. (It’s assumed that all media
items, including all movies and songs, will have a name.)

PDF conversion courtesy of www.appsdissected.com

1 class MediaItem {

2 var name: String

3 init(name: String) {

4 self.name = name

5 }

6 }

The next snippet defines two subclasses of MediaItem. The first
subclass, Movie, encapsulates additional information about a movie
or film. It adds a director property on top of the base MediaItem
class, with a corresponding initializer. The second subclass, Song,
adds an artist property and initializer on top of the base class:

PDF conversion courtesy of www.appsdissected.com

1 class Movie: MediaItem {

2 var director: String

3 init(name: String, director: String) {

4 self.director = director

5 super.init(name: name)

6 }

7 }

8

9 class Song: MediaItem {

10 var artist: String

11 init(name: String, artist: String) {

12 self.artist = artist

13 super.init(name: name)

14 }

15 }

The final snippet creates a constant array called library, which
contains two Movie instances and three Song instances. The type of
the library array is inferred by initializing it with the contents of an
array literal. Swift’s type checker is able to deduce that Movie and
Song have a common superclass of MediaItem, and so it infers a type
of [MediaItem] for the library array:

PDF conversion courtesy of www.appsdissected.com

1 let library = [

2 Movie(name: "Casablanca", director: "Michael

Curtiz"),

3 Song(name: "Blue Suede Shoes", artist: "Elvis

Presley"),

4 Movie(name: "Citizen Kane", director: "Orson

Welles"),

5 Song(name: "The One And Only", artist: "Chesney

Hawkes"),

6 Song(name: "Never Gonna Give You Up", artist:

"Rick Astley")

7]

8 // the type of "library" is inferred to be

[MediaItem]

The items stored in library are still Movie and Song instances behind
the scenes. However, if you iterate over the contents of this array, the
items you receive back are typed as MediaItem, and not as Movie or
Song. In order to work with them as their native type, you need to
check their type, or downcast them to a different type, as described
below.

Checking Type
Use the type check operator (is) to check whether an instance is of a
certain subclass type. The type check operator returns true if the
instance is of that subclass type and false if it’s not.

PDF conversion courtesy of www.appsdissected.com

The example below defines two variables, movieCount and
songCount, which count the number of Movie and Song instances in
the library array:

1 var movieCount = 0

2 var songCount = 0

3

4 for item in library {

5 if item is Movie {

6 movieCount += 1

7 } else if item is Song {

8 songCount += 1

9 }

10 }

11

12 print("Media library contains \(movieCount) movies

and \(songCount) songs")

13 // Prints "Media library contains 2 movies and 3

songs"

This example iterates through all items in the library array. On each
pass, the for-in loop sets the item constant to the next MediaItem in
the array.

item is Movie returns true if the current MediaItem is a Movie
instance and false if it’s not. Similarly, item is Song checks whether
the item is a Song instance. At the end of the for-in loop, the values
of movieCount and songCount contain a count of how many MediaItem
instances were found of each type.

PDF conversion courtesy of www.appsdissected.com

Downcasting
A constant or variable of a certain class type may actually refer to an
instance of a subclass behind the scenes. Where you believe this is
the case, you can try to downcast to the subclass type with a type
cast operator (as? or as!).

Because downcasting can fail, the type cast operator comes in two
different forms. The conditional form, as?, returns an optional value of
the type you are trying to downcast to. The forced form, as!, attempts
the downcast and force-unwraps the result as a single compound
action.

Use the conditional form of the type cast operator (as?) when you
aren’t sure if the downcast will succeed. This form of the operator will
always return an optional value, and the value will be nil if the
downcast was not possible. This enables you to check for a
successful downcast.

Use the forced form of the type cast operator (as!) only when you are
sure that the downcast will always succeed. This form of the operator
will trigger a runtime error if you try to downcast to an incorrect class
type.

The example below iterates over each MediaItem in library, and
prints an appropriate description for each item. To do this, it needs to
access each item as a true Movie or Song, and not just as a
MediaItem. This is necessary in order for it to be able to access the
director or artist property of a Movie or Song for use in the
description.

In this example, each item in the array might be a Movie, or it might be
a Song. You don’t know in advance which actual class to use for each
item, and so it’s appropriate to use the conditional form of the type
cast operator (as?) to check the downcast each time through the
loop:

PDF conversion courtesy of www.appsdissected.com

1 for item in library {

2 if let movie = item as? Movie {

3 print("Movie: \(movie.name), dir. \

(movie.director)")

4 } else if let song = item as? Song {

5 print("Song: \(song.name), by \

(song.artist)")

6 }

7 }

8

9 // Movie: Casablanca, dir. Michael Curtiz

10 // Song: Blue Suede Shoes, by Elvis Presley

11 // Movie: Citizen Kane, dir. Orson Welles

12 // Song: The One And Only, by Chesney Hawkes

13 // Song: Never Gonna Give You Up, by Rick Astley

The example starts by trying to downcast the current item as a Movie.
Because item is a MediaItem instance, it’s possible that it might be a
Movie; equally, it’s also possible that it might be a Song, or even just a
base MediaItem. Because of this uncertainty, the as? form of the type
cast operator returns an optional value when attempting to downcast
to a subclass type. The result of item as? Movie is of type Movie?, or
“optional Movie”.

Downcasting to Movie fails when applied to the Song instances in the
library array. To cope with this, the example above uses optional
binding to check whether the optional Movie actually contains a value
(that is, to find out whether the downcast succeeded.) This optional
binding is written “if let movie = item as? Movie”, which can be
read as:

PDF conversion courtesy of www.appsdissected.com

“Try to access item as a Movie. If this is successful, set a new
temporary constant called movie to the value stored in the returned
optional Movie.”

If the downcasting succeeds, the properties of movie are then used to
print a description for that Movie instance, including the name of its
director. A similar principle is used to check for Song instances, and
to print an appropriate description (including artist name) whenever
a Song is found in the library.

NOTE

Casting doesn’t actually modify the instance or change its values. The
underlying instance remains the same; it’s simply treated and accessed as an
instance of the type to which it has been cast.

Type Casting for Any and AnyObject
Swift provides two special types for working with nonspecific types:

Any can represent an instance of any type at all, including
function types.

AnyObject can represent an instance of any class type.

Use Any and AnyObject only when you explicitly need the behavior
and capabilities they provide. It’s always better to be specific about
the types you expect to work with in your code.

Here’s an example of using Any to work with a mix of different types,
including function types and nonclass types. The example creates an
array called things, which can store values of type Any:

PDF conversion courtesy of www.appsdissected.com

1 var things: [Any] = []

2

3 things.append(0)

4 things.append(0.0)

5 things.append(42)

6 things.append(3.14159)

7 things.append("hello")

8 things.append((3.0, 5.0))

9 things.append(Movie(name: "Ghostbusters", director:

"Ivan Reitman"))

10 things.append({ (name: String) -> String in "Hello,

\(name)" })

The things array contains two Int values, two Double values, a
String value, a tuple of type (Double, Double), the movie
“Ghostbusters”, and a closure expression that takes a String value
and returns another String value.

To discover the specific type of a constant or variable that’s known
only to be of type Any or AnyObject, you can use an is or as pattern in
a switch statement’s cases. The example below iterates over the
items in the things array and queries the type of each item with a
switch statement. Several of the switch statement’s cases bind their
matched value to a constant of the specified type to enable its value
to be printed:

PDF conversion courtesy of www.appsdissected.com

1 for thing in things {

2 switch thing {

3 case 0 as Int:

4 print("zero as an Int")

5 case 0 as Double:

6 print("zero as a Double")

7 case let someInt as Int:

8 print("an integer value of \(someInt)")

9 case let someDouble as Double where someDouble >

0:

10 print("a positive double value of \

(someDouble)")

11 case is Double:

12 print("some other double value that I don't

want to print")

13 case let someString as String:

14 print("a string value of \"\(someString)\"")

15 case let (x, y) as (Double, Double):

16 print("an (x, y) point at \(x), \(y)")

17 case let movie as Movie:

18 print("a movie called \(movie.name), dir. \

(movie.director)")

19 case let stringConverter as (String) -> String:

20 print(stringConverter("Michael"))

21 default:

22 print("something else")

PDF conversion courtesy of www.appsdissected.com

23 }

24 }

25

26 // zero as an Int

27 // zero as a Double

28 // an integer value of 42

29 // a positive double value of 3.14159

30 // a string value of "hello"

31 // an (x, y) point at 3.0, 5.0

32 // a movie called Ghostbusters, dir. Ivan Reitman

33 // Hello, Michael

NOTE

The Any type represents values of any type, including optional types. Swift
gives you a warning if you use an optional value where a value of type Any is
expected. If you really do need to use an optional value as an Any value, you
can use the as operator to explicitly cast the optional to Any, as shown below.

1 let optionalNumber: Int? = 3

2 things.append(optionalNumber) // Warning

3 things.append(optionalNumber as Any) // No warning

PDF conversion courtesy of www.appsdissected.com

Nested Types

Enumerations are often created to support a specific class or
structure’s functionality. Similarly, it can be convenient to define utility
classes and structures purely for use within the context of a more
complex type. To accomplish this, Swift enables you to define nested
types, whereby you nest supporting enumerations, classes, and
structures within the definition of the type they support.

To nest a type within another type, write its definition within the outer
braces of the type it supports. Types can be nested to as many levels
as are required.

Nested Types in Action
The example below defines a structure called BlackjackCard, which
models a playing card as used in the game of Blackjack. The
BlackjackCard structure contains two nested enumeration types
called Suit and Rank.

In Blackjack, the Ace cards have a value of either one or eleven. This
feature is represented by a structure called Values, which is nested
within the Rank enumeration:

PDF conversion courtesy of www.appsdissected.com

1 struct BlackjackCard {

2

3 // nested Suit enumeration

4 enum Suit: Character {

5 case spades = "♠", hearts = "♡", diamonds =

"♢", clubs = "♣"

6 }

7

8 // nested Rank enumeration

9 enum Rank: Int {

10 case two = 2, three, four, five, six, seven,

eight, nine, ten

11 case jack, queen, king, ace

12 struct Values {

13 let first: Int, second: Int?

14 }

15 var values: Values {

16 switch self {

17 case .ace:

18 return Values(first: 1, second: 11)

19 case .jack, .queen, .king:

20 return Values(first: 10, second:

nil)

21 default:

22 return Values(first: self.rawValue,

second: nil)

PDF conversion courtesy of www.appsdissected.com

23 }

24 }

25 }

26

27 // BlackjackCard properties and methods

28 let rank: Rank, suit: Suit

29 var description: String {

30 var output = "suit is \(suit.rawValue),"

31 output += " value is \(rank.values.first)"

32 if let second = rank.values.second {

33 output += " or \(second)"

34 }

35 return output

36 }

37 }

The Suit enumeration describes the four common playing card suits,
together with a raw Character value to represent their symbol.

The Rank enumeration describes the thirteen possible playing card
ranks, together with a raw Int value to represent their face value.
(This raw Int value isn’t used for the Jack, Queen, King, and Ace
cards.)

As mentioned above, the Rank enumeration defines a further nested
structure of its own, called Values. This structure encapsulates the
fact that most cards have one value, but the Ace card has two values.
The Values structure defines two properties to represent this:

first, of type Int

PDF conversion courtesy of www.appsdissected.com

second, of type Int?, or “optional Int”

Rank also defines a computed property, values, which returns an
instance of the Values structure. This computed property considers
the rank of the card and initializes a new Values instance with
appropriate values based on its rank. It uses special values for jack,
queen, king, and ace. For the numeric cards, it uses the rank’s raw
Int value.

The BlackjackCard structure itself has two properties—rank and
suit. It also defines a computed property called description, which
uses the values stored in rank and suit to build a description of the
name and value of the card. The description property uses optional
binding to check whether there’s a second value to display, and if so,
inserts additional description detail for that second value.

Because BlackjackCard is a structure with no custom initializers, it
has an implicit memberwise initializer, as described in Memberwise
Initializers for Structure Types. You can use this initializer to initialize
a new constant called theAceOfSpades:

1 let theAceOfSpades = BlackjackCard(rank: .ace, suit:

.spades)

2 print("theAceOfSpades: \

(theAceOfSpades.description)")

3 // Prints "theAceOfSpades: suit is ♠, value is 1 or

11"

Even though Rank and Suit are nested within BlackjackCard, their
type can be inferred from context, and so the initialization of this
instance is able to refer to the enumeration cases by their case
names (.ace and .spades) alone. In the example above, the
description property correctly reports that the Ace of Spades has a
value of 1 or 11.

PDF conversion courtesy of www.appsdissected.com

Referring to Nested Types
To use a nested type outside of its definition context, prefix its name
with the name of the type it’s nested within:

1 let heartsSymbol =

BlackjackCard.Suit.hearts.rawValue

2 // heartsSymbol is "♡"

For the example above, this enables the names of Suit, Rank, and
Values to be kept deliberately short, because their names are
naturally qualified by the context in which they’re defined.

PDF conversion courtesy of www.appsdissected.com

Extensions

Extensions add new functionality to an existing class, structure,
enumeration, or protocol type. This includes the ability to extend
types for which you don’t have access to the original source code
(known as retroactive modeling). Extensions are similar to categories
in Objective-C. (Unlike Objective-C categories, Swift extensions don’t
have names.)

Extensions in Swift can:

Add computed instance properties and computed type properties

Define instance methods and type methods

Provide new initializers

Define subscripts

Define and use new nested types

Make an existing type conform to a protocol

In Swift, you can even extend a protocol to provide implementations
of its requirements or add additional functionality that conforming
types can take advantage of. For more details, see Protocol
Extensions.

NOTE

Extensions can add new functionality to a type, but they can’t override existing
functionality.

PDF conversion courtesy of www.appsdissected.com

Extension Syntax
Declare extensions with the extension keyword:

1 extension SomeType {

2 // new functionality to add to SomeType goes

here

3 }

An extension can extend an existing type to make it adopt one or
more protocols. To add protocol conformance, you write the protocol
names the same way as you write them for a class or structure:

1 extension SomeType: SomeProtocol, AnotherProtocol {

2 // implementation of protocol requirements goes

here

3 }

Adding protocol conformance in this way is described in Adding
Protocol Conformance with an Extension.

An extension can be used to extend an existing generic type, as
described in Extending a Generic Type. You can also extend a
generic type to conditionally add functionality, as described in
Extensions with a Generic Where Clause.

NOTE

If you define an extension to add new functionality to an existing type, the new
functionality will be available on all existing instances of that type, even if they
were created before the extension was defined.

PDF conversion courtesy of www.appsdissected.com

Computed Properties
Extensions can add computed instance properties and computed
type properties to existing types. This example adds five computed
instance properties to Swift’s built-in Double type, to provide basic
support for working with distance units:

1 extension Double {

2 var km: Double { return self * 1_000.0 }

3 var m: Double { return self }

4 var cm: Double { return self / 100.0 }

5 var mm: Double { return self / 1_000.0 }

6 var ft: Double { return self / 3.28084 }

7 }

8 let oneInch = 25.4.mm

9 print("One inch is \(oneInch) meters")

10 // Prints "One inch is 0.0254 meters"

11 let threeFeet = 3.ft

12 print("Three feet is \(threeFeet) meters")

13 // Prints "Three feet is 0.914399970739201 meters"

These computed properties express that a Double value should be
considered as a certain unit of length. Although they’re implemented
as computed properties, the names of these properties can be
appended to a floating-point literal value with dot syntax, as a way to
use that literal value to perform distance conversions.

In this example, a Double value of 1.0 is considered to represent “one
meter”. This is why the m computed property returns self—the
expression 1.m is considered to calculate a Double value of 1.0.

PDF conversion courtesy of www.appsdissected.com

Other units require some conversion to be expressed as a value
measured in meters. One kilometer is the same as 1,000 meters, so
the km computed property multiplies the value by 1_000.00 to convert
into a number expressed in meters. Similarly, there are 3.28084 feet in
a meter, and so the ft computed property divides the underlying
Double value by 3.28084, to convert it from feet to meters.

These properties are read-only computed properties, and so they’re
expressed without the get keyword, for brevity. Their return value is
of type Double, and can be used within mathematical calculations
wherever a Double is accepted:

1 let aMarathon = 42.km + 195.m

2 print("A marathon is \(aMarathon) meters long")

3 // Prints "A marathon is 42195.0 meters long"

NOTE

Extensions can add new computed properties, but they can’t add stored
properties, or add property observers to existing properties.

Initializers
Extensions can add new initializers to existing types. This enables
you to extend other types to accept your own custom types as
initializer parameters, or to provide additional initialization options
that were not included as part of the type’s original implementation.

Extensions can add new convenience initializers to a class, but they
can’t add new designated initializers or deinitializers to a class.
Designated initializers and deinitializers must always be provided by
the original class implementation.

PDF conversion courtesy of www.appsdissected.com

If you use an extension to add an initializer to a value type that
provides default values for all of its stored properties and doesn’t
define any custom initializers, you can call the default initializer and
memberwise initializer for that value type from within your extension’s
initializer. This wouldn’t be the case if you had written the initializer as
part of the value type’s original implementation, as described in
Initializer Delegation for Value Types.

If you use an extension to add an initializer to a structure that was
declared in another module, the new initializer can’t access self until
it calls an initializer from the defining module.

The example below defines a custom Rect structure to represent a
geometric rectangle. The example also defines two supporting
structures called Size and Point, both of which provide default values
of 0.0 for all of their properties:

1 struct Size {

2 var width = 0.0, height = 0.0

3 }

4 struct Point {

5 var x = 0.0, y = 0.0

6 }

7 struct Rect {

8 var origin = Point()

9 var size = Size()

10 }

Because the Rect structure provides default values for all of its
properties, it receives a default initializer and a memberwise initializer
automatically, as described in Default Initializers. These initializers
can be used to create new Rect instances:

PDF conversion courtesy of www.appsdissected.com

1 let defaultRect = Rect()

2 let memberwiseRect = Rect(origin: Point(x: 2.0, y:

2.0),

3 size: Size(width: 5.0, height: 5.0))

You can extend the Rect structure to provide an additional initializer
that takes a specific center point and size:

1 extension Rect {

2 init(center: Point, size: Size) {

3 let originX = center.x - (size.width / 2)

4 let originY = center.y - (size.height / 2)

5 self.init(origin: Point(x: originX, y:

originY), size: size)

6 }

7 }

This new initializer starts by calculating an appropriate origin point
based on the provided center point and size value. The initializer
then calls the structure’s automatic memberwise initializer
init(origin:size:), which stores the new origin and size values in
the appropriate properties:

1 let centerRect = Rect(center: Point(x: 4.0, y: 4.0),

2 size: Size(width: 3.0, height:

3.0))

3 // centerRect's origin is (2.5, 2.5) and its size is

(3.0, 3.0)

PDF conversion courtesy of www.appsdissected.com

NOTE

If you provide a new initializer with an extension, you are still responsible for
making sure that each instance is fully initialized once the initializer
completes.

Methods
Extensions can add new instance methods and type methods to
existing types. The following example adds a new instance method
called repetitions to the Int type:

1 extension Int {

2 func repetitions(task: () -> Void) {

3 for _ in 0..<self {

4 task()

5 }

6 }

7 }

The repetitions(task:) method takes a single argument of type ()
-> Void, which indicates a function that has no parameters and
doesn’t return a value.

After defining this extension, you can call the repetitions(task:)
method on any integer to perform a task that many number of times:

PDF conversion courtesy of www.appsdissected.com

1 3.repetitions {

2 print("Hello!")

3 }

4 // Hello!

5 // Hello!

6 // Hello!

Mutating Instance Methods
Instance methods added with an extension can also modify (or
mutate) the instance itself. Structure and enumeration methods that
modify self or its properties must mark the instance method as
mutating, just like mutating methods from an original implementation.

The example below adds a new mutating method called square to
Swift’s Int type, which squares the original value:

1 extension Int {

2 mutating func square() {

3 self = self * self

4 }

5 }

6 var someInt = 3

7 someInt.square()

8 // someInt is now 9

Subscripts

PDF conversion courtesy of www.appsdissected.com

Extensions can add new subscripts to an existing type. This example
adds an integer subscript to Swift’s built-in Int type. This subscript
[n] returns the decimal digit n places in from the right of the number:

123456789[0] returns 9

123456789[1] returns 8

…and so on:

1 extension Int {

2 subscript(digitIndex: Int) -> Int {

3 var decimalBase = 1

4 for _ in 0..<digitIndex {

5 decimalBase *= 10

6 }

7 return (self / decimalBase) % 10

8 }

9 }

10 746381295[0]

11 // returns 5

12 746381295[1]

13 // returns 9

14 746381295[2]

15 // returns 2

16 746381295[8]

17 // returns 7

PDF conversion courtesy of www.appsdissected.com

If the Int value doesn’t have enough digits for the requested index,
the subscript implementation returns 0, as if the number had been
padded with zeros to the left:

1 746381295[9]

2 // returns 0, as if you had requested:

3 0746381295[9]

Nested Types
Extensions can add new nested types to existing classes, structures,
and enumerations:

PDF conversion courtesy of www.appsdissected.com

1 extension Int {

2 enum Kind {

3 case negative, zero, positive

4 }

5 var kind: Kind {

6 switch self {

7 case 0:

8 return .zero

9 case let x where x > 0:

10 return .positive

11 default:

12 return .negative

13 }

14 }

15 }

This example adds a new nested enumeration to Int. This
enumeration, called Kind, expresses the kind of number that a
particular integer represents. Specifically, it expresses whether the
number is negative, zero, or positive.

This example also adds a new computed instance property to Int,
called kind, which returns the appropriate Kind enumeration case for
that integer.

The nested enumeration can now be used with any Int value:

PDF conversion courtesy of www.appsdissected.com

1 func printIntegerKinds(_ numbers: [Int]) {

2 for number in numbers {

3 switch number.kind {

4 case .negative:

5 print("- ", terminator: "")

6 case .zero:

7 print("0 ", terminator: "")

8 case .positive:

9 print("+ ", terminator: "")

10 }

11 }

12 print("")

13 }

14 printIntegerKinds([3, 19, -27, 0, -6, 0, 7])

15 // Prints "+ + - 0 - 0 + "

This function, printIntegerKinds(_:), takes an input array of Int
values and iterates over those values in turn. For each integer in the
array, the function considers the kind computed property for that
integer, and prints an appropriate description.

NOTE

number.kind is already known to be of type Int.Kind. Because of this, all of
the Int.Kind case values can be written in shorthand form inside the switch
statement, such as .negative rather than Int.Kind.negative.

PDF conversion courtesy of www.appsdissected.com

Protocols

A protocol defines a blueprint of methods, properties, and other
requirements that suit a particular task or piece of functionality. The
protocol can then be adopted by a class, structure, or enumeration to
provide an actual implementation of those requirements. Any type
that satisfies the requirements of a protocol is said to conform to that
protocol.

In addition to specifying requirements that conforming types must
implement, you can extend a protocol to implement some of these
requirements or to implement additional functionality that conforming
types can take advantage of.

Protocol Syntax
You define protocols in a very similar way to classes, structures, and
enumerations:

1 protocol SomeProtocol {

2 // protocol definition goes here

3 }

Custom types state that they adopt a particular protocol by placing
the protocol’s name after the type’s name, separated by a colon, as
part of their definition. Multiple protocols can be listed, and are
separated by commas:

PDF conversion courtesy of www.appsdissected.com

1 struct SomeStructure: FirstProtocol, AnotherProtocol

{

2 // structure definition goes here

3 }

If a class has a superclass, list the superclass name before any
protocols it adopts, followed by a comma:

1 class SomeClass: SomeSuperclass, FirstProtocol,

AnotherProtocol {

2 // class definition goes here

3 }

Property Requirements
A protocol can require any conforming type to provide an instance
property or type property with a particular name and type. The
protocol doesn’t specify whether the property should be a stored
property or a computed property—it only specifies the required
property name and type. The protocol also specifies whether each
property must be gettable or gettable and settable.

If a protocol requires a property to be gettable and settable, that
property requirement can’t be fulfilled by a constant stored property
or a read-only computed property. If the protocol only requires a
property to be gettable, the requirement can be satisfied by any kind
of property, and it’s valid for the property to be also settable if this is
useful for your own code.

PDF conversion courtesy of www.appsdissected.com

Property requirements are always declared as variable properties,
prefixed with the var keyword. Gettable and settable properties are
indicated by writing { get set } after their type declaration, and
gettable properties are indicated by writing { get }.

1 protocol SomeProtocol {

2 var mustBeSettable: Int { get set }

3 var doesNotNeedToBeSettable: Int { get }

4 }

Always prefix type property requirements with the static keyword
when you define them in a protocol. This rule pertains even though
type property requirements can be prefixed with the class or static
keyword when implemented by a class:

1 protocol AnotherProtocol {

2 static var someTypeProperty: Int { get set }

3 }

Here’s an example of a protocol with a single instance property
requirement:

1 protocol FullyNamed {

2 var fullName: String { get }

3 }

The FullyNamed protocol requires a conforming type to provide a fully
qualified name. The protocol doesn’t specify anything else about the
nature of the conforming type—it only specifies that the type must be
able to provide a full name for itself. The protocol states that any

PDF conversion courtesy of www.appsdissected.com

FullyNamed type must have a gettable instance property called
fullName, which is of type String.

Here’s an example of a simple structure that adopts and conforms to
the FullyNamed protocol:

1 struct Person: FullyNamed {

2 var fullName: String

3 }

4 let john = Person(fullName: "John Appleseed")

5 // john.fullName is "John Appleseed"

This example defines a structure called Person, which represents a
specific named person. It states that it adopts the FullyNamed
protocol as part of the first line of its definition.

Each instance of Person has a single stored property called fullName,
which is of type String. This matches the single requirement of the
FullyNamed protocol, and means that Person has correctly conformed
to the protocol. (Swift reports an error at compile time if a protocol
requirement isn’t fulfilled.)

Here’s a more complex class, which also adopts and conforms to the
FullyNamed protocol:

PDF conversion courtesy of www.appsdissected.com

1 class Starship: FullyNamed {

2 var prefix: String?

3 var name: String

4 init(name: String, prefix: String? = nil) {

5 self.name = name

6 self.prefix = prefix

7 }

8 var fullName: String {

9 return (prefix != nil ? prefix! + " " : "")

+ name

10 }

11 }

12 var ncc1701 = Starship(name: "Enterprise", prefix:

"USS")

13 // ncc1701.fullName is "USS Enterprise"

This class implements the fullName property requirement as a
computed read-only property for a starship. Each Starship class
instance stores a mandatory name and an optional prefix. The
fullName property uses the prefix value if it exists, and prepends it
to the beginning of name to create a full name for the starship.

Method Requirements
Protocols can require specific instance methods and type methods to
be implemented by conforming types. These methods are written as
part of the protocol’s definition in exactly the same way as for normal

PDF conversion courtesy of www.appsdissected.com

instance and type methods, but without curly braces or a method
body. Variadic parameters are allowed, subject to the same rules as
for normal methods. Default values, however, can’t be specified for
method parameters within a protocol’s definition.

As with type property requirements, you always prefix type method
requirements with the static keyword when they’re defined in a
protocol. This is true even though type method requirements are
prefixed with the class or static keyword when implemented by a
class:

1 protocol SomeProtocol {

2 static func someTypeMethod()

3 }

The following example defines a protocol with a single instance
method requirement:

1 protocol RandomNumberGenerator {

2 func random() -> Double

3 }

This protocol, RandomNumberGenerator, requires any conforming type
to have an instance method called random, which returns a Double
value whenever it’s called. Although it’s not specified as part of the
protocol, it’s assumed that this value will be a number from 0.0 up to
(but not including) 1.0.

The RandomNumberGenerator protocol doesn’t make any assumptions
about how each random number will be generated—it simply requires
the generator to provide a standard way to generate a new random
number.

PDF conversion courtesy of www.appsdissected.com

Here’s an implementation of a class that adopts and conforms to the
RandomNumberGenerator protocol. This class implements a
pseudorandom number generator algorithm known as a linear
congruential generator:

1 class LinearCongruentialGenerator:

RandomNumberGenerator {

2 var lastRandom = 42.0

3 let m = 139968.0

4 let a = 3877.0

5 let c = 29573.0

6 func random() -> Double {

7 lastRandom = ((lastRandom * a + c)

8 .truncatingRemainder(dividingBy:m))

9 return lastRandom / m

10 }

11 }

12 let generator = LinearCongruentialGenerator()

13 print("Here's a random number: \

(generator.random())")

14 // Prints "Here's a random number:

0.3746499199817101"

15 print("And another one: \(generator.random())")

16 // Prints "And another one: 0.729023776863283"

PDF conversion courtesy of www.appsdissected.com

Mutating Method Requirements
It’s sometimes necessary for a method to modify (or mutate) the
instance it belongs to. For instance methods on value types (that is,
structures and enumerations) you place the mutating keyword before
a method’s func keyword to indicate that the method is allowed to
modify the instance it belongs to and any properties of that instance.
This process is described in Modifying Value Types from Within
Instance Methods.

If you define a protocol instance method requirement that’s intended
to mutate instances of any type that adopts the protocol, mark the
method with the mutating keyword as part of the protocol’s definition.
This enables structures and enumerations to adopt the protocol and
satisfy that method requirement.

NOTE

If you mark a protocol instance method requirement as mutating, you don’t
need to write the mutating keyword when writing an implementation of that
method for a class. The mutating keyword is only used by structures and
enumerations.

The example below defines a protocol called Togglable, which
defines a single instance method requirement called toggle. As its
name suggests, the toggle() method is intended to toggle or invert
the state of any conforming type, typically by modifying a property of
that type.

The toggle() method is marked with the mutating keyword as part of
the Togglable protocol definition, to indicate that the method is
expected to mutate the state of a conforming instance when it’s
called:

PDF conversion courtesy of www.appsdissected.com

1 protocol Togglable {

2 mutating func toggle()

3 }

If you implement the Togglable protocol for a structure or
enumeration, that structure or enumeration can conform to the
protocol by providing an implementation of the toggle() method
that’s also marked as mutating.

The example below defines an enumeration called OnOffSwitch. This
enumeration toggles between two states, indicated by the
enumeration cases on and off. The enumeration’s toggle
implementation is marked as mutating, to match the Togglable
protocol’s requirements:

1 enum OnOffSwitch: Togglable {

2 case off, on

3 mutating func toggle() {

4 switch self {

5 case .off:

6 self = .on

7 case .on:

8 self = .off

9 }

10 }

11 }

12 var lightSwitch = OnOffSwitch.off

13 lightSwitch.toggle()

14 // lightSwitch is now equal to .on

PDF conversion courtesy of www.appsdissected.com

Initializer Requirements
Protocols can require specific initializers to be implemented by
conforming types. You write these initializers as part of the protocol’s
definition in exactly the same way as for normal initializers, but
without curly braces or an initializer body:

1 protocol SomeProtocol {

2 init(someParameter: Int)

3 }

Class Implementations of Protocol Initializer Requirements
You can implement a protocol initializer requirement on a conforming
class as either a designated initializer or a convenience initializer. In
both cases, you must mark the initializer implementation with the
required modifier:

1 class SomeClass: SomeProtocol {

2 required init(someParameter: Int) {

3 // initializer implementation goes here

4 }

5 }

The use of the required modifier ensures that you provide an explicit
or inherited implementation of the initializer requirement on all
subclasses of the conforming class, such that they also conform to
the protocol.

For more information on required initializers, see Required Initializers.

PDF conversion courtesy of www.appsdissected.com

NOTE

You don’t need to mark protocol initializer implementations with the required
modifier on classes that are marked with the final modifier, because final
classes can’t subclassed. For more about the final modifier, see Preventing
Overrides.

If a subclass overrides a designated initializer from a superclass, and
also implements a matching initializer requirement from a protocol,
mark the initializer implementation with both the required and
override modifiers:

1 protocol SomeProtocol {

2 init()

3 }

4

5 class SomeSuperClass {

6 init() {

7 // initializer implementation goes here

8 }

9 }

10

11 class SomeSubClass: SomeSuperClass, SomeProtocol {

12 // "required" from SomeProtocol conformance;

"override" from SomeSuperClass

13 required override init() {

14 // initializer implementation goes here

15 }

16 }

PDF conversion courtesy of www.appsdissected.com

Failable Initializer Requirements
Protocols can define failable initializer requirements for conforming
types, as defined in Failable Initializers.

A failable initializer requirement can be satisfied by a failable or
nonfailable initializer on a conforming type. A nonfailable initializer
requirement can be satisfied by a nonfailable initializer or an implicitly
unwrapped failable initializer.

Protocols as Types
Protocols don’t actually implement any functionality themselves.
Nonetheless, you can use protocols as a fully fledged types in your
code. Using a protocol as a type is sometimes called an existential
type, which comes from the phrase “there exists a type T such that T
conforms to the protocol”.

You can use a protocol in many places where other types are
allowed, including:

As a parameter type or return type in a function, method, or
initializer

As the type of a constant, variable, or property

As the type of items in an array, dictionary, or other container

NOTE

Because protocols are types, begin their names with a capital letter (such as
FullyNamed and RandomNumberGenerator) to match the names of other
types in Swift (such as Int, String, and Double).

Here’s an example of a protocol used as a type:

PDF conversion courtesy of www.appsdissected.com

1 class Dice {

2 let sides: Int

3 let generator: RandomNumberGenerator

4 init(sides: Int, generator:

RandomNumberGenerator) {

5 self.sides = sides

6 self.generator = generator

7 }

8 func roll() -> Int {

9 return Int(generator.random() *

Double(sides)) + 1

10 }

11 }

This example defines a new class called Dice, which represents an n-
sided dice for use in a board game. Dice instances have an integer
property called sides, which represents how many sides they have,
and a property called generator, which provides a random number
generator from which to create dice roll values.

The generator property is of type RandomNumberGenerator. Therefore,
you can set it to an instance of any type that adopts the
RandomNumberGenerator protocol. Nothing else is required of the
instance you assign to this property, except that the instance must
adopt the RandomNumberGenerator protocol. Because its type is
RandomNumberGenerator, code inside the Dice class can only interact
with generator in ways that apply to all generators that conform to
this protocol. That means it can’t use any methods or properties that
are defined by the underlying type of the generator. However, you
can downcast from a protocol type to an underlying type in the same

PDF conversion courtesy of www.appsdissected.com

way you can downcast from a superclass to a subclass, as discussed
in Downcasting.

Dice also has an initializer, to set up its initial state. This initializer has
a parameter called generator, which is also of type
RandomNumberGenerator. You can pass a value of any conforming
type in to this parameter when initializing a new Dice instance.

Dice provides one instance method, roll, which returns an integer
value between 1 and the number of sides on the dice. This method
calls the generator’s random() method to create a new random
number between 0.0 and 1.0, and uses this random number to
create a dice roll value within the correct range. Because generator
is known to adopt RandomNumberGenerator, it’s guaranteed to have a
random() method to call.

Here’s how the Dice class can be used to create a six-sided dice with
a LinearCongruentialGenerator instance as its random number
generator:

1 var d6 = Dice(sides: 6, generator:

LinearCongruentialGenerator())

2 for _ in 1...5 {

3 print("Random dice roll is \(d6.roll())")

4 }

5 // Random dice roll is 3

6 // Random dice roll is 5

7 // Random dice roll is 4

8 // Random dice roll is 5

9 // Random dice roll is 4

PDF conversion courtesy of www.appsdissected.com

Delegation
Delegation is a design pattern that enables a class or structure to
hand off (or delegate) some of its responsibilities to an instance of
another type. This design pattern is implemented by defining a
protocol that encapsulates the delegated responsibilities, such that a
conforming type (known as a delegate) is guaranteed to provide the
functionality that has been delegated. Delegation can be used to
respond to a particular action, or to retrieve data from an external
source without needing to know the underlying type of that source.

The example below defines two protocols for use with dice-based
board games:

1 protocol DiceGame {

2 var dice: Dice { get }

3 func play()

4 }

5 protocol DiceGameDelegate: AnyObject {

6 func gameDidStart(_ game: DiceGame)

7 func game(_ game: DiceGame,

didStartNewTurnWithDiceRoll diceRoll: Int)

8 func gameDidEnd(_ game: DiceGame)

9 }

The DiceGame protocol is a protocol that can be adopted by any game
that involves dice.

The DiceGameDelegate protocol can be adopted to track the progress
of a DiceGame. To prevent strong reference cycles, delegates are
declared as weak references. For information about weak references,
see Strong Reference Cycles Between Class Instances. Marking the

PDF conversion courtesy of www.appsdissected.com

protocol as class-only lets the SnakesAndLadders class later in this
chapter declare that its delegate must use a weak reference. A class-
only protocol is marked by its inheritance from AnyObject, as
discussed in Class-Only Protocols.

Here’s a version of the Snakes and Ladders game originally
introduced in Control Flow. This version is adapted to use a Dice
instance for its dice-rolls; to adopt the DiceGame protocol; and to notify
a DiceGameDelegate about its progress:

PDF conversion courtesy of www.appsdissected.com

1 class SnakesAndLadders: DiceGame {

2 let finalSquare = 25

3 let dice = Dice(sides: 6, generator:

LinearCongruentialGenerator())

4 var square = 0

5 var board: [Int]

6 init() {

7 board = Array(repeating: 0, count:

finalSquare + 1)

8 board[03] = +08; board[06] = +11; board[09]

= +09; board[10] = +02

9 board[14] = -10; board[19] = -11; board[22]

= -02; board[24] = -08

10 }

11 weak var delegate: DiceGameDelegate?

12 func play() {

13 square = 0

14 delegate?.gameDidStart(self)

15 gameLoop: while square != finalSquare {

16 let diceRoll = dice.roll()

17 delegate?.game(self,

didStartNewTurnWithDiceRoll: diceRoll)

18 switch square + diceRoll {

19 case finalSquare:

20 break gameLoop

PDF conversion courtesy of www.appsdissected.com

21 case let newSquare where newSquare >

finalSquare:

22 continue gameLoop

23 default:

24 square += diceRoll

25 square += board[square]

26 }

27 }

28 delegate?.gameDidEnd(self)

29 }

30 }

For a description of the Snakes and Ladders gameplay, see Break.

This version of the game is wrapped up as a class called
SnakesAndLadders, which adopts the DiceGame protocol. It provides a
gettable dice property and a play() method in order to conform to
the protocol. (The dice property is declared as a constant property
because it doesn’t need to change after initialization, and the protocol
only requires that it must be gettable.)

The Snakes and Ladders game board setup takes place within the
class’s init() initializer. All game logic is moved into the protocol’s
play method, which uses the protocol’s required dice property to
provide its dice roll values.

Note that the delegate property is defined as an optional
DiceGameDelegate, because a delegate isn’t required in order to play
the game. Because it’s of an optional type, the delegate property is
automatically set to an initial value of nil. Thereafter, the game
instantiator has the option to set the property to a suitable delegate.

PDF conversion courtesy of www.appsdissected.com

Because the DiceGameDelegate protocol is class-only, you can
declare the delegate to be weak to prevent reference cycles.

DiceGameDelegate provides three methods for tracking the progress
of a game. These three methods have been incorporated into the
game logic within the play() method above, and are called when a
new game starts, a new turn begins, or the game ends.

Because the delegate property is an optional DiceGameDelegate, the
play() method uses optional chaining each time it calls a method on
the delegate. If the delegate property is nil, these delegate calls fail
gracefully and without error. If the delegate property is non-nil, the
delegate methods are called, and are passed the SnakesAndLadders
instance as a parameter.

This next example shows a class called DiceGameTracker, which
adopts the DiceGameDelegate protocol:

PDF conversion courtesy of www.appsdissected.com

1 class DiceGameTracker: DiceGameDelegate {

2 var numberOfTurns = 0

3 func gameDidStart(_ game: DiceGame) {

4 numberOfTurns = 0

5 if game is SnakesAndLadders {

6 print("Started a new game of Snakes and

Ladders")

7 }

8 print("The game is using a \

(game.dice.sides)-sided dice")

9 }

10 func game(_ game: DiceGame,

didStartNewTurnWithDiceRoll diceRoll: Int) {

11 numberOfTurns += 1

12 print("Rolled a \(diceRoll)")

13 }

14 func gameDidEnd(_ game: DiceGame) {

15 print("The game lasted for \(numberOfTurns)

turns")

16 }

17 }

DiceGameTracker implements all three methods required by
DiceGameDelegate. It uses these methods to keep track of the number
of turns a game has taken. It resets a numberOfTurns property to zero
when the game starts, increments it each time a new turn begins, and
prints out the total number of turns once the game has ended.

PDF conversion courtesy of www.appsdissected.com

The implementation of gameDidStart(_:) shown above uses the game
parameter to print some introductory information about the game
that’s about to be played. The game parameter has a type of DiceGame,
not SnakesAndLadders, and so gameDidStart(_:) can access and use
only methods and properties that are implemented as part of the
DiceGame protocol. However, the method is still able to use type
casting to query the type of the underlying instance. In this example, it
checks whether game is actually an instance of SnakesAndLadders
behind the scenes, and prints an appropriate message if so.

The gameDidStart(_:) method also accesses the dice property of
the passed game parameter. Because game is known to conform to the
DiceGame protocol, it’s guaranteed to have a dice property, and so the
gameDidStart(_:) method is able to access and print the dice’s sides
property, regardless of what kind of game is being played.

Here’s how DiceGameTracker looks in action:

1 let tracker = DiceGameTracker()

2 let game = SnakesAndLadders()

3 game.delegate = tracker

4 game.play()

5 // Started a new game of Snakes and Ladders

6 // The game is using a 6-sided dice

7 // Rolled a 3

8 // Rolled a 5

9 // Rolled a 4

10 // Rolled a 5

11 // The game lasted for 4 turns

PDF conversion courtesy of www.appsdissected.com

Adding Protocol Conformance with an Extension
You can extend an existing type to adopt and conform to a new
protocol, even if you don’t have access to the source code for the
existing type. Extensions can add new properties, methods, and
subscripts to an existing type, and are therefore able to add any
requirements that a protocol may demand. For more about
extensions, see Extensions.

NOTE

Existing instances of a type automatically adopt and conform to a protocol
when that conformance is added to the instance’s type in an extension.

For example, this protocol, called TextRepresentable, can be
implemented by any type that has a way to be represented as text.
This might be a description of itself, or a text version of its current
state:

1 protocol TextRepresentable {

2 var textualDescription: String { get }

3 }

The Dice class from above can be extended to adopt and conform to
TextRepresentable:

1 extension Dice: TextRepresentable {

2 var textualDescription: String {

3 return "A \(sides)-sided dice"

4 }

5 }

PDF conversion courtesy of www.appsdissected.com

This extension adopts the new protocol in exactly the same way as if
Dice had provided it in its original implementation. The protocol name
is provided after the type name, separated by a colon, and an
implementation of all requirements of the protocol is provided within
the extension’s curly braces.

Any Dice instance can now be treated as TextRepresentable:

1 let d12 = Dice(sides: 12, generator:

LinearCongruentialGenerator())

2 print(d12.textualDescription)

3 // Prints "A 12-sided dice"

Similarly, the SnakesAndLadders game class can be extended to
adopt and conform to the TextRepresentable protocol:

1 extension SnakesAndLadders: TextRepresentable {

2 var textualDescription: String {

3 return "A game of Snakes and Ladders with \

(finalSquare) squares"

4 }

5 }

6 print(game.textualDescription)

7 // Prints "A game of Snakes and Ladders with 25

squares"

Conditionally Conforming to a Protocol
A generic type may be able to satisfy the requirements of a protocol
only under certain conditions, such as when the type’s generic

PDF conversion courtesy of www.appsdissected.com

parameter conforms to the protocol. You can make a generic type
conditionally conform to a protocol by listing constraints when
extending the type. Write these constraints after the name of the
protocol you’re adopting by writing a generic where clause. For more
about generic where clauses, see Generic Where Clauses.

The following extension makes Array instances conform to the
TextRepresentable protocol whenever they store elements of a type
that conforms to TextRepresentable.

1 extension Array: TextRepresentable where Element:

TextRepresentable {

2 var textualDescription: String {

3 let itemsAsText = self.map {

$0.textualDescription }

4 return "[" + itemsAsText.joined(separator:

", ") + "]"

5 }

6 }

7 let myDice = [d6, d12]

8 print(myDice.textualDescription)

9 // Prints "[A 6-sided dice, A 12-sided dice]"

Declaring Protocol Adoption with an Extension
If a type already conforms to all of the requirements of a protocol, but
hasn’t yet stated that it adopts that protocol, you can make it adopt
the protocol with an empty extension:

PDF conversion courtesy of www.appsdissected.com

1 struct Hamster {

2 var name: String

3 var textualDescription: String {

4 return "A hamster named \(name)"

5 }

6 }

7 extension Hamster: TextRepresentable {}

Instances of Hamster can now be used wherever TextRepresentable
is the required type:

1 let simonTheHamster = Hamster(name: "Simon")

2 let somethingTextRepresentable: TextRepresentable =

simonTheHamster

3 print(somethingTextRepresentable.textualDescription)

4 // Prints "A hamster named Simon"

NOTE

Types don’t automatically adopt a protocol just by satisfying its requirements.
They must always explicitly declare their adoption of the protocol.

Adopting a Protocol Using a Synthesized
Implementation
Swift can automatically provide the protocol conformance for
Equatable, Hashable, and Comparable in many simple cases. Using
this synthesized implementation means you don’t have to write

PDF conversion courtesy of www.appsdissected.com

repetitive boilerplate code to implement the protocol requirements
yourself.

Swift provides a synthesized implementation of Equatable for the
following kinds of custom types:

Structures that have only stored properties that conform to the
Equatable protocol

Enumerations that have only associated types that conform to
the Equatable protocol

Enumerations that have no associated types

To receive a synthesized implementation of ==, declare conformance
to Equatable in the file that contains the original declaration, without
implementing an == operator yourself. The Equatable protocol
provides a default implementation of !=.

The example below defines a Vector3D structure for a three-
dimensional position vector (x, y, z), similar to the Vector2D
structure. Because the x, y, and z properties are all of an Equatable
type, Vector3D receives synthesized implementations of the
equivalence operators.

PDF conversion courtesy of www.appsdissected.com

1 struct Vector3D: Equatable {

2 var x = 0.0, y = 0.0, z = 0.0

3 }

4

5 let twoThreeFour = Vector3D(x: 2.0, y: 3.0, z: 4.0)

6 let anotherTwoThreeFour = Vector3D(x: 2.0, y: 3.0,

z: 4.0)

7 if twoThreeFour == anotherTwoThreeFour {

8 print("These two vectors are also equivalent.")

9 }

10 // Prints "These two vectors are also equivalent."

Swift provides a synthesized implementation of Hashable for the
following kinds of custom types:

Structures that have only stored properties that conform to the
Hashable protocol

Enumerations that have only associated types that conform to
the Hashable protocol

Enumerations that have no associated types

To receive a synthesized implementation of hash(into:), declare
conformance to Hashable in the file that contains the original
declaration, without implementing a hash(into:) method yourself.

Swift provides a synthesized implementation of Comparable for
enumerations that don’t have a raw value. If the enumeration has
associated types, they must all conform to the Comparable protocol.
To receive a synthesized implementation of <, declare conformance
to Comparable in the file that contains the original enumeration

PDF conversion courtesy of www.appsdissected.com

declaration, without implementing a < operator yourself. The
Comparable protocol’s default implementation of <=, >, and >=
provides the remaining comparison operators.

The example below defines a SkillLevel enumeration with cases for
beginners, intermediates, and experts. Experts are additionally
ranked by the number of stars they have.

1 enum SkillLevel: Comparable {

2 case beginner

3 case intermediate

4 case expert(stars: Int)

5 }

6 var levels = [SkillLevel.intermediate,

SkillLevel.beginner,

7 SkillLevel.expert(stars: 5),

SkillLevel.expert(stars: 3)]

8 for level in levels.sorted() {

9 print(level)

10 }

11 // Prints "beginner"

12 // Prints "intermediate"

13 // Prints "expert(stars: 3)"

14 // Prints "expert(stars: 5)"

Collections of Protocol Types

PDF conversion courtesy of www.appsdissected.com

A protocol can be used as the type to be stored in a collection such
as an array or a dictionary, as mentioned in Protocols as Types. This
example creates an array of TextRepresentable things:

 let things: [TextRepresentable] = [game, d12,

simonTheHamster]

It’s now possible to iterate over the items in the array, and print each
item’s textual description:

1 for thing in things {

2 print(thing.textualDescription)

3 }

4 // A game of Snakes and Ladders with 25 squares

5 // A 12-sided dice

6 // A hamster named Simon

Note that the thing constant is of type TextRepresentable. It’s not of
type Dice, or DiceGame, or Hamster, even if the actual instance behind
the scenes is of one of those types. Nonetheless, because it’s of type
TextRepresentable, and anything that’s TextRepresentable is known
to have a textualDescription property, it’s safe to access
thing.textualDescription each time through the loop.

Protocol Inheritance
A protocol can inherit one or more other protocols and can add
further requirements on top of the requirements it inherits. The syntax
for protocol inheritance is similar to the syntax for class inheritance,

PDF conversion courtesy of www.appsdissected.com

but with the option to list multiple inherited protocols, separated by
commas:

1 protocol InheritingProtocol: SomeProtocol,

AnotherProtocol {

2 // protocol definition goes here

3 }

Here’s an example of a protocol that inherits the TextRepresentable
protocol from above:

1 protocol PrettyTextRepresentable: TextRepresentable

{

2 var prettyTextualDescription: String { get }

3 }

This example defines a new protocol, PrettyTextRepresentable,
which inherits from TextRepresentable. Anything that adopts
PrettyTextRepresentable must satisfy all of the requirements
enforced by TextRepresentable, plus the additional requirements
enforced by PrettyTextRepresentable. In this example,
PrettyTextRepresentable adds a single requirement to provide a
gettable property called prettyTextualDescription that returns a
String.

The SnakesAndLadders class can be extended to adopt and conform
to PrettyTextRepresentable:

PDF conversion courtesy of www.appsdissected.com

1 extension SnakesAndLadders: PrettyTextRepresentable

{

2 var prettyTextualDescription: String {

3 var output = textualDescription + ":\n"

4 for index in 1...finalSquare {

5 switch board[index] {

6 case let ladder where ladder > 0:

7 output += "▲ "

8 case let snake where snake < 0:

9 output += "▼ "

10 default:

11 output += "○ "

12 }

13 }

14 return output

15 }

16 }

This extension states that it adopts the PrettyTextRepresentable
protocol and provides an implementation of the
prettyTextualDescription property for the SnakesAndLadders type.
Anything that’s PrettyTextRepresentable must also be
TextRepresentable, and so the implementation of
prettyTextualDescription starts by accessing the
textualDescription property from the TextRepresentable protocol to
begin an output string. It appends a colon and a line break, and uses
this as the start of its pretty text representation. It then iterates
through the array of board squares, and appends a geometric shape
to represent the contents of each square:

PDF conversion courtesy of www.appsdissected.com

If the square’s value is greater than 0, it’s the base of a ladder,
and is represented by ▲.

If the square’s value is less than 0, it’s the head of a snake, and
is represented by ▼.

Otherwise, the square’s value is 0, and it’s a “free” square,
represented by ○.

The prettyTextualDescription property can now be used to print a
pretty text description of any SnakesAndLadders instance:

1 print(game.prettyTextualDescription)

2 // A game of Snakes and Ladders with 25 squares:

3 // ○ ○ ▲ ○ ○ ▲ ○ ○ ▲ ▲ ○ ○ ○ ▼ ○ ○ ○ ○ ▼ ○ ○ ▼ ○ ▼ ○

Class-Only Protocols
You can limit protocol adoption to class types (and not structures or
enumerations) by adding the AnyObject protocol to a protocol’s
inheritance list.

1 protocol SomeClassOnlyProtocol: AnyObject,

SomeInheritedProtocol {

2 // class-only protocol definition goes here

3 }

In the example above, SomeClassOnlyProtocol can only be adopted
by class types. It’s a compile-time error to write a structure or
enumeration definition that tries to adopt SomeClassOnlyProtocol.

PDF conversion courtesy of www.appsdissected.com

NOTE

Use a class-only protocol when the behavior defined by that protocol’s
requirements assumes or requires that a conforming type has reference
semantics rather than value semantics. For more about reference and value
semantics, see Structures and Enumerations Are Value Types and Classes
Are Reference Types.

Protocol Composition
It can be useful to require a type to conform to multiple protocols at
the same time. You can combine multiple protocols into a single
requirement with a protocol composition. Protocol compositions
behave as if you defined a temporary local protocol that has the
combined requirements of all protocols in the composition. Protocol
compositions don’t define any new protocol types.

Protocol compositions have the form SomeProtocol &
AnotherProtocol. You can list as many protocols as you need,
separating them with ampersands (&). In addition to its list of
protocols, a protocol composition can also contain one class type,
which you can use to specify a required superclass.

Here’s an example that combines two protocols called Named and
Aged into a single protocol composition requirement on a function
parameter:

PDF conversion courtesy of www.appsdissected.com

1 protocol Named {

2 var name: String { get }

3 }

4 protocol Aged {

5 var age: Int { get }

6 }

7 struct Person: Named, Aged {

8 var name: String

9 var age: Int

10 }

11 func wishHappyBirthday(to celebrator: Named & Aged)

{

12 print("Happy birthday, \(celebrator.name),

you're \(celebrator.age)!")

13 }

14 let birthdayPerson = Person(name: "Malcolm", age:

21)

15 wishHappyBirthday(to: birthdayPerson)

16 // Prints "Happy birthday, Malcolm, you're 21!"

In this example, the Named protocol has a single requirement for a
gettable String property called name. The Aged protocol has a single
requirement for a gettable Int property called age. Both protocols are
adopted by a structure called Person.

The example also defines a wishHappyBirthday(to:) function. The
type of the celebrator parameter is Named & Aged, which means “any
type that conforms to both the Named and Aged protocols.” It doesn’t

PDF conversion courtesy of www.appsdissected.com

matter which specific type is passed to the function, as long as it
conforms to both of the required protocols.

The example then creates a new Person instance called
birthdayPerson and passes this new instance to the
wishHappyBirthday(to:) function. Because Person conforms to both
protocols, this call is valid, and the wishHappyBirthday(to:) function
can print its birthday greeting.

Here’s an example that combines the Named protocol from the
previous example with a Location class:

PDF conversion courtesy of www.appsdissected.com

1 class Location {

2 var latitude: Double

3 var longitude: Double

4 init(latitude: Double, longitude: Double) {

5 self.latitude = latitude

6 self.longitude = longitude

7 }

8 }

9 class City: Location, Named {

10 var name: String

11 init(name: String, latitude: Double, longitude:

Double) {

12 self.name = name

13 super.init(latitude: latitude, longitude:

longitude)

14 }

15 }

16 func beginConcert(in location: Location & Named) {

17 print("Hello, \(location.name)!")

18 }

19

20 let seattle = City(name: "Seattle", latitude: 47.6,

longitude: -122.3)

21 beginConcert(in: seattle)

22 // Prints "Hello, Seattle!"

PDF conversion courtesy of www.appsdissected.com

The beginConcert(in:) function takes a parameter of type Location
& Named, which means “any type that’s a subclass of Location and
that conforms to the Named protocol.” In this case, City satisfies both
requirements.

Passing birthdayPerson to the beginConcert(in:) function is invalid
because Person isn’t a subclass of Location. Likewise, if you made a
subclass of Location that didn’t conform to the Named protocol, calling
beginConcert(in:) with an instance of that type is also invalid.

Checking for Protocol Conformance
You can use the is and as operators described in Type Casting to
check for protocol conformance, and to cast to a specific protocol.
Checking for and casting to a protocol follows exactly the same
syntax as checking for and casting to a type:

The is operator returns true if an instance conforms to a
protocol and returns false if it doesn’t.

The as? version of the downcast operator returns an optional
value of the protocol’s type, and this value is nil if the instance
doesn’t conform to that protocol.

The as! version of the downcast operator forces the downcast to
the protocol type and triggers a runtime error if the downcast
doesn’t succeed.

This example defines a protocol called HasArea, with a single property
requirement of a gettable Double property called area:

PDF conversion courtesy of www.appsdissected.com

1 protocol HasArea {

2 var area: Double { get }

3 }

Here are two classes, Circle and Country, both of which conform to
the HasArea protocol:

1 class Circle: HasArea {

2 let pi = 3.1415927

3 var radius: Double

4 var area: Double { return pi * radius * radius }

5 init(radius: Double) { self.radius = radius }

6 }

7 class Country: HasArea {

8 var area: Double

9 init(area: Double) { self.area = area }

10 }

The Circle class implements the area property requirement as a
computed property, based on a stored radius property. The Country
class implements the area requirement directly as a stored property.
Both classes correctly conform to the HasArea protocol.

Here’s a class called Animal, which doesn’t conform to the HasArea
protocol:

PDF conversion courtesy of www.appsdissected.com

1 class Animal {

2 var legs: Int

3 init(legs: Int) { self.legs = legs }

4 }

The Circle, Country and Animal classes don’t have a shared base
class. Nonetheless, they’re all classes, and so instances of all three
types can be used to initialize an array that stores values of type
AnyObject:

1 let objects: [AnyObject] = [

2 Circle(radius: 2.0),

3 Country(area: 243_610),

4 Animal(legs: 4)

5]

The objects array is initialized with an array literal containing a
Circle instance with a radius of 2 units; a Country instance initialized
with the surface area of the United Kingdom in square kilometers;
and an Animal instance with four legs.

The objects array can now be iterated, and each object in the array
can be checked to see if it conforms to the HasArea protocol:

PDF conversion courtesy of www.appsdissected.com

1 for object in objects {

2 if let objectWithArea = object as? HasArea {

3 print("Area is \(objectWithArea.area)")

4 } else {

5 print("Something that doesn't have an area")

6 }

7 }

8 // Area is 12.5663708

9 // Area is 243610.0

10 // Something that doesn't have an area

Whenever an object in the array conforms to the HasArea protocol,
the optional value returned by the as? operator is unwrapped with
optional binding into a constant called objectWithArea. The
objectWithArea constant is known to be of type HasArea, and so its
area property can be accessed and printed in a type-safe way.

Note that the underlying objects aren’t changed by the casting
process. They continue to be a Circle, a Country and an Animal.
However, at the point that they’re stored in the objectWithArea
constant, they’re only known to be of type HasArea, and so only their
area property can be accessed.

Optional Protocol Requirements
You can define optional requirements for protocols. These
requirements don’t have to be implemented by types that conform to
the protocol. Optional requirements are prefixed by the optional
modifier as part of the protocol’s definition. Optional requirements are

PDF conversion courtesy of www.appsdissected.com

available so that you can write code that interoperates with Objective-
C. Both the protocol and the optional requirement must be marked
with the @objc attribute. Note that @objc protocols can be adopted
only by classes that inherit from Objective-C classes or other @objc
classes. They can’t be adopted by structures or enumerations.

When you use a method or property in an optional requirement, its
type automatically becomes an optional. For example, a method of
type (Int) -> String becomes ((Int) -> String)?. Note that the
entire function type is wrapped in the optional, not the method’s
return value.

An optional protocol requirement can be called with optional chaining,
to account for the possibility that the requirement was not
implemented by a type that conforms to the protocol. You check for
an implementation of an optional method by writing a question mark
after the name of the method when it’s called, such as
someOptionalMethod?(someArgument). For information on optional
chaining, see Optional Chaining.

The following example defines an integer-counting class called
Counter, which uses an external data source to provide its increment
amount. This data source is defined by the CounterDataSource
protocol, which has two optional requirements:

1 @objc protocol CounterDataSource {

2 @objc optional func increment(forCount count:

Int) -> Int

3 @objc optional var fixedIncrement: Int { get }

4 }

The CounterDataSource protocol defines an optional method
requirement called increment(forCount:) and an optional property
requirement called fixedIncrement. These requirements define two

PDF conversion courtesy of www.appsdissected.com

different ways for data sources to provide an appropriate increment
amount for a Counter instance.

NOTE

Strictly speaking, you can write a custom class that conforms to
CounterDataSource without implementing either protocol requirement.
They’re both optional, after all. Although technically allowed, this wouldn’t
make for a very good data source.

The Counter class, defined below, has an optional dataSource
property of type CounterDataSource?:

1 class Counter {

2 var count = 0

3 var dataSource: CounterDataSource?

4 func increment() {

5 if let amount = dataSource?.increment?

(forCount: count) {

6 count += amount

7 } else if let amount =

dataSource?.fixedIncrement {

8 count += amount

9 }

10 }

11 }

The Counter class stores its current value in a variable property
called count. The Counter class also defines a method called
increment, which increments the count property every time the
method is called.

PDF conversion courtesy of www.appsdissected.com

The increment() method first tries to retrieve an increment amount
by looking for an implementation of the increment(forCount:)
method on its data source. The increment() method uses optional
chaining to try to call increment(forCount:), and passes the current
count value as the method’s single argument.

Note that two levels of optional chaining are at play here. First, it’s
possible that dataSource may be nil, and so dataSource has a
question mark after its name to indicate that increment(forCount:)
should be called only if dataSource isn’t nil. Second, even if
dataSource does exist, there’s no guarantee that it implements
increment(forCount:), because it’s an optional requirement. Here,
the possibility that increment(forCount:) might not be implemented
is also handled by optional chaining. The call to
increment(forCount:) happens only if increment(forCount:) exists
—that is, if it isn’t nil. This is why increment(forCount:) is also
written with a question mark after its name.

Because the call to increment(forCount:) can fail for either of these
two reasons, the call returns an optional Int value. This is true even
though increment(forCount:) is defined as returning a non-optional
Int value in the definition of CounterDataSource. Even though there
are two optional chaining operations, one after another, the result is
still wrapped in a single optional. For more information about using
multiple optional chaining operations, see Linking Multiple Levels of
Chaining.

After calling increment(forCount:), the optional Int that it returns is
unwrapped into a constant called amount, using optional binding. If
the optional Int does contain a value—that is, if the delegate and
method both exist, and the method returned a value—the unwrapped
amount is added onto the stored count property, and incrementation is
complete.

If it’s not possible to retrieve a value from the increment(forCount:)
method—either because dataSource is nil, or because the data

PDF conversion courtesy of www.appsdissected.com

source doesn’t implement increment(forCount:)—then the
increment() method tries to retrieve a value from the data source’s
fixedIncrement property instead. The fixedIncrement property is
also an optional requirement, so its value is an optional Int value,
even though fixedIncrement is defined as a non-optional Int
property as part of the CounterDataSource protocol definition.

Here’s a simple CounterDataSource implementation where the data
source returns a constant value of 3 every time it’s queried. It does
this by implementing the optional fixedIncrement property
requirement:

1 class ThreeSource: NSObject, CounterDataSource {

2 let fixedIncrement = 3

3 }

You can use an instance of ThreeSource as the data source for a new
Counter instance:

1 var counter = Counter()

2 counter.dataSource = ThreeSource()

3 for _ in 1...4 {

4 counter.increment()

5 print(counter.count)

6 }

7 // 3

8 // 6

9 // 9

10 // 12

PDF conversion courtesy of www.appsdissected.com

The code above creates a new Counter instance; sets its data source
to be a new ThreeSource instance; and calls the counter’s
increment() method four times. As expected, the counter’s count
property increases by three each time increment() is called.

Here’s a more complex data source called TowardsZeroSource, which
makes a Counter instance count up or down towards zero from its
current count value:

1 class TowardsZeroSource: NSObject, CounterDataSource

{

2 func increment(forCount count: Int) -> Int {

3 if count == 0 {

4 return 0

5 } else if count < 0 {

6 return 1

7 } else {

8 return -1

9 }

10 }

11 }

The TowardsZeroSource class implements the optional
increment(forCount:) method from the CounterDataSource protocol
and uses the count argument value to work out which direction to
count in. If count is already zero, the method returns 0 to indicate that
no further counting should take place.

You can use an instance of TowardsZeroSource with the existing
Counter instance to count from -4 to zero. Once the counter reaches
zero, no more counting takes place:

PDF conversion courtesy of www.appsdissected.com

1 counter.count = -4

2 counter.dataSource = TowardsZeroSource()

3 for _ in 1...5 {

4 counter.increment()

5 print(counter.count)

6 }

7 // -3

8 // -2

9 // -1

10 // 0

11 // 0

Protocol Extensions
Protocols can be extended to provide method, initializer, subscript,
and computed property implementations to conforming types. This
allows you to define behavior on protocols themselves, rather than in
each type’s individual conformance or in a global function.

For example, the RandomNumberGenerator protocol can be extended
to provide a randomBool() method, which uses the result of the
required random() method to return a random Bool value:

PDF conversion courtesy of www.appsdissected.com

1 extension RandomNumberGenerator {

2 func randomBool() -> Bool {

3 return random() > 0.5

4 }

5 }

By creating an extension on the protocol, all conforming types
automatically gain this method implementation without any additional
modification.

1 let generator = LinearCongruentialGenerator()

2 print("Here's a random number: \

(generator.random())")

3 // Prints "Here's a random number:

0.3746499199817101"

4 print("And here's a random Boolean: \

(generator.randomBool())")

5 // Prints "And here's a random Boolean: true"

Protocol extensions can add implementations to conforming types
but can’t make a protocol extend or inherit from another protocol.
Protocol inheritance is always specified in the protocol declaration
itself.

Providing Default Implementations
You can use protocol extensions to provide a default implementation
to any method or computed property requirement of that protocol. If a
conforming type provides its own implementation of a required

PDF conversion courtesy of www.appsdissected.com

method or property, that implementation will be used instead of the
one provided by the extension.

NOTE

Protocol requirements with default implementations provided by extensions
are distinct from optional protocol requirements. Although conforming types
don’t have to provide their own implementation of either, requirements with
default implementations can be called without optional chaining.

For example, the PrettyTextRepresentable protocol, which inherits
the TextRepresentable protocol can provide a default implementation
of its required prettyTextualDescription property to simply return
the result of accessing the textualDescription property:

1 extension PrettyTextRepresentable {

2 var prettyTextualDescription: String {

3 return textualDescription

4 }

5 }

Adding Constraints to Protocol Extensions
When you define a protocol extension, you can specify constraints
that conforming types must satisfy before the methods and properties
of the extension are available. You write these constraints after the
name of the protocol you’re extending by writing a generic where
clause. For more about generic where clauses, see Generic Where
Clauses.

For example, you can define an extension to the Collection protocol
that applies to any collection whose elements conform to the
Equatable protocol. By constraining a collection’s elements to the
Equatable protocol, a part of the standard library, you can use the ==

PDF conversion courtesy of www.appsdissected.com

and != operators to check for equality and inequality between two
elements.

1 extension Collection where Element: Equatable {

2 func allEqual() -> Bool {

3 for element in self {

4 if element != self.first {

5 return false

6 }

7 }

8 return true

9 }

10 }

The allEqual() method returns true only if all the elements in the
collection are equal.

Consider two arrays of integers, one where all the elements are the
same, and one where they aren’t:

1 let equalNumbers = [100, 100, 100, 100, 100]

2 let differentNumbers = [100, 100, 200, 100, 200]

Because arrays conform to Collection and integers conform to
Equatable, equalNumbers and differentNumbers can use the
allEqual() method:

PDF conversion courtesy of www.appsdissected.com

1 print(equalNumbers.allEqual())

2 // Prints "true"

3 print(differentNumbers.allEqual())

4 // Prints "false"

NOTE

If a conforming type satisfies the requirements for multiple constrained
extensions that provide implementations for the same method or property,
Swift uses the implementation corresponding to the most specialized
constraints.

PDF conversion courtesy of www.appsdissected.com

Generics

Generic code enables you to write flexible, reusable functions and
types that can work with any type, subject to requirements that you
define. You can write code that avoids duplication and expresses its
intent in a clear, abstracted manner.

Generics are one of the most powerful features of Swift, and much of
the Swift standard library is built with generic code. In fact, you’ve
been using generics throughout the Language Guide, even if you
didn’t realize it. For example, Swift’s Array and Dictionary types are
both generic collections. You can create an array that holds Int
values, or an array that holds String values, or indeed an array for
any other type that can be created in Swift. Similarly, you can create a
dictionary to store values of any specified type, and there are no
limitations on what that type can be.

