N\

The Swift
Programming
Language

Swift 5.7 Edition

Welcome to Swift

PDF conversion courtesy of www.appsdissected.com

About Swift

Swift is a fantastic way to write software, whether it’s for phones,
desktops, servers, or anything else that runs code. It’s a safe, fast,
and interactive programming language that combines the best in
modern language thinking with wisdom from the wider Apple
engineering culture and the diverse contributions from its open-
source community. The compiler is optimized for performance and
the language is optimized for development, without compromising on
either.

Swift is friendly to new programmers. It’s an industrial-quality
programming language that’s as expressive and enjoyable as a
scripting language. Writing Swift code in a playground lets you
experiment with code and see the results immediately, without the
overhead of building and running an app.

Swift defines away large classes of common programming errors by
adopting modern programming patterns:

« Variables are always initialized before use.

Array indices are checked for out-of-bounds errors.

Integers are checked for overflow.

Optionals ensure that nil values are handled explicitly.

Memory is managed automatically.

Error handling allows controlled recovery from unexpected
failures.

Swift code is compiled and optimized to get the most out of modern
hardware. The syntax and standard library have been designed
based on the guiding principle that the obvious way to write your code

PDF conversion courtesy of www.appsdissected.com

should also perform the best. Its combination of safety and speed
make Swift an excellent choice for everything from “Hello, world!” to
an entire operating system.

Swift combines powerful type inference and pattern matching with a
modern, lightweight syntax, allowing complex ideas to be expressed
in a clear and concise manner. As a result, code is not just easier to
write, but easier to read and maintain as well.

Swift has been years in the making, and it continues to evolve with
new features and capabilities. Our goals for Swift are ambitious. We
can’t wait to see what you create with it.

PDF conversion courtesy of www.appsdissected.com

Version Compatibility

This book describes Swift 5.7, the default version of Swift that’s
included in Xcode 14. You can use Xcode 14 to build targets that are
written in either Swift 5.7, Swift 4.2, or Swift 4.

When you use Xcode 14 to build Swift 4 and Swift 4.2 code, most
Swift 5.7 functionality is available. That said, the following changes
are available only to code that uses Swift 5.7 or later:

« Functions that return an opaque type require the Swift 5.1
runtime.

« The try? expression doesn’t introduce an extra level of
optionality to expressions that already return optionals.

« Large integer literal initialization expressions are inferred to be of
the correct integer type. For example,
UInte4(oxffff_ffff_ffff_ffff) evaluates to the correct value
rather than overflowing.

Concurrency requires Swift 5.7 or later, and a version of the Swift
standard library that provides the corresponding concurrency types.
On Apple platforms, set a deployment target of at least iOS 15,
macOS 12, tvOS 15, or watchOS 8.0.

A target written in Swift 5.7 can depend on a target that’s written in
Swift 4.2 or Swift 4, and vice versa. This means, if you have a large
project that’s divided into multiple frameworks, you can migrate your
code from Swift 4 to Swift 5.7 one framework at a time.

PDF conversion courtesy of www.appsdissected.com

A Swift Tour

Tradition suggests that the first program in a new language should
print the words “Hello, world!” on the screen. In Swift, this can be
done in a single line:

1 print("Hello, world!")
2 // Prints "Hello, world!"

If you have written code in C or Objective-C, this syntax looks familiar
to you—in Swift, this line of code is a complete program. You don’t
need to import a separate library for functionality like input/output or
string handling. Code written at global scope is used as the entry
point for the program, so you don’t need a main() function. You also
don’t need to write semicolons at the end of every statement.

This tour gives you enough information to start writing code in Swift
by showing you how to accomplish a variety of programming tasks.
Don’t worry if you don’t understand something—everything
introduced in this tour is explained in detail in the rest of this book.

NOTE

On a Mac with Xcode installed, or on an iPad with Swift Playgrounds, you can
open this chapter as a playground. Playgrounds allow you to edit the code
listings and see the result immediately.

Download Playground

Simple Values

PDF conversion courtesy of www.appsdissected.com

https://docs.swift.org/swift-book/GuidedTour/GuidedTour.playground.zip

Use let to make a constant and var to make a variable. The value of
a constant doesn’t need to be known at compile time, but you must
assign it a value exactly once. This means you can use constants to
name a value that you determine once but use in many places.

1 var myVariable = 42
2 myVariable = 50
3 let myConstant = 42

A constant or variable must have the same type as the value you
want to assign to it. However, you don’t always have to write the type
explicitly. Providing a value when you create a constant or variable
lets the compiler infer its type. In the example above, the compiler
infers that myvariable is an integer because its initial value is an
integer.

If the initial value doesn’t provide enough information (or if there isn’t
an initial value), specify the type by writing it after the variable,
separated by a colon.

1 let implicitInteger = 70
2 let implicitDouble = 70.0
3 let explicitDouble: Double = 70

EXPERIMENT
Create a constant with an explicit type of Float and a value of 4.

Values are never implicitly converted to another type. If you need to
convert a value to a different type, explicitly make an instance of the
desired type.

PDF conversion courtesy of www.appsdissected.com

1 let label "The width is "
2 let width = 94
3 let widthLabel = label + String(width)

EXPERIMENT

Try removing the conversion to String from the last line. What error do you
get?

There’s an even simpler way to include values in strings: Write the
value in parentheses, and write a backslash (\) before the
parentheses. For example:

let apples = 3
let oranges = 5

"I have \(apples) apples.”

let appleSummary

~ W N -

"I have \(apples + oranges)

let fruitSummary

pieces of fruit."

EXPERIMENT

Use \ () to include a floating-point calculation in a string and to include
someone’s name in a greeting.

Use three double quotation marks ("'"'") for strings that take up
multiple lines. Indentation at the start of each quoted line is removed,
as long as it matches the indentation of the closing quotation marks.
For example:

PDF conversion courtesy of www.appsdissected.com

1 let quotation =

2 I said "I have \(apples) apples."

3 And then I said "I have \(apples + oranges) pieces
of fruit."

4 min

Create arrays and dictionaries using brackets ([1), and access their
elements by writing the index or key in brackets. A comma is allowed
after the last element.

var fruits = ["strawberries", "limes", "tangerines"]

fruits[1] = "grapes"
var occupations = [

"Kaylee": "Mechanic",

]

1

2

3

4

5 "Malcolm": "Captain",
6

7

8 occupations['Jayne"] = "Public Relations"
Arrays automatically grow as you add elements.

1 fruits.append("blueberries")

2 print(fruits)
To create an empty array or dictionary, use the initializer syntax.

1 let emptyArray: [String] = []
2 let emptyDictionary: [String: Float] = [:]

PDF conversion courtesy of www.appsdissected.com

If type information can be inferred, you can write an empty array as []
and an empty dictionary as [:] —for example, when you set a new
value for a variable or pass an argument to a function.

1 fruits = []

2 occupations = [:]

Control Flow

Use if and switch to make conditionals, and use for-in, while, and
repeat-while to make loops. Parentheses around the condition or
loop variable are optional. Braces around the body are required.

1 let individualScores = [75, 43, 103, 87, 12]
2 var teamScore = 0

3 for score in individualScores {

4 if score > 50 {

5 teamScore += 3

6 } else {

7 teamScore += 1

8 ¥

9 }

10 print(teamScore)

11 // Prints "11"

In an if statement, the conditional must be a Boolean expression—
this means that code such as if score { ... }isan error, notan

PDF conversion courtesy of www.appsdissected.com

implicit comparison to zero.

You can use if and let together to work with values that might be
missing. These values are represented as optionals. An optional
value either contains a value or contains nil to indicate that a value
is missing. Write a question mark (?) after the type of a value to mark
the value as optional.

if let name = optionalName {

greeting = "Hello, \(name)"

1 var optionalString: String? = "Hello"

2 print(optionalString == nil)

3 // Prints "false"

4

5 var optionalName: String? = "John Appleseed"
6 var greeting = "Hello!"

7

8

9

EXPERIMENT

Change optionalName to nil. What greeting do you get? Add an else clause
that sets a different greeting if optionalNameis nil.

If the optional value is nil, the conditional is false and the code in
braces is skipped. Otherwise, the optional value is unwrapped and
assigned to the constant after 1et, which makes the unwrapped value
available inside the block of code.

Another way to handle optional values is to provide a default value
using the 77 operator. If the optional value is missing, the default
value is used instead.

PDF conversion courtesy of www.appsdissected.com

1 let nickname: String? = nil
2 let fullName: String = "John Appleseed"

3 let informalGreeting = "Hi \(nickname ?? fullName)"

You can use a shorter spelling to unwrap a value, using the same
name for that unwrapped value.

1 if let nickname {
2 print("Hey, \(nickname)")
3}

Switches support any kind of data and a wide variety of comparison
operations—they aren’t limited to integers and tests for equality.

1 let vegetable = "red pepper"

2 switch vegetable {

3 case '"celery":

4 print("Add some raisins and make ants on a
log.")

5 case "cucumber", "watercress'":

6 print("That would make a good tea sandwich.")

7 case let x where x.hasSuffix("pepper"):

8 print("Is it a spicy \(x)?")

9 default:

10 print("Everything tastes good in soup.")

11}

12 // Prints "Is it a spicy red pepper?"

PDF conversion courtesy of www.appsdissected.com

EXPERIMENT
Try removing the default case. What error do you get?

Notice how let can be used in a pattern to assign the value that
matched the pattern to a constant.

After executing the code inside the switch case that matched, the
program exits from the switch statement. Execution doesn’t continue
to the next case, so you don’t need to explicitly break out of the
switch at the end of each case’s code.

You use for-in to iterate over items in a dictionary by providing a pair
of names to use for each key-value pair. Dictionaries are an
unordered collection, so their keys and values are iterated over in an
arbitrary order.

PDF conversion courtesy of www.appsdissected.com

let interestingNumbers = [

"Prime": [2, 3, 5, 7, 11, 131,
"Fibonacci": [1, 1, 2, 3, 5, 8],
“"Square": [1, 4, 9, 16, 251,

var largest = 0
for (_, numbers) in interestingNumbers {

for number in numbers {

© 00 N O Ul A W N BB

if number > largest {

10 largest = number
11 ¥

12 s

13}

14 print(largest)

15 // Prints "25"

EXPERIMENT

Replace the _ with a variable name, and keep track of which kind of number
was the largest.

Use while to repeat a block of code until a condition changes. The
condition of a loop can be at the end instead, ensuring that the loop is
run at least once.

PDF conversion courtesy of www.appsdissected.com

1 var n =2

2 while n < 100 {
3 n %= 2
4}

5 print(n)

6 // Prints "128"
7

8 wvarm =2

9 repeat {

10 m x= 2
11} while m < 100
12 print(m)

13 // Prints "128"

You can keep an index in a loop by using . . < to make a range of
indexes.

1 var total =0

2 for i in 0..<4 {
3 total += 1
4.}

5 print(total)

6 // Prints "6"

Use . .<to make a range that omits its upper value, and use ... to
make a range that includes both values.

PDF conversion courtesy of www.appsdissected.com

Functions and Closures

Use func to declare a function. Call a function by following its name
with a list of arguments in parentheses. Use —> to separate the
parameter names and types from the function’s return type.