The Problem That Generics Solve
Here’s a standard, nongeneric function called swapTwoInts(_:_:),
which swaps two Int values:

1 func swapTwoInts(_ a: inout Int, _ b: inout Int) {

2 let temporaryA = a

3 a = b

4 b = temporaryA

5 }

This function makes use of in-out parameters to swap the values of a
and b, as described in In-Out Parameters.

PDF conversion courtesy of www.appsdissected.com

The swapTwoInts(_:_:) function swaps the original value of b into a,
and the original value of a into b. You can call this function to swap the
values in two Int variables:

1 var someInt = 3

2 var anotherInt = 107

3 swapTwoInts(&someInt, &anotherInt)

4 print("someInt is now \(someInt), and anotherInt is

now \(anotherInt)")

5 // Prints "someInt is now 107, and anotherInt is now

3"

The swapTwoInts(_:_:) function is useful, but it can only be used with
Int values. If you want to swap two String values, or two Double
values, you have to write more functions, such as the
swapTwoStrings(_:_:) and swapTwoDoubles(_:_:) functions shown
below:

PDF conversion courtesy of www.appsdissected.com

1 func swapTwoStrings(_ a: inout String, _ b: inout

String) {

2 let temporaryA = a

3 a = b

4 b = temporaryA

5 }

6

7 func swapTwoDoubles(_ a: inout Double, _ b: inout

Double) {

8 let temporaryA = a

9 a = b

10 b = temporaryA

11 }

You may have noticed that the bodies of the swapTwoInts(_:_:),
swapTwoStrings(_:_:), and swapTwoDoubles(_:_:) functions are
identical. The only difference is the type of the values that they accept
(Int, String, and Double).

It’s more useful, and considerably more flexible, to write a single
function that swaps two values of any type. Generic code enables you
to write such a function. (A generic version of these functions is
defined below.)

NOTE

In all three functions, the types of a and b must be the same. If a and b aren’t of
the same type, it isn’t possible to swap their values. Swift is a type-safe
language, and doesn’t allow (for example) a variable of type String and a
variable of type Double to swap values with each other. Attempting to do so
results in a compile-time error.

PDF conversion courtesy of www.appsdissected.com

Generic Functions
Generic functions can work with any type. Here’s a generic version of
the swapTwoInts(_:_:) function from above, called
swapTwoValues(_:_:):

1 func swapTwoValues<T>(_ a: inout T, _ b: inout T) {

2 let temporaryA = a

3 a = b

4 b = temporaryA

5 }

The body of the swapTwoValues(_:_:) function is identical to the body
of the swapTwoInts(_:_:) function. However, the first line of
swapTwoValues(_:_:) is slightly different from swapTwoInts(_:_:).
Here’s how the first lines compare:

1 func swapTwoInts(_ a: inout Int, _ b: inout Int)

2 func swapTwoValues<T>(_ a: inout T, _ b: inout T)

The generic version of the function uses a placeholder type name
(called T, in this case) instead of an actual type name (such as Int,
String, or Double). The placeholder type name doesn’t say anything
about what T must be, but it does say that both a and b must be of the
same type T, whatever T represents. The actual type to use in place of
T is determined each time the swapTwoValues(_:_:) function is called.

The other difference between a generic function and a nongeneric
function is that the generic function’s name (swapTwoValues(_:_:)) is
followed by the placeholder type name (T) inside angle brackets (<T>).
The brackets tell Swift that T is a placeholder type name within the
swapTwoValues(_:_:) function definition. Because T is a placeholder,
Swift doesn’t look for an actual type called T.

PDF conversion courtesy of www.appsdissected.com

The swapTwoValues(_:_:) function can now be called in the same way
as swapTwoInts, except that it can be passed two values of any type,
as long as both of those values are of the same type as each other.
Each time swapTwoValues(_:_:) is called, the type to use for T is
inferred from the types of values passed to the function.

In the two examples below, T is inferred to be Int and String
respectively:

1 var someInt = 3

2 var anotherInt = 107

3 swapTwoValues(&someInt, &anotherInt)

4 // someInt is now 107, and anotherInt is now 3

5

6 var someString = "hello"

7 var anotherString = "world"

8 swapTwoValues(&someString, &anotherString)

9 // someString is now "world", and anotherString is

now "hello"

NOTE

The swapTwoValues(_:_:) function defined above is inspired by a generic
function called swap, which is part of the Swift standard library, and is
automatically made available for you to use in your apps. If you need the
behavior of the swapTwoValues(_:_:) function in your own code, you can use
Swift’s existing swap(_:_:) function rather than providing your own
implementation.

Type Parameters

PDF conversion courtesy of www.appsdissected.com

In the swapTwoValues(_:_:) example above, the placeholder type T is
an example of a type parameter. Type parameters specify and name a
placeholder type, and are written immediately after the function’s
name, between a pair of matching angle brackets (such as <T>).

Once you specify a type parameter, you can use it to define the type of
a function’s parameters (such as the a and b parameters of the
swapTwoValues(_:_:) function), or as the function’s return type, or as
a type annotation within the body of the function. In each case, the
type parameter is replaced with an actual type whenever the function
is called. (In the swapTwoValues(_:_:) example above, T was replaced
with Int the first time the function was called, and was replaced with
String the second time it was called.)

You can provide more than one type parameter by writing multiple
type parameter names within the angle brackets, separated by
commas.

Naming Type Parameters
In most cases, type parameters have descriptive names, such as Key
and Value in Dictionary<Key, Value> and Element in
Array<Element>, which tells the reader about the relationship between
the type parameter and the generic type or function it’s used in.
However, when there isn’t a meaningful relationship between them,
it’s traditional to name them using single letters such as T, U, and V,
such as T in the swapTwoValues(_:_:) function above.

NOTE

Always give type parameters upper camel case names (such as T and
MyTypeParameter) to indicate that they’re a placeholder for a type, not a value.

PDF conversion courtesy of www.appsdissected.com

Generic Types
In addition to generic functions, Swift enables you to define your own
generic types. These are custom classes, structures, and
enumerations that can work with any type, in a similar way to Array
and Dictionary.

This section shows you how to write a generic collection type called
Stack. A stack is an ordered set of values, similar to an array, but with
a more restricted set of operations than Swift’s Array type. An array
allows new items to be inserted and removed at any location in the
array. A stack, however, allows new items to be appended only to the
end of the collection (known as pushing a new value on to the stack).
Similarly, a stack allows items to be removed only from the end of the
collection (known as popping a value off the stack).

NOTE

The concept of a stack is used by the UINavigationController class to
model the view controllers in its navigation hierarchy. You call the
UINavigationController class pushViewController(_:animated:)
method to add (or push) a view controller on to the navigation stack, and its
popViewControllerAnimated(_:) method to remove (or pop) a view
controller from the navigation stack. A stack is a useful collection model
whenever you need a strict “last in, first out” approach to managing a collection.

The illustration below shows the push and pop behavior for a stack:

PDF conversion courtesy of www.appsdissected.com

1. There are currently three values on the stack.

2. A fourth value is pushed onto the top of the stack.

3. The stack now holds four values, with the most recent one at the
top.

4. The top item in the stack is popped.

5. After popping a value, the stack once again holds three values.

Here’s how to write a nongeneric version of a stack, in this case for a
stack of Int values:

PDF conversion courtesy of www.appsdissected.com

1 struct IntStack {

2 var items: [Int] = []

3 mutating func push(_ item: Int) {

4 items.append(item)

5 }

6 mutating func pop() -> Int {

7 return items.removeLast()

8 }

9 }

This structure uses an Array property called items to store the values
in the stack. Stack provides two methods, push and pop, to push and
pop values on and off the stack. These methods are marked as
mutating, because they need to modify (or mutate) the structure’s
items array.

The IntStack type shown above can only be used with Int values,
however. It would be much more useful to define a generic Stack
structure, that can manage a stack of any type of value.

Here’s a generic version of the same code:

PDF conversion courtesy of www.appsdissected.com

1 struct Stack<Element> {

2 var items: [Element] = []

3 mutating func push(_ item: Element) {

4 items.append(item)

5 }

6 mutating func pop() -> Element {

7 return items.removeLast()

8 }

9 }

Note how the generic version of Stack is essentially the same as the
nongeneric version, but with a type parameter called Element instead
of an actual type of Int. This type parameter is written within a pair of
angle brackets (<Element>) immediately after the structure’s name.

Element defines a placeholder name for a type to be provided later.
This future type can be referred to as Element anywhere within the
structure’s definition. In this case, Element is used as a placeholder in
three places:

To create a property called items, which is initialized with an
empty array of values of type Element

To specify that the push(_:) method has a single parameter
called item, which must be of type Element

To specify that the value returned by the pop() method will be a
value of type Element

Because it’s a generic type, Stack can be used to create a stack of
any valid type in Swift, in a similar manner to Array and Dictionary.

PDF conversion courtesy of www.appsdissected.com

You create a new Stack instance by writing the type to be stored in the
stack within angle brackets. For example, to create a new stack of
strings, you write Stack<String>():

1 var stackOfStrings = Stack<String>()

2 stackOfStrings.push("uno")

3 stackOfStrings.push("dos")

4 stackOfStrings.push("tres")

5 stackOfStrings.push("cuatro")

6 // the stack now contains 4 strings

Here’s how stackOfStrings looks after pushing these four values on
to the stack:

Popping a value from the stack removes and returns the top value,
"cuatro":

1 let fromTheTop = stackOfStrings.pop()

2 // fromTheTop is equal to "cuatro", and the stack now

contains 3 strings

Here’s how the stack looks after popping its top value:

PDF conversion courtesy of www.appsdissected.com

Extending a Generic Type
When you extend a generic type, you don’t provide a type parameter
list as part of the extension’s definition. Instead, the type parameter list
from the original type definition is available within the body of the
extension, and the original type parameter names are used to refer to
the type parameters from the original definition.

The following example extends the generic Stack type to add a read-
only computed property called topItem, which returns the top item on
the stack without popping it from the stack:

1 extension Stack {

2 var topItem: Element? {

3 return items.isEmpty ? nil :

items[items.count - 1]

4 }

5 }

PDF conversion courtesy of www.appsdissected.com

The topItem property returns an optional value of type Element. If the
stack is empty, topItem returns nil; if the stack isn’t empty, topItem
returns the final item in the items array.

Note that this extension doesn’t define a type parameter list. Instead,
the Stack type’s existing type parameter name, Element, is used within
the extension to indicate the optional type of the topItem computed
property.

The topItem computed property can now be used with any Stack
instance to access and query its top item without removing it.

1 if let topItem = stackOfStrings.topItem {

2 print("The top item on the stack is \(topItem).")

3 }

4 // Prints "The top item on the stack is tres."

Extensions of a generic type can also include requirements that
instances of the extended type must satisfy in order to gain the new
functionality, as discussed in Extensions with a Generic Where Clause
below.

Type Constraints
The swapTwoValues(_:_:) function and the Stack type can work with
any type. However, it’s sometimes useful to enforce certain type
constraints on the types that can be used with generic functions and
generic types. Type constraints specify that a type parameter must
inherit from a specific class, or conform to a particular protocol or
protocol composition.

PDF conversion courtesy of www.appsdissected.com

For example, Swift’s Dictionary type places a limitation on the types
that can be used as keys for a dictionary. As described in Dictionaries,
the type of a dictionary’s keys must be hashable. That is, it must
provide a way to make itself uniquely representable. Dictionary
needs its keys to be hashable so that it can check whether it already
contains a value for a particular key. Without this requirement,
Dictionary couldn’t tell whether it should insert or replace a value for
a particular key, nor would it be able to find a value for a given key
that’s already in the dictionary.

This requirement is enforced by a type constraint on the key type for
Dictionary, which specifies that the key type must conform to the
Hashable protocol, a special protocol defined in the Swift standard
library. All of Swift’s basic types (such as String, Int, Double, and
Bool) are hashable by default. For information about making your own
custom types conform to the Hashable protocol, see Conforming to the
Hashable Protocol.

You can define your own type constraints when creating custom
generic types, and these constraints provide much of the power of
generic programming. Abstract concepts like Hashable characterize
types in terms of their conceptual characteristics, rather than their
concrete type.

Type Constraint Syntax
You write type constraints by placing a single class or protocol
constraint after a type parameter’s name, separated by a colon, as
part of the type parameter list. The basic syntax for type constraints on
a generic function is shown below (although the syntax is the same for
generic types):

https://developer.apple.com/documentation/swift/hashable#2849490

PDF conversion courtesy of www.appsdissected.com

1 func someFunction<T: SomeClass, U: SomeProtocol>

(someT: T, someU: U) {

2 // function body goes here

3 }

The hypothetical function above has two type parameters. The first
type parameter, T, has a type constraint that requires T to be a
subclass of SomeClass. The second type parameter, U, has a type
constraint that requires U to conform to the protocol SomeProtocol.

Type Constraints in Action
Here’s a nongeneric function called findIndex(ofString:in:), which
is given a String value to find and an array of String values within
which to find it. The findIndex(ofString:in:) function returns an
optional Int value, which will be the index of the first matching string in
the array if it’s found, or nil if the string can’t be found:

1 func findIndex(ofString valueToFind: String, in

array: [String]) -> Int? {

2 for (index, value) in array.enumerated() {

3 if value == valueToFind {

4 return index

5 }

6 }

7 return nil

8 }

The findIndex(ofString:in:) function can be used to find a string
value in an array of strings:

PDF conversion courtesy of www.appsdissected.com

1 let strings = ["cat", "dog", "llama", "parakeet",

"terrapin"]

2 if let foundIndex = findIndex(ofString: "llama", in:

strings) {

3 print("The index of llama is \(foundIndex)")

4 }

5 // Prints "The index of llama is 2"

The principle of finding the index of a value in an array isn’t useful only
for strings, however. You can write the same functionality as a generic
function by replacing any mention of strings with values of some type
T instead.

Here’s how you might expect a generic version of
findIndex(ofString:in:), called findIndex(of:in:), to be written.
Note that the return type of this function is still Int?, because the
function returns an optional index number, not an optional value from
the array. Be warned, though—this function doesn’t compile, for
reasons explained after the example:

1 func findIndex<T>(of valueToFind: T, in array:[T]) ->

Int? {

2 for (index, value) in array.enumerated() {

3 if value == valueToFind {

4 return index

5 }

6 }

7 return nil

8 }

PDF conversion courtesy of www.appsdissected.com

This function doesn’t compile as written above. The problem lies with
the equality check, “if value == valueToFind”. Not every type in
Swift can be compared with the equal to operator (==). If you create
your own class or structure to represent a complex data model, for
example, then the meaning of “equal to” for that class or structure isn’t
something that Swift can guess for you. Because of this, it isn’t
possible to guarantee that this code will work for every possible type T,
and an appropriate error is reported when you try to compile the code.

All is not lost, however. The Swift standard library defines a protocol
called Equatable, which requires any conforming type to implement
the equal to operator (==) and the not equal to operator (!=) to
compare any two values of that type. All of Swift’s standard types
automatically support the Equatable protocol.

Any type that’s Equatable can be used safely with the
findIndex(of:in:) function, because it’s guaranteed to support the
equal to operator. To express this fact, you write a type constraint of
Equatable as part of the type parameter’s definition when you define
the function:

1 func findIndex<T: Equatable>(of valueToFind: T, in

array:[T]) -> Int? {

2 for (index, value) in array.enumerated() {

3 if value == valueToFind {

4 return index

5 }

6 }

7 return nil

8 }

The single type parameter for findIndex(of:in:) is written as T:
Equatable, which means “any type T that conforms to the Equatable

PDF conversion courtesy of www.appsdissected.com

protocol.”

The findIndex(of:in:) function now compiles successfully and can
be used with any type that’s Equatable, such as Double or String:

1 let doubleIndex = findIndex(of: 9.3, in: [3.14159,

0.1, 0.25])

2 // doubleIndex is an optional Int with no value,

because 9.3 isn't in the array

3 let stringIndex = findIndex(of: "Andrea", in:

["Mike", "Malcolm", "Andrea"])

4 // stringIndex is an optional Int containing a value

of 2

Associated Types
When defining a protocol, it’s sometimes useful to declare one or
more associated types as part of the protocol’s definition. An
associated type gives a placeholder name to a type that’s used as part
of the protocol. The actual type to use for that associated type isn’t
specified until the protocol is adopted. Associated types are specified
with the associatedtype keyword.

Associated Types in Action
Here’s an example of a protocol called Container, which declares an
associated type called Item:

PDF conversion courtesy of www.appsdissected.com

1 protocol Container {

2 associatedtype Item

3 mutating func append(_ item: Item)

4 var count: Int { get }

5 subscript(i: Int) -> Item { get }

6 }

The Container protocol defines three required capabilities that any
container must provide:

It must be possible to add a new item to the container with an
append(_:) method.

It must be possible to access a count of the items in the container
through a count property that returns an Int value.

It must be possible to retrieve each item in the container with a
subscript that takes an Int index value.

This protocol doesn’t specify how the items in the container should be
stored or what type they’re allowed to be. The protocol only specifies
the three bits of functionality that any type must provide in order to be
considered a Container. A conforming type can provide additional
functionality, as long as it satisfies these three requirements.

Any type that conforms to the Container protocol must be able to
specify the type of values it stores. Specifically, it must ensure that
only items of the right type are added to the container, and it must be
clear about the type of the items returned by its subscript.

To define these requirements, the Container protocol needs a way to
refer to the type of the elements that a container will hold, without
knowing what that type is for a specific container. The Container
protocol needs to specify that any value passed to the append(_:)
method must have the same type as the container’s element type, and

PDF conversion courtesy of www.appsdissected.com

that the value returned by the container’s subscript will be of the same
type as the container’s element type.

To achieve this, the Container protocol declares an associated type
called Item, written as associatedtype Item. The protocol doesn’t
define what Item is—that information is left for any conforming type to
provide. Nonetheless, the Item alias provides a way to refer to the
type of the items in a Container, and to define a type for use with the
append(_:) method and subscript, to ensure that the expected
behavior of any Container is enforced.

Here’s a version of the nongeneric IntStack type from Generic Types
above, adapted to conform to the Container protocol:

PDF conversion courtesy of www.appsdissected.com

1 struct IntStack: Container {

2 // original IntStack implementation

3 var items: [Int] = []

4 mutating func push(_ item: Int) {

5 items.append(item)

6 }

7 mutating func pop() -> Int {

8 return items.removeLast()

9 }

10 // conformance to the Container protocol

11 typealias Item = Int

12 mutating func append(_ item: Int) {

13 self.push(item)

14 }

15 var count: Int {

16 return items.count

17 }

18 subscript(i: Int) -> Int {

19 return items[i]

20 }

21 }

The IntStack type implements all three of the Container protocol’s
requirements, and in each case wraps part of the IntStack type’s
existing functionality to satisfy these requirements.

Moreover, IntStack specifies that for this implementation of
Container, the appropriate Item to use is a type of Int. The definition

PDF conversion courtesy of www.appsdissected.com

of typealias Item = Int turns the abstract type of Item into a
concrete type of Int for this implementation of the Container protocol.

Thanks to Swift’s type inference, you don’t actually need to declare a
concrete Item of Int as part of the definition of IntStack. Because
IntStack conforms to all of the requirements of the Container
protocol, Swift can infer the appropriate Item to use, simply by looking
at the type of the append(_:) method’s item parameter and the return
type of the subscript. Indeed, if you delete the typealias Item = Int
line from the code above, everything still works, because it’s clear
what type should be used for Item.

You can also make the generic Stack type conform to the Container
protocol:

PDF conversion courtesy of www.appsdissected.com

1 struct Stack<Element>: Container {

2 // original Stack<Element> implementation

3 var items: [Element] = []

4 mutating func push(_ item: Element) {

5 items.append(item)

6 }

7 mutating func pop() -> Element {

8 return items.removeLast()

9 }

10 // conformance to the Container protocol

11 mutating func append(_ item: Element) {

12 self.push(item)

13 }

14 var count: Int {

15 return items.count

16 }

17 subscript(i: Int) -> Element {

18 return items[i]

19 }

20 }

This time, the type parameter Element is used as the type of the
append(_:) method’s item parameter and the return type of the
subscript. Swift can therefore infer that Element is the appropriate type
to use as the Item for this particular container.

Extending an Existing Type to Specify an Associated Type

PDF conversion courtesy of www.appsdissected.com

You can extend an existing type to add conformance to a protocol, as
described in Adding Protocol Conformance with an Extension. This
includes a protocol with an associated type.

Swift’s Array type already provides an append(_:) method, a count
property, and a subscript with an Int index to retrieve its elements.
These three capabilities match the requirements of the Container
protocol. This means that you can extend Array to conform to the
Container protocol simply by declaring that Array adopts the protocol.
You do this with an empty extension, as described in Declaring
Protocol Adoption with an Extension:

 extension Array: Container {}

Array’s existing append(_:) method and subscript enable Swift to infer
the appropriate type to use for Item, just as for the generic Stack type
above. After defining this extension, you can use any Array as a
Container.

Adding Constraints to an Associated Type
You can add type constraints to an associated type in a protocol to
require that conforming types satisfy those constraints. For example,
the following code defines a version of Container that requires the
items in the container to be equatable.

1 protocol Container {

2 associatedtype Item: Equatable

3 mutating func append(_ item: Item)

4 var count: Int { get }

5 subscript(i: Int) -> Item { get }

6 }

PDF conversion courtesy of www.appsdissected.com

To conform to this version of Container, the container’s Item type has
to conform to the Equatable protocol.

Using a Protocol in Its Associated Type’s Constraints
A protocol can appear as part of its own requirements. For example,
here’s a protocol that refines the Container protocol, adding the
requirement of a suffix(_:) method. The suffix(_:) method returns
a given number of elements from the end of the container, storing
them in an instance of the Suffix type.

1 protocol SuffixableContainer: Container {

2 associatedtype Suffix: SuffixableContainer where

Suffix.Item == Item

3 func suffix(_ size: Int) -> Suffix

4 }

In this protocol, Suffix is an associated type, like the Item type in the
Container example above. Suffix has two constraints: It must
conform to the SuffixableContainer protocol (the protocol currently
being defined), and its Item type must be the same as the container’s
Item type. The constraint on Item is a generic where clause, which is
discussed in Associated Types with a Generic Where Clause below.

Here’s an extension of the Stack type from Generic Types above that
adds conformance to the SuffixableContainer protocol:

PDF conversion courtesy of www.appsdissected.com

1 extension Stack: SuffixableContainer {

2 func suffix(_ size: Int) -> Stack {

3 var result = Stack()

4 for index in (count-size)..<count {

5 result.append(self[index])

6 }

7 return result

8 }

9 // Inferred that Suffix is Stack.

10 }

11 var stackOfInts = Stack<Int>()

12 stackOfInts.append(10)

13 stackOfInts.append(20)

14 stackOfInts.append(30)

15 let suffix = stackOfInts.suffix(2)

16 // suffix contains 20 and 30

In the example above, the Suffix associated type for Stack is also
Stack, so the suffix operation on Stack returns another Stack.
Alternatively, a type that conforms to SuffixableContainer can have a
Suffix type that’s different from itself—meaning the suffix operation
can return a different type. For example, here’s an extension to the
nongeneric IntStack type that adds SuffixableContainer
conformance, using Stack<Int> as its suffix type instead of IntStack:

PDF conversion courtesy of www.appsdissected.com

1 extension IntStack: SuffixableContainer {

2 func suffix(_ size: Int) -> Stack<Int> {

3 var result = Stack<Int>()

4 for index in (count-size)..<count {

5 result.append(self[index])

6 }

7 return result

8 }

9 // Inferred that Suffix is Stack<Int>.

10 }

Generic Where Clauses
Type constraints, as described in Type Constraints, enable you to
define requirements on the type parameters associated with a generic
function, subscript, or type.

It can also be useful to define requirements for associated types. You
do this by defining a generic where clause. A generic where clause
enables you to require that an associated type must conform to a
certain protocol, or that certain type parameters and associated types
must be the same. A generic where clause starts with the where
keyword, followed by constraints for associated types or equality
relationships between types and associated types. You write a generic
where clause right before the opening curly brace of a type or
function’s body.

The example below defines a generic function called allItemsMatch,
which checks to see if two Container instances contain the same

PDF conversion courtesy of www.appsdissected.com

items in the same order. The function returns a Boolean value of true
if all items match and a value of false if they don’t.

The two containers to be checked don’t have to be the same type of
container (although they can be), but they do have to hold the same
type of items. This requirement is expressed through a combination of
type constraints and a generic where clause:

PDF conversion courtesy of www.appsdissected.com

1 func allItemsMatch<C1: Container, C2: Container>

2 (_ someContainer: C1, _ anotherContainer: C2) ->

Bool

3 where C1.Item == C2.Item, C1.Item: Equatable {

4

5 // Check that both containers contain the

same number of items.

6 if someContainer.count !=

anotherContainer.count {

7 return false

8 }

9

10 // Check each pair of items to see if they're

equivalent.

11 for i in 0..<someContainer.count {

12 if someContainer[i] !=

anotherContainer[i] {

13 return false

14 }

15 }

16

17 // All items match, so return true.

18 return true

19 }

This function takes two arguments called someContainer and
anotherContainer. The someContainer argument is of type C1, and the

PDF conversion courtesy of www.appsdissected.com

anotherContainer argument is of type C2. Both C1 and C2 are type
parameters for two container types to be determined when the
function is called.

The following requirements are placed on the function’s two type
parameters:

C1 must conform to the Container protocol (written as C1:
Container).

C2 must also conform to the Container protocol (written as C2:
Container).

The Item for C1 must be the same as the Item for C2 (written as
C1.Item == C2.Item).

The Item for C1 must conform to the Equatable protocol (written
as C1.Item: Equatable).

The first and second requirements are defined in the function’s type
parameter list, and the third and fourth requirements are defined in the
function’s generic where clause.

These requirements mean:

someContainer is a container of type C1.

anotherContainer is a container of type C2.

someContainer and anotherContainer contain the same type of
items.

The items in someContainer can be checked with the not equal
operator (!=) to see if they’re different from each other.

The third and fourth requirements combine to mean that the items in
anotherContainer can also be checked with the != operator, because
they’re exactly the same type as the items in someContainer.

PDF conversion courtesy of www.appsdissected.com

These requirements enable the allItemsMatch(_:_:) function to
compare the two containers, even if they’re of a different container
type.

The allItemsMatch(_:_:) function starts by checking that both
containers contain the same number of items. If they contain a
different number of items, there’s no way that they can match, and the
function returns false.

After making this check, the function iterates over all of the items in
someContainer with a for-in loop and the half-open range operator
(..<). For each item, the function checks whether the item from
someContainer isn’t equal to the corresponding item in
anotherContainer. If the two items aren’t equal, then the two
containers don’t match, and the function returns false.

If the loop finishes without finding a mismatch, the two containers
match, and the function returns true.

Here’s how the allItemsMatch(_:_:) function looks in action:

PDF conversion courtesy of www.appsdissected.com

1 var stackOfStrings = Stack<String>()

2 stackOfStrings.push("uno")

3 stackOfStrings.push("dos")

4 stackOfStrings.push("tres")

5

6 var arrayOfStrings = ["uno", "dos", "tres"]

7

8 if allItemsMatch(stackOfStrings, arrayOfStrings) {

9 print("All items match.")

10 } else {

11 print("Not all items match.")

12 }

13 // Prints "All items match."

The example above creates a Stack instance to store String values,
and pushes three strings onto the stack. The example also creates an
Array instance initialized with an array literal containing the same
three strings as the stack. Even though the stack and the array are of
a different type, they both conform to the Container protocol, and both
contain the same type of values. You can therefore call the
allItemsMatch(_:_:) function with these two containers as its
arguments. In the example above, the allItemsMatch(_:_:) function
correctly reports that all of the items in the two containers match.

Extensions with a Generic Where Clause
You can also use a generic where clause as part of an extension. The
example below extends the generic Stack structure from the previous

PDF conversion courtesy of www.appsdissected.com

examples to add an isTop(_:) method.

1 extension Stack where Element: Equatable {

2 func isTop(_ item: Element) -> Bool {

3 guard let topItem = items.last else {

4 return false

5 }

6 return topItem == item

7 }

8 }

This new isTop(_:) method first checks that the stack isn’t empty, and
then compares the given item against the stack’s topmost item. If you
tried to do this without a generic where clause, you would have a
problem: The implementation of isTop(_:) uses the == operator, but
the definition of Stack doesn’t require its items to be equatable, so
using the == operator results in a compile-time error. Using a generic
where clause lets you add a new requirement to the extension, so that
the extension adds the isTop(_:) method only when the items in the
stack are equatable.

Here’s how the isTop(_:) method looks in action:

1 if stackOfStrings.isTop("tres") {

2 print("Top element is tres.")

3 } else {

4 print("Top element is something else.")

5 }

6 // Prints "Top element is tres."

PDF conversion courtesy of www.appsdissected.com

If you try to call the isTop(_:) method on a stack whose elements
aren’t equatable, you’ll get a compile-time error.

1 struct NotEquatable { }

2 var notEquatableStack = Stack<NotEquatable>()

3 let notEquatableValue = NotEquatable()

4 notEquatableStack.push(notEquatableValue)

5 notEquatableStack.isTop(notEquatableValue) // Error

You can use a generic where clause with extensions to a protocol. The
example below extends the Container protocol from the previous
examples to add a startsWith(_:) method.

1 extension Container where Item: Equatable {

2 func startsWith(_ item: Item) -> Bool {

3 return count >= 1 && self[0] == item

4 }

5 }

The startsWith(_:) method first makes sure that the container has at
least one item, and then it checks whether the first item in the
container matches the given item. This new startsWith(_:) method
can be used with any type that conforms to the Container protocol,
including the stacks and arrays used above, as long as the container’s
items are equatable.

PDF conversion courtesy of www.appsdissected.com

1 if [9, 9, 9].startsWith(42) {

2 print("Starts with 42.")

3 } else {

4 print("Starts with something else.")

5 }

6 // Prints "Starts with something else."

The generic where clause in the example above requires Item to
conform to a protocol, but you can also write a generic where clauses
that require Item to be a specific type. For example:

1 extension Container where Item == Double {

2 func average() -> Double {

3 var sum = 0.0

4 for index in 0..<count {

5 sum += self[index]

6 }

7 return sum / Double(count)

8 }

9 }

10 print([1260.0, 1200.0, 98.6, 37.0].average())

11 // Prints "648.9"

This example adds an average() method to containers whose Item
type is Double. It iterates over the items in the container to add them
up, and divides by the container’s count to compute the average. It
explicitly converts the count from Int to Double to be able to do
floating-point division.

PDF conversion courtesy of www.appsdissected.com

You can include multiple requirements in a generic where clause that’s
part of an extension, just like you can for a generic where clause that
you write elsewhere. Separate each requirement in the list with a
comma.

Contextual Where Clauses
You can write a generic where clause as part of a declaration that
doesn’t have its own generic type constraints, when you’re already
working in the context of generic types. For example, you can write a
generic where clause on a subscript of a generic type or on a method
in an extension to a generic type. The Container structure is generic,
and the where clauses in the example below specify what type
constraints have to be satisfied to make these new methods available
on a container.

PDF conversion courtesy of www.appsdissected.com

1 extension Container {

2 func average() -> Double where Item == Int {

3 var sum = 0.0

4 for index in 0..<count {

5 sum += Double(self[index])

6 }

7 return sum / Double(count)

8 }

9 func endsWith(_ item: Item) -> Bool where Item:

Equatable {

10 return count >= 1 && self[count-1] == item

11 }

12 }

13 let numbers = [1260, 1200, 98, 37]

14 print(numbers.average())

15 // Prints "648.75"

16 print(numbers.endsWith(37))

17 // Prints "true"

This example adds an average() method to Container when the items
are integers, and it adds an endsWith(_:) method when the items are
equatable. Both functions include a generic where clause that adds
type constraints to the generic Item type parameter from the original
declaration of Container.

If you want to write this code without using contextual where clauses,
you write two extensions, one for each generic where clause. The
example above and the example below have the same behavior.

PDF conversion courtesy of www.appsdissected.com

1 extension Container where Item == Int {

2 func average() -> Double {

3 var sum = 0.0

4 for index in 0..<count {

5 sum += Double(self[index])

6 }

7 return sum / Double(count)

8 }

9 }

10 extension Container where Item: Equatable {

11 func endsWith(_ item: Item) -> Bool {

12 return count >= 1 && self[count-1] == item

13 }

14 }

In the version of this example that uses contextual where clauses, the
implementation of average() and endsWith(_:) are both in the same
extension because each method’s generic where clause states the
requirements that need to be satisfied to make that method available.
Moving those requirements to the extensions’ generic where clauses
makes the methods available in the same situations, but requires one
extension per requirement.

Associated Types with a Generic Where Clause
You can include a generic where clause on an associated type. For
example, suppose you want to make a version of Container that

PDF conversion courtesy of www.appsdissected.com

includes an iterator, like what the Sequence protocol uses in the
standard library. Here’s how you write that:

1 protocol Container {

2 associatedtype Item

3 mutating func append(_ item: Item)

4 var count: Int { get }

5 subscript(i: Int) -> Item { get }

6

7 associatedtype Iterator: IteratorProtocol where

Iterator.Element == Item

8 func makeIterator() -> Iterator

9 }

The generic where clause on Iterator requires that the iterator must
traverse over elements of the same item type as the container’s items,
regardless of the iterator’s type. The makeIterator() function
provides access to a container’s iterator.

For a protocol that inherits from another protocol, you add a constraint
to an inherited associated type by including the generic where clause
in the protocol declaration. For example, the following code declares a
ComparableContainer protocol that requires Item to conform to
Comparable:

 protocol ComparableContainer: Container where Item:

Comparable { }

PDF conversion courtesy of www.appsdissected.com

Generic Subscripts
Subscripts can be generic, and they can include generic where
clauses. You write the placeholder type name inside angle brackets
after subscript, and you write a generic where clause right before the
opening curly brace of the subscript’s body. For example:

1 extension Container {

2 subscript<Indices: Sequence>(indices: Indices) ->

[Item]

3 where Indices.Iterator.Element == Int {

4 var result: [Item] = []

5 for index in indices {

6 result.append(self[index])

7 }

8 return result

9 }

10 }

This extension to the Container protocol adds a subscript that takes a
sequence of indices and returns an array containing the items at each
given index. This generic subscript is constrained as follows:

The generic parameter Indices in angle brackets has to be a type
that conforms to the Sequence protocol from the standard library.

The subscript takes a single parameter, indices, which is an
instance of that Indices type.

The generic where clause requires that the iterator for the
sequence must traverse over elements of type Int. This ensures

PDF conversion courtesy of www.appsdissected.com

that the indices in the sequence are the same type as the indices
used for a container.

Taken together, these constraints mean that the value passed for the
indices parameter is a sequence of integers.

PDF conversion courtesy of www.appsdissected.com

Opaque Types

A function or method with an opaque return type hides its return
value’s type information. Instead of providing a concrete type as the
function’s return type, the return value is described in terms of the
protocols it supports. Hiding type information is useful at boundaries
between a module and code that calls into the module, because the
underlying type of the return value can remain private. Unlike
returning a value whose type is a protocol type, opaque types
preserve type identity—the compiler has access to the type
information, but clients of the module don’t.

The Problem That Opaque Types Solve
For example, suppose you’re writing a module that draws ASCII art
shapes. The basic characteristic of an ASCII art shape is a draw()
function that returns the string representation of that shape, which
you can use as the requirement for the Shape protocol:

PDF conversion courtesy of www.appsdissected.com

1 protocol Shape {

2 func draw() -> String

3 }

4

5 struct Triangle: Shape {

6 var size: Int

7 func draw() -> String {

8 var result: [String] = []

9 for length in 1...size {

10 result.append(String(repeating: "*",

count: length))

11 }

12 return result.joined(separator: "\n")

13 }

14 }

15 let smallTriangle = Triangle(size: 3)

16 print(smallTriangle.draw())

17 // *

18 // **

19 // ***

You could use generics to implement operations like flipping a shape
vertically, as shown in the code below. However, there’s an important
limitation to this approach: The flipped result exposes the exact
generic types that were used to create it.

PDF conversion courtesy of www.appsdissected.com

1 struct FlippedShape<T: Shape>: Shape {

2 var shape: T

3 func draw() -> String {

4 let lines = shape.draw().split(separator:

"\n")

5 return lines.reversed().joined(separator:

"\n")

6 }

7 }

8 let flippedTriangle = FlippedShape(shape:

smallTriangle)

9 print(flippedTriangle.draw())

10 // ***

11 // **

12 // *

This approach to defining a JoinedShape<T: Shape, U: Shape>
structure that joins two shapes together vertically, like the code below
shows, results in types like JoinedShape<FlippedShape<Triangle>,
Triangle> from joining a flipped triangle with another triangle.

PDF conversion courtesy of www.appsdissected.com

1 struct JoinedShape<T: Shape, U: Shape>: Shape {

2 var top: T

3 var bottom: U

4 func draw() -> String {

5 return top.draw() + "\n" + bottom.draw()

6 }

7 }

8 let joinedTriangles = JoinedShape(top:

smallTriangle, bottom: flippedTriangle)

9 print(joinedTriangles.draw())

10 // *

11 // **

12 // ***

13 // ***

14 // **

15 // *

Exposing detailed information about the creation of a shape allows
types that aren’t meant to be part of the ASCII art module’s public
interface to leak out because of the need to state the full return type.
The code inside the module could build up the same shape in a
variety of ways, and other code outside the module that uses the
shape shouldn’t have to account for the implementation details about
the list of transformations. Wrapper types like JoinedShape and
FlippedShape don’t matter to the module’s users, and they shouldn’t
be visible. The module’s public interface consists of operations like
joining and flipping a shape, and those operations return another
Shape value.

PDF conversion courtesy of www.appsdissected.com

Returning an Opaque Type
You can think of an opaque type like being the reverse of a generic
type. Generic types let the code that calls a function pick the type for
that function’s parameters and return value in a way that’s abstracted
away from the function implementation. For example, the function in
the following code returns a type that depends on its caller:

 func max<T>(_ x: T, _ y: T) -> T where T: Comparable

{ ... }

The code that calls max(_:_:) chooses the values for x and y, and the
type of those values determines the concrete type of T. The calling
code can use any type that conforms to the Comparable protocol. The
code inside the function is written in a general way so it can handle
whatever type the caller provides. The implementation of max(_:_:)
uses only functionality that all Comparable types share.

Those roles are reversed for a function with an opaque return type.
An opaque type lets the function implementation pick the type for the
value it returns in a way that’s abstracted away from the code that
calls the function. For example, the function in the following example
returns a trapezoid without exposing the underlying type of that
shape.

PDF conversion courtesy of www.appsdissected.com

1 struct Square: Shape {

2 var size: Int

3 func draw() -> String {

4 let line = String(repeating: "*", count:

size)

5 let result = Array<String>(repeating: line,

count: size)

6 return result.joined(separator: "\n")

7 }

8 }

9

10 func makeTrapezoid() -> some Shape {

11 let top = Triangle(size: 2)

12 let middle = Square(size: 2)

13 let bottom = FlippedShape(shape: top)

14 let trapezoid = JoinedShape(

15 top: top,

16 bottom: JoinedShape(top: middle, bottom:

bottom)

17)

18 return trapezoid

19 }

20 let trapezoid = makeTrapezoid()

21 print(trapezoid.draw())

22 // *

23 // **

PDF conversion courtesy of www.appsdissected.com

24 // **

25 // **

26 // **

27 // *

The makeTrapezoid() function in this example declares its return type
as some Shape; as a result, the function returns a value of some given
type that conforms to the Shape protocol, without specifying any
particular concrete type. Writing makeTrapezoid() this way lets it
express the fundamental aspect of its public interface—the value it
returns is a shape—without making the specific types that the shape
is made from a part of its public interface. This implementation uses
two triangles and a square, but the function could be rewritten to draw
a trapezoid in a variety of other ways without changing its return type.

This example highlights the way that an opaque return type is like the
reverse of a generic type. The code inside makeTrapezoid() can
return any type it needs to, as long as that type conforms to the Shape
protocol, like the calling code does for a generic function. The code
that calls the function needs to be written in a general way, like the
implementation of a generic function, so that it can work with any
Shape value that’s returned by makeTrapezoid().

You can also combine opaque return types with generics. The
functions in the following code both return a value of some type that
conforms to the Shape protocol.

PDF conversion courtesy of www.appsdissected.com

1 func flip<T: Shape>(_ shape: T) -> some Shape {

2 return FlippedShape(shape: shape)

3 }

4 func join<T: Shape, U: Shape>(_ top: T, _ bottom: U)

-> some Shape {

5 JoinedShape(top: top, bottom: bottom)

6 }

7

8 let opaqueJoinedTriangles = join(smallTriangle,

flip(smallTriangle))

9 print(opaqueJoinedTriangles.draw())

10 // *

11 // **

12 // ***

13 // ***

14 // **

15 // *

The value of opaqueJoinedTriangles in this example is the same as
joinedTriangles in the generics example in the The Problem That
Opaque Types Solve section earlier in this chapter. However, unlike
the value in that example, flip(_:) and join(_:_:) wrap the
underlying types that the generic shape operations return in an
opaque return type, which prevents those types from being visible.
Both functions are generic because the types they rely on are
generic, and the type parameters to the function pass along the type
information needed by FlippedShape and JoinedShape.

PDF conversion courtesy of www.appsdissected.com

If a function with an opaque return type returns from multiple places,
all of the possible return values must have the same type. For a
generic function, that return type can use the function’s generic type
parameters, but it must still be a single type. For example, here’s an
invalid version of the shape-flipping function that includes a special
case for squares:

1 func invalidFlip<T: Shape>(_ shape: T) -> some Shape

{

2 if shape is Square {

3 return shape // Error: return types don't

match

4 }

5 return FlippedShape(shape: shape) // Error:

return types don't match

6 }

If you call this function with a Square, it returns a Square; otherwise, it
returns a FlippedShape. This violates the requirement to return values
of only one type and makes invalidFlip(_:) invalid code. One way
to fix invalidFlip(_:) is to move the special case for squares into
the implementation of FlippedShape, which lets this function always
return a FlippedShape value:

PDF conversion courtesy of www.appsdissected.com

1 struct FlippedShape<T: Shape>: Shape {

2 var shape: T

3 func draw() -> String {

4 if shape is Square {

5 return shape.draw()

6 }

7 let lines = shape.draw().split(separator:

"\n")

8 return lines.reversed().joined(separator:

"\n")

9 }

10 }

The requirement to always return a single type doesn’t prevent you
from using generics in an opaque return type. Here’s an example of a
function that incorporates its type parameter into the underlying type
of the value it returns:

1 func `repeat`<T: Shape>(shape: T, count: Int) ->

some Collection {

2 return Array<T>(repeating: shape, count: count)

3 }

In this case, the underlying type of the return value varies depending
on T: Whatever shape is passed it, repeat(shape:count:) creates
and returns an array of that shape. Nevertheless, the return value
always has the same underlying type of [T], so it follows the
requirement that functions with opaque return types must return
values of only a single type.

PDF conversion courtesy of www.appsdissected.com

Differences Between Opaque Types and Protocol
Types
Returning an opaque type looks very similar to using a protocol type
as the return type of a function, but these two kinds of return type
differ in whether they preserve type identity. An opaque type refers to
one specific type, although the caller of the function isn’t able to see
which type; a protocol type can refer to any type that conforms to the
protocol. Generally speaking, protocol types give you more flexibility
about the underlying types of the values they store, and opaque types
let you make stronger guarantees about those underlying types.

For example, here’s a version of flip(_:) that uses a protocol type
as its return type instead of an opaque return type:

1 func protoFlip<T: Shape>(_ shape: T) -> Shape {

2 return FlippedShape(shape: shape)

3 }

This version of protoFlip(_:) has the same body as flip(_:), and it
always returns a value of the same type. Unlike flip(_:), the value
that protoFlip(_:) returns isn’t required to always have the same
type—it just has to conform to the Shape protocol. Put another way,
protoFlip(_:) makes a much looser API contract with its caller than
flip(_:) makes. It reserves the flexibility to return values of multiple
types:

PDF conversion courtesy of www.appsdissected.com

1 func protoFlip<T: Shape>(_ shape: T) -> Shape {

2 if shape is Square {

3 return shape

4 }

5

6 return FlippedShape(shape: shape)

7 }

The revised version of the code returns an instance of Square or an
instance of FlippedShape, depending on what shape is passed in.
Two flipped shapes returned by this function might have completely
different types. Other valid versions of this function could return
values of different types when flipping multiple instances of the same
shape. The less specific return type information from protoFlip(_:)
means that many operations that depend on type information aren’t
available on the returned value. For example, it’s not possible to write
an == operator comparing results returned by this function.

1 let protoFlippedTriangle = protoFlip(smallTriangle)

2 let sameThing = protoFlip(smallTriangle)

3 protoFlippedTriangle == sameThing // Error

The error on the last line of the example occurs for several reasons.
The immediate issue is that the Shape doesn’t include an == operator
as part of its protocol requirements. If you try adding one, the next
issue you’ll encounter is that the == operator needs to know the types
of its left-hand and right-hand arguments. This sort of operator
usually takes arguments of type Self, matching whatever concrete
type adopts the protocol, but adding a Self requirement to the
protocol doesn’t allow for the type erasure that happens when you
use the protocol as a type.

PDF conversion courtesy of www.appsdissected.com

Using a protocol type as the return type for a function gives you the
flexibility to return any type that conforms to the protocol. However,
the cost of that flexibility is that some operations aren’t possible on
the returned values. The example shows how the == operator isn’t
available—it depends on specific type information that isn’t preserved
by using a protocol type.

Another problem with this approach is that the shape transformations
don’t nest. The result of flipping a triangle is a value of type Shape,
and the protoFlip(_:) function takes an argument of some type that
conforms to the Shape protocol. However, a value of a protocol type
doesn’t conform to that protocol; the value returned by protoFlip(_:)
doesn’t conform to Shape. This means code like
protoFlip(protoFlip(smallTriange)) that applies multiple
transformations is invalid because the flipped shape isn’t a valid
argument to protoFlip(_:).

In contrast, opaque types preserve the identity of the underlying type.
Swift can infer associated types, which lets you use an opaque return
value in places where a protocol type can’t be used as a return value.
For example, here’s a version of the Container protocol from
Generics:

1 protocol Container {

2 associatedtype Item

3 var count: Int { get }

4 subscript(i: Int) -> Item { get }

5 }

6 extension Array: Container { }

You can’t use Container as the return type of a function because that
protocol has an associated type. You also can’t use it as constraint in

PDF conversion courtesy of www.appsdissected.com

a generic return type because there isn’t enough information outside
the function body to infer what the generic type needs to be.

1 // Error: Protocol with associated types can't be

used as a return type.

2 func makeProtocolContainer<T>(item: T) -> Container

{

3 return [item]

4 }

5

6 // Error: Not enough information to infer C.

7 func makeProtocolContainer<T, C: Container>(item: T)

-> C {

8 return [item]

9 }

Using the opaque type some Container as a return type expresses
the desired API contract—the function returns a container, but
declines to specify the container’s type:

1 func makeOpaqueContainer<T>(item: T) -> some

Container {

2 return [item]

3 }

4 let opaqueContainer = makeOpaqueContainer(item: 12)

5 let twelve = opaqueContainer[0]

6 print(type(of: twelve))

7 // Prints "Int"

PDF conversion courtesy of www.appsdissected.com

The type of twelve is inferred to be Int, which illustrates the fact that
type inference works with opaque types. In the implementation of
makeOpaqueContainer(item:), the underlying type of the opaque
container is [T]. In this case, T is Int, so the return value is an array
of integers and the Item associated type is inferred to be Int. The
subscript on Container returns Item, which means that the type of
twelve is also inferred to be Int.

PDF conversion courtesy of www.appsdissected.com

Automatic Reference Counting

Swift uses Automatic Reference Counting (ARC) to track and manage
your app’s memory usage. In most cases, this means that memory
management “just works” in Swift, and you don’t need to think about
memory management yourself. ARC automatically frees up the
memory used by class instances when those instances are no longer
needed.

However, in a few cases ARC requires more information about the
relationships between parts of your code in order to manage memory
for you. This chapter describes those situations and shows how you
enable ARC to manage all of your app’s memory. Using ARC in Swift
is very similar to the approach described in Transitioning to ARC
Release Notes for using ARC with Objective-C.

Reference counting applies only to instances of classes. Structures
and enumerations are value types, not reference types, and aren’t
stored and passed by reference.

How ARC Works
Every time you create a new instance of a class, ARC allocates a
chunk of memory to store information about that instance. This
memory holds information about the type of the instance, together with
the values of any stored properties associated with that instance.

Additionally, when an instance is no longer needed, ARC frees up the
memory used by that instance so that the memory can be used for
other purposes instead. This ensures that class instances don’t take
up space in memory when they’re no longer needed.

https://developer.apple.com/library/content/releasenotes/ObjectiveC/RN-TransitioningToARC/Introduction/Introduction.html

PDF conversion courtesy of www.appsdissected.com

However, if ARC were to deallocate an instance that was still in use, it
would no longer be possible to access that instance’s properties, or
call that instance’s methods. Indeed, if you tried to access the
instance, your app would most likely crash.

To make sure that instances don’t disappear while they’re still needed,
ARC tracks how many properties, constants, and variables are
currently referring to each class instance. ARC will not deallocate an
instance as long as at least one active reference to that instance still
exists.

To make this possible, whenever you assign a class instance to a
property, constant, or variable, that property, constant, or variable
makes a strong reference to the instance. The reference is called a
“strong” reference because it keeps a firm hold on that instance, and
doesn’t allow it to be deallocated for as long as that strong reference
remains.

ARC in Action
Here’s an example of how Automatic Reference Counting works. This
example starts with a simple class called Person, which defines a
stored constant property called name:

PDF conversion courtesy of www.appsdissected.com

1 class Person {

2 let name: String

3 init(name: String) {

4 self.name = name

5 print("\(name) is being initialized")

6 }

7 deinit {

8 print("\(name) is being deinitialized")

9 }

10 }

The Person class has an initializer that sets the instance’s name
property and prints a message to indicate that initialization is
underway. The Person class also has a deinitializer that prints a
message when an instance of the class is deallocated.

The next code snippet defines three variables of type Person?, which
are used to set up multiple references to a new Person instance in
subsequent code snippets. Because these variables are of an optional
type (Person?, not Person), they’re automatically initialized with a
value of nil, and don’t currently reference a Person instance.

1 var reference1: Person?

2 var reference2: Person?

3 var reference3: Person?

You can now create a new Person instance and assign it to one of
these three variables:

PDF conversion courtesy of www.appsdissected.com

1 reference1 = Person(name: "John Appleseed")

2 // Prints "John Appleseed is being initialized"

Note that the message "John Appleseed is being initialized" is
printed at the point that you call the Person class’s initializer. This
confirms that initialization has taken place.

Because the new Person instance has been assigned to the
reference1 variable, there’s now a strong reference from reference1
to the new Person instance. Because there’s at least one strong
reference, ARC makes sure that this Person is kept in memory and
isn’t deallocated.

If you assign the same Person instance to two more variables, two
more strong references to that instance are established:

1 reference2 = reference1

2 reference3 = reference1

There are now three strong references to this single Person instance.

If you break two of these strong references (including the original
reference) by assigning nil to two of the variables, a single strong
reference remains, and the Person instance isn’t deallocated:

1 reference1 = nil

2 reference2 = nil

ARC doesn’t deallocate the Person instance until the third and final
strong reference is broken, at which point it’s clear that you are no
longer using the Person instance:

PDF conversion courtesy of www.appsdissected.com

1 reference3 = nil

2 // Prints "John Appleseed is being deinitialized"

Strong Reference Cycles Between Class
Instances
In the examples above, ARC is able to track the number of references
to the new Person instance you create and to deallocate that Person
instance when it’s no longer needed.

However, it’s possible to write code in which an instance of a class
never gets to a point where it has zero strong references. This can
happen if two class instances hold a strong reference to each other,
such that each instance keeps the other alive. This is known as a
strong reference cycle.

You resolve strong reference cycles by defining some of the
relationships between classes as weak or unowned references
instead of as strong references. This process is described in
Resolving Strong Reference Cycles Between Class Instances.
However, before you learn how to resolve a strong reference cycle, it’s
useful to understand how such a cycle is caused.

Here’s an example of how a strong reference cycle can be created by
accident. This example defines two classes called Person and
Apartment, which model a block of apartments and its residents:

PDF conversion courtesy of www.appsdissected.com

1 class Person {

2 let name: String

3 init(name: String) { self.name = name }

4 var apartment: Apartment?

5 deinit { print("\(name) is being deinitialized")

}

6 }

7

8 class Apartment {

9 let unit: String

10 init(unit: String) { self.unit = unit }

11 var tenant: Person?

12 deinit { print("Apartment \(unit) is being

deinitialized") }

13 }

Every Person instance has a name property of type String and an
optional apartment property that’s initially nil. The apartment property
is optional, because a person may not always have an apartment.

Similarly, every Apartment instance has a unit property of type String
and has an optional tenant property that’s initially nil. The tenant
property is optional because an apartment may not always have a
tenant.

Both of these classes also define a deinitializer, which prints the fact
that an instance of that class is being deinitialized. This enables you to
see whether instances of Person and Apartment are being deallocated
as expected.

PDF conversion courtesy of www.appsdissected.com

This next code snippet defines two variables of optional type called
john and unit4A, which will be set to a specific Apartment and Person
instance below. Both of these variables have an initial value of nil, by
virtue of being optional:

1 var john: Person?

2 var unit4A: Apartment?

You can now create a specific Person instance and Apartment
instance and assign these new instances to the john and unit4A
variables:

1 john = Person(name: "John Appleseed")

2 unit4A = Apartment(unit: "4A")

Here’s how the strong references look after creating and assigning
these two instances. The john variable now has a strong reference to
the new Person instance, and the unit4A variable has a strong
reference to the new Apartment instance:

You can now link the two instances together so that the person has an
apartment, and the apartment has a tenant. Note that an exclamation
point (!) is used to unwrap and access the instances stored inside the
john and unit4A optional variables, so that the properties of those
instances can be set:

PDF conversion courtesy of www.appsdissected.com

1 john!.apartment = unit4A

2 unit4A!.tenant = john

Here’s how the strong references look after you link the two instances
together:

Unfortunately, linking these two instances creates a strong reference
cycle between them. The Person instance now has a strong reference
to the Apartment instance, and the Apartment instance has a strong
reference to the Person instance. Therefore, when you break the
strong references held by the john and unit4A variables, the
reference counts don’t drop to zero, and the instances aren’t
deallocated by ARC:

1 john = nil

2 unit4A = nil

Note that neither deinitializer was called when you set these two
variables to nil. The strong reference cycle prevents the Person and
Apartment instances from ever being deallocated, causing a memory
leak in your app.

Here’s how the strong references look after you set the john and
unit4A variables to nil:

PDF conversion courtesy of www.appsdissected.com

The strong references between the Person instance and the
Apartment instance remain and can’t be broken.

Resolving Strong Reference Cycles Between
Class Instances
Swift provides two ways to resolve strong reference cycles when you
work with properties of class type: weak references and unowned
references.

Weak and unowned references enable one instance in a reference
cycle to refer to the other instance without keeping a strong hold on it.
The instances can then refer to each other without creating a strong
reference cycle.

Use a weak reference when the other instance has a shorter lifetime—
that is, when the other instance can be deallocated first. In the
Apartment example above, it’s appropriate for an apartment to be able
to have no tenant at some point in its lifetime, and so a weak reference
is an appropriate way to break the reference cycle in this case. In
contrast, use an unowned reference when the other instance has the
same lifetime or a longer lifetime.

PDF conversion courtesy of www.appsdissected.com

Weak References
A weak reference is a reference that doesn’t keep a strong hold on the
instance it refers to, and so doesn’t stop ARC from disposing of the
referenced instance. This behavior prevents the reference from
becoming part of a strong reference cycle. You indicate a weak
reference by placing the weak keyword before a property or variable
declaration.

Because a weak reference doesn’t keep a strong hold on the instance
it refers to, it’s possible for that instance to be deallocated while the
weak reference is still referring to it. Therefore, ARC automatically
sets a weak reference to nil when the instance that it refers to is
deallocated. And, because weak references need to allow their value
to be changed to nil at runtime, they’re always declared as variables,
rather than constants, of an optional type.

You can check for the existence of a value in the weak reference, just
like any other optional value, and you will never end up with a
reference to an invalid instance that no longer exists.

NOTE

Property observers aren’t called when ARC sets a weak reference to nil.

The example below is identical to the Person and Apartment example
from above, with one important difference. This time around, the
Apartment type’s tenant property is declared as a weak reference:

PDF conversion courtesy of www.appsdissected.com

1 class Person {

2 let name: String

3 init(name: String) { self.name = name }

4 var apartment: Apartment?

5 deinit { print("\(name) is being deinitialized")

}

6 }

7

8 class Apartment {

9 let unit: String

10 init(unit: String) { self.unit = unit }

11 weak var tenant: Person?

12 deinit { print("Apartment \(unit) is being

deinitialized") }

13 }

The strong references from the two variables (john and unit4A) and
the links between the two instances are created as before:

1 var john: Person?

2 var unit4A: Apartment?

3

4 john = Person(name: "John Appleseed")

5 unit4A = Apartment(unit: "4A")

6

7 john!.apartment = unit4A

8 unit4A!.tenant = john

PDF conversion courtesy of www.appsdissected.com

Here’s how the references look now that you’ve linked the two
instances together:

The Person instance still has a strong reference to the Apartment
instance, but the Apartment instance now has a weak reference to the
Person instance. This means that when you break the strong
reference held by the john variable by setting it to nil, there are no
more strong references to the Person instance:

1 john = nil

2 // Prints "John Appleseed is being deinitialized"

Because there are no more strong references to the Person instance,
it’s deallocated and the tenant property is set to nil:

The only remaining strong reference to the Apartment instance is from
the unit4A variable. If you break that strong reference, there are no
more strong references to the Apartment instance:

PDF conversion courtesy of www.appsdissected.com

1 unit4A = nil

2 // Prints "Apartment 4A is being deinitialized"

Because there are no more strong references to the Apartment
instance, it too is deallocated:

NOTE

In systems that use garbage collection, weak pointers are sometimes used to
implement a simple caching mechanism because objects with no strong
references are deallocated only when memory pressure triggers garbage
collection. However, with ARC, values are deallocated as soon as their last
strong reference is removed, making weak references unsuitable for such a
purpose.

Unowned References
Like a weak reference, an unowned reference doesn’t keep a strong
hold on the instance it refers to. Unlike a weak reference, however, an
unowned reference is used when the other instance has the same
lifetime or a longer lifetime. You indicate an unowned reference by
placing the unowned keyword before a property or variable declaration.

Unlike a weak reference, an unowned reference is expected to always
have a value. As a result, marking a value as unowned doesn’t make it
optional, and ARC never sets an unowned reference’s value to nil.

PDF conversion courtesy of www.appsdissected.com

IMPORTANT

Use an unowned reference only when you are sure that the reference always
refers to an instance that hasn’t been deallocated.

If you try to access the value of an unowned reference after that instance has
been deallocated, you’ll get a runtime error.

The following example defines two classes, Customer and CreditCard,
which model a bank customer and a possible credit card for that
customer. These two classes each store an instance of the other class
as a property. This relationship has the potential to create a strong
reference cycle.

The relationship between Customer and CreditCard is slightly different
from the relationship between Apartment and Person seen in the weak
reference example above. In this data model, a customer may or may
not have a credit card, but a credit card will always be associated with
a customer. A CreditCard instance never outlives the Customer that it
refers to. To represent this, the Customer class has an optional card
property, but the CreditCard class has an unowned (and non-optional)
customer property.

Furthermore, a new CreditCard instance can only be created by
passing a number value and a customer instance to a custom
CreditCard initializer. This ensures that a CreditCard instance always
has a customer instance associated with it when the CreditCard
instance is created.

Because a credit card will always have a customer, you define its
customer property as an unowned reference, to avoid a strong
reference cycle:

PDF conversion courtesy of www.appsdissected.com

1 class Customer {

2 let name: String

3 var card: CreditCard?

4 init(name: String) {

5 self.name = name

6 }

7 deinit { print("\(name) is being deinitialized")

}

8 }

9

10 class CreditCard {

11 let number: UInt64

12 unowned let customer: Customer

13 init(number: UInt64, customer: Customer) {

14 self.number = number

15 self.customer = customer

16 }

17 deinit { print("Card #\(number) is being

deinitialized") }

18 }

NOTE

The number property of the CreditCard class is defined with a type of UInt64
rather than Int, to ensure that the number property’s capacity is large enough
to store a 16-digit card number on both 32-bit and 64-bit systems.

This next code snippet defines an optional Customer variable called
john, which will be used to store a reference to a specific customer.

PDF conversion courtesy of www.appsdissected.com

This variable has an initial value of nil, by virtue of being optional:

 var john: Customer?

You can now create a Customer instance, and use it to initialize and
assign a new CreditCard instance as that customer’s card property:

1 john = Customer(name: "John Appleseed")

2 john!.card = CreditCard(number: 1234_5678_9012_3456,

customer: john!)

Here’s how the references look, now that you’ve linked the two
instances:

The Customer instance now has a strong reference to the CreditCard
instance, and the CreditCard instance has an unowned reference to
the Customer instance.

Because of the unowned customer reference, when you break the
strong reference held by the john variable, there are no more strong
references to the Customer instance:

PDF conversion courtesy of www.appsdissected.com

Because there are no more strong references to the Customer
instance, it’s deallocated. After this happens, there are no more strong
references to the CreditCard instance, and it too is deallocated:

1 john = nil

2 // Prints "John Appleseed is being deinitialized"

3 // Prints "Card #1234567890123456 is being

deinitialized"

The final code snippet above shows that the deinitializers for the
Customer instance and CreditCard instance both print their
“deinitialized” messages after the john variable is set to nil.

NOTE

The examples above show how to use safe unowned references. Swift also
provides unsafe unowned references for cases where you need to disable
runtime safety checks—for example, for performance reasons. As with all
unsafe operations, you take on the responsibility for checking that code for
safety.

You indicate an unsafe unowned reference by writing unowned(unsafe). If you
try to access an unsafe unowned reference after the instance that it refers to is
deallocated, your program will try to access the memory location where the
instance used to be, which is an unsafe operation.

PDF conversion courtesy of www.appsdissected.com

Unowned Optional References
You can mark an optional reference to a class as unowned. In terms of
the ARC ownership model, an unowned optional reference and a
weak reference can both be used in the same contexts. The difference
is that when you use an unowned optional reference, you’re
responsible for making sure it always refers to a valid object or is set
to nil.

Here’s an example that keeps track of the courses offered by a
particular department at a school:

PDF conversion courtesy of www.appsdissected.com

1 class Department {

2 var name: String

3 var courses: [Course]

4 init(name: String) {

5 self.name = name

6 self.courses = []

7 }

8 }

9

10 class Course {

11 var name: String

12 unowned var department: Department

13 unowned var nextCourse: Course?

14 init(name: String, in department: Department) {

15 self.name = name

16 self.department = department

17 self.nextCourse = nil

18 }

19 }

Department maintains a strong reference to each course that the
department offers. In the ARC ownership model, a department owns
its courses. Course has two unowned references, one to the
department and one to the next course a student should take; a
course doesn’t own either of these objects. Every course is part of
some department so the department property isn’t an optional.
However, because some courses don’t have a recommended follow-
on course, the nextCourse property is an optional.

PDF conversion courtesy of www.appsdissected.com

Here’s an example of using these classes:

1 let department = Department(name: "Horticulture")

2

3 let intro = Course(name: "Survey of Plants", in:

department)

4 let intermediate = Course(name: "Growing Common

Herbs", in: department)

5 let advanced = Course(name: "Caring for Tropical

Plants", in: department)

6

7 intro.nextCourse = intermediate

8 intermediate.nextCourse = advanced

9 department.courses = [intro, intermediate, advanced]

The code above creates a department and its three courses. The intro
and intermediate courses both have a suggested next course stored
in their nextCourse property, which maintains an unowned optional
reference to the course a student should take after completing this
one.

PDF conversion courtesy of www.appsdissected.com

An unowned optional reference doesn’t keep a strong hold on the
instance of the class that it wraps, and so it doesn’t prevent ARC from
deallocating the instance. It behaves the same as an unowned
reference does under ARC, except that an unowned optional
reference can be nil.

Like non-optional unowned references, you’re responsible for
ensuring that nextCourse always refers to a course that hasn’t been
deallocated. In this case, for example, when you delete a course from
department.courses you also need to remove any references to it that
other courses might have.

PDF conversion courtesy of www.appsdissected.com

NOTE

The underlying type of an optional value is Optional, which is an enumeration
in the Swift standard library. However, optionals are an exception to the rule
that value types can’t be marked with unowned.

The optional that wraps the class doesn’t use reference counting, so you don’t
need to maintain a strong reference to the optional.

Unowned References and Implicitly Unwrapped Optional
Properties
The examples for weak and unowned references above cover two of
the more common scenarios in which it’s necessary to break a strong
reference cycle.

The Person and Apartment example shows a situation where two
properties, both of which are allowed to be nil, have the potential to
cause a strong reference cycle. This scenario is best resolved with a
weak reference.

The Customer and CreditCard example shows a situation where one
property that’s allowed to be nil and another property that can’t be
nil have the potential to cause a strong reference cycle. This scenario
is best resolved with an unowned reference.

However, there’s a third scenario, in which both properties should
always have a value, and neither property should ever be nil once
initialization is complete. In this scenario, it’s useful to combine an
unowned property on one class with an implicitly unwrapped optional
property on the other class.

This enables both properties to be accessed directly (without optional
unwrapping) once initialization is complete, while still avoiding a
reference cycle. This section shows you how to set up such a
relationship.

PDF conversion courtesy of www.appsdissected.com

The example below defines two classes, Country and City, each of
which stores an instance of the other class as a property. In this data
model, every country must always have a capital city, and every city
must always belong to a country. To represent this, the Country class
has a capitalCity property, and the City class has a country
property:

1 class Country {

2 let name: String

3 var capitalCity: City!

4 init(name: String, capitalName: String) {

5 self.name = name

6 self.capitalCity = City(name: capitalName,

country: self)

7 }

8 }

9

10 class City {

11 let name: String

12 unowned let country: Country

13 init(name: String, country: Country) {

14 self.name = name

15 self.country = country

16 }

17 }

To set up the interdependency between the two classes, the initializer
for City takes a Country instance, and stores this instance in its
country property.

PDF conversion courtesy of www.appsdissected.com

The initializer for City is called from within the initializer for Country.
However, the initializer for Country can’t pass self to the City
initializer until a new Country instance is fully initialized, as described
in Two-Phase Initialization.

To cope with this requirement, you declare the capitalCity property
of Country as an implicitly unwrapped optional property, indicated by
the exclamation point at the end of its type annotation (City!). This
means that the capitalCity property has a default value of nil, like
any other optional, but can be accessed without the need to unwrap its
value as described in Implicitly Unwrapped Optionals.

Because capitalCity has a default nil value, a new Country instance
is considered fully initialized as soon as the Country instance sets its
name property within its initializer. This means that the Country
initializer can start to reference and pass around the implicit self
property as soon as the name property is set. The Country initializer
can therefore pass self as one of the parameters for the City
initializer when the Country initializer is setting its own capitalCity
property.

All of this means that you can create the Country and City instances
in a single statement, without creating a strong reference cycle, and
the capitalCity property can be accessed directly, without needing to
use an exclamation point to unwrap its optional value:

1 var country = Country(name: "Canada", capitalName:

"Ottawa")

2 print("\(country.name)'s capital city is called \

(country.capitalCity.name)")

3 // Prints "Canada's capital city is called Ottawa"

In the example above, the use of an implicitly unwrapped optional
means that all of the two-phase class initializer requirements are

PDF conversion courtesy of www.appsdissected.com

satisfied. The capitalCity property can be used and accessed like a
non-optional value once initialization is complete, while still avoiding a
strong reference cycle.

Strong Reference Cycles for Closures
You saw above how a strong reference cycle can be created when two
class instance properties hold a strong reference to each other. You
also saw how to use weak and unowned references to break these
strong reference cycles.

A strong reference cycle can also occur if you assign a closure to a
property of a class instance, and the body of that closure captures the
instance. This capture might occur because the closure’s body
accesses a property of the instance, such as self.someProperty, or
because the closure calls a method on the instance, such as
self.someMethod(). In either case, these accesses cause the closure
to “capture” self, creating a strong reference cycle.

This strong reference cycle occurs because closures, like classes, are
reference types. When you assign a closure to a property, you are
assigning a reference to that closure. In essence, it’s the same
problem as above—two strong references are keeping each other
alive. However, rather than two class instances, this time it’s a class
instance and a closure that are keeping each other alive.

Swift provides an elegant solution to this problem, known as a closure
capture list. However, before you learn how to break a strong
reference cycle with a closure capture list, it’s useful to understand
how such a cycle can be caused.

The example below shows how you can create a strong reference
cycle when using a closure that references self. This example defines

PDF conversion courtesy of www.appsdissected.com

a class called HTMLElement, which provides a simple model for an
individual element within an HTML document:

1 class HTMLElement {

2

3 let name: String

4 let text: String?

5

6 lazy var asHTML: () -> String = {

7 if let text = self.text {

8 return "<\(self.name)>\(text)</\

(self.name)>"

9 } else {

10 return "<\(self.name) />"

11 }

12 }

13

14 init(name: String, text: String? = nil) {

15 self.name = name

16 self.text = text

17 }

18

19 deinit {

20 print("\(name) is being deinitialized")

21 }

22

23 }

PDF conversion courtesy of www.appsdissected.com

The HTMLElement class defines a name property, which indicates the
name of the element, such as "h1" for a heading element, "p" for a
paragraph element, or "br" for a line break element. HTMLElement also
defines an optional text property, which you can set to a string that
represents the text to be rendered within that HTML element.

In addition to these two simple properties, the HTMLElement class
defines a lazy property called asHTML. This property references a
closure that combines name and text into an HTML string fragment.
The asHTML property is of type () -> String, or “a function that takes
no parameters, and returns a String value”.

By default, the asHTML property is assigned a closure that returns a
string representation of an HTML tag. This tag contains the optional
text value if it exists, or no text content if text doesn’t exist. For a
paragraph element, the closure would return "<p>some text</p>" or "
<p />", depending on whether the text property equals "some text"
or nil.

The asHTML property is named and used somewhat like an instance
method. However, because asHTML is a closure property rather than
an instance method, you can replace the default value of the asHTML
property with a custom closure, if you want to change the HTML
rendering for a particular HTML element.

For example, the asHTML property could be set to a closure that
defaults to some text if the text property is nil, in order to prevent the
representation from returning an empty HTML tag:

PDF conversion courtesy of www.appsdissected.com

1 let heading = HTMLElement(name: "h1")

2 let defaultText = "some default text"

3 heading.asHTML = {

4 return "<\(heading.name)>\(heading.text ??

defaultText)</\(heading.name)>"

5 }

6 print(heading.asHTML())

7 // Prints "<h1>some default text</h1>"

NOTE

The asHTML property is declared as a lazy property, because it’s only needed if
and when the element actually needs to be rendered as a string value for some
HTML output target. The fact that asHTML is a lazy property means that you can
refer to self within the default closure, because the lazy property will not be
accessed until after initialization has been completed and self is known to
exist.

The HTMLElement class provides a single initializer, which takes a name
argument and (if desired) a text argument to initialize a new element.
The class also defines a deinitializer, which prints a message to show
when an HTMLElement instance is deallocated.

Here’s how you use the HTMLElement class to create and print a new
instance:

1 var paragraph: HTMLElement? = HTMLElement(name: "p",

text: "hello, world")

2 print(paragraph!.asHTML())

3 // Prints "<p>hello, world</p>"

PDF conversion courtesy of www.appsdissected.com

NOTE

The paragraph variable above is defined as an optional HTMLElement, so that
it can be set to nil below to demonstrate the presence of a strong reference
cycle.

Unfortunately, the HTMLElement class, as written above, creates a
strong reference cycle between an HTMLElement instance and the
closure used for its default asHTML value. Here’s how the cycle looks:

The instance’s asHTML property holds a strong reference to its closure.
However, because the closure refers to self within its body (as a way
to reference self.name and self.text), the closure captures self,
which means that it holds a strong reference back to the HTMLElement
instance. A strong reference cycle is created between the two. (For
more information about capturing values in a closure, see Capturing
Values.)

NOTE

Even though the closure refers to self multiple times, it only captures one
strong reference to the HTMLElement instance.

If you set the paragraph variable to nil and break its strong reference
to the HTMLElement instance, neither the HTMLElement instance nor its
closure are deallocated, because of the strong reference cycle:

PDF conversion courtesy of www.appsdissected.com

 paragraph = nil

Note that the message in the HTMLElement deinitializer isn’t printed,
which shows that the HTMLElement instance isn’t deallocated.

Resolving Strong Reference Cycles for Closures
You resolve a strong reference cycle between a closure and a class
instance by defining a capture list as part of the closure’s definition. A
capture list defines the rules to use when capturing one or more
reference types within the closure’s body. As with strong reference
cycles between two class instances, you declare each captured
reference to be a weak or unowned reference rather than a strong
reference. The appropriate choice of weak or unowned depends on
the relationships between the different parts of your code.

NOTE

Swift requires you to write self.someProperty or self.someMethod() (rather
than just someProperty or someMethod()) whenever you refer to a member of
self within a closure. This helps you remember that it’s possible to capture
self by accident.

Defining a Capture List
Each item in a capture list is a pairing of the weak or unowned keyword
with a reference to a class instance (such as self) or a variable
initialized with some value (such as delegate = self.delegate).
These pairings are written within a pair of square braces, separated by
commas.

Place the capture list before a closure’s parameter list and return type
if they’re provided:

PDF conversion courtesy of www.appsdissected.com

1 lazy var someClosure = {

2 [unowned self, weak delegate = self.delegate]

3 (index: Int, stringToProcess: String) -> String

in

4 // closure body goes here

5 }

If a closure doesn’t specify a parameter list or return type because
they can be inferred from context, place the capture list at the very
start of the closure, followed by the in keyword:

1 lazy var someClosure = {

2 [unowned self, weak delegate = self.delegate] in

3 // closure body goes here

4 }

Weak and Unowned References
Define a capture in a closure as an unowned reference when the
closure and the instance it captures will always refer to each other,
and will always be deallocated at the same time.

Conversely, define a capture as a weak reference when the captured
reference may become nil at some point in the future. Weak
references are always of an optional type, and automatically become
nil when the instance they reference is deallocated. This enables you
to check for their existence within the closure’s body.

NOTE

If the captured reference will never become nil, it should always be captured
as an unowned reference, rather than a weak reference.

PDF conversion courtesy of www.appsdissected.com

An unowned reference is the appropriate capture method to use to
resolve the strong reference cycle in the HTMLElement example from
Strong Reference Cycles for Closures above. Here’s how you write
the HTMLElement class to avoid the cycle:

PDF conversion courtesy of www.appsdissected.com

1 class HTMLElement {

2

3 let name: String

4 let text: String?

5

6 lazy var asHTML: () -> String = {

7 [unowned self] in

8 if let text = self.text {

9 return "<\(self.name)>\(text)</\

(self.name)>"

10 } else {

11 return "<\(self.name) />"

12 }

13 }

14

15 init(name: String, text: String? = nil) {

16 self.name = name

17 self.text = text

18 }

19

20 deinit {

21 print("\(name) is being deinitialized")

22 }

23

24 }

PDF conversion courtesy of www.appsdissected.com

This implementation of HTMLElement is identical to the previous
implementation, apart from the addition of a capture list within the
asHTML closure. In this case, the capture list is [unowned self], which
means “capture self as an unowned reference rather than a strong
reference”.

You can create and print an HTMLElement instance as before:

1 var paragraph: HTMLElement? = HTMLElement(name: "p",

text: "hello, world")

2 print(paragraph!.asHTML())

3 // Prints "<p>hello, world</p>"

Here’s how the references look with the capture list in place:

This time, the capture of self by the closure is an unowned reference,
and doesn’t keep a strong hold on the HTMLElement instance it has
captured. If you set the strong reference from the paragraph variable
to nil, the HTMLElement instance is deallocated, as can be seen from
the printing of its deinitializer message in the example below:

1 paragraph = nil

2 // Prints "p is being deinitialized"

PDF conversion courtesy of www.appsdissected.com

For more information about capture lists, see Capture Lists.

PDF conversion courtesy of www.appsdissected.com

Memory Safety

By default, Swift prevents unsafe behavior from happening in your
code. For example, Swift ensures that variables are initialized before
they’re used, memory isn’t accessed after it’s been deallocated, and
array indices are checked for out-of-bounds errors.

Swift also makes sure that multiple accesses to the same area of
memory don’t conflict, by requiring code that modifies a location in
memory to have exclusive access to that memory. Because Swift
manages memory automatically, most of the time you don’t have to
think about accessing memory at all. However, it’s important to
understand where potential conflicts can occur, so you can avoid
writing code that has conflicting access to memory. If your code does
contain conflicts, you’ll get a compile-time or runtime error.

Understanding Conflicting Access to Memory
Access to memory happens in your code when you do things like set
the value of a variable or pass an argument to a function. For
example, the following code contains both a read access and a write
access:

1 // A write access to the memory where one is stored.

2 var one = 1

3

4 // A read access from the memory where one is

stored.

5 print("We're number \(one)!")

PDF conversion courtesy of www.appsdissected.com

A conflicting access to memory can occur when different parts of your
code are trying to access the same location in memory at the same
time. Multiple accesses to a location in memory at the same time can
produce unpredictable or inconsistent behavior. In Swift, there are
ways to modify a value that span several lines of code, making it
possible to attempt to access a value in the middle of its own
modification.

You can see a similar problem by thinking about how you update a
budget that’s written on a piece of paper. Updating the budget is a
two-step process: First you add the items’ names and prices, and
then you change the total amount to reflect the items currently on the
list. Before and after the update, you can read any information from
the budget and get a correct answer, as shown in the figure below.

While you’re adding items to the budget, it’s in a temporary, invalid
state because the total amount hasn’t been updated to reflect the
newly added items. Reading the total amount during the process of
adding an item gives you incorrect information.

This example also demonstrates a challenge you may encounter
when fixing conflicting access to memory: There are sometimes
multiple ways to fix the conflict that produce different answers, and it’s
not always obvious which answer is correct. In this example,
depending on whether you wanted the original total amount or the
updated total amount, either $5 or $320 could be the correct answer.

PDF conversion courtesy of www.appsdissected.com

Before you can fix the conflicting access, you have to determine what
it was intended to do.

NOTE

If you’ve written concurrent or multithreaded code, conflicting access to
memory might be a familiar problem. However, the conflicting access
discussed here can happen on a single thread and doesn’t involve concurrent
or multithreaded code.

If you have conflicting access to memory from within a single thread, Swift
guarantees that you’ll get an error at either compile time or runtime. For
multithreaded code, use Thread Sanitizer to help detect conflicting access
across threads.

Characteristics of Memory Access
There are three characteristics of memory access to consider in the
context of conflicting access: whether the access is a read or a write,
the duration of the access, and the location in memory being
accessed. Specifically, a conflict occurs if you have two accesses that
meet all of the following conditions:

At least one is a write access or a nonatomic access.

They access the same location in memory.

Their durations overlap.

The difference between a read and write access is usually obvious: a
write access changes the location in memory, but a read access
doesn’t. The location in memory refers to what is being accessed—
for example, a variable, constant, or property. The duration of a
memory access is either instantaneous or long-term.

An operation is atomic if it uses only C atomic operations; otherwise
it’s nonatomic. For a list of those functions, see the stdatomic(3)
man page.

https://developer.apple.com/documentation/xcode/diagnosing_memory_thread_and_crash_issues_early

PDF conversion courtesy of www.appsdissected.com

An access is instantaneous if it’s not possible for other code to run
after that access starts but before it ends. By their nature, two
instantaneous accesses can’t happen at the same time. Most
memory access is instantaneous. For example, all the read and write
accesses in the code listing below are instantaneous:

1 func oneMore(than number: Int) -> Int {

2 return number + 1

3 }

4

5 var myNumber = 1

6 myNumber = oneMore(than: myNumber)

7 print(myNumber)

8 // Prints "2"

However, there are several ways to access memory, called long-term
accesses, that span the execution of other code. The difference
between instantaneous access and long-term access is that it’s
possible for other code to run after a long-term access starts but
before it ends, which is called overlap. A long-term access can
overlap with other long-term accesses and instantaneous accesses.

Overlapping accesses appear primarily in code that uses in-out
parameters in functions and methods or mutating methods of a
structure. The specific kinds of Swift code that use long-term
accesses are discussed in the sections below.

Conflicting Access to In-Out Parameters

PDF conversion courtesy of www.appsdissected.com

A function has long-term write access to all of its in-out parameters.
The write access for an in-out parameter starts after all of the non-in-
out parameters have been evaluated and lasts for the entire duration
of that function call. If there are multiple in-out parameters, the write
accesses start in the same order as the parameters appear.

One consequence of this long-term write access is that you can’t
access the original variable that was passed as in-out, even if
scoping rules and access control would otherwise permit it—any
access to the original creates a conflict. For example:

1 var stepSize = 1

2

3 func increment(_ number: inout Int) {

4 number += stepSize

5 }

6

7 increment(&stepSize)

8 // Error: conflicting accesses to stepSize

In the code above, stepSize is a global variable, and it’s normally
accessible from within increment(_:). However, the read access to
stepSize overlaps with the write access to number. As shown in the
figure below, both number and stepSize refer to the same location in
memory. The read and write accesses refer to the same memory and
they overlap, producing a conflict.

One way to solve this conflict is to make an explicit copy of stepSize:

PDF conversion courtesy of www.appsdissected.com

1 // Make an explicit copy.

2 var copyOfStepSize = stepSize

3 increment(©OfStepSize)

4

5 // Update the original.

6 stepSize = copyOfStepSize

7 // stepSize is now 2

When you make a copy of stepSize before calling increment(_:), it’s
clear that the value of copyOfStepSize is incremented by the current
step size. The read access ends before the write access starts, so
there isn’t a conflict.

Another consequence of long-term write access to in-out parameters
is that passing a single variable as the argument for multiple in-out
parameters of the same function produces a conflict. For example:

1 func balance(_ x: inout Int, _ y: inout Int) {

2 let sum = x + y

3 x = sum / 2

4 y = sum - x

5 }

6 var playerOneScore = 42

7 var playerTwoScore = 30

8 balance(&playerOneScore, &playerTwoScore) // OK

9 balance(&playerOneScore, &playerOneScore)

10 // Error: conflicting accesses to playerOneScore

PDF conversion courtesy of www.appsdissected.com

The balance(_:_:) function above modifies its two parameters to
divide the total value evenly between them. Calling it with
playerOneScore and playerTwoScore as arguments doesn’t produce
a conflict—there are two write accesses that overlap in time, but they
access different locations in memory. In contrast, passing
playerOneScore as the value for both parameters produces a conflict
because it tries to perform two write accesses to the same location in
memory at the same time.

NOTE

Because operators are functions, they can also have long-term accesses to
their in-out parameters. For example, if balance(_:_:) was an operator
function named <^>, writing playerOneScore <^> playerOneScore would
result in the same conflict as balance(&playerOneScore,
&playerOneScore).

Conflicting Access to self in Methods
A mutating method on a structure has write access to self for the
duration of the method call. For example, consider a game where
each player has a health amount, which decreases when taking
damage, and an energy amount, which decreases when using
special abilities.

PDF conversion courtesy of www.appsdissected.com

1 struct Player {

2 var name: String

3 var health: Int

4 var energy: Int

5

6 static let maxHealth = 10

7 mutating func restoreHealth() {

8 health = Player.maxHealth

9 }

10 }

In the restoreHealth() method above, a write access to self starts
at the beginning of the method and lasts until the method returns. In
this case, there’s no other code inside restoreHealth() that could
have an overlapping access to the properties of a Player instance.
The shareHealth(with:) method below takes another Player
instance as an in-out parameter, creating the possibility of
overlapping accesses.

PDF conversion courtesy of www.appsdissected.com

1 extension Player {

2 mutating func shareHealth(with teammate: inout

Player) {

3 balance(&teammate.health, &health)

4 }

5 }

6

7 var oscar = Player(name: "Oscar", health: 10,

energy: 10)

8 var maria = Player(name: "Maria", health: 5, energy:

10)

9 oscar.shareHealth(with: &maria) // OK

In the example above, calling the shareHealth(with:) method for
Oscar’s player to share health with Maria’s player doesn’t cause a
conflict. There’s a write access to oscar during the method call
because oscar is the value of self in a mutating method, and there’s
a write access to maria for the same duration because maria was
passed as an in-out parameter. As shown in the figure below, they
access different locations in memory. Even though the two write
accesses overlap in time, they don’t conflict.

However, if you pass oscar as the argument to shareHealth(with:),
there’s a conflict:

PDF conversion courtesy of www.appsdissected.com

1 oscar.shareHealth(with: &oscar)

2 // Error: conflicting accesses to oscar

The mutating method needs write access to self for the duration of
the method, and the in-out parameter needs write access to teammate
for the same duration. Within the method, both self and teammate
refer to the same location in memory—as shown in the figure below.
The two write accesses refer to the same memory and they overlap,
producing a conflict.

Conflicting Access to Properties
Types like structures, tuples, and enumerations are made up of
individual constituent values, such as the properties of a structure or
the elements of a tuple. Because these are value types, mutating any
piece of the value mutates the whole value, meaning read or write
access to one of the properties requires read or write access to the
whole value. For example, overlapping write accesses to the
elements of a tuple produces a conflict:

PDF conversion courtesy of www.appsdissected.com

1 var playerInformation = (health: 10, energy: 20)

2 balance(&playerInformation.health,

&playerInformation.energy)

3 // Error: conflicting access to properties of

playerInformation

In the example above, calling balance(_:_:) on the elements of a
tuple produces a conflict because there are overlapping write
accesses to playerInformation. Both playerInformation.health
and playerInformation.energy are passed as in-out parameters,
which means balance(_:_:) needs write access to them for the
duration of the function call. In both cases, a write access to the tuple
element requires a write access to the entire tuple. This means there
are two write accesses to playerInformation with durations that
overlap, causing a conflict.

The code below shows that the same error appears for overlapping
write accesses to the properties of a structure that’s stored in a global
variable.

1 var holly = Player(name: "Holly", health: 10,

energy: 10)

2 balance(&holly.health, &holly.energy) // Error

In practice, most access to the properties of a structure can overlap
safely. For example, if the variable holly in the example above is
changed to a local variable instead of a global variable, the compiler
can prove that overlapping access to stored properties of the
structure is safe:

PDF conversion courtesy of www.appsdissected.com

1 func someFunction() {

2 var oscar = Player(name: "Oscar", health: 10,

energy: 10)

3 balance(&oscar.health, &oscar.energy) // OK

4 }

In the example above, Oscar’s health and energy are passed as the
two in-out parameters to balance(_:_:). The compiler can prove that
memory safety is preserved because the two stored properties don’t
interact in any way.

The restriction against overlapping access to properties of a structure
isn’t always necessary to preserve memory safety. Memory safety is
the desired guarantee, but exclusive access is a stricter requirement
than memory safety—which means some code preserves memory
safety, even though it violates exclusive access to memory. Swift
allows this memory-safe code if the compiler can prove that the
nonexclusive access to memory is still safe. Specifically, it can prove
that overlapping access to properties of a structure is safe if the
following conditions apply:

You’re accessing only stored properties of an instance, not
computed properties or class properties.

The structure is the value of a local variable, not a global
variable.

The structure is either not captured by any closures, or it’s
captured only by nonescaping closures.

If the compiler can’t prove the access is safe, it doesn’t allow the
access.

PDF conversion courtesy of www.appsdissected.com

Access Control

Access control restricts access to parts of your code from code in
other source files and modules. This feature enables you to hide the
implementation details of your code, and to specify a preferred
interface through which that code can be accessed and used.

You can assign specific access levels to individual types (classes,
structures, and enumerations), as well as to properties, methods,
initializers, and subscripts belonging to those types. Protocols can be
restricted to a certain context, as can global constants, variables, and
functions.

In addition to offering various levels of access control, Swift reduces
the need to specify explicit access control levels by providing default
access levels for typical scenarios. Indeed, if you are writing a single-
target app, you may not need to specify explicit access control levels
at all.

NOTE

The various aspects of your code that can have access control applied to
them (properties, types, functions, and so on) are referred to as “entities” in
the sections below, for brevity.

Modules and Source Files
Swift’s access control model is based on the concept of modules and
source files.

A module is a single unit of code distribution—a framework or
application that’s built and shipped as a single unit and that can be

PDF conversion courtesy of www.appsdissected.com

imported by another module with Swift’s import keyword.

Each build target (such as an app bundle or framework) in Xcode is
treated as a separate module in Swift. If you group together aspects
of your app’s code as a stand-alone framework—perhaps to
encapsulate and reuse that code across multiple applications—then
everything you define within that framework will be part of a separate
module when it’s imported and used within an app, or when it’s used
within another framework.

A source file is a single Swift source code file within a module (in
effect, a single file within an app or framework). Although it’s common
to define individual types in separate source files, a single source file
can contain definitions for multiple types, functions, and so on.

Access Levels
Swift provides five different access levels for entities within your code.
These access levels are relative to the source file in which an entity is
defined, and also relative to the module that source file belongs to.

Open access and public access enable entities to be used within
any source file from their defining module, and also in a source
file from another module that imports the defining module. You
typically use open or public access when specifying the public
interface to a framework. The difference between open and
public access is described below.

Internal access enables entities to be used within any source file
from their defining module, but not in any source file outside of
that module. You typically use internal access when defining an
app’s or a framework’s internal structure.

PDF conversion courtesy of www.appsdissected.com

File-private access restricts the use of an entity to its own
defining source file. Use file-private access to hide the
implementation details of a specific piece of functionality when
those details are used within an entire file.

Private access restricts the use of an entity to the enclosing
declaration, and to extensions of that declaration that are in the
same file. Use private access to hide the implementation details
of a specific piece of functionality when those details are used
only within a single declaration.

Open access is the highest (least restrictive) access level and private
access is the lowest (most restrictive) access level.

Open access applies only to classes and class members, and it
differs from public access by allowing code outside the module to
subclass and override, as discussed below in Subclassing. Marking a
class as open explicitly indicates that you’ve considered the impact of
code from other modules using that class as a superclass, and that
you’ve designed your class’s code accordingly.

Guiding Principle of Access Levels
Access levels in Swift follow an overall guiding principle: No entity
can be defined in terms of another entity that has a lower (more
restrictive) access level.

For example:

A public variable can’t be defined as having an internal, file-
private, or private type, because the type might not be available
everywhere that the public variable is used.

A function can’t have a higher access level than its parameter
types and return type, because the function could be used in

PDF conversion courtesy of www.appsdissected.com

situations where its constituent types are unavailable to the
surrounding code.

The specific implications of this guiding principle for different aspects
of the language are covered in detail below.

Default Access Levels
All entities in your code (with a few specific exceptions, as described
later in this chapter) have a default access level of internal if you don’t
specify an explicit access level yourself. As a result, in many cases
you don’t need to specify an explicit access level in your code.

Access Levels for Single-Target Apps
When you write a simple single-target app, the code in your app is
typically self-contained within the app and doesn’t need to be made
available outside of the app’s module. The default access level of
internal already matches this requirement. Therefore, you don’t need
to specify a custom access level. You may, however, want to mark
some parts of your code as file private or private in order to hide their
implementation details from other code within the app’s module.

Access Levels for Frameworks
When you develop a framework, mark the public-facing interface to
that framework as open or public so that it can be viewed and
accessed by other modules, such as an app that imports the
framework. This public-facing interface is the application
programming interface (or API) for the framework.

PDF conversion courtesy of www.appsdissected.com

NOTE

Any internal implementation details of your framework can still use the default
access level of internal, or can be marked as private or file private if you want
to hide them from other parts of the framework’s internal code. You need to
mark an entity as open or public only if you want it to become part of your
framework’s API.

Access Levels for Unit Test Targets
When you write an app with a unit test target, the code in your app
needs to be made available to that module in order to be tested. By
default, only entities marked as open or public are accessible to other
modules. However, a unit test target can access any internal entity, if
you mark the import declaration for a product module with the
@testable attribute and compile that product module with testing
enabled.

Access Control Syntax
Define the access level for an entity by placing one of the open,
public, internal, fileprivate, or private modifiers at the beginning
of the entity’s declaration.

PDF conversion courtesy of www.appsdissected.com

1 public class SomePublicClass {}

2 internal class SomeInternalClass {}

3 fileprivate class SomeFilePrivateClass {}

4 private class SomePrivateClass {}

5

6 public var somePublicVariable = 0

7 internal let someInternalConstant = 0

8 fileprivate func someFilePrivateFunction() {}

9 private func somePrivateFunction() {}

Unless otherwise specified, the default access level is internal, as
described in Default Access Levels. This means that
SomeInternalClass and someInternalConstant can be written
without an explicit access-level modifier, and will still have an access
level of internal:

1 class SomeInternalClass {} //

implicitly internal

2 let someInternalConstant = 0 //

implicitly internal

Custom Types
If you want to specify an explicit access level for a custom type, do so
at the point that you define the type. The new type can then be used
wherever its access level permits. For example, if you define a file-
private class, that class can only be used as the type of a property, or

PDF conversion courtesy of www.appsdissected.com

as a function parameter or return type, in the source file in which the
file-private class is defined.

The access control level of a type also affects the default access level
of that type’s members (its properties, methods, initializers, and
subscripts). If you define a type’s access level as private or file
private, the default access level of its members will also be private or
file private. If you define a type’s access level as internal or public (or
use the default access level of internal without specifying an access
level explicitly), the default access level of the type’s members will be
internal.

IMPORTANT

A public type defaults to having internal members, not public members. If you
want a type member to be public, you must explicitly mark it as such. This
requirement ensures that the public-facing API for a type is something you opt
in to publishing, and avoids presenting the internal workings of a type as
public API by mistake.

PDF conversion courtesy of www.appsdissected.com

1 public class SomePublicClass { //

explicitly public class

2 public var somePublicProperty = 0 //

explicitly public class member

3 var someInternalProperty = 0 //

implicitly internal class member

4 fileprivate func someFilePrivateMethod() {} //

explicitly file-private class member

5 private func somePrivateMethod() {} //

explicitly private class member

6 }

7

8 class SomeInternalClass { //

implicitly internal class

9 var someInternalProperty = 0 //

implicitly internal class member

10 fileprivate func someFilePrivateMethod() {} //

explicitly file-private class member

11 private func somePrivateMethod() {} //

explicitly private class member

12 }

13

14 fileprivate class SomeFilePrivateClass { //

explicitly file-private class

15 func someFilePrivateMethod() {} //

implicitly file-private class member

PDF conversion courtesy of www.appsdissected.com

16 private func somePrivateMethod() {} //

explicitly private class member

17 }

18

19 private class SomePrivateClass { //

explicitly private class

20 func somePrivateMethod() {} //

implicitly private class member

21 }

Tuple Types
The access level for a tuple type is the most restrictive access level of
all types used in that tuple. For example, if you compose a tuple from
two different types, one with internal access and one with private
access, the access level for that compound tuple type will be private.

NOTE

Tuple types don’t have a standalone definition in the way that classes,
structures, enumerations, and functions do. A tuple type’s access level is
determined automatically from the types that make up the tuple type, and
can’t be specified explicitly.

Function Types
The access level for a function type is calculated as the most
restrictive access level of the function’s parameter types and return
type. You must specify the access level explicitly as part of the
function’s definition if the function’s calculated access level doesn’t
match the contextual default.

PDF conversion courtesy of www.appsdissected.com

The example below defines a global function called someFunction(),
without providing a specific access-level modifier for the function
itself. You might expect this function to have the default access level
of “internal”, but this isn’t the case. In fact, someFunction() won’t
compile as written below:

1 func someFunction() -> (SomeInternalClass,

SomePrivateClass) {

2 // function implementation goes here

3 }

The function’s return type is a tuple type composed from two of the
custom classes defined above in Custom Types. One of these
classes is defined as internal, and the other is defined as private.
Therefore, the overall access level of the compound tuple type is
private (the minimum access level of the tuple’s constituent types).

Because the function’s return type is private, you must mark the
function’s overall access level with the private modifier for the
function declaration to be valid:

1 private func someFunction() -> (SomeInternalClass,

SomePrivateClass) {

2 // function implementation goes here

3 }

It’s not valid to mark the definition of someFunction() with the public
or internal modifiers, or to use the default setting of internal,
because public or internal users of the function might not have
appropriate access to the private class used in the function’s return
type.

PDF conversion courtesy of www.appsdissected.com

Enumeration Types
The individual cases of an enumeration automatically receive the
same access level as the enumeration they belong to. You can’t
specify a different access level for individual enumeration cases.

In the example below, the CompassPoint enumeration has an explicit
access level of public. The enumeration cases north, south, east,
and west therefore also have an access level of public:

1 public enum CompassPoint {

2 case north

3 case south

4 case east

5 case west

6 }

Raw Values and Associated Values

The types used for any raw values or associated values in an
enumeration definition must have an access level at least as high as
the enumeration’s access level. For example, you can’t use a private
type as the raw-value type of an enumeration with an internal access
level.

Nested Types
The access level of a nested type is the same as its containing type,
unless the containing type is public. Nested types defined within a
public type have an automatic access level of internal. If you want a
nested type within a public type to be publicly available, you must
explicitly declare the nested type as public.

PDF conversion courtesy of www.appsdissected.com

Subclassing
You can subclass any class that can be accessed in the current
access context and that’s defined in the same module as the
subclass. You can also subclass any open class that’s defined in a
different module. A subclass can’t have a higher access level than its
superclass—for example, you can’t write a public subclass of an
internal superclass.

In addition, for classes that are defined in the same module, you can
override any class member (method, property, initializer, or subscript)
that’s visible in a certain access context. For classes that are defined
in another module, you can override any open class member.

An override can make an inherited class member more accessible
than its superclass version. In the example below, class A is a public
class with a file-private method called someMethod(). Class B is a
subclass of A, with a reduced access level of “internal”. Nonetheless,
class B provides an override of someMethod() with an access level of
“internal”, which is higher than the original implementation of
someMethod():

1 public class A {

2 fileprivate func someMethod() {}

3 }

4

5 internal class B: A {

6 override internal func someMethod() {}

7 }

It’s even valid for a subclass member to call a superclass member
that has lower access permissions than the subclass member, as
long as the call to the superclass’s member takes place within an

PDF conversion courtesy of www.appsdissected.com

allowed access level context (that is, within the same source file as
the superclass for a file-private member call, or within the same
module as the superclass for an internal member call):

1 public class A {

2 fileprivate func someMethod() {}

3 }

4

5 internal class B: A {

6 override internal func someMethod() {

7 super.someMethod()

8 }

9 }

Because superclass A and subclass B are defined in the same source
file, it’s valid for the B implementation of someMethod() to call
super.someMethod().

Constants, Variables, Properties, and Subscripts
A constant, variable, or property can’t be more public than its type. It’s
not valid to write a public property with a private type, for example.
Similarly, a subscript can’t be more public than either its index type or
return type.

If a constant, variable, property, or subscript makes use of a private
type, the constant, variable, property, or subscript must also be
marked as private:

PDF conversion courtesy of www.appsdissected.com

 private var privateInstance = SomePrivateClass()

Getters and Setters
Getters and setters for constants, variables, properties, and
subscripts automatically receive the same access level as the
constant, variable, property, or subscript they belong to.

You can give a setter a lower access level than its corresponding
getter, to restrict the read-write scope of that variable, property, or
subscript. You assign a lower access level by writing
fileprivate(set), private(set), or internal(set) before the var or
subscript introducer.

NOTE

This rule applies to stored properties as well as computed properties. Even
though you don’t write an explicit getter and setter for a stored property, Swift
still synthesizes an implicit getter and setter for you to provide access to the
stored property’s backing storage. Use fileprivate(set), private(set),
and internal(set) to change the access level of this synthesized setter in
exactly the same way as for an explicit setter in a computed property.

The example below defines a structure called TrackedString, which
keeps track of the number of times a string property is modified:

PDF conversion courtesy of www.appsdissected.com

1 struct TrackedString {

2 private(set) var numberOfEdits = 0

3 var value: String = "" {

4 didSet {

5 numberOfEdits += 1

6 }

7 }

8 }

The TrackedString structure defines a stored string property called
value, with an initial value of "" (an empty string). The structure also
defines a stored integer property called numberOfEdits, which is used
to track the number of times that value is modified. This modification
tracking is implemented with a didSet property observer on the value
property, which increments numberOfEdits every time the value
property is set to a new value.

The TrackedString structure and the value property don’t provide an
explicit access-level modifier, and so they both receive the default
access level of internal. However, the access level for the
numberOfEdits property is marked with a private(set) modifier to
indicate that the property’s getter still has the default access level of
internal, but the property is settable only from within code that’s part
of the TrackedString structure. This enables TrackedString to
modify the numberOfEdits property internally, but to present the
property as a read-only property when it’s used outside the
structure’s definition.

If you create a TrackedString instance and modify its string value a
few times, you can see the numberOfEdits property value update to
match the number of modifications:

PDF conversion courtesy of www.appsdissected.com

1 var stringToEdit = TrackedString()

2 stringToEdit.value = "This string will be tracked."

3 stringToEdit.value += " This edit will increment

numberOfEdits."

4 stringToEdit.value += " So will this one."

5 print("The number of edits is \

(stringToEdit.numberOfEdits)")

6 // Prints "The number of edits is 3"

Although you can query the current value of the numberOfEdits
property from within another source file, you can’t modify the property
from another source file. This restriction protects the implementation
details of the TrackedString edit-tracking functionality, while still
providing convenient access to an aspect of that functionality.

Note that you can assign an explicit access level for both a getter and
a setter if required. The example below shows a version of the
TrackedString structure in which the structure is defined with an
explicit access level of public. The structure’s members (including the
numberOfEdits property) therefore have an internal access level by
default. You can make the structure’s numberOfEdits property getter
public, and its property setter private, by combining the public and
private(set) access-level modifiers:

PDF conversion courtesy of www.appsdissected.com

1 public struct TrackedString {

2 public private(set) var numberOfEdits = 0

3 public var value: String = "" {

4 didSet {

5 numberOfEdits += 1

6 }

7 }

8 public init() {}

9 }

Initializers
Custom initializers can be assigned an access level less than or
equal to the type that they initialize. The only exception is for required
initializers (as defined in Required Initializers). A required initializer
must have the same access level as the class it belongs to.

As with function and method parameters, the types of an initializer’s
parameters can’t be more private than the initializer’s own access
level.

Default Initializers
As described in Default Initializers, Swift automatically provides a
default initializer without any arguments for any structure or base
class that provides default values for all of its properties and doesn’t
provide at least one initializer itself.

PDF conversion courtesy of www.appsdissected.com

A default initializer has the same access level as the type it initializes,
unless that type is defined as public. For a type that’s defined as
public, the default initializer is considered internal. If you want a
public type to be initializable with a no-argument initializer when used
in another module, you must explicitly provide a public no-argument
initializer yourself as part of the type’s definition.

Default Memberwise Initializers for Structure Types
The default memberwise initializer for a structure type is considered
private if any of the structure’s stored properties are private. Likewise,
if any of the structure’s stored properties are file private, the initializer
is file private. Otherwise, the initializer has an access level of internal.

As with the default initializer above, if you want a public structure type
to be initializable with a memberwise initializer when used in another
module, you must provide a public memberwise initializer yourself as
part of the type’s definition.

Protocols
If you want to assign an explicit access level to a protocol type, do so
at the point that you define the protocol. This enables you to create
protocols that can only be adopted within a certain access context.

The access level of each requirement within a protocol definition is
automatically set to the same access level as the protocol. You can’t
set a protocol requirement to a different access level than the
protocol it supports. This ensures that all of the protocol’s
requirements will be visible on any type that adopts the protocol.

PDF conversion courtesy of www.appsdissected.com

NOTE

If you define a public protocol, the protocol’s requirements require a public
access level for those requirements when they’re implemented. This behavior
is different from other types, where a public type definition implies an access
level of internal for the type’s members.

Protocol Inheritance
If you define a new protocol that inherits from an existing protocol, the
new protocol can have at most the same access level as the protocol
it inherits from. For example, you can’t write a public protocol that
inherits from an internal protocol.

Protocol Conformance
A type can conform to a protocol with a lower access level than the
type itself. For example, you can define a public type that can be
used in other modules, but whose conformance to an internal
protocol can only be used within the internal protocol’s defining
module.

The context in which a type conforms to a particular protocol is the
minimum of the type’s access level and the protocol’s access level.
For example, if a type is public, but a protocol it conforms to is
internal, the type’s conformance to that protocol is also internal.

When you write or extend a type to conform to a protocol, you must
ensure that the type’s implementation of each protocol requirement
has at least the same access level as the type’s conformance to that
protocol. For example, if a public type conforms to an internal
protocol, the type’s implementation of each protocol requirement
must be at least internal.

PDF conversion courtesy of www.appsdissected.com

NOTE

In Swift, as in Objective-C, protocol conformance is global—it isn’t possible for
a type to conform to a protocol in two different ways within the same program.

Extensions
You can extend a class, structure, or enumeration in any access
context in which the class, structure, or enumeration is available. Any
type members added in an extension have the same default access
level as type members declared in the original type being extended. If
you extend a public or internal type, any new type members you add
have a default access level of internal. If you extend a file-private
type, any new type members you add have a default access level of
file private. If you extend a private type, any new type members you
add have a default access level of private.

Alternatively, you can mark an extension with an explicit access-level
modifier (for example, private) to set a new default access level for
all members defined within the extension. This new default can still
be overridden within the extension for individual type members.

You can’t provide an explicit access-level modifier for an extension if
you’re using that extension to add protocol conformance. Instead, the
protocol’s own access level is used to provide the default access
level for each protocol requirement implementation within the
extension.

Private Members in Extensions
Extensions that are in the same file as the class, structure, or
enumeration that they extend behave as if the code in the extension

PDF conversion courtesy of www.appsdissected.com

had been written as part of the original type’s declaration. As a result,
you can:

Declare a private member in the original declaration, and access
that member from extensions in the same file.

Declare a private member in one extension, and access that
member from another extension in the same file.

Declare a private member in an extension, and access that
member from the original declaration in the same file.

This behavior means you can use extensions in the same way to
organize your code, whether or not your types have private entities.
For example, given the following simple protocol:

1 protocol SomeProtocol {

2 func doSomething()

3 }

You can use an extension to add protocol conformance, like this:

1 struct SomeStruct {

2 private var privateVariable = 12

3 }

4

5 extension SomeStruct: SomeProtocol {

6 func doSomething() {

7 print(privateVariable)

8 }

9 }

PDF conversion courtesy of www.appsdissected.com

Generics
The access level for a generic type or generic function is the
minimum of the access level of the generic type or function itself and
the access level of any type constraints on its type parameters.

Type Aliases
Any type aliases you define are treated as distinct types for the
purposes of access control. A type alias can have an access level
less than or equal to the access level of the type it aliases. For
example, a private type alias can alias a private, file-private, internal,
public, or open type, but a public type alias can’t alias an internal, file-
private, or private type.

NOTE

This rule also applies to type aliases for associated types used to satisfy
protocol conformances.

PDF conversion courtesy of www.appsdissected.com

Advanced Operators

In addition to the operators described in Basic Operators, Swift
provides several advanced operators that perform more complex
value manipulation. These include all of the bitwise and bit shifting
operators you will be familiar with from C and Objective-C.

Unlike arithmetic operators in C, arithmetic operators in Swift don’t
overflow by default. Overflow behavior is trapped and reported as an
error. To opt in to overflow behavior, use Swift’s second set of
arithmetic operators that overflow by default, such as the overflow
addition operator (&+). All of these overflow operators begin with an
ampersand (&).

When you define your own structures, classes, and enumerations, it
can be useful to provide your own implementations of the standard
Swift operators for these custom types. Swift makes it easy to provide
tailored implementations of these operators and to determine exactly
what their behavior should be for each type you create.

You’re not limited to the predefined operators. Swift gives you the
freedom to define your own custom infix, prefix, postfix, and
assignment operators, with custom precedence and associativity
values. These operators can be used and adopted in your code like
any of the predefined operators, and you can even extend existing
types to support the custom operators you define.

Bitwise Operators
Bitwise operators enable you to manipulate the individual raw data
bits within a data structure. They’re often used in low-level
programming, such as graphics programming and device driver

PDF conversion courtesy of www.appsdissected.com

creation. Bitwise operators can also be useful when you work with
raw data from external sources, such as encoding and decoding data
for communication over a custom protocol.

Swift supports all of the bitwise operators found in C, as described
below.

Bitwise NOT Operator
The bitwise NOT operator (~) inverts all bits in a number:

The bitwise NOT operator is a prefix operator, and appears
immediately before the value it operates on, without any white space:

1 let initialBits: UInt8 = 0b00001111

2 let invertedBits = ~initialBits // equals 11110000

UInt8 integers have eight bits and can store any value between 0 and
255. This example initializes a UInt8 integer with the binary value
00001111, which has its first four bits set to 0, and its second four bits
set to 1. This is equivalent to a decimal value of 15.

The bitwise NOT operator is then used to create a new constant
called invertedBits, which is equal to initialBits, but with all of the
bits inverted. Zeros become ones, and ones become zeros. The
value of invertedBits is 11110000, which is equal to an unsigned
decimal value of 240.

PDF conversion courtesy of www.appsdissected.com

Bitwise AND Operator
The bitwise AND operator (&) combines the bits of two numbers. It
returns a new number whose bits are set to 1 only if the bits were
equal to 1 in both input numbers:

In the example below, the values of firstSixBits and lastSixBits
both have four middle bits equal to 1. The bitwise AND operator
combines them to make the number 00111100, which is equal to an
unsigned decimal value of 60:

1 let firstSixBits: UInt8 = 0b11111100

2 let lastSixBits: UInt8 = 0b00111111

3 let middleFourBits = firstSixBits & lastSixBits //

equals 00111100

Bitwise OR Operator
The bitwise OR operator (|) compares the bits of two numbers. The
operator returns a new number whose bits are set to 1 if the bits are
equal to 1 in either input number:

PDF conversion courtesy of www.appsdissected.com

In the example below, the values of someBits and moreBits have
different bits set to 1. The bitwise OR operator combines them to
make the number 11111110, which equals an unsigned decimal of
254:

1 let someBits: UInt8 = 0b10110010

2 let moreBits: UInt8 = 0b01011110

3 let combinedbits = someBits | moreBits // equals

11111110

Bitwise XOR Operator
The bitwise XOR operator, or “exclusive OR operator” (^), compares
the bits of two numbers. The operator returns a new number whose
bits are set to 1 where the input bits are different and are set to 0
where the input bits are the same:

PDF conversion courtesy of www.appsdissected.com

In the example below, the values of firstBits and otherBits each
have a bit set to 1 in a location that the other does not. The bitwise
XOR operator sets both of these bits to 1 in its output value. All of the
other bits in firstBits and otherBits match and are set to 0 in the
output value:

1 let firstBits: UInt8 = 0b00010100

2 let otherBits: UInt8 = 0b00000101

3 let outputBits = firstBits ^ otherBits // equals

00010001

Bitwise Left and Right Shift Operators
The bitwise left shift operator (<<) and bitwise right shift operator (>>)
move all bits in a number to the left or the right by a certain number of
places, according to the rules defined below.

Bitwise left and right shifts have the effect of multiplying or dividing an
integer by a factor of two. Shifting an integer’s bits to the left by one
position doubles its value, whereas shifting it to the right by one
position halves its value.

Shifting Behavior for Unsigned Integers

The bit-shifting behavior for unsigned integers is as follows:

1. Existing bits are moved to the left or right by the requested
number of places.

2. Any bits that are moved beyond the bounds of the integer’s
storage are discarded.

3. Zeros are inserted in the spaces left behind after the original bits
are moved to the left or right.

PDF conversion courtesy of www.appsdissected.com

This approach is known as a logical shift.

The illustration below shows the results of 11111111 << 1 (which is
11111111 shifted to the left by 1 place), and 11111111 >> 1 (which is
11111111 shifted to the right by 1 place). Blue numbers are shifted,
gray numbers are discarded, and orange zeros are inserted:

Here’s how bit shifting looks in Swift code:

1 let shiftBits: UInt8 = 4 // 00000100 in binary

2 shiftBits << 1 // 00001000

3 shiftBits << 2 // 00010000

4 shiftBits << 5 // 10000000

5 shiftBits << 6 // 00000000

6 shiftBits >> 2 // 00000001

You can use bit shifting to encode and decode values within other
data types:

PDF conversion courtesy of www.appsdissected.com

1 let pink: UInt32 = 0xCC6699

2 let redComponent = (pink & 0xFF0000) >> 16 //

redComponent is 0xCC, or 204

3 let greenComponent = (pink & 0x00FF00) >> 8 //

greenComponent is 0x66, or 102

4 let blueComponent = pink & 0x0000FF //

blueComponent is 0x99, or 153

This example uses a UInt32 constant called pink to store a
Cascading Style Sheets color value for the color pink. The CSS color
value #CC6699 is written as 0xCC6699 in Swift’s hexadecimal number
representation. This color is then decomposed into its red (CC), green
(66), and blue (99) components by the bitwise AND operator (&) and
the bitwise right shift operator (>>).

The red component is obtained by performing a bitwise AND between
the numbers 0xCC6699 and 0xFF0000. The zeros in 0xFF0000
effectively “mask” the second and third bytes of 0xCC6699, causing
the 6699 to be ignored and leaving 0xCC0000 as the result.

This number is then shifted 16 places to the right (>> 16). Each pair of
characters in a hexadecimal number uses 8 bits, so a move 16 places
to the right will convert 0xCC0000 into 0x0000CC. This is the same as
0xCC, which has a decimal value of 204.

Similarly, the green component is obtained by performing a bitwise
AND between the numbers 0xCC6699 and 0x00FF00, which gives an
output value of 0x006600. This output value is then shifted eight
places to the right, giving a value of 0x66, which has a decimal value
of 102.

Finally, the blue component is obtained by performing a bitwise AND
between the numbers 0xCC6699 and 0x0000FF, which gives an output

PDF conversion courtesy of www.appsdissected.com

value of 0x000099. Because 0x000099 already equals 0x99, which has
a decimal value of 153, this value is used without shifting it to the
right,

Shifting Behavior for Signed Integers

The shifting behavior is more complex for signed integers than for
unsigned integers, because of the way signed integers are
represented in binary. (The examples below are based on 8-bit
signed integers for simplicity, but the same principles apply for signed
integers of any size.)

Signed integers use their first bit (known as the sign bit) to indicate
whether the integer is positive or negative. A sign bit of 0 means
positive, and a sign bit of 1 means negative.

The remaining bits (known as the value bits) store the actual value.
Positive numbers are stored in exactly the same way as for unsigned
integers, counting upwards from 0. Here’s how the bits inside an Int8
look for the number 4:

The sign bit is 0 (meaning “positive”), and the seven value bits are
just the number 4, written in binary notation.

Negative numbers, however, are stored differently. They’re stored by
subtracting their absolute value from 2 to the power of n, where n is
the number of value bits. An eight-bit number has seven value bits, so
this means 2 to the power of 7, or 128.

Here’s how the bits inside an Int8 look for the number -4:

PDF conversion courtesy of www.appsdissected.com

This time, the sign bit is 1 (meaning “negative”), and the seven value
bits have a binary value of 124 (which is 128 - 4):

This encoding for negative numbers is known as a two’s complement
representation. It may seem an unusual way to represent negative
numbers, but it has several advantages.

First, you can add -1 to -4, simply by performing a standard binary
addition of all eight bits (including the sign bit), and discarding
anything that doesn’t fit in the eight bits once you’re done:

Second, the two’s complement representation also lets you shift the
bits of negative numbers to the left and right like positive numbers,
and still end up doubling them for every shift you make to the left, or
halving them for every shift you make to the right. To achieve this, an
extra rule is used when signed integers are shifted to the right: When
you shift signed integers to the right, apply the same rules as for
unsigned integers, but fill any empty bits on the left with the sign bit,
rather than with a zero.

PDF conversion courtesy of www.appsdissected.com

This action ensures that signed integers have the same sign after
they’re shifted to the right, and is known as an arithmetic shift.

Because of the special way that positive and negative numbers are
stored, shifting either of them to the right moves them closer to zero.
Keeping the sign bit the same during this shift means that negative
integers remain negative as their value moves closer to zero.

Overflow Operators
If you try to insert a number into an integer constant or variable that
can’t hold that value, by default Swift reports an error rather than
allowing an invalid value to be created. This behavior gives extra
safety when you work with numbers that are too large or too small.

For example, the Int16 integer type can hold any signed integer
between -32768 and 32767. Trying to set an Int16 constant or
variable to a number outside of this range causes an error:

1 var potentialOverflow = Int16.max

2 // potentialOverflow equals 32767, which is the

maximum value an Int16 can hold

3 potentialOverflow += 1

4 // this causes an error

PDF conversion courtesy of www.appsdissected.com

Providing error handling when values get too large or too small gives
you much more flexibility when coding for boundary value conditions.

However, when you specifically want an overflow condition to
truncate the number of available bits, you can opt in to this behavior
rather than triggering an error. Swift provides three arithmetic
overflow operators that opt in to the overflow behavior for integer
calculations. These operators all begin with an ampersand (&):

Overflow addition (&+)

Overflow subtraction (&-)

Overflow multiplication (&*)

Value Overflow
Numbers can overflow in both the positive and negative direction.

Here’s an example of what happens when an unsigned integer is
allowed to overflow in the positive direction, using the overflow
addition operator (&+):

1 var unsignedOverflow = UInt8.max

2 // unsignedOverflow equals 255, which is the maximum

value a UInt8 can hold

3 unsignedOverflow = unsignedOverflow &+ 1

4 // unsignedOverflow is now equal to 0

The variable unsignedOverflow is initialized with the maximum value
a UInt8 can hold (255, or 11111111 in binary). It’s then incremented by
1 using the overflow addition operator (&+). This pushes its binary
representation just over the size that a UInt8 can hold, causing it to
overflow beyond its bounds, as shown in the diagram below. The

PDF conversion courtesy of www.appsdissected.com

value that remains within the bounds of the UInt8 after the overflow
addition is 00000000, or zero.

Something similar happens when an unsigned integer is allowed to
overflow in the negative direction. Here’s an example using the
overflow subtraction operator (&-):

1 var unsignedOverflow = UInt8.min

2 // unsignedOverflow equals 0, which is the minimum

value a UInt8 can hold

3 unsignedOverflow = unsignedOverflow &- 1

4 // unsignedOverflow is now equal to 255

The minimum value that a UInt8 can hold is zero, or 00000000 in
binary. If you subtract 1 from 00000000 using the overflow subtraction
operator (&-), the number will overflow and wrap around to 11111111,
or 255 in decimal.

Overflow also occurs for signed integers. All addition and subtraction
for signed integers is performed in bitwise fashion, with the sign bit

PDF conversion courtesy of www.appsdissected.com

included as part of the numbers being added or subtracted, as
described in Bitwise Left and Right Shift Operators.

1 var signedOverflow = Int8.min

2 // signedOverflow equals -128, which is the minimum

value an Int8 can hold

3 signedOverflow = signedOverflow &- 1

4 // signedOverflow is now equal to 127

The minimum value that an Int8 can hold is -128, or 10000000 in
binary. Subtracting 1 from this binary number with the overflow
operator gives a binary value of 01111111, which toggles the sign bit
and gives positive 127, the maximum positive value that an Int8 can
hold.

For both signed and unsigned integers, overflow in the positive
direction wraps around from the maximum valid integer value back to
the minimum, and overflow in the negative direction wraps around
from the minimum value to the maximum.

Precedence and Associativity

PDF conversion courtesy of www.appsdissected.com

Operator precedence gives some operators higher priority than
others; these operators are applied first.

Operator associativity defines how operators of the same precedence
are grouped together—either grouped from the left, or grouped from
the right. Think of it as meaning “they associate with the expression
to their left,” or “they associate with the expression to their right.”

It’s important to consider each operator’s precedence and
associativity when working out the order in which a compound
expression will be calculated. For example, operator precedence
explains why the following expression equals 17.

1 2 + 3 % 4 * 5

2 // this equals 17

If you read strictly from left to right, you might expect the expression
to be calculated as follows:

2 plus 3 equals 5

5 remainder 4 equals 1

1 times 5 equals 5

However, the actual answer is 17, not 5. Higher-precedence
operators are evaluated before lower-precedence ones. In Swift, as
in C, the remainder operator (%) and the multiplication operator (*)
have a higher precedence than the addition operator (+). As a result,
they’re both evaluated before the addition is considered.

However, remainder and multiplication have the same precedence as
each other. To work out the exact evaluation order to use, you also
need to consider their associativity. Remainder and multiplication
both associate with the expression to their left. Think of this as adding

PDF conversion courtesy of www.appsdissected.com

implicit parentheses around these parts of the expression, starting
from their left:

 2 + ((3 % 4) * 5)

(3 % 4) is 3, so this is equivalent to:

 2 + (3 * 5)

(3 * 5) is 15, so this is equivalent to:

 2 + 15

This calculation yields the final answer of 17.

For information about the operators provided by the Swift standard
library, including a complete list of the operator precedence groups
and associativity settings, see Operator Declarations.

NOTE

Swift’s operator precedences and associativity rules are simpler and more
predictable than those found in C and Objective-C. However, this means that
they aren’t exactly the same as in C-based languages. Be careful to ensure
that operator interactions still behave in the way you intend when porting
existing code to Swift.

Operator Methods
Classes and structures can provide their own implementations of
existing operators. This is known as overloading the existing
operators.

https://developer.apple.com/documentation/swift/operator_declarations

PDF conversion courtesy of www.appsdissected.com

The example below shows how to implement the arithmetic addition
operator (+) for a custom structure. The arithmetic addition operator is
a binary operator because it operates on two targets and it’s an infix
operator because it appears between those two targets.

The example defines a Vector2D structure for a two-dimensional
position vector (x, y), followed by a definition of an operator method
to add together instances of the Vector2D structure:

1 struct Vector2D {

2 var x = 0.0, y = 0.0

3 }

4

5 extension Vector2D {

6 static func + (left: Vector2D, right: Vector2D)

-> Vector2D {

7 return Vector2D(x: left.x + right.x, y:

left.y + right.y)

8 }

9 }

The operator method is defined as a type method on Vector2D, with a
method name that matches the operator to be overloaded (+).
Because addition isn’t part of the essential behavior for a vector, the
type method is defined in an extension of Vector2D rather than in the
main structure declaration of Vector2D. Because the arithmetic
addition operator is a binary operator, this operator method takes two
input parameters of type Vector2D and returns a single output value,
also of type Vector2D.

In this implementation, the input parameters are named left and
right to represent the Vector2D instances that will be on the left side

PDF conversion courtesy of www.appsdissected.com

and right side of the + operator. The method returns a new Vector2D
instance, whose x and y properties are initialized with the sum of the
x and y properties from the two Vector2D instances that are added
together.

The type method can be used as an infix operator between existing
Vector2D instances:

1 let vector = Vector2D(x: 3.0, y: 1.0)

2 let anotherVector = Vector2D(x: 2.0, y: 4.0)

3 let combinedVector = vector + anotherVector

4 // combinedVector is a Vector2D instance with values

of (5.0, 5.0)

This example adds together the vectors (3.0, 1.0) and (2.0, 4.0)
to make the vector (5.0, 5.0), as illustrated below.

PDF conversion courtesy of www.appsdissected.com

Prefix and Postfix Operators
The example shown above demonstrates a custom implementation
of a binary infix operator. Classes and structures can also provide
implementations of the standard unary operators. Unary operators
operate on a single target. They’re prefix if they precede their target
(such as -a) and postfix operators if they follow their target (such as
b!).

You implement a prefix or postfix unary operator by writing the prefix
or postfix modifier before the func keyword when declaring the
operator method:

PDF conversion courtesy of www.appsdissected.com

1 extension Vector2D {

2 static prefix func - (vector: Vector2D) ->

Vector2D {

3 return Vector2D(x: -vector.x, y: -vector.y)

4 }

5 }

The example above implements the unary minus operator (-a) for
Vector2D instances. The unary minus operator is a prefix operator,
and so this method has to be qualified with the prefix modifier.

For simple numeric values, the unary minus operator converts
positive numbers into their negative equivalent and vice versa. The
corresponding implementation for Vector2D instances performs this
operation on both the x and y properties:

1 let positive = Vector2D(x: 3.0, y: 4.0)

2 let negative = -positive

3 // negative is a Vector2D instance with values of

(-3.0, -4.0)

4 let alsoPositive = -negative

5 // alsoPositive is a Vector2D instance with values

of (3.0, 4.0)

Compound Assignment Operators
Compound assignment operators combine assignment (=) with
another operation. For example, the addition assignment operator
(+=) combines addition and assignment into a single operation. You
mark a compound assignment operator’s left input parameter type as

PDF conversion courtesy of www.appsdissected.com

inout, because the parameter’s value will be modified directly from
within the operator method.

The example below implements an addition assignment operator
method for Vector2D instances:

1 extension Vector2D {

2 static func += (left: inout Vector2D, right:

Vector2D) {

3 left = left + right

4 }

5 }

Because an addition operator was defined earlier, you don’t need to
reimplement the addition process here. Instead, the addition
assignment operator method takes advantage of the existing addition
operator method, and uses it to set the left value to be the left value
plus the right value:

1 var original = Vector2D(x: 1.0, y: 2.0)

2 let vectorToAdd = Vector2D(x: 3.0, y: 4.0)

3 original += vectorToAdd

4 // original now has values of (4.0, 6.0)

NOTE

It isn’t possible to overload the default assignment operator (=). Only the
compound assignment operators can be overloaded. Similarly, the ternary
conditional operator (a ? b : c) can’t be overloaded.

Equivalence Operators

PDF conversion courtesy of www.appsdissected.com

By default, custom classes and structures don’t have an
implementation of the equivalence operators, known as the equal to
operator (==) and not equal to operator (!=). You usually implement
the == operator, and use the standard library’s default implementation
of the != operator that negates the result of the == operator. There are
two ways to implement the == operator: You can implement it
yourself, or for many types, you can ask Swift to synthesize an
implementation for you. In both cases, you add conformance to the
standard library’s Equatable protocol.

You provide an implementation of the == operator in the same way as
you implement other infix operators:

1 extension Vector2D: Equatable {

2 static func == (left: Vector2D, right: Vector2D)

-> Bool {

3 return (left.x == right.x) && (left.y ==

right.y)

4 }

5 }

The example above implements an == operator to check whether two
Vector2D instances have equivalent values. In the context of
Vector2D, it makes sense to consider “equal” as meaning “both
instances have the same x values and y values”, and so this is the
logic used by the operator implementation.

You can now use this operator to check whether two Vector2D
instances are equivalent:

PDF conversion courtesy of www.appsdissected.com

1 let twoThree = Vector2D(x: 2.0, y: 3.0)

2 let anotherTwoThree = Vector2D(x: 2.0, y: 3.0)

3 if twoThree == anotherTwoThree {

4 print("These two vectors are equivalent.")

5 }

6 // Prints "These two vectors are equivalent."

In many simple cases, you can ask Swift to provide synthesized
implementations of the equivalence operators for you, as described in
Adopting a Protocol Using a Synthesized Implementation.

Custom Operators
You can declare and implement your own custom operators in
addition to the standard operators provided by Swift. For a list of
characters that can be used to define custom operators, see
Operators.

New operators are declared at a global level using the operator
keyword, and are marked with the prefix, infix or postfix
modifiers:

 prefix operator +++

The example above defines a new prefix operator called +++. This
operator doesn’t have an existing meaning in Swift, and so it’s given
its own custom meaning below in the specific context of working with
Vector2D instances. For the purposes of this example, +++ is treated
as a new “prefix doubling” operator. It doubles the x and y values of a
Vector2D instance, by adding the vector to itself with the addition

PDF conversion courtesy of www.appsdissected.com

assignment operator defined earlier. To implement the +++ operator,
you add a type method called +++ to Vector2D as follows:

1 extension Vector2D {

2 static prefix func +++ (vector: inout Vector2D)

-> Vector2D {

3 vector += vector

4 return vector

5 }

6 }

7

8 var toBeDoubled = Vector2D(x: 1.0, y: 4.0)

9 let afterDoubling = +++toBeDoubled

10 // toBeDoubled now has values of (2.0, 8.0)

11 // afterDoubling also has values of (2.0, 8.0)

Precedence for Custom Infix Operators
Custom infix operators each belong to a precedence group. A
precedence group specifies an operator’s precedence relative to
other infix operators, as well as the operator’s associativity. See
Precedence and Associativity for an explanation of how these
characteristics affect an infix operator’s interaction with other infix
operators.

A custom infix operator that isn’t explicitly placed into a precedence
group is given a default precedence group with a precedence
immediately higher than the precedence of the ternary conditional
operator.

PDF conversion courtesy of www.appsdissected.com

The following example defines a new custom infix operator called +-,
which belongs to the precedence group AdditionPrecedence:

1 infix operator +-: AdditionPrecedence

2 extension Vector2D {

3 static func +- (left: Vector2D, right: Vector2D)

-> Vector2D {

4 return Vector2D(x: left.x + right.x, y:

left.y - right.y)

5 }

6 }

7 let firstVector = Vector2D(x: 1.0, y: 2.0)

8 let secondVector = Vector2D(x: 3.0, y: 4.0)

9 let plusMinusVector = firstVector +- secondVector

10 // plusMinusVector is a Vector2D instance with

values of (4.0, -2.0)

This operator adds together the x values of two vectors, and
subtracts the y value of the second vector from the first. Because it’s
in essence an “additive” operator, it has been given the same
precedence group as additive infix operators such as + and -. For
information about the operators provided by the Swift standard
library, including a complete list of the operator precedence groups
and associativity settings, see Operator Declarations. For more
information about precedence groups and to see the syntax for
defining your own operators and precedence groups, see Operator
Declaration.

https://developer.apple.com/documentation/swift/operator_declarations

PDF conversion courtesy of www.appsdissected.com

NOTE

You don’t specify a precedence when defining a prefix or postfix operator.
However, if you apply both a prefix and a postfix operator to the same
operand, the postfix operator is applied first.

Result Builders
A result builder is a type you define that adds syntax for creating
nested data, like a list or tree, in a natural, declarative way. The code
that uses the result builder can include ordinary Swift syntax, like if
and for, to handle conditional or repeated pieces of data.

The code below defines a few types for drawing on a single line using
stars and text.

PDF conversion courtesy of www.appsdissected.com

1 protocol Drawable {

2 func draw() -> String

3 }

4 struct Line: Drawable {

5 var elements: [Drawable]

6 func draw() -> String {

7 return elements.map { $0.draw()

}.joined(separator: "")

8 }

9 }

10 struct Text: Drawable {

11 var content: String

12 init(_ content: String) { self.content = content

}

13 func draw() -> String { return content }

14 }

15 struct Space: Drawable {

16 func draw() -> String { return " " }

17 }

18 struct Stars: Drawable {

19 var length: Int

20 func draw() -> String { return String(repeating:

"*", count: length) }

21 }

22 struct AllCaps: Drawable {

23 var content: Drawable

PDF conversion courtesy of www.appsdissected.com

24 func draw() -> String { return

content.draw().uppercased() }

25 }

The Drawable protocol defines the requirement for something that
can be drawn, like a line or shape: The type must implement a draw()
method. The Line structure represents a single-line drawing, and it
serves the top-level container for most drawings. To draw a Line, the
structure calls draw() on each of the line’s components, and then
concatenates the resulting strings into a single string. The Text
structure wraps a string to make it part of a drawing. The AllCaps
structure wraps and modifies another drawing, converting any text in
the drawing to uppercase.

It’s possible to make a drawing with these types by calling their
initializers:

1 let name: String? = "Ravi Patel"

2 let manualDrawing = Line(elements: [

3 Stars(length: 3),

4 Text("Hello"),

5 Space(),

6 AllCaps(content: Text((name ?? "World") + "!")),

7 Stars(length: 2),

8])

9 print(manualDrawing.draw())

10 // Prints "***Hello RAVI PATEL!**"

This code works, but it’s a little awkward. The deeply nested
parentheses after AllCaps are hard to read. The fallback logic to use
“World” when name is nil has to be done inline using the ?? operator,

PDF conversion courtesy of www.appsdissected.com

which would be difficult with anything more complex. If you needed to
include switches or for loops to build up part of the drawing, there’s
no way to do that. A result builder lets you rewrite code like this so
that it looks like normal Swift code.

To define a result builder, you write the @resultBuilder attribute on a
type declaration. For example, this code defines a result builder
called DrawingBuilder, which lets you use a declarative syntax to
describe a drawing:

1 @resultBuilder

2 struct DrawingBuilder {

3 static func buildBlock(_ components:

Drawable...) -> Drawable {

4 return Line(elements: components)

5 }

6 static func buildEither(first: Drawable) ->

Drawable {

7 return first

8 }

9 static func buildEither(second: Drawable) ->

Drawable {

10 return second

11 }

12 }

The DrawingBuilder structure defines three methods that implement
parts of the result builder syntax. The buildBlock(_:) method adds
support for writing a series of lines in a block of code. It combines the

PDF conversion courtesy of www.appsdissected.com

components in that block into a Line. The buildEither(first:) and
buildEither(second:) methods add support for if-else.

You can apply the @DrawingBuilder attribute to a function’s
parameter, which turns a closure passed to the function into the value
that the result builder creates from that closure. For example:

PDF conversion courtesy of www.appsdissected.com

1 func draw(@DrawingBuilder content: () -> Drawable) -

> Drawable {

2 return content()

3 }

4 func caps(@DrawingBuilder content: () -> Drawable) -

> Drawable {

5 return AllCaps(content: content())

6 }

7

8 func makeGreeting(for name: String? = nil) ->

Drawable {

9 let greeting = draw {

10 Stars(length: 3)

11 Text("Hello")

12 Space()

13 caps {

14 if let name = name {

15 Text(name + "!")

16 } else {

17 Text("World!")

18 }

19 }

20 Stars(length: 2)

21 }

22 return greeting

23 }

PDF conversion courtesy of www.appsdissected.com

24 let genericGreeting = makeGreeting()

25 print(genericGreeting.draw())

26 // Prints "***Hello WORLD!**"

27

28 let personalGreeting = makeGreeting(for: "Ravi

Patel")

29 print(personalGreeting.draw())

30 // Prints "***Hello RAVI PATEL!**"

The makeGreeting(for:) function takes a name parameter and uses it
to draw a personalized greeting. The draw(_:) and caps(_:)
functions both take a single closure as their argument, which is
marked with the @DrawingBuilder attribute. When you call those
functions, you use the special syntax that DrawingBuilder defines.
Swift transforms that declarative description of a drawing into a series
of calls to the methods on DrawingBuilder to build up the value that’s
passed as the function argument. For example, Swift transforms the
call to caps(_:) in that example into code like the following:

PDF conversion courtesy of www.appsdissected.com

1 let capsDrawing = caps {

2 let partialDrawing: Drawable

3 if let name = name {

4 let text = Text(name + "!")

5 partialDrawing =

DrawingBuilder.buildEither(first: text)

6 } else {

7 let text = Text("World!")

8 partialDrawing =

DrawingBuilder.buildEither(second: text)

9 }

10 return partialDrawing

11 }

Swift transforms the if-else block into calls to the
buildEither(first:) and buildEither(second:) methods. Although
you don’t call these methods in your own code, showing the result of
the transformation makes it easier to see how Swift transforms your
code when you use the DrawingBuilder syntax.