1 func greet(person: String, day: String) —> String {
2 return "Hello \(person), today is \(day)."
3}

4 greet(person: "Bob", day: "Tuesday")

EXPERIMENT

Remove the day parameter. Add a parameter to include today’s lunch special
in the greeting.

By default, functions use their parameter names as labels for their
arguments. Write a custom argument label before the parameter
name, or write _ to use no argument label.

1 func greet(_ person: String, on day: String) —>
String {

2 return "Hello \(person), today is \(day)."

3%

4 greet("John", on: "Wednesday")

Use a tuple to make a compound value —for example, to return
multiple values from a function. The elements of a tuple can be
referred to either by name or by number.

PDF conversion courtesy of www.appsdissected.com

© 00 N O Ul B W N

e N = T T S S Sy S N
N OO U1 D WN RS

18
19
20
21

Functions can be nested. Nested functions have access to variables

func calculateStatistics(scores:
Int, max: Int, sum: Int) {

var min = scores[0]

var max = scores[0]

var sum = 0

for score in scores {
if score > max {
max = score
} else if score < min {
min = score
ks

sum += score

return (min, max, sum)

¥

[Int]) —> (min:

let statistics = calculateStatistics(scores: [5, 3,

100, 3, 9])
print(statistics.sum)
// Prints "120"
print(statistics.2)

// Prints "120"

that were declared in the outer function. You can use nested
functions to organize the code in a function that’s long or complex.

PDF conversion courtesy of www.appsdissected.com

by

returnFifteen()

1 func returnFifteen() —> Int {
2 var y = 10

3 func add() {

4 y += 5

5 ¥

6 add()

7 return y

8

9

Functions are a first-class type. This means that a function can return
another function as its value.

func makeIncrementer() —> ((Int) —> Int) {
func addOne(number: Int) —> Int {
return 1 + number

}

return addOne

¥

var increment = makeIncrementer()

o N o u A W N R

increment(7)

A function can take another function as one of its arguments.

PDF conversion courtesy of www.appsdissected.com

1 func hasAnyMatches(list: [Int], condition: (Int) —>
Bool) —> Bool {

2 for item in list {

3 if condition(item) {
4 return true

5 s

6 ¥

7 return false

8 1}

9 func lessThanTen(number: Int) —> Bool {
10 return number < 10

11}

12 var numbers = [20, 19, 7, 12]

13 hasAnyMatches(list: numbers, condition: lessThanTen)

Functions are actually a special case of closures: blocks of code that
can be called later. The code in a closure has access to things like
variables and functions that were available in the scope where the
closure was created, even if the closure is in a different scope when
it’s executed—you saw an example of this already with nested
functions. You can write a closure without a name by surrounding
code with braces ({}). Use in to separate the arguments and return
type from the body.

1 numbers.map({ (number: Int) —> Int in
2 let result = 3 * number

3 return result

4 1)

PDF conversion courtesy of www.appsdissected.com

EXPERIMENT
Rewrite the closure to return zero for all odd numbers.

You have several options for writing closures more concisely. When a
closure’s type is already known, such as the callback for a delegate,
you can omit the type of its parameters, its return type, or both. Single
statement closures implicitly return the value of their only statement.

1 let mappedNumbers = numbers.map({ number in 3 x
number })

2 print(mappedNumbers)

3 // Prints "[60, 57, 21, 361"

You can refer to parameters by number instead of by name —this
approach is especially useful in very short closures. A closure passed
as the last argument to a function can appear immediately after the
parentheses. When a closure is the only argument to a function, you
can omit the parentheses entirely.

1 let sortedNumbers = numbers.sorted { $0 > $1 }
2 print(sortedNumbers)

3 // Prints "[20, 19, 12, 7]"

Objects and Classes

Use class followed by the class’s name to create a class. A property
declaration in a class is written the same way as a constant or
variable declaration, except that it’s in the context of a class.
Likewise, method and function declarations are written the same way.

PDF conversion courtesy of www.appsdissected.com

1 class Shape {

2 var numberOfSides = @

3 func simpleDescription() —> String {

4 return "A shape with \(numberOfSides)
sides."

5 }

6 }

EXPERIMENT

Add a constant property with Let, and add another method that takes an
argument.

Create an instance of a class by putting parentheses after the class
name. Use dot syntax to access the properties and methods of the
instance.

1 var shape = Shape()
2 shape.numberOfSides = 7

3 var shapeDescription = shape.simpleDescription()

This version of the Shape class is missing something important: an
initializer to set up the class when an instance is created. Use init to
create one.

PDF conversion courtesy of www.appsdissected.com

1 class NamedShape {

2 var numberOfSides: Int = 0

3 var name: String

4

5 init(name: String) {

6 self.name = name

7 }

8

9 func simpleDescription() —> String {

10 return "A shape with \(number0fSides)
sides."

11 s

12}

Notice how self is used to distinguish the name property from the
name argument to the initializer. The arguments to the initializer are
passed like a function call when you create an instance of the class.
Every property needs a value assigned—either in its declaration (as
with number0ofSides) orin the initializer (as with name).

Use deinit to create a deinitializer if you need to perform some
cleanup before the object is deallocated.

Subclasses include their superclass name after their class name,
separated by a colon. There’s no requirement for classes to subclass
any standard root class, so you can include or omit a superclass as
needed.

Methods on a subclass that override the superclass’s implementation
are marked with override—overriding a method by accident, without
override, is detected by the compiler as an error. The compiler also

PDF conversion courtesy of www.appsdissected.com

detects methods with override that don’t actually override any
method in the superclass.

1 class Square: NamedShape {

2 var sidelLength: Double

3

4 init(sidelLength: Double, name: String) {

5 self.sideLength = sidelLength

6 super.init(name: name)

7 numberOfSides = 4

8 ¥

9

10 func area() —> Double {

11 return sidelLength * sidelLength

12 }

13

14 override func simpleDescription() —> String {

15 return "A square with sides of length \
(sideLength)."

16 Iy

17}

18 let test = Square(sidelLength: 5.2, name: "my test
square")
19 test.area()

20 test.simpleDescription()

PDF conversion courtesy of www.appsdissected.com

EXPERIMENT

Make another subclass of NamedShape called Circle that takes a radius and
a name as arguments to its initializer. Implement an area() and a
simpleDescription() method onthe Circle class.

In addition to simple properties that are stored, properties can have a
getter and a setter.

PDF conversion courtesy of www.appsdissected.com

© 00 N O Ul A W N BB

T S T e S o o S = S
S W W N O Ul A W N LB ©

21
22
23

24

class EquilateralTriangle: NamedShape {
var sidelLength: Double = 0.0

init(sidelLength: Double, name: String) {
self.sidelLength = sidelLength
super.init(name: name)

number0fSides = 3

var perimeter: Double {
get {

return 3.0 x sidelLength

}
set {

sideLength = newValue / 3.0
s

override func simpleDescription() —> String {
return "An equilateral triangle with sides
of length \(sideLength)."
¥
¥
var triangle = EquilateralTriangle(sidelLength: 3.1,
name: "a triangle")

print(triangle.perimeter)

PDF conversion courtesy of www.appsdissected.com

25 // Prints "9.3"

26 triangle.perimeter = 9.9

27 print(triangle.sidelLength)

28 // Prints '"3.3000000000000003"

In the setter for perimeter, the new value has the implicit name
newValue. You can provide an explicit name in parentheses after set.

Notice that the initializer for the EquilateralTriangle class has three
different steps:

1. Setting the value of properties that the subclass declares.
2. Calling the superclass’s initializer.

3. Changing the value of properties defined by the superclass. Any
additional setup work that uses methods, getters, or setters can
also be done at this point.

If you don’t need to compute the property but still need to provide
code that’s run before and after setting a new value, use willSet and
didSet. The code you provide is run any time the value changes
outside of an initializer. For example, the class below ensures that the
side length of its triangle is always the same as the side length of its
square.

PDF conversion courtesy of www.appsdissected.com

10
11
12
13

14

15
16
17

18
19
20
21

class TriangleAndSquare {
var triangle: EquilateralTriangle {
willSet {

square.sidelLength = newValue.sidelLength

I

¥

var square: Square {
willSet {

triangle.sidelLength =
newValue.sidelLength
}
b
init(size: Double, name: String) {
square = Square(sidelLength: size, name:
name)
triangle = EquilateralTriangle(sidelLength:
size, name: name)
}
}
var triangleAndSquare = TriangleAndSquare(size: 10,
name: "another test shape")
print(triangleAndSquare.square.sidelLength)
// Prints "10.0"
print(triangleAndSquare.triangle.sidelLength)
// Prints "10.0"

PDF conversion courtesy of www.appsdissected.com

22 triangleAndSquare.square = Square(sidelLength: 50,
name: "larger square'")

23 print(triangleAndSquare.triangle.sidelLength)

24 // Prints "50.0"

When working with optional values, you can write ? before operations
like methods, properties, and subscripting. If the value before the 7 is
nil, everything after the 7 is ignored and the value of the whole
expression is nil. Otherwise, the optional value is unwrapped, and
everything after the 7 acts on the unwrapped value. In both cases, the
value of the whole expression is an optional value.

1 let optionalSquare: Square? = Square(sidelLength:
2.5, name: "optional square")

2 let sidelLength = optionalSquare?.sidelLength

Enumerations and Structures

Use enum to create an enumeration. Like classes and all other named
types, enumerations can have methods associated with them.

PDF conversion courtesy of www.appsdissected.com

O 00 N o ul s~

enum Rank: Int {
case ace =1
case two, three, four, five, six, seven, eight,
nine, ten

case jack, queen, king

func simpleDescription() —> String {
switch self {
case .ace:
return "ace"
case .jack:
return "jack"

case .queen.:

13
14
15
16
17
18
19
20
21
22

return "queen"
case .king:

return "king"
default:

return String(self.rawValue)

let ace = Rank.ace

let aceRawValue ace.rawValue

PDF conversion courtesy of www.appsdissected.com

EXPERIMENT

Write a function that compares two Rank values by comparing their raw
values.

By default, Swift assigns the raw values starting at zero and
incrementing by one each time, but you can change this behavior by
explicitly specifying values. In the example above, Ace is explicitly
given a raw value of 1, and the rest of the raw values are assigned in
order. You can also use strings or floating-point numbers as the raw
type of an enumeration. Use the rawValue property to access the raw
value of an enumeration case.

Use the init?(rawValue:) initializer to make an instance of an
enumeration from a raw value. It returns either the enumeration case
matching the raw value or nil if there’s no matching Rank.

1 if let convertedRank = Rank(rawValue: 3) {
2 let threeDescription =

convertedRank.simpleDescription()

The case values of an enumeration are actual values, not just
another way of writing their raw values. In fact, in cases where there
isn’t a meaningful raw value, you don’t have to provide one.

PDF conversion courtesy of www.appsdissected.com

1 enum Suit {

2 case spades, hearts, diamonds, clubs
3

4 func simpleDescription() —> String {
5 switch self {

6 case .spades:

7 return "spades"

8 case .hearts:

9 return "hearts"

10 case .diamonds:

11 return "diamonds"

12 case .clubs:

13 return "clubs"

14 I

15 }

16}

17 let hearts = Suit.hearts

18 let heartsDescription = hearts.simpleDescription()

EXPERIMENT

Add a color () method to Suit that returns “black” for spades and clubs, and
returns “red” for hearts and diamonds.