To add support for writing for loops in the special drawing syntax,
add a buildArray(_:) method.

PDF conversion courtesy of www.appsdissected.com

1 extension DrawingBuilder {

2 static func buildArray(_ components: [Drawable])

-> Drawable {

3 return Line(elements: components)

4 }

5 }

6 let manyStars = draw {

7 Text("Stars:")

8 for length in 1...3 {

9 Space()

10 Stars(length: length)

11 }

12 }

In the code above, the for loop creates an array of drawings, and the
buildArray(_:) method turns that array into a Line.

For a complete list of how Swift transforms builder syntax into calls to
the builder type’s methods, see resultBuilder.

PDF conversion courtesy of www.appsdissected.com

Language Reference

PDF conversion courtesy of www.appsdissected.com

About the Language Reference

This part of the book describes the formal grammar of the Swift
programming language. The grammar described here is intended to
help you understand the language in more detail, rather than to allow
you to directly implement a parser or compiler.

The Swift language is relatively small, because many common types,
functions, and operators that appear virtually everywhere in Swift
code are actually defined in the Swift standard library. Although these
types, functions, and operators aren’t part of the Swift language itself,
they’re used extensively in the discussions and code examples in this
part of the book.

How to Read the Grammar
The notation used to describe the formal grammar of the Swift
programming language follows a few conventions:

An arrow (→) is used to mark grammar productions and can be
read as “can consist of.”

Syntactic categories are indicated by italic text and appear on
both sides of a grammar production rule.

Literal words and punctuation are indicated by boldface constant
width text and appear only on the right-hand side of a grammar
production rule.

Alternative grammar productions are separated by vertical bars
(|). When alternative productions are too long to read easily,

PDF conversion courtesy of www.appsdissected.com

they’re broken into multiple grammar production rules on new
lines.

In a few cases, regular font text is used to describe the right-
hand side of a grammar production rule.

Optional syntactic categories and literals are marked by a trailing
subscript, opt.

As an example, the grammar of a getter-setter block is defined as
follows:

G R A M M A R O F A G E T T E R - S E T T E R B L O C K

getter-setter-block → { getter-clause setter-clause opt } | { setter-
clause getter-clause }

This definition indicates that a getter-setter block can consist of a
getter clause followed by an optional setter clause, enclosed in
braces, or a setter clause followed by a getter clause, enclosed in
braces. The grammar production above is equivalent to the following
two productions, where the alternatives are spelled out explicitly:

G R A M M A R O F A G E T T E R - S E T T E R B L O C K

getter-setter-block → { getter-clause setter-clause opt }
getter-setter-block → { setter-clause getter-clause }

PDF conversion courtesy of www.appsdissected.com

Lexical Structure

The lexical structure of Swift describes what sequence of characters
form valid tokens of the language. These valid tokens form the
lowest-level building blocks of the language and are used to describe
the rest of the language in subsequent chapters. A token consists of
an identifier, keyword, punctuation, literal, or operator.

In most cases, tokens are generated from the characters of a Swift
source file by considering the longest possible substring from the
input text, within the constraints of the grammar that are specified
below. This behavior is referred to as longest match or maximal
munch.

Whitespace and Comments
Whitespace has two uses: to separate tokens in the source file and to
distinguish between prefix, postfix, and infix operators (see
Operators), but is otherwise ignored. The following characters are
considered whitespace: space (U+0020), line feed (U+000A), carriage
return (U+000D), horizontal tab (U+0009), vertical tab (U+000B), form
feed (U+000C) and null (U+0000).

Comments are treated as whitespace by the compiler. Single line
comments begin with // and continue until a line feed (U+000A) or
carriage return (U+000D). Multiline comments begin with /* and end
with */. Nesting multiline comments is allowed, but the comment
markers must be balanced.

Comments can contain additional formatting and markup, as
described in Markup Formatting Reference.

https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/index.html

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F W H I T E S PA C E

whitespace → whitespace-item whitespace opt
whitespace-item → line-break
whitespace-item → inline-space
whitespace-item → comment
whitespace-item → multiline-comment
whitespace-item → U+0000, U+000B, or U+000C
line-break → U+000A
line-break → U+000D
line-break → U+000D followed by U+000A
inline-spaces → inline-space inline-spaces opt
inline-space → U+0009 or U+0020
comment → // comment-text line-break
multiline-comment → /* multiline-comment-text */
comment-text → comment-text-item comment-text opt
comment-text-item → Any Unicode scalar value except U+000A or U+000D
multiline-comment-text → multiline-comment-text-item multiline-comment-

text opt
multiline-comment-text-item → multiline-comment
multiline-comment-text-item → comment-text-item
multiline-comment-text-item → Any Unicode scalar value except /* or */

Identifiers
Identifiers begin with an uppercase or lowercase letter A through Z,
an underscore (_), a noncombining alphanumeric Unicode character
in the Basic Multilingual Plane, or a character outside the Basic
Multilingual Plane that isn’t in a Private Use Area. After the first
character, digits and combining Unicode characters are also allowed.

Treat identifiers that begin with an underscore as internal, even if their
declaration has the public access-level modifier. This convention lets
framework authors mark part of an API that clients must not interact
with or depend on, even though some limitation requires the
declaration to be public. In addition, identifiers that begin with two
underscores are reserved for the Swift compiler and standard library.

PDF conversion courtesy of www.appsdissected.com

To use a reserved word as an identifier, put a backtick (`) before and
after it. For example, class isn’t a valid identifier, but `class` is valid.
The backticks aren’t considered part of the identifier; `x` and x have
the same meaning.

Inside a closure with no explicit parameter names, the parameters
are implicitly named $0, $1, $2, and so on. These names are valid
identifiers within the scope of the closure.

The compiler synthesizes identifiers that begin with a dollar sign ($)
for properties that have a property wrapper projection. Your code can
interact with these identifiers, but you can’t declare identifiers with
that prefix. For more information, see the propertyWrapper section of
the Attributes chapter.

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A N I D E N T I F I E R

identifier → identifier-head identifier-characters opt
identifier → ` identifier-head identifier-characters opt `
identifier → implicit-parameter-name
identifier → property-wrapper-projection
identifier-list → identifier | identifier , identifier-list
identifier-head → Upper- or lowercase letter A through Z
identifier-head → _
identifier-head → U+00A8, U+00AA, U+00AD, U+00AF, U+00B2–U+00B5,

or U+00B7–U+00BA
identifier-head → U+00BC–U+00BE, U+00C0–U+00D6, U+00D8–U+00F6,

or U+00F8–U+00FF
identifier-head → U+0100–U+02FF, U+0370–U+167F, U+1681–U+180D, or

U+180F–U+1DBF
identifier-head → U+1E00–U+1FFF
identifier-head → U+200B–U+200D, U+202A–U+202E, U+203F–U+2040,

U+2054, or U+2060–U+206F
identifier-head → U+2070–U+20CF, U+2100–U+218F, U+2460–U+24FF, or

U+2776–U+2793
identifier-head → U+2C00–U+2DFF or U+2E80–U+2FFF
identifier-head → U+3004–U+3007, U+3021–U+302F, U+3031–U+303F, or

U+3040–U+D7FF
identifier-head → U+F900–U+FD3D, U+FD40–U+FDCF, U+FDF0–U+FE1F,

or U+FE30–U+FE44
identifier-head → U+FE47–U+FFFD
identifier-head → U+10000–U+1FFFD, U+20000–U+2FFFD, U+30000–

U+3FFFD, or U+40000–U+4FFFD
identifier-head → U+50000–U+5FFFD, U+60000–U+6FFFD, U+70000–

U+7FFFD, or U+80000–U+8FFFD
identifier-head → U+90000–U+9FFFD, U+A0000–U+AFFFD, U+B0000–

U+BFFFD, or U+C0000–U+CFFFD
identifier-head → U+D0000–U+DFFFD or U+E0000–U+EFFFD
identifier-character → Digit 0 through 9
identifier-character → U+0300–U+036F, U+1DC0–U+1DFF, U+20D0–

U+20FF, or U+FE20–U+FE2F
identifier-character → identifier-head
identifier-characters → identifier-character identifier-characters opt
implicit-parameter-name → $ decimal-digits
property-wrapper-projection → $ identifier-characters

PDF conversion courtesy of www.appsdissected.com

Keywords and Punctuation
The following keywords are reserved and can’t be used as identifiers,
unless they’re escaped with backticks, as described above in
Identifiers. Keywords other than inout, var, and let can be used as
parameter names in a function declaration or function call without
being escaped with backticks. When a member has the same name
as a keyword, references to that member don’t need to be escaped
with backticks, except when there’s ambiguity between referring to
the member and using the keyword—for example, self, Type, and
Protocol have special meaning in an explicit member expression, so
they must be escaped with backticks in that context.

Keywords used in declarations: associatedtype, class, deinit,
enum, extension, fileprivate, func, import, init, inout,
internal, let, open, operator, private, precedencegroup,
protocol, public, rethrows, static, struct, subscript,
typealias, and var.

Keywords used in statements: break, case, catch, continue,
default, defer, do, else, fallthrough, for, guard, if, in, repeat,
return, throw, switch, where, and while.

Keywords used in expressions and types: Any, as, catch, false,
is, nil, rethrows, self, Self, super, throw, throws, true, and
try.

Keywords used in patterns: _.

Keywords that begin with a number sign (#): #available,
#colorLiteral, #column, #dsohandle, #elseif, #else, #endif,
#error, #fileID, #fileLiteral, #filePath, #file, #function,
#if, #imageLiteral, #keyPath, #line, #selector,
#sourceLocation, and #warning.

PDF conversion courtesy of www.appsdissected.com

Keywords reserved in particular contexts: associativity,
convenience, didSet, dynamic, final, get, indirect, infix, lazy,
left, mutating, none, nonmutating, optional, override, postfix,
precedence, prefix, Protocol, required, right, set, some, Type,
unowned, weak, and willSet. Outside the context in which they
appear in the grammar, they can be used as identifiers.

The following tokens are reserved as punctuation and can’t be used
as custom operators: (,), {, }, [,], ., ,, :, ;, =, @, #, & (as a prefix
operator), ->, `, ?, and ! (as a postfix operator).

Literals
A literal is the source code representation of a value of a type, such
as a number or string.

The following are examples of literals:

1 42 // Integer literal

2 3.14159 // Floating-point literal

3 "Hello, world!" // String literal

4 /Hello, .*/ // Regular expression literal

5 true // Boolean literal

A literal doesn’t have a type on its own. Instead, a literal is parsed as
having infinite precision and Swift’s type inference attempts to infer a
type for the literal. For example, in the declaration let x: Int8 = 42,
Swift uses the explicit type annotation (: Int8) to infer that the type of
the integer literal 42 is Int8. If there isn’t suitable type information
available, Swift infers that the literal’s type is one of the default literal
types defined in the Swift standard library and listed in the table

PDF conversion courtesy of www.appsdissected.com

below. When specifying the type annotation for a literal value, the
annotation’s type must be a type that can be instantiated from that
literal value. That is, the type must conform to the Swift standard
library protocols listed in the table below.

Literal Default
type Protocol

Integer Int ExpressibleByIntegerLiteral

Floating-
point Double ExpressibleByFloatLiteral

String String

ExpressibleByStringLiteral,
ExpressibleByUnicodeScalarLiteral for string
literals that contain only a single Unicode scalar,
ExpressibleByExtendedGraphemeClusterLiteral
for string literals that contain only a single
extended grapheme cluster

Regular
expression Regex None

Boolean Bool ExpressibleByBooleanLiteral

For example, in the declaration let str = "Hello, world", the
default inferred type of the string literal "Hello, world" is String.
Also, Int8 conforms to the ExpressibleByIntegerLiteral protocol,
and therefore it can be used in the type annotation for the integer
literal 42 in the declaration let x: Int8 = 42.

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A L I T E R A L

literal → numeric-literal | string-literal | regular-expression-literal |
boolean-literal | nil-literal

numeric-literal → -opt integer-literal | -opt floating-point-literal
boolean-literal → true | false
nil-literal → nil

Integer Literals
Integer literals represent integer values of unspecified precision. By
default, integer literals are expressed in decimal; you can specify an
alternate base using a prefix. Binary literals begin with 0b, octal
literals begin with 0o, and hexadecimal literals begin with 0x.

Decimal literals contain the digits 0 through 9. Binary literals contain 0
and 1, octal literals contain 0 through 7, and hexadecimal literals
contain 0 through 9 as well as A through F in upper- or lowercase.

Negative integers literals are expressed by prepending a minus sign
(-) to an integer literal, as in -42.

Underscores (_) are allowed between digits for readability, but they’re
ignored and therefore don’t affect the value of the literal. Integer
literals can begin with leading zeros (0), but they’re likewise ignored
and don’t affect the base or value of the literal.

Unless otherwise specified, the default inferred type of an integer
literal is the Swift standard library type Int. The Swift standard library
also defines types for various sizes of signed and unsigned integers,
as described in Integers.

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A N I N T E G E R L I T E R A L

integer-literal → binary-literal
integer-literal → octal-literal
integer-literal → decimal-literal
integer-literal → hexadecimal-literal
binary-literal → 0b binary-digit binary-literal-characters opt
binary-digit → Digit 0 or 1
binary-literal-character → binary-digit | _
binary-literal-characters → binary-literal-character binary-literal-characters

opt
octal-literal → 0o octal-digit octal-literal-characters opt
octal-digit → Digit 0 through 7
octal-literal-character → octal-digit | _
octal-literal-characters → octal-literal-character octal-literal-characters opt
decimal-literal → decimal-digit decimal-literal-characters opt
decimal-digit → Digit 0 through 9
decimal-digits → decimal-digit decimal-digits opt
decimal-literal-character → decimal-digit | _
decimal-literal-characters → decimal-literal-character decimal-literal-

characters opt
hexadecimal-literal → 0x hexadecimal-digit hexadecimal-literal-characters

opt
hexadecimal-digit → Digit 0 through 9, a through f, or A through F
hexadecimal-literal-character → hexadecimal-digit | _
hexadecimal-literal-characters → hexadecimal-literal-character

hexadecimal-literal-characters opt

Floating-Point Literals
Floating-point literals represent floating-point values of unspecified
precision.

By default, floating-point literals are expressed in decimal (with no
prefix), but they can also be expressed in hexadecimal (with a 0x
prefix).

Decimal floating-point literals consist of a sequence of decimal digits
followed by either a decimal fraction, a decimal exponent, or both.
The decimal fraction consists of a decimal point (.) followed by a

PDF conversion courtesy of www.appsdissected.com

sequence of decimal digits. The exponent consists of an upper- or
lowercase e prefix followed by a sequence of decimal digits that
indicates what power of 10 the value preceding the e is multiplied by.
For example, 1.25e2 represents 1.25 x 102, which evaluates to 125.0.
Similarly, 1.25e-2 represents 1.25 x 10-2, which evaluates to 0.0125.

Hexadecimal floating-point literals consist of a 0x prefix, followed by
an optional hexadecimal fraction, followed by a hexadecimal
exponent. The hexadecimal fraction consists of a decimal point
followed by a sequence of hexadecimal digits. The exponent consists
of an upper- or lowercase p prefix followed by a sequence of decimal
digits that indicates what power of 2 the value preceding the p is
multiplied by. For example, 0xFp2 represents 15 x 22, which evaluates
to 60. Similarly, 0xFp-2 represents 15 x 2-2, which evaluates to 3.75.

Negative floating-point literals are expressed by prepending a minus
sign (-) to a floating-point literal, as in -42.5.

Underscores (_) are allowed between digits for readability, but they’re
ignored and therefore don’t affect the value of the literal. Floating-
point literals can begin with leading zeros (0), but they’re likewise
ignored and don’t affect the base or value of the literal.

Unless otherwise specified, the default inferred type of a floating-
point literal is the Swift standard library type Double, which represents
a 64-bit floating-point number. The Swift standard library also defines
a Float type, which represents a 32-bit floating-point number.

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A F L O AT I N G - P O I N T L I T E R A L

floating-point-literal → decimal-literal decimal-fraction opt decimal-
exponent opt

floating-point-literal → hexadecimal-literal hexadecimal-fraction opt
hexadecimal-exponent

decimal-fraction → . decimal-literal
decimal-exponent → floating-point-e sign opt decimal-literal
hexadecimal-fraction → . hexadecimal-digit hexadecimal-literal-

characters opt
hexadecimal-exponent → floating-point-p sign opt decimal-literal
floating-point-e → e | E
floating-point-p → p | P
sign → + | -

String Literals
A string literal is a sequence of characters surrounded by quotation
marks. A single-line string literal is surrounded by double quotation
marks and has the following form:

 " characters "

String literals can’t contain an unescaped double quotation mark ("),
an unescaped backslash (\), a carriage return, or a line feed.

A multiline string literal is surrounded by three double quotation
marks and has the following form:

 """

 characters

 """

Unlike a single-line string literal, a multiline string literal can contain
unescaped double quotation marks ("), carriage returns, and line

PDF conversion courtesy of www.appsdissected.com

feeds. It can’t contain three unescaped double quotation marks next
to each other.

The line break after the """ that begins the multiline string literal isn’t
part of the string. The line break before the """ that ends the literal is
also not part of the string. To make a multiline string literal that begins
or ends with a line feed, write a blank line as its first or last line.

A multiline string literal can be indented using any combination of
spaces and tabs; this indentation isn’t included in the string. The """
that ends the literal determines the indentation: Every nonblank line
in the literal must begin with exactly the same indentation that
appears before the closing """; there’s no conversion between tabs
and spaces. You can include additional spaces and tabs after that
indentation; those spaces and tabs appear in the string.

Line breaks in a multiline string literal are normalized to use the line
feed character. Even if your source file has a mix of carriage returns
and line feeds, all of the line breaks in the string will be the same.

In a multiline string literal, writing a backslash (\) at the end of a line
omits that line break from the string. Any whitespace between the
backslash and the line break is also omitted. You can use this syntax
to hard wrap a multiline string literal in your source code, without
changing the value of the resulting string.

Special characters can be included in string literals of both the single-
line and multiline forms using the following escape sequences:

Null character (\0)

Backslash (\\)

Horizontal tab (\t)

Line feed (\n)

PDF conversion courtesy of www.appsdissected.com

Carriage return (\r)

Double quotation mark (\")

Single quotation mark (\')

Unicode scalar (\u{n}), where n is a hexadecimal number that
has one to eight digits

The value of an expression can be inserted into a string literal by
placing the expression in parentheses after a backslash (\). The
interpolated expression can contain a string literal, but can’t contain
an unescaped backslash, a carriage return, or a line feed.

For example, all of the following string literals have the same value:

1 "1 2 3"

2 "1 2 \("3")"

3 "1 2 \(3)"

4 "1 2 \(1 + 2)"

5 let x = 3; "1 2 \(x)"

A string delimited by extended delimiters is a sequence of characters
surrounded by quotation marks and a balanced set of one or more
number signs (#). A string delimited by extended delimiters has the
following forms:

 #" characters "#

 #"""

 characters

 """#

PDF conversion courtesy of www.appsdissected.com

Special characters in a string delimited by extended delimiters
appear in the resulting string as normal characters rather than as
special characters. You can use extended delimiters to create strings
with characters that would ordinarily have a special effect such as
generating a string interpolation, starting an escape sequence, or
terminating the string.

The following example shows a string literal and a string delimited by
extended delimiters that create equivalent string values:

1 let string = #"\(x) \ " \u{2603}"#

2 let escaped = "\\(x) \\ \" \\u{2603}"

3 print(string)

4 // Prints "\(x) \ " \u{2603}"

5 print(string == escaped)

6 // Prints "true"

If you use more than one number sign to form a string delimited by
extended delimiters, don’t place whitespace in between the number
signs:

1 print(###"Line 1\###nLine 2"###) // OK

2 print(# # #"Line 1\# # #nLine 2"# # #) // Error

Multiline string literals that you create using extended delimiters have
the same indentation requirements as regular multiline string literals.

The default inferred type of a string literal is String. For more
information about the String type, see Strings and Characters and
String.

String literals that are concatenated by the + operator are
concatenated at compile time. For example, the values of textA and

https://developer.apple.com/documentation/swift/string

PDF conversion courtesy of www.appsdissected.com

textB in the example below are identical—no runtime concatenation
is performed.

1 let textA = "Hello " + "world"

2 let textB = "Hello world"

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A S T R I N G L I T E R A L

string-literal → static-string-literal | interpolated-string-literal
string-literal-opening-delimiter → extended-string-literal-delimiter opt "
string-literal-closing-delimiter → " extended-string-literal-delimiter opt
static-string-literal → string-literal-opening-delimiter quoted-text opt string-

literal-closing-delimiter
static-string-literal → multiline-string-literal-opening-delimiter multiline-

quoted-text opt multiline-string-literal-closing-delimiter
multiline-string-literal-opening-delimiter → extended-string-literal-delimiter

opt """
multiline-string-literal-closing-delimiter → """ extended-string-literal-

delimiter opt
extended-string-literal-delimiter → # extended-string-literal-delimiter opt
quoted-text → quoted-text-item quoted-text opt
quoted-text-item → escaped-character
quoted-text-item → Any Unicode scalar value except " , \ , U+000A, or

U+000D
multiline-quoted-text → multiline-quoted-text-item multiline-quoted-text opt
multiline-quoted-text-item → escaped-character
multiline-quoted-text-item → Any Unicode scalar value except \
multiline-quoted-text-item → escaped-newline
interpolated-string-literal → string-literal-opening-delimiter interpolated-text

opt string-literal-closing-delimiter
interpolated-string-literal → multiline-string-literal-opening-delimiter

multiline-interpolated-text opt multiline-string-literal-closing-delimiter
interpolated-text → interpolated-text-item interpolated-text opt
interpolated-text-item → \(expression) | quoted-text-item
multiline-interpolated-text → multiline-interpolated-text-item multiline-

interpolated-text opt
multiline-interpolated-text-item → \(expression) | multiline-quoted-text-

item
escape-sequence → \ extended-string-literal-delimiter
escaped-character → escape-sequence 0 | escape-sequence \ |

escape-sequence t | escape-sequence n | escape-sequence r |
escape-sequence " | escape-sequence '

escaped-character → escape-sequence u { unicode-scalar-digits }
unicode-scalar-digits → Between one and eight hexadecimal digits
escaped-newline → escape-sequence inline-spaces opt line-break

PDF conversion courtesy of www.appsdissected.com

Regular Expression Literals
A regular expression literal is a sequence of characters surrounded
by slashes (/) with the following form:

 / regular expression /

Regular expression literals must not begin with an unescaped tab or
space, and they can’t contain an unescaped slash (/), a carriage
return, or a line feed.

Within a regular expression literal, a backslash is understood as a
part of that regular expression, not just as an escape character like in
string literals. It indicates that the following special character should
be interpreted literally, or that the following nonspecial character
should be interpreted in a special way. For example, /\(/ matches a
single left parenthesis and /\d/ matches a single digit.

A regular expression literal delimited by extended delimiters is a
sequence of characters surrounded by slashes (/) and a balanced
set of one or more number signs (#). A regular expression literal
delimited by extended delimiters has the following forms:

 #/ regular expression /#

 #/

 regular expression

 /#

A regular expression literal that uses extended delimiters can begin
with an unescaped space or tab, contain unescaped slashes (/), and
span across multiple lines. For a multiline regular expression literal,
the opening delimiter must be at the end of a line, and the closing
delimiter must be on its own line. Inside a multiline regular expression

PDF conversion courtesy of www.appsdissected.com

literal, the extended regular expression syntax is enabled by default
—specifically, whitespace is ignored and comments are allowed.

If you use more than one number sign to form a regular expression
literal delimited by extended delimiters, don’t place whitespace in
between the number signs:

1 let regex1 = ##/abc/## // OK

2 let regex2 = # #/abc/# # // Error

If you need to make an empty regular expression literal, you must use
the extended delimiter syntax.

G R A M M A R O F A R E G U L A R E X P R E S S I O N L I T E R A L

regular-expression-literal → regular-expression-literal-opening-delimiter
regular-expression regular-expression-literal-closing-delimiter

regular-expression → Any regular expression
regular-expression-literal-opening-delimiter → extended-regular-expression-

literal-delimiter opt /
regular-expression-literal-closing-delimiter → / extended-regular-

expression-literal-delimiter opt
extended-regular-expression-literal-delimiter → # extended-regular-

expression-literal-delimiter opt

Operators
The Swift standard library defines a number of operators for your use,
many of which are discussed in Basic Operators and Advanced
Operators. The present section describes which characters can be
used to define custom operators.

Custom operators can begin with one of the ASCII characters /, =, -,
+, !, *, %, <, >, &, |, ^, ?, or ~, or one of the Unicode characters defined

PDF conversion courtesy of www.appsdissected.com

in the grammar below (which include characters from the
Mathematical Operators, Miscellaneous Symbols, and Dingbats
Unicode blocks, among others). After the first character, combining
Unicode characters are also allowed.

You can also define custom operators that begin with a dot (.). These
operators can contain additional dots. For example, .+. is treated as
a single operator. If an operator doesn’t begin with a dot, it can’t
contain a dot elsewhere. For example, +.+ is treated as the + operator
followed by the .+ operator.

Although you can define custom operators that contain a question
mark (?), they can’t consist of a single question mark character only.
Additionally, although operators can contain an exclamation point (!),
postfix operators can’t begin with either a question mark or an
exclamation point.

N O T E

The tokens =, ->, //, /*, */, ., the prefix operators <, &, and ?, the infix
operator ?, and the postfix operators >, !, and ? are reserved. These tokens
can’t be overloaded, nor can they be used as custom operators.

The whitespace around an operator is used to determine whether an
operator is used as a prefix operator, a postfix operator, or an infix
operator. This behavior has the following rules:

If an operator has whitespace around both sides or around
neither side, it’s treated as an infix operator. As an example, the
+++ operator in a+++b and a +++ b is treated as an infix operator.

If an operator has whitespace on the left side only, it’s treated as
a prefix unary operator. As an example, the +++ operator in a
+++b is treated as a prefix unary operator.

If an operator has whitespace on the right side only, it’s treated
as a postfix unary operator. As an example, the +++ operator in

PDF conversion courtesy of www.appsdissected.com

a+++ b is treated as a postfix unary operator.

If an operator has no whitespace on the left but is followed
immediately by a dot (.), it’s treated as a postfix unary operator.
As an example, the +++ operator in a+++.b is treated as a postfix
unary operator (a+++ .b rather than a +++ .b).

For the purposes of these rules, the characters (, [, and { before an
operator, the characters),], and } after an operator, and the
characters ,, ;, and : are also considered whitespace.

If the ! or ? predefined operator has no whitespace on the left, it’s
treated as a postfix operator, regardless of whether it has whitespace
on the right. To use the ? as the optional-chaining operator, it must
not have whitespace on the left. To use it in the ternary conditional (?
:) operator, it must have whitespace around both sides.

If one of the arguments to an infix operator is a regular expression
literal, then the operator must have whitespace around both sides.

In certain constructs, operators with a leading < or > may be split into
two or more tokens. The remainder is treated the same way and may
be split again. As a result, you don’t need to add whitespace to
disambiguate between the closing > characters in constructs like
Dictionary<String, Array<Int>>. In this example, the closing >
characters aren’t treated as a single token that may then be
misinterpreted as a bit shift >> operator.

To learn how to define new, custom operators, see Custom Operators
and Operator Declaration. To learn how to overload existing
operators, see Operator Methods.

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F O P E R AT O R S

operator → operator-head operator-characters opt
operator → dot-operator-head dot-operator-characters
operator-head → / | = | - | + | ! | * | % | < | > | & | | | ^ | ~ | ?
operator-head → U+00A1–U+00A7
operator-head → U+00A9 or U+00AB
operator-head → U+00AC or U+00AE
operator-head → U+00B0–U+00B1
operator-head → U+00B6, U+00BB, U+00BF, U+00D7, or U+00F7
operator-head → U+2016–U+2017
operator-head → U+2020–U+2027
operator-head → U+2030–U+203E
operator-head → U+2041–U+2053
operator-head → U+2055–U+205E
operator-head → U+2190–U+23FF
operator-head → U+2500–U+2775
operator-head → U+2794–U+2BFF
operator-head → U+2E00–U+2E7F
operator-head → U+3001–U+3003
operator-head → U+3008–U+3020
operator-head → U+3030
operator-character → operator-head
operator-character → U+0300–U+036F
operator-character → U+1DC0–U+1DFF
operator-character → U+20D0–U+20FF
operator-character → U+FE00–U+FE0F
operator-character → U+FE20–U+FE2F
operator-character → U+E0100–U+E01EF
operator-characters → operator-character operator-characters opt
dot-operator-head → .
dot-operator-character → . | operator-character
dot-operator-characters → dot-operator-character dot-operator-characters

opt
infix-operator → operator
prefix-operator → operator
postfix-operator → operator

PDF conversion courtesy of www.appsdissected.com

Types

In Swift, there are two kinds of types: named types and compound
types. A named type is a type that can be given a particular name
when it’s defined. Named types include classes, structures,
enumerations, and protocols. For example, instances of a user-
defined class named MyClass have the type MyClass. In addition to
user-defined named types, the Swift standard library defines many
commonly used named types, including those that represent arrays,
dictionaries, and optional values.

Data types that are normally considered basic or primitive in other
languages—such as types that represent numbers, characters, and
strings—are actually named types, defined and implemented in the
Swift standard library using structures. Because they’re named types,
you can extend their behavior to suit the needs of your program,
using an extension declaration, discussed in Extensions and
Extension Declaration.

A compound type is a type without a name, defined in the Swift
language itself. There are two compound types: function types and
tuple types. A compound type may contain named types and other
compound types. For example, the tuple type (Int, (Int, Int))
contains two elements: The first is the named type Int, and the
second is another compound type (Int, Int).

You can put parentheses around a named type or a compound type.
However, adding parentheses around a type doesn’t have any effect.
For example, (Int) is equivalent to Int.

This chapter discusses the types defined in the Swift language itself
and describes the type inference behavior of Swift.

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A T Y P E

type → function-type
type → array-type
type → dictionary-type
type → type-identifier
type → tuple-type
type → optional-type
type → implicitly-unwrapped-optional-type
type → protocol-composition-type
type → opaque-type
type → metatype-type
type → any-type
type → self-type
type → (type)

Type Annotation
A type annotation explicitly specifies the type of a variable or
expression. Type annotations begin with a colon (:) and end with a
type, as the following examples show:

1 let someTuple: (Double, Double) = (3.14159, 2.71828)

2 func someFunction(a: Int) { /* ... */ }

In the first example, the expression someTuple is specified to have the
tuple type (Double, Double). In the second example, the parameter a
to the function someFunction is specified to have the type Int.

Type annotations can contain an optional list of type attributes before
the type.

G R A M M A R O F A T Y P E A N N O TAT I O N

type-annotation → : attributes opt inoutopt type

PDF conversion courtesy of www.appsdissected.com

Type Identifier
A type identifier refers to either a named type or a type alias of a
named or compound type.

Most of the time, a type identifier directly refers to a named type with
the same name as the identifier. For example, Int is a type identifier
that directly refers to the named type Int, and the type identifier
Dictionary<String, Int> directly refers to the named type
Dictionary<String, Int>.

There are two cases in which a type identifier doesn’t refer to a type
with the same name. In the first case, a type identifier refers to a type
alias of a named or compound type. For instance, in the example
below, the use of Point in the type annotation refers to the tuple type
(Int, Int).

1 typealias Point = (Int, Int)

2 let origin: Point = (0, 0)

In the second case, a type identifier uses dot (.) syntax to refer to
named types declared in other modules or nested within other types.
For example, the type identifier in the following code references the
named type MyType that’s declared in the ExampleModule module.

 var someValue: ExampleModule.MyType

G R A M M A R O F A T Y P E I D E N T I F I E R

type-identifier → type-name generic-argument-clause opt | type-name
generic-argument-clause opt . type-identifier

type-name → identifier

PDF conversion courtesy of www.appsdissected.com

Tuple Type
A tuple type is a comma-separated list of types, enclosed in
parentheses.

You can use a tuple type as the return type of a function to enable the
function to return a single tuple containing multiple values. You can
also name the elements of a tuple type and use those names to refer
to the values of the individual elements. An element name consists of
an identifier followed immediately by a colon (:). For an example that
demonstrates both of these features, see Functions with Multiple
Return Values.

When an element of a tuple type has a name, that name is part of the
type.

1 var someTuple = (top: 10, bottom: 12) // someTuple

is of type (top: Int, bottom: Int)

2 someTuple = (top: 4, bottom: 42) // OK: names match

3 someTuple = (9, 99) // OK: names are

inferred

4 someTuple = (left: 5, right: 5) // Error: names

don't match

All tuple types contain two or more types, except for Void which is a
type alias for the empty tuple type, ().

G R A M M A R O F A T U P L E T Y P E

tuple-type → () | (tuple-type-element , tuple-type-element-list)
tuple-type-element-list → tuple-type-element | tuple-type-element , tuple-

type-element-list
tuple-type-element → element-name type-annotation | type
element-name → identifier

PDF conversion courtesy of www.appsdissected.com

Function Type
A function type represents the type of a function, method, or closure
and consists of a parameter and return type separated by an arrow (-
>):

 (parameter type) -> return type

The parameter type is comma-separated list of types. Because the
return type can be a tuple type, function types support functions and
methods that return multiple values.

A parameter of the function type () -> T (where T is any type) can
apply the autoclosure attribute to implicitly create a closure at its call
sites. This provides a syntactically convenient way to defer the
evaluation of an expression without needing to write an explicit
closure when you call the function. For an example of an autoclosure
function type parameter, see Autoclosures.

A function type can have variadic parameters in its parameter type.
Syntactically, a variadic parameter consists of a base type name
followed immediately by three dots (...), as in Int.... A variadic
parameter is treated as an array that contains elements of the base
type name. For instance, the variadic parameter Int... is treated as
[Int]. For an example that uses a variadic parameter, see Variadic
Parameters.

To specify an in-out parameter, prefix the parameter type with the
inout keyword. You can’t mark a variadic parameter or a return type
with the inout keyword. In-out parameters are discussed in In-Out
Parameters.

If a function type has only one parameter and that parameter’s type is
a tuple type, then the tuple type must be parenthesized when writing
the function’s type. For example, ((Int, Int)) -> Void is the type of
a function that takes a single parameter of the tuple type (Int, Int)

PDF conversion courtesy of www.appsdissected.com

and doesn’t return any value. In contrast, without parentheses, (Int,
Int) -> Void is the type of a function that takes two Int parameters
and doesn’t return any value. Likewise, because Void is a type alias
for (), the function type (Void) -> Void is the same as (()) -> ()—
a function that takes a single argument that’s an empty tuple. These
types aren’t the same as () -> ()—a function that takes no
arguments.

Argument names in functions and methods aren’t part of the
corresponding function type. For example:

1 func someFunction(left: Int, right: Int) {}

2 func anotherFunction(left: Int, right: Int) {}

3 func functionWithDifferentLabels(top: Int, bottom:

Int) {}

4

5 var f = someFunction // The type of f is (Int, Int)

-> Void, not (left: Int, right: Int) -> Void.

6 f = anotherFunction // OK

7 f = functionWithDifferentLabels // OK

8

9 func functionWithDifferentArgumentTypes(left: Int,

right: String) {}

10 f = functionWithDifferentArgumentTypes // Error

11

12 func functionWithDifferentNumberOfArguments(left:

Int, right: Int, top: Int) {}

13 f = functionWithDifferentNumberOfArguments // Error

PDF conversion courtesy of www.appsdissected.com

Because argument labels aren’t part of a function’s type, you omit
them when writing a function type.

1 var operation: (lhs: Int, rhs: Int) -> Int //

Error

2 var operation: (_ lhs: Int, _ rhs: Int) -> Int // OK

3 var operation: (Int, Int) -> Int // OK

If a function type includes more than a single arrow (->), the function
types are grouped from right to left. For example, the function type
(Int) -> (Int) -> Int is understood as (Int) -> ((Int) -> Int)
—that is, a function that takes an Int and returns another function
that takes and returns an Int.

Function types for functions that can throw or rethrow an error must
be marked with the throws keyword. The throws keyword is part of a
function’s type, and nonthrowing functions are subtypes of throwing
functions. As a result, you can use a nonthrowing function in the
same places as a throwing one. Throwing and rethrowing functions
are described in Throwing Functions and Methods and Rethrowing
Functions and Methods.

Function types for asynchronous functions must be marked with the
async keyword. The async keyword is part of a function’s type, and
synchronous functions are subtypes of asynchronous functions. As a
result, you can use a synchronous function in the same places as an
asynchronous one. For information about asynchronous functions,
see Asynchronous Functions and Methods.

Restrictions for Nonescaping Closures
A parameter that’s a nonescaping function can’t be stored in a
property, variable, or constant of type Any, because that might allow
the value to escape.

PDF conversion courtesy of www.appsdissected.com

A parameter that’s a nonescaping function can’t be passed as an
argument to another nonescaping function parameter. This restriction
helps Swift perform more of its checks for conflicting access to
memory at compile time instead of at runtime. For example:

1 let external: (() -> Void) -> Void = { _ in () }

2 func takesTwoFunctions(first: (() -> Void) -> Void,

second: (() -> Void) -> Void) {

3 first { first {} } // Error

4 second { second {} } // Error

5

6 first { second {} } // Error

7 second { first {} } // Error

8

9 first { external {} } // OK

10 external { first {} } // OK

11 }

In the code above, both of the parameters to
takesTwoFunctions(first:second:) are functions. Neither parameter
is marked @escaping, so they’re both nonescaping as a result.

The four function calls marked “Error” in the example above cause
compiler errors. Because the first and second parameters are
nonescaping functions, they can’t be passed as arguments to another
nonescaping function parameter. In contrast, the two function calls
marked “OK” don’t cause a compiler error. These function calls don’t
violate the restriction because external isn’t one of the parameters of
takesTwoFunctions(first:second:).

PDF conversion courtesy of www.appsdissected.com

If you need to avoid this restriction, mark one of the parameters as
escaping, or temporarily convert one of the nonescaping function
parameters to an escaping function by using the
withoutActuallyEscaping(_:do:) function. For information about
avoiding conflicting access to memory, see Memory Safety.

G R A M M A R O F A F U N C T I O N T Y P E

function-type → attributes opt function-type-argument-clause asyncopt
throwsopt -> type

function-type-argument-clause → ()
function-type-argument-clause → (function-type-argument-list ...opt)
function-type-argument-list → function-type-argument | function-type-

argument , function-type-argument-list
function-type-argument → attributes opt inoutopt type | argument-label

type-annotation
argument-label → identifier

Array Type
The Swift language provides the following syntactic sugar for the
Swift standard library Array<Element> type:

 [type]

In other words, the following two declarations are equivalent:

1 let someArray: Array<String> = ["Alex", "Brian",

"Dave"]

2 let someArray: [String] = ["Alex", "Brian", "Dave"]

In both cases, the constant someArray is declared as an array of
strings. The elements of an array can be accessed through

PDF conversion courtesy of www.appsdissected.com

subscripting by specifying a valid index value in square brackets:
someArray[0] refers to the element at index 0, "Alex".

You can create multidimensional arrays by nesting pairs of square
brackets, where the name of the base type of the elements is
contained in the innermost pair of square brackets. For example, you
can create a three-dimensional array of integers using three sets of
square brackets:

 var array3D: [[[Int]]] = [[[1, 2], [3, 4]], [[5, 6],

[7, 8]]]

When accessing the elements in a multidimensional array, the left-
most subscript index refers to the element at that index in the
outermost array. The next subscript index to the right refers to the
element at that index in the array that’s nested one level in. And so
on. This means that in the example above, array3D[0] refers to [[1,
2], [3, 4]], array3D[0][1] refers to [3, 4], and array3D[0][1][1]
refers to the value 4.

For a detailed discussion of the Swift standard library Array type, see
Arrays.

G R A M M A R O F A N A R R AY T Y P E

array-type → [type]

Dictionary Type
The Swift language provides the following syntactic sugar for the
Swift standard library Dictionary<Key, Value> type:

 [key type : value type]

PDF conversion courtesy of www.appsdissected.com

In other words, the following two declarations are equivalent:

1 let someDictionary: [String: Int] = ["Alex": 31,

"Paul": 39]

2 let someDictionary: Dictionary<String, Int> =

["Alex": 31, "Paul": 39]

In both cases, the constant someDictionary is declared as a
dictionary with strings as keys and integers as values.

The values of a dictionary can be accessed through subscripting by
specifying the corresponding key in square brackets:
someDictionary["Alex"] refers to the value associated with the key
"Alex". The subscript returns an optional value of the dictionary’s
value type. If the specified key isn’t contained in the dictionary, the
subscript returns nil.

The key type of a dictionary must conform to the Swift standard
library Hashable protocol.

For a detailed discussion of the Swift standard library Dictionary
type, see Dictionaries.

G R A M M A R O F A D I C T I O N A R Y T Y P E

dictionary-type → [type : type]

Optional Type
The Swift language defines the postfix ? as syntactic sugar for the
named type Optional<Wrapped>, which is defined in the Swift

PDF conversion courtesy of www.appsdissected.com

standard library. In other words, the following two declarations are
equivalent:

1 var optionalInteger: Int?

2 var optionalInteger: Optional<Int>

In both cases, the variable optionalInteger is declared to have the
type of an optional integer. Note that no whitespace may appear
between the type and the ?.

The type Optional<Wrapped> is an enumeration with two cases, none
and some(Wrapped), which are used to represent values that may or
may not be present. Any type can be explicitly declared to be (or
implicitly converted to) an optional type. If you don’t provide an initial
value when you declare an optional variable or property, its value
automatically defaults to nil.

If an instance of an optional type contains a value, you can access
that value using the postfix operator !, as shown below:

1 optionalInteger = 42

2 optionalInteger! // 42

Using the ! operator to unwrap an optional that has a value of nil
results in a runtime error.

You can also use optional chaining and optional binding to
conditionally perform an operation on an optional expression. If the
value is nil, no operation is performed and therefore no runtime error
is produced.

For more information and to see examples that show how to use
optional types, see Optionals.

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A N O P T I O N A L T Y P E

optional-type → type ?

Implicitly Unwrapped Optional Type
The Swift language defines the postfix ! as syntactic sugar for the
named type Optional<Wrapped>, which is defined in the Swift
standard library, with the additional behavior that it’s automatically
unwrapped when it’s accessed. If you try to use an implicitly
unwrapped optional that has a value of nil, you’ll get a runtime error.
With the exception of the implicit unwrapping behavior, the following
two declarations are equivalent:

1 var implicitlyUnwrappedString: String!

2 var explicitlyUnwrappedString: Optional<String>

Note that no whitespace may appear between the type and the !.

Because implicit unwrapping changes the meaning of the declaration
that contains that type, optional types that are nested inside a tuple
type or a generic type—such as the element types of a dictionary or
array—can’t be marked as implicitly unwrapped. For example:

PDF conversion courtesy of www.appsdissected.com

1 let tupleOfImplicitlyUnwrappedElements: (Int!, Int!)

// Error

2 let implicitlyUnwrappedTuple: (Int, Int)!

// OK

3

4 let arrayOfImplicitlyUnwrappedElements: [Int!]

// Error

5 let implicitlyUnwrappedArray: [Int]!

// OK

Because implicitly unwrapped optionals have the same
Optional<Wrapped> type as optional values, you can use implicitly
unwrapped optionals in all the same places in your code that you can
use optionals. For example, you can assign values of implicitly
unwrapped optionals to variables, constants, and properties of
optionals, and vice versa.

As with optionals, if you don’t provide an initial value when you
declare an implicitly unwrapped optional variable or property, its
value automatically defaults to nil.

Use optional chaining to conditionally perform an operation on an
implicitly unwrapped optional expression. If the value is nil, no
operation is performed and therefore no runtime error is produced.

For more information about implicitly unwrapped optional types, see
Implicitly Unwrapped Optionals.

G R A M M A R O F A N I M P L I C I T LY U N W R A P P E D O P T I O N A L T Y P E

implicitly-unwrapped-optional-type → type !

PDF conversion courtesy of www.appsdissected.com

Protocol Composition Type
A protocol composition type defines a type that conforms to each
protocol in a list of specified protocols, or a type that’s a subclass of a
given class and conforms to each protocol in a list of specified
protocols. Protocol composition types may be used only when
specifying a type in type annotations, in generic parameter clauses,
and in generic where clauses.

Protocol composition types have the following form:

 Protocol 1 & Protocol 2

A protocol composition type allows you to specify a value whose type
conforms to the requirements of multiple protocols without explicitly
defining a new, named protocol that inherits from each protocol you
want the type to conform to. For example, you can use the protocol
composition type ProtocolA & ProtocolB & ProtocolC instead of
declaring a new protocol that inherits from ProtocolA, ProtocolB, and
ProtocolC. Likewise, you can use SuperClass & ProtocolA instead of
declaring a new protocol that’s a subclass of SuperClass and
conforms to ProtocolA.

Each item in a protocol composition list is one of the following; the list
can contain at most one class:

The name of a class

The name of a protocol

A type alias whose underlying type is a protocol composition
type, a protocol, or a class.

When a protocol composition type contains type aliases, it’s possible
for the same protocol to appear more than once in the definitions—

PDF conversion courtesy of www.appsdissected.com

duplicates are ignored. For example, the definition of PQR in the code
below is equivalent to P & Q & R.

1 typealias PQ = P & Q

2 typealias PQR = PQ & Q & R

G R A M M A R O F A P R O T O C O L C O M P O S I T I O N T Y P E

protocol-composition-type → type-identifier & protocol-composition-
continuation

protocol-composition-continuation → type-identifier | protocol-composition-
type

Opaque Type
An opaque type defines a type that conforms to a protocol or protocol
composition, without specifying the underlying concrete type.

Opaque types appear as the return type of a function or subscript, or
the type of a property. Opaque types can’t appear as part of a tuple
type or a generic type, such as the element type of an array or the
wrapped type of an optional.

Opaque types have the following form:

 some constraint

The constraint is a class type, protocol type, protocol composition
type, or Any. A value can be used as an instance of the opaque type
only if it’s an instance of a type that conforms to the listed protocol or
protocol composition, or inherits from the listed class. Code that
interacts with an opaque value can use the value only in ways that
are part of the interface defined by the constraint.

PDF conversion courtesy of www.appsdissected.com

Protocol declarations can’t include opaque types. Classes can’t use
an opaque type as the return type of a nonfinal method.

A function that uses an opaque type as its return type must return
values that share a single underlying type. The return type can
include types that are part of the function’s generic type parameters.
For example, a function someFunction<T>() could return a value of
type T or Dictionary<String, T>.

G R A M M A R O F A N O PA Q U E T Y P E

opaque-type → some type

Metatype Type
A metatype type refers to the type of any type, including class types,
structure types, enumeration types, and protocol types.

The metatype of a class, structure, or enumeration type is the name
of that type followed by .Type. The metatype of a protocol type—not
the concrete type that conforms to the protocol at runtime—is the
name of that protocol followed by .Protocol. For example, the
metatype of the class type SomeClass is SomeClass.Type and the
metatype of the protocol SomeProtocol is SomeProtocol.Protocol.

You can use the postfix self expression to access a type as a value.
For example, SomeClass.self returns SomeClass itself, not an
instance of SomeClass. And SomeProtocol.self returns SomeProtocol
itself, not an instance of a type that conforms to SomeProtocol at
runtime. You can call the type(of:) function with an instance of a
type to access that instance’s dynamic, runtime type as a value, as
the following example shows:

PDF conversion courtesy of www.appsdissected.com

1 class SomeBaseClass {

2 class func printClassName() {

3 print("SomeBaseClass")

4 }

5 }

6 class SomeSubClass: SomeBaseClass {

7 override class func printClassName() {

8 print("SomeSubClass")

9 }

10 }

11 let someInstance: SomeBaseClass = SomeSubClass()

12 // The compile-time type of someInstance is

SomeBaseClass,

13 // and the runtime type of someInstance is

SomeSubClass

14 type(of: someInstance).printClassName()

15 // Prints "SomeSubClass"

For more information, see type(of:) in the Swift standard library.

Use an initializer expression to construct an instance of a type from
that type’s metatype value. For class instances, the initializer that’s
called must be marked with the required keyword or the entire class
marked with the final keyword.

https://developer.apple.com/documentation/swift/2885064-type

PDF conversion courtesy of www.appsdissected.com

1 class AnotherSubClass: SomeBaseClass {

2 let string: String

3 required init(string: String) {

4 self.string = string

5 }

6 override class func printClassName() {

7 print("AnotherSubClass")

8 }

9 }

10 let metatype: AnotherSubClass.Type =

AnotherSubClass.self

11 let anotherInstance = metatype.init(string: "some

string")

G R A M M A R O F A M E TAT Y P E T Y P E

metatype-type → type . Type | type . Protocol

Any Type
The Any type can contain values from all other types. Any can be used
as the concrete type for an instance of any of the following types:

A class, structure, or enumeration

A metatype, such as Int.self

A tuple with any types of components

PDF conversion courtesy of www.appsdissected.com

A closure or function type

 let mixed: [Any] = ["one", 2, true, (4, 5.3), { () -

> Int in return 6 }]

When you use Any as a concrete type for an instance, you need to
cast the instance to a known type before you can access its
properties or methods. Instances with a concrete type of Any maintain
their original dynamic type and can be cast to that type using one of
the type-cast operators—as, as?, or as!. For example, use as? to
conditionally downcast the first object in a heterogeneous array to a
String as follows:

1 if let first = mixed.first as? String {

2 print("The first item, '\(first)', is a

string.")

3 }

4 // Prints "The first item, 'one', is a string."

For more information about casting, see Type Casting.

The AnyObject protocol is similar to the Any type. All classes implicitly
conform to AnyObject. Unlike Any, which is defined by the language,
AnyObject is defined by the Swift standard library. For more
information, see Class-Only Protocols and AnyObject.

G R A M M A R O F A N A N Y T Y P E

any-type → Any

Self Type

https://developer.apple.com/documentation/swift/anyobject

PDF conversion courtesy of www.appsdissected.com

The Self type isn’t a specific type, but rather lets you conveniently
refer to the current type without repeating or knowing that type’s
name.

In a protocol declaration or a protocol member declaration, the Self
type refers to the eventual type that conforms to the protocol.

In a structure, class, or enumeration declaration, the Self type refers
to the type introduced by the declaration. Inside the declaration for a
member of a type, the Self type refers to that type. In the members of
a class declaration, Self can appear only as follows:

As the return type of a method

As the return type of a read-only subscript

As the type of a read-only computed property

In the body of a method

For example, the code below shows an instance method f whose
return type is Self.

PDF conversion courtesy of www.appsdissected.com

1 class Superclass {

2 func f() -> Self { return self }

3 }

4 let x = Superclass()

5 print(type(of: x.f()))

6 // Prints "Superclass"

7

8 class Subclass: Superclass { }

9 let y = Subclass()

10 print(type(of: y.f()))

11 // Prints "Subclass"

12

13 let z: Superclass = Subclass()

14 print(type(of: z.f()))

15 // Prints "Subclass"

The last part of the example above shows that Self refers to the
runtime type Subclass of the value of z, not the compile-time type
Superclass of the variable itself.

Inside a nested type declaration, the Self type refers to the type
introduced by the innermost type declaration.

The Self type refers to the same type as the type(of:) function in
the Swift standard library. Writing Self.someStaticMember to access
a member of the current type is the same as writing type(of:
self).someStaticMember.

G R A M M A R O F A S E L F T Y P E

self-type → Self

https://developer.apple.com/documentation/swift/2885064-type

PDF conversion courtesy of www.appsdissected.com

Type Inheritance Clause
A type inheritance clause is used to specify which class a named type
inherits from and which protocols a named type conforms to. A type
inheritance clause begins with a colon (:), followed by a list of type
identifiers.

Class types can inherit from a single superclass and conform to any
number of protocols. When defining a class, the name of the
superclass must appear first in the list of type identifiers, followed by
any number of protocols the class must conform to. If the class
doesn’t inherit from another class, the list can begin with a protocol
instead. For an extended discussion and several examples of class
inheritance, see Inheritance.

Other named types can only inherit from or conform to a list of
protocols. Protocol types can inherit from any number of other
protocols. When a protocol type inherits from other protocols, the set
of requirements from those other protocols are aggregated together,
and any type that inherits from the current protocol must conform to
all of those requirements.

A type inheritance clause in an enumeration definition can be either a
list of protocols, or in the case of an enumeration that assigns raw
values to its cases, a single, named type that specifies the type of
those raw values. For an example of an enumeration definition that
uses a type inheritance clause to specify the type of its raw values,
see Raw Values.

G R A M M A R O F A T Y P E I N H E R I TA N C E C L A U S E

type-inheritance-clause → : type-inheritance-list
type-inheritance-list → attributes opt type-identifier | attributes opt type-

identifier , type-inheritance-list

PDF conversion courtesy of www.appsdissected.com

Type Inference
Swift uses type inference extensively, allowing you to omit the type or
part of the type of many variables and expressions in your code. For
example, instead of writing var x: Int = 0, you can write var x = 0,
omitting the type completely—the compiler correctly infers that x
names a value of type Int. Similarly, you can omit part of a type when
the full type can be inferred from context. For example, if you write
let dict: Dictionary = ["A": 1], the compiler infers that dict has
the type Dictionary<String, Int>.

In both of the examples above, the type information is passed up
from the leaves of the expression tree to its root. That is, the type of x
in var x: Int = 0 is inferred by first checking the type of 0 and then
passing this type information up to the root (the variable x).

In Swift, type information can also flow in the opposite direction—
from the root down to the leaves. In the following example, for
instance, the explicit type annotation (: Float) on the constant
eFloat causes the numeric literal 2.71828 to have an inferred type of
Float instead of Double.

1 let e = 2.71828 // The type of e is inferred to be

Double.

2 let eFloat: Float = 2.71828 // The type of eFloat is

Float.

Type inference in Swift operates at the level of a single expression or
statement. This means that all of the information needed to infer an
omitted type or part of a type in an expression must be accessible
from type-checking the expression or one of its subexpressions.

PDF conversion courtesy of www.appsdissected.com

Expressions

In Swift, there are four kinds of expressions: prefix expressions, infix
expressions, primary expressions, and postfix expressions.
Evaluating an expression returns a value, causes a side effect, or
both.

Prefix and infix expressions let you apply operators to smaller
expressions. Primary expressions are conceptually the simplest kind
of expression, and they provide a way to access values. Postfix
expressions, like prefix and infix expressions, let you build up more
complex expressions using postfixes such as function calls and
member access. Each kind of expression is described in detail in the
sections below.

G R A M M A R O F A N E X P R E S S I O N

expression → try-operator opt await-operator opt prefix-expression infix-
expressions opt

expression-list → expression | expression , expression-list

Prefix Expressions
Prefix expressions combine an optional prefix operator with an
expression. Prefix operators take one argument, the expression that
follows them.

For information about the behavior of these operators, see Basic
Operators and Advanced Operators.

For information about the operators provided by the Swift standard
library, see Operator Declarations.

https://developer.apple.com/documentation/swift/operator_declarations

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A P R E F I X E X P R E S S I O N

prefix-expression → prefix-operator opt postfix-expression
prefix-expression → in-out-expression

In-Out Expression
An in-out expression marks a variable that’s being passed as an in-
out argument to a function call expression.

 & expression

For more information about in-out parameters and to see an
example, see In-Out Parameters.

In-out expressions are also used when providing a non-pointer
argument in a context where a pointer is needed, as described in
Implicit Conversion to a Pointer Type.

G R A M M A R O F A N I N - O U T E X P R E S S I O N

in-out-expression → & identifier

Try Operator
A try expression consists of the try operator followed by an
expression that can throw an error. It has the following form:

 try expression

The value of a try expression is the value of the expression.

An optional-try expression consists of the try? operator followed by
an expression that can throw an error. It has the following form:

PDF conversion courtesy of www.appsdissected.com

 try? expression

If the expression doesn’t throw an error, the value of the optional-try
expression is an optional containing the value of the expression.
Otherwise, the value of the optional-try expression is nil.

A forced-try expression consists of the try! operator followed by an
expression that can throw an error. It has the following form:

 try! expression

The value of a forced-try expression is the value of the expression. If
the expression throws an error, a runtime error is produced.

When the expression on the left-hand side of an infix operator is
marked with try, try?, or try!, that operator applies to the whole infix
expression. That said, you can use parentheses to be explicit about
the scope of the operator’s application.

PDF conversion courtesy of www.appsdissected.com

1 // try applies to both function calls

2 sum = try someThrowingFunction() +

anotherThrowingFunction()

3

4 // try applies to both function calls

5 sum = try (someThrowingFunction() +

anotherThrowingFunction())

6

7 // Error: try applies only to the first function

call

8 sum = (try someThrowingFunction()) +

anotherThrowingFunction()

A try expression can’t appear on the right-hand side of an infix
operator, unless the infix operator is the assignment operator or the
try expression is enclosed in parentheses.

If an expression includes both the try and await operator, the try
operator must appear first.

For more information and to see examples of how to use try, try?,
and try!, see Error Handling.

G R A M M A R O F A T R Y E X P R E S S I O N

try-operator → try | try ? | try !

Await Operator
An await expression consists of the await operator followed by an
expression that uses the result of an asynchronous operation. It has
the following form:

PDF conversion courtesy of www.appsdissected.com

 await expression

The value of an await expression is the value of the expression.

An expression marked with await is called a potential suspension
point. Execution of an asynchronous function can be suspended at
each expression that’s marked with await. In addition, execution of
concurrent code is never suspended at any other point. This means
code between potential suspension points can safely update state
that requires temporarily breaking invariants, provided that it
completes the update before the next potential suspension point.

An await expression can appear only within an asynchronous
context, such as the trailing closure passed to the
async(priority:operation:) function. It can’t appear in the body of
a defer statement, or in an autoclosure of synchronous function type.

When the expression on the left-hand side of an infix operator is
marked with the await operator, that operator applies to the whole
infix expression. That said, you can use parentheses to be explicit
about the scope of the operator’s application.

PDF conversion courtesy of www.appsdissected.com

1 // await applies to both function calls

2 sum = await someAsyncFunction() +

anotherAsyncFunction()

3

4 // await applies to both function calls

5 sum = await (someAsyncFunction() +

anotherAsyncFunction())

6

7 // Error: await applies only to the first function

call

8 sum = (await someAsyncFunction()) +

anotherAsyncFunction()

An await expression can’t appear on the right-hand side of an infix
operator, unless the infix operator is the assignment operator or the
await expression is enclosed in parentheses.

If an expression includes both the await and try operator, the try
operator must appear first.

G R A M M A R O F A N AWA I T E X P R E S S I O N

await-operator → await

Infix Expressions
Infix expressions combine an infix binary operator with the
expression that it takes as its left- and right-hand arguments. It has
the following form:

PDF conversion courtesy of www.appsdissected.com

 left-hand argument operator right-hand argument

For information about the behavior of these operators, see Basic
Operators and Advanced Operators.

For information about the operators provided by the Swift standard
library, see Operator Declarations.

N O T E

At parse time, an expression made up of infix operators is represented as a
flat list. This list is transformed into a tree by applying operator precedence.
For example, the expression 2 + 3 * 5 is initially understood as a flat list of
five items, 2, +, 3, *, and 5. This process transforms it into the tree (2 + (3 * 5)).

G R A M M A R O F A N I N F I X E X P R E S S I O N

infix-expression → infix-operator prefix-expression
infix-expression → assignment-operator try-operator opt prefix-

expression
infix-expression → conditional-operator try-operator opt prefix-expression
infix-expression → type-casting-operator
infix-expressions → infix-expression infix-expressions opt

Assignment Operator
The assignment operator sets a new value for a given expression. It
has the following form:

 expression = value

The value of the expression is set to the value obtained by evaluating
the value. If the expression is a tuple, the value must be a tuple with
the same number of elements. (Nested tuples are allowed.)
Assignment is performed from each part of the value to the
corresponding part of the expression. For example:

https://developer.apple.com/documentation/swift/operator_declarations

PDF conversion courtesy of www.appsdissected.com

1 (a, _, (b, c)) = ("test", 9.45, (12, 3))

2 // a is "test", b is 12, c is 3, and 9.45 is ignored

The assignment operator doesn’t return any value.

G R A M M A R O F A N A S S I G N M E N T O P E R AT O R

assignment-operator → =

Ternary Conditional Operator
The ternary conditional operator evaluates to one of two given values
based on the value of a condition. It has the following form:

 condition ? expression used if true :

 expression used if false

If the condition evaluates to true, the conditional operator evaluates
the first expression and returns its value. Otherwise, it evaluates the
second expression and returns its value. The unused expression isn’t
evaluated.

For an example that uses the ternary conditional operator, see
Ternary Conditional Operator.

G R A M M A R O F A C O N D I T I O N A L O P E R AT O R

conditional-operator → ? expression :

Type-Casting Operators
There are four type-casting operators: the is operator, the as
operator, the as? operator, and the as! operator.

They have the following form:

PDF conversion courtesy of www.appsdissected.com

 expression is type

 expression as type

 expression as? type

 expression as! type

The is operator checks at runtime whether the expression can be
cast to the specified type. It returns true if the expression can be cast
to the specified type; otherwise, it returns false.

The as operator performs a cast when it’s known at compile time that
the cast always succeeds, such as upcasting or bridging. Upcasting
lets you use an expression as an instance of its type’s supertype,
without using an intermediate variable. The following approaches are
equivalent:

1 func f(_ any: Any) { print("Function for Any") }

2 func f(_ int: Int) { print("Function for Int") }

3 let x = 10

4 f(x)

5 // Prints "Function for Int"

6

7 let y: Any = x

8 f(y)

9 // Prints "Function for Any"

10

11 f(x as Any)

12 // Prints "Function for Any"

Bridging lets you use an expression of a Swift standard library type
such as String as its corresponding Foundation type such as

PDF conversion courtesy of www.appsdissected.com

NSString without needing to create a new instance. For more
information on bridging, see Working with Foundation Types.

The as? operator performs a conditional cast of the expression to the
specified type. The as? operator returns an optional of the specified
type. At runtime, if the cast succeeds, the value of expression is
wrapped in an optional and returned; otherwise, the value returned is
nil. If casting to the specified type is guaranteed to fail or is
guaranteed to succeed, a compile-time error is raised.

The as! operator performs a forced cast of the expression to the
specified type. The as! operator returns a value of the specified type,
not an optional type. If the cast fails, a runtime error is raised. The
behavior of x as! T is the same as the behavior of (x as? T)!.

For more information about type casting and to see examples that
use the type-casting operators, see Type Casting.

G R A M M A R O F A T Y P E - C A S T I N G O P E R AT O R

type-casting-operator → is type
type-casting-operator → as type
type-casting-operator → as ? type
type-casting-operator → as ! type

Primary Expressions
Primary expressions are the most basic kind of expression. They can
be used as expressions on their own, and they can be combined with
other tokens to make prefix expressions, infix expressions, and
postfix expressions.

https://developer.apple.com/documentation/swift/imported_c_and_objective_c_apis/working_with_foundation_types

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A P R I M A R Y E X P R E S S I O N

primary-expression → identifier generic-argument-clause opt
primary-expression → literal-expression
primary-expression → self-expression
primary-expression → superclass-expression
primary-expression → closure-expression
primary-expression → parenthesized-expression
primary-expression → tuple-expression
primary-expression → implicit-member-expression
primary-expression → wildcard-expression
primary-expression → key-path-expression
primary-expression → selector-expression
primary-expression → key-path-string-expression

Literal Expression
A literal expression consists of either an ordinary literal (such as a
string or a number), an array or dictionary literal, a playground literal,
or one of the following special literals:

Literal Type Value

#file String
The path to the file in which it
appears.

#fileID String
The name of the file and module in
which it appears.

#filePath String
The path to the file in which it
appears.

#line Int The line number on which it appears.

PDF conversion courtesy of www.appsdissected.com

Literal Type Value

#column Int
The column number in which it
begins.

#function String
The name of the declaration in which
it appears.

#dsohandle UnsafeRawPointer
The dynamic shared object (DSO)
handle in use where it appears.

The string value of #file depends on the language version, to enable
migration from the old #filePath behavior to the new #fileID
behavior. Currently, #file has the same value as #filePath. In a
future version of Swift, #file will have the same value as #fileID
instead. To adopt the future behavior, replace #file with #fileID or
#filePath as appropriate.

The string value of a #fileID expression has the form module/file,
where file is the name of the file in which the expression appears and
module is the name of the module that this file is part of. The string
value of a #filePath expression is the full file-system path to the file
in which the expression appears. Both of these values can be
changed by #sourceLocation, as described in Line Control
Statement. Because #fileID doesn’t embed the full path to the
source file, unlike #filePath, it gives you better privacy and reduces
the size of the compiled binary. Avoid using #filePath outside of
tests, build scripts, or other code that doesn’t become part of the
shipping program.

PDF conversion courtesy of www.appsdissected.com

N O T E

To parse a #fileID expression, read the module name as the text before the
first slash (/) and the filename as the text after the last slash. In the future, the
string might contain multiple slashes, such as
MyModule/some/disambiguation/MyFile.swift.

Inside a function, the value of #function is the name of that function,
inside a method it’s the name of that method, inside a property getter
or setter it’s the name of that property, inside special members like
init or subscript it’s the name of that keyword, and at the top level
of a file it’s the name of the current module.

When used as the default value of a function or method parameter,
the special literal’s value is determined when the default value
expression is evaluated at the call site.

1 func logFunctionName(string: String = #function) {

2 print(string)

3 }

4 func myFunction() {

5 logFunctionName() // Prints "myFunction()".

6 }

An array literal is an ordered collection of values. It has the following
form:

 [value 1 , value 2 , ...]

The last expression in the array can be followed by an optional
comma. The value of an array literal has type [T], where T is the type
of the expressions inside it. If there are expressions of multiple types,
T is their closest common supertype. Empty array literals are written

PDF conversion courtesy of www.appsdissected.com

using an empty pair of square brackets and can be used to create an
empty array of a specified type.

 var emptyArray: [Double] = []

A dictionary literal is an unordered collection of key-value pairs. It has
the following form:

 [key 1 : value 1 , key 2 : value 2 , ...]

The last expression in the dictionary can be followed by an optional
comma. The value of a dictionary literal has type [Key: Value],
where Key is the type of its key expressions and Value is the type of
its value expressions. If there are expressions of multiple types, Key
and Value are the closest common supertype for their respective
values. An empty dictionary literal is written as a colon inside a pair of
brackets ([:]) to distinguish it from an empty array literal. You can
use an empty dictionary literal to create an empty dictionary literal of
specified key and value types.

 var emptyDictionary: [String: Double] = [:]

A playground literal is used by Xcode to create an interactive
representation of a color, file, or image within the program editor.
Playground literals in plain text outside of Xcode are represented
using a special literal syntax.

For information on using playground literals in Xcode, see Add a
color, file, or image literal in Xcode Help.

https://help.apple.com/xcode/mac/current/#/dev4c60242fc

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A L I T E R A L E X P R E S S I O N

literal-expression → literal
literal-expression → array-literal | dictionary-literal | playground-literal
literal-expression → #file | #fileID | #filePath
literal-expression → #line | #column | #function | #dsohandle
array-literal → [array-literal-items opt]
array-literal-items → array-literal-item ,opt | array-literal-item , array-

literal-items
array-literal-item → expression
dictionary-literal → [dictionary-literal-items] | [:]
dictionary-literal-items → dictionary-literal-item ,opt | dictionary-literal-

item , dictionary-literal-items
dictionary-literal-item → expression : expression
playground-literal → #colorLiteral (red : expression , green :

expression , blue : expression , alpha : expression)
playground-literal → #fileLiteral (resourceName : expression)
playground-literal → #imageLiteral (resourceName : expression)

Self Expression
The self expression is an explicit reference to the current type or
instance of the type in which it occurs. It has the following forms:

 self

 self. member name

 self[subscript index]

 self(initializer arguments)

 self.init(initializer arguments)

In an initializer, subscript, or instance method, self refers to the
current instance of the type in which it occurs. In a type method, self
refers to the current type in which it occurs.

The self expression is used to specify scope when accessing
members, providing disambiguation when there’s another variable of
the same name in scope, such as a function parameter. For example:

PDF conversion courtesy of www.appsdissected.com

1 class SomeClass {

2 var greeting: String

3 init(greeting: String) {

4 self.greeting = greeting

5 }

6 }

In a mutating method of a value type, you can assign a new instance
of that value type to self. For example:

1 struct Point {

2 var x = 0.0, y = 0.0

3 mutating func moveBy(x deltaX: Double, y deltaY:

Double) {

4 self = Point(x: x + deltaX, y: y + deltaY)

5 }

6 }

G R A M M A R O F A S E L F E X P R E S S I O N

self-expression → self | self-method-expression | self-subscript-
expression | self-initializer-expression

self-method-expression → self . identifier
self-subscript-expression → self [function-call-argument-list]
self-initializer-expression → self . init

Superclass Expression
A superclass expression lets a class interact with its superclass. It
has one of the following forms:

PDF conversion courtesy of www.appsdissected.com

 super. member name

 super[subscript index]

 super.init(initializer arguments)

The first form is used to access a member of the superclass. The
second form is used to access the superclass’s subscript
implementation. The third form is used to access an initializer of the
superclass.

Subclasses can use a superclass expression in their implementation
of members, subscripting, and initializers to make use of the
implementation in their superclass.

G R A M M A R O F A S U P E R C L A S S E X P R E S S I O N

superclass-expression → superclass-method-expression | superclass-
subscript-expression | superclass-initializer-expression

superclass-method-expression → super . identifier
superclass-subscript-expression → super [function-call-argument-list]
superclass-initializer-expression → super . init

Closure Expression
A closure expression creates a closure, also known as a lambda or
an anonymous function in other programming languages. Like a
function declaration, a closure contains statements, and it captures
constants and variables from its enclosing scope. It has the following
form:

 { (parameters) -> return type in

 statements

 }

The parameters have the same form as the parameters in a function
declaration, as described in Function Declaration.

PDF conversion courtesy of www.appsdissected.com

Writing throws or async in a closure expression explicitly marks a
closure as throwing or asynchronous.

 { (parameters) async throws -> return type in

 statements

 }

If the body of a closure includes a try expression, the closure is
understood to be throwing. Likewise, if it includes an await
expression, it’s understood to be asynchronous.

There are several special forms that allow closures to be written more
concisely:

A closure can omit the types of its parameters, its return type, or
both. If you omit the parameter names and both types, omit the
in keyword before the statements. If the omitted types can’t be
inferred, a compile-time error is raised.

A closure may omit names for its parameters. Its parameters are
then implicitly named $ followed by their position: $0, $1, $2, and
so on.

A closure that consists of only a single expression is understood
to return the value of that expression. The contents of this
expression are also considered when performing type inference
on the surrounding expression.

The following closure expressions are equivalent:

PDF conversion courtesy of www.appsdissected.com

1 myFunction { (x: Int, y: Int) -> Int in

2 return x + y

3 }

4

5 myFunction { x, y in

6 return x + y

7 }

8

9 myFunction { return $0 + $1 }

10

11 myFunction { $0 + $1 }

For information about passing a closure as an argument to a function,
see Function Call Expression.

Closure expressions can be used without being stored in a variable
or constant, such as when you immediately use a closure as part of a
function call. The closure expressions passed to myFunction in code
above are examples of this kind of immediate use. As a result,
whether a closure expression is escaping or nonescaping depends
on the surrounding context of the expression. A closure expression is
nonescaping if it’s called immediately or passed as a nonescaping
function argument. Otherwise, the closure expression is escaping.

For more information about escaping closures, see Escaping
Closures.

Capture Lists

By default, a closure expression captures constants and variables
from its surrounding scope with strong references to those values.

PDF conversion courtesy of www.appsdissected.com

You can use a capture list to explicitly control how values are
captured in a closure.

A capture list is written as a comma-separated list of expressions
surrounded by square brackets, before the list of parameters. If you
use a capture list, you must also use the in keyword, even if you omit
the parameter names, parameter types, and return type.

The entries in the capture list are initialized when the closure is
created. For each entry in the capture list, a constant is initialized to
the value of the constant or variable that has the same name in the
surrounding scope. For example in the code below, a is included in
the capture list but b is not, which gives them different behavior.

1 var a = 0

2 var b = 0

3 let closure = { [a] in

4 print(a, b)

5 }

6

7 a = 10

8 b = 10

9 closure()

10 // Prints "0 10"

There are two different things named a, the variable in the
surrounding scope and the constant in the closure’s scope, but only
one variable named b. The a in the inner scope is initialized with the
value of the a in the outer scope when the closure is created, but their
values aren’t connected in any special way. This means that a
change to the value of a in the outer scope doesn’t affect the value of
a in the inner scope, nor does a change to a inside the closure affect

PDF conversion courtesy of www.appsdissected.com

the value of a outside the closure. In contrast, there’s only one
variable named b—the b in the outer scope—so changes from inside
or outside the closure are visible in both places.

This distinction isn’t visible when the captured variable’s type has
reference semantics. For example, there are two things named x in
the code below, a variable in the outer scope and a constant in the
inner scope, but they both refer to the same object because of
reference semantics.

1 class SimpleClass {

2 var value: Int = 0

3 }

4 var x = SimpleClass()

5 var y = SimpleClass()

6 let closure = { [x] in

7 print(x.value, y.value)

8 }

9

10 x.value = 10

11 y.value = 10

12 closure()

13 // Prints "10 10"

If the type of the expression’s value is a class, you can mark the
expression in a capture list with weak or unowned to capture a weak or
unowned reference to the expression’s value.

PDF conversion courtesy of www.appsdissected.com

1 myFunction { print(self.title) }

// implicit strong capture

2 myFunction { [self] in print(self.title) }

// explicit strong capture

3 myFunction { [weak self] in print(self!.title) }

// weak capture

4 myFunction { [unowned self] in print(self.title) }

// unowned capture

You can also bind an arbitrary expression to a named value in a
capture list. The expression is evaluated when the closure is created,
and the value is captured with the specified strength. For example:

1 // Weak capture of "self.parent" as "parent"

2 myFunction { [weak parent = self.parent] in

print(parent!.title) }

For more information and examples of closure expressions, see
Closure Expressions. For more information and examples of capture
lists, see Resolving Strong Reference Cycles for Closures.

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A C L O S U R E E X P R E S S I O N

closure-expression → { attributes opt closure-signature opt statements
opt }

closure-signature → capture-list opt closure-parameter-clause asyncopt
throwsopt function-result opt in

closure-signature → capture-list in
closure-parameter-clause → () | (closure-parameter-list) | identifier-

list
closure-parameter-list → closure-parameter | closure-parameter ,

closure-parameter-list
closure-parameter → closure-parameter-name type-annotation opt
closure-parameter → closure-parameter-name type-annotation ...
closure-parameter-name → identifier
capture-list → [capture-list-items]
capture-list-items → capture-list-item | capture-list-item , capture-list-

items
capture-list-item → capture-specifier opt identifier
capture-list-item → capture-specifier opt identifier = expression
capture-list-item → capture-specifier opt self-expression
capture-specifier → weak | unowned | unowned(safe) | unowned(unsafe)

Implicit Member Expression
An implicit member expression is an abbreviated way to access a
member of a type, such as an enumeration case or a type method, in
a context where type inference can determine the implied type. It has
the following form:

 . member name

For example:

1 var x = MyEnumeration.someValue

2 x = .anotherValue

PDF conversion courtesy of www.appsdissected.com

If the inferred type is an optional, you can also use a member of the
non-optional type in an implicit member expression.

 var someOptional: MyEnumeration? = .someValue

Implicit member expressions can be followed by a postfix operator or
other postfix syntax listed in Postfix Expressions. This is called a
chained implicit member expression. Although it’s common for all of
the chained postfix expressions to have the same type, the only
requirement is that the whole chained implicit member expression
needs to be convertible to the type implied by its context. Specifically,
if the implied type is an optional you can use a value of the non-
optional type, and if the implied type is a class type you can use a
value of one of its subclasses. For example:

1 class SomeClass {

2 static var shared = SomeClass()

3 static var sharedSubclass = SomeSubclass()

4 var a = AnotherClass()

5 }

6 class SomeSubclass: SomeClass { }

7 class AnotherClass {

8 static var s = SomeClass()

9 func f() -> SomeClass { return AnotherClass.s }

10 }

11 let x: SomeClass = .shared.a.f()

12 let y: SomeClass? = .shared

13 let z: SomeClass = .sharedSubclass

PDF conversion courtesy of www.appsdissected.com

In the code above, the type of x matches the type implied by its
context exactly, the type of y is convertible from SomeClass to
SomeClass?, and the type of z is convertible from SomeSubclass to
SomeClass.

G R A M M A R O F A I M P L I C I T M E M B E R E X P R E S S I O N

implicit-member-expression → . identifier
implicit-member-expression → . identifier . postfix-expression

Parenthesized Expression
A parenthesized expression consists of an expression surrounded by
parentheses. You can use parentheses to specify the precedence of
operations by explicitly grouping expressions. Grouping parentheses
don’t change an expression’s type—for example, the type of (1) is
simply Int.

G R A M M A R O F A PA R E N T H E S I Z E D E X P R E S S I O N

parenthesized-expression → (expression)

Tuple Expression
A tuple expression consists of a comma-separated list of expressions
surrounded by parentheses. Each expression can have an optional
identifier before it, separated by a colon (:). It has the following form:

 (identifier 1 : expression 1 , identifier 2 :

 expression 2 , ...)

Each identifier in a tuple expression must be unique within the scope
of the tuple expression. In a nested tuple expression, identifiers at the
same level of nesting must be unique. For example, (a: 10, a: 20)
is invalid because the label a appears twice at the same level.

PDF conversion courtesy of www.appsdissected.com

However, (a: 10, b: (a: 1, x: 2)) is valid—although a appears
twice, it appears once in the outer tuple and once in the inner tuple.

A tuple expression can contain zero expressions, or it can contain
two or more expressions. A single expression inside parentheses is a
parenthesized expression.

N O T E

Both an empty tuple expression and an empty tuple type are written () in
Swift. Because Void is a type alias for (), you can use it to write an empty
tuple type. However, like all type aliases, Void is always a type—you can’t use
it to write an empty tuple expression.

G R A M M A R O F A T U P L E E X P R E S S I O N

tuple-expression → () | (tuple-element , tuple-element-list)
tuple-element-list → tuple-element | tuple-element , tuple-element-list
tuple-element → expression | identifier : expression

Wildcard Expression
A wildcard expression is used to explicitly ignore a value during an
assignment. For example, in the following assignment 10 is assigned
to x and 20 is ignored:

1 (x, _) = (10, 20)

2 // x is 10, and 20 is ignored

G R A M M A R O F A W I L D C A R D E X P R E S S I O N

wildcard-expression → _

Key-Path Expression

PDF conversion courtesy of www.appsdissected.com

A key-path expression refers to a property or subscript of a type. You
use key-path expressions in dynamic programming tasks, such as
key-value observing. They have the following form:

 \ type name . path

The type name is the name of a concrete type, including any generic
parameters, such as String, [Int], or Set<Int>.

The path consists of property names, subscripts, optional-chaining
expressions, and forced unwrapping expressions. Each of these key-
path components can be repeated as many times as needed, in any
order.

At compile time, a key-path expression is replaced by an instance of
the KeyPath class.

To access a value using a key path, pass the key path to the
subscript(keyPath:) subscript, which is available on all types. For
example:

1 struct SomeStructure {

2 var someValue: Int

3 }

4

5 let s = SomeStructure(someValue: 12)

6 let pathToProperty = \SomeStructure.someValue

7

8 let value = s[keyPath: pathToProperty]

9 // value is 12

https://developer.apple.com/documentation/swift/keypath

PDF conversion courtesy of www.appsdissected.com

The type name can be omitted in contexts where type inference can
determine the implied type. The following code uses \.someProperty
instead of \SomeClass.someProperty:

1 class SomeClass: NSObject {

2 @objc dynamic var someProperty: Int

3 init(someProperty: Int) {

4 self.someProperty = someProperty

5 }

6 }

7

8 let c = SomeClass(someProperty: 10)

9 c.observe(\.someProperty) { object, change in

10 // ...

11 }

The path can refer to self to create the identity key path (\.self).
The identity key path refers to a whole instance, so you can use it to
access and change all of the data stored in a variable in a single step.
For example:

1 var compoundValue = (a: 1, b: 2)

2 // Equivalent to compoundValue = (a: 10, b: 20)

3 compoundValue[keyPath: \.self] = (a: 10, b: 20)

The path can contain multiple property names, separated by periods,
to refer to a property of a property’s value. This code uses the key
path expression \OuterStructure.outer.someValue to access the
someValue property of the OuterStructure type’s outer property:

PDF conversion courtesy of www.appsdissected.com

1 struct OuterStructure {

2 var outer: SomeStructure

3 init(someValue: Int) {

4 self.outer = SomeStructure(someValue:

someValue)

5 }

6 }

7

8 let nested = OuterStructure(someValue: 24)

9 let nestedKeyPath = \OuterStructure.outer.someValue

10

11 let nestedValue = nested[keyPath: nestedKeyPath]

12 // nestedValue is 24

The path can include subscripts using brackets, as long as the
subscript’s parameter type conforms to the Hashable protocol. This
example uses a subscript in a key path to access the second element
of an array:

1 let greetings = ["hello", "hola", "bonjour", "안녕"]

2 let myGreeting = greetings[keyPath: \[String].[1]]

3 // myGreeting is 'hola'

The value used in a subscript can be a named value or a literal.
Values are captured in key paths using value semantics. The
following code uses the variable index in both a key-path expression
and in a closure to access the third element of the greetings array.
When index is modified, the key-path expression still references the
third element, while the closure uses the new index.

PDF conversion courtesy of www.appsdissected.com

1 var index = 2

2 let path = \[String].[index]

3 let fn: ([String]) -> String = { strings in

strings[index] }

4

5 print(greetings[keyPath: path])

6 // Prints "bonjour"

7 print(fn(greetings))

8 // Prints "bonjour"

9

10 // Setting 'index' to a new value doesn't affect

'path'

11 index += 1

12 print(greetings[keyPath: path])

13 // Prints "bonjour"

14

15 // Because 'fn' closes over 'index', it uses the new

value

16 print(fn(greetings))

17 // Prints "안녕"

The path can use optional chaining and forced unwrapping. This
code uses optional chaining in a key path to access a property of an
optional string:

PDF conversion courtesy of www.appsdissected.com

1 let firstGreeting: String? = greetings.first

2 print(firstGreeting?.count as Any)

3 // Prints "Optional(5)"

4

5 // Do the same thing using a key path.

6 let count = greetings[keyPath: \

[String].first?.count]

7 print(count as Any)

8 // Prints "Optional(5)"

You can mix and match components of key paths to access values
that are deeply nested within a type. The following code accesses
different values and properties of a dictionary of arrays by using key-
path expressions that combine these components.

PDF conversion courtesy of www.appsdissected.com

1 let interestingNumbers = ["prime": [2, 3, 5, 7, 11,

13, 17],

2 "triangular": [1, 3, 6,

10, 15, 21, 28],

3 "hexagonal": [1, 6, 15,

28, 45, 66, 91]]

4 print(interestingNumbers[keyPath: \[String: [Int]].

["prime"]] as Any)

5 // Prints "Optional([2, 3, 5, 7, 11, 13, 17])"

6 print(interestingNumbers[keyPath: \[String: [Int]].

["prime"]![0]])

7 // Prints "2"

8 print(interestingNumbers[keyPath: \[String: [Int]].

["hexagonal"]!.count])

9 // Prints "7"

10 print(interestingNumbers[keyPath: \[String: [Int]].

["hexagonal"]!.count.bitWidth])

11 // Prints "64"

You can use a key path expression in contexts where you would
normally provide a function or closure. Specifically, you can use a key
path expression whose root type is SomeType and whose path
produces a value of type Value, instead of a function or closure of
type (SomeType) -> Value.

PDF conversion courtesy of www.appsdissected.com

1 struct Task {

2 var description: String

3 var completed: Bool

4 }

5 var toDoList = [

6 Task(description: "Practice ping-pong.",

completed: false),

7 Task(description: "Buy a pirate costume.",

completed: true),

8 Task(description: "Visit Boston in the Fall.",

completed: false),

9]

10

11 // Both approaches below are equivalent.

12 let descriptions =

toDoList.filter(\.completed).map(\.description)

13 let descriptions2 = toDoList.filter { $0.completed

}.map { $0.description }

Any side effects of a key path expression are evaluated only at the
point where the expression is evaluated. For example, if you make a
function call inside a subscript in a key path expression, the function
is called only once as part of evaluating the expression, not every
time the key path is used.

PDF conversion courtesy of www.appsdissected.com

1 func makeIndex() -> Int {

2 print("Made an index")

3 return 0

4 }

5 // The line below calls makeIndex().

6 let taskKeyPath = \[Task][makeIndex()]

7 // Prints "Made an index"

8

9 // Using taskKeyPath doesn't call makeIndex() again.

10 let someTask = toDoList[keyPath: taskKeyPath]

For more information about using key paths in code that interacts
with Objective-C APIs, see Using Objective-C Runtime Features in
Swift. For information about key-value coding and key-value
observing, see Key-Value Coding Programming Guide and Key-
Value Observing Programming Guide.

G R A M M A R O F A K E Y- PAT H E X P R E S S I O N

key-path-expression → \ type opt . key-path-components
key-path-components → key-path-component | key-path-component .

key-path-components
key-path-component → identifier key-path-postfixes opt | key-path-

postfixes
key-path-postfixes → key-path-postfix key-path-postfixes opt
key-path-postfix → ? | ! | self | [function-call-argument-list]

Selector Expression
A selector expression lets you access the selector used to refer to a
method or to a property’s getter or setter in Objective-C. It has the
following form:

https://developer.apple.com/documentation/swift/using_objective_c_runtime_features_in_swift
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/KeyValueCoding/index.html#//apple_ref/doc/uid/10000107i
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/KeyValueObserving/KeyValueObserving.html#//apple_ref/doc/uid/10000177i

PDF conversion courtesy of www.appsdissected.com

 #selector(method name)

 #selector(getter: property name)

 #selector(setter: property name)

The method name and property name must be a reference to a
method or a property that’s available in the Objective-C runtime. The
value of a selector expression is an instance of the Selector type.
For example:

1 class SomeClass: NSObject {

2 @objc let property: String

3

4 @objc(doSomethingWithInt:)

5 func doSomething(_ x: Int) { }

6

7 init(property: String) {

8 self.property = property

9 }

10 }

11 let selectorForMethod =

#selector(SomeClass.doSomething(_:))

12 let selectorForPropertyGetter = #selector(getter:

SomeClass.property)

When creating a selector for a property’s getter, the property name
can be a reference to a variable or constant property. In contrast,
when creating a selector for a property’s setter, the property name
must be a reference to a variable property only.

PDF conversion courtesy of www.appsdissected.com

The method name can contain parentheses for grouping, as well the
as operator to disambiguate between methods that share a name but
have different type signatures. For example:

1 extension SomeClass {

2 @objc(doSomethingWithString:)

3 func doSomething(_ x: String) { }

4 }

5 let anotherSelector =

#selector(SomeClass.doSomething(_:) as

(SomeClass) -> (String) -> Void)

Because a selector is created at compile time, not at runtime, the
compiler can check that a method or property exists and that they’re
exposed to the Objective-C runtime.

N O T E

Although the method name and the property name are expressions, they’re
never evaluated.

For more information about using selectors in Swift code that
interacts with Objective-C APIs, see Using Objective-C Runtime
Features in Swift.

G R A M M A R O F A S E L E C T O R E X P R E S S I O N

selector-expression → #selector (expression)
selector-expression → #selector (getter: expression)
selector-expression → #selector (setter: expression)

Key-Path String Expression

https://developer.apple.com/documentation/swift/using_objective_c_runtime_features_in_swift

PDF conversion courtesy of www.appsdissected.com

A key-path string expression lets you access the string used to refer
to a property in Objective-C, for use in key-value coding and key-
value observing APIs. It has the following form:

 #keyPath(property name)

The property name must be a reference to a property that’s available
in the Objective-C runtime. At compile time, the key-path string
expression is replaced by a string literal. For example:

1 class SomeClass: NSObject {

2 @objc var someProperty: Int

3 init(someProperty: Int) {

4 self.someProperty = someProperty

5 }

6 }

7

8 let c = SomeClass(someProperty: 12)

9 let keyPath = #keyPath(SomeClass.someProperty)

10

11 if let value = c.value(forKey: keyPath) {

12 print(value)

13 }

14 // Prints "12"

When you use a key-path string expression within a class, you can
refer to a property of that class by writing just the property name,
without the class name.

PDF conversion courtesy of www.appsdissected.com

1 extension SomeClass {

2 func getSomeKeyPath() -> String {

3 return #keyPath(someProperty)

4 }

5 }

6 print(keyPath == c.getSomeKeyPath())

7 // Prints "true"

Because the key path string is created at compile time, not at runtime,
the compiler can check that the property exists and that the property
is exposed to the Objective-C runtime.

For more information about using key paths in Swift code that
interacts with Objective-C APIs, see Using Objective-C Runtime
Features in Swift. For information about key-value coding and key-
value observing, see Key-Value Coding Programming Guide and
Key-Value Observing Programming Guide.

N O T E

Although the property name is an expression, it’s never evaluated.

G R A M M A R O F A K E Y- PAT H S T R I N G E X P R E S S I O N

key-path-string-expression → #keyPath (expression)

Postfix Expressions
Postfix expressions are formed by applying a postfix operator or other
postfix syntax to an expression. Syntactically, every primary
expression is also a postfix expression.

https://developer.apple.com/documentation/swift/using_objective_c_runtime_features_in_swift
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/KeyValueCoding/index.html#//apple_ref/doc/uid/10000107i
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/KeyValueObserving/KeyValueObserving.html#//apple_ref/doc/uid/10000177i

PDF conversion courtesy of www.appsdissected.com

For information about the behavior of these operators, see Basic
Operators and Advanced Operators.

For information about the operators provided by the Swift standard
library, see Operator Declarations.

G R A M M A R O F A P O S T F I X E X P R E S S I O N

postfix-expression → primary-expression
postfix-expression → postfix-expression postfix-operator
postfix-expression → function-call-expression
postfix-expression → initializer-expression
postfix-expression → explicit-member-expression
postfix-expression → postfix-self-expression
postfix-expression → subscript-expression
postfix-expression → forced-value-expression
postfix-expression → optional-chaining-expression

Function Call Expression
A function call expression consists of a function name followed by a
comma-separated list of the function’s arguments in parentheses.
Function call expressions have the following form:

 function name (argument value 1 ,

 argument value 2)

The function name can be any expression whose value is of a
function type.

If the function definition includes names for its parameters, the
function call must include names before its argument values,
separated by a colon (:). This kind of function call expression has the
following form:

https://developer.apple.com/documentation/swift/operator_declarations

PDF conversion courtesy of www.appsdissected.com

 function name (argument name 1 : argument value 1 ,

argument name 2 : argument value 2)

A function call expression can include trailing closures in the form of
closure expressions immediately after the closing parenthesis. The
trailing closures are understood as arguments to the function, added
after the last parenthesized argument. The first closure expression is
unlabeled; any additional closure expressions are preceded by their
argument labels. The example below shows the equivalent version of
function calls that do and don’t use trailing closure syntax:

1 // someFunction takes an integer and a closure as

its arguments

2 someFunction(x: x, f: { $0 == 13 })

3 someFunction(x: x) { $0 == 13 }

4

5 // anotherFunction takes an integer and two closures

as its arguments

6 anotherFunction(x: x, f: { $0 == 13 }, g: {

print(99) })

7 anotherFunction(x: x) { $0 == 13 } g: { print(99) }

If the trailing closure is the function’s only argument, you can omit the
parentheses.

1 // someMethod takes a closure as its only argument

2 myData.someMethod() { $0 == 13 }

3 myData.someMethod { $0 == 13 }

PDF conversion courtesy of www.appsdissected.com

To include the trailing closures in the arguments, the compiler
examines the function’s parameters from left to right as follows:

Trailing
Closure Parameter Action

Labeled Labeled
If the labels are the same, the closure
matches the parameter; otherwise, the
parameter is skipped.

Labeled Unlabeled The parameter is skipped.

Unlabeled Labeled or
unlabeled

If the parameter structurally resembles a
function type, as defined below, the
closure matches the parameter;
otherwise, the parameter is skipped.

The trailing closure is passed as the argument for the parameter that
it matches. Parameters that were skipped during the scanning
process don’t have an argument passed to them—for example, they
can use a default parameter. After finding a match, scanning
continues with the next trailing closure and the next parameter. At the
end of the matching process, all trailing closures must have a match.

A parameter structurally resembles a function type if the parameter
isn’t an in-out parameter, and the parameter is one of the following:

A parameter whose type is a function type, like (Bool) -> Int

An autoclosure parameter whose wrapped expression’s type is a
function type, like @autoclosure () -> ((Bool) -> Int)

PDF conversion courtesy of www.appsdissected.com

A variadic parameter whose array element type is a function
type, like ((Bool) -> Int)...

A parameter whose type is wrapped in one or more layers of
optional, like Optional<(Bool) -> Int>

A parameter whose type combines these allowed types, like
(Optional<(Bool) -> Int>)...

When a trailing closure is matched to a parameter whose type
structurally resembles a function type, but isn’t a function, the closure
is wrapped as needed. For example, if the parameter’s type is an
optional type, the closure is wrapped in Optional automatically.

To ease migration of code from versions of Swift prior to 5.3—which
performed this matching from right to left—the compiler checks both
the left-to-right and right-to-left orderings. If the scan directions
produce different results, the old right-to-left ordering is used and the
compiler generates a warning. A future version of Swift will always
use the left-to-right ordering.

PDF conversion courtesy of www.appsdissected.com

1 typealias Callback = (Int) -> Int

2 func someFunction(firstClosure: Callback? = nil,

3 secondClosure: Callback? = nil) {

4 let first = firstClosure?(10)

5 let second = secondClosure?(20)

6 print(first ?? "-", second ?? "-")

7 }

8

9 someFunction() // Prints "- -"

10 someFunction { return $0 + 100 } // Ambiguous

11 someFunction { return $0 } secondClosure: { return

$0 } // Prints "10 20"

In the example above, the function call marked “Ambiguous” prints “-
120” and produces a compiler warning on Swift 5.3. A future version of
Swift will print “110 -”.

A class, structure, or enumeration type can enable syntactic sugar for
function call syntax by declaring one of several methods, as
described in Methods with Special Names.

Implicit Conversion to a Pointer Type

In a function call expression, if the argument and parameter have a
different type, the compiler tries to make their types match by
applying one of the implicit conversions in the following list:

inout SomeType can become UnsafePointer<SomeType> or
UnsafeMutablePointer<SomeType>

PDF conversion courtesy of www.appsdissected.com

inout Array<SomeType> can become UnsafePointer<SomeType>
or UnsafeMutablePointer<SomeType>

Array<SomeType> can become UnsafePointer<SomeType>

String can become UnsafePointer<CChar>

The following two function calls are equivalent:

1 func unsafeFunction(pointer: UnsafePointer<Int>) {

2 // ...

3 }

4 var myNumber = 1234

5

6 unsafeFunction(pointer: &myNumber)

7 withUnsafePointer(to: myNumber) {

unsafeFunction(pointer: $0) }

A pointer that’s created by these implicit conversions is valid only for
the duration of the function call. To avoid undefined behavior, ensure
that your code never persists the pointer after the function call ends.

N O T E

When implicitly converting an array to an unsafe pointer, Swift ensures that
the array’s storage is contiguous by converting or copying the array as
needed. For example, you can use this syntax with an array that was bridged
to Array from an NSArray subclass that makes no API contract about its
storage. If you need to guarantee that the array’s storage is already
contiguous, so the implicit conversion never needs to do this work, use
ContiguousArray instead of Array.

Using & instead of an explicit function like withUnsafePointer(to:)
can help make calls to low-level C functions more readable,

PDF conversion courtesy of www.appsdissected.com

especially when the function takes several pointer arguments.
However, when calling functions from other Swift code, avoid using &
instead of using the unsafe APIs explicitly.

G R A M M A R O F A F U N C T I O N C A L L E X P R E S S I O N

function-call-expression → postfix-expression function-call-argument-
clause

function-call-expression → postfix-expression function-call-argument-
clause opt trailing-closures

function-call-argument-clause → () | (function-call-argument-list)
function-call-argument-list → function-call-argument | function-call-

argument , function-call-argument-list
function-call-argument → expression | identifier : expression
function-call-argument → operator | identifier : operator
trailing-closures → closure-expression labeled-trailing-closures opt
labeled-trailing-closures → labeled-trailing-closure labeled-trailing-closures

opt
labeled-trailing-closure → identifier : closure-expression

Initializer Expression
An initializer expression provides access to a type’s initializer. It has
the following form:

 expression .init(initializer arguments)

You use the initializer expression in a function call expression to
initialize a new instance of a type. You also use an initializer
expression to delegate to the initializer of a superclass.

PDF conversion courtesy of www.appsdissected.com

1 class SomeSubClass: SomeSuperClass {

2 override init() {

3 // subclass initialization goes here

4 super.init()

5 }

6 }

Like a function, an initializer can be used as a value. For example:

1 // Type annotation is required because String has

multiple initializers.

2 let initializer: (Int) -> String = String.init

3 let oneTwoThree = [1, 2,

3].map(initializer).reduce("", +)

4 print(oneTwoThree)

5 // Prints "123"

If you specify a type by name, you can access the type’s initializer
without using an initializer expression. In all other cases, you must
use an initializer expression.

1 let s1 = SomeType.init(data: 3) // Valid

2 let s2 = SomeType(data: 1) // Also valid

3

4 let s3 = type(of: someValue).init(data: 7) // Valid

5 let s4 = type(of: someValue)(data: 5) // Error

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A N I N I T I A L I Z E R E X P R E S S I O N

initializer-expression → postfix-expression . init
initializer-expression → postfix-expression . init (argument-names)

Explicit Member Expression
An explicit member expression allows access to the members of a
named type, a tuple, or a module. It consists of a period (.) between
the item and the identifier of its member.

 expression . member name

The members of a named type are named as part of the type’s
declaration or extension. For example:

1 class SomeClass {

2 var someProperty = 42

3 }

4 let c = SomeClass()

5 let y = c.someProperty // Member access

The members of a tuple are implicitly named using integers in the
order they appear, starting from zero. For example:

1 var t = (10, 20, 30)

2 t.0 = t.1

3 // Now t is (20, 20, 30)

The members of a module access the top-level declarations of that
module.

PDF conversion courtesy of www.appsdissected.com

Types declared with the dynamicMemberLookup attribute include
members that are looked up at runtime, as described in Attributes.

To distinguish between methods or initializers whose names differ
only by the names of their arguments, include the argument names in
parentheses, with each argument name followed by a colon (:). Write
an underscore (_) for an argument with no name. To distinguish
between overloaded methods, use a type annotation. For example:

1 class SomeClass {

2 func someMethod(x: Int, y: Int) {}

3 func someMethod(x: Int, z: Int) {}

4 func overloadedMethod(x: Int, y: Int) {}

5 func overloadedMethod(x: Int, y: Bool) {}

6 }

7 let instance = SomeClass()

8

9 let a = instance.someMethod //

Ambiguous

10 let b = instance.someMethod(x:y:) //

Unambiguous

11

12 let d = instance.overloadedMethod //

Ambiguous

13 let d = instance.overloadedMethod(x:y:) // Still

ambiguous

14 let d: (Int, Bool) -> Void =

instance.overloadedMethod(x:y:) // Unambiguous

PDF conversion courtesy of www.appsdissected.com

If a period appears at the beginning of a line, it’s understood as part
of an explicit member expression, not as an implicit member
expression. For example, the following listing shows chained method
calls split over several lines:

1 let x = [10, 3, 20, 15, 4]

2 .sorted()

3 .filter { $0 > 5 }

4 .map { $0 * 100 }

You can combine this multiline chained syntax with compiler control
statements to control when each method is called. For example, the
following code uses a different filtering rule on iOS:

1 let numbers = [10, 20, 33, 43, 50]

2 #if os(iOS)

3 .filter { $0 < 40 }

4 #else

5 .filter { $0 > 25 }

6 #endif

Between #if, #endif, and other compilation directives, the
conditional compilation block can contain an implicit member
expression followed by zero or more postfixes, to form a postfix
expression. It can also contain another conditional compilation block,
or a combination of these expressions and blocks.

You can use this syntax anywhere that you can write an explicit
member expression, not just in top-level code.

In the conditional compilation block, the branch for the #if
compilation directive must contain at least one expression. The other

PDF conversion courtesy of www.appsdissected.com

branches can be empty.

G R A M M A R O F A N E X P L I C I T M E M B E R E X P R E S S I O N

explicit-member-expression → postfix-expression . decimal-digits
explicit-member-expression → postfix-expression . identifier generic-

argument-clause opt
explicit-member-expression → postfix-expression . identifier (

argument-names)
explicit-member-expression → postfix-expression conditional-compilation-

block
argument-names → argument-name argument-names opt
argument-name → identifier :

Postfix Self Expression
A postfix self expression consists of an expression or the name of a
type, immediately followed by .self. It has the following forms:

 expression .self

 type .self

The first form evaluates to the value of the expression. For example,
x.self evaluates to x.

The second form evaluates to the value of the type. Use this form to
access a type as a value. For example, because SomeClass.self
evaluates to the SomeClass type itself, you can pass it to a function or
method that accepts a type-level argument.

G R A M M A R O F A P O S T F I X S E L F E X P R E S S I O N

postfix-self-expression → postfix-expression . self

Subscript Expression

PDF conversion courtesy of www.appsdissected.com

A subscript expression provides subscript access using the getter
and setter of the corresponding subscript declaration. It has the
following form:

 expression [index expressions]

To evaluate the value of a subscript expression, the subscript getter
for the expression’s type is called with the index expressions passed
as the subscript parameters. To set its value, the subscript setter is
called in the same way.

For information about subscript declarations, see Protocol Subscript
Declaration.

G R A M M A R O F A S U B S C R I P T E X P R E S S I O N

subscript-expression → postfix-expression [function-call-argument-list]

Forced-Value Expression
A forced-value expression unwraps an optional value that you are
certain isn’t nil. It has the following form:

 expression !

If the value of the expression isn’t nil, the optional value is
unwrapped and returned with the corresponding non-optional type.
Otherwise, a runtime error is raised.

The unwrapped value of a forced-value expression can be modified,
either by mutating the value itself, or by assigning to one of the
value’s members. For example:

PDF conversion courtesy of www.appsdissected.com

1 var x: Int? = 0

2 x! += 1

3 // x is now 1

4

5 var someDictionary = ["a": [1, 2, 3], "b": [10, 20]]

6 someDictionary["a"]![0] = 100

7 // someDictionary is now ["a": [100, 2, 3], "b":

[10, 20]]

G R A M M A R O F A F O R C E D - VA L U E E X P R E S S I O N

forced-value-expression → postfix-expression !

Optional-Chaining Expression
An optional-chaining expression provides a simplified syntax for
using optional values in postfix expressions. It has the following form:

 expression ?

The postfix ? operator makes an optional-chaining expression from
an expression without changing the expression’s value.

Optional-chaining expressions must appear within a postfix
expression, and they cause the postfix expression to be evaluated in
a special way. If the value of the optional-chaining expression is nil,
all of the other operations in the postfix expression are ignored and
the entire postfix expression evaluates to nil. If the value of the
optional-chaining expression isn’t nil, the value of the optional-
chaining expression is unwrapped and used to evaluate the rest of
the postfix expression. In either case, the value of the postfix
expression is still of an optional type.

PDF conversion courtesy of www.appsdissected.com

If a postfix expression that contains an optional-chaining expression
is nested inside other postfix expressions, only the outermost
expression returns an optional type. In the example below, when c
isn’t nil, its value is unwrapped and used to evaluate .property, the
value of which is used to evaluate .performAction(). The entire
expression c?.property.performAction() has a value of an optional
type.

1 var c: SomeClass?

2 var result: Bool? = c?.property.performAction()

The following example shows the behavior of the example above
without using optional chaining.

1 var result: Bool?

2 if let unwrappedC = c {

3 result = unwrappedC.property.performAction()

4 }

The unwrapped value of an optional-chaining expression can be
modified, either by mutating the value itself, or by assigning to one of
the value’s members. If the value of the optional-chaining expression
is nil, the expression on the right-hand side of the assignment
operator isn’t evaluated. For example:

PDF conversion courtesy of www.appsdissected.com

1 func someFunctionWithSideEffects() -> Int {

2 return 42 // No actual side effects.

3 }

4 var someDictionary = ["a": [1, 2, 3], "b": [10, 20]]

5

6 someDictionary["not here"]?[0] =

someFunctionWithSideEffects()

7 // someFunctionWithSideEffects isn't evaluated

8 // someDictionary is still ["a": [1, 2, 3], "b":

[10, 20]]

9

10 someDictionary["a"]?[0] =

someFunctionWithSideEffects()

11 // someFunctionWithSideEffects is evaluated and

returns 42

12 // someDictionary is now ["a": [42, 2, 3], "b": [10,

20]]

G R A M M A R O F A N O P T I O N A L - C H A I N I N G E X P R E S S I O N

optional-chaining-expression → postfix-expression ?

PDF conversion courtesy of www.appsdissected.com

Statements

In Swift, there are three kinds of statements: simple statements, compiler control
statements, and control flow statements. Simple statements are the most
common and consist of either an expression or a declaration. Compiler control
statements allow the program to change aspects of the compiler’s behavior and
include a conditional compilation block and a line control statement.

Control flow statements are used to control the flow of execution in a program.
There are several types of control flow statements in Swift, including loop
statements, branch statements, and control transfer statements. Loop
statements allow a block of code to be executed repeatedly, branch statements
allow a certain block of code to be executed only when certain conditions are
met, and control transfer statements provide a way to alter the order in which
code is executed. In addition, Swift provides a do statement to introduce scope,
and catch and handle errors, and a defer statement for running cleanup actions
just before the current scope exits.

A semicolon (;) can optionally appear after any statement and is used to
separate multiple statements if they appear on the same line.

G R A M M A R O F A S TAT E M E N T

statement → expression ;opt
statement → declaration ;opt
statement → loop-statement ;opt
statement → branch-statement ;opt
statement → labeled-statement ;opt
statement → control-transfer-statement ;opt
statement → defer-statement ;opt
statement → do-statement ;opt
statement → compiler-control-statement
statements → statement statements opt

Loop Statements
Loop statements allow a block of code to be executed repeatedly, depending on
the conditions specified in the loop. Swift has three loop statements: a for-in

PDF conversion courtesy of www.appsdissected.com

statement, a while statement, and a repeat-while statement.

Control flow in a loop statement can be changed by a break statement and a
continue statement and is discussed in Break Statement and Continue
Statement below.

G R A M M A R O F A L O O P S TAT E M E N T

loop-statement → for-in-statement
loop-statement → while-statement
loop-statement → repeat-while-statement

For-In Statement
A for-in statement allows a block of code to be executed once for each item in
a collection (or any type) that conforms to the Sequence protocol.

A for-in statement has the following form:

 for item in collection {

 statements

 }

The makeIterator() method is called on the collection expression to obtain a
value of an iterator type—that is, a type that conforms to the IteratorProtocol
protocol. The program begins executing a loop by calling the next() method on
the iterator. If the value returned isn’t nil, it’s assigned to the item pattern, the
program executes the statements, and then continues execution at the
beginning of the loop. Otherwise, the program doesn’t perform assignment or
execute the statements, and it’s finished executing the for-in statement.

G R A M M A R O F A F O R - I N S TAT E M E N T

for-in-statement → for caseopt pattern in expression where-clause opt code-
block

While Statement
A while statement allows a block of code to be executed repeatedly, as long as
a condition remains true.

A while statement has the following form:

https://developer.apple.com/documentation/swift/sequence
https://developer.apple.com/documentation/swift/iteratorprotocol

PDF conversion courtesy of www.appsdissected.com

 while condition {

 statements

 }

A while statement is executed as follows:

1. The condition is evaluated.

If true, execution continues to step 2. If false, the program is finished
executing the while statement.

2. The program executes the statements, and execution returns to step 1.

Because the value of the condition is evaluated before the statements are
executed, the statements in a while statement can be executed zero or more
times.

The value of the condition must be of type Bool or a type bridged to Bool. The
condition can also be an optional binding declaration, as discussed in Optional
Binding.

G R A M M A R O F A W H I L E S TAT E M E N T

while-statement → while condition-list code-block
condition-list → condition | condition , condition-list
condition → expression | availability-condition | case-condition | optional-binding-

condition
case-condition → case pattern initializer
optional-binding-condition → let pattern initializer opt | var pattern initializer opt

Repeat-While Statement
A repeat-while statement allows a block of code to be executed one or more
times, as long as a condition remains true.

A repeat-while statement has the following form:

 repeat {

 statements

 } while condition

PDF conversion courtesy of www.appsdissected.com

A repeat-while statement is executed as follows:

1. The program executes the statements, and execution continues to step 2.

2. The condition is evaluated.

If true, execution returns to step 1. If false, the program is finished
executing the repeat-while statement.

Because the value of the condition is evaluated after the statements are
executed, the statements in a repeat-while statement are executed at least
once.

The value of the condition must be of type Bool or a type bridged to Bool. The
condition can also be an optional binding declaration, as discussed in Optional
Binding.

G R A M M A R O F A R E P E AT- W H I L E S TAT E M E N T

repeat-while-statement → repeat code-block while expression

Branch Statements
Branch statements allow the program to execute certain parts of code
depending on the value of one or more conditions. The values of the conditions
specified in a branch statement control how the program branches and,
therefore, what block of code is executed. Swift has three branch statements: an
if statement, a guard statement, and a switch statement.

Control flow in an if statement or a switch statement can be changed by a
break statement and is discussed in Break Statement below.

G R A M M A R O F A B R A N C H S TAT E M E N T

branch-statement → if-statement
branch-statement → guard-statement
branch-statement → switch-statement

If Statement

PDF conversion courtesy of www.appsdissected.com

An if statement is used for executing code based on the evaluation of one or
more conditions.

There are two basic forms of an if statement. In each form, the opening and
closing braces are required.

The first form allows code to be executed only when a condition is true and has
the following form:

 if condition {

 statements

 }

The second form of an if statement provides an additional else clause
(introduced by the else keyword) and is used for executing one part of code
when the condition is true and another part of code when the same condition is
false. When a single else clause is present, an if statement has the following
form:

 if condition {

 statements to execute if condition is true

 } else {

 statements to execute if condition is false

 }

The else clause of an if statement can contain another if statement to test
more than one condition. An if statement chained together in this way has the
following form:

 if condition 1 {

 statements to execute if condition 1 is true

 } else if condition 2 {

 statements to execute if condition 2 is true

 } else {

 statements to execute if both conditions are false

 }

PDF conversion courtesy of www.appsdissected.com

The value of any condition in an if statement must be of type Bool or a type
bridged to Bool. The condition can also be an optional binding declaration, as
discussed in Optional Binding.

G R A M M A R O F A N I F S TAT E M E N T

if-statement → if condition-list code-block else-clause opt
else-clause → else code-block | else if-statement

Guard Statement
A guard statement is used to transfer program control out of a scope if one or
more conditions aren’t met.

A guard statement has the following form:

 guard condition else {

 statements

 }

The value of any condition in a guard statement must be of type Bool or a type
bridged to Bool. The condition can also be an optional binding declaration, as
discussed in Optional Binding.

Any constants or variables assigned a value from an optional binding
declaration in a guard statement condition can be used for the rest of the guard
statement’s enclosing scope.

The else clause of a guard statement is required, and must either call a function
with the Never return type or transfer program control outside the guard
statement’s enclosing scope using one of the following statements:

return

break

continue

throw

Control transfer statements are discussed in Control Transfer Statements
below. For more information on functions with the Never return type, see

PDF conversion courtesy of www.appsdissected.com

Functions that Never Return.

G R A M M A R O F A G U A R D S TAT E M E N T

guard-statement → guard condition-list else code-block

Switch Statement
A switch statement allows certain blocks of code to be executed depending on
the value of a control expression.

A switch statement has the following form:

 switch control expression {

 case pattern 1 :

 statements

 case pattern 2 where condition :

 statements

 case pattern 3 where condition ,

 pattern 4 where condition :

 statements

 default:

 statements

 }

The control expression of the switch statement is evaluated and then compared
with the patterns specified in each case. If a match is found, the program
executes the statements listed within the scope of that case. The scope of each
case can’t be empty. As a result, you must include at least one statement
following the colon (:) of each case label. Use a single break statement if you
don’t intend to execute any code in the body of a matched case.

The values of expressions your code can branch on are very flexible. For
example, in addition to the values of scalar types, such as integers and
characters, your code can branch on the values of any type, including floating-
point numbers, strings, tuples, instances of custom classes, and optionals. The
value of the control expression can even be matched to the value of a case in
an enumeration and checked for inclusion in a specified range of values. For

PDF conversion courtesy of www.appsdissected.com

examples of how to use these various types of values in switch statements, see
Switch in Control Flow.

A switch case can optionally contain a where clause after each pattern. A where
clause is introduced by the where keyword followed by an expression, and is
used to provide an additional condition before a pattern in a case is considered
matched to the control expression. If a where clause is present, the statements
within the relevant case are executed only if the value of the control expression
matches one of the patterns of the case and the expression of the where clause
evaluates to true. For example, a control expression matches the case in the
example below only if it’s a tuple that contains two elements of the same value,
such as (1, 1).

 case let (x, y) where x == y:

As the above example shows, patterns in a case can also bind constants using
the let keyword (they can also bind variables using the var keyword). These
constants (or variables) can then be referenced in a corresponding where clause
and throughout the rest of the code within the scope of the case. If the case
contains multiple patterns that match the control expression, all of the patterns
must contain the same constant or variable bindings, and each bound variable
or constant must have the same type in all of the case’s patterns.

A switch statement can also include a default case, introduced by the default
keyword. The code within a default case is executed only if no other cases
match the control expression. A switch statement can include only one default
case, which must appear at the end of the switch statement.

Although the actual execution order of pattern-matching operations, and in
particular the evaluation order of patterns in cases, is unspecified, pattern
matching in a switch statement behaves as if the evaluation is performed in
source order—that is, the order in which they appear in source code. As a result,
if multiple cases contain patterns that evaluate to the same value, and thus can
match the value of the control expression, the program executes only the code
within the first matching case in source order.

Switch Statements Must Be Exhaustive

In Swift, every possible value of the control expression’s type must match the
value of at least one pattern of a case. When this simply isn’t feasible (for

PDF conversion courtesy of www.appsdissected.com

example, when the control expression’s type is Int), you can include a default
case to satisfy the requirement.

Switching Over Future Enumeration Cases

A nonfrozen enumeration is a special kind of enumeration that may gain new
enumeration cases in the future—even after you compile and ship an app.
Switching over a nonfrozen enumeration requires extra consideration. When a
library’s authors mark an enumeration as nonfrozen, they reserve the right to
add new enumeration cases, and any code that interacts with that enumeration
must be able to handle those future cases without being recompiled. Code that’s
compiled in library evolution mode, code in the standard library, Swift overlays
for Apple frameworks, and C and Objective-C code can declare nonfrozen
enumerations. For information about frozen and nonfrozen enumerations, see
frozen.

When switching over a nonfrozen enumeration value, you always need to
include a default case, even if every case of the enumeration already has a
corresponding switch case. You can apply the @unknown attribute to the default
case, which indicates that the default case should match only enumeration
cases that are added in the future. Swift produces a warning if the default case
matches any enumeration case that’s known at compiler time. This future
warning informs you that the library author added a new case to the
enumeration that doesn’t have a corresponding switch case.

The following example switches over all three existing cases of the standard
library’s Mirror.AncestorRepresentation enumeration. If you add additional
cases in the future, the compiler generates a warning to indicate that you need
to update the switch statement to take the new cases into account.

https://developer.apple.com/documentation/swift/mirror/ancestorrepresentation

PDF conversion courtesy of www.appsdissected.com

1 let representation: Mirror.AncestorRepresentation =

.generated

2 switch representation {

3 case .customized:

4 print("Use the nearest ancestor’s implementation.")

5 case .generated:

6 print("Generate a default mirror for all ancestor

classes.")

7 case .suppressed:

8 print("Suppress the representation of all ancestor

classes.")

9 @unknown default:

10 print("Use a representation that was unknown when this

code was compiled.")

11 }

12 // Prints "Generate a default mirror for all ancestor

classes."

Execution Does Not Fall Through Cases Implicitly

After the code within a matched case has finished executing, the program exits
from the switch statement. Program execution doesn’t continue or “fall through”
to the next case or default case. That said, if you want execution to continue
from one case to the next, explicitly include a fallthrough statement, which
simply consists of the fallthrough keyword, in the case from which you want
execution to continue. For more information about the fallthrough statement,
see Fallthrough Statement below.

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A S W I T C H S TAT E M E N T

switch-statement → switch expression { switch-cases opt }
switch-cases → switch-case switch-cases opt
switch-case → case-label statements
switch-case → default-label statements
switch-case → conditional-switch-case
case-label → attributes opt case case-item-list :
case-item-list → pattern where-clause opt | pattern where-clause opt , case-item-

list
default-label → attributes opt default :
where-clause → where where-expression
where-expression → expression
conditional-switch-case → switch-if-directive-clause switch-elseif-directive-clauses opt

switch-else-directive-clause opt endif-directive
switch-if-directive-clause → if-directive compilation-condition switch-cases opt
switch-elseif-directive-clauses → elseif-directive-clause switch-elseif-directive-clauses

opt
switch-elseif-directive-clause → elseif-directive compilation-condition switch-cases opt
switch-else-directive-clause → else-directive switch-cases opt

Labeled Statement
You can prefix a loop statement, an if statement, a switch statement, or a do
statement with a statement label, which consists of the name of the label
followed immediately by a colon (:). Use statement labels with break and
continue statements to be explicit about how you want to change control flow in
a loop statement or a switch statement, as discussed in Break Statement and
Continue Statement below.

The scope of a labeled statement is the entire statement following the statement
label. You can nest labeled statements, but the name of each statement label
must be unique.

For more information and to see examples of how to use statement labels, see
Labeled Statements in Control Flow.

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A L A B E L E D S TAT E M E N T

labeled-statement → statement-label loop-statement
labeled-statement → statement-label if-statement
labeled-statement → statement-label switch-statement
labeled-statement → statement-label do-statement
statement-label → label-name :
label-name → identifier

Control Transfer Statements
Control transfer statements can change the order in which code in your program
is executed by unconditionally transferring program control from one piece of
code to another. Swift has five control transfer statements: a break statement, a
continue statement, a fallthrough statement, a return statement, and a throw
statement.

G R A M M A R O F A C O N T R O L T R A N S F E R S TAT E M E N T

control-transfer-statement → break-statement
control-transfer-statement → continue-statement
control-transfer-statement → fallthrough-statement
control-transfer-statement → return-statement
control-transfer-statement → throw-statement

Break Statement
A break statement ends program execution of a loop, an if statement, or a
switch statement. A break statement can consist of only the break keyword, or it
can consist of the break keyword followed by the name of a statement label, as
shown below.

 break

 break label name

When a break statement is followed by the name of a statement label, it ends
program execution of the loop, if statement, or switch statement named by that
label.

PDF conversion courtesy of www.appsdissected.com

When a break statement isn’t followed by the name of a statement label, it ends
program execution of the switch statement or the innermost enclosing loop
statement in which it occurs. You can’t use an unlabeled break statement to
break out of an if statement.

In both cases, program control is then transferred to the first line of code
following the enclosing loop or switch statement, if any.

For examples of how to use a break statement, see Break and Labeled
Statements in Control Flow.

G R A M M A R O F A B R E A K S TAT E M E N T

break-statement → break label-name opt

Continue Statement
A continue statement ends program execution of the current iteration of a loop
statement but doesn’t stop execution of the loop statement. A continue
statement can consist of only the continue keyword, or it can consist of the
continue keyword followed by the name of a statement label, as shown below.

 continue

 continue label name

When a continue statement is followed by the name of a statement label, it
ends program execution of the current iteration of the loop statement named by
that label.

When a continue statement isn’t followed by the name of a statement label, it
ends program execution of the current iteration of the innermost enclosing loop
statement in which it occurs.

In both cases, program control is then transferred to the condition of the
enclosing loop statement.

In a for statement, the increment expression is still evaluated after the continue
statement is executed, because the increment expression is evaluated after the
execution of the loop’s body.

PDF conversion courtesy of www.appsdissected.com

For examples of how to use a continue statement, see Continue and Labeled
Statements in Control Flow.

G R A M M A R O F A C O N T I N U E S TAT E M E N T

continue-statement → continue label-name opt

Fallthrough Statement
A fallthrough statement consists of the fallthrough keyword and occurs only
in a case block of a switch statement. A fallthrough statement causes
program execution to continue from one case in a switch statement to the next
case. Program execution continues to the next case even if the patterns of the
case label don’t match the value of the switch statement’s control expression.

A fallthrough statement can appear anywhere inside a switch statement, not
just as the last statement of a case block, but it can’t be used in the final case
block. It also can’t transfer control into a case block whose pattern contains
value binding patterns.

For an example of how to use a fallthrough statement in a switch statement,
see Control Transfer Statements in Control Flow.

G R A M M A R O F A FA L LT H R O U G H S TAT E M E N T

fallthrough-statement → fallthrough

Return Statement
A return statement occurs in the body of a function or method definition and
causes program execution to return to the calling function or method. Program
execution continues at the point immediately following the function or method
call.

A return statement can consist of only the return keyword, or it can consist of
the return keyword followed by an expression, as shown below.

 return

 return expression

PDF conversion courtesy of www.appsdissected.com

When a return statement is followed by an expression, the value of the
expression is returned to the calling function or method. If the value of the
expression doesn’t match the value of the return type declared in the function or
method declaration, the expression’s value is converted to the return type
before it’s returned to the calling function or method.

N O T E

As described in Failable Initializers, a special form of the return statement (return nil)
can be used in a failable initializer to indicate initialization failure.

When a return statement isn’t followed by an expression, it can be used only to
return from a function or method that doesn’t return a value (that is, when the
return type of the function or method is Void or ()).

G R A M M A R O F A R E T U R N S TAT E M E N T

return-statement → return expression opt

Throw Statement
A throw statement occurs in the body of a throwing function or method, or in the
body of a closure expression whose type is marked with the throws keyword.

A throw statement causes a program to end execution of the current scope and
begin error propagation to its enclosing scope. The error that’s thrown continues
to propagate until it’s handled by a catch clause of a do statement.

A throw statement consists of the throw keyword followed by an expression, as
shown below.

 throw expression

The value of the expression must have a type that conforms to the Error
protocol.

For an example of how to use a throw statement, see Propagating Errors Using
Throwing Functions in Error Handling.

G R A M M A R O F A T H R O W S TAT E M E N T

throw-statement → throw expression

PDF conversion courtesy of www.appsdissected.com

Defer Statement
A defer statement is used for executing code just before transferring program
control outside of the scope that the defer statement appears in.

A defer statement has the following form:

 defer {

 statements

 }

The statements within the defer statement are executed no matter how
program control is transferred. This means that a defer statement can be used,
for example, to perform manual resource management such as closing file
descriptors, and to perform actions that need to happen even if an error is
thrown.

If multiple defer statements appear in the same scope, the order they appear is
the reverse of the order they’re executed. Executing the last defer statement in
a given scope first means that statements inside that last defer statement can
refer to resources that will be cleaned up by other defer statements.

1 func f() {

2 defer { print("First defer") }

3 defer { print("Second defer") }

4 print("End of function")

5 }

6 f()

7 // Prints "End of function"

8 // Prints "Second defer"

9 // Prints "First defer"

The statements in the defer statement can’t transfer program control outside of
the defer statement.

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A D E F E R S TAT E M E N T

defer-statement → defer code-block

Do Statement
The do statement is used to introduce a new scope and can optionally contain
one or more catch clauses, which contain patterns that match against defined
error conditions. Variables and constants declared in the scope of a do
statement can be accessed only within that scope.

A do statement in Swift is similar to curly braces ({}) in C used to delimit a code
block, and doesn’t incur a performance cost at runtime.

A do statement has the following form:

 do {

 try expression

 statements

 } catch pattern 1 {

 statements

 } catch pattern 2 where condition {

 statements

 } catch pattern 3 , pattern 4 where condition {

 statements

 } catch {

 statements

 }

If any statement in the do code block throws an error, program control is
transferred to the first catch clause whose pattern matches the error. If none of
the clauses match, the error propagates to the surrounding scope. If an error is
unhandled at the top level, program execution stops with a runtime error.

Like a switch statement, the compiler attempts to infer whether catch clauses
are exhaustive. If such a determination can be made, the error is considered

PDF conversion courtesy of www.appsdissected.com

handled. Otherwise, the error can propagate out of the containing scope, which
means the error must be handled by an enclosing catch clause or the
containing function must be declared with throws.

A catch clause that has multiple patterns matches the error if any of its patterns
match the error. If a catch clause contains multiple patterns, all of the patterns
must contain the same constant or variable bindings, and each bound variable
or constant must have the same type in all of the catch clause’s patterns.

To ensure that an error is handled, use a catch clause with a pattern that
matches all errors, such as a wildcard pattern (_). If a catch clause doesn’t
specify a pattern, the catch clause matches and binds any error to a local
constant named error. For more information about the patterns you can use in
a catch clause, see Patterns.

To see an example of how to use a do statement with several catch clauses, see
Handling Errors.

G R A M M A R O F A D O S TAT E M E N T

do-statement → do code-block catch-clauses opt
catch-clauses → catch-clause catch-clauses opt
catch-clause → catch catch-pattern-list opt code-block
catch-pattern-list → catch-pattern | catch-pattern , catch-pattern-list
catch-pattern → pattern where-clause opt

Compiler Control Statements
Compiler control statements allow the program to change aspects of the
compiler’s behavior. Swift has three compiler control statements: a conditional
compilation block a line control statement, and a compile-time diagnostic
statement.

G R A M M A R O F A C O M P I L E R C O N T R O L S TAT E M E N T

compiler-control-statement → conditional-compilation-block
compiler-control-statement → line-control-statement
compiler-control-statement → diagnostic-statement

PDF conversion courtesy of www.appsdissected.com

Conditional Compilation Block
A conditional compilation block allows code to be conditionally compiled
depending on the value of one or more compilation conditions.

Every conditional compilation block begins with the #if compilation directive
and ends with the #endif compilation directive. A simple conditional compilation
block has the following form:

 #if compilation condition

 statements

 #endif

Unlike the condition of an if statement, the compilation condition is evaluated at
compile time. As a result, the statements are compiled and executed only if the
compilation condition evaluates to true at compile time.

The compilation condition can include the true and false Boolean literals, an
identifier used with the -D command line flag, or any of the platform conditions
listed in the table below.

Platform condition Valid arguments

os() macOS, iOS, watchOS, tvOS, Linux, Windows

arch() i386, x86_64, arm, arm64

swift() >= or < followed by a version number

compiler() >= or < followed by a version number

canImport() A module name

targetEnvironment() simulator, macCatalyst

PDF conversion courtesy of www.appsdissected.com

The version number for the swift() and compiler() platform conditions
consists of a major number, optional minor number, optional patch number, and
so on, with a dot (.) separating each part of the version number. There must not
be whitespace between the comparison operator and the version number. The
version for compiler() is the compiler version, regardless of the Swift version
setting passed to the compiler. The version for swift() is the language version
currently being compiled. For example, if you compile your code using the Swift
5 compiler in Swift 4.2 mode, the compiler version is 5 and the language version
is 4.2. With those settings, the following code prints all three messages:

1 #if compiler(>=5)

2 print("Compiled with the Swift 5 compiler or later")

3 #endif

4 #if swift(>=4.2)

5 print("Compiled in Swift 4.2 mode or later")

6 #endif

7 #if compiler(>=5) && swift(<5)

8 print("Compiled with the Swift 5 compiler or later in a Swift

mode earlier than 5")

9 #endif

10 // Prints "Compiled with the Swift 5 compiler or later"

11 // Prints "Compiled in Swift 4.2 mode or later"

12 // Prints "Compiled with the Swift 5 compiler or later in a

Swift mode earlier than 5"

The argument for the canImport() platform condition is the name of a module
that may not be present on all platforms. The module can include periods (.) in
its name. This condition tests whether it’s possible to import the module, but
doesn’t actually import it. If the module is present, the platform condition returns
true; otherwise, it returns false.

The targetEnvironment() platform condition returns true when code is being
compiled for the specified environment; otherwise, it returns false.

PDF conversion courtesy of www.appsdissected.com

N O T E

The arch(arm) platform condition doesn’t return true for ARM 64 devices. The
arch(i386) platform condition returns true when code is compiled for the 32–bit iOS
simulator.

You can combine and negate compilation conditions using the logical operators
&&, ||, and ! and use parentheses for grouping. These operators have the same
associativity and precedence as the logical operators that are used to combine
ordinary Boolean expressions.

Similar to an if statement, you can add multiple conditional branches to test for
different compilation conditions. You can add any number of additional branches
using #elseif clauses. You can also add a final additional branch using an
#else clause. Conditional compilation blocks that contain multiple branches
have the following form:

 #if compilation condition 1

 statements to compile if compilation condition 1 is true

 #elseif compilation condition 2

 statements to compile if compilation condition 2 is true

 #else

 statements to compile if both compilation conditions are false

 #endif

N O T E

Each statement in the body of a conditional compilation block is parsed even if it’s not
compiled. However, there’s an exception if the compilation condition includes a swift() or
compiler() platform condition: The statements are parsed only if the language or
compiler version matches what is specified in the platform condition. This exception
ensures that an older compiler doesn’t attempt to parse syntax introduced in a newer
version of Swift.

For information about how you can wrap explicit member expressions in
conditional compilation blocks, see Explicit Member Expression.

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A C O N D I T I O N A L C O M P I L AT I O N B L O C K

conditional-compilation-block → if-directive-clause elseif-directive-clauses opt else-
directive-clause opt endif-directive

if-directive-clause → if-directive compilation-condition statements opt
elseif-directive-clauses → elseif-directive-clause elseif-directive-clauses opt
elseif-directive-clause → elseif-directive compilation-condition statements opt
else-directive-clause → else-directive statements opt
if-directive → #if
elseif-directive → #elseif
else-directive → #else
endif-directive → #endif
compilation-condition → platform-condition
compilation-condition → identifier
compilation-condition → boolean-literal
compilation-condition → (compilation-condition)
compilation-condition → ! compilation-condition
compilation-condition → compilation-condition && compilation-condition
compilation-condition → compilation-condition || compilation-condition
platform-condition → os (operating-system)
platform-condition → arch (architecture)
platform-condition → swift (>= swift-version) | swift (< swift-version)
platform-condition → compiler (>= swift-version) | compiler (< swift-version

)
platform-condition → canImport (import-path)
platform-condition → targetEnvironment (environment)
operating-system → macOS | iOS | watchOS | tvOS | Linux | Windows
architecture → i386 | x86_64 | arm | arm64
swift-version → decimal-digits swift-version-continuation opt
swift-version-continuation → . decimal-digits swift-version-continuation opt
environment → simulator | macCatalyst

Line Control Statement
A line control statement is used to specify a line number and filename that can
be different from the line number and filename of the source code being
compiled. Use a line control statement to change the source code location used
by Swift for diagnostic and debugging purposes.

A line control statement has the following forms:

 #sourceLocation(file: file path , line: line number)

 #sourceLocation()

PDF conversion courtesy of www.appsdissected.com

The first form of a line control statement changes the values of the #line, #file,
#fileID, and #filePath literal expressions, beginning with the line of code
following the line control statement. The line number changes the value of
#line, and is any integer literal greater than zero. The file path changes the
value of #file, #fileID, and #filePath, and is a string literal. The specified
string becomes the value of #filePath, and the last path component of the
string is used by the value of #fileID. For information about #file, #fileID, and
#filePath, see Literal Expression.

The second form of a line control statement, #sourceLocation(), resets the
source code location back to the default line numbering and file path.

G R A M M A R O F A L I N E C O N T R O L S TAT E M E N T

line-control-statement → #sourceLocation (file: file-path , line: line-number
)

line-control-statement → #sourceLocation ()
line-number → A decimal integer greater than zero
file-path → static-string-literal

Compile-Time Diagnostic Statement
A compile-time diagnostic statement causes the compiler to emit an error or a
warning during compilation. A compile-time diagnostic statement has the
following forms:

 #error(" error message ")

 #warning(" warning message ")

The first form emits the error message as a fatal error and terminates the
compilation process. The second form emits the warning message as a nonfatal
warning and allows compilation to proceed. You write the diagnostic message
as a static string literal. Static string literals can’t use features like string
interpolation or concatenation, but they can use the multiline string literal syntax.

G R A M M A R O F A C O M P I L E - T I M E D I A G N O S T I C S TAT E M E N T

diagnostic-statement → #error (diagnostic-message)
diagnostic-statement → #warning (diagnostic-message)
diagnostic-message → static-string-literal

PDF conversion courtesy of www.appsdissected.com

Availability Condition
An availability condition is used as a condition of an if, while, and guard
statement to query the availability of APIs at runtime, based on specified
platforms arguments.

An availability condition has the following form:

 if #available(platform name version , ... , *) {

 statements to execute if the APIs are available

 } else {

 fallback statements to execute if the APIs are unavailable

 }

You use an availability condition to execute a block of code, depending on
whether the APIs you want to use are available at runtime. The compiler uses
the information from the availability condition when it verifies that the APIs in
that block of code are available.

The availability condition takes a comma-separated list of platform names and
versions. Use iOS, macOS, watchOS, and tvOS for the platform names, and include
the corresponding version numbers. The * argument is required and specifies
that, on any other platform, the body of the code block guarded by the
availability condition executes on the minimum deployment target specified by
your target.

Unlike Boolean conditions, you can’t combine availability conditions using
logical operators like && and ||. Instead of using ! to negate an availability
condition, use an unavailability condition, which has the following form:

PDF conversion courtesy of www.appsdissected.com

 if #unavailable(platform name version , ...) {

 fallback statements to execute if the APIs are unavailable

 } else {

 statements to execute if the APIs are available

 }

The #unavailable form is syntactic sugar that negates the condition. In an
unavailability condition, the * argument is implicit and must not be included. It
has the same meaning as the * argument in an availability condition.

G R A M M A R O F A N AVA I L A B I L I T Y C O N D I T I O N

availability-condition → #available (availability-arguments)
availability-condition → #unavailable (availability-arguments)
availability-arguments → availability-argument | availability-argument , availability-

arguments
availability-argument → platform-name platform-version
availability-argument → *
platform-name → iOS | iOSApplicationExtension
platform-name → macOS | macOSApplicationExtension
platform-name → macCatalyst | macCatalystApplicationExtension
platform-name → watchOS | watchOSApplicationExtension
platform-name → tvOS | tvOSApplicationExtension
platform-version → decimal-digits
platform-version → decimal-digits . decimal-digits
platform-version → decimal-digits . decimal-digits . decimal-digits

PDF conversion courtesy of www.appsdissected.com

Declarations

A declaration introduces a new name or construct into your program.
For example, you use declarations to introduce functions and
methods, to introduce variables and constants, and to define
enumeration, structure, class, and protocol types. You can also use a
declaration to extend the behavior of an existing named type and to
import symbols into your program that are declared elsewhere.

In Swift, most declarations are also definitions in the sense that
they’re implemented or initialized at the same time they’re declared.
That said, because protocols don’t implement their members, most
protocol members are declarations only. For convenience and
because the distinction isn’t that important in Swift, the term
declaration covers both declarations and definitions.