Notice the two ways that the hearts case of the enumeration is
referred to above: When assigning a value to the hearts constant, the
enumeration case Suit.hearts is referred to by its full name because
the constant doesn’t have an explicit type specified. Inside the switch,
the enumeration case is referred to by the abbreviated form .hearts

PDF conversion courtesy of www.appsdissected.com

because the value of self is already known to be a suit. You can use
the abbreviated form anytime the value’s type is already known.

If an enumeration has raw values, those values are determined as
part of the declaration, which means every instance of a particular
enumeration case always has the same raw value. Another choice for
enumeration cases is to have values associated with the case —
these values are determined when you make the instance, and they
can be different for each instance of an enumeration case. You can
think of the associated values as behaving like stored properties of
the enumeration case instance. For example, consider the case of
requesting the sunrise and sunset times from a server. The server
either responds with the requested information, or it responds with a
description of what went wrong.

PDF conversion courtesy of www.appsdissected.com

enum ServerResponse {
case result(String, String)

case failure(String)

o U A W N R
o

let success ServerResponse.result("6:00 am", "8:09
pmll)
7 let failure = ServerResponse.failure("Out of

cheese.")

9 switch success {

10 case let .result(sunrise, sunset):

11 print("Sunrise is at \(sunrise) and sunset is at
\(sunset).")

12 case let .failure(message):

13 print("Failure... \(message)")

14}

15 // Prints "Sunrise is at 6:00 am and sunset is at

8:09 pm."

EXPERIMENT

Add a third case to ServerResponse and to the switch.

Notice how the sunrise and sunset times are extracted from the
ServerResponse value as part of matching the value against the
switch cases.

PDF conversion courtesy of www.appsdissected.com

Use struct to create a structure. Structures support many of the
same behaviors as classes, including methods and initializers. One of
the most important differences between structures and classes is that
structures are always copied when they’re passed around in your
code, but classes are passed by reference.

v B~ W N =

struct Card {
var rank: Rank
var suit: Suit

func simpleDescription() —> String {

return "The \(rank.simpleDescription()) of \

(suit.simpleDescription())"
¥

b

let threeOfSpades = Card(rank: .three, suit:
. spades)

let threeOfSpadesDescription =

threeOfSpades.simpleDescription()

EXPERIMENT

Write a function that returns an array containing a full deck of cards, with one

card of each combination of rank and suit.

Concurrency

Use async to mark a function that runs asynchronously.

PDF conversion courtesy of www.appsdissected.com

1 func fetchUserID(from server: String) async —> Int {
2 if server == "primary" {

3 return 97

4 ¥

5 return 501

6 }

You mark a call to an asynchronous function by writing await in front
of it.

1 func fetchUsername(from server: String) async —>
String {
let userID = await fetchUserID(from: server)
if userID == 501 {
return "John Appleseed"

¥

return "Guest"

N oo o B WwN

Use async let to call an asynchronous function, letting it run in
parallel with other asynchronous code. When you use the value it
returns, write await.

PDF conversion courtesy of www.appsdissected.com

1 func connectUser(to server: String) async {

2 async let userID = fetchUserID(from: server)

3 async let username = fetchUsername(from: server)

4 let greeting = await "Hello \(username), user ID
\(userID)"

5 print(greeting)

Use Task to call asynchronous functions from synchronous code,
without waiting for them to return.

Task {

await connectUser(to: "primary")

}
// Prints "Hello Guest, user ID 97"

~ W N BB

Protocols and Extensions
Use protocol to declare a protocol.
protocol ExampleProtocol {

var simpleDescription: String { get }

mutating func adjust()

~ W NN R

Classes, enumerations, and structures can all adopt protocols.

PDF conversion courtesy of www.appsdissected.com

1 class SimpleClass: ExampleProtocol {

2 var simpleDescription: String = "A very simple
class.™

var anotherProperty: Int = 69105

func adjust() {

simpleDescription += " Now 100% adjusted."

by

var a = SimpleClass()

© O N o U b~ W
—

a.adjust()
10 let aDescription = a.simpleDescription
11

12 struct SimpleStructure: ExampleProtocol {

13 var simpleDescription: String = "A simple
structure"

14 mutating func adjust() {

15 simpleDescription += " (adjusted)"

16 hy

17}

18 var b = SimpleStructure()
19 b.adjust()

20 let bDescription = b.simpleDescription

EXPERIMENT

Add another requirement to ExampleProtocol. What changes do you need to
make to SimpleClass and SimpleStructure so that they still conform to the
protocol?

PDF conversion courtesy of www.appsdissected.com

Notice the use of the mutating keyword in the declaration of
SimpleStructure to mark a method that modifies the structure. The
declaration of SimpleClass doesn’t need any of its methods marked
as mutating because methods on a class can always modify the
class.

Use extension to add functionality to an existing type, such as new
methods and computed properties. You can use an extension to add
protocol conformance to a type that’s declared elsewhere, or even to
a type that you imported from a library or framework.

1 extension Int: ExampleProtocol {

2 var simpleDescription: String {
3 return "The number \(self)"
4 b

5 mutating func adjust() {

6 self += 42

7 ¥

8 }

9 print(7.simpleDescription)

10 // Prints "The number 7"

EXPERIMENT
Write an extension for the Doub Le type that adds an absoluteValue property.

You can use a protocol name just like any other named type —for
example, to create a collection of objects that have different types but
that all conform to a single protocol. When you work with values
whose type is a protocol type, methods outside the protocol definition
aren’t available.

PDF conversion courtesy of www.appsdissected.com

let protocolValue: ExampleProtocol = a
print(protocolValue.simpleDescription)

// Prints "A very simple class. Now 100% adjusted."

~ W NN -

// print(protocolValue.anotherProperty) //

Uncomment to see the error

Even though the variable protocolvalue has a runtime type of
SimpleClass, the compiler treats it as the given type of
ExampleProtocol. This means that you can’t accidentally access
methods or properties that the class implements in addition to its
protocol conformance.

Error Handling

You represent errors using any type that adopts the Error protocol.

1 enum PrinterError: Error {
2 case outOfPaper

3 case noToner

4 case onFire

5 %}

Use throw to throw an error and throws to mark a function that can
throw an error. If you throw an error in a function, the function returns
immediately and the code that called the function handles the error.

PDF conversion courtesy of www.appsdissected.com

1 func send(job: Int, toPrinter printerName: String)
throws —> String {
if printerName == "Never Has Toner" {
throw PrinterError.noToner
¥

return "Job sent"

S U1~ WN

There are several ways to handle errors. One way is to use do-catch.
Inside the do block, you mark code that can throw an error by writing
try in front of it. Inside the catch block, the error is automatically
given the name error unless you give it a different name.

1 do {
2 let printerResponse = try send(job: 1040,
toPrinter: "Bi Sheng")

print(printerResponse)

} catch {
print(error)

s

// Prints "Job sent"

N o O AW

EXPERIMENT

Change the printer name to "Never Has Toner', so that the
send(job:toPrinter:) function throws an error.

You can provide multiple catch blocks that handle specific errors. You
write a pattern after catch just as you do after case in a switch.

PDF conversion courtesy of www.appsdissected.com

1 do {

2 let printerResponse = try send(job: 1440,
toPrinter: "Gutenberg")

3 print(printerResponse)

4} catch PrinterError.onFire {

5 print("I'll just put this over here, with the

rest of the fire.")

6 } catch let printerError as PrinterError {

7 print("Printer error: \(printerError).")
8 } catch {

9 print(error)

10 1}

11 // Prints "Job sent"

EXPERIMENT

Add code to throw an error inside the do block. What kind of error do you need
to throw so that the error is handled by the first catch block? What about the
second and third blocks?

Another way to handle errors is to use try? to convert the result to an
optional. If the function throws an error, the specific error is discarded
and the result is nil. Otherwise, the result is an optional containing
the value that the function returned.

1 let printerSuccess = try? send(job: 1884, toPrinter:
"Mergenthaler")
2 let printerFailure = try? send(job: 1885, toPrinter:

"Never Has Toner")

PDF conversion courtesy of www.appsdissected.com

Use defer to write a block of code that’s executed after all other code
in the function, just before the function returns. The code is executed
regardless of whether the function throws an error. You can use
defer to write setup and cleanup code next to each other, even
though they need to be executed at different times.

1 var fridgelIsOpen = false

2 let fridgeContent = ["milk", "eggs", "leftovers"]
3

4 func fridgeContains(_ food: String) —> Bool {
5 fridgeIsOpen = true

6 defer {

7 fridgeIsOpen = false

8 ¥

9

10 let result = fridgeContent.contains(food)
11 return result

12}

13 fridgeContains("banana")
14 print(fridgeIsOpen)

15 // Prints "false"

Generics

Write a name inside angle brackets to make a generic function or
type.

PDF conversion courtesy of www.appsdissected.com

1 func makeArray<Item>(repeating item: Item,
numberOfTimes: Int) —> [Item] {
var result: [Item] = []
for _ in 0@..<numberOfTimes {
result.append(item)
¥
return result

by

makeArray(repeating: "knock", numberOfTimes: 4)

0o N oo U B~ W N

You can make generic forms of functions and methods, as well as
classes, enumerations, and structures.

1 // Reimplement the Swift standard library's optional

type
2 enum OptionalValue<Wrapped> {
3 case none
4 case some(Wrapped)
5 %}
6 var possibleInteger: OptionalValue<Int> = .none
7

possibleInteger = .some(100)

Use where right before the body to specify a list of requirements —for
example, to require the type to implement a protocol, to require two
types to be the same, or to require a class to have a particular
superclass.

PDF conversion courtesy of www.appsdissected.com

O 00 N oo U &~ W

10
11
12
13

func anyCommonElements<T: Sequence, U: Sequence>(_
lhs: T, _ rhs: U) —> Bool

where T.Element: Equatable, T.Element ==

U.Element
{
for lhsItem in lhs {
for rhsItem in rhs {
if lhsItem == rhsItem {
return true
s
I3
s
return false
¥

anyCommonElements([1, 2, 31, [3])

EXPERIMENT

Modify the anyCommonElements(_:_:) function to make a function that
returns an array of the elements that any two sequences have in common.

Writing <T: Equatable> is the same as writing <T> ... where T:
Equatable.

PDF conversion courtesy of www.appsdissected.com

Language Guide

PDF conversion courtesy of www.appsdissected.com

The Basics

Swift is a new programming language for iOS, macOS, watchOS, and
tvOS app development. Nonetheless, many parts of Swift will be
familiar from your experience of developing in C and Obijective-C.

Swift provides its own versions of all fundamental C and Obijective-C
types, including Int for integers, Double and Float for floating-point
values, Bool for Boolean values, and String for textual data. Swift
also provides powerful versions of the three primary collection types,
Array, Set,and Dictionary, as described in Collection Types.

Like C, Swift uses variables to store and refer to values by an
identifying name. Swift also makes extensive use of variables whose
values can’t be changed. These are known as constants, and are
much more powerful than constants in C. Constants are used
throughout Swift to make code safer and clearer in intent when you
work with values that don’t need to change.

In addition to familiar types, Swift introduces advanced types not
found in Objective-C, such as tuples. Tuples enable you to create and
pass around groupings of values. You can use a tuple to return
multiple values from a function as a single compound value.