G R A M M A R O F A D E C L A R AT I O N

declaration → import-declaration
declaration → constant-declaration
declaration → variable-declaration
declaration → typealias-declaration
declaration → function-declaration
declaration → enum-declaration
declaration → struct-declaration
declaration → class-declaration
declaration → actor-declaration
declaration → protocol-declaration
declaration → initializer-declaration
declaration → deinitializer-declaration
declaration → extension-declaration
declaration → subscript-declaration
declaration → operator-declaration
declaration → precedence-group-declaration
declarations → declaration declarations opt

PDF conversion courtesy of www.appsdissected.com

Top-Level Code
The top-level code in a Swift source file consists of zero or more
statements, declarations, and expressions. By default, variables,
constants, and other named declarations that are declared at the top-
level of a source file are accessible to code in every source file that’s
part of the same module. You can override this default behavior by
marking the declaration with an access-level modifier, as described in
Access Control Levels.

There are two kinds of top-level code: top-level declarations and
executable top-level code. Top-level declarations consist of only
declarations, and are allowed in all Swift source files. Executable top-
level code contains statements and expressions, not just
declarations, and is allowed only as the top-level entry point for the
program.

The Swift code you compile to make an executable can contain at
most one of the following approaches to mark the top-level entry
point, regardless of how the code is organized into files and modules:
the main attribute, the NSApplicationMain attribute, the
UIApplicationMain attribute, a main.swift file, or a file that contains
top-level executable code.

G R A M M A R O F A T O P - L E V E L D E C L A R AT I O N

top-level-declaration → statements opt

Code Blocks
A code block is used by a variety of declarations and control
structures to group statements together. It has the following form:

PDF conversion courtesy of www.appsdissected.com

 {

 statements

 }

The statements inside a code block include declarations,
expressions, and other kinds of statements and are executed in order
of their appearance in source code.

G R A M M A R O F A C O D E B L O C K

code-block → { statements opt }

Import Declaration
An import declaration lets you access symbols that are declared
outside the current file. The basic form imports the entire module; it
consists of the import keyword followed by a module name:

 import module

Providing more detail limits which symbols are imported—you can
specify a specific submodule or a specific declaration within a module
or submodule. When this detailed form is used, only the imported
symbol (and not the module that declares it) is made available in the
current scope.

 import import kind module . symbol name

 import module . submodule

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A N I M P O R T D E C L A R AT I O N

import-declaration → attributes opt import import-kind opt import-path
import-kind → typealias | struct | class | enum | protocol | let |

var | func
import-path → identifier | identifier . import-path

Constant Declaration
A constant declaration introduces a constant named value into your
program. Constant declarations are declared using the let keyword
and have the following form:

 let constant name : type = expression

A constant declaration defines an immutable binding between the
constant name and the value of the initializer expression; after the
value of a constant is set, it can’t be changed. That said, if a constant
is initialized with a class object, the object itself can change, but the
binding between the constant name and the object it refers to can’t.

When a constant is declared at global scope, it must be initialized
with a value. When a constant declaration occurs in the context of a
function or method, it can be initialized later, as long as it’s
guaranteed to have a value set before the first time its value is read. If
the compiler can prove that the constant’s value is never read, the
constant isn’t required to have a value set at all. When a constant
declaration occurs in the context of a class or structure declaration,
it’s considered a constant property. Constant declarations aren’t
computed properties and therefore don’t have getters or setters.

If the constant name of a constant declaration is a tuple pattern, the
name of each item in the tuple is bound to the corresponding value in
the initializer expression.

PDF conversion courtesy of www.appsdissected.com

 let (firstNumber, secondNumber) = (10, 42)

In this example, firstNumber is a named constant for the value 10,
and secondNumber is a named constant for the value 42. Both
constants can now be used independently:

1 print("The first number is \(firstNumber).")

2 // Prints "The first number is 10."

3 print("The second number is \(secondNumber).")

4 // Prints "The second number is 42."

The type annotation (: type) is optional in a constant declaration
when the type of the constant name can be inferred, as described in
Type Inference.

To declare a constant type property, mark the declaration with the
static declaration modifier. A constant type property of a class is
always implicitly final; you can’t mark it with the class or final
declaration modifier to allow or disallow overriding by subclasses.
Type properties are discussed in Type Properties.

For more information about constants and for guidance about when
to use them, see Constants and Variables and Stored Properties.

G R A M M A R O F A C O N S TA N T D E C L A R AT I O N

constant-declaration → attributes opt declaration-modifiers opt let
pattern-initializer-list

pattern-initializer-list → pattern-initializer | pattern-initializer , pattern-
initializer-list

pattern-initializer → pattern initializer opt
initializer → = expression

PDF conversion courtesy of www.appsdissected.com

Variable Declaration
A variable declaration introduces a variable named value into your
program and is declared using the var keyword.

Variable declarations have several forms that declare different kinds
of named, mutable values, including stored and computed variables
and properties, stored variable and property observers, and static
variable properties. The appropriate form to use depends on the
scope at which the variable is declared and the kind of variable you
intend to declare.

N O T E

You can also declare properties in the context of a protocol declaration, as
described in Protocol Property Declaration.

You can override a property in a subclass by marking the subclass’s
property declaration with the override declaration modifier, as
described in Overriding.

Stored Variables and Stored Variable Properties
The following form declares a stored variable or stored variable
property:

 var variable name : type = expression

You define this form of a variable declaration at global scope, the
local scope of a function, or in the context of a class or structure
declaration. When a variable declaration of this form is declared at
global scope or the local scope of a function, it’s referred to as a
stored variable. When it’s declared in the context of a class or
structure declaration, it’s referred to as a stored variable property.

PDF conversion courtesy of www.appsdissected.com

The initializer expression can’t be present in a protocol declaration,
but in all other contexts, the initializer expression is optional. That
said, if no initializer expression is present, the variable declaration
must include an explicit type annotation (: type).

As with constant declarations, if the variable name is a tuple pattern,
the name of each item in the tuple is bound to the corresponding
value in the initializer expression.

As their names suggest, the value of a stored variable or a stored
variable property is stored in memory.

Computed Variables and Computed Properties
The following form declares a computed variable or computed
property:

 var variable name : type {

 get {

 statements

 }

 set(setter name) {

 statements

 }

 }

You define this form of a variable declaration at global scope, the
local scope of a function, or in the context of a class, structure,
enumeration, or extension declaration. When a variable declaration of
this form is declared at global scope or the local scope of a function,
it’s referred to as a computed variable. When it’s declared in the
context of a class, structure, or extension declaration, it’s referred to
as a computed property.

PDF conversion courtesy of www.appsdissected.com

The getter is used to read the value, and the setter is used to write
the value. The setter clause is optional, and when only a getter is
needed, you can omit both clauses and simply return the requested
value directly, as described in Read-Only Computed Properties. But if
you provide a setter clause, you must also provide a getter clause.

The setter name and enclosing parentheses is optional. If you
provide a setter name, it’s used as the name of the parameter to the
setter. If you don’t provide a setter name, the default parameter name
to the setter is newValue, as described in Shorthand Setter
Declaration.

Unlike stored named values and stored variable properties, the value
of a computed named value or a computed property isn’t stored in
memory.

For more information and to see examples of computed properties,
see Computed Properties.

Stored Variable Observers and Property Observers
You can also declare a stored variable or property with willSet and
didSet observers. A stored variable or property declared with
observers has the following form:

 var variable name : type = expression {

 willSet(setter name) {

 statements

 }

 didSet(setter name) {

 statements

 }

 }

PDF conversion courtesy of www.appsdissected.com

You define this form of a variable declaration at global scope, the
local scope of a function, or in the context of a class or structure
declaration. When a variable declaration of this form is declared at
global scope or the local scope of a function, the observers are
referred to as stored variable observers. When it’s declared in the
context of a class or structure declaration, the observers are referred
to as property observers.

You can add property observers to any stored property. You can also
add property observers to any inherited property (whether stored or
computed) by overriding the property within a subclass, as described
in Overriding Property Observers.

The initializer expression is optional in the context of a class or
structure declaration, but required elsewhere. The type annotation is
optional when the type can be inferred from the initializer expression.
This expression is evaluated the first time you read the property’s
value. If you overwrite the property’s initial value without reading it,
this expression is evaluated before the first time you write to the
property.

The willSet and didSet observers provide a way to observe (and to
respond appropriately) when the value of a variable or property is
being set. The observers aren’t called when the variable or property
is first initialized. Instead, they’re called only when the value is set
outside of an initialization context.

A willSet observer is called just before the value of the variable or
property is set. The new value is passed to the willSet observer as a
constant, and therefore it can’t be changed in the implementation of
the willSet clause. The didSet observer is called immediately after
the new value is set. In contrast to the willSet observer, the old
value of the variable or property is passed to the didSet observer in
case you still need access to it. That said, if you assign a value to a
variable or property within its own didSet observer clause, that new

PDF conversion courtesy of www.appsdissected.com

value that you assign will replace the one that was just set and
passed to the willSet observer.

The setter name and enclosing parentheses in the willSet and
didSet clauses are optional. If you provide setter names, they’re used
as the parameter names to the willSet and didSet observers. If you
don’t provide setter names, the default parameter name to the
willSet observer is newValue and the default parameter name to the
didSet observer is oldValue.

The didSet clause is optional when you provide a willSet clause.
Likewise, the willSet clause is optional when you provide a didSet
clause.

If the body of the didSet observer refers to the old value, the getter is
called before the observer, to make the old value available.
Otherwise, the new value is stored without calling the superclass’s
getter. The example below shows a computed property that’s defined
by the superclass and overridden by its subclasses to add an
observer.

PDF conversion courtesy of www.appsdissected.com

1 class Superclass {

2 private var xValue = 12

3 var x: Int {

4 get { print("Getter was called"); return

xValue }

5 set { print("Setter was called"); xValue =

newValue }

6 }

7 }

8

9 // This subclass doesn't refer to oldValue in its

observer, so the

10 // superclass's getter is called only once to print

the value.

11 class New: Superclass {

12 override var x: Int {

13 didSet { print("New value \(x)") }

14 }

15 }

16 let new = New()

17 new.x = 100

18 // Prints "Setter was called"

19 // Prints "Getter was called"

20 // Prints "New value 100"

21

PDF conversion courtesy of www.appsdissected.com

22 // This subclass refers to oldValue in its observer,

so the superclass's

23 // getter is called once before the setter, and

again to print the value.

24 class NewAndOld: Superclass {

25 override var x: Int {

26 didSet { print("Old value \(oldValue) - new

value \(x)") }

27 }

28 }

29 let newAndOld = NewAndOld()

30 newAndOld.x = 200

31 // Prints "Getter was called"

32 // Prints "Setter was called"

33 // Prints "Getter was called"

34 // Prints "Old value 12 - new value 200"

For more information and to see an example of how to use property
observers, see Property Observers.

Type Variable Properties
To declare a type variable property, mark the declaration with the
static declaration modifier. Classes can mark type computed
properties with the class declaration modifier instead to allow
subclasses to override the superclass’s implementation. Type
properties are discussed in Type Properties.

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A VA R I A B L E D E C L A R AT I O N

variable-declaration → variable-declaration-head pattern-initializer-list
variable-declaration → variable-declaration-head variable-name type-

annotation code-block
variable-declaration → variable-declaration-head variable-name type-

annotation getter-setter-block
variable-declaration → variable-declaration-head variable-name type-

annotation getter-setter-keyword-block
variable-declaration → variable-declaration-head variable-name initializer

willSet-didSet-block
variable-declaration → variable-declaration-head variable-name type-

annotation initializer opt willSet-didSet-block
variable-declaration-head → attributes opt declaration-modifiers opt var
variable-name → identifier
getter-setter-block → code-block
getter-setter-block → { getter-clause setter-clause opt }
getter-setter-block → { setter-clause getter-clause }
getter-clause → attributes opt mutation-modifier opt get code-block
setter-clause → attributes opt mutation-modifier opt set setter-name opt

code-block
setter-name → (identifier)
getter-setter-keyword-block → { getter-keyword-clause setter-keyword-

clause opt }
getter-setter-keyword-block → { setter-keyword-clause getter-keyword-

clause }
getter-keyword-clause → attributes opt mutation-modifier opt get
setter-keyword-clause → attributes opt mutation-modifier opt set
willSet-didSet-block → { willSet-clause didSet-clause opt }
willSet-didSet-block → { didSet-clause willSet-clause opt }
willSet-clause → attributes opt willSet setter-name opt code-block
didSet-clause → attributes opt didSet setter-name opt code-block

Type Alias Declaration
A type alias declaration introduces a named alias of an existing type
into your program. Type alias declarations are declared using the

PDF conversion courtesy of www.appsdissected.com

typealias keyword and have the following form:

 typealias name = existing type

After a type alias is declared, the aliased name can be used instead
of the existing type everywhere in your program. The existing type
can be a named type or a compound type. Type aliases don’t create
new types; they simply allow a name to refer to an existing type.

A type alias declaration can use generic parameters to give a name
to an existing generic type. The type alias can provide concrete types
for some or all of the generic parameters of the existing type. For
example:

1 typealias StringDictionary<Value> =

Dictionary<String, Value>

2

3 // The following dictionaries have the same type.

4 var dictionary1: StringDictionary<Int> = [:]

5 var dictionary2: Dictionary<String, Int> = [:]

When a type alias is declared with generic parameters, the
constraints on those parameters must match exactly the constraints
on the existing type’s generic parameters. For example:

 typealias DictionaryOfInts<Key: Hashable> =

Dictionary<Key, Int>

Because the type alias and the existing type can be used
interchangeably, the type alias can’t introduce additional generic
constraints.

PDF conversion courtesy of www.appsdissected.com

A type alias can forward an existing type’s generic parameters by
omitting all generic parameters from the declaration. For example,
the Diccionario type alias declared here has the same generic
parameters and constraints as Dictionary.

 typealias Diccionario = Dictionary

Inside a protocol declaration, a type alias can give a shorter and more
convenient name to a type that’s used frequently. For example:

1 protocol Sequence {

2 associatedtype Iterator: IteratorProtocol

3 typealias Element = Iterator.Element

4 }

5

6 func sum<T: Sequence>(_ sequence: T) -> Int where

T.Element == Int {

7 // ...

8 }

Without this type alias, the sum function would have to refer to the
associated type as T.Iterator.Element instead of T.Element.

See also Protocol Associated Type Declaration.

G R A M M A R O F A T Y P E A L I A S D E C L A R AT I O N

typealias-declaration → attributes opt access-level-modifier opt
typealias typealias-name generic-parameter-clause opt typealias-
assignment

typealias-name → identifier
typealias-assignment → = type

PDF conversion courtesy of www.appsdissected.com

Function Declaration
A function declaration introduces a function or method into your
program. A function declared in the context of class, structure,
enumeration, or protocol is referred to as a method. Function
declarations are declared using the func keyword and have the
following form:

 func function name (parameters) -> return type {

 statements

 }

If the function has a return type of Void, the return type can be
omitted as follows:

 func function name (parameters) {

 statements

 }

The type of each parameter must be included—it can’t be inferred. If
you write inout in front of a parameter’s type, the parameter can be
modified inside the scope of the function. In-out parameters are
discussed in detail in In-Out Parameters, below.

A function declaration whose statements include only a single
expression is understood to return the value of that expression. This
implicit return syntax is considered only when the expression’s type
and the function’s return type aren’t Void and aren’t an enumeration
like Never that doesn’t have any cases.

Functions can return multiple values using a tuple type as the return
type of the function.

PDF conversion courtesy of www.appsdissected.com

A function definition can appear inside another function declaration.
This kind of function is known as a nested function.

A nested function is nonescaping if it captures a value that’s
guaranteed to never escape—such as an in-out parameter—or
passed as a nonescaping function argument. Otherwise, the nested
function is an escaping function.

For a discussion of nested functions, see Nested Functions.

Parameter Names
Function parameters are a comma-separated list where each
parameter has one of several forms. The order of arguments in a
function call must match the order of parameters in the function’s
declaration. The simplest entry in a parameter list has the following
form:

 parameter name : parameter type

A parameter has a name, which is used within the function body, as
well as an argument label, which is used when calling the function or
method. By default, parameter names are also used as argument
labels. For example:

1 func f(x: Int, y: Int) -> Int { return x + y }

2 f(x: 1, y: 2) // both x and y are labeled

You can override the default behavior for argument labels with one of
the following forms:

 argument label parameter name : parameter type

 _ parameter name : parameter type

PDF conversion courtesy of www.appsdissected.com

A name before the parameter name gives the parameter an explicit
argument label, which can be different from the parameter name. The
corresponding argument must use the given argument label in
function or method calls.

An underscore (_) before a parameter name suppresses the
argument label. The corresponding argument must have no label in
function or method calls.

1 func repeatGreeting(_ greeting: String, count n:

Int) { /* Greet n times */ }

2 repeatGreeting("Hello, world!", count: 2) // count

is labeled, greeting is not

In-Out Parameters
In-out parameters are passed as follows:

1. When the function is called, the value of the argument is copied.

2. In the body of the function, the copy is modified.

3. When the function returns, the copy’s value is assigned to the
original argument.

This behavior is known as copy-in copy-out or call by value result. For
example, when a computed property or a property with observers is
passed as an in-out parameter, its getter is called as part of the
function call and its setter is called as part of the function return.

As an optimization, when the argument is a value stored at a physical
address in memory, the same memory location is used both inside
and outside the function body. The optimized behavior is known as
call by reference; it satisfies all of the requirements of the copy-in

PDF conversion courtesy of www.appsdissected.com

copy-out model while removing the overhead of copying. Write your
code using the model given by copy-in copy-out, without depending
on the call-by-reference optimization, so that it behaves correctly with
or without the optimization.

Within a function, don’t access a value that was passed as an in-out
argument, even if the original value is available in the current scope.
Accessing the original is a simultaneous access of the value, which
violates Swift’s memory exclusivity guarantee. For the same reason,
you can’t pass the same value to multiple in-out parameters.

For more information about memory safety and memory exclusivity,
see Memory Safety.

A closure or nested function that captures an in-out parameter must
be nonescaping. If you need to capture an in-out parameter without
mutating it, use a capture list to explicitly capture the parameter
immutably.

1 func someFunction(a: inout Int) -> () -> Int {

2 return { [a] in return a + 1 }

3 }

If you need to capture and mutate an in-out parameter, use an explicit
local copy, such as in multithreaded code that ensures all mutation
has finished before the function returns.

PDF conversion courtesy of www.appsdissected.com

1 func multithreadedFunction(queue: DispatchQueue, x:

inout Int) {

2 // Make a local copy and manually copy it back.

3 var localX = x

4 defer { x = localX }

5

6 // Operate on localX asynchronously, then wait

before returning.

7 queue.async { someMutatingOperation(&localX) }

8 queue.sync {}

9 }

For more discussion and examples of in-out parameters, see In-Out
Parameters.

Special Kinds of Parameters
Parameters can be ignored, take a variable number of values, and
provide default values using the following forms:

 _ : parameter type

 parameter name : parameter type ...

 parameter name : parameter type =

 default argument value

An underscore (_) parameter is explicitly ignored and can’t be
accessed within the body of the function.

A parameter with a base type name followed immediately by three
dots (...) is understood as a variadic parameter. A parameter that

PDF conversion courtesy of www.appsdissected.com

immediately follows a variadic parameter must have an argument
label. A function can have multiple variadic parameters. A variadic
parameter is treated as an array that contains elements of the base
type name. For example, the variadic parameter Int... is treated as
[Int]. For an example that uses a variadic parameter, see Variadic
Parameters.

A parameter with an equals sign (=) and an expression after its type
is understood to have a default value of the given expression. The
given expression is evaluated when the function is called. If the
parameter is omitted when calling the function, the default value is
used instead.

1 func f(x: Int = 42) -> Int { return x }

2 f() // Valid, uses default value

3 f(x: 7) // Valid, uses the value provided

4 f(7) // Invalid, missing argument label

Special Kinds of Methods
Methods on an enumeration or a structure that modify self must be
marked with the mutating declaration modifier.

Methods that override a superclass method must be marked with the
override declaration modifier. It’s a compile-time error to override a
method without the override modifier or to use the override modifier
on a method that doesn’t override a superclass method.

Methods associated with a type rather than an instance of a type
must be marked with the static declaration modifier for
enumerations and structures, or with either the static or class
declaration modifier for classes. A class type method marked with the
class declaration modifier can be overridden by a subclass

PDF conversion courtesy of www.appsdissected.com

implementation; a class type method marked with class final or
static can’t be overridden.

Methods with Special Names
Several methods that have special names enable syntactic sugar for
function call syntax. If a type defines one of these methods, instances
of the type can be used in function call syntax. The function call is
understood to be a call to one of the specially named methods on that
instance.

A class, structure, or enumeration type can support function call
syntax by defining a dynamicallyCall(withArguments:) method or a
dynamicallyCall(withKeywordArguments:) method, as described in
dynamicCallable, or by defining a call-as-function method, as
described below. If the type defines both a call-as-function method
and one of the methods used by the dynamicCallable attribute, the
compiler gives preference to the call-as-function method in
circumstances where either method could be used.

The name of a call-as-function method is callAsFunction(), or
another name that begins with callAsFunction(and adds labeled or
unlabeled arguments—for example, callAsFunction(_:_:) and
callAsFunction(something:) are also valid call-as-function method
names.

The following function calls are equivalent:

PDF conversion courtesy of www.appsdissected.com

1 struct CallableStruct {

2 var value: Int

3 func callAsFunction(_ number: Int, scale: Int) {

4 print(scale * (number + value))

5 }

6 }

7 let callable = CallableStruct(value: 100)

8 callable(4, scale: 2)

9 callable.callAsFunction(4, scale: 2)

10 // Both function calls print 208.

The call-as-function methods and the methods from the
dynamicCallable attribute make different trade-offs between how
much information you encode into the type system and how much
dynamic behavior is possible at runtime. When you declare a call-as-
function method, you specify the number of arguments, and each
argument’s type and label. The dynamicCallable attribute’s methods
specify only the type used to hold the array of arguments.

Defining a call-as-function method, or a method from the
dynamicCallable attribute, doesn’t let you use an instance of that
type as if it were a function in any context other than a function call
expression. For example:

1 let someFunction1: (Int, Int) -> Void =

callable(_:scale:) // Error

2 let someFunction2: (Int, Int) -> Void =

callable.callAsFunction(_:scale:)

PDF conversion courtesy of www.appsdissected.com

The subscript(dynamicMember:) subscript enables syntactic sugar
for member lookup, as described in dynamicMemberLookup.

Throwing Functions and Methods
Functions and methods that can throw an error must be marked with
the throws keyword. These functions and methods are known as
throwing functions and throwing methods. They have the following
form:

 func function name (parameters) throws ->

 return type {

 statements

 }

Calls to a throwing function or method must be wrapped in a try or
try! expression (that is, in the scope of a try or try! operator).

The throws keyword is part of a function’s type, and nonthrowing
functions are subtypes of throwing functions. As a result, you can use
a nonthrowing function in a context where as a throwing one is
expected.

You can’t overload a function based only on whether the function can
throw an error. That said, you can overload a function based on
whether a function parameter can throw an error.

A throwing method can’t override a nonthrowing method, and a
throwing method can’t satisfy a protocol requirement for a
nonthrowing method. That said, a nonthrowing method can override a
throwing method, and a nonthrowing method can satisfy a protocol
requirement for a throwing method.

PDF conversion courtesy of www.appsdissected.com

Rethrowing Functions and Methods
A function or method can be declared with the rethrows keyword to
indicate that it throws an error only if one of its function parameters
throws an error. These functions and methods are known as
rethrowing functions and rethrowing methods. Rethrowing functions
and methods must have at least one throwing function parameter.

1 func someFunction(callback: () throws -> Void)

rethrows {

2 try callback()

3 }

A rethrowing function or method can contain a throw statement only
inside a catch clause. This lets you call the throwing function inside a
do-catch statement and handle errors in the catch clause by throwing
a different error. In addition, the catch clause must handle only errors
thrown by one of the rethrowing function’s throwing parameters. For
example, the following is invalid because the catch clause would
handle the error thrown by alwaysThrows().

PDF conversion courtesy of www.appsdissected.com

1 func alwaysThrows() throws {

2 throw SomeError.error

3 }

4 func someFunction(callback: () throws -> Void)

rethrows {

5 do {

6 try callback()

7 try alwaysThrows() // Invalid,

alwaysThrows() isn't a throwing parameter

8 } catch {

9 throw AnotherError.error

10 }

11 }

A throwing method can’t override a rethrowing method, and a
throwing method can’t satisfy a protocol requirement for a rethrowing
method. That said, a rethrowing method can override a throwing
method, and a rethrowing method can satisfy a protocol requirement
for a throwing method.

Asynchronous Functions and Methods
Functions and methods that run asynchronously must be marked
with the async keyword. These functions and methods are known as
asynchronous functions and asynchronous methods. They have the
following form:

PDF conversion courtesy of www.appsdissected.com

 func function name (parameters) async ->

 return type {

 statements

 }

Calls to an asynchronous function or method must be wrapped in an
await expression—that is, they must be in the scope of an await
operator.

The async keyword is part of the function’s type, and synchronous
functions are subtypes of asynchronous functions. As a result, you
can use a synchronous function in a context where an asynchronous
function is expected. For example, you can override an asynchronous
method with a synchronous method, and a synchronous method can
satisfy a protocol requirement that requires an asynchronous method.

You can overload a function based on whether or not the function is
asynchronous. At the call site, context determines which overload is
used: In an asynchronous context, the asynchronous function is
used, and in a synchronous context, the synchronous function is
used.

An asynchronous method can’t override a synchronous method, and
an asynchronous method can’t satisfy a protocol requirement for a
synchronous method. That said, a synchronous method can override
an asynchronous method, and a synchronous method can satisfy a
protocol requirement for an asynchronous method.

Functions that Never Return
Swift defines a Never type, which indicates that a function or method
doesn’t return to its caller. Functions and methods with the Never
return type are called nonreturning. Nonreturning functions and
methods either cause an irrecoverable error or begin a sequence of

PDF conversion courtesy of www.appsdissected.com

work that continues indefinitely. This means that code that would
otherwise run immediately after the call is never executed. Throwing
and rethrowing functions can transfer program control to an
appropriate catch block, even when they’re nonreturning.

A nonreturning function or method can be called to conclude the else
clause of a guard statement, as discussed in Guard Statement.

You can override a nonreturning method, but the new method must
preserve its return type and nonreturning behavior.

G R A M M A R O F A F U N C T I O N D E C L A R AT I O N

function-declaration → function-head function-name generic-parameter-
clause opt function-signature generic-where-clause opt function-body
opt

function-head → attributes opt declaration-modifiers opt func
function-name → identifier | operator
function-signature → parameter-clause asyncopt throwsopt function-

result opt
function-signature → parameter-clause asyncopt rethrows function-

result opt
function-result → -> attributes opt type
function-body → code-block
parameter-clause → () | (parameter-list)
parameter-list → parameter | parameter , parameter-list
parameter → external-parameter-name opt local-parameter-name type-

annotation default-argument-clause opt
parameter → external-parameter-name opt local-parameter-name type-

annotation
parameter → external-parameter-name opt local-parameter-name type-

annotation ...
external-parameter-name → identifier
local-parameter-name → identifier
default-argument-clause → = expression

PDF conversion courtesy of www.appsdissected.com

Enumeration Declaration
An enumeration declaration introduces a named enumeration type
into your program.

Enumeration declarations have two basic forms and are declared
using the enum keyword. The body of an enumeration declared using
either form contains zero or more values—called enumeration cases
—and any number of declarations, including computed properties,
instance methods, type methods, initializers, type aliases, and even
other enumeration, structure, class, and actor declarations.
Enumeration declarations can’t contain deinitializer or protocol
declarations.

Enumeration types can adopt any number of protocols, but can’t
inherit from classes, structures, or other enumerations.

Unlike classes and structures, enumeration types don’t have an
implicitly provided default initializer; all initializers must be declared
explicitly. Initializers can delegate to other initializers in the
enumeration, but the initialization process is complete only after an
initializer assigns one of the enumeration cases to self.

Like structures but unlike classes, enumerations are value types;
instances of an enumeration are copied when assigned to variables
or constants, or when passed as arguments to a function call. For
information about value types, see Structures and Enumerations Are
Value Types.

You can extend the behavior of an enumeration type with an
extension declaration, as discussed in Extension Declaration.

Enumerations with Cases of Any Type
The following form declares an enumeration type that contains
enumeration cases of any type:

PDF conversion courtesy of www.appsdissected.com

 enum enumeration name : adopted protocols {

 case enumeration case 1

 case

 enumeration case 2 (associated value types)

 }

Enumerations declared in this form are sometimes called
discriminated unions in other programming languages.

In this form, each case block consists of the case keyword followed
by one or more enumeration cases, separated by commas. The
name of each case must be unique. Each case can also specify that it
stores values of a given type. These types are specified in the
associated value types tuple, immediately following the name of the
case.

Enumeration cases that store associated values can be used as
functions that create instances of the enumeration with the specified
associated values. And just like functions, you can get a reference to
an enumeration case and apply it later in your code.

PDF conversion courtesy of www.appsdissected.com

1 enum Number {

2 case integer(Int)

3 case real(Double)

4 }

5 let f = Number.integer

6 // f is a function of type (Int) -> Number

7

8 // Apply f to create an array of Number instances

with integer values

9 let evenInts: [Number] = [0, 2, 4, 6].map(f)

For more information and to see examples of cases with associated
value types, see Associated Values.

Enumerations with Indirection

Enumerations can have a recursive structure, that is, they can have
cases with associated values that are instances of the enumeration
type itself. However, instances of enumeration types have value
semantics, which means they have a fixed layout in memory. To
support recursion, the compiler must insert a layer of indirection.

To enable indirection for a particular enumeration case, mark it with
the indirect declaration modifier. An indirect case must have an
associated value.

PDF conversion courtesy of www.appsdissected.com

1 enum Tree<T> {

2 case empty

3 indirect case node(value: T, left: Tree, right:

Tree)

4 }

To enable indirection for all the cases of an enumeration that have an
associated value, mark the entire enumeration with the indirect
modifier—this is convenient when the enumeration contains many
cases that would each need to be marked with the indirect modifier.

An enumeration that’s marked with the indirect modifier can contain
a mixture of cases that have associated values and cases those that
don’t. That said, it can’t contain any cases that are also marked with
the indirect modifier.

Enumerations with Cases of a Raw-Value Type
The following form declares an enumeration type that contains
enumeration cases of the same basic type:

 enum enumeration name : raw-value type ,

 adopted protocols {

 case enumeration case 1 = raw value 1

 case enumeration case 2 = raw value 2

 }

In this form, each case block consists of the case keyword, followed
by one or more enumeration cases, separated by commas. Unlike the
cases in the first form, each case has an underlying value, called a
raw value, of the same basic type. The type of these values is
specified in the raw-value type and must represent an integer,

PDF conversion courtesy of www.appsdissected.com

floating-point number, string, or single character. In particular, the
raw-value type must conform to the Equatable protocol and one of
the following protocols: ExpressibleByIntegerLiteral for integer
literals, ExpressibleByFloatLiteral for floating-point literals,
ExpressibleByStringLiteral for string literals that contain any
number of characters, and ExpressibleByUnicodeScalarLiteral or
ExpressibleByExtendedGraphemeClusterLiteral for string literals
that contain only a single character. Each case must have a unique
name and be assigned a unique raw value.

If the raw-value type is specified as Int and you don’t assign a value
to the cases explicitly, they’re implicitly assigned the values 0, 1, 2,
and so on. Each unassigned case of type Int is implicitly assigned a
raw value that’s automatically incremented from the raw value of the
previous case.

1 enum ExampleEnum: Int {

2 case a, b, c = 5, d

3 }

In the above example, the raw value of ExampleEnum.a is 0 and the
value of ExampleEnum.b is 1. And because the value of ExampleEnum.c
is explicitly set to 5, the value of ExampleEnum.d is automatically
incremented from 5 and is therefore 6.

If the raw-value type is specified as String and you don’t assign
values to the cases explicitly, each unassigned case is implicitly
assigned a string with the same text as the name of that case.

1 enum GamePlayMode: String {

2 case cooperative, individual, competitive

3 }

PDF conversion courtesy of www.appsdissected.com

In the above example, the raw value of GamePlayMode.cooperative is
"cooperative", the raw value of GamePlayMode.individual is
"individual", and the raw value of GamePlayMode.competitive is
"competitive".

Enumerations that have cases of a raw-value type implicitly conform
to the RawRepresentable protocol, defined in the Swift standard
library. As a result, they have a rawValue property and a failable
initializer with the signature init?(rawValue: RawValue). You can
use the rawValue property to access the raw value of an enumeration
case, as in ExampleEnum.b.rawValue. You can also use a raw value to
find a corresponding case, if there is one, by calling the
enumeration’s failable initializer, as in ExampleEnum(rawValue: 5),
which returns an optional case. For more information and to see
examples of cases with raw-value types, see Raw Values.

Accessing Enumeration Cases
To reference the case of an enumeration type, use dot (.) syntax, as
in EnumerationType.enumerationCase. When the enumeration type
can be inferred from context, you can omit it (the dot is still required),
as described in Enumeration Syntax and Implicit Member
Expression.

To check the values of enumeration cases, use a switch statement,
as shown in Matching Enumeration Values with a Switch Statement.
The enumeration type is pattern-matched against the enumeration
case patterns in the case blocks of the switch statement, as
described in Enumeration Case Pattern.

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A N E N U M E R AT I O N D E C L A R AT I O N

enum-declaration → attributes opt access-level-modifier opt union-style-
enum

enum-declaration → attributes opt access-level-modifier opt raw-value-
style-enum

union-style-enum → indirectopt enum enum-name generic-parameter-
clause opt type-inheritance-clause opt generic-where-clause opt {
union-style-enum-members opt }

union-style-enum-members → union-style-enum-member union-style-
enum-members opt

union-style-enum-member → declaration | union-style-enum-case-clause |
compiler-control-statement

union-style-enum-case-clause → attributes opt indirectopt case union-
style-enum-case-list

union-style-enum-case-list → union-style-enum-case | union-style-enum-
case , union-style-enum-case-list

union-style-enum-case → enum-case-name tuple-type opt
enum-name → identifier
enum-case-name → identifier
raw-value-style-enum → enum enum-name generic-parameter-clause opt

type-inheritance-clause generic-where-clause opt { raw-value-style-
enum-members }

raw-value-style-enum-members → raw-value-style-enum-member raw-
value-style-enum-members opt

raw-value-style-enum-member → declaration | raw-value-style-enum-case-
clause | compiler-control-statement

raw-value-style-enum-case-clause → attributes opt case raw-value-style-
enum-case-list

raw-value-style-enum-case-list → raw-value-style-enum-case | raw-value-
style-enum-case , raw-value-style-enum-case-list

raw-value-style-enum-case → enum-case-name raw-value-assignment opt
raw-value-assignment → = raw-value-literal
raw-value-literal → numeric-literal | static-string-literal | boolean-literal

Structure Declaration

PDF conversion courtesy of www.appsdissected.com

A structure declaration introduces a named structure type into your
program. Structure declarations are declared using the struct
keyword and have the following form:

 struct structure name : adopted protocols {

 declarations

 }

The body of a structure contains zero or more declarations. These
declarations can include both stored and computed properties, type
properties, instance methods, type methods, initializers, subscripts,
type aliases, and even other structure, class, actor, and enumeration
declarations. Structure declarations can’t contain deinitializer or
protocol declarations. For a discussion and several examples of
structures that include various kinds of declarations, see Structures
and Classes.

Structure types can adopt any number of protocols, but can’t inherit
from classes, enumerations, or other structures.

There are three ways to create an instance of a previously declared
structure:

Call one of the initializers declared within the structure, as
described in Initializers.

If no initializers are declared, call the structure’s memberwise
initializer, as described in Memberwise Initializers for Structure
Types.

If no initializers are declared, and all properties of the structure
declaration were given initial values, call the structure’s default
initializer, as described in Default Initializers.

PDF conversion courtesy of www.appsdissected.com

The process of initializing a structure’s declared properties is
described in Initialization.

Properties of a structure instance can be accessed using dot (.)
syntax, as described in Accessing Properties.

Structures are value types; instances of a structure are copied when
assigned to variables or constants, or when passed as arguments to
a function call. For information about value types, see Structures and
Enumerations Are Value Types.

You can extend the behavior of a structure type with an extension
declaration, as discussed in Extension Declaration.

G R A M M A R O F A S T R U C T U R E D E C L A R AT I O N

struct-declaration → attributes opt access-level-modifier opt struct
struct-name generic-parameter-clause opt type-inheritance-clause opt
generic-where-clause opt struct-body

struct-name → identifier
struct-body → { struct-members opt }
struct-members → struct-member struct-members opt
struct-member → declaration | compiler-control-statement

Class Declaration
A class declaration introduces a named class type into your program.
Class declarations are declared using the class keyword and have
the following form:

PDF conversion courtesy of www.appsdissected.com

 class class name : superclass , adopted protocols

{

 declarations

 }

The body of a class contains zero or more declarations. These
declarations can include both stored and computed properties,
instance methods, type methods, initializers, a single deinitializer,
subscripts, type aliases, and even other class, structure, actor, and
enumeration declarations. Class declarations can’t contain protocol
declarations. For a discussion and several examples of classes that
include various kinds of declarations, see Structures and Classes.

A class type can inherit from only one parent class, its superclass, but
can adopt any number of protocols. The superclass appears first after
the class name and colon, followed by any adopted protocols.
Generic classes can inherit from other generic and nongeneric
classes, but a nongeneric class can inherit only from other
nongeneric classes. When you write the name of a generic
superclass class after the colon, you must include the full name of
that generic class, including its generic parameter clause.

As discussed in Initializer Declaration, classes can have designated
and convenience initializers. The designated initializer of a class must
initialize all of the class’s declared properties and it must do so before
calling any of its superclass’s designated initializers.

A class can override properties, methods, subscripts, and initializers
of its superclass. Overridden properties, methods, subscripts, and
designated initializers must be marked with the override declaration
modifier.

To require that subclasses implement a superclass’s initializer, mark
the superclass’s initializer with the required declaration modifier. The

PDF conversion courtesy of www.appsdissected.com

subclass’s implementation of that initializer must also be marked with
the required declaration modifier.

Although properties and methods declared in the superclass are
inherited by the current class, designated initializers declared in the
superclass are only inherited when the subclass meets the conditions
described in Automatic Initializer Inheritance. Swift classes don’t
inherit from a universal base class.

There are two ways to create an instance of a previously declared
class:

Call one of the initializers declared within the class, as described
in Initializers.

If no initializers are declared, and all properties of the class
declaration were given initial values, call the class’s default
initializer, as described in Default Initializers.

Access properties of a class instance with dot (.) syntax, as
described in Accessing Properties.

Classes are reference types; instances of a class are referred to,
rather than copied, when assigned to variables or constants, or when
passed as arguments to a function call. For information about
reference types, see Classes Are Reference Types.

You can extend the behavior of a class type with an extension
declaration, as discussed in Extension Declaration.

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A C L A S S D E C L A R AT I O N

class-declaration → attributes opt access-level-modifier opt finalopt
class class-name generic-parameter-clause opt type-inheritance-
clause opt generic-where-clause opt class-body

class-declaration → attributes opt final access-level-modifier opt class
class-name generic-parameter-clause opt type-inheritance-clause opt
generic-where-clause opt class-body

class-name → identifier
class-body → { class-members opt }
class-members → class-member class-members opt
class-member → declaration | compiler-control-statement

Actor Declaration
An actor declaration introduces a named actor type into your
program. Actor declarations are declared using the actor keyword
and have the following form:

 actor actor name : adopted protocols {

 declarations

 }

The body of an actor contains zero or more declarations. These
declarations can include both stored and computed properties,
instance methods, type methods, initializers, a single deinitializer,
subscripts, type aliases, and even other class, structure, and
enumeration declarations. For a discussion and several examples of
actors that include various kinds of declarations, see Actors.

Actor types can adopt any number of protocols, but can’t inherit from
classes, enumerations, structures, or other actors. However, an actor
that is marked with the @objc attribute implicitly conforms to the

PDF conversion courtesy of www.appsdissected.com

NSObjectProtocol protocol and is exposed to the Objective-C runtime
as a subtype of NSObject.

There are two ways to create an instance of a previously declared
actor:

Call one of the initializers declared within the actor, as described
in Initializers.

If no initializers are declared, and all properties of the actor
declaration were given initial values, call the actor’s default
initializer, as described in Default Initializers.

By default, members of an actor are isolated to that actor. Code, such
as the body of a method or the getter for a property, is executed on
that actor. Code within the actor can interact with them synchronously
because that code is already running on the same actor, but code
outside the actor must mark them with await to indicate that this code
is asynchronously running code on another actor. Key paths can’t
refer to isolated members of an actor. Actor-isolated stored properties
can be passed as in-out parameters to synchronous functions, but
not to asynchronous functions.

Actors can also have nonisolated members, whose declarations are
marked with the nonisolated keyword. A nonisolated member
executes like code outside of the actor: It can’t interact with any of the
actor’s isolated state, and callers don’t mark it with await when using
it.

Members of an actor can be marked with the @objc attribute only if
they are nonisolated or asynchronous.

The process of initializing an actor’s declared properties is described
in Initialization.

Properties of a actor instance can be accessed using dot (.) syntax,
as described in Accessing Properties.

PDF conversion courtesy of www.appsdissected.com

Actors are reference types; instances of an actor are referred to,
rather than copied, when assigned to variables or constants, or when
passed as arguments to a function call. For information about
reference types, see Classes Are Reference Types.

You can extend the behavior of a structure type with an extension
declaration, as discussed in Extension Declaration.

G R A M M A R O F A N A C T O R D E C L A R AT I O N

actor-declaration → attributes opt access-level-modifier opt actor actor-
name generic-parameter-clause opt type-inheritance-clause opt
generic-where-clause opt actor-body

actor-name → identifier
actor-body → { actor-members opt }
actor-members → actor-member actor-members opt
actor-member → declaration | compiler-control-statement

Protocol Declaration
A protocol declaration introduces a named protocol type into your
program. Protocol declarations are declared at global scope using the
protocol keyword and have the following form:

 protocol protocol name : inherited protocols {

 protocol member declarations

 }

The body of a protocol contains zero or more protocol member
declarations, which describe the conformance requirements that any
type adopting the protocol must fulfill. In particular, a protocol can
declare that conforming types must implement certain properties,
methods, initializers, and subscripts. Protocols can also declare

PDF conversion courtesy of www.appsdissected.com

special kinds of type aliases, called associated types, that can specify
relationships among the various declarations of the protocol. Protocol
declarations can’t contain class, structure, enumeration, or other
protocol declarations. The protocol member declarations are
discussed in detail below.

Protocol types can inherit from any number of other protocols. When
a protocol type inherits from other protocols, the set of requirements
from those other protocols are aggregated, and any type that inherits
from the current protocol must conform to all those requirements. For
an example of how to use protocol inheritance, see Protocol
Inheritance.

N O T E

You can also aggregate the conformance requirements of multiple protocols
using protocol composition types, as described in Protocol Composition Type
and Protocol Composition.

You can add protocol conformance to a previously declared type by
adopting the protocol in an extension declaration of that type. In the
extension, you must implement all of the adopted protocol’s
requirements. If the type already implements all of the requirements,
you can leave the body of the extension declaration empty.

By default, types that conform to a protocol must implement all
properties, methods, and subscripts declared in the protocol. That
said, you can mark these protocol member declarations with the
optional declaration modifier to specify that their implementation by
a conforming type is optional. The optional modifier can be applied
only to members that are marked with the objc attribute, and only to
members of protocols that are marked with the objc attribute. As a
result, only class types can adopt and conform to a protocol that
contains optional member requirements. For more information about
how to use the optional declaration modifier and for guidance about
how to access optional protocol members—for example, when you’re

PDF conversion courtesy of www.appsdissected.com

not sure whether a conforming type implements them—see Optional
Protocol Requirements.

The cases of an enumeration can satisfy protocol requirements for
type members. Specifically, an enumeration case without any
associated values satisfies a protocol requirement for a get-only type
variable of type Self, and an enumeration case with associated
values satisfies a protocol requirement for a function that returns Self
whose parameters and their argument labels match the case’s
associated values. For example:

1 protocol SomeProtocol {

2 static var someValue: Self { get }

3 static func someFunction(x: Int) -> Self

4 }

5 enum MyEnum: SomeProtocol {

6 case someValue

7 case someFunction(x: Int)

8 }

To restrict the adoption of a protocol to class types only, include the
AnyObject protocol in the inherited protocols list after the colon. For
example, the following protocol can be adopted only by class types:

1 protocol SomeProtocol: AnyObject {

2 /* Protocol members go here */

3 }

Any protocol that inherits from a protocol that’s marked with the
AnyObject requirement can likewise be adopted only by class types.

PDF conversion courtesy of www.appsdissected.com

N O T E

If a protocol is marked with the objc attribute, the AnyObject requirement is
implicitly applied to that protocol; there’s no need to mark the protocol with the
AnyObject requirement explicitly.

Protocols are named types, and thus they can appear in all the same
places in your code as other named types, as discussed in Protocols
as Types. However, you can’t construct an instance of a protocol,
because protocols don’t actually provide the implementations for the
requirements they specify.

You can use protocols to declare which methods a delegate of a
class or structure should implement, as described in Delegation.

G R A M M A R O F A P R O T O C O L D E C L A R AT I O N

protocol-declaration → attributes opt access-level-modifier opt protocol
protocol-name type-inheritance-clause opt generic-where-clause opt
protocol-body

protocol-name → identifier
protocol-body → { protocol-members opt }
protocol-members → protocol-member protocol-members opt
protocol-member → protocol-member-declaration | compiler-control-

statement
protocol-member-declaration → protocol-property-declaration
protocol-member-declaration → protocol-method-declaration
protocol-member-declaration → protocol-initializer-declaration
protocol-member-declaration → protocol-subscript-declaration
protocol-member-declaration → protocol-associated-type-declaration
protocol-member-declaration → typealias-declaration

Protocol Property Declaration
Protocols declare that conforming types must implement a property
by including a protocol property declaration in the body of the
protocol declaration. Protocol property declarations have a special
form of a variable declaration:

PDF conversion courtesy of www.appsdissected.com

 var property name : type { get set }

As with other protocol member declarations, these property
declarations declare only the getter and setter requirements for types
that conform to the protocol. As a result, you don’t implement the
getter or setter directly in the protocol in which it’s declared.

The getter and setter requirements can be satisfied by a conforming
type in a variety of ways. If a property declaration includes both the
get and set keywords, a conforming type can implement it with a
stored variable property or a computed property that’s both readable
and writeable (that is, one that implements both a getter and a setter).
However, that property declaration can’t be implemented as a
constant property or a read-only computed property. If a property
declaration includes only the get keyword, it can be implemented as
any kind of property. For examples of conforming types that
implement the property requirements of a protocol, see Property
Requirements.

To declare a type property requirement in a protocol declaration,
mark the property declaration with the static keyword. Structures
and enumerations that conform to the protocol declare the property
with the static keyword, and classes that conform to the protocol
declare the property with either the static or class keyword.
Extensions that add protocol conformance to a structure,
enumeration, or class use the same keyword as the type they extend
uses. Extensions that provide a default implementation for a type
property requirement use the static keyword.

See also Variable Declaration.

G R A M M A R O F A P R O T O C O L P R O P E R T Y D E C L A R AT I O N

protocol-property-declaration → variable-declaration-head variable-name
type-annotation getter-setter-keyword-block

PDF conversion courtesy of www.appsdissected.com

Protocol Method Declaration
Protocols declare that conforming types must implement a method by
including a protocol method declaration in the body of the protocol
declaration. Protocol method declarations have the same form as
function declarations, with two exceptions: They don’t include a
function body, and you can’t provide any default parameter values as
part of the function declaration. For examples of conforming types
that implement the method requirements of a protocol, see Method
Requirements.

To declare a class or static method requirement in a protocol
declaration, mark the method declaration with the static declaration
modifier. Structures and enumerations that conform to the protocol
declare the method with the static keyword, and classes that
conform to the protocol declare the method with either the static or
class keyword. Extensions that add protocol conformance to a
structure, enumeration, or class use the same keyword as the type
they extend uses. Extensions that provide a default implementation
for a type method requirement use the static keyword.

See also Function Declaration.

G R A M M A R O F A P R O T O C O L M E T H O D D E C L A R AT I O N

protocol-method-declaration → function-head function-name generic-
parameter-clause opt function-signature generic-where-clause opt

Protocol Initializer Declaration
Protocols declare that conforming types must implement an initializer
by including a protocol initializer declaration in the body of the
protocol declaration. Protocol initializer declarations have the same
form as initializer declarations, except they don’t include the
initializer’s body.

PDF conversion courtesy of www.appsdissected.com

A conforming type can satisfy a nonfailable protocol initializer
requirement by implementing a nonfailable initializer or an init!
failable initializer. A conforming type can satisfy a failable protocol
initializer requirement by implementing any kind of initializer.

When a class implements an initializer to satisfy a protocol’s initializer
requirement, the initializer must be marked with the required
declaration modifier if the class isn’t already marked with the final
declaration modifier.

See also Initializer Declaration.

G R A M M A R O F A P R O T O C O L I N I T I A L I Z E R D E C L A R AT I O N

protocol-initializer-declaration → initializer-head generic-parameter-clause
opt parameter-clause throwsopt generic-where-clause opt

protocol-initializer-declaration → initializer-head generic-parameter-clause
opt parameter-clause rethrows generic-where-clause opt

Protocol Subscript Declaration
Protocols declare that conforming types must implement a subscript
by including a protocol subscript declaration in the body of the
protocol declaration. Protocol subscript declarations have a special
form of a subscript declaration:

 subscript (parameters) -> return type { get set }

Subscript declarations only declare the minimum getter and setter
implementation requirements for types that conform to the protocol. If
the subscript declaration includes both the get and set keywords, a
conforming type must implement both a getter and a setter clause. If
the subscript declaration includes only the get keyword, a conforming
type must implement at least a getter clause and optionally can
implement a setter clause.

PDF conversion courtesy of www.appsdissected.com

To declare a static subscript requirement in a protocol declaration,
mark the subscript declaration with the static declaration modifier.
Structures and enumerations that conform to the protocol declare the
subscript with the static keyword, and classes that conform to the
protocol declare the subscript with either the static or class
keyword. Extensions that add protocol conformance to a structure,
enumeration, or class use the same keyword as the type they extend
uses. Extensions that provide a default implementation for a static
subscript requirement use the static keyword.

See also Subscript Declaration.

G R A M M A R O F A P R O T O C O L S U B S C R I P T D E C L A R AT I O N

protocol-subscript-declaration → subscript-head subscript-result generic-
where-clause opt getter-setter-keyword-block

Protocol Associated Type Declaration
Protocols declare associated types using the associatedtype
keyword. An associated type provides an alias for a type that’s used
as part of a protocol’s declaration. Associated types are similar to
type parameters in generic parameter clauses, but they’re associated
with Self in the protocol in which they’re declared. In that context,
Self refers to the eventual type that conforms to the protocol. For
more information and examples, see Associated Types.

You use a generic where clause in a protocol declaration to add
constraints to an associated types inherited from another protocol,
without redeclaring the associated types. For example, the
declarations of SubProtocol below are equivalent:

PDF conversion courtesy of www.appsdissected.com

1 protocol SomeProtocol {

2 associatedtype SomeType

3 }

4

5 protocol SubProtocolA: SomeProtocol {

6 // This syntax produces a warning.

7 associatedtype SomeType: Equatable

8 }

9

10 // This syntax is preferred.

11 protocol SubProtocolB: SomeProtocol where SomeType:

Equatable { }

See also Type Alias Declaration.

G R A M M A R O F A P R O T O C O L A S S O C I AT E D T Y P E D E C L A R AT I O N

protocol-associated-type-declaration → attributes opt access-level-
modifier opt associatedtype typealias-name type-inheritance-clause
opt typealias-assignment opt generic-where-clause opt

Initializer Declaration
An initializer declaration introduces an initializer for a class, structure,
or enumeration into your program. Initializer declarations are
declared using the init keyword and have two basic forms.

Structure, enumeration, and class types can have any number of
initializers, but the rules and associated behavior for class initializers

PDF conversion courtesy of www.appsdissected.com

are different. Unlike structures and enumerations, classes have two
kinds of initializers: designated initializers and convenience
initializers, as described in Initialization.

The following form declares initializers for structures, enumerations,
and designated initializers of classes:

 init(parameters) {

 statements

 }

A designated initializer of a class initializes all of the class’s
properties directly. It can’t call any other initializers of the same class,
and if the class has a superclass, it must call one of the superclass’s
designated initializers. If the class inherits any properties from its
superclass, one of the superclass’s designated initializers must be
called before any of these properties can be set or modified in the
current class.

Designated initializers can be declared in the context of a class
declaration only and therefore can’t be added to a class using an
extension declaration.

Initializers in structures and enumerations can call other declared
initializers to delegate part or all of the initialization process.

To declare convenience initializers for a class, mark the initializer
declaration with the convenience declaration modifier.

 convenience init(parameters) {

 statements

 }

PDF conversion courtesy of www.appsdissected.com

Convenience initializers can delegate the initialization process to
another convenience initializer or to one of the class’s designated
initializers. That said, the initialization processes must end with a call
to a designated initializer that ultimately initializes the class’s
properties. Convenience initializers can’t call a superclass’s
initializers.

You can mark designated and convenience initializers with the
required declaration modifier to require that every subclass
implement the initializer. A subclass’s implementation of that
initializer must also be marked with the required declaration modifier.

By default, initializers declared in a superclass aren’t inherited by
subclasses. That said, if a subclass initializes all of its stored
properties with default values and doesn’t define any initializers of its
own, it inherits all of the superclass’s initializers. If the subclass
overrides all of the superclass’s designated initializers, it inherits the
superclass’s convenience initializers.

As with methods, properties, and subscripts, you need to mark
overridden designated initializers with the override declaration
modifier.

N O T E

If you mark an initializer with the required declaration modifier, you don’t also
mark the initializer with the override modifier when you override the required
initializer in a subclass.

Just like functions and methods, initializers can throw or rethrow
errors. And just like functions and methods, you use the throws or
rethrows keyword after an initializer’s parameters to indicate the
appropriate behavior. Likewise, initializers can be asynchronous, and
you use the async keyword to indicate this.

To see examples of initializers in various type declarations, see
Initialization.

PDF conversion courtesy of www.appsdissected.com

Failable Initializers
A failable initializer is a type of initializer that produces an optional
instance or an implicitly unwrapped optional instance of the type the
initializer is declared on. As a result, a failable initializer can return
nil to indicate that initialization failed.

To declare a failable initializer that produces an optional instance,
append a question mark to the init keyword in the initializer
declaration (init?). To declare a failable initializer that produces an
implicitly unwrapped optional instance, append an exclamation point
instead (init!). The example below shows an init? failable initializer
that produces an optional instance of a structure.

1 struct SomeStruct {

2 let property: String

3 // produces an optional instance of 'SomeStruct'

4 init?(input: String) {

5 if input.isEmpty {

6 // discard 'self' and return 'nil'

7 return nil

8 }

9 property = input

10 }

11 }

You call an init? failable initializer in the same way that you call a
nonfailable initializer, except that you must deal with the optionality of
the result.

PDF conversion courtesy of www.appsdissected.com

1 if let actualInstance = SomeStruct(input: "Hello") {

2 // do something with the instance of

'SomeStruct'

3 } else {

4 // initialization of 'SomeStruct' failed and the

initializer returned 'nil'

5 }

A failable initializer can return nil at any point in the implementation
of the initializer’s body.

A failable initializer can delegate to any kind of initializer. A
nonfailable initializer can delegate to another nonfailable initializer or
to an init! failable initializer. A nonfailable initializer can delegate to
an init? failable initializer by force-unwrapping the result of the
superclass’s initializer—for example, by writing super.init()!.

Initialization failure propagates through initializer delegation.
Specifically, if a failable initializer delegates to an initializer that fails
and returns nil, then the initializer that delegated also fails and
implicitly returns nil. If a nonfailable initializer delegates to an init!
failable initializer that fails and returns nil, then a runtime error is
raised (as if you used the ! operator to unwrap an optional that has a
nil value).

A failable designated initializer can be overridden in a subclass by
any kind of designated initializer. A nonfailable designated initializer
can be overridden in a subclass by a nonfailable designated initializer
only.

For more information and to see examples of failable initializers, see
Failable Initializers.

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A N I N I T I A L I Z E R D E C L A R AT I O N

initializer-declaration → initializer-head generic-parameter-clause opt
parameter-clause asyncopt throwsopt generic-where-clause opt
initializer-body

initializer-declaration → initializer-head generic-parameter-clause opt
parameter-clause asyncopt rethrows generic-where-clause opt
initializer-body

initializer-head → attributes opt declaration-modifiers opt init
initializer-head → attributes opt declaration-modifiers opt init ?
initializer-head → attributes opt declaration-modifiers opt init !
initializer-body → code-block

Deinitializer Declaration
A deinitializer declaration declares a deinitializer for a class type.
Deinitializers take no parameters and have the following form:

 deinit {

 statements

 }

A deinitializer is called automatically when there are no longer any
references to a class object, just before the class object is
deallocated. A deinitializer can be declared only in the body of a class
declaration—but not in an extension of a class—and each class can
have at most one.

A subclass inherits its superclass’s deinitializer, which is implicitly
called just before the subclass object is deallocated. The subclass
object isn’t deallocated until all deinitializers in its inheritance chain
have finished executing.

PDF conversion courtesy of www.appsdissected.com

Deinitializers aren’t called directly.

For an example of how to use a deinitializer in a class declaration,
see Deinitialization.

G R A M M A R O F A D E I N I T I A L I Z E R D E C L A R AT I O N

deinitializer-declaration → attributes opt deinit code-block

Extension Declaration
An extension declaration allows you to extend the behavior of
existing types. Extension declarations are declared using the
extension keyword and have the following form:

 extension type name where requirements {

 declarations

 }

The body of an extension declaration contains zero or more
declarations. These declarations can include computed properties,
computed type properties, instance methods, type methods,
initializers, subscript declarations, and even class, structure, and
enumeration declarations. Extension declarations can’t contain
deinitializer or protocol declarations, stored properties, property
observers, or other extension declarations. Declarations in a protocol
extension can’t be marked final. For a discussion and several
examples of extensions that include various kinds of declarations,
see Extensions.

If the type name is a class, structure, or enumeration type, the
extension extends that type. If the type name is a protocol type, the
extension extends all types that conform to that protocol.

PDF conversion courtesy of www.appsdissected.com

Extension declarations that extend a generic type or a protocol with
associated types can include requirements. If an instance of the
extended type or of a type that conforms to the extended protocol
satisfies the requirements, the instance gains the behavior specified
in the declaration.

Extension declarations can contain initializer declarations. That said,
if the type you’re extending is defined in another module, an initializer
declaration must delegate to an initializer already defined in that
module to ensure members of that type are properly initialized.

Properties, methods, and initializers of an existing type can’t be
overridden in an extension of that type.

Extension declarations can add protocol conformance to an existing
class, structure, or enumeration type by specifying adopted protocols:

 extension type name : adopted protocols where

 requirements {

 declarations

 }

Extension declarations can’t add class inheritance to an existing
class, and therefore you can specify only a list of protocols after the
type name and colon.

Conditional Conformance
You can extend a generic type to conditionally conform to a protocol,
so that instances of the type conform to the protocol only when
certain requirements are met. You add conditional conformance to a
protocol by including requirements in an extension declaration.

PDF conversion courtesy of www.appsdissected.com

Overridden Requirements Aren’t Used in Some Generic
Contexts

In some generic contexts, types that get behavior from conditional
conformance to a protocol don’t always use the specialized
implementations of that protocol’s requirements. To illustrate this
behavior, the following example defines two protocols and a generic
type that conditionally conforms to both protocols.

PDF conversion courtesy of www.appsdissected.com

1 protocol Loggable {

2 func log()

3 }

4 extension Loggable {

5 func log() {

6 print(self)

7 }

8 }

9

10 protocol TitledLoggable: Loggable {

11 static var logTitle: String { get }

12 }

13 extension TitledLoggable {

14 func log() {

15 print("\(Self.logTitle): \(self)")

16 }

17 }

18

19 struct Pair<T>: CustomStringConvertible {

20 let first: T

21 let second: T

22 var description: String {

23 return "(\(first), \(second))"

24 }

25 }

26

PDF conversion courtesy of www.appsdissected.com

27 extension Pair: Loggable where T: Loggable { }

28 extension Pair: TitledLoggable where T:

TitledLoggable {

29 static var logTitle: String {

30 return "Pair of '\(T.logTitle)'"

31 }

32 }

33

34 extension String: TitledLoggable {

35 static var logTitle: String {

36 return "String"

37 }

38 }

The Pair structure conforms to Loggable and TitledLoggable
whenever its generic type conforms to Loggable or TitledLoggable,
respectively. In the example below, oneAndTwo is an instance of
Pair<String>, which conforms to TitledLoggable because String
conforms to TitledLoggable. When the log() method is called on
oneAndTwo directly, the specialized version containing the title string is
used.

1 let oneAndTwo = Pair(first: "one", second: "two")

2 oneAndTwo.log()

3 // Prints "Pair of 'String': (one, two)"

However, when oneAndTwo is used in a generic context or as an
instance of the Loggable protocol, the specialized version isn’t used.
Swift picks which implementation of log() to call by consulting only

PDF conversion courtesy of www.appsdissected.com

the minimum requirements that Pair needs to conform to Loggable.
For this reason, the default implementation provided by the Loggable
protocol is used instead.

1 func doSomething<T: Loggable>(with x: T) {

2 x.log()

3 }

4 doSomething(with: oneAndTwo)

5 // Prints "(one, two)"

When log() is called on the instance that’s passed to
doSomething(_:), the customized title is omitted from the logged
string.

Protocol Conformance Must Not Be Redundant
A concrete type can conform to a particular protocol only once. Swift
marks redundant protocol conformances as an error. You’re likely to
encounter this kind of error in two kinds of situations. The first
situation is when you explicitly conform to the same protocol multiple
times, but with different requirements. The second situation is when
you implicitly inherit from the same protocol multiple times. These
situations are discussed in the sections below.

Resolving Explicit Redundancy

Multiple extensions on a concrete type can’t add conformance to the
same protocol, even if the extensions’ requirements are mutually
exclusive. This restriction is demonstrated in the example below. Two
extension declarations attempt to add conditional conformance to the
Serializable protocol, one for for arrays with Int elements, and one
for arrays with String elements.

PDF conversion courtesy of www.appsdissected.com

1 protocol Serializable {

2 func serialize() -> Any

3 }

4

5 extension Array: Serializable where Element == Int {

6 func serialize() -> Any {

7 // implementation

8 }

9 }

10 extension Array: Serializable where Element ==

String {

11 func serialize() -> Any {

12 // implementation

13 }

14 }

15 // Error: redundant conformance of 'Array<Element>'

to protocol 'Serializable'

If you need to add conditional conformance based on multiple
concrete types, create a new protocol that each type can conform to
and use that protocol as the requirement when declaring conditional
conformance.

PDF conversion courtesy of www.appsdissected.com

1 protocol SerializableInArray { }

2 extension Int: SerializableInArray { }

3 extension String: SerializableInArray { }

4

5 extension Array: Serializable where Element:

SerializableInArray {

6 func serialize() -> Any {

7 // implementation

8 }

9 }

Resolving Implicit Redundancy

When a concrete type conditionally conforms to a protocol, that type
implicitly conforms to any parent protocols with the same
requirements.

If you need a type to conditionally conform to two protocols that
inherit from a single parent, explicitly declare conformance to the
parent protocol. This avoids implicitly conforming to the parent
protocol twice with different requirements.

The following example explicitly declares the conditional
conformance of Array to Loggable to avoid a conflict when declaring
its conditional conformance to both TitledLoggable and the new
MarkedLoggable protocol.

PDF conversion courtesy of www.appsdissected.com

1 protocol MarkedLoggable: Loggable {

2 func markAndLog()

3 }

4

5 extension MarkedLoggable {

6 func markAndLog() {

7 print("----------")

8 log()

9 }

10 }

11

12 extension Array: Loggable where Element: Loggable {

}

13 extension Array: TitledLoggable where Element:

TitledLoggable {

14 static var logTitle: String {

15 return "Array of '\(Element.logTitle)'"

16 }

17 }

18 extension Array: MarkedLoggable where Element:

MarkedLoggable { }

Without the extension to explicitly declare conditional conformance to
Loggable, the other Array extensions would implicitly create these
declarations, resulting in an error:

PDF conversion courtesy of www.appsdissected.com

1 extension Array: Loggable where Element:

TitledLoggable { }

2 extension Array: Loggable where Element:

MarkedLoggable { }

3 // Error: redundant conformance of 'Array<Element>'

to protocol 'Loggable'

G R A M M A R O F A N E X T E N S I O N D E C L A R AT I O N

extension-declaration → attributes opt access-level-modifier opt
extension type-identifier type-inheritance-clause opt generic-where-
clause opt extension-body

extension-body → { extension-members opt }
extension-members → extension-member extension-members opt
extension-member → declaration | compiler-control-statement

Subscript Declaration
A subscript declaration allows you to add subscripting support for
objects of a particular type and are typically used to provide a
convenient syntax for accessing the elements in a collection, list, or
sequence. Subscript declarations are declared using the subscript
keyword and have the following form:

PDF conversion courtesy of www.appsdissected.com

 subscript (parameters) -> return type {

 get {

 statements

 }

 set(setter name) {

 statements

 }

 }

Subscript declarations can appear only in the context of a class,
structure, enumeration, extension, or protocol declaration.

The parameters specify one or more indexes used to access
elements of the corresponding type in a subscript expression (for
example, the i in the expression object[i]). Although the indexes
used to access the elements can be of any type, each parameter
must include a type annotation to specify the type of each index. The
return type specifies the type of the element being accessed.

As with computed properties, subscript declarations support reading
and writing the value of the accessed elements. The getter is used to
read the value, and the setter is used to write the value. The setter
clause is optional, and when only a getter is needed, you can omit
both clauses and simply return the requested value directly. That
said, if you provide a setter clause, you must also provide a getter
clause.

The setter name and enclosing parentheses are optional. If you
provide a setter name, it’s used as the name of the parameter to the
setter. If you don’t provide a setter name, the default parameter name
to the setter is value. The type of the parameter to the setter is the
same as the return type.

PDF conversion courtesy of www.appsdissected.com

You can overload a subscript declaration in the type in which it’s
declared, as long as the parameters or the return type differ from the
one you’re overloading. You can also override a subscript declaration
inherited from a superclass. When you do so, you must mark the
overridden subscript declaration with the override declaration
modifier.

Subscript parameters follow the same rules as function parameters,
with two exceptions. By default, the parameters used in subscripting
don’t have argument labels, unlike functions, methods, and
initializers. However, you can provide explicit argument labels using
the same syntax that functions, methods, and initializers use. In
addition, subscripts can’t have in-out parameters. A subscript
parameter can have a default value, using the syntax described in
Special Kinds of Parameters.

You can also declare subscripts in the context of a protocol
declaration, as described in Protocol Subscript Declaration.

For more information about subscripting and to see examples of
subscript declarations, see Subscripts.

Type Subscript Declarations
To declare a subscript that’s exposed by the type, rather than by
instances of the type, mark the subscript declaration with the static
declaration modifier. Classes can mark type computed properties
with the class declaration modifier instead to allow subclasses to
override the superclass’s implementation. In a class declaration, the
static keyword has the same effect as marking the declaration with
both the class and final declaration modifiers.

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A S U B S C R I P T D E C L A R AT I O N

subscript-declaration → subscript-head subscript-result generic-where-
clause opt code-block

subscript-declaration → subscript-head subscript-result generic-where-
clause opt getter-setter-block

subscript-declaration → subscript-head subscript-result generic-where-
clause opt getter-setter-keyword-block

subscript-head → attributes opt declaration-modifiers opt subscript
generic-parameter-clause opt parameter-clause

subscript-result → -> attributes opt type

Operator Declaration
An operator declaration introduces a new infix, prefix, or postfix
operator into your program and is declared using the operator
keyword.

You can declare operators of three different fixities: infix, prefix, and
postfix. The fixity of an operator specifies the relative position of an
operator to its operands.

There are three basic forms of an operator declaration, one for each
fixity. The fixity of the operator is specified by marking the operator
declaration with the infix, prefix, or postfix declaration modifier
before the operator keyword. In each form, the name of the operator
can contain only the operator characters defined in Operators.

The following form declares a new infix operator:

 infix operator operator name : precedence group

An infix operator is a binary operator that’s written between its two
operands, such as the familiar addition operator (+) in the expression

PDF conversion courtesy of www.appsdissected.com

1 + 2.

Infix operators can optionally specify a precedence group. If you omit
the precedence group for an operator, Swift uses the default
precedence group, DefaultPrecedence, which specifies a
precedence just higher than TernaryPrecedence. For more
information, see Precedence Group Declaration.

The following form declares a new prefix operator:

 prefix operator operator name

A prefix operator is a unary operator that’s written immediately before
its operand, such as the prefix logical NOT operator (!) in the
expression !a.

Prefix operators declarations don’t specify a precedence level. Prefix
operators are nonassociative.

The following form declares a new postfix operator:

 postfix operator operator name

A postfix operator is a unary operator that’s written immediately after
its operand, such as the postfix forced-unwrap operator (!) in the
expression a!.

As with prefix operators, postfix operator declarations don’t specify a
precedence level. Postfix operators are nonassociative.

After declaring a new operator, you implement it by declaring a static
method that has the same name as the operator. The static method is
a member of one of the types whose values the operator takes as an
argument—for example, an operator that multiplies a Double by an
Int is implemented as a static method on either the Double or Int
structure. If you’re implementing a prefix or postfix operator, you must

PDF conversion courtesy of www.appsdissected.com

also mark that method declaration with the corresponding prefix or
postfix declaration modifier. To see an example of how to create and
implement a new operator, see Custom Operators.

G R A M M A R O F A N O P E R AT O R D E C L A R AT I O N

operator-declaration → prefix-operator-declaration | postfix-operator-
declaration | infix-operator-declaration

prefix-operator-declaration → prefix operator operator
postfix-operator-declaration → postfix operator operator
infix-operator-declaration → infix operator operator infix-operator-

group opt
infix-operator-group → : precedence-group-name

Precedence Group Declaration
A precedence group declaration introduces a new grouping for infix
operator precedence into your program. The precedence of an
operator specifies how tightly the operator binds to its operands, in
the absence of grouping parentheses.

A precedence group declaration has the following form:

 precedencegroup precedence group name {

 higherThan: lower group names

 lowerThan: higher group names

 associativity: associativity

 assignment: assignment

 }

The lower group names and higher group names lists specify the new
precedence group’s relation to existing precedence groups. The
lowerThan precedence group attribute may only be used to refer to

PDF conversion courtesy of www.appsdissected.com

precedence groups declared outside of the current module. When
two operators compete with each other for their operands, such as in
the expression 2 + 3 * 5, the operator with the higher relative
precedence binds more tightly to its operands.

N O T E

Precedence groups related to each other using lower group names and higher
group names must fit into a single relational hierarchy, but they don’t have to
form a linear hierarchy. This means it’s possible to have precedence groups
with undefined relative precedence. Operators from those precedence groups
can’t be used next to each other without grouping parentheses.

Swift defines numerous precedence groups to go along with the
operators provided by the standard library. For example, the addition
(+) and subtraction (-) operators belong to the AdditionPrecedence
group, and the multiplication (*) and division (/) operators belong to
the MultiplicationPrecedence group. For a complete list of
precedence groups provided by the Swift standard library, see
Operator Declarations.

The associativity of an operator specifies how a sequence of
operators with the same precedence level are grouped together in
the absence of grouping parentheses. You specify the associativity of
an operator by writing one of the context-sensitive keywords left,
right, or none—if your omit the associativity, the default is none.
Operators that are left-associative group left-to-right. For example,
the subtraction operator (-) is left-associative, so the expression 4 -
5 - 6 is grouped as (4 - 5) - 6 and evaluates to -7. Operators that
are right-associative group right-to-left, and operators that are
specified with an associativity of none don’t associate at all.
Nonassociative operators of the same precedence level can’t appear
adjacent to each to other. For example, the < operator has an
associativity of none, which means 1 < 2 < 3 isn’t a valid expression.

The assignment of a precedence group specifies the precedence of
an operator when used in an operation that includes optional

https://developer.apple.com/documentation/swift/operator_declarations

PDF conversion courtesy of www.appsdissected.com

chaining. When set to true, an operator in the corresponding
precedence group uses the same grouping rules during optional
chaining as the assignment operators from the standard library.
Otherwise, when set to false or omitted, operators in the precedence
group follows the same optional chaining rules as operators that don’t
perform assignment.

G R A M M A R O F A P R E C E D E N C E G R O U P D E C L A R AT I O N

precedence-group-declaration → precedencegroup precedence-group-
name { precedence-group-attributes opt }

precedence-group-attributes → precedence-group-attribute precedence-
group-attributes opt

precedence-group-attribute → precedence-group-relation
precedence-group-attribute → precedence-group-assignment
precedence-group-attribute → precedence-group-associativity
precedence-group-relation → higherThan : precedence-group-names
precedence-group-relation → lowerThan : precedence-group-names
precedence-group-assignment → assignment : boolean-literal
precedence-group-associativity → associativity : left
precedence-group-associativity → associativity : right
precedence-group-associativity → associativity : none
precedence-group-names → precedence-group-name | precedence-group-

name , precedence-group-names
precedence-group-name → identifier

Declaration Modifiers
Declaration modifiers are keywords or context-sensitive keywords
that modify the behavior or meaning of a declaration. You specify a
declaration modifier by writing the appropriate keyword or context-
sensitive keyword between a declaration’s attributes (if any) and the
keyword that introduces the declaration.

class

PDF conversion courtesy of www.appsdissected.com

Apply this modifier to a member of a class to indicate that the
member is a member of the class itself, rather than a member of
instances of the class. Members of a superclass that have this
modifier and don’t have the final modifier can be overridden by
subclasses.

dynamic

Apply this modifier to any member of a class that can be
represented by Objective-C. When you mark a member
declaration with the dynamic modifier, access to that member is
always dynamically dispatched using the Objective-C runtime.
Access to that member is never inlined or devirtualized by the
compiler.

Because declarations marked with the dynamic modifier are
dispatched using the Objective-C runtime, they must be marked
with the objc attribute.

final

Apply this modifier to a class or to a property, method, or
subscript member of a class. It’s applied to a class to indicate
that the class can’t be subclassed. It’s applied to a property,
method, or subscript of a class to indicate that a class member
can’t be overridden in any subclass. For an example of how to
use the final attribute, see Preventing Overrides.

lazy

Apply this modifier to a stored variable property of a class or
structure to indicate that the property’s initial value is calculated
and stored at most once, when the property is first accessed. For
an example of how to use the lazy modifier, see Lazy Stored
Properties.

optional

PDF conversion courtesy of www.appsdissected.com

Apply this modifier to a protocol’s property, method, or subscript
members to indicate that a conforming type isn’t required to
implement those members.

You can apply the optional modifier only to protocols that are
marked with the objc attribute. As a result, only class types can
adopt and conform to a protocol that contains optional member
requirements. For more information about how to use the
optional modifier and for guidance about how to access optional
protocol members—for example, when you’re not sure whether a
conforming type implements them—see Optional Protocol
Requirements.

required

Apply this modifier to a designated or convenience initializer of a
class to indicate that every subclass must implement that
initializer. The subclass’s implementation of that initializer must
also be marked with the required modifier.

static

Apply this modifier to a member of a structure, class,
enumeration, or protocol to indicate that the member is a
member of the type, rather than a member of instances of that
type. In the scope of a class declaration, writing the static
modifier on a member declaration has the same effect as writing
the class and final modifiers on that member declaration.
However, constant type properties of a class are an exception:
static has its normal, nonclass meaning there because you
can’t write class or final on those declarations.

unowned

Apply this modifier to a stored variable, constant, or stored
property to indicate that the variable or property has an unowned
reference to the object stored as its value. If you try to access the

PDF conversion courtesy of www.appsdissected.com

variable or property after the object has been deallocated, a
runtime error is raised. Like a weak reference, the type of the
property or value must be a class type; unlike a weak reference,
the type is non-optional. For an example and more information
about the unowned modifier, see Unowned References.

unowned(safe)

An explicit spelling of unowned.

unowned(unsafe)

Apply this modifier to a stored variable, constant, or stored
property to indicate that the variable or property has an unowned
reference to the object stored as its value. If you try to access the
variable or property after the object has been deallocated, you’ll
access the memory at the location where the object used to be,
which is a memory-unsafe operation. Like a weak reference, the
type of the property or value must be a class type; unlike a weak
reference, the type is non-optional. For an example and more
information about the unowned modifier, see Unowned
References.

weak

Apply this modifier to a stored variable or stored variable
property to indicate that the variable or property has a weak
reference to the object stored as its value. The type of the
variable or property must be an optional class type. If you access
the variable or property after the object has been deallocated, its
value is nil. For an example and more information about the
weak modifier, see Weak References.

Access Control Levels

PDF conversion courtesy of www.appsdissected.com

Swift provides five levels of access control: open, public, internal, file
private, and private. You can mark a declaration with one of the
access-level modifiers below to specify the declaration’s access level.
Access control is discussed in detail in Access Control.

open

Apply this modifier to a declaration to indicate the declaration
can be accessed and subclassed by code in the same module
as the declaration. Declarations marked with the open access-
level modifier can also be accessed and subclassed by code in a
module that imports the module that contains that declaration.

public

Apply this modifier to a declaration to indicate the declaration
can be accessed and subclassed by code in the same module
as the declaration. Declarations marked with the public access-
level modifier can also be accessed (but not subclassed) by
code in a module that imports the module that contains that
declaration.

internal

Apply this modifier to a declaration to indicate the declaration
can be accessed only by code in the same module as the
declaration. By default, most declarations are implicitly marked
with the internal access-level modifier.

fileprivate

Apply this modifier to a declaration to indicate the declaration
can be accessed only by code in the same source file as the
declaration.

private

PDF conversion courtesy of www.appsdissected.com

Apply this modifier to a declaration to indicate the declaration
can be accessed only by code within the declaration’s immediate
enclosing scope.

For the purpose of access control, extensions to the same type that
are in the same file share an access-control scope. If the type they
extend is also in the same file, they share the type’s access-control
scope. Private members declared in the type’s declaration can be
accessed from extensions, and private members declared in one
extension can be accessed from other extensions and from the type’s
declaration.

Each access-level modifier above optionally accepts a single
argument, which consists of the set keyword enclosed in
parentheses (for example, private(set)). Use this form of an
access-level modifier when you want to specify an access level for
the setter of a variable or subscript that’s less than or equal to the
access level of the variable or subscript itself, as discussed in Getters
and Setters.

G R A M M A R O F A D E C L A R AT I O N M O D I F I E R

declaration-modifier → class | convenience | dynamic | final | infix |
lazy | optional | override | postfix | prefix | required | static
| unowned | unowned (safe) | unowned (unsafe) | weak

declaration-modifier → access-level-modifier
declaration-modifier → mutation-modifier
declaration-modifier → actor-isolation-modifier
declaration-modifiers → declaration-modifier declaration-modifiers opt
access-level-modifier → private | private (set)
access-level-modifier → fileprivate | fileprivate (set)
access-level-modifier → internal | internal (set)
access-level-modifier → public | public (set)
access-level-modifier → open | open (set)
mutation-modifier → mutating | nonmutating
actor-isolation-modifier → nonisolated

PDF conversion courtesy of www.appsdissected.com

Attributes

There are two kinds of attributes in Swift—those that apply to
declarations and those that apply to types. An attribute provides
additional information about the declaration or type. For example, the
discardableResult attribute on a function declaration indicates that,
although the function returns a value, the compiler shouldn’t generate
a warning if the return value is unused.

You specify an attribute by writing the @ symbol followed by the
attribute’s name and any arguments that the attribute accepts:

 @ attribute name

 @ attribute name (attribute arguments)

Some declaration attributes accept arguments that specify more
information about the attribute and how it applies to a particular
declaration. These attribute arguments are enclosed in parentheses,
and their format is defined by the attribute they belong to.

Declaration Attributes
You can apply a declaration attribute to declarations only.

available
Apply this attribute to indicate a declaration’s life cycle relative to
certain Swift language versions or certain platforms and operating
system versions.

PDF conversion courtesy of www.appsdissected.com

The available attribute always appears with a list of two or more
comma-separated attribute arguments. These arguments begin with
one of the following platform or language names:

iOS

iOSApplicationExtension

macOS

macOSApplicationExtension

macCatalyst

macCatalystApplicationExtension

watchOS

watchOSApplicationExtension

tvOS

tvOSApplicationExtension

swift

You can also use an asterisk (*) to indicate the availability of the
declaration on all of the platform names listed above. An available
attribute that specifies availability using a Swift version number can’t
use the asterisk.

The remaining arguments can appear in any order and specify
additional information about the declaration’s life cycle, including
important milestones.

The unavailable argument indicates that the declaration isn’t
available on the specified platform. This argument can’t be used
when specifying Swift version availability.

PDF conversion courtesy of www.appsdissected.com

The introduced argument indicates the first version of the
specified platform or language in which the declaration was
introduced. It has the following form:

 introduced: version number

The version number consists of one to three positive integers,
separated by periods.

The deprecated argument indicates the first version of the
specified platform or language in which the declaration was
deprecated. It has the following form:

 deprecated: version number

The optional version number consists of one to three positive
integers, separated by periods. Omitting the version number
indicates that the declaration is currently deprecated, without
giving any information about when the deprecation occurred. If
you omit the version number, omit the colon (:) as well.

The obsoleted argument indicates the first version of the
specified platform or language in which the declaration was
obsoleted. When a declaration is obsoleted, it’s removed from
the specified platform or language and can no longer be used. It
has the following form:

 obsoleted: version number

The version number consists of one to three positive integers,
separated by periods.

The message argument provides a textual message that the
compiler displays when emitting a warning or error about the use

PDF conversion courtesy of www.appsdissected.com

of a deprecated or obsoleted declaration. It has the following
form:

 message: message

The message consists of a string literal.

The renamed argument provides a textual message that indicates
the new name for a declaration that’s been renamed. The
compiler displays the new name when emitting an error about
the use of a renamed declaration. It has the following form:

 renamed: new name

The new name consists of a string literal.

You can apply the available attribute with the renamed and
unavailable arguments to a type alias declaration, as shown
below, to indicate that the name of a declaration changed
between releases of a framework or library. This combination
results in a compile-time error that the declaration has been
renamed.

1 // First release

2 protocol MyProtocol {

3 // protocol definition

4 }

PDF conversion courtesy of www.appsdissected.com

1 // Subsequent release renames MyProtocol

2 protocol MyRenamedProtocol {

3 // protocol definition

4 }

5

6 @available(*, unavailable, renamed:

"MyRenamedProtocol")

7 typealias MyProtocol = MyRenamedProtocol

You can apply multiple available attributes on a single declaration to
specify the declaration’s availability on different platforms and
different versions of Swift. The declaration that the available
attribute applies to is ignored if the attribute specifies a platform or
language version that doesn’t match the current target. If you use
multiple available attributes, the effective availability is the
combination of the platform and Swift availabilities.

If an available attribute only specifies an introduced argument in
addition to a platform or language name argument, you can use the
following shorthand syntax instead:

 @available(platform name version number , *)

 @available(swift version number)

The shorthand syntax for available attributes concisely expresses
availability for multiple platforms. Although the two forms are
functionally equivalent, the shorthand form is preferred whenever
possible.

PDF conversion courtesy of www.appsdissected.com

1 @available(iOS 10.0, macOS 10.12, *)

2 class MyClass {

3 // class definition

4 }

An available attribute that specifies availability using a Swift version
number can’t additionally specify a declaration’s platform availability.
Instead, use separate available attributes to specify a Swift version
availability and one or more platform availabilities.

1 @available(swift 3.0.2)

2 @available(macOS 10.12, *)

3 struct MyStruct {

4 // struct definition

5 }

discardableResult
Apply this attribute to a function or method declaration to suppress
the compiler warning when the function or method that returns a
value is called without using its result.

dynamicCallable
Apply this attribute to a class, structure, enumeration, or protocol to
treat instances of the type as callable functions. The type must
implement either a dynamicallyCall(withArguments:) method, a
dynamicallyCall(withKeywordArguments:) method, or both.

You can call an instance of a dynamically callable type as if it’s a
function that takes any number of arguments.

PDF conversion courtesy of www.appsdissected.com

1 @dynamicCallable

2 struct TelephoneExchange {

3 func dynamicallyCall(withArguments phoneNumber:

[Int]) {

4 if phoneNumber == [4, 1, 1] {

5 print("Get Swift help on

forums.swift.org")

6 } else {

7 print("Unrecognized number")

8 }

9 }

10 }

11

12 let dial = TelephoneExchange()

13

14 // Use a dynamic method call.

15 dial(4, 1, 1)

16 // Prints "Get Swift help on forums.swift.org"

17

18 dial(8, 6, 7, 5, 3, 0, 9)

19 // Prints "Unrecognized number"

20

21 // Call the underlying method directly.

22 dial.dynamicallyCall(withArguments: [4, 1, 1])

PDF conversion courtesy of www.appsdissected.com

The declaration of the dynamicallyCall(withArguments:) method
must have a single parameter that conforms to the
ExpressibleByArrayLiteral protocol—like [Int] in the example
above. The return type can be any type.

You can include labels in a dynamic method call if you implement the
dynamicallyCall(withKeywordArguments:) method.

1 @dynamicCallable

2 struct Repeater {

3 func dynamicallyCall(withKeywordArguments pairs:

KeyValuePairs<String, Int>) -> String {

4 return pairs

5 .map { label, count in

6 repeatElement(label, count:

count).joined(separator: " ")

7 }

8 .joined(separator: "\n")

9 }

10 }

11

12 let repeatLabels = Repeater()

13 print(repeatLabels(a: 1, b: 2, c: 3, b: 2, a: 1))

14 // a

15 // b b

16 // c c c

17 // b b

18 // a

https://developer.apple.com/documentation/swift/expressiblebyarrayliteral

PDF conversion courtesy of www.appsdissected.com

The declaration of the dynamicallyCall(withKeywordArguments:)
method must have a single parameter that conforms to the
ExpressibleByDictionaryLiteral protocol, and the return type can
be any type. The parameter’s Key must be
ExpressibleByStringLiteral. The previous example uses
KeyValuePairs as the parameter type so that callers can include
duplicate parameter labels—a and b appear multiple times in the call
to repeat.

If you implement both dynamicallyCall methods,
dynamicallyCall(withKeywordArguments:) is called when the
method call includes keyword arguments. In all other cases,
dynamicallyCall(withArguments:) is called.

You can only call a dynamically callable instance with arguments and
a return value that match the types you specify in one of your
dynamicallyCall method implementations. The call in the following
example doesn’t compile because there isn’t an implementation of
dynamicallyCall(withArguments:) that takes
KeyValuePairs<String, String>.

 repeatLabels(a: "four") // Error

dynamicMemberLookup
Apply this attribute to a class, structure, enumeration, or protocol to
enable members to be looked up by name at runtime. The type must
implement a subscript(dynamicMember:) subscript.

In an explicit member expression, if there isn’t a corresponding
declaration for the named member, the expression is understood as a
call to the type’s subscript(dynamicMember:) subscript, passing
information about the member as the argument. The subscript can
accept a parameter that’s either a key path or a member name; if you

https://developer.apple.com/documentation/swift/expressiblebydictionaryliteral
https://developer.apple.com/documentation/swift/expressiblebydictionaryliteral/2294108-key
https://developer.apple.com/documentation/swift/expressiblebystringliteral
https://developer.apple.com/documentation/swift/keyvaluepairs

PDF conversion courtesy of www.appsdissected.com

implement both subscripts, the subscript that takes key path
argument is used.

An implementation of subscript(dynamicMember:) can accept key
paths using an argument of type KeyPath, WritableKeyPath, or
ReferenceWritableKeyPath. It can accept member names using an
argument of a type that conforms to the
ExpressibleByStringLiteral protocol—in most cases, String. The
subscript’s return type can be any type.

Dynamic member lookup by member name can be used to create a
wrapper type around data that can’t be type checked at compile time,
such as when bridging data from other languages into Swift. For
example:

https://developer.apple.com/documentation/swift/keypath
https://developer.apple.com/documentation/swift/writablekeypath
https://developer.apple.com/documentation/swift/referencewritablekeypath
https://developer.apple.com/documentation/swift/expressiblebystringliteral

PDF conversion courtesy of www.appsdissected.com

1 @dynamicMemberLookup

2 struct DynamicStruct {

3 let dictionary = ["someDynamicMember": 325,

4 "someOtherMember": 787]

5 subscript(dynamicMember member: String) -> Int {

6 return dictionary[member] ?? 1054

7 }

8 }

9 let s = DynamicStruct()

10

11 // Use dynamic member lookup.

12 let dynamic = s.someDynamicMember

13 print(dynamic)

14 // Prints "325"

15

16 // Call the underlying subscript directly.

17 let equivalent = s[dynamicMember:

"someDynamicMember"]

18 print(dynamic == equivalent)

19 // Prints "true"

Dynamic member lookup by key path can be used to implement a
wrapper type in a way that supports compile-time type checking. For
example:

PDF conversion courtesy of www.appsdissected.com

1 struct Point { var x, y: Int }

2

3 @dynamicMemberLookup

4 struct PassthroughWrapper<Value> {

5 var value: Value

6 subscript<T>(dynamicMember member:

KeyPath<Value, T>) -> T {

7 get { return value[keyPath: member] }

8 }

9 }

10

11 let point = Point(x: 381, y: 431)

12 let wrapper = PassthroughWrapper(value: point)

13 print(wrapper.x)

frozen
Apply this attribute to a structure or enumeration declaration to
restrict the kinds of changes you can make to the type. This attribute
is allowed only when compiling in library evolution mode. Future
versions of the library can’t change the declaration by adding,
removing, or reordering an enumeration’s cases or a structure’s
stored instance properties. These changes are allowed on nonfrozen
types, but they break ABI compatibility for frozen types.

N O T E

When the compiler isn’t in library evolution mode, all structures and
enumerations are implicitly frozen, and this attribute is ignored.

PDF conversion courtesy of www.appsdissected.com

In library evolution mode, code that interacts with members of
nonfrozen structures and enumerations is compiled in a way that
allows it to continue working without recompiling even if a future
version of the library adds, removes, or reorders some of that type’s
members. The compiler makes this possible using techniques like
looking up information at runtime and adding a layer of indirection.
Marking a structure or enumeration as frozen gives up this flexibility
to gain performance: Future versions of the library can make only
limited changes to the type, but the compiler can make additional
optimizations in code that interacts with the type’s members.

Frozen types, the types of the stored properties of frozen structures,
and the associated values of frozen enumeration cases must be
public or marked with the usableFromInline attribute. The properties
of a frozen structure can’t have property observers, and expressions
that provide the initial value for stored instance properties must follow
the same restrictions as inlinable functions, as discussed in inlinable.

To enable library evolution mode on the command line, pass the -
enable-library-evolution option to the Swift compiler. To enable it
in Xcode, set the “Build Libraries for Distribution” build setting
(BUILD_LIBRARY_FOR_DISTRIBUTION) to Yes, as described in Xcode
Help.

A switch statement over a frozen enumeration doesn’t require a
default case, as discussed in Switching Over Future Enumeration
Cases. Including a default or @unknown default case when
switching over a frozen enumeration produces a warning because
that code is never executed.

GKInspectable
Apply this attribute to expose a custom GameplayKit component
property to the SpriteKit editor UI. Applying this attribute also implies
the objc attribute.

https://help.apple.com/xcode/mac/current/#/dev04b3a04ba

PDF conversion courtesy of www.appsdissected.com

inlinable
Apply this attribute to a function, method, computed property,
subscript, convenience initializer, or deinitializer declaration to
expose that declaration’s implementation as part of the module’s
public interface. The compiler is allowed to replace calls to an
inlinable symbol with a copy of the symbol’s implementation at the
call site.

Inlinable code can interact with public symbols declared in any
module, and it can interact with internal symbols declared in the
same module that are marked with the usableFromInline attribute.
Inlinable code can’t interact with private or fileprivate symbols.

This attribute can’t be applied to declarations that are nested inside
functions or to fileprivate or private declarations. Functions and
closures that are defined inside an inlinable function are implicitly
inlinable, even though they can’t be marked with this attribute.

main
Apply this attribute to a structure, class, or enumeration declaration to
indicate that it contains the top-level entry point for program flow. The
type must provide a main type function that doesn’t take any
arguments and returns Void. For example:

1 @main

2 struct MyTopLevel {

3 static func main() {

4 // Top-level code goes here

5 }

6 }

PDF conversion courtesy of www.appsdissected.com

Another way to describe the requirements of the main attribute is that
the type you write this attribute on must satisfy the same
requirements as types that conform to the following hypothetical
protocol:

1 protocol ProvidesMain {

2 static func main() throws

3 }

The Swift code you compile to make an executable can contain at
most one top-level entry point, as discussed in Top-Level Code.

nonobjc
Apply this attribute to a method, property, subscript, or initializer
declaration to suppress an implicit objc attribute. The nonobjc
attribute tells the compiler to make the declaration unavailable in
Objective-C code, even though it’s possible to represent it in
Objective-C.

Applying this attribute to an extension has the same effect as
applying it to every member of that extension that isn’t explicitly
marked with the objc attribute.

You use the nonobjc attribute to resolve circularity for bridging
methods in a class marked with the objc attribute, and to allow
overloading of methods and initializers in a class marked with the
objc attribute.

A method marked with the nonobjc attribute can’t override a method
marked with the objc attribute. However, a method marked with the
objc attribute can override a method marked with the nonobjc
attribute. Similarly, a method marked with the nonobjc attribute can’t

PDF conversion courtesy of www.appsdissected.com

satisfy a protocol requirement for a method marked with the objc
attribute.

NSApplicationMain
Apply this attribute to a class to indicate that it’s the application
delegate. Using this attribute is equivalent to calling the
NSApplicationMain(_:_:) function.

If you don’t use this attribute, supply a main.swift file with code at the
top level that calls the NSApplicationMain(_:_:) function as follows:

1 import AppKit

2 NSApplicationMain(CommandLine.argc,

CommandLine.unsafeArgv)

The Swift code you compile to make an executable can contain at
most one top-level entry point, as discussed in Top-Level Code.

NSCopying
Apply this attribute to a stored variable property of a class. This
attribute causes the property’s setter to be synthesized with a copy of
the property’s value—returned by the copyWithZone(_:) method—
instead of the value of the property itself. The type of the property
must conform to the NSCopying protocol.

The NSCopying attribute behaves in a way similar to the Objective-C
copy property attribute.

NSManaged

PDF conversion courtesy of www.appsdissected.com

Apply this attribute to an instance method or stored variable property
of a class that inherits from NSManagedObject to indicate that Core
Data dynamically provides its implementation at runtime, based on
the associated entity description. For a property marked with the
NSManaged attribute, Core Data also provides the storage at runtime.
Applying this attribute also implies the objc attribute.

objc
Apply this attribute to any declaration that can be represented in
Objective-C—for example, nonnested classes, protocols, nongeneric
enumerations (constrained to integer raw-value types), properties
and methods (including getters and setters) of classes, protocols and
optional members of a protocol, initializers, and subscripts. The objc
attribute tells the compiler that a declaration is available to use in
Objective-C code.

Applying this attribute to an extension has the same effect as
applying it to every member of that extension that isn’t explicitly
marked with the nonobjc attribute.

The compiler implicitly adds the objc attribute to subclasses of any
class defined in Objective-C. However, the subclass must not be
generic, and must not inherit from any generic classes. You can
explicitly add the objc attribute to a subclass that meets these
criteria, to specify its Objective-C name as discussed below.
Protocols that are marked with the objc attribute can’t inherit from
protocols that aren’t marked with this attribute.

The objc attribute is also implicitly added in the following cases:

The declaration is an override in a subclass, and the
superclass’s declaration has the objc attribute.

The declaration satisfies a requirement from a protocol that has
the objc attribute.

PDF conversion courtesy of www.appsdissected.com

The declaration has the IBAction, IBSegueAction, IBOutlet,
IBDesignable, IBInspectable, NSManaged, or GKInspectable
attribute.

If you apply the objc attribute to an enumeration, each enumeration
case is exposed to Objective-C code as the concatenation of the
enumeration name and the case name. The first letter of the case
name is capitalized. For example, a case named venus in a Swift
Planet enumeration is exposed to Objective-C code as a case
named PlanetVenus.

The objc attribute optionally accepts a single attribute argument,
which consists of an identifier. The identifier specifies the name to be
exposed to Objective-C for the entity that the objc attribute applies to.
You can use this argument to name classes, enumerations,
enumeration cases, protocols, methods, getters, setters, and
initializers. If you specify the Objective-C name for a class, protocol,
or enumeration, include a three-letter prefix on the name, as
described in Conventions in Programming with Objective-C. The
example below exposes the getter for the enabled property of the
ExampleClass to Objective-C code as isEnabled rather than just as
the name of the property itself.

1 class ExampleClass: NSObject {

2 @objc var enabled: Bool {

3 @objc(isEnabled) get {

4 // Return the appropriate value

5 }

6 }

7 }

For more information, see Importing Swift into Objective-C.

https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Conventions/Conventions.html#//apple_ref/doc/uid/TP40011210-CH10-SW1
https://developer.apple.com/library/content/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html#//apple_ref/doc/uid/TP40011210
https://developer.apple.com/documentation/swift/imported_c_and_objective-c_apis/importing_swift_into_objective-c

PDF conversion courtesy of www.appsdissected.com

N O T E

The argument to the objc attribute can also change the runtime name for that
declaration. You use the runtime name when calling functions that interact
with the Objective-C runtime, like NSClassFromString, and when specifying
class names in an app’s Info.plist file. If you specify a name by passing an
argument, that name is used as the name in Objective-C code and as the
runtime name. If you omit the argument, the name used in Objective-C code
matches the name in Swift code, and the runtime name follows the normal
Swift compiler convention of name mangling.

objcMembers
Apply this attribute to a class declaration, to implicitly apply the objc
attribute to all Objective-C compatible members of the class, its
extensions, its subclasses, and all of the extensions of its subclasses.

Most code should use the objc attribute instead, to expose only the
declarations that are needed. If you need to expose many
declarations, you can group them in an extension that has the objc
attribute. The objcMembers attribute is a convenience for libraries that
make heavy use of the introspection facilities of the Objective-C
runtime. Applying the objc attribute when it isn’t needed can increase
your binary size and adversely affect performance.

propertyWrapper
Apply this attribute to a class, structure, or enumeration declaration to
use that type as a property wrapper. When you apply this attribute to
a type, you create a custom attribute with the same name as the type.
Apply that new attribute to a property of a class, structure, or
enumeration to wrap access to the property through an instance of
the wrapper type; apply the attribute to a local stored variable
declaration to wrap access to the variable the same way. Computed
variables, global variables, and constants can’t use property
wrappers.

https://developer.apple.com/documentation/foundation/1395135-nsclassfromstring

PDF conversion courtesy of www.appsdissected.com

The wrapper must define a wrappedValue instance property. The
wrapped value of the property is the value that the getter and setter
for this property expose. In most cases, wrappedValue is a computed
value, but it can be a stored value instead. The wrapper defines and
manages any underlying storage needed by its wrapped value. The
compiler synthesizes storage for the instance of the wrapper type by
prefixing the name of the wrapped property with an underscore (_)—
for example, the wrapper for someProperty is stored as
_someProperty. The synthesized storage for the wrapper has an
access control level of private.

A property that has a property wrapper can include willSet and
didSet blocks, but it can’t override the compiler-synthesized get or
set blocks.

Swift provides two forms of syntactic sugar for initialization of a
property wrapper. You can use assignment syntax in the definition of
a wrapped value to pass the expression on the right-hand side of the
assignment as the argument to the wrappedValue parameter of the
property wrapper’s initializer. You can also provide arguments to the
attribute when you apply it to a property, and those arguments are
passed to the property wrapper’s initializer. For example, in the code
below, SomeStruct calls each of the initializers that SomeWrapper
defines.

PDF conversion courtesy of www.appsdissected.com

1 @propertyWrapper

2 struct SomeWrapper {

3 var wrappedValue: Int

4 var someValue: Double

5 init() {

6 self.wrappedValue = 100

7 self.someValue = 12.3

8 }

9 init(wrappedValue: Int) {

10 self.wrappedValue = wrappedValue

11 self.someValue = 45.6

12 }

13 init(wrappedValue value: Int, custom: Double) {

14 self.wrappedValue = value

15 self.someValue = custom

16 }

17 }

18

19 struct SomeStruct {

20 // Uses init()

21 @SomeWrapper var a: Int

22

23 // Uses init(wrappedValue:)

24 @SomeWrapper var b = 10

25

26 // Both use init(wrappedValue:custom:)

PDF conversion courtesy of www.appsdissected.com

27 @SomeWrapper(custom: 98.7) var c = 30

28 @SomeWrapper(wrappedValue: 30, custom: 98.7) var

d

29 }

The projected value for a wrapped property is a second value that a
property wrapper can use to expose additional functionality. The
author of a property wrapper type is responsible for determining the
meaning of its projected value and defining the interface that the
projected value exposes. To project a value from a property wrapper,
define a projectedValue instance property on the wrapper type. The
compiler synthesizes an identifier for the projected value by prefixing
the name of the wrapped property with a dollar sign ($)—for example,
the projected value for someProperty is $someProperty. The projected
value has the same access control level as the original wrapped
property.

PDF conversion courtesy of www.appsdissected.com

1 @propertyWrapper

2 struct WrapperWithProjection {

3 var wrappedValue: Int

4 var projectedValue: SomeProjection {

5 return SomeProjection(wrapper: self)

6 }

7 }

8 struct SomeProjection {

9 var wrapper: WrapperWithProjection

10 }

11

12 struct SomeStruct {

13 @WrapperWithProjection var x = 123

14 }

15 let s = SomeStruct()

16 s.x // Int value

17 s.$x // SomeProjection value

18 s.$x.wrapper // WrapperWithProjection value

resultBuilder
Apply this attribute to a class, structure, enumeration to use that type
as a result builder. A result builder is a type that builds a nested data
structure step by step. You use result builders to implement a
domain-specific language (DSL) for creating nested data structures in
a natural, declarative way. For an example of how to use the
resultBuilder attribute, see Result Builders.

PDF conversion courtesy of www.appsdissected.com

Result-Building Methods

A result builder implements static methods described below. Because
all of the result builder’s functionality is exposed through static
methods, you don’t ever initialize an instance of that type. The
buildBlock(_:) method is required; the other methods—which
enable additional functionality in the DSL—are optional. The
declaration of a result builder type doesn’t actually have to include
any protocol conformance.

The description of the static methods uses three types as
placeholders. The type Expression is a placeholder for the type of the
result builder’s input, Component is a placeholder for the type of a
partial result, and FinalResult is a placeholder for the type of the
result that the result builder produces. You replace these types with
the actual types that your result builder uses. If your result-building
methods don’t specify a type for Expression or FinalResult, they
default to being the same as Component.

The result-building methods are as follows:

static func buildBlock(_ components: Component...) ->
Component

Combines an array of partial results into a single partial result. A
result builder must implement this method.

static func buildOptional(_ component: Component?) ->
Component

Builds a partial result from a partial result that can be nil.
Implement this method to support if statements that don’t
include an else clause.

static func buildEither(first: Component) -> Component

PDF conversion courtesy of www.appsdissected.com

Builds a partial result whose value varies depending on some
condition. Implement both this method and
buildEither(second:) to support switch statements and if
statements that include an else clause.

static func buildEither(second: Component) -> Component

Builds a partial result whose value varies depending on some
condition. Implement both this method and buildEither(first:)
to support switch statements and if statements that include an
else clause.

static func buildArray(_ components: [Component]) ->
Component

Builds a partial result from an array of partial results. Implement
this method to support for loops.

static func buildExpression(_ expression: Expression) ->
Component

Builds a partial result from an expression. You can implement
this method to perform preprocessing—for example, converting
expressions to an internal type—or to provide additional
information for type inference at use sites.

static func buildFinalResult(_ component: Component) ->
FinalResult

Builds a final result from a partial result. You can implement this
method as part of a result builder that uses a different type for
partial and final results, or to perform other postprocessing on a
result before returning it.

static func buildLimitedAvailability(_ component: Component)
-> Component

PDF conversion courtesy of www.appsdissected.com

Builds a partial result that propagates or erases type information
outside a compiler-control statement that performs an availability
check. You can use this to erase type information that varies
between the conditional branches.

For example, the code below defines a simple result builder that
builds an array of integers. This code defines Component and
Expression as type aliases, to make it easier to match the examples
below to the list of methods above.

PDF conversion courtesy of www.appsdissected.com

1 @resultBuilder

2 struct ArrayBuilder {

3 typealias Component = [Int]

4 typealias Expression = Int

5 static func buildExpression(_ element:

Expression) -> Component {

6 return [element]

7 }

8 static func buildOptional(_ component:

Component?) -> Component {

9 guard let component = component else {

return [] }

10 return component

11 }

12 static func buildEither(first component:

Component) -> Component {

13 return component

14 }

15 static func buildEither(second component:

Component) -> Component {

16 return component

17 }

18 static func buildArray(_ components:

[Component]) -> Component {

19 return Array(components.joined())

20 }

PDF conversion courtesy of www.appsdissected.com

21 static func buildBlock(_ components:

Component...) -> Component {

22 return Array(components.joined())

23 }

24 }

Result Transformations

The following syntactic transformations are applied recursively to turn
code that uses result-builder syntax into code that calls the static
methods of the result builder type:

If the result builder has a buildExpression(_:) method, each
expression becomes a call to that method. This transformation is
always first. For example, the following declarations are
equivalent:

1 @ArrayBuilder var builderNumber: [Int] { 10 }

2 var manualNumber =

ArrayBuilder.buildExpression(10)

An assignment statement is transformed like an expression, but
is understood to evaluate to (). You can define an overload of
buildExpression(_:) that takes an argument of type () to
handle assignments specifically.

A branch statement that checks an availability condition
becomes a call to the buildLimitedAvailability(_:) method.
This transformation happens before the transformation into a call
to buildEither(first:), buildEither(second:), or
buildOptional(_:). You use the buildLimitedAvailability(_:)
method to erase type information that changes depending on

PDF conversion courtesy of www.appsdissected.com

which branch is taken. For example, the buildEither(first:)
and buildEither(second:) methods below use a generic type
that captures type information about both branches.

PDF conversion courtesy of www.appsdissected.com

1 protocol Drawable {

2 func draw() -> String

3 }

4 struct Text: Drawable {

5 var content: String

6 init(_ content: String) { self.content =

content }

7 func draw() -> String { return content }

8 }

9 struct Line<D: Drawable>: Drawable {

10 var elements: [D]

11 func draw() -> String {

12 return elements.map { $0.draw()

}.joined(separator: "")

13 }

14 }

15 struct DrawEither<First: Drawable, Second:

Drawable>: Drawable {

16 var content: Drawable

17 func draw() -> String { return

content.draw() }

18 }

19

20 @resultBuilder

21 struct DrawingBuilder {

PDF conversion courtesy of www.appsdissected.com

22 static func buildBlock<D: Drawable>(_

components: D...) -> Line<D> {

23 return Line(elements: components)

24 }

25 static func buildEither<First, Second>

(first: First)

26 -> DrawEither<First, Second> {

27 return DrawEither(content: first)

28 }

29 static func buildEither<First, Second>

(second: Second)

30 -> DrawEither<First, Second> {

31 return DrawEither(content: second)

32 }

33 }

However, this approach causes a problem in code that has
availability checks:

PDF conversion courtesy of www.appsdissected.com

1 @available(macOS 99, *)

2 struct FutureText: Drawable {

3 var content: String

4 init(_ content: String) { self.content =

content }

5 func draw() -> String { return content }

6 }

7 @DrawingBuilder var brokenDrawing: Drawable {

8 if #available(macOS 99, *) {

9 FutureText("Inside.future") // Problem

10 } else {

11 Text("Inside.present")

12 }

13 }

14 // The type of brokenDrawing is

Line<DrawEither<Line<FutureText>,

Line<Text>>>

In the code above, FutureText appears as part of the type of
brokenDrawing because it’s one of the types in the DrawEither
generic type. This could cause your program to crash if
FutureText isn’t available at runtime, even in the case where that
type is explicitly not being used.

To solve this problem, implement a
buildLimitedAvailability(_:) method to erase type
information. For example, the code below builds an AnyDrawable
value from its availability check.

PDF conversion courtesy of www.appsdissected.com

1 struct AnyDrawable: Drawable {

2 var content: Drawable

3 func draw() -> String { return content.draw()

}

4 }

5 extension DrawingBuilder {

6 static func buildLimitedAvailability(_

content: Drawable) -> AnyDrawable {

7 return AnyDrawable(content: content)

8 }

9 }

10

11 @DrawingBuilder var typeErasedDrawing: Drawable

{

12 if #available(macOS 99, *) {

13 FutureText("Inside.future")

14 } else {

15 Text("Inside.present")

16 }

17 }

18 // The type of typeErasedDrawing is

Line<DrawEither<AnyDrawable, Line<Text>>>

A branch statement becomes a series of nested calls to the
buildEither(first:) and buildEither(second:) methods. The
statements’ conditions and cases are mapped onto the leaf
nodes of a binary tree, and the statement becomes a nested call

PDF conversion courtesy of www.appsdissected.com

to the buildEither methods following the path to that leaf node
from the root node.

For example, if you write a switch statement that has three
cases, the compiler uses a binary tree with three leaf nodes.
Likewise, because the path from the root node to the second
case is “second child” and then “first child”, that case becomes a
nested call like buildEither(first: buildEither(second: ...
)). The following declarations are equivalent:

PDF conversion courtesy of www.appsdissected.com

1 let someNumber = 19

2 @ArrayBuilder var builderConditional: [Int] {

3 if someNumber < 12 {

4 31

5 } else if someNumber == 19 {

6 32

7 } else {

8 33

9 }

10 }

11

12 var manualConditional: [Int]

13 if someNumber < 12 {

14 let partialResult =

ArrayBuilder.buildExpression(31)

15 let outerPartialResult =

ArrayBuilder.buildEither(first:

partialResult)

16 manualConditional =

ArrayBuilder.buildEither(first:

outerPartialResult)

17 } else if someNumber == 19 {

18 let partialResult =

ArrayBuilder.buildExpression(32)

19 let outerPartialResult =

ArrayBuilder.buildEither(second:

PDF conversion courtesy of www.appsdissected.com

partialResult)

20 manualConditional =

ArrayBuilder.buildEither(first:

outerPartialResult)

21 } else {

22 let partialResult =

ArrayBuilder.buildExpression(33)

23 manualConditional =

ArrayBuilder.buildEither(second:

partialResult)

24 }

A branch statement that might not produce a value, like an if
statement without an else clause, becomes a call to
buildOptional(_:). If the if statement’s condition is satisfied, its
code block is transformed and passed as the argument;
otherwise, buildOptional(_:) is called with nil as its argument.
For example, the following declarations are equivalent:

PDF conversion courtesy of www.appsdissected.com

1 @ArrayBuilder var builderOptional: [Int] {

2 if (someNumber % 2) == 1 { 20 }

3 }

4

5 var partialResult: [Int]? = nil

6 if (someNumber % 2) == 1 {

7 partialResult =

ArrayBuilder.buildExpression(20)

8 }

9 var manualOptional =

ArrayBuilder.buildOptional(partialResult)

A code block or do statement becomes a call to the
buildBlock(_:) method. Each of the statements inside of the
block is transformed, one at a time, and they become the
arguments to the buildBlock(_:) method. For example, the
following declarations are equivalent:

PDF conversion courtesy of www.appsdissected.com

1 @ArrayBuilder var builderBlock: [Int] {

2 100

3 200

4 300

5 }

6

7 var manualBlock = ArrayBuilder.buildBlock(

8 ArrayBuilder.buildExpression(100),

9 ArrayBuilder.buildExpression(200),

10 ArrayBuilder.buildExpression(300)

11)

A for loop becomes a temporary variable, a for loop, and call to
the buildArray(_:) method. The new for loop iterates over the
sequence and appends each partial result to that array. The
temporary array is passed as the argument in the
buildArray(_:) call. For example, the following declarations are
equivalent:

PDF conversion courtesy of www.appsdissected.com

1 @ArrayBuilder var builderArray: [Int] {

2 for i in 5...7 {

3 100 + i

4 }

5 }

6

7 var temporary: [[Int]] = []

8 for i in 5...7 {

9 let partialResult =

ArrayBuilder.buildExpression(100 + i)

10 temporary.append(partialResult)

11 }

12 let manualArray =

ArrayBuilder.buildArray(temporary)

If the result builder has a buildFinalResult(_:) method, the
final result becomes a call to that method. This transformation is
always last.

Although the transformation behavior is described in terms of
temporary variables, using a result builder doesn’t actually create any
new declarations that are visible from the rest of your code.

You can’t use break, continue, defer, guard, or return statements,
while statements, or do-catch statements in the code that a result
builder transforms.

The transformation process doesn’t change declarations in the code,
which lets you use temporary constants and variables to build up
expressions piece by piece. It also doesn’t change throw statements,

PDF conversion courtesy of www.appsdissected.com

compile-time diagnostic statements, or closures that contain a return
statement.

Whenever possible, transformations are coalesced. For example, the
expression 4 + 5 * 6 becomes buildExpression(4 + 5 * 6) rather
multiple calls to that function. Likewise, nested branch statements
become a single binary tree of calls to the buildEither methods.

Custom Result-Builder Attributes

Creating a result builder type creates a custom attribute with the
same name. You can apply that attribute in the following places:

On a function declaration, the result builder builds the body of the
function.

On a variable or subscript declaration that includes a getter, the
result builder builds the body of the getter.

On a parameter in a function declaration, the result builder builds
the body of a closure that’s passed as the corresponding
argument.

Applying a result builder attribute doesn’t impact ABI compatibility.
Applying a result builder attribute to a parameter makes that attribute
part of the function’s interface, which can effect source compatibility.

requires_stored_property_inits
Apply this attribute to a class declaration to require all stored
properties within the class to provide default values as part of their
definitions. This attribute is inferred for any class that inherits from
NSManagedObject.

PDF conversion courtesy of www.appsdissected.com

testable
Apply this attribute to an import declaration to import that module
with changes to its access control that simplify testing the module’s
code. Entities in the imported module that are marked with the
internal access-level modifier are imported as if they were declared
with the public access-level modifier. Classes and class members
that are marked with the internal or public access-level modifier are
imported as if they were declared with the open access-level modifier.
The imported module must be compiled with testing enabled.

UIApplicationMain
Apply this attribute to a class to indicate that it’s the application
delegate. Using this attribute is equivalent to calling the
UIApplicationMain function and passing this class’s name as the
name of the delegate class.

If you don’t use this attribute, supply a main.swift file with code at the
top level that calls the UIApplicationMain(_:_:_:_:) function. For
example, if your app uses a custom subclass of UIApplication as its
principal class, call the UIApplicationMain(_:_:_:_:) function
instead of using this attribute.

The Swift code you compile to make an executable can contain at
most one top-level entry point, as discussed in Top-Level Code.

unchecked
Apply this attribute to a protocol type as part of a type declaration’s
list of adopted protocols to turn off enforcement of that protocol’s
requirements.

The only supported protocol is Sendable.

https://developer.apple.com/documentation/uikit/1622933-uiapplicationmain
https://developer.apple.com/documentation/swift/sendable

PDF conversion courtesy of www.appsdissected.com

usableFromInline
Apply this attribute to a function, method, computed property,
subscript, initializer, or deinitializer declaration to allow that symbol to
be used in inlinable code that’s defined in the same module as the
declaration. The declaration must have the internal access-level
modifier. A structure or class marked usableFromInline can use only
types that are public or usableFromInline for its properties. An
enumeration marked usableFromInline can use only types that are
public or usableFromInline for the raw values and associated values
of its cases.

Like the public access-level modifier, this attribute exposes the
declaration as part of the module’s public interface. Unlike public, the
compiler doesn’t allow declarations marked with usableFromInline to
be referenced by name in code outside the module, even though the
declaration’s symbol is exported. However, code outside the module
might still be able to interact with the declaration’s symbol by using
runtime behavior.

Declarations marked with the inlinable attribute are implicitly usable
from inlinable code. Although either inlinable or usableFromInline
can be applied to internal declarations, applying both attributes is
an error.

warn_unqualified_access
Apply this attribute to a top-level function, instance method, or class
or static method to trigger warnings when that function or method is
used without a preceding qualifier, such as a module name, type
name, or instance variable or constant. Use this attribute to help
discourage ambiguity between functions with the same name that are
accessible from the same scope.

For example, the Swift standard library includes both a top-level
min(_:_:) function and a min() method for sequences with
comparable elements. The sequence method is declared with the

https://developer.apple.com/documentation/swift/1538339-min/
https://developer.apple.com/documentation/swift/sequence/1641174-min

PDF conversion courtesy of www.appsdissected.com

warn_unqualified_access attribute to help reduce confusion when
attempting to use one or the other from within a Sequence extension.

Declaration Attributes Used by Interface Builder
Interface Builder attributes are declaration attributes used by
Interface Builder to synchronize with Xcode. Swift provides the
following Interface Builder attributes: IBAction, IBSegueAction,
IBOutlet, IBDesignable, and IBInspectable. These attributes are
conceptually the same as their Objective-C counterparts.

You apply the IBOutlet and IBInspectable attributes to property
declarations of a class. You apply the IBAction and IBSegueAction
attribute to method declarations of a class and the IBDesignable
attribute to class declarations.

Applying the IBAction, IBSegueAction, IBOutlet, IBDesignable, or
IBInspectable attribute also implies the objc attribute.

Type Attributes
You can apply type attributes to types only.

autoclosure
Apply this attribute to delay the evaluation of an expression by
automatically wrapping that expression in a closure with no
arguments. You apply it to a parameter’s type in a function or method
declaration, for a parameter whose type is a function type that takes
no arguments and that returns a value of the type of the expression.
For an example of how to use the autoclosure attribute, see
Autoclosures and Function Type.

PDF conversion courtesy of www.appsdissected.com

convention
Apply this attribute to the type of a function to indicate its calling
conventions.

The convention attribute always appears with one of the following
arguments:

The swift argument indicates a Swift function reference. This is
the standard calling convention for function values in Swift.

The block argument indicates an Objective-C compatible block
reference. The function value is represented as a reference to
the block object, which is an id-compatible Objective-C object
that embeds its invocation function within the object. The
invocation function uses the C calling convention.

The c argument indicates a C function reference. The function
value carries no context and uses the C calling convention.

With a few exceptions, a function of any calling convention can be
used when a function any other calling convention is needed. A
nongeneric global function, a local function that doesn’t capture any
local variables, or a closure that doesn’t capture any local variables
can be converted to the C calling convention. Other Swift functions
can’t be converted to the C calling convention. A function with the
Objective-C block calling convention can’t be converted to the C
calling convention.

escaping
Apply this attribute to a parameter’s type in a function or method
declaration to indicate that the parameter’s value can be stored for
later execution. This means that the value is allowed to outlive the
lifetime of the call. Function type parameters with the escaping type
attribute require explicit use of self. for properties or methods. For

PDF conversion courtesy of www.appsdissected.com

an example of how to use the escaping attribute, see Escaping
Closures.

Sendable
Apply this attribute to the type of a function to indicate that the
function or closure is sendable. Applying this attribute to a function
type has the same meaning as conforming a non–function type to the
Sendable protocol.

This attribute is inferred on functions and closures if the function or
closure is used in a context that expects a sendable value, and the
function or closure satisfies the requirements to be sendable.

A sendable function type is a subtype of the corresponding
nonsendable function type.

Switch Case Attributes
You can apply switch case attributes to switch cases only.

unknown
Apply this attribute to a switch case to indicate that it isn’t expected to
be matched by any case of the enumeration that’s known at the time
the code is compiled. For an example of how to use the unknown
attribute, see Switching Over Future Enumeration Cases.

https://developer.apple.com/documentation/swift/sendable

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A N AT T R I B U T E

attribute → @ attribute-name attribute-argument-clause opt
attribute-name → identifier
attribute-argument-clause → (balanced-tokens opt)
attributes → attribute attributes opt
balanced-tokens → balanced-token balanced-tokens opt
balanced-token → (balanced-tokens opt)
balanced-token → [balanced-tokens opt]
balanced-token → { balanced-tokens opt }
balanced-token → Any identifier, keyword, literal, or operator
balanced-token → Any punctuation except (,) , [,] , { , or }

PDF conversion courtesy of www.appsdissected.com

Patterns

A pattern represents the structure of a single value or a composite
value. For example, the structure of a tuple (1, 2) is a comma-
separated list of two elements. Because patterns represent the
structure of a value rather than any one particular value, you can
match them with a variety of values. For instance, the pattern (x, y)
matches the tuple (1, 2) and any other two-element tuple. In
addition to matching a pattern with a value, you can extract part or all
of a composite value and bind each part to a constant or variable
name.

In Swift, there are two basic kinds of patterns: those that successfully
match any kind of value, and those that may fail to match a specified
value at runtime.

The first kind of pattern is used for destructuring values in simple
variable, constant, and optional bindings. These include wildcard
patterns, identifier patterns, and any value binding or tuple patterns
containing them. You can specify a type annotation for these patterns
to constrain them to match only values of a certain type.

The second kind of pattern is used for full pattern matching, where
the values you’re trying to match against may not be there at runtime.
These include enumeration case patterns, optional patterns,
expression patterns, and type-casting patterns. You use these
patterns in a case label of a switch statement, a catch clause of a do
statement, or in the case condition of an if, while, guard, or for-in
statement.

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A PAT T E R N

pattern → wildcard-pattern type-annotation opt
pattern → identifier-pattern type-annotation opt
pattern → value-binding-pattern
pattern → tuple-pattern type-annotation opt
pattern → enum-case-pattern
pattern → optional-pattern
pattern → type-casting-pattern
pattern → expression-pattern

Wildcard Pattern
A wildcard pattern matches and ignores any value and consists of an
underscore (_). Use a wildcard pattern when you don’t care about the
values being matched against. For example, the following code
iterates through the closed range 1...3, ignoring the current value of
the range on each iteration of the loop:

1 for _ in 1...3 {

2 // Do something three times.

3 }

G R A M M A R O F A W I L D C A R D PAT T E R N

wildcard-pattern → _

Identifier Pattern
An identifier pattern matches any value and binds the matched value
to a variable or constant name. For example, in the following constant

PDF conversion courtesy of www.appsdissected.com

declaration, someValue is an identifier pattern that matches the value
42 of type Int:

 let someValue = 42

When the match succeeds, the value 42 is bound (assigned) to the
constant name someValue.

When the pattern on the left-hand side of a variable or constant
declaration is an identifier pattern, the identifier pattern is implicitly a
subpattern of a value-binding pattern.

G R A M M A R O F A N I D E N T I F I E R PAT T E R N

identifier-pattern → identifier

Value-Binding Pattern
A value-binding pattern binds matched values to variable or constant
names. Value-binding patterns that bind a matched value to the name
of a constant begin with the let keyword; those that bind to the name
of variable begin with the var keyword.

Identifiers patterns within a value-binding pattern bind new named
variables or constants to their matching values. For example, you can
decompose the elements of a tuple and bind the value of each
element to a corresponding identifier pattern.

PDF conversion courtesy of www.appsdissected.com

1 let point = (3, 2)

2 switch point {

3 // Bind x and y to the elements of point.

4 case let (x, y):

5 print("The point is at (\(x), \(y)).")

6 }

7 // Prints "The point is at (3, 2)."

In the example above, let distributes to each identifier pattern in the
tuple pattern (x, y). Because of this behavior, the switch cases case
let (x, y): and case (let x, let y): match the same values.

G R A M M A R O F A VA L U E - B I N D I N G PAT T E R N

value-binding-pattern → var pattern | let pattern

Tuple Pattern
A tuple pattern is a comma-separated list of zero or more patterns,
enclosed in parentheses. Tuple patterns match values of
corresponding tuple types.

You can constrain a tuple pattern to match certain kinds of tuple types
by using type annotations. For example, the tuple pattern (x, y):
(Int, Int) in the constant declaration let (x, y): (Int, Int) =
(1, 2) matches only tuple types in which both elements are of type
Int.

When a tuple pattern is used as the pattern in a for-in statement or
in a variable or constant declaration, it can contain only wildcard
patterns, identifier patterns, optional patterns, or other tuple patterns

PDF conversion courtesy of www.appsdissected.com

that contain those. For example, the following code isn’t valid
because the element 0 in the tuple pattern (x, 0) is an expression
pattern:

1 let points = [(0, 0), (1, 0), (1, 1), (2, 0), (2,

1)]

2 // This code isn't valid.

3 for (x, 0) in points {

4 /* ... */

5 }

The parentheses around a tuple pattern that contains a single
element have no effect. The pattern matches values of that single
element’s type. For example, the following are equivalent:

1 let a = 2 // a: Int = 2

2 let (a) = 2 // a: Int = 2

3 let (a): Int = 2 // a: Int = 2

G R A M M A R O F A T U P L E PAT T E R N

tuple-pattern → (tuple-pattern-element-list opt)
tuple-pattern-element-list → tuple-pattern-element | tuple-pattern-element

, tuple-pattern-element-list
tuple-pattern-element → pattern | identifier : pattern

Enumeration Case Pattern
An enumeration case pattern matches a case of an existing
enumeration type. Enumeration case patterns appear in switch

PDF conversion courtesy of www.appsdissected.com

statement case labels and in the case conditions of if, while, guard,
and for-in statements.

If the enumeration case you’re trying to match has any associated
values, the corresponding enumeration case pattern must specify a
tuple pattern that contains one element for each associated value.
For an example that uses a switch statement to match enumeration
cases containing associated values, see Associated Values.

An enumeration case pattern also matches values of that case
wrapped in an optional. This simplified syntax lets you omit an
optional pattern. Note that, because Optional is implemented as an
enumeration, .none and .some can appear in the same switch as the
cases of the enumeration type.

1 enum SomeEnum { case left, right }

2 let x: SomeEnum? = .left

3 switch x {

4 case .left:

5 print("Turn left")

6 case .right:

7 print("Turn right")

8 case nil:

9 print("Keep going straight")

10 }

11 // Prints "Turn left"

G R A M M A R O F A N E N U M E R AT I O N C A S E PAT T E R N

enum-case-pattern → type-identifier opt . enum-case-name tuple-
pattern opt

PDF conversion courtesy of www.appsdissected.com

Optional Pattern
An optional pattern matches values wrapped in a some(Wrapped)
case of an Optional<Wrapped> enumeration. Optional patterns
consist of an identifier pattern followed immediately by a question
mark and appear in the same places as enumeration case patterns.

Because optional patterns are syntactic sugar for Optional
enumeration case patterns, the following are equivalent:

1 let someOptional: Int? = 42

2 // Match using an enumeration case pattern.

3 if case .some(let x) = someOptional {

4 print(x)

5 }

6

7 // Match using an optional pattern.

8 if case let x? = someOptional {

9 print(x)

10 }

The optional pattern provides a convenient way to iterate over an
array of optional values in a for-in statement, executing the body of
the loop only for non-nil elements.

PDF conversion courtesy of www.appsdissected.com

1 let arrayOfOptionalInts: [Int?] = [nil, 2, 3, nil,

5]

2 // Match only non-nil values.

3 for case let number? in arrayOfOptionalInts {

4 print("Found a \(number)")

5 }

6 // Found a 2

7 // Found a 3

8 // Found a 5

G R A M M A R O F A N O P T I O N A L PAT T E R N

optional-pattern → identifier-pattern ?

Type-Casting Patterns
There are two type-casting patterns, the is pattern and the as
pattern. The is pattern appears only in switch statement case labels.
The is and as patterns have the following form:

 is type

 pattern as type

The is pattern matches a value if the type of that value at runtime is
the same as the type specified in the right-hand side of the is pattern
—or a subclass of that type. The is pattern behaves like the is
operator in that they both perform a type cast but discard the returned
type.

PDF conversion courtesy of www.appsdissected.com

The as pattern matches a value if the type of that value at runtime is
the same as the type specified in the right-hand side of the as pattern
—or a subclass of that type. If the match succeeds, the type of the
matched value is cast to the pattern specified in the right-hand side of
the as pattern.

For an example that uses a switch statement to match values with is
and as patterns, see Type Casting for Any and AnyObject.

G R A M M A R O F A T Y P E C A S T I N G PAT T E R N

type-casting-pattern → is-pattern | as-pattern
is-pattern → is type
as-pattern → pattern as type

Expression Pattern
An expression pattern represents the value of an expression.
Expression patterns appear only in switch statement case labels.

The expression represented by the expression pattern is compared
with the value of an input expression using the Swift standard library
~= operator. The matches succeeds if the ~= operator returns true.
By default, the ~= operator compares two values of the same type
using the == operator. It can also match a value with a range of
values, by checking whether the value is contained within the range,
as the following example shows.

PDF conversion courtesy of www.appsdissected.com

1 let point = (1, 2)

2 switch point {

3 case (0, 0):

4 print("(0, 0) is at the origin.")

5 case (-2...2, -2...2):

6 print("(\(point.0), \(point.1)) is near the

origin.")

7 default:

8 print("The point is at (\(point.0), \

(point.1)).")

9 }

10 // Prints "(1, 2) is near the origin."

You can overload the ~= operator to provide custom expression
matching behavior. For example, you can rewrite the above example
to compare the point expression with a string representations of
points.

PDF conversion courtesy of www.appsdissected.com

1 // Overload the ~= operator to match a string with

an integer.

2 func ~= (pattern: String, value: Int) -> Bool {

3 return pattern == "\(value)"

4 }

5 switch point {

6 case ("0", "0"):

7 print("(0, 0) is at the origin.")

8 default:

9 print("The point is at (\(point.0), \

(point.1)).")

10 }

11 // Prints "The point is at (1, 2)."

G R A M M A R O F A N E X P R E S S I O N PAT T E R N

expression-pattern → expression

PDF conversion courtesy of www.appsdissected.com

Generic Parameters and Arguments

This chapter describes parameters and arguments for generic types,
functions, and initializers. When you declare a generic type, function,
subscript, or initializer, you specify the type parameters that the
generic type, function, or initializer can work with. These type
parameters act as placeholders that are replaced by actual concrete
type arguments when an instance of a generic type is created or a
generic function or initializer is called.

For an overview of generics in Swift, see Generics.

Generic Parameter Clause
A generic parameter clause specifies the type parameters of a
generic type or function, along with any associated constraints and
requirements on those parameters. A generic parameter clause is
enclosed in angle brackets (<>) and has the following form:

 < generic parameter list >

The generic parameter list is a comma-separated list of generic
parameters, each of which has the following form:

 type parameter : constraint

A generic parameter consists of a type parameter followed by an
optional constraint. A type parameter is simply the name of a
placeholder type (for example, T, U, V, Key, Value, and so on). You
have access to the type parameters (and any of their associated

PDF conversion courtesy of www.appsdissected.com

types) in the rest of the type, function, or initializer declaration,
including in the signature of the function or initializer.

The constraint specifies that a type parameter inherits from a specific
class or conforms to a protocol or protocol composition. For example,
in the generic function below, the generic parameter T: Comparable
indicates that any type argument substituted for the type parameter T
must conform to the Comparable protocol.

1 func simpleMax<T: Comparable>(_ x: T, _ y: T) -> T {

2 if x < y {

3 return y

4 }

5 return x

6 }

Because Int and Double, for example, both conform to the
Comparable protocol, this function accepts arguments of either type.
In contrast with generic types, you don’t specify a generic argument
clause when you use a generic function or initializer. The type
arguments are instead inferred from the type of the arguments
passed to the function or initializer.

1 simpleMax(17, 42) // T is inferred to be Int

2 simpleMax(3.14159, 2.71828) // T is inferred to be

Double

Generic Where Clauses
You can specify additional requirements on type parameters and their
associated types by including a generic where clause right before the
opening curly brace of a type or function’s body. A generic where

PDF conversion courtesy of www.appsdissected.com

clause consists of the where keyword, followed by a comma-
separated list of one or more requirements.

 where requirements

The requirements in a generic where clause specify that a type
parameter inherits from a class or conforms to a protocol or protocol
composition. Although the generic where clause provides syntactic
sugar for expressing simple constraints on type parameters (for
example, <T: Comparable> is equivalent to <T> where T: Comparable
and so on), you can use it to provide more complex constraints on
type parameters and their associated types. For example, you can
constrain the associated types of type parameters to conform to
protocols. For example, <S: Sequence> where S.Iterator.Element:
Equatable specifies that S conforms to the Sequence protocol and that
the associated type S.Iterator.Element conforms to the Equatable
protocol. This constraint ensures that each element of the sequence
is equatable.

You can also specify the requirement that two types be identical,
using the == operator. For example, <S1: Sequence, S2: Sequence>
where S1.Iterator.Element == S2.Iterator.Element expresses the
constraints that S1 and S2 conform to the Sequence protocol and that
the elements of both sequences must be of the same type.

Any type argument substituted for a type parameter must meet all the
constraints and requirements placed on the type parameter.

A generic where clause can appear as part of a declaration that
includes type parameters, or as part of a declaration that’s nested
inside of a declaration that includes type parameters. The generic
where clause for a nested declaration can still refer to the type
parameters of the enclosing declaration; however, the requirements
from that where clause apply only to the declaration where it’s written.

PDF conversion courtesy of www.appsdissected.com

If the enclosing declaration also has a where clause, the requirements
from both clauses are combined. In the example below,
startsWithZero() is available only if Element conforms to both
SomeProtocol and Numeric.

1 extension Collection where Element: SomeProtocol {

2 func startsWithZero() -> Bool where Element:

Numeric {

3 return first == .zero

4 }

5 }

You can overload a generic function or initializer by providing different
constraints, requirements, or both on the type parameters. When you
call an overloaded generic function or initializer, the compiler uses
these constraints to resolve which overloaded function or initializer to
invoke.

For more information about generic where clauses and to see an
example of one in a generic function declaration, see Generic Where
Clauses.

G R A M M A R O F A G E N E R I C PA R A M E T E R C L A U S E

generic-parameter-clause → < generic-parameter-list >
generic-parameter-list → generic-parameter | generic-parameter ,

generic-parameter-list
generic-parameter → type-name
generic-parameter → type-name : type-identifier
generic-parameter → type-name : protocol-composition-type
generic-where-clause → where requirement-list
requirement-list → requirement | requirement , requirement-list
requirement → conformance-requirement | same-type-requirement
conformance-requirement → type-identifier : type-identifier
conformance-requirement → type-identifier : protocol-composition-type
same-type-requirement → type-identifier == type

PDF conversion courtesy of www.appsdissected.com

Generic Argument Clause
A generic argument clause specifies the type arguments of a generic
type. A generic argument clause is enclosed in angle brackets (<>)
and has the following form:

 < generic argument list >

The generic argument list is a comma-separated list of type
arguments. A type argument is the name of an actual concrete type
that replaces a corresponding type parameter in the generic
parameter clause of a generic type. The result is a specialized
version of that generic type. The example below shows a simplified
version of the Swift standard library’s generic dictionary type.

1 struct Dictionary<Key: Hashable, Value>: Collection,

ExpressibleByDictionaryLiteral {

2 /* ... */

3 }

The specialized version of the generic Dictionary type,
Dictionary<String, Int> is formed by replacing the generic
parameters Key: Hashable and Value with the concrete type
arguments String and Int. Each type argument must satisfy all the
constraints of the generic parameter it replaces, including any
additional requirements specified in a generic where clause. In the
example above, the Key type parameter is constrained to conform to
the Hashable protocol and therefore String must also conform to the
Hashable protocol.