Swift also introduces optional types, which handle the absence of a
value. Optionals say either “there is a value, and it equals x” or “there
isn’ta value at all”’. Using optionals is similar to using nil with
pointers in Objective-C, but they work for any type, not just classes.
Not only are optionals safer and more expressive than nil pointers in
Objective-C, they’re at the heart of many of Swift’s most powerful
features.

Swift is a type-safe language, which means the language helps you
to be clear about the types of values your code can work with. If part
of your code requires a String, type safety prevents you from

PDF conversion courtesy of www.appsdissected.com

passing it an Int by mistake. Likewise, type safety prevents you from
accidentally passing an optional String to a piece of code that
requires a non-optional String. Type safety helps you catch and fix
errors as early as possible in the development process.

Constants and Variables

Constants and variables associate a name (such as
maximumNumberOfLoginAttempts or welcomeMessage) with a value of a
particular type (such as the number 10 or the string "Hello"). The
value of a constant can’t be changed once it’s set, whereas a variable
can be set to a different value in the future.

Declaring Constants and Variables

Constants and variables must be declared before they’re used. You
declare constants with the et keyword and variables with the var
keyword. Here’s an example of how constants and variables can be
used to track the number of login attempts a user has made:

1 let maximumNumberOfLoginAttempts = 10
2 var currentLoginAttempt = 0
This code can be read as:

“Declare a new constant called maximumNumberOfLoginAttempts, and
give it a value of 10. Then, declare a new variable called
currentLoginAttempt, and give it an initial value of 0.”

In this example, the maximum number of allowed login attempts is
declared as a constant, because the maximum value never changes.

PDF conversion courtesy of www.appsdissected.com

The current login attempt counter is declared as a variable, because
this value must be incremented after each failed login attempt.

You can declare multiple constants or multiple variables on a single
line, separated by commas:

var x = 0.9, y = 0.0, z = 0.0

NOTE

If a stored value in your code won’t change, always declare it as a constant
with the Let keyword. Use variables only for storing values that need to be
able to change.

Type Annotations

You can provide a type annotation when you declare a constant or
variable, to be clear about the kind of values the constant or variable
can store. Write a type annotation by placing a colon after the
constant or variable name, followed by a space, followed by the name
of the type to use.

This example provides a type annotation for a variable called
welcomeMessage, to indicate that the variable can store String values:

var welcomeMessage: String

The colon in the declaration means “...of type...,” so the code above
can be read as:

“Declare a variable called welcomeMessage that’s of type String.”

The phrase “of type String” means “can store any String value.”
Think of it as meaning “the type of thing” (or “the kind of thing”) that
can be stored.

PDF conversion courtesy of www.appsdissected.com

The welcomeMessage variable can now be set to any string value
without error:

welcomeMessage = "Hello"

You can define multiple related variables of the same type on a single
line, separated by commas, with a single type annotation after the
final variable name:

var red, green, blue: Double

NOTE

It’s rare that you need to write type annotations in practice. If you provide an
initial value for a constant or variable at the point that it’s defined, Swift can
almost always infer the type to be used for that constant or variable, as
described in Type Safety and Type Inference. In the welcomeMessage
example above, no initial value is provided, and so the type of the

we lcomeMessage variable is specified with a type annotation rather than being
inferred from an initial value.

Naming Constants and Variables
Constant and variable names can contain almost any character,
including Unicode characters:

1 let m = 3.14159
2 let R = “{RuFHFR"

3 let @& = "dogcow"

Constant and variable names can’t contain whitespace characters,
mathematical symbols, arrows, private-use Unicode scalar values, or
line- and box-drawing characters. Nor can they begin with a number,
although numbers may be included elsewhere within the name.

PDF conversion courtesy of www.appsdissected.com

Once you’ve declared a constant or variable of a certain type, you
can’t declare it again with the same name, or change it to store
values of a different type. Nor can you change a constant into a
variable or a variable into a constant.

NOTE

If you need to give a constant or variable the same name as a reserved Swift
keyword, surround the keyword with backticks (") when using it as a name.
However, avoid using keywords as names unless you have absolutely no
choice.

You can change the value of an existing variable to another value of a
compatible type. In this example, the value of friendlywelcome is
changed from "Hello!" to "Bonjour!":

1 var friendlyWelcome = "Hello!"
2 friendlyWelcome = "Bonjour!"

3 // friendlyWelcome is now "Bonjour!"

Unlike a variable, the value of a constant can’t be changed after it’s
set. Attempting to do so is reported as an error when your code is
compiled:

1 let languageName = "Swift"
2 languageName = "Swift++"
3 // This 1is a compile-time error: languageName cannot

be changed.

Printing Constants and Variables
You can print the current value of a constant or variable with the
print(_:separator:terminator:) function:

PDF conversion courtesy of www.appsdissected.com

1 print(friendlyWelcome)

2 // Prints "Bonjour!"

The print(_:separator:terminator:) function is a global function
that prints one or more values to an appropriate output. In Xcode, for
example, the print(_:separator:terminator:) function prints its
output in Xcode’s “console” pane. The separator and terminator
parameter have default values, so you can omit them when you call
this function. By default, the function terminates the line it prints by
adding a line break. To print a value without a line break after it, pass
an empty string as the terminator—for example, print(someVvalue,
terminator: ""). Forinformation about parameters with default
values, see Default Parameter Values.

Swift uses string interpolation to include the name of a constant or
variable as a placeholder in a longer string, and to prompt Swift to
replace it with the current value of that constant or variable. Wrap the
name in parentheses and escape it with a backslash before the
opening parenthesis:

1 print("The current value of friendlyWelcome is \
(friendlyWelcome)")
2 // Prints "The current value of friendlyWelcome is

Bonjour!"

NOTE

All options you can use with string interpolation are described in String
Interpolation.

PDF conversion courtesy of www.appsdissected.com

Comments

Use comments to include nonexecutable text in your code, as a note
or reminder to yourself. Comments are ignored by the Swift compiler
when your code is compiled.

Comments in Swift are very similar to comments in C. Single-line
comments begin with two forward-slashes (//):

// This is a comment.

Multiline comments start with a forward-slash followed by an asterisk
(/*) and end with an asterisk followed by a forward-slash (x/):

1 /% This 1is also a comment

2 but is written over multiple lines. */

Unlike multiline comments in C, multiline comments in Swift can be
nested inside other multiline comments. You write nested comments
by starting a multiline comment block and then starting a second
multiline comment within the first block. The second block is then
closed, followed by the first block:

1 /% This is the start of the first multiline comment.
2 /* This 1is the second, nested multiline comment. 3/

3 This 1is the end of the first multiline comment. x/

Nested multiline comments enable you to comment out large blocks
of code quickly and easily, even if the code already contains multiline
comments.

PDF conversion courtesy of www.appsdissected.com

Semicolons

Unlike many other languages, Swift doesn’t require you to write a
semicolon (;) after each statement in your code, although you can do
so if you wish. However, semicolons are required if you want to write
multiple separate statements on a single line:

1 let cat = "&"; print(cat)
2 // Prints "&"

Integers

Integers are whole numbers with no fractional component, such as 42
and -23. Integers are either signed (positive, zero, or negative) or
unsigned (positive or zero).

Swift provides signed and unsigned integers in 8, 16, 32, and 64 bit
forms. These integers follow a naming convention similar to C, in that
an 8-bit unsigned integer is of type UInt8, and a 32-bit signed integer
is of type Int32. Like all types in Swift, these integer types have
capitalized names.

Integer Bounds
You can access the minimum and maximum values of each integer
type with its min and max properties:

PDF conversion courtesy of www.appsdissected.com

1 let minValue = UInt8.min // minValue is equal to 0,
and is of type UInt8
2 let maxValue = UInt8.max // maxValue is equal to

255, and is of type UIntS8

The values of these properties are of the appropriate-sized number
type (such as UInt8 in the example above) and can therefore be used
in expressions alongside other values of the same type.

Int

In most cases, you don’t need to pick a specific size of integer to use
in your code. Swift provides an additional integer type, Int, which has
the same size as the current platform’s native word size:

« On a 32-bit platform, Int is the same size as Int32.
« On a 64-bit platform, 1nt is the same size as Int64.

Unless you need to work with a specific size of integer, always use
Int for integer values in your code. This aids code consistency and
interoperability. Even on 32-bit platforms, Int can store any value
between -2,147,483,648 and 2,147,483,647, and is large enough for
many integer ranges.

Ulnt
Swift also provides an unsigned integer type, UInt, which has the
same size as the current platform’s native word size:

« On a 32-bit platform, UInt is the same size as UInt32.

« On a 64-bit platform, UInt is the same size as UInt64.

PDF conversion courtesy of www.appsdissected.com

NOTE

Use UInt only when you specifically need an unsigned integer type with the
same size as the platform’s native word size. If this isn’t the case, Int is
preferred, even when the values to be stored are known to be nonnegative. A
consistent use of Int for integer values aids code interoperability, avoids the
need to convert between different number types, and matches integer type
inference, as described in Type Safety and Type Inference.

Floating-Point Numbers

Floating-point numbers are numbers with a fractional component,
such as 3.14159,0.1,and -273.15.

Floating-point types can represent a much wider range of values than
integer types, and can store numbers that are much larger or smaller
than can be stored in an Int. Swift provides two signed floating-point
number types:

« Doub'le represents a 64-bit floating-point number.

« Float represents a 32-bit floating-point number.

NOTE

Double has a precision of at least 15 decimal digits, whereas the precision of
Float can be as little as 6 decimal digits. The appropriate floating-point type
to use depends on the nature and range of values you need to work with in
your code. In situations where either type would be appropriate, Double is
preferred.

Type Safety and Type Inference

PDF conversion courtesy of www.appsdissected.com

Swift is a type-safe language. A type safe language encourages you
to be clear about the types of values your code can work with. If part
of your code requires a String, you can’t pass it an Int by mistake.

Because Swift is type safe, it performs type checks when compiling
your code and flags any mismatched types as errors. This enables
you to catch and fix errors as early as possible in the development

process.

Type-checking helps you avoid errors when you’re working with
different types of values. However, this doesn’t mean that you have to
specify the type of every constant and variable that you declare. If
you don’t specify the type of value you need, Swift uses type
inference to work out the appropriate type. Type inference enables a
compiler to deduce the type of a particular expression automatically
when it compiles your code, simply by examining the values you
provide.

Because of type inference, Swift requires far fewer type declarations
than languages such as C or Objective-C. Constants and variables
are still explicitly typed, but much of the work of specifying their type
is done for you.

Type inference is particularly useful when you declare a constant or
variable with an initial value. This is often done by assigning a literal
value (or literal) to the constant or variable at the point that you
declare it. (A literal value is a value that appears directly in your
source code, such as 42 and 3.14159 in the examples below.)

For example, if you assign a literal value of 42 to a new constant
without saying what type it is, Swift infers that you want the constant
to be an Int, because you have initialized it with a number that looks
like an integer:

PDF conversion courtesy of www.appsdissected.com

1 let meaningOfLife = 42
2 // meaningOfLife is inferred to be of type Int

Likewise, if you don’t specify a type for a floating-point literal, Swift
infers that you want to create a Double:

1 let pi = 3.14159
2 // pl is inferred to be of type Double

Swift always chooses Double (rather than Float) when inferring the
type of floating-point numbers.