You can also replace a type parameter with a type argument that’s
itself a specialized version of a generic type (provided it satisfies the
appropriate constraints and requirements). For example, you can

PDF conversion courtesy of www.appsdissected.com

replace the type parameter Element in Array<Element> with a
specialized version of an array, Array<Int>, to form an array whose
elements are themselves arrays of integers.

 let arrayOfArrays: Array<Array<Int>> = [[1, 2, 3],

[4, 5, 6], [7, 8, 9]]

As mentioned in Generic Parameter Clause, you don’t use a generic
argument clause to specify the type arguments of a generic function
or initializer.

G R A M M A R O F A G E N E R I C A R G U M E N T C L A U S E

generic-argument-clause → < generic-argument-list >
generic-argument-list → generic-argument | generic-argument , generic-

argument-list
generic-argument → type

PDF conversion courtesy of www.appsdissected.com

Summary of the Grammar

Lexical Structure

G R A M M A R O F W H I T E S PA C E

whitespace → whitespace-item whitespace opt
whitespace-item → line-break
whitespace-item → inline-space
whitespace-item → comment
whitespace-item → multiline-comment
whitespace-item → U+0000, U+000B, or U+000C
line-break → U+000A
line-break → U+000D
line-break → U+000D followed by U+000A
inline-spaces → inline-space inline-spaces opt
inline-space → U+0009 or U+0020
comment → // comment-text line-break
multiline-comment → /* multiline-comment-text */
comment-text → comment-text-item comment-text opt
comment-text-item → Any Unicode scalar value except U+000A or U+000D
multiline-comment-text → multiline-comment-text-item multiline-comment-

text opt
multiline-comment-text-item → multiline-comment
multiline-comment-text-item → comment-text-item
multiline-comment-text-item → Any Unicode scalar value except /* or */

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A N I D E N T I F I E R

identifier → identifier-head identifier-characters opt
identifier → ` identifier-head identifier-characters opt `
identifier → implicit-parameter-name
identifier → property-wrapper-projection
identifier-list → identifier | identifier , identifier-list
identifier-head → Upper- or lowercase letter A through Z
identifier-head → _
identifier-head → U+00A8, U+00AA, U+00AD, U+00AF, U+00B2–U+00B5,

or U+00B7–U+00BA
identifier-head → U+00BC–U+00BE, U+00C0–U+00D6, U+00D8–U+00F6,

or U+00F8–U+00FF
identifier-head → U+0100–U+02FF, U+0370–U+167F, U+1681–U+180D, or

U+180F–U+1DBF
identifier-head → U+1E00–U+1FFF
identifier-head → U+200B–U+200D, U+202A–U+202E, U+203F–U+2040,

U+2054, or U+2060–U+206F
identifier-head → U+2070–U+20CF, U+2100–U+218F, U+2460–U+24FF, or

U+2776–U+2793
identifier-head → U+2C00–U+2DFF or U+2E80–U+2FFF
identifier-head → U+3004–U+3007, U+3021–U+302F, U+3031–U+303F, or

U+3040–U+D7FF
identifier-head → U+F900–U+FD3D, U+FD40–U+FDCF, U+FDF0–U+FE1F,

or U+FE30–U+FE44
identifier-head → U+FE47–U+FFFD
identifier-head → U+10000–U+1FFFD, U+20000–U+2FFFD, U+30000–

U+3FFFD, or U+40000–U+4FFFD
identifier-head → U+50000–U+5FFFD, U+60000–U+6FFFD, U+70000–

U+7FFFD, or U+80000–U+8FFFD
identifier-head → U+90000–U+9FFFD, U+A0000–U+AFFFD, U+B0000–

U+BFFFD, or U+C0000–U+CFFFD
identifier-head → U+D0000–U+DFFFD or U+E0000–U+EFFFD
identifier-character → Digit 0 through 9
identifier-character → U+0300–U+036F, U+1DC0–U+1DFF, U+20D0–

U+20FF, or U+FE20–U+FE2F
identifier-character → identifier-head
identifier-characters → identifier-character identifier-characters opt
implicit-parameter-name → $ decimal-digits
property-wrapper-projection → $ identifier-characters

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A L I T E R A L

literal → numeric-literal | string-literal | regular-expression-literal |
boolean-literal | nil-literal

numeric-literal → -opt integer-literal | -opt floating-point-literal
boolean-literal → true | false
nil-literal → nil

G R A M M A R O F A N I N T E G E R L I T E R A L

integer-literal → binary-literal
integer-literal → octal-literal
integer-literal → decimal-literal
integer-literal → hexadecimal-literal
binary-literal → 0b binary-digit binary-literal-characters opt
binary-digit → Digit 0 or 1
binary-literal-character → binary-digit | _
binary-literal-characters → binary-literal-character binary-literal-characters

opt
octal-literal → 0o octal-digit octal-literal-characters opt
octal-digit → Digit 0 through 7
octal-literal-character → octal-digit | _
octal-literal-characters → octal-literal-character octal-literal-characters opt
decimal-literal → decimal-digit decimal-literal-characters opt
decimal-digit → Digit 0 through 9
decimal-digits → decimal-digit decimal-digits opt
decimal-literal-character → decimal-digit | _
decimal-literal-characters → decimal-literal-character decimal-literal-

characters opt
hexadecimal-literal → 0x hexadecimal-digit hexadecimal-literal-characters

opt
hexadecimal-digit → Digit 0 through 9, a through f, or A through F
hexadecimal-literal-character → hexadecimal-digit | _
hexadecimal-literal-characters → hexadecimal-literal-character

hexadecimal-literal-characters opt

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A F L O AT I N G - P O I N T L I T E R A L

floating-point-literal → decimal-literal decimal-fraction opt decimal-
exponent opt

floating-point-literal → hexadecimal-literal hexadecimal-fraction opt
hexadecimal-exponent

decimal-fraction → . decimal-literal
decimal-exponent → floating-point-e sign opt decimal-literal
hexadecimal-fraction → . hexadecimal-digit hexadecimal-literal-

characters opt
hexadecimal-exponent → floating-point-p sign opt decimal-literal
floating-point-e → e | E
floating-point-p → p | P
sign → + | -

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A S T R I N G L I T E R A L

string-literal → static-string-literal | interpolated-string-literal
string-literal-opening-delimiter → extended-string-literal-delimiter opt "
string-literal-closing-delimiter → " extended-string-literal-delimiter opt
static-string-literal → string-literal-opening-delimiter quoted-text opt string-

literal-closing-delimiter
static-string-literal → multiline-string-literal-opening-delimiter multiline-

quoted-text opt multiline-string-literal-closing-delimiter
multiline-string-literal-opening-delimiter → extended-string-literal-delimiter

opt """
multiline-string-literal-closing-delimiter → """ extended-string-literal-

delimiter opt
extended-string-literal-delimiter → # extended-string-literal-delimiter opt
quoted-text → quoted-text-item quoted-text opt
quoted-text-item → escaped-character
quoted-text-item → Any Unicode scalar value except " , \ , U+000A, or

U+000D
multiline-quoted-text → multiline-quoted-text-item multiline-quoted-text opt
multiline-quoted-text-item → escaped-character
multiline-quoted-text-item → Any Unicode scalar value except \
multiline-quoted-text-item → escaped-newline
interpolated-string-literal → string-literal-opening-delimiter interpolated-text

opt string-literal-closing-delimiter
interpolated-string-literal → multiline-string-literal-opening-delimiter

multiline-interpolated-text opt multiline-string-literal-closing-delimiter
interpolated-text → interpolated-text-item interpolated-text opt
interpolated-text-item → \(expression) | quoted-text-item
multiline-interpolated-text → multiline-interpolated-text-item multiline-

interpolated-text opt
multiline-interpolated-text-item → \(expression) | multiline-quoted-text-

item
escape-sequence → \ extended-string-literal-delimiter
escaped-character → escape-sequence 0 | escape-sequence \ |

escape-sequence t | escape-sequence n | escape-sequence r |
escape-sequence " | escape-sequence '

escaped-character → escape-sequence u { unicode-scalar-digits }
unicode-scalar-digits → Between one and eight hexadecimal digits
escaped-newline → escape-sequence inline-spaces opt line-break

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A R E G U L A R E X P R E S S I O N L I T E R A L

regular-expression-literal → regular-expression-literal-opening-delimiter
regular-expression regular-expression-literal-closing-delimiter

regular-expression → Any regular expression
regular-expression-literal-opening-delimiter → extended-regular-expression-

literal-delimiter opt /
regular-expression-literal-closing-delimiter → / extended-regular-

expression-literal-delimiter opt
extended-regular-expression-literal-delimiter → # extended-regular-

expression-literal-delimiter opt

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F O P E R AT O R S

operator → operator-head operator-characters opt
operator → dot-operator-head dot-operator-characters
operator-head → / | = | - | + | ! | * | % | < | > | & | | | ^ | ~ | ?
operator-head → U+00A1–U+00A7
operator-head → U+00A9 or U+00AB
operator-head → U+00AC or U+00AE
operator-head → U+00B0–U+00B1
operator-head → U+00B6, U+00BB, U+00BF, U+00D7, or U+00F7
operator-head → U+2016–U+2017
operator-head → U+2020–U+2027
operator-head → U+2030–U+203E
operator-head → U+2041–U+2053
operator-head → U+2055–U+205E
operator-head → U+2190–U+23FF
operator-head → U+2500–U+2775
operator-head → U+2794–U+2BFF
operator-head → U+2E00–U+2E7F
operator-head → U+3001–U+3003
operator-head → U+3008–U+3020
operator-head → U+3030
operator-character → operator-head
operator-character → U+0300–U+036F
operator-character → U+1DC0–U+1DFF
operator-character → U+20D0–U+20FF
operator-character → U+FE00–U+FE0F
operator-character → U+FE20–U+FE2F
operator-character → U+E0100–U+E01EF
operator-characters → operator-character operator-characters opt
dot-operator-head → .
dot-operator-character → . | operator-character
dot-operator-characters → dot-operator-character dot-operator-characters

opt
infix-operator → operator
prefix-operator → operator
postfix-operator → operator

Types

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A T Y P E

type → function-type
type → array-type
type → dictionary-type
type → type-identifier
type → tuple-type
type → optional-type
type → implicitly-unwrapped-optional-type
type → protocol-composition-type
type → opaque-type
type → metatype-type
type → any-type
type → self-type
type → (type)

G R A M M A R O F A T Y P E A N N O TAT I O N

type-annotation → : attributes opt inoutopt type

G R A M M A R O F A T Y P E I D E N T I F I E R

type-identifier → type-name generic-argument-clause opt | type-name
generic-argument-clause opt . type-identifier

type-name → identifier

G R A M M A R O F A T U P L E T Y P E

tuple-type → () | (tuple-type-element , tuple-type-element-list)
tuple-type-element-list → tuple-type-element | tuple-type-element , tuple-

type-element-list
tuple-type-element → element-name type-annotation | type
element-name → identifier

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A F U N C T I O N T Y P E

function-type → attributes opt function-type-argument-clause asyncopt
throwsopt -> type

function-type-argument-clause → ()
function-type-argument-clause → (function-type-argument-list ...opt)
function-type-argument-list → function-type-argument | function-type-

argument , function-type-argument-list
function-type-argument → attributes opt inoutopt type | argument-label

type-annotation
argument-label → identifier

G R A M M A R O F A N A R R AY T Y P E

array-type → [type]

G R A M M A R O F A D I C T I O N A R Y T Y P E

dictionary-type → [type : type]

G R A M M A R O F A N O P T I O N A L T Y P E

optional-type → type ?

G R A M M A R O F A N I M P L I C I T LY U N W R A P P E D O P T I O N A L T Y P E

implicitly-unwrapped-optional-type → type !

G R A M M A R O F A P R O T O C O L C O M P O S I T I O N T Y P E

protocol-composition-type → type-identifier & protocol-composition-
continuation

protocol-composition-continuation → type-identifier | protocol-composition-
type

G R A M M A R O F A N O PA Q U E T Y P E

opaque-type → some type

G R A M M A R O F A M E TAT Y P E T Y P E

metatype-type → type . Type | type . Protocol

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A N A N Y T Y P E

any-type → Any

G R A M M A R O F A S E L F T Y P E

self-type → Self

G R A M M A R O F A T Y P E I N H E R I TA N C E C L A U S E

type-inheritance-clause → : type-inheritance-list
type-inheritance-list → attributes opt type-identifier | attributes opt type-

identifier , type-inheritance-list

Expressions

G R A M M A R O F A N E X P R E S S I O N

expression → try-operator opt await-operator opt prefix-expression infix-
expressions opt

expression-list → expression | expression , expression-list

G R A M M A R O F A P R E F I X E X P R E S S I O N

prefix-expression → prefix-operator opt postfix-expression
prefix-expression → in-out-expression

G R A M M A R O F A N I N - O U T E X P R E S S I O N

in-out-expression → & identifier

G R A M M A R O F A T R Y E X P R E S S I O N

try-operator → try | try ? | try !

G R A M M A R O F A N AWA I T E X P R E S S I O N

await-operator → await

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A N I N F I X E X P R E S S I O N

infix-expression → infix-operator prefix-expression
infix-expression → assignment-operator try-operator opt prefix-

expression
infix-expression → conditional-operator try-operator opt prefix-expression
infix-expression → type-casting-operator
infix-expressions → infix-expression infix-expressions opt

G R A M M A R O F A N A S S I G N M E N T O P E R AT O R

assignment-operator → =

G R A M M A R O F A C O N D I T I O N A L O P E R AT O R

conditional-operator → ? expression :

G R A M M A R O F A T Y P E - C A S T I N G O P E R AT O R

type-casting-operator → is type
type-casting-operator → as type
type-casting-operator → as ? type
type-casting-operator → as ! type

G R A M M A R O F A P R I M A R Y E X P R E S S I O N

primary-expression → identifier generic-argument-clause opt
primary-expression → literal-expression
primary-expression → self-expression
primary-expression → superclass-expression
primary-expression → closure-expression
primary-expression → parenthesized-expression
primary-expression → tuple-expression
primary-expression → implicit-member-expression
primary-expression → wildcard-expression
primary-expression → key-path-expression
primary-expression → selector-expression
primary-expression → key-path-string-expression

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A L I T E R A L E X P R E S S I O N

literal-expression → literal
literal-expression → array-literal | dictionary-literal | playground-literal
literal-expression → #file | #fileID | #filePath
literal-expression → #line | #column | #function | #dsohandle
array-literal → [array-literal-items opt]
array-literal-items → array-literal-item ,opt | array-literal-item , array-

literal-items
array-literal-item → expression
dictionary-literal → [dictionary-literal-items] | [:]
dictionary-literal-items → dictionary-literal-item ,opt | dictionary-literal-

item , dictionary-literal-items
dictionary-literal-item → expression : expression
playground-literal → #colorLiteral (red : expression , green :

expression , blue : expression , alpha : expression)
playground-literal → #fileLiteral (resourceName : expression)
playground-literal → #imageLiteral (resourceName : expression)

G R A M M A R O F A S E L F E X P R E S S I O N

self-expression → self | self-method-expression | self-subscript-
expression | self-initializer-expression

self-method-expression → self . identifier
self-subscript-expression → self [function-call-argument-list]
self-initializer-expression → self . init

G R A M M A R O F A S U P E R C L A S S E X P R E S S I O N

superclass-expression → superclass-method-expression | superclass-
subscript-expression | superclass-initializer-expression

superclass-method-expression → super . identifier
superclass-subscript-expression → super [function-call-argument-list]
superclass-initializer-expression → super . init

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A C L O S U R E E X P R E S S I O N

closure-expression → { attributes opt closure-signature opt statements
opt }

closure-signature → capture-list opt closure-parameter-clause asyncopt
throwsopt function-result opt in

closure-signature → capture-list in
closure-parameter-clause → () | (closure-parameter-list) | identifier-

list
closure-parameter-list → closure-parameter | closure-parameter ,

closure-parameter-list
closure-parameter → closure-parameter-name type-annotation opt
closure-parameter → closure-parameter-name type-annotation ...
closure-parameter-name → identifier
capture-list → [capture-list-items]
capture-list-items → capture-list-item | capture-list-item , capture-list-

items
capture-list-item → capture-specifier opt identifier
capture-list-item → capture-specifier opt identifier = expression
capture-list-item → capture-specifier opt self-expression
capture-specifier → weak | unowned | unowned(safe) | unowned(unsafe)

G R A M M A R O F A I M P L I C I T M E M B E R E X P R E S S I O N

implicit-member-expression → . identifier
implicit-member-expression → . identifier . postfix-expression

G R A M M A R O F A PA R E N T H E S I Z E D E X P R E S S I O N

parenthesized-expression → (expression)

G R A M M A R O F A T U P L E E X P R E S S I O N

tuple-expression → () | (tuple-element , tuple-element-list)
tuple-element-list → tuple-element | tuple-element , tuple-element-list
tuple-element → expression | identifier : expression

G R A M M A R O F A W I L D C A R D E X P R E S S I O N

wildcard-expression → _

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A K E Y- PAT H E X P R E S S I O N

key-path-expression → \ type opt . key-path-components
key-path-components → key-path-component | key-path-component .

key-path-components
key-path-component → identifier key-path-postfixes opt | key-path-

postfixes
key-path-postfixes → key-path-postfix key-path-postfixes opt
key-path-postfix → ? | ! | self | [function-call-argument-list]

G R A M M A R O F A S E L E C T O R E X P R E S S I O N

selector-expression → #selector (expression)
selector-expression → #selector (getter: expression)
selector-expression → #selector (setter: expression)

G R A M M A R O F A K E Y- PAT H S T R I N G E X P R E S S I O N

key-path-string-expression → #keyPath (expression)

G R A M M A R O F A P O S T F I X E X P R E S S I O N

postfix-expression → primary-expression
postfix-expression → postfix-expression postfix-operator
postfix-expression → function-call-expression
postfix-expression → initializer-expression
postfix-expression → explicit-member-expression
postfix-expression → postfix-self-expression
postfix-expression → subscript-expression
postfix-expression → forced-value-expression
postfix-expression → optional-chaining-expression

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A F U N C T I O N C A L L E X P R E S S I O N

function-call-expression → postfix-expression function-call-argument-
clause

function-call-expression → postfix-expression function-call-argument-
clause opt trailing-closures

function-call-argument-clause → () | (function-call-argument-list)
function-call-argument-list → function-call-argument | function-call-

argument , function-call-argument-list
function-call-argument → expression | identifier : expression
function-call-argument → operator | identifier : operator
trailing-closures → closure-expression labeled-trailing-closures opt
labeled-trailing-closures → labeled-trailing-closure labeled-trailing-closures

opt
labeled-trailing-closure → identifier : closure-expression

G R A M M A R O F A N I N I T I A L I Z E R E X P R E S S I O N

initializer-expression → postfix-expression . init
initializer-expression → postfix-expression . init (argument-names)

G R A M M A R O F A N E X P L I C I T M E M B E R E X P R E S S I O N

explicit-member-expression → postfix-expression . decimal-digits
explicit-member-expression → postfix-expression . identifier generic-

argument-clause opt
explicit-member-expression → postfix-expression . identifier (

argument-names)
explicit-member-expression → postfix-expression conditional-compilation-

block
argument-names → argument-name argument-names opt
argument-name → identifier :

G R A M M A R O F A P O S T F I X S E L F E X P R E S S I O N

postfix-self-expression → postfix-expression . self

G R A M M A R O F A S U B S C R I P T E X P R E S S I O N

subscript-expression → postfix-expression [function-call-argument-list]

G R A M M A R O F A F O R C E D - VA L U E E X P R E S S I O N

forced-value-expression → postfix-expression !

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A N O P T I O N A L - C H A I N I N G E X P R E S S I O N

optional-chaining-expression → postfix-expression ?

Statements

G R A M M A R O F A S TAT E M E N T

statement → expression ;opt
statement → declaration ;opt
statement → loop-statement ;opt
statement → branch-statement ;opt
statement → labeled-statement ;opt
statement → control-transfer-statement ;opt
statement → defer-statement ;opt
statement → do-statement ;opt
statement → compiler-control-statement
statements → statement statements opt

G R A M M A R O F A L O O P S TAT E M E N T

loop-statement → for-in-statement
loop-statement → while-statement
loop-statement → repeat-while-statement

G R A M M A R O F A F O R - I N S TAT E M E N T

for-in-statement → for caseopt pattern in expression where-clause
opt code-block

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A W H I L E S TAT E M E N T

while-statement → while condition-list code-block
condition-list → condition | condition , condition-list
condition → expression | availability-condition | case-condition | optional-

binding-condition
case-condition → case pattern initializer
optional-binding-condition → let pattern initializer opt | var pattern

initializer opt

G R A M M A R O F A R E P E AT- W H I L E S TAT E M E N T

repeat-while-statement → repeat code-block while expression

G R A M M A R O F A B R A N C H S TAT E M E N T

branch-statement → if-statement
branch-statement → guard-statement
branch-statement → switch-statement

G R A M M A R O F A N I F S TAT E M E N T

if-statement → if condition-list code-block else-clause opt
else-clause → else code-block | else if-statement

G R A M M A R O F A G U A R D S TAT E M E N T

guard-statement → guard condition-list else code-block

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A S W I T C H S TAT E M E N T

switch-statement → switch expression { switch-cases opt }
switch-cases → switch-case switch-cases opt
switch-case → case-label statements
switch-case → default-label statements
switch-case → conditional-switch-case
case-label → attributes opt case case-item-list :
case-item-list → pattern where-clause opt | pattern where-clause opt ,

case-item-list
default-label → attributes opt default :
where-clause → where where-expression
where-expression → expression
conditional-switch-case → switch-if-directive-clause switch-elseif-directive-

clauses opt switch-else-directive-clause opt endif-directive
switch-if-directive-clause → if-directive compilation-condition switch-cases

opt
switch-elseif-directive-clauses → elseif-directive-clause switch-elseif-

directive-clauses opt
switch-elseif-directive-clause → elseif-directive compilation-condition

switch-cases opt
switch-else-directive-clause → else-directive switch-cases opt

G R A M M A R O F A L A B E L E D S TAT E M E N T

labeled-statement → statement-label loop-statement
labeled-statement → statement-label if-statement
labeled-statement → statement-label switch-statement
labeled-statement → statement-label do-statement
statement-label → label-name :
label-name → identifier

G R A M M A R O F A C O N T R O L T R A N S F E R S TAT E M E N T

control-transfer-statement → break-statement
control-transfer-statement → continue-statement
control-transfer-statement → fallthrough-statement
control-transfer-statement → return-statement
control-transfer-statement → throw-statement

G R A M M A R O F A B R E A K S TAT E M E N T

break-statement → break label-name opt

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A C O N T I N U E S TAT E M E N T

continue-statement → continue label-name opt

G R A M M A R O F A FA L LT H R O U G H S TAT E M E N T

fallthrough-statement → fallthrough

G R A M M A R O F A R E T U R N S TAT E M E N T

return-statement → return expression opt

G R A M M A R O F A T H R O W S TAT E M E N T

throw-statement → throw expression

G R A M M A R O F A D E F E R S TAT E M E N T

defer-statement → defer code-block

G R A M M A R O F A D O S TAT E M E N T

do-statement → do code-block catch-clauses opt
catch-clauses → catch-clause catch-clauses opt
catch-clause → catch catch-pattern-list opt code-block
catch-pattern-list → catch-pattern | catch-pattern , catch-pattern-list
catch-pattern → pattern where-clause opt

G R A M M A R O F A C O M P I L E R C O N T R O L S TAT E M E N T

compiler-control-statement → conditional-compilation-block
compiler-control-statement → line-control-statement
compiler-control-statement → diagnostic-statement

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A C O N D I T I O N A L C O M P I L AT I O N B L O C K

conditional-compilation-block → if-directive-clause elseif-directive-clauses
opt else-directive-clause opt endif-directive

if-directive-clause → if-directive compilation-condition statements opt
elseif-directive-clauses → elseif-directive-clause elseif-directive-clauses

opt
elseif-directive-clause → elseif-directive compilation-condition statements

opt
else-directive-clause → else-directive statements opt
if-directive → #if
elseif-directive → #elseif
else-directive → #else
endif-directive → #endif
compilation-condition → platform-condition
compilation-condition → identifier
compilation-condition → boolean-literal
compilation-condition → (compilation-condition)
compilation-condition → ! compilation-condition
compilation-condition → compilation-condition && compilation-condition
compilation-condition → compilation-condition || compilation-condition
platform-condition → os (operating-system)
platform-condition → arch (architecture)
platform-condition → swift (>= swift-version) | swift (< swift-

version)
platform-condition → compiler (>= swift-version) | compiler (<

swift-version)
platform-condition → canImport (import-path)
platform-condition → targetEnvironment (environment)
operating-system → macOS | iOS | watchOS | tvOS | Linux | Windows
architecture → i386 | x86_64 | arm | arm64
swift-version → decimal-digits swift-version-continuation opt
swift-version-continuation → . decimal-digits swift-version-continuation

opt
environment → simulator | macCatalyst

G R A M M A R O F A L I N E C O N T R O L S TAT E M E N T

line-control-statement → #sourceLocation (file: file-path , line:
line-number)

line-control-statement → #sourceLocation ()
line-number → A decimal integer greater than zero
file-path → static-string-literal

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A C O M P I L E - T I M E D I A G N O S T I C S TAT E M E N T

diagnostic-statement → #error (diagnostic-message)
diagnostic-statement → #warning (diagnostic-message)
diagnostic-message → static-string-literal

G R A M M A R O F A N AVA I L A B I L I T Y C O N D I T I O N

availability-condition → #available (availability-arguments)
availability-condition → #unavailable (availability-arguments)
availability-arguments → availability-argument | availability-argument ,

availability-arguments
availability-argument → platform-name platform-version
availability-argument → *
platform-name → iOS | iOSApplicationExtension
platform-name → macOS | macOSApplicationExtension
platform-name → macCatalyst | macCatalystApplicationExtension
platform-name → watchOS | watchOSApplicationExtension
platform-name → tvOS | tvOSApplicationExtension
platform-version → decimal-digits
platform-version → decimal-digits . decimal-digits
platform-version → decimal-digits . decimal-digits . decimal-digits

Declarations

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A D E C L A R AT I O N

declaration → import-declaration
declaration → constant-declaration
declaration → variable-declaration
declaration → typealias-declaration
declaration → function-declaration
declaration → enum-declaration
declaration → struct-declaration
declaration → class-declaration
declaration → actor-declaration
declaration → protocol-declaration
declaration → initializer-declaration
declaration → deinitializer-declaration
declaration → extension-declaration
declaration → subscript-declaration
declaration → operator-declaration
declaration → precedence-group-declaration
declarations → declaration declarations opt

G R A M M A R O F A T O P - L E V E L D E C L A R AT I O N

top-level-declaration → statements opt

G R A M M A R O F A C O D E B L O C K

code-block → { statements opt }

G R A M M A R O F A N I M P O R T D E C L A R AT I O N

import-declaration → attributes opt import import-kind opt import-path
import-kind → typealias | struct | class | enum | protocol | let |

var | func
import-path → identifier | identifier . import-path

G R A M M A R O F A C O N S TA N T D E C L A R AT I O N

constant-declaration → attributes opt declaration-modifiers opt let
pattern-initializer-list

pattern-initializer-list → pattern-initializer | pattern-initializer , pattern-
initializer-list

pattern-initializer → pattern initializer opt
initializer → = expression

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A VA R I A B L E D E C L A R AT I O N

variable-declaration → variable-declaration-head pattern-initializer-list
variable-declaration → variable-declaration-head variable-name type-

annotation code-block
variable-declaration → variable-declaration-head variable-name type-

annotation getter-setter-block
variable-declaration → variable-declaration-head variable-name type-

annotation getter-setter-keyword-block
variable-declaration → variable-declaration-head variable-name initializer

willSet-didSet-block
variable-declaration → variable-declaration-head variable-name type-

annotation initializer opt willSet-didSet-block
variable-declaration-head → attributes opt declaration-modifiers opt var
variable-name → identifier
getter-setter-block → code-block
getter-setter-block → { getter-clause setter-clause opt }
getter-setter-block → { setter-clause getter-clause }
getter-clause → attributes opt mutation-modifier opt get code-block
setter-clause → attributes opt mutation-modifier opt set setter-name opt

code-block
setter-name → (identifier)
getter-setter-keyword-block → { getter-keyword-clause setter-keyword-

clause opt }
getter-setter-keyword-block → { setter-keyword-clause getter-keyword-

clause }
getter-keyword-clause → attributes opt mutation-modifier opt get
setter-keyword-clause → attributes opt mutation-modifier opt set
willSet-didSet-block → { willSet-clause didSet-clause opt }
willSet-didSet-block → { didSet-clause willSet-clause opt }
willSet-clause → attributes opt willSet setter-name opt code-block
didSet-clause → attributes opt didSet setter-name opt code-block

G R A M M A R O F A T Y P E A L I A S D E C L A R AT I O N

typealias-declaration → attributes opt access-level-modifier opt
typealias typealias-name generic-parameter-clause opt typealias-
assignment

typealias-name → identifier
typealias-assignment → = type

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A F U N C T I O N D E C L A R AT I O N

function-declaration → function-head function-name generic-parameter-
clause opt function-signature generic-where-clause opt function-body
opt

function-head → attributes opt declaration-modifiers opt func
function-name → identifier | operator
function-signature → parameter-clause asyncopt throwsopt function-

result opt
function-signature → parameter-clause asyncopt rethrows function-

result opt
function-result → -> attributes opt type
function-body → code-block
parameter-clause → () | (parameter-list)
parameter-list → parameter | parameter , parameter-list
parameter → external-parameter-name opt local-parameter-name type-

annotation default-argument-clause opt
parameter → external-parameter-name opt local-parameter-name type-

annotation
parameter → external-parameter-name opt local-parameter-name type-

annotation ...
external-parameter-name → identifier
local-parameter-name → identifier
default-argument-clause → = expression

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A N E N U M E R AT I O N D E C L A R AT I O N

enum-declaration → attributes opt access-level-modifier opt union-style-
enum

enum-declaration → attributes opt access-level-modifier opt raw-value-
style-enum

union-style-enum → indirectopt enum enum-name generic-parameter-
clause opt type-inheritance-clause opt generic-where-clause opt {
union-style-enum-members opt }

union-style-enum-members → union-style-enum-member union-style-
enum-members opt

union-style-enum-member → declaration | union-style-enum-case-clause |
compiler-control-statement

union-style-enum-case-clause → attributes opt indirectopt case union-
style-enum-case-list

union-style-enum-case-list → union-style-enum-case | union-style-enum-
case , union-style-enum-case-list

union-style-enum-case → enum-case-name tuple-type opt
enum-name → identifier
enum-case-name → identifier
raw-value-style-enum → enum enum-name generic-parameter-clause opt

type-inheritance-clause generic-where-clause opt { raw-value-style-
enum-members }

raw-value-style-enum-members → raw-value-style-enum-member raw-
value-style-enum-members opt

raw-value-style-enum-member → declaration | raw-value-style-enum-case-
clause | compiler-control-statement

raw-value-style-enum-case-clause → attributes opt case raw-value-style-
enum-case-list

raw-value-style-enum-case-list → raw-value-style-enum-case | raw-value-
style-enum-case , raw-value-style-enum-case-list

raw-value-style-enum-case → enum-case-name raw-value-assignment opt
raw-value-assignment → = raw-value-literal
raw-value-literal → numeric-literal | static-string-literal | boolean-literal

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A S T R U C T U R E D E C L A R AT I O N

struct-declaration → attributes opt access-level-modifier opt struct
struct-name generic-parameter-clause opt type-inheritance-clause opt
generic-where-clause opt struct-body

struct-name → identifier
struct-body → { struct-members opt }
struct-members → struct-member struct-members opt
struct-member → declaration | compiler-control-statement

G R A M M A R O F A C L A S S D E C L A R AT I O N

class-declaration → attributes opt access-level-modifier opt finalopt
class class-name generic-parameter-clause opt type-inheritance-
clause opt generic-where-clause opt class-body

class-declaration → attributes opt final access-level-modifier opt class
class-name generic-parameter-clause opt type-inheritance-clause opt
generic-where-clause opt class-body

class-name → identifier
class-body → { class-members opt }
class-members → class-member class-members opt
class-member → declaration | compiler-control-statement

G R A M M A R O F A N A C T O R D E C L A R AT I O N

actor-declaration → attributes opt access-level-modifier opt actor actor-
name generic-parameter-clause opt type-inheritance-clause opt
generic-where-clause opt actor-body

actor-name → identifier
actor-body → { actor-members opt }
actor-members → actor-member actor-members opt
actor-member → declaration | compiler-control-statement

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A P R O T O C O L D E C L A R AT I O N

protocol-declaration → attributes opt access-level-modifier opt protocol
protocol-name type-inheritance-clause opt generic-where-clause opt
protocol-body

protocol-name → identifier
protocol-body → { protocol-members opt }
protocol-members → protocol-member protocol-members opt
protocol-member → protocol-member-declaration | compiler-control-

statement
protocol-member-declaration → protocol-property-declaration
protocol-member-declaration → protocol-method-declaration
protocol-member-declaration → protocol-initializer-declaration
protocol-member-declaration → protocol-subscript-declaration
protocol-member-declaration → protocol-associated-type-declaration
protocol-member-declaration → typealias-declaration

G R A M M A R O F A P R O T O C O L P R O P E R T Y D E C L A R AT I O N

protocol-property-declaration → variable-declaration-head variable-name
type-annotation getter-setter-keyword-block

G R A M M A R O F A P R O T O C O L M E T H O D D E C L A R AT I O N

protocol-method-declaration → function-head function-name generic-
parameter-clause opt function-signature generic-where-clause opt

G R A M M A R O F A P R O T O C O L I N I T I A L I Z E R D E C L A R AT I O N

protocol-initializer-declaration → initializer-head generic-parameter-clause
opt parameter-clause throwsopt generic-where-clause opt

protocol-initializer-declaration → initializer-head generic-parameter-clause
opt parameter-clause rethrows generic-where-clause opt

G R A M M A R O F A P R O T O C O L S U B S C R I P T D E C L A R AT I O N

protocol-subscript-declaration → subscript-head subscript-result generic-
where-clause opt getter-setter-keyword-block

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A P R O T O C O L A S S O C I AT E D T Y P E D E C L A R AT I O N

protocol-associated-type-declaration → attributes opt access-level-
modifier opt associatedtype typealias-name type-inheritance-clause
opt typealias-assignment opt generic-where-clause opt

G R A M M A R O F A N I N I T I A L I Z E R D E C L A R AT I O N

initializer-declaration → initializer-head generic-parameter-clause opt
parameter-clause asyncopt throwsopt generic-where-clause opt
initializer-body

initializer-declaration → initializer-head generic-parameter-clause opt
parameter-clause asyncopt rethrows generic-where-clause opt
initializer-body

initializer-head → attributes opt declaration-modifiers opt init
initializer-head → attributes opt declaration-modifiers opt init ?
initializer-head → attributes opt declaration-modifiers opt init !
initializer-body → code-block

G R A M M A R O F A D E I N I T I A L I Z E R D E C L A R AT I O N

deinitializer-declaration → attributes opt deinit code-block

G R A M M A R O F A N E X T E N S I O N D E C L A R AT I O N

extension-declaration → attributes opt access-level-modifier opt
extension type-identifier type-inheritance-clause opt generic-where-
clause opt extension-body

extension-body → { extension-members opt }
extension-members → extension-member extension-members opt
extension-member → declaration | compiler-control-statement

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A S U B S C R I P T D E C L A R AT I O N

subscript-declaration → subscript-head subscript-result generic-where-
clause opt code-block

subscript-declaration → subscript-head subscript-result generic-where-
clause opt getter-setter-block

subscript-declaration → subscript-head subscript-result generic-where-
clause opt getter-setter-keyword-block

subscript-head → attributes opt declaration-modifiers opt subscript
generic-parameter-clause opt parameter-clause

subscript-result → -> attributes opt type

G R A M M A R O F A N O P E R AT O R D E C L A R AT I O N

operator-declaration → prefix-operator-declaration | postfix-operator-
declaration | infix-operator-declaration

prefix-operator-declaration → prefix operator operator
postfix-operator-declaration → postfix operator operator
infix-operator-declaration → infix operator operator infix-operator-

group opt
infix-operator-group → : precedence-group-name

G R A M M A R O F A P R E C E D E N C E G R O U P D E C L A R AT I O N

precedence-group-declaration → precedencegroup precedence-group-
name { precedence-group-attributes opt }

precedence-group-attributes → precedence-group-attribute precedence-
group-attributes opt

precedence-group-attribute → precedence-group-relation
precedence-group-attribute → precedence-group-assignment
precedence-group-attribute → precedence-group-associativity
precedence-group-relation → higherThan : precedence-group-names
precedence-group-relation → lowerThan : precedence-group-names
precedence-group-assignment → assignment : boolean-literal
precedence-group-associativity → associativity : left
precedence-group-associativity → associativity : right
precedence-group-associativity → associativity : none
precedence-group-names → precedence-group-name | precedence-group-

name , precedence-group-names
precedence-group-name → identifier

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A D E C L A R AT I O N M O D I F I E R

declaration-modifier → class | convenience | dynamic | final | infix |
lazy | optional | override | postfix | prefix | required | static
| unowned | unowned (safe) | unowned (unsafe) | weak

declaration-modifier → access-level-modifier
declaration-modifier → mutation-modifier
declaration-modifier → actor-isolation-modifier
declaration-modifiers → declaration-modifier declaration-modifiers opt
access-level-modifier → private | private (set)
access-level-modifier → fileprivate | fileprivate (set)
access-level-modifier → internal | internal (set)
access-level-modifier → public | public (set)
access-level-modifier → open | open (set)
mutation-modifier → mutating | nonmutating
actor-isolation-modifier → nonisolated

Attributes

G R A M M A R O F A N AT T R I B U T E

attribute → @ attribute-name attribute-argument-clause opt
attribute-name → identifier
attribute-argument-clause → (balanced-tokens opt)
attributes → attribute attributes opt
balanced-tokens → balanced-token balanced-tokens opt
balanced-token → (balanced-tokens opt)
balanced-token → [balanced-tokens opt]
balanced-token → { balanced-tokens opt }
balanced-token → Any identifier, keyword, literal, or operator
balanced-token → Any punctuation except (,) , [,] , { , or }

Patterns

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A PAT T E R N

pattern → wildcard-pattern type-annotation opt
pattern → identifier-pattern type-annotation opt
pattern → value-binding-pattern
pattern → tuple-pattern type-annotation opt
pattern → enum-case-pattern
pattern → optional-pattern
pattern → type-casting-pattern
pattern → expression-pattern

G R A M M A R O F A W I L D C A R D PAT T E R N

wildcard-pattern → _

G R A M M A R O F A N I D E N T I F I E R PAT T E R N

identifier-pattern → identifier

G R A M M A R O F A VA L U E - B I N D I N G PAT T E R N

value-binding-pattern → var pattern | let pattern

G R A M M A R O F A T U P L E PAT T E R N

tuple-pattern → (tuple-pattern-element-list opt)
tuple-pattern-element-list → tuple-pattern-element | tuple-pattern-element

, tuple-pattern-element-list
tuple-pattern-element → pattern | identifier : pattern

G R A M M A R O F A N E N U M E R AT I O N C A S E PAT T E R N

enum-case-pattern → type-identifier opt . enum-case-name tuple-
pattern opt

G R A M M A R O F A N O P T I O N A L PAT T E R N

optional-pattern → identifier-pattern ?

G R A M M A R O F A T Y P E C A S T I N G PAT T E R N

type-casting-pattern → is-pattern | as-pattern
is-pattern → is type
as-pattern → pattern as type

PDF conversion courtesy of www.appsdissected.com

G R A M M A R O F A N E X P R E S S I O N PAT T E R N

expression-pattern → expression

Generic Parameters and Arguments

G R A M M A R O F A G E N E R I C PA R A M E T E R C L A U S E

generic-parameter-clause → < generic-parameter-list >
generic-parameter-list → generic-parameter | generic-parameter ,

generic-parameter-list
generic-parameter → type-name
generic-parameter → type-name : type-identifier
generic-parameter → type-name : protocol-composition-type
generic-where-clause → where requirement-list
requirement-list → requirement | requirement , requirement-list
requirement → conformance-requirement | same-type-requirement
conformance-requirement → type-identifier : type-identifier
conformance-requirement → type-identifier : protocol-composition-type
same-type-requirement → type-identifier == type

G R A M M A R O F A G E N E R I C A R G U M E N T C L A U S E

generic-argument-clause → < generic-argument-list >
generic-argument-list → generic-argument | generic-argument , generic-

argument-list
generic-argument → type

PDF conversion courtesy of www.appsdissected.com

Revision History

PDF conversion courtesy of www.appsdissected.com

Document Revision History

2022-09-12

Updated for Swift 5.7.

Added the Sendable Types section, with information about
sending data between actors and tasks, and added information
about the @Sendable and @unchecked attributes to the Sendable
and unchecked sections.

Added the Regular Expression Literals section with information
about creating a regular expression.

Added information about the short form of if-let to the Optional
Binding section.

Added information about #unavailable to the Checking API
Availability section.

2022-03-14

Updated for Swift 5.6.

Updated the Explicit Member Expression section with
information about using #if around chained method calls and
other postfix expressions.

Updated the visual styling of figures throughout.

2021-09-20

Updated for Swift 5.5.

Added information about asynchronous functions, tasks, and
actors to the Concurrency chapter, and to the Actor Declaration,

PDF conversion courtesy of www.appsdissected.com

Asynchronous Functions and Methods, and Await Operator
sections.

Updated the Identifiers section with information about identifiers
that start with an underscore.

2021-04-26

Updated for Swift 5.4.

Added the Result Builders and resultBuilder sections with
information about result builders.

Added the Implicit Conversion to a Pointer Type section with
information about how in-out parameters can be implicitly
converted to unsafe pointers in a function call.

Updated the Variadic Parameters and Function Declaration
sections, now that a function can have multiple variadic
parameters.

Updated the Implicit Member Expression section, now that
implicit member expressions can be chained together.

2020-09-16

Updated for Swift 5.3.

Added information about multiple trailing closures to the Trailing
Closures section, and added information about how trailing
closures are matched to parameters to the Function Call
Expression section.

Added information about synthesized implementations of
Comparable for enumerations to the Adopting a Protocol Using a
Synthesized Implementation section.

PDF conversion courtesy of www.appsdissected.com

Added the Contextual Where Clauses section now that you can
write a generic where clause in more places.

Added the Unowned Optional References section with
information about using unowned references with optional
values.

Added information about the @main attribute to the main section.

Added #filePath to the Literal Expression section, and updated
the discussion of #file.

Updated the Escaping Closures section, now that closures can
refer to self implicitly in more scenarios.

Updated the Handling Errors Using Do-Catch and Do Statement
sections, now that a catch clause can match against multiple
errors.

Added more information about Any and moved it into the new
Any Type section.

Updated the Property Observers section, now that lazy
properties can have observers.

Updated the Protocol Declaration section, now that members of
an enumeration can satisfy protocol requirements.

Updated the Stored Variable Observers and Property Observers
section to describe when the getter is called before the observer.

Updated the Memory Safety chapter to mention atomic
operations.

2020-03-24

Updated for Swift 5.2.

PDF conversion courtesy of www.appsdissected.com

Added information about passing a key path instead of a closure
to the Key-Path Expression section.

Added the Methods with Special Names section with information
about syntactic sugar the lets instances of classes, structures,
and enumerations be used with function call syntax.

Updated the Subscript Options section, now that subscripts
support parameters with default values.

Updated the Self Type section, now that the Self can be used in
more contexts.

Updated the Implicitly Unwrapped Optionals section to make it
clearer that an implicitly unwrapped optional value can be used
as either an optional or non-optional value.

2019-09-10

Updated for Swift 5.1.

Added information about functions that specify a protocol that
their return value conforms to, instead of providing a specific
named return type, to the Opaque Types chapter.

Added information about property wrappers to the Property
Wrappers section.

Added information about enumerations and structures that are
frozen for library evolution to the frozen section.

Added the Functions With an Implicit Return and Shorthand
Getter Declaration sections with information about functions that
omit return.

Added information about using subscripts on types to the Type
Subscripts section.

PDF conversion courtesy of www.appsdissected.com

Updated the Enumeration Case Pattern section, now that an
enumeration case pattern can match an optional value.

Updated the Memberwise Initializers for Structure Types section,
now that memberwise initializers support omitting parameters for
properties that have a default value.

Added information about dynamic members that are looked up
by key path at runtime to the dynamicMemberLookup section.

Added macCatalyst to the list of target environments in
Conditional Compilation Block.

Updated the Self Type section, now that Self can be used to
refer to the type introduced by the current class, structure, or
enumeration declaration.

2019-03-25

Updated for Swift 5.0.

Added the Extended String Delimiters section and updated the
String Literals section with information about extended string
delimiters.

Added the dynamicCallable section with information about
dynamically calling instances as functions using the
dynamicCallable attribute.

Added the unknown and Switching Over Future Enumeration
Cases sections with information about handling future
enumeration cases in switch statements using the unknown
switch case attribute.

Added information about the identity key path (\.self) to the
Key-Path Expression section.

PDF conversion courtesy of www.appsdissected.com

Added information about using the less than (<) operator in
platform conditions to the Conditional Compilation Block section.

2018-09-17

Updated for Swift 4.2.

Added information about accessing all of an enumeration’s
cases to the Iterating over Enumeration Cases section.

Added information about #error and #warning to the Compile-
Time Diagnostic Statement section.

Added information about inlining to the Declaration Attributes
section under the inlinable and usableFromInline attributes.

Added information about members that are looked up by name
at runtime to the Declaration Attributes section under the
dynamicMemberLookup attribute.

Added information about the requires_stored_property_inits
and warn_unqualified_access attributes to the Declaration
Attributes section.

Added information about how to conditionally compile code
depending on the Swift compiler version being used to the
Conditional Compilation Block section.

Added information about #dsohandle to the Literal Expression
section.

2018-03-29

Updated for Swift 4.1.

Added information about synthesized implementations of
equivalence operators to the Equivalence Operators section.

PDF conversion courtesy of www.appsdissected.com

Added information about conditional protocol conformance to the
Extension Declaration section of the Declarations chapter, and to
the Conditionally Conforming to a Protocol section of the
Protocols chapter.

Added information about recursive protocol constraints to the
Using a Protocol in Its Associated Type’s Constraints section.

Added information about the canImport() and
targetEnvironment() platform conditions to Conditional
Compilation Block.

2017-12-04

Updated for Swift 4.0.3.

Updated the Key-Path Expression section, now that key paths
support subscript components.

2017-09-19

Updated for Swift 4.0.

Added information about exclusive access to memory to the
Memory Safety chapter.

Added the Associated Types with a Generic Where Clause
section, now that you can use generic where clauses to constrain
associated types.

Added information about multiline string literals to the String
Literals section of the Strings and Characters chapter, and to the
String Literals section of the Lexical Structure chapter.

Updated the discussion of the objc attribute in Declaration
Attributes, now that this attribute is inferred in fewer places.

PDF conversion courtesy of www.appsdissected.com

Added the Generic Subscripts section, now that subscripts can
be generic.

Updated the discussion in the Protocol Composition section of
the Protocols chapter, and in the Protocol Composition Type
section of the Types chapter, now that protocol composition
types can contain a superclass requirement.

Updated the discussion of protocol extensions in Extension
Declaration now that final isn’t allowed in them.

Added information about preconditions and fatal errors to the
Assertions and Preconditions section.

2017-03-27

Updated for Swift 3.1.

Added the Extensions with a Generic Where Clause section with
information about extensions that include requirements.

Added examples of iterating over a range to the For-In Loops
section.

Added an example of failable numeric conversions to the
Failable Initializers section.

Added information to the Declaration Attributes section about
using the available attribute with a Swift language version.

Updated the discussion in the Function Type section to note that
argument labels aren’t allowed when writing a function type.

Updated the discussion of Swift language version numbers in the
Conditional Compilation Block section, now that an optional
patch number is allowed.

PDF conversion courtesy of www.appsdissected.com

Updated the discussion in the Function Type section, now that
Swift distinguishes between functions that take multiple
parameters and functions that take a single parameter of a tuple
type.

Removed the Dynamic Type Expression section from the
Expressions chapter, now that type(of:) is a Swift standard
library function.

2016-10-27

Updated for Swift 3.0.1.

Updated the discussion of weak and unowned references in the
Automatic Reference Counting chapter.

Added information about the unowned, unowned(safe), and
unowned(unsafe) declaration modifiers in the Declaration
Modifiers section.

Added a note to the Type Casting for Any and AnyObject section
about using an optional value when a value of type Any is
expected.

Updated the Expressions chapter to separate the discussion of
parenthesized expressions and tuple expressions.

2016-09-13

Updated for Swift 3.0.

Updated the discussion of functions in the Functions chapter and
the Function Declaration section to note that all parameters get
an argument label by default.

Updated the discussion of operators in the Advanced Operators
chapter, now that you implement them as type methods instead

PDF conversion courtesy of www.appsdissected.com

of as global functions.

Added information about the open and fileprivate access-level
modifiers to the Access Control chapter.

Updated the discussion of inout in the Function Declaration
section to note that it appears in front of a parameter’s type
instead of in front of a parameter’s name.

Updated the discussion of the @noescape and @autoclosure
attributes in the Escaping Closures and Autoclosures sections
and the Attributes chapter now that they’re type attributes, rather
than declaration attributes.

Added information about operator precedence groups to the
Precedence for Custom Infix Operators section of the Advanced
Operators chapter, and to the Precedence Group Declaration
section of the Declarations chapter.

Updated discussion throughout to use macOS instead of OS X,
Error instead of ErrorProtocol, and protocol names such as
ExpressibleByStringLiteral instead of
StringLiteralConvertible.

Updated the discussion in the Generic Where Clauses section of
the Generics chapter and in the Generic Parameters and
Arguments chapter, now that generic where clauses are written
at the end of a declaration.

Updated the discussion in the Escaping Closures section, now
that closures are nonescaping by default.

Updated the discussion in the Optional Binding section of the
The Basics chapter and the While Statement section of the
Statements chapter, now that if, while, and guard statements
use a comma-separated list of conditions without where clauses.

PDF conversion courtesy of www.appsdissected.com

Added information about switch cases that have multiple
patterns to the Switch section of the Control Flow chapter and
the Switch Statement section of the Statements chapter.

Updated the discussion of function types in the Function Type
section now that function argument labels are no longer part of a
function’s type.

Updated the discussion of protocol composition types in the
Protocol Composition section of the Protocols chapter and in the
Protocol Composition Type section of the Types chapter to use
the new Protocol1 & Protocol2 syntax.

Updated the discussion in the Dynamic Type Expression section
to use the new type(of:) syntax for dynamic type expressions.

Updated the discussion of line control statements to use the
#sourceLocation(file:line:) syntax in the Line Control
Statement section.

Updated the discussion in Functions that Never Return to use
the new Never type.

Added information about playground literals to the Literal
Expression section.

Updated the discussion in the In-Out Parameters section to note
that only nonescaping closures can capture in-out parameters.

Updated the discussion about default parameters in the Default
Parameter Values section, now that they can’t be reordered in
function calls.

Updated attribute arguments to use a colon in the Attributes
chapter.

PDF conversion courtesy of www.appsdissected.com

Added information about throwing an error inside the catch block
of a rethrowing function to the Rethrowing Functions and
Methods section.

Added information about accessing the selector of an Objective-
C property’s getter or setter to the Selector Expression section.

Added information to the Type Alias Declaration section about
generic type aliases and using type aliases inside of protocols.

Updated the discussion of function types in the Function Type
section to note that parentheses around the parameter types are
required.

Updated the Attributes chapter to note that the @IBAction,
@IBOutlet, and @NSManaged attributes imply the @objc attribute.

Added information about the @GKInspectable attribute to the
Declaration Attributes section.

Updated the discussion of optional protocol requirements in the
Optional Protocol Requirements section to clarify that they’re
used only in code that interoperates with Objective-C.

Removed the discussion of explicitly using let in function
parameters from the Function Declaration section.

Removed the discussion of the Boolean protocol from the
Statements chapter, now that the protocol has been removed
from the Swift standard library.

Corrected the discussion of the @NSApplicationMain attribute in
the Declaration Attributes section.

2016-03-21

Updated for Swift 2.2.

PDF conversion courtesy of www.appsdissected.com

Added information about how to conditionally compile code
depending on the version of Swift being used to the Conditional
Compilation Block section.

Added information about how to distinguish between methods or
initializers whose names differ only by the names of their
arguments to the Explicit Member Expression section.

Added information about the #selector syntax for Objective-C
selectors to the Selector Expression section.

Updated the discussion of associated types to use the
associatedtype keyword in the Associated Types and Protocol
Associated Type Declaration sections.

Updated information about initializers that return nil before the
instance is fully initialized in the Failable Initializers section.

Added information about comparing tuples to the Comparison
Operators section.

Added information about using keywords as external parameter
names to the Keywords and Punctuation section.

Updated the discussion of the @objc attribute in the Declaration
Attributes section to note that enumerations and enumeration
cases can use this attribute.

Updated the Operators section with discussion of custom
operators that contain a dot.

Added a note to the Rethrowing Functions and Methods section
that rethrowing functions can’t directly throw errors.

Added a note to the Property Observers section about property
observers being called when you pass a property as an in-out
parameter.

PDF conversion courtesy of www.appsdissected.com

Added a section about error handling to the A Swift Tour chapter.

Updated figures in the Weak References section to show the
deallocation process more clearly.

Removed discussion of C-style for loops, the ++ prefix and
postfix operators, and the -- prefix and postfix operators.

Removed discussion of variable function arguments and the
special syntax for curried functions.

2015-10-20

Updated for Swift 2.1.

Updated the String Interpolation and String Literals sections now
that string interpolations can contain string literals.

Added the Escaping Closures section with information about the
@noescape attribute.

Updated the Declaration Attributes and Conditional Compilation
Block sections with information about tvOS.

Added information about the behavior of in-out parameters to the
In-Out Parameters section.

Added information to the Capture Lists section about how values
specified in closure capture lists are captured.

Updated the Accessing Properties Through Optional Chaining
section to clarify how assignment through optional chaining
behaves.

Improved the discussion of autoclosures in the Autoclosures
section.

PDF conversion courtesy of www.appsdissected.com

Added an example that uses the ?? operator to the A Swift Tour
chapter.

2015-09-16

Updated for Swift 2.0.

Added information about error handling to the Error Handling
chapter, the Do Statement section, the Throw Statement section,
the Defer Statement section, and the Try Operator section.

Updated the Representing and Throwing Errors section, now
that all types can conform to the ErrorType protocol.

Added information about the new try? keyword to the
Converting Errors to Optional Values section.

Added information about recursive enumerations to the
Recursive Enumerations section of the Enumerations chapter
and the Enumerations with Cases of Any Type section of the
Declarations chapter.

Added information about API availability checking to the
Checking API Availability section of the Control Flow chapter and
the Availability Condition section of the Statements chapter.

Added information about the new guard statement to the Early
Exit section of the Control Flow chapter and the Guard
Statement section of the Statements chapter.

Added information about protocol extensions to the Protocol
Extensions section of the Protocols chapter.

Added information about access control for unit testing to the
Access Levels for Unit Test Targets section of the Access Control
chapter.

PDF conversion courtesy of www.appsdissected.com

Added information about the new optional pattern to the Optional
Pattern section of the Patterns chapter.

Updated the Repeat-While section with information about the
repeat-while loop.

Updated the Strings and Characters chapter, now that String no
longer conforms to the CollectionType protocol from the Swift
standard library.

Added information about the new Swift standard library
print(_:separator:terminator) function to the Printing
Constants and Variables section.

Added information about the behavior of enumeration cases with
String raw values to the Implicitly Assigned Raw Values section
of the Enumerations chapter and the Enumerations with Cases
of a Raw-Value Type section of the Declarations chapter.

Added information about the @autoclosure attribute—including
its @autoclosure(escaping) form—to the Autoclosures section.

Updated the Declaration Attributes section with information
about the @available and @warn_unused_result attributes.

Updated the Type Attributes section with information about the
@convention attribute.

Added an example of using multiple optional bindings with a
where clause to the Optional Binding section.

Added information to the String Literals section about how
concatenating string literals using the + operator happens at
compile time.

Added information to the Metatype Type section about
comparing metatype values and using them to construct

PDF conversion courtesy of www.appsdissected.com

instances with initializer expressions.

Added a note to the Debugging with Assertions section about
when user-defined assertions are disabled.

Updated the discussion of the @NSManaged attribute in the
Declaration Attributes section, now that the attribute can be
applied to certain instance methods.

Updated the Variadic Parameters section, now that variadic
parameters can be declared in any position in a function’s
parameter list.

Added information to the Overriding a Failable Initializer section
about how a nonfailable initializer can delegate up to a failable
initializer by force-unwrapping the result of the superclass’s
initializer.

Added information about using enumeration cases as functions
to the Enumerations with Cases of Any Type section.

Added information about explicitly referencing an initializer to the
Initializer Expression section.

Added information about build configuration and line control
statements to the Compiler Control Statements section.

Added a note to the Metatype Type section about constructing
class instances from metatype values.

Added a note to the Weak References section about weak
references being unsuitable for caching.

Updated a note in the Type Properties section to mention that
stored type properties are lazily initialized.

PDF conversion courtesy of www.appsdissected.com

Updated the Capturing Values section to clarify how variables
and constants are captured in closures.

Updated the Declaration Attributes section to describe when you
can apply the @objc attribute to classes.

Added a note to the Handling Errors section about the
performance of executing a throw statement. Added similar
information about the do statement in the Do Statement section.

Updated the Type Properties section with information about
stored and computed type properties for classes, structures, and
enumerations.

Updated the Break Statement section with information about
labeled break statements.

Updated a note in the Property Observers section to clarify the
behavior of willSet and didSet observers.

Added a note to the Access Levels section with information
about the scope of private access.

Added a note to the Weak References section about the
differences in weak references between garbage collected
systems and ARC.

Updated the Special Characters in String Literals section with a
more precise definition of Unicode scalars.

2015-04-08

Updated for Swift 1.2.

Swift now has a native Set collection type. For more information,
see Sets.

PDF conversion courtesy of www.appsdissected.com

@autoclosure is now an attribute of the parameter declaration,
not its type. There’s also a new @noescape parameter declaration
attribute. For more information, see Declaration Attributes.

Type methods and properties now use the static keyword as a
declaration modifier. For more information see Type Variable
Properties.

Swift now includes the as? and as! failable downcast operators.
For more information, see Checking for Protocol Conformance.

Added a new guide section about String Indices.

Removed the overflow division (&/) and overflow remainder (&%)
operators from Overflow Operators.

Updated the rules for constant and constant property declaration
and initialization. For more information, see Constant
Declaration.

Updated the definition of Unicode scalars in string literals. See
Special Characters in String Literals.

Updated Range Operators to note that a half-open range with
the same start and end index will be empty.

Updated Closures Are Reference Types to clarify the capturing
rules for variables.

Updated Value Overflow to clarify the overflow behavior of
signed and unsigned integers

Updated Protocol Declaration to clarify protocol declaration
scope and members.

Updated Defining a Capture List to clarify the syntax for weak
and unowned references in closure capture lists.

PDF conversion courtesy of www.appsdissected.com

Updated Operators to explicitly mention examples of supported
characters for custom operators, such as those in the
Mathematical Operators, Miscellaneous Symbols, and Dingbats
Unicode blocks.

Constants can now be declared without being initialized in local
function scope. They must have a set value before first use. For
more information, see Constant Declaration.

In an initializer, constant properties can now only assign a value
once. For more information, see Assigning Constant Properties
During Initialization.

Multiple optional bindings can now appear in a single if
statement as a comma-separated list of assignment
expressions. For more information, see Optional Binding.

An Optional-Chaining Expression must appear within a postfix
expression.

Protocol casts are no longer limited to @objc protocols.

Type casts that can fail at runtime now use the as? or as!
operator, and type casts that are guaranteed not to fail use the
as operator. For more information, see Type-Casting Operators.

2014-10-16

Updated for Swift 1.1.

Added a full guide to Failable Initializers.

Added a description of Failable Initializer Requirements for
protocols.

Constants and variables of type Any can now contain function
instances. Updated the example in Type Casting for Any and

PDF conversion courtesy of www.appsdissected.com

AnyObject to show how to check for and cast to a function type
within a switch statement.

Enumerations with raw values now have a rawValue property
rather than a toRaw() method and a failable initializer with a
rawValue parameter rather than a fromRaw() method. For more
information, see Raw Values and Enumerations with Cases of a
Raw-Value Type.

Added a new reference section about Failable Initializers, which
can trigger initialization failure.

Custom operators can now contain the ? character. Updated the
Operators reference to describe the revised rules. Removed a
duplicate description of the valid set of operator characters from
Custom Operators.

2014-08-18

New document that describes Swift 1.0, Apple’s new
programming language for building iOS and OS X apps.

Added a new section about Initializer Requirements in protocols.

Added a new section about Class-Only Protocols.

Assertions and Preconditions can now use string interpolation.
Removed a note to the contrary.

Updated the Concatenating Strings and Characters section to
reflect the fact that String and Character values can no longer
be combined with the addition operator (+) or addition
assignment operator (+=). These operators are now used only
with String values. Use the String type’s append(_:) method to
append a single Character value onto the end of a string.

PDF conversion courtesy of www.appsdissected.com

Added information about the availability attribute to the
Declaration Attributes section.

Optionals no longer implicitly evaluate to true when they have a
value and false when they do not, to avoid confusion when
working with optional Bool values. Instead, make an explicit
check against nil with the == or != operators to find out if an
optional contains a value.

Swift now has a Nil-Coalescing Operator (a ?? b), which
unwraps an optional’s value if it exists, or returns a default value
if the optional is nil.

Updated and expanded the Comparing Strings section to reflect
and demonstrate that string and character comparison and prefix
/ suffix comparison are now based on Unicode canonical
equivalence of extended grapheme clusters.

You can now try to set a property’s value, assign to a subscript,
or call a mutating method or operator through Optional Chaining.
The information about Accessing Properties Through Optional
Chaining has been updated accordingly, and the examples of
checking for method call success in Calling Methods Through
Optional Chaining have been expanded to show how to check
for property setting success.

Added a new section about Accessing Subscripts of Optional
Type through optional chaining.

Updated the Accessing and Modifying an Array section to note
that you can no longer append a single item to an array with the
+= operator. Instead, use the append(_:) method, or append a
single-item array with the += operator.

Added a note that the start value a for the Range Operators
a...b and a..<b must not be greater than the end value b.

PDF conversion courtesy of www.appsdissected.com

Rewrote the Inheritance chapter to remove its introductory
coverage of initializer overrides. This chapter now focuses more
on the addition of new functionality in a subclass, and the
modification of existing functionality with overrides. The chapter’s
example of Overriding Property Getters and Setters has been
rewritten to show how to override a description property. (The
examples of modifying an inherited property’s default value in a
subclass initializer have been moved to the Initialization
chapter.)

Updated the Initializer Inheritance and Overriding section to note
that overrides of a designated initializer must now be marked
with the override modifier.

Updated the Required Initializers section to note that the
required modifier is now written before every subclass
implementation of a required initializer, and that the
requirements for required initializers can now be satisfied by
automatically inherited initializers.

Infix Operator Methods no longer require the @infix attribute.

The @prefix and @postfix attributes for Prefix and Postfix
Operators have been replaced by prefix and postfix
declaration modifiers.

Added a note about the order in which Prefix and Postfix
Operators are applied when both a prefix and a postfix operator
are applied to the same operand.

Operator functions for Compound Assignment Operators no
longer use the @assignment attribute when defining the function.

The order in which modifiers are specified when defining Custom
Operators has changed. You now write prefix operator rather
than operator prefix, for example.

PDF conversion courtesy of www.appsdissected.com

Added information about the dynamic declaration modifier in
Declaration Modifiers.

Added information about how type inference works with Literals.

Added more information about curried functions.

Added a new chapter about Access Control.

Updated the Strings and Characters chapter to reflect the fact
that Swift’s Character type now represents a single Unicode
extended grapheme cluster. Includes a new section on Extended
Grapheme Clusters and more information about Unicode Scalar
Values and Comparing Strings.

Updated the String Literals section to note that Unicode scalars
inside string literals are now written as \u{n}, where n is a
hexadecimal number between 0 and 10FFFF, the range of
Unicode’s codespace.

The NSString length property is now mapped onto Swift’s native
String type as utf16Count, not utf16count.

Swift’s native String type no longer has an uppercaseString or
lowercaseString property. The corresponding section in Strings
and Characters has been removed, and various code examples
have been updated.

Added a new section about Initializer Parameters Without
Argument Labels.

Added a new section about Required Initializers.

Added a new section about Optional Tuple Return Types.

Updated the Type Annotations section to note that multiple
related variables can be defined on a single line with one type

PDF conversion courtesy of www.appsdissected.com

annotation.

The @optional, @lazy, @final, and @required attributes are now
the optional, lazy, final, and required Declaration Modifiers.

Updated the entire book to refer to ..< as the Half-Open Range
Operator (rather than the “half-closed range operator”).

Updated the Accessing and Modifying a Dictionary section to
note that Dictionary now has a Boolean isEmpty property.

Clarified the full list of characters that can be used when defining
Custom Operators.

nil and the Booleans true and false are now Literals.

Swift’s Array type now has full value semantics. Updated the
information about Mutability of Collections and Arrays to reflect
the new approach. Also clarified the assignment and copy
behavior for strings arrays and dictionaries.

Array Type Shorthand Syntax is now written as [SomeType]
rather than SomeType[].

Added a new section about Dictionary Type Shorthand Syntax,
which is written as [KeyType: ValueType].

Added a new section about Hash Values for Set Types.

Examples of Closure Expressions now use the global
sorted(_:_:) function rather than the global sort(_:_:)
function, to reflect the new array value semantics.

Updated the information about Memberwise Initializers for
Structure Types to clarify that the memberwise structure
initializer is made available even if a structure’s stored properties
don’t have default values.

PDF conversion courtesy of www.appsdissected.com

Updated to ..< rather than .. for the Half-Open Range Operator.

Added an example of Extending a Generic Type.

PDF conversion courtesy of www.appsdissected.com

Copyright and Notices

Apple Inc.
Copyright © 2022 Apple Inc.

This document is made available under a Creative Commons
Attribution 4.0 International (CC BY 4.0) License:
https://creativecommons.org/licenses/by/4.0/

No licenses, express or implied, are granted with respect to any of the
technology described in this document. Apple retains all intellectual
property rights associated with the technology described in this
document.

Apple Inc.
One Apple Park Way
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, Bonjour, Cocoa, Logic, Mac, Numbers,
Objective-C, OS X, Retina, Sand, Shake, and Xcode are trademarks
of Apple Inc., registered in the U.S. and other countries.

Swift and tvOS are trademarks of Apple Inc.

IOS is a trademark or registered trademark of Cisco in the U.S. and
other countries and is used under license.

Times is a registered trademark of Heidelberger Druckmaschinen
AG, available from Linotype Library GmbH.

https://creativecommons.org/licenses/by/4.0/

	Welcome to Swift
	About Swift
	Version Compatibility
	A Swift Tour

	Language Guide
	The Basics
	Basic Operators
	Strings and Characters
	Collection Types
	Control Flow
	Functions
	Closures
	Enumerations
	Structures and Classes
	Properties
	Methods
	Subscripts
	Inheritance
	Initialization
	Deinitialization
	Optional Chaining
	Error Handling
	Concurrency
	Type Casting
	Nested Types
	Extensions
	Protocols
	Generics
	Opaque Types
	Automatic Reference Counting
	Memory Safety
	Access Control
	Advanced Operators

	Language Reference
	About the Language Reference
	Lexical Structure
	Types
	Expressions
	Statements
	Declarations
	Attributes
	Patterns
	Generic Parameters and Arguments
	Summary of the Grammar

	Revision History
	Document Revision History

	Trademarks