If you combine integer and floating-point literals in an expression, a
type of Double will be inferred from the context:

1 let anotherPi = 3 + 0.14159

2 // anotherPi is also inferred to be of type Double

The literal value of 3 has no explicit type in and of itself, and so an
appropriate output type of Doub'le is inferred from the presence of a
floating-point literal as part of the addition.

Numeric Literals

Integer literals can be written as:
« A decimal number, with no prefix
« A binary number, with a ob prefix

« An octal number, with a 0o prefix

PDF conversion courtesy of www.appsdissected.com

« A hexadecimal number, with a 0x prefix

All of these integer literals have a decimal value of 17:

1 let decimallnteger = 17

2 let binaryInteger = 0b10001 // 17 in binary
notation

3 let octallnteger = 0021 // 17 in octal
notation

4 let hexadecimallnteger = 0x11 // 17 1in

hexadecimal notation

Floating-point literals can be decimal (with no prefix), or hexadecimal
(with a 0x prefix). They must always have a number (or hexadecimal
number) on both sides of the decimal point. Decimal floats can also
have an optional exponent, indicated by an uppercase or lowercase
e; hexadecimal floats must have an exponent, indicated by an
uppercase or lowercase p.

For decimal numbers with an exponent of exp, the base number is
multiplied by 108*P:

. 1.25e2 means 1.25 x 102, or 125.0.

« 1.25e-2means 1.25x 1072, or 0.0125.

For hexadecimal numbers with an exponent of exp, the base number
is multiplied by 28%P:

. 0xFp2 means 15 x 22, or 60. 0.

. OxFp-2 means 15 x 22, or 3. 75.

PDF conversion courtesy of www.appsdissected.com

All of these floating-point literals have a decimal value of 12.1875:

1 let decimalDouble = 12.1875
2 let exponentDouble = 1.21875el
3 let hexadecimalDouble = 0xC.3p0

Numeric literals can contain extra formatting to make them easier to
read. Both integers and floats can be padded with extra zeros and
can contain underscores to help with readability. Neither type of
formatting affects the underlying value of the literal:

1 let paddedDouble = 000123.456
2 let oneMillion = 1_000_000
3 let justOverOneMillion = 1_000_000.000_000_1

Numeric Type Conversion

Use the Int type for all general-purpose integer constants and
variables in your code, even if they’re known to be nonnegative.
Using the default integer type in everyday situations means that
integer constants and variables are immediately interoperable in your
code and will match the inferred type for integer literal values.

Use other integer types only when they’re specifically needed for the
task at hand, because of explicitly sized data from an external source,
or for performance, memory usage, or other necessary optimization.
Using explicitly sized types in these situations helps to catch any
accidental value overflows and implicitly documents the nature of the
data being used.

PDF conversion courtesy of www.appsdissected.com

Integer Conversion

The range of numbers that can be stored in an integer constant or
variable is different for each numeric type. An Int8 constant or
variable can store numbers between -128 and 127, whereas a UInt8
constant or variable can store numbers between 0 and 255. A number
that won't fit into a constant or variable of a sized integer type is
reported as an error when your code is compiled:

1 let cannotBeNegative: UInt8 = -1

2 // UInt8 can't store negative numbers, and so this
will report an error

3 let tooBig: Int8 = Int8.max + 1

4 // Int8 can't store a number larger than its maximum
value,

5 // and so this will also report an error

Because each numeric type can store a different range of values, you
must opt in to numeric type conversion on a case-by-case basis. This
opt-in approach prevents hidden conversion errors and helps make
type conversion intentions explicit in your code.

To convert one specific number type to another, you initialize a new
number of the desired type with the existing value. In the example
below, the constant twoThousand is of type UInt16, whereas the
constant one is of type UInt8. They can’t be added together directly,
because they’re not of the same type. Instead, this example calls
UInt1l6(one) to create a new UInt16 initialized with the value of one,
and uses this value in place of the original:

1 let twoThousand: UIntl6e = 2_000
2 let one: UInt8 =1
3 let twoThousandAndOne = twoThousand + UIntl16(one)

PDF conversion courtesy of www.appsdissected.com

Because both sides of the addition are now of type UInt16, the
addition is allowed. The output constant (twoThousandAndOne) is
inferred to be of type UInt16, because it’'s the sum of two UInt16
values.

SomeType(ofInitialValue) is the default way to call the initializer of a
Swift type and pass in an initial value. Behind the scenes, UInt16 has
an initializer that accepts a UInt8 value, and so this initializer is used
to make a new UInt16 from an existing UInt8. You can’t pass in any
type here, however—it has to be a type for which UInt16 provides an
initializer. Extending existing types to provide initializers that accept
new types (including your own type definitions) is covered in
Extensions.

Integer and Floating-Point Conversion
Conversions between integer and floating-point numeric types must
be made explicit:

let three = 3
let pointOneFourOneFiveNine = 0.14159

let pi = Double(three) + pointOneFourOneFiveNine

~ W N R

// pil equals 3.14159, and is inferred to be of type
Double

Here, the value of the constant three is used to create a new value of
type Double, so that both sides of the addition are of the same type.
Without this conversion in place, the addition would not be allowed.

Floating-point to integer conversion must also be made explicit. An
integer type can be initialized with a Double or Float value:

PDF conversion courtesy of www.appsdissected.com

1 let integerPi = Int(pi)
2 // integerPi equals 3, and is inferred to be of type
Int

Floating-point values are always truncated when used to initialize a
new integer value in this way. This means that 4. 75 becomes 4, and
-3.9 becomes -3.

NOTE

The rules for combining numeric constants and variables are different from the
rules for numeric literals. The literal value 3 can be added directly to the literal
value 0.14159, because number literals don’t have an explicit type in and of
themselves. Their type is inferred only at the point that they’re evaluated by
the compiler.

Type Aliases

Type aliases define an alternative name for an existing type. You
define type aliases with the typealias keyword.

Type aliases are useful when you want to refer to an existing type by
a name that’s contextually more appropriate, such as when working
with data of a specific size from an external source:

typealias AudioSample = UIntl6

Once you define a type alias, you can use the alias anywhere you
might use the original name:

PDF conversion courtesy of www.appsdissected.com

1 var maxAmplitudeFound = AudioSample.min

2 // maxAmplitudeFound is now 0

Here, AudioSample is defined as an alias for UInt16. Because it’s an
alias, the call to AudioSample.min actually calls UInt16.min, which
provides an initial value of 0 for the maxAmplitudeFound variable.

Booleans

Swift has a basic Boolean type, called Bool. Boolean values are
referred to as logical, because they can only ever be true or false.
Swift provides two Boolean constant values, true and false:

1 let orangesAreOrange = true

2 let turnipsAreDelicious = false

The types of orangesAreOrange and turnipsAreDelicious have been
inferred as Bool from the fact that they were initialized with Boolean
literal values. As with Int and Double above, you don’t need to
declare constants or variables as Boo 'l if you set them to true or
false as soon as you create them. Type inference helps make Swift
code more concise and readable when it initializes constants or
variables with other values whose type is already known.

Boolean values are particularly useful when you work with conditional
statements such as the if statement:

PDF conversion courtesy of www.appsdissected.com

1 if turnipsAreDelicious {

2 print("Mmm, tasty turnips!"™)

3)} else {

4 print("Eww, turnips are horrible.")
5 %}

6 // Prints "Eww, turnips are horrible."

Conditional statements such as the if statement are covered in more
detail in Control Flow.

Swift’s type safety prevents non-Boolean values from being
substituted for Bool. The following example reports a compile-time
error:

1 leti=1
2 if i A
3 // this example will not compile, and will

report an error

However, the alternative example below is valid:

let 1 =1
if 1 ==1 {

// this example will compile successfully

~ W NN R

The result of the i == 1 comparison is of type Bool, and so this
second example passes the type-check. Comparisons like i == 1 are
discussed in Basic Operators.

PDF conversion courtesy of www.appsdissected.com

As with other examples of type safety in Swift, this approach avoids
accidental errors and ensures that the intention of a particular section
of code is always clear.

Tuples

Tuples group multiple values into a single compound value. The
values within a tuple can be of any type and don’t have to be of the
same type as each other.

In this example, (404, "Not Found") is a tuple that describes an
HTTP status code. An HTTP status code is a special value returned
by a web server whenever you request a web page. A status code of
404 Not Found is returned if you request a webpage that doesn’t
exist.

1 let http4@4Error = (404, "Not Found")
2 // http4@4Error is of type (Int, String), and equals
(404, "Not Found")

The (404, "Not Found") tuple groups together an Int and a String
to give the HT TP status code two separate values: a number and a

human-readable description. It can be described as “a tuple of type

(Int, String)”.

You can create tuples from any permutation of types, and they can
contain as many different types as you like. There’s nothing stopping
you from having a tuple of type (Int, Int, Int),or (String, Bool),
or indeed any other permutation you require.

You can decompose a tuple’s contents into separate constants or
variables, which you then access as usual:

PDF conversion courtesy of www.appsdissected.com

let (statusCode, statusMessage) = http404Error
print("The status code is \(statusCode)")
// Prints "The status code is 404"

print("The status message is \(statusMessage)")

u B~ W N =

// Prints "The status message is Not Found"

If you only need some of the tuple’s values, ignore parts of the tuple
with an underscore (_) when you decompose the tuple:

1 let (justTheStatusCode, _) = http40Q4Error
2 print("The status code is \(justTheStatusCode)")
3 // Prints "The status code is 404"

Alternatively, access the individual element values in a tuple using
index numbers starting at zero:

print("The status code is \(http4@4Error.0)")
// Prints "The status code is 404"
print("The status message is \(http404Error.1)")

~ W NN -

// Prints "The status message is Not Found"

You can name the individual elements in a tuple when the tuple is
defined:

let http200Status = (statusCode: 200, description:
IIOKII)

If you name the elements in a tuple, you can use the element names
to access the values of those elements:

PDF conversion courtesy of www.appsdissected.com

1 print("The status code is \
(http200Status.statusCode)")

2 // Prints "The status code is 200"

3 print("The status message is \
(http200Status.description)")

4 // Prints "The status message is OK"

Tuples are particularly useful as the return values of functions. A
function that tries to retrieve a web page might return the (Int,
String) tuple type to describe the success or failure of the page
retrieval. By returning a tuple with two distinct values, each of a
different type, the function provides more useful information about its
outcome than if it could only return a single value of a single type. For
more information, see Functions with Multiple Return Values.

NOTE

Tuples are useful for simple groups of related values. They’re not suited to the
creation of complex data structures. If your data structure is likely to be more
complex, model it as a class or structure, rather than as a tuple. For more
information, see Structures and Classes.

Optionals

You use optionals in situations where a value may be absent. An
optional represents two possibilities: Either there /s a value, and you
can unwrap the optional to access that value, or there isn’t a value at
all.

PDF conversion courtesy of www.appsdissected.com

NOTE

The concept of optionals doesn’t exist in C or Objective-C. The nearest thing
in Objective-C is the ability to return nil from a method that would otherwise
return an object, with nil meaning “the absence of a valid object.” However,
this only works for objects—it doesn’t work for structures, basic C types, or
enumeration values. For these types, Objective-C methods typically return a
special value (such as NSNotFound) to indicate the absence of a value. This
approach assumes that the method’s caller knows there’s a special value to
test against and remembers to check for it. Swift’s optionals let you indicate
the absence of a value for any type at all, without the need for special
constants.

Here’s an example of how optionals can be used to cope with the
absence of a value. Swift’s Int type has an initializer which tries to
convert a String value into an Int value. However, not every string
can be converted into an integer. The string "123" can be converted
into the numeric value 123, but the string "hello, world" doesn’t
have an obvious numeric value to convert to.

The example below uses the initializer to try to convert a String into
an Int:

1 let possibleNumber = "123"
2 let convertedNumber = Int(possibleNumber)
3 // convertedNumber is inferred to be of type "Int?",

or "optional Int"

Because the initializer might fail, it returns an optional 1nt, rather than
an Int. An optional Int is written as Int?, not Int. The question mark
indicates that the value it contains is optional, meaning that it might
contain some Int value, or it might contain no value at all. (It can’t
contain anything else, such as a Bool value or a String value. It's
either an Int, or it’s nothing at all.)

PDF conversion courtesy of www.appsdissected.com

nil
You set an optional variable to a valueless state by assigning it the
special value nit:

1 var serverResponseCode: Int? = 404

2 // serverResponseCode contains an actual Int value
of 404

3 serverResponseCode = nil

4 // serverResponseCode now contains no value

NOTE

You can’t use nil with non-optional constants and variables. If a constant or
variable in your code needs to work with the absence of a value under certain
conditions, always declare it as an optional value of the appropriate type.

If you define an optional variable without providing a default value,
the variable is automatically set to nil for you:

1 var surveyAnswer: String?

2 // surveyAnswer is automatically set to nil

NOTE

Swift’s nil isn’t the same as nil in Objective-C. In Objective-C, nilis a
pointer to a nonexistent object. In Swift, nil isn’t a pointer—it’s the absence of
a value of a certain type. Optionals of any type can be setto nil, not just
object types.

If Statements and Forced Unwrapping
You can use an if statement to find out whether an optional contains

a value by comparing the optional against nil. You perform this

PDF conversion courtesy of www.appsdissected.com

comparison with the “equal to” operator (==) or the “not equal to”
operator (!=).

If an optional has a value, it’s considered to be “not equal to” nil:

1 if convertedNumber !'= nil {

2 print("convertedNumber contains some integer
value.")

3 %

4 // Prints "convertedNumber contains some integer

value."

Once you’re sure that the optional does contain a value, you can
access its underlying value by adding an exclamation point (!) to the
end of the optional’s name. The exclamation point effectively says, “I
know that this optional definitely has a value; please use it.” This is
known as forced unwrapping of the optional’s value:

1 if convertedNumber !'= nil {

2 print("convertedNumber has an integer value of \
(convertedNumber!).")

3}

// Prints "convertedNumber has an integer value of

123."

I

For more about the if statement, see Control Flow.

PDF conversion courtesy of www.appsdissected.com

NOTE

Trying to use ! to access a nonexistent optional value triggers a runtime error.
Always make sure that an optional contains a non-nil value before using ! to
force-unwrap its value.

Optional Binding

You use optional binding to find out whether an optional contains a
value, and if so, to make that value available as a temporary constant
or variable. Optional binding can be used with if and while
statements to check for a value inside an optional, and to extract that
value into a constant or variable, as part of a single action. if and
while statements are described in more detail in Control Flow.

Write an optional binding for an if statement as follows:

if let constantName = someOptional A

statements

You can rewrite the possibleNumber example from the Optionals
section to use optional binding rather than forced unwrapping:

PDF conversion courtesy of www.appsdissected.com

1 if let actualNumber = Int(possibleNumber) {

2 print("The string \"\(possibleNumber)\" has an
integer value of \(actualNumber)")

3 } else {

4 print("The string \"\(possibleNumber)\" couldn't
be converted to an integer")

5 %}

6 // Prints "The string "123" has an integer value of
123"

This code can be read as:

“If the optional Int returned by Int(possibleNumber) contains a
value, set a new constant called actualNumber to the value contained
in the optional.”

If the conversion is successful, the actualNumber constant becomes
available for use within the first branch of the if statement. It has
already been initialized with the value contained within the optional,
and so you don’t use the ! suffix to access its value. In this example,
actualNumber is simply used to print the result of the conversion.

If you don’t need to refer to the original, optional constant or variable
after accessing the value it contains, you can use the same name for
the new constant or variable:

PDF conversion courtesy of www.appsdissected.com

let myNumber = Int(possibleNumber)

// Here, myNumber is an optional integer

if let myNumber = myNumber {
// Here, myNumber is a non-optional integer
print("My number is \(myNumber)")

¥

// Prints "My number is 123"

N o o W NN R

This code starts by checking whether myNumber contains a value, just
like the code in the previous example. If nyNumber has a value, the
value of a new constant named myNumber is set to that value. Inside
the body of the if statement, writing myNumber refers to that new non-
optional constant. Before the beginning of the if statement and after
its end, writing myNumber refers to the optional integer constant.

Because this kind of code is so common, you can use a shorter
spelling to unwrap an optional value: write just the name of the
constant or variable that you’re unwrapping. The new, unwrapped
constant or variable implicitly uses the same name as the optional
value.

if let myNumber {

print("My number is \(myNumber)")
}
// Prints "My number is 123"

~ W NN R

You can use both constants and variables with optional binding. If you
wanted to manipulate the value of myNumbe r within the first branch of
the if statement, you could write if var myNumber instead, and the
value contained within the optional would be made available as a
variable rather than a constant. Changes you make to myNumber

PDF conversion courtesy of www.appsdissected.com

inside the body of the if statement apply only to that local variable,
not to the original, optional constant or variable that you unwrapped.

You can include as many optional bindings and Boolean conditions in
a single if statement as you need to, separated by commas. If any of
the values in the optional bindings are nil or any Boolean condition
evaluates to false, the whole if statement’s condition is considered
to be false. The following if statements are equivalent:

1

0o N o U B~ W N

10
11
12
13

if let firstNumber = Int("4"), let secondNumber =
Int("42"), firstNumber < secondNumber &&
secondNumber < 100 {
print("\(firstNumber) < \(secondNumber) < 100")
s
// Prints "4 < 42 < 100"

if let firstNumber = Int("4") {
if let secondNumber = Int("42") {
if firstNumber < secondNumber &&
secondNumber < 100 {
print("\(firstNumber) < \(secondNumber)
< 100")
b

}
// Prints "4 < 42 < 100"

PDF conversion courtesy of www.appsdissected.com

NOTE

Constants and variables created with optional binding in an if statement are
available only within the body of the if statement. In contrast, the constants
and variables created with a guard statement are available in the lines of code
that follow the guard statement, as described in Early Exit.

Implicitly Unwrapped Optionals

As described above, optionals indicate that a constant or variable is
allowed to have “no value”. Optionals can be checked with an if
statement to see if a value exists, and can be conditionally
unwrapped with optional binding to access the optional’s value if it
does exist.

Sometimes it’s clear from a program’s structure that an optional will
always have a value, after that value is first set. In these cases, it’s
useful to remove the need to check and unwrap the optional’s value
every time it’s accessed, because it can be safely assumed to have a
value all of the time.

These kinds of optionals are defined as implicitly unwrapped
optionals. You write an implicitly unwrapped optional by placing an
exclamation point (String!) rather than a question mark (String?)
after the type that you want to make optional. Rather than placing an
exclamation point after the optional’s name when you use it, you
place an exclamation point after the optional’s type when you declare
it.

Implicitly unwrapped optionals are useful when an optional’s value is
confirmed to exist immediately after the optional is first defined and
can definitely be assumed to exist at every point thereafter. The
primary use of implicitly unwrapped optionals in Swift is during class
initialization, as described in Unowned References and Implicitly
Unwrapped Optional Properties.

PDF conversion courtesy of www.appsdissected.com

An implicitly unwrapped optional is a normal optional behind the
scenes, but can also be used like a non-optional value, without the
need to unwrap the optional value each time it’s accessed. The
following example shows the difference in behavior between an
optional string and an implicitly unwrapped optional string when
accessing their wrapped value as an explicit String:

=

let possibleString: String? = "An optional string."
2 let forcedString: String = possibleString! //

requires an exclamation point

4 let assumedString: String! = "An implicitly
unwrapped optional string."
5 let implicitString: String = assumedString // no

need for an exclamation point

You can think of an implicitly unwrapped optional as giving
permission for the optional to be force-unwrapped if needed. When
you use an implicitly unwrapped optional value, Swift first tries to use
it as an ordinary optional value; if it can’t be used as an optional, Swift
force-unwraps the value. In the code above, the optional value
assumedString is force-unwrapped before assigning its value to
implicitString because implicitString has an explicit, non-
optional type of String. In code below, optionalString doesn’t have
an explicit type so it’s an ordinary optional.

1 let optionalString = assumedString
2 // The type of optionalString is "String?" and

assumedString isn't force-unwrapped.

PDF conversion courtesy of www.appsdissected.com

If an implicitly unwrapped optional is nil and you try to access its
wrapped value, you’ll trigger a runtime error. The result is exactly the
same as if you place an exclamation point after a normal optional that
doesn’t contain a value.

You can check whether an implicitly unwrapped optional is nil the
same way you check a normal optional:

1 if assumedString !'= nil {

2 print(assumedString!)

3%

4 // Prints "An implicitly unwrapped optional string."

You can also use an implicitly unwrapped optional with optional
binding, to check and unwrap its value in a single statement:

1 if let definiteString = assumedString {

2 print(definiteString)

3%

4 // Prints "An implicitly unwrapped optional string."

NOTE

Don’t use an implicitly unwrapped optional when there’s a possibility of a
variable becoming nil at a later point. Always use a normal optional type if
you need to check for a nil value during the lifetime of a variable.

Error Handling

PDF conversion courtesy of www.appsdissected.com

You use error handling to respond to error conditions your program
may encounter during execution.

In contrast to optionals, which can use the presence or absence of a
value to communicate success or failure of a function, error handling
allows you to determine the underlying cause of failure, and, if
necessary, propagate the error to another part of your program.

When a function encounters an error condition, it throws an error.
That function’s caller can then catch the error and respond
appropriately.

1 func canThrowAnError() throws {

2 // this function may or may not throw an error

3}

A function indicates that it can throw an error by including the throws
keyword in its declaration. When you call a function that can throw an
error, you prepend the try keyword to the expression.

Swift automatically propagates errors out of their current scope until
they’re handled by a catch clause.

do {
try canThrowAnError()
// no error was thrown
} catch {

// an error was thrown

o U A W N B

A do statement creates a new containing scope, which allows errors
to be propagated to one or more catch clauses.

PDF conversion courtesy of www.appsdissected.com

Here’s an example of how error handling can be used to respond to
different error conditions:

func makeASandwich() throws {

/] e

try makeASandwich()
eatASandwich()

1

2

3

4

5 do {
6

7

8 } catch SandwichError.outOfCleanDishes {
9

washDishes()

10} catch SandwichError.missingIngredients(let
ingredients) {

11 buyGroceries(ingredients)

12}

In this example, the makeASandwich () function will throw an error if no
clean dishes are available or if any ingredients are missing. Because
makeASandwich() can throw an error, the function call is wrapped in a
try expression. By wrapping the function call in a do statement, any
errors that are thrown will be propagated to the provided catch
clauses.

If no error is thrown, the eatASandwich() function is called. If an error
is thrown and it matches the SandwichError.out0OfCleanDishes case,
then the washDishes () function will be called. If an error is thrown and
it matches the SandwichError.missingIngredients case, then the
buyGroceries(_:) function is called with the associated [String]
value captured by the catch pattern.

PDF conversion courtesy of www.appsdissected.com

Throwing, catching, and propagating errors is covered in greater
detail in Error Handling.

Assertions and Preconditions

Assertions and preconditions are checks that happen at runtime. You
use them to make sure an essential condition is satisfied before
executing any further code. If the Boolean condition in the assertion
or precondition evaluates to true, code execution continues as usual.
If the condition evaluates to false, the current state of the program is
invalid; code execution ends, and your app is terminated.

You use assertions and preconditions to express the assumptions
you make and the expectations you have while coding, so you can
include them as part of your code. Assertions help you find mistakes
and incorrect assumptions during development, and preconditions
help you detect issues in production.

In addition to verifying your expectations at runtime, assertions and
preconditions also become a useful form of documentation within the
code. Unlike the error conditions discussed in Error Handling above,
assertions and preconditions aren’t used for recoverable or expected
errors. Because a failed assertion or precondition indicates an invalid
program state, there’s no way to catch a failed assertion.

Using assertions and preconditions isn’t a substitute for designing
your code in such a way that invalid conditions are unlikely to arise.
However, using them to enforce valid data and state causes your app
to terminate more predictably if an invalid state occurs, and helps
make the problem easier to debug. Stopping execution as soon as an
invalid state is detected also helps limit the damage caused by that
invalid state.

PDF conversion courtesy of www.appsdissected.com

The difference between assertions and preconditions is in when
they’re checked: Assertions are checked only in debug builds, but
preconditions are checked in both debug and production builds. In
production builds, the condition inside an assertion isn’t evaluated.
This means you can use as many assertions as you want during your
development process, without impacting performance in production.

Debugging with Assertions

You write an assertion by calling the assert(_:_ :file:line:)
function from the Swift standard library. You pass this function an
expression that evaluates to true or false and a message to display
if the result of the condition is false. For example:

1 let age = -3
2 assert(age >= 0, "A person's age can't be less than
zero.")

3 // This assertion fails because -3 isn't >= 0.

In this example, code execution continues if age >= 0 evaluates to
true, that is, if the value of age is nonnegative. If the value of age is
negative, as in the code above, then age >= 0 evaluates to false,

and the assertion fails, terminating the application.

You can omit the assertion message—for example, when it would just
repeat the condition as prose.

assert(age >= 0)

If the code already checks the condition, you use the
assertionFailure(_:file:line:) function to indicate that an
assertion has failed. For example:

PDF conversion courtesy of www.appsdissected.com

https://developer.apple.com/documentation/swift/1541112-assert
https://developer.apple.com/documentation/swift/1539616-assertionfailure

1 if age > 10 {

2 print("You can ride the roller-coaster or the
ferris wheel.")

3 } else if age >= 0 {

4 print("You can ride the ferris wheel.")

5 } else {

6 assertionFailure("A person's age can't be less
than zero.")

7%}

Enforcing Preconditions

Use a precondition whenever a condition has the potential to be false,
but must definitely be true for your code to continue execution. For
example, use a precondition to check that a subscript isn’t out of
bounds, or to check that a function has been passed a valid value.

You write a precondition by calling the
precondition(_:_:file:line:) function. You pass this function an
expression that evaluates to true or false and a message to display
if the result of the condition is false. For example:

1 // In the implementation of a subscript...
2 precondition(index > @, "Index must be greater than

zero.")

You can also call the preconditionFailure(_:file:line:) function
to indicate that a failure has occurred—for example, if the default
case of a switch was taken, but all valid input data should have been
handled by one of the switch’s other cases.

PDF conversion courtesy of www.appsdissected.com

https://developer.apple.com/documentation/swift/1540960-precondition
https://developer.apple.com/documentation/swift/1539374-preconditionfailure

NOTE

If you compile in unchecked mode (-Ounchecked), preconditions aren’t
checked. The compiler assumes that preconditions are always true, and it
optimizes your code accordingly. However, the fatalError(_:file:line:)
function always halts execution, regardless of optimization settings.

You can use the fatalError(_:file:line:) function during prototyping and
early development to create stubs for functionality that hasn’t been
implemented yet, by writing fatalError("Unimplemented") as the stub
implementation. Because fatal errors are never optimized out, unlike
assertions or preconditions, you can be sure that execution always halts if it
encounters a stub implementation.

PDF conversion courtesy of www.appsdissected.com

Basic Operators

An operatoris a special symbol or phrase that you use to check,
change, or combine values. For example, the addition operator (+)
adds two numbers, asin let i = 1 + 2, and the logical AND
operator (&&) combines two Boolean values, as in if
enteredDoorCode && passedRetinaScan.

Swift supports the operators you may already know from languages
like C, and improves several capabilities to eliminate common coding
errors. The assignment operator (=) doesn’t return a value, to prevent
it from being mistakenly used when the equal to operator (==) is
intended. Arithmetic operators (+, -, *, /, % and so forth) detect and
disallow value overflow, to avoid unexpected results when working
with numbers that become larger or smaller than the allowed value
range of the type that stores them. You can opt in to value overflow
behavior by using Swift’s overflow operators, as described in
Qverflow Operators.

Swift also provides range operators that aren’t found in C, such as
a..<banda...b, as a shortcut for expressing a range of values.

This chapter describes the common operators in Swift. Advanced
Operators covers Swift’s advanced operators, and describes how to
define your own custom operators and implement the standard
operators for your own custom types.

Terminology

Operators are unary, binary, or ternary:

PDF conversion courtesy of www.appsdissected.com

« Unary operators operate on a single target (such as -a). Unary
prefix operators appear immediately before their target (such as
'b), and unary postfix operators appear immediately after their
target (such as c!).

« Binary operators operate on two targets (such as 2 + 3) and are
infix because they appear in between their two targets.

« Ternary operators operate on three targets. Like C, Swift has
only one ternary operator, the ternary conditional operator (a ? b

:0).
The values that operators affect are operands. In the expression 1 +

2, the + symbol is an infix operator and its two operands are the
values 1 and 2.

Assignment Operator

The assignment operator (a = b) initializes or updates the value of a
with the value of b:

1 let b = 10

2 wvar a =5

3 a=b>b

4 // a is now equal to 10

If the right side of the assignment is a tuple with multiple values, its
elements can be decomposed into multiple constants or variables at
once:

PDF conversion courtesy of www.appsdissected.com

1 let (x, y) = (1, 2)
2 // x is equal to 1, and y is equal to 2

Unlike the assignment operator in C and Objective-C, the assignment
operator in Swift doesn't itself return a value. The following statement
isn’t valid:

1 if x =y {
2 // This isn't valid, because x =y doesn't

return a value.

This feature prevents the assignment operator (=) from being used by
accident when the equal to operator (==) is actually intended. By
making if x = y invalid, Swift helps you to avoid these kinds of
errors in your code.

Arithmetic Operators

Swift supports the four standard arithmetic operators for all number
types:

« Addition (+)
« Subtraction (-)
« Multiplication (x)

« Division (/)

PDF conversion courtesy of www.appsdissected.com

1 1+ 2 // equals 3
2 5-13 // equals 2
3 2% 3 // equals 6
4

10.0 / 2.5 // equals 4.0

Unlike the arithmetic operators in C and Objective-C, the Swift
arithmetic operators don’t allow values to overflow by default. You
can opt in to value overflow behavior by using Swift’s overflow
operators (such as a &+ b). See Overflow Operators.

The addition operator is also supported for String concatenation:

"hello, " + "world" // equals "hello, world"

Remainder Operator

The remainder operator (a % b) works out how many multiples of b
will fit inside a and returns the value that’s left over (known as the
remainder).

NOTE

The remainder operator (%) is also known as a modulo operatorin other
languages. However, its behavior in Swift for negative numbers means that,
strictly speaking, it’s a remainder rather than a modulo operation.

Here’s how the remainder operator works. To calculate 9 % 4, you
first work out how many 4s will fit inside 9:

4 4 1

|1]12]3|a|5]|6]7]8]9]

You can fit two 4s inside 9, and the remainder is 1 (shown in orange).

PDF conversion courtesy of www.appsdissected.com

In Swift, this would be written as:
9 % 4 // equals 1

To determine the answer for a % b, the % operator calculates the
following equation and returns remainder as its output:

a=(bXsome multiplier)+ remainder

where some multiplier is the largest number of multiples of b that
will fit inside a.

Inserting 9 and 4 into this equation yields:
9=(4x2)+1

The same method is applied when calculating the remainder for a
negative value of a:

-9 %4 // equals -1

Inserting -9 and 4 into the equation yields:
-9=(4x-2)+-1
giving a remainder value of -1.

The sign of b is ignored for negative values of b. This means that a %
banda % -b always give the same answer.

Unary Minus Operator
The sign of a numeric value can be toggled using a prefixed -, known
as the unary minus operator:

PDF conversion courtesy of www.appsdissected.com

1 let three = 3

2 let minusThree = -three // minusThree equals
-3

3 let plusThree = —minusThree // plusThree equals 3,

or "minus minus three"

The unary minus operator (-) is prepended directly before the value it
operates on, without any white space.

Unary Plus Operator
The unary plus operator (+) simply returns the value it operates on,
without any change:

1 let minusSix = -6
2 let alsoMinusSix = +minusSix // alsoMinusSix equals

-6
Although the unary plus operator doesn’t actually do anything, you

can use it to provide symmetry in your code for positive numbers
when also using the unary minus operator for negative numbers.

Compound Assignment Operators
Like C, Swift provides compound assignment operators that combine

assignment (=) with another operation. One example is the addition
assignment operator (+=):

PDF conversion courtesy of www.appsdissected.com

1 vara=1
2 a+=2

3 // a is now equal to 3

The expression a += 2 is shorthand fora = a + 2. Effectively, the
addition and the assignment are combined into one operator that
performs both tasks at the same time.

NOTE

The compound assignment operators don’t return a value. For example, you
can'twrite let b = a += 2.

For information about the operators provided by the Swift standard
library, see Operator Declarations.

Comparison Operators
Swift supports the following comparison operators:
« Equalto(a == b)

Not equalto (a = b)

Greater than (a > b)

Less than (a < b)

Greater than or equal to (a >= b)

Less than or equalto (a <= b)

PDF conversion courtesy of www.appsdissected.com

https://developer.apple.com/documentation/swift/operator_declarations

NOTE

Swift also provides two identity operators (=== and !==), which you use to test
whether two object references both refer to the same object instance. For
more information, see Identity Operators.

Each of the comparison operators returns a Bool value to indicate
whether or not the statement is true:

== // true because is equal to 1

I=1 // true because isn't equal to 1
// true because is greater than 1

< 2 // true because is less than 2

U A W ON R
R R, NN R
\
=
R R NN R

>= 1 // true because is greater than or equal
to 1
6 2 <=1 // false because 2 isn't less than or equal

to 1

Comparison operators are often used in conditional statements, such
as the if statement:

PDF conversion courtesy of www.appsdissected.com

1 let name = "world"

2 if name == "world" {

3 print("hello, world")

4} else {

5 print("I'm sorry \(name), but I don't recognize
you')

6 }

7 // Prints "hello, world", because name is indeed

equal to "world".

For more about the if statement, see Control Flow.

You can compare two tuples if they have the same type and the same
number of values. Tuples are compared from left to right, one value at
a time, until the comparison finds two values that aren’t equal. Those
two values are compared, and the result of that comparison
determines the overall result of the tuple comparison. If all the
elements are equal, then the tuples themselves are equal. For

example:

1 (1, "zebra") < (2, "apple") // true because 1 is
less than 2; "zebra" and "apple" aren't
compared

2 (3, "apple") < (3, "bird") // true because 3 is
equal to 3, and "apple" is less than "bird"

3 (4, "dog") == (4, "dog") // true because 4 is
equal to 4, and "dog" is equal to "dog"

PDF conversion courtesy of www.appsdissected.com

In the example above, you can see the left-to-right comparison
behavior on the first line. Because 1 is less than 2, (1, "zebra") is
considered less than (2, "apple"), regardless of any other values in
the tuples. It doesn’t matter that "zebra" isn’t less than "apple"”,
because the comparison is already determined by the tuples’ first
elements. However, when the tuples’ first elements are the same,
their second elements are compared—this is what happens on the
second and third line.

Tuples can be compared with a given operator only if the operator
can be applied to each value in the respective tuples. For example,
as demonstrated in the code below, you can compare two tuples of
type (String, Int) because both Stringand Int values can be
compared using the < operator. In contrast, two tuples of type
(String, Bool) can’t be compared with the < operator because the <
operator can’t be applied to Bool values.

1 ("blue", -1) < ("purple", 1) // 0K, evaluates
to true
2 ("blue", false) < ("purple", true) // Error because

< can't compare Boolean values

NOTE

The Swift standard library includes tuple comparison operators for tuples with
fewer than seven elements. To compare tuples with seven or more elements,
you must implement the comparison operators yourself.

Ternary Conditional Operator

The ternary conditional operator is a special operator with three parts,
which takes the form question ? answerl : answer2. It’s a shortcut

PDF conversion courtesy of www.appsdissected.com

for evaluating one of two expressions based on whether question is
true or false. If question is true, it evaluates answerl and returns its
value; otherwise, it evaluates answer2 and returns its value.

The ternary conditional operator is shorthand for the code below:

1 if question {
2 answerl

3 } else {

4 answer?2

5

Here’s an example, which calculates the height for a table row. The
row height should be 50 points taller than the content height if the row
has a header, and 20 points taller if the row doesn’t have a header:

1 let contentHeight = 40

2 let hasHeader = true

3 let rowHeight
20)

contentHeight + (hasHeader ? 50 :

4 // rowHeight is equal to 90

The example above is shorthand for the code below:

PDF conversion courtesy of www.appsdissected.com

+
// rowHeight is equal to 90

1 let contentHeight = 40

2 let hasHeader = true

3 let rowHeight: Int

4 if hasHeader {

5 rowHeight = contentHeight + 50
6 } else {

7 rowHeight = contentHeight + 20
8

9

The first example’s use of the ternary conditional operator means that
rowHeight can be set to the correct value on a single line of code,
which is more concise than the code used in the second example.

The ternary conditional operator provides an efficient shorthand for
deciding which of two expressions to consider. Use the ternary
conditional operator with care, however. Its conciseness can lead to
hard-to-read code if overused. Avoid combining multiple instances of
the ternary conditional operator into one compound statement.

Nil-Coalescing Operator

The nil-coalescing operator (a 7?7 b) unwraps an optional a if it
contains a value, or returns a default value b if ais nil. The
expression a is always of an optional type. The expression b must
match the type that’s stored inside a.

The nil-coalescing operator is shorthand for the code below:

PDF conversion courtesy of www.appsdissected.com

a !l=nil ?2 a! : b

The code above uses the ternary conditional operator and forced
unwrapping (a!) to access the value wrapped inside a when a isn’t
nil, and to return b otherwise. The nil-coalescing operator provides a
more elegant way to encapsulate this conditional checking and
unwrapping in a concise and readable form.

NOTE

If the value of a is non-nil, the value of b isn’t evaluated. This is known as
short-circuit evaluation.

The example below uses the nil-coalescing operator to choose
between a default color name and an optional user-defined color
name:

1 let defaultColorName = "red"
2 var userDefinedColorName: String? // defaults to

nil

4 var colorNameToUse = userDefinedColorName ??
defaultColorName
5 // userDefinedColorName is nil, so colorNameToUse is

set to the default of "red"

The userbDefinedColorName variable is defined as an optional String,
with a default value of nil. Because userDefinedColorName is of an
optional type, you can use the nil-coalescing operator to consider its
value. In the example above, the operator is used to determine an
initial value for a String variable called colorNameToUse. Because
userDefinedColorName is nil, the expression userDefinedColorName

PDF conversion courtesy of www.appsdissected.com

7?7 defaultColorName returns the value of defaultColorName, or
"red".

If you assign a non-nil value to userbDefinedColorName and perform
the nil-coalescing operator check again, the value wrapped inside
userDefinedColorName is used instead of the default:

1 userDefinedColorName = "“green"

2 colorNameToUse = userDefinedColorName ?7?
defaultColorName

3 // userDefinedColorName isn't nil, so colorNameToUse

is set to "green"

Range Operators

Swift includes several range operators, which are shortcuts for
expressing a range of values.

Closed Range Operator
The closed range operator (a. . . b) defines a range that runs from a to
b, and includes the values a and b. The value of a must not be greater

than b.

The closed range operator is useful when iterating over a range in
which you want all of the values to be used, such as with a for-in
loop:

PDF conversion courtesy of www.appsdissected.com

1

2

3%

4 // 1 times
5 // 2 times
6 // 3 times
7 // 4 times
8 // 5 times

o U1 U Ul U

for index in 1...5 {

print("\(index) times 5 is \(index x 5)")

is 5

is 10
is 15
is 20
is 25

For more about for-in loops, see Control Flow.

Half-Open Range Operator

The half-open range operator (a. . <b) defines a range that runs from
a to b, but doesn’t include b. It’s said to be half-open because it
contains its first value, but not its final value. As with the closed range
operator, the value of a must not be greater than b. If the value of a is
equal to b, then the resulting range will be empty.

Half-open ranges are particularly useful when you work with zero-
based lists such as arrays, where it’s useful to count up to (but not
including) the length of the list:

PDF conversion courtesy of www.appsdissected.com

let names

let count

}
// Person
// Person

// Person

© 00 N O Ul A W N BB

// Person

~ W NN

["Anna", "Alex", "Brian", "Jack"]

names.count

is
is
is

is

for i in 0..<count {

print("Person \(i + 1) is called \(names[i])")

called Anna
called Alex
called Brian

called Jack

Note that the array contains four items, but 0. .<count only counts as
far as 3 (the index of the last item in the array), because it’s a half-
open range. For more about arrays, see Arrays.

One-Sided Ranges
The closed range operator has an alternative form for ranges that
continue as far as possible in one direction—for example, a range
that includes all the elements of an array from index 2 to the end of
the array. In these cases, you can omit the value from one side of the
range operator. This kind of range is called a one-sided range
because the operator has a value on only one side. For example:

PDF conversion courtesy of www.appsdissected.com

1 for name in names[2...] {
2 print(name)

3%

4 // Brian

5 // Jack

6

7 for name in names[...2] {
8 print(name)

9 %

10 // Anna

11 // Alex

12 // Brian

The half-open range operator also has a one-sided form that’s written
with only its final value. Just like when you include a value on both
sides, the final value isn’t part of the range. For example:

for name in names[..<2] {
print(name)

b

// Anna

// Alex

u B~ W N =

One-sided ranges can be used in other contexts, not just in
subscripts. You can't iterate over a one-sided range that omits a first
value, because it isn’t clear where iteration should begin. You can
iterate over a one-sided range that omits its final value; however,
because the range continues indefinitely, make sure you add an

PDF conversion courtesy of www.appsdissected.com

explicit end condition for the loop. You can also check whether a one-
sided range contains a particular value, as shown in the code below.

let range = ...5
range.contains(7) // false

range.contains(4) // true

~ W N R

range.contains(-1) // true

Logical Operators

Logical operators modify or combine the Boolean logic values true
and false. Swift supports the three standard logical operators found
in C-based languages:

« Logical NOT (!a)
« Logical AND (a && b)

« Logical OR (a || b)

Logical NOT Operator
The logical NOT operator (! a) inverts a Boolean value so that true
becomes false, and false becomes true.

The logical NOT operator is a prefix operator, and appears
immediately before the value it operates on, without any white space.
It can be read as “not a”, as seen in the following example:

PDF conversion courtesy of www.appsdissected.com

1 let allowedEntry = false
2 if 'allowedEntry {

3 print ("ACCESS DENIED")
4

5

¥
// Prints "ACCESS DENIED"

The phrase if !allowedEntry can be read as “if not allowed entry.”
The subsequent line is only executed if “not allowed entry” is true;
that is, if allowedEntry is false.

As in this example, careful choice of Boolean constant and variable
names can help to keep code readable and concise, while avoiding
double negatives or confusing logic statements.

Logical AND Operator
The logical AND operator (a && b) creates logical expressions where
both values must be true for the overall expression to also be true.

If either value is false, the overall expression will also be false. In
fact, if the first value is false, the second value won’t even be
evaluated, because it can’t possibly make the overall expression
equate to true. This is known as short-circuit evaluation.

This example considers two Bool values and only allows access if
both values are true:

PDF conversion courtesy of www.appsdissected.com

let enteredDoorCode = true

let passedRetinaScan = false

if enteredDoorCode && passedRetinaScan {
print("Welcome!")

} else {
print("ACCESS DENIED")

}
// Prints "ACCESS DENIED"

o N o ul A W N R

Logical OR Operator

The logical OR operator(a || b)is an infix operator made from two
adjacent pipe characters. You use it to create logical expressions in
which only one of the two values has to be true for the overall
expression to be true.

Like the Logical AND operator above, the Logical OR operator uses
short-circuit evaluation to consider its expressions. If the left side of a
Logical OR expression is true, the right side isn’t evaluated, because
it can’t change the outcome of the overall expression.

In the example below, the first Bool value (hasDoorKey) is false, but
the second value (knowsOverridePassword) is true. Because one
value is true, the overall expression also evaluates to true, and
access is allowed:

PDF conversion courtesy of www.appsdissected.com

let hasDoorKey = false

let knowsOverridePassword = true

if hasDoorKey || knowsOverridePassword {
print("Welcome!")

} else {
print("ACCESS DENIED")

s

// Prints "Welcome!"

o N o ul A W N R

Combining Logical Operators
You can combine multiple logical operators to create longer
compound expressions:

1 if enteredDoorCode && passedRetinaScan || hasDoorKey

|| knowsOverridePassword {

2 print("wWelcome!")

3 } else {

4 print("ACCESS DENIED")
5 %}

6 // Prints "Welcome!"

This example uses multiple && and | | operators to create a longer
compound expression. However, the && and | | operators still operate
on only two values, so this is actually three smaller expressions
chained together. The example can be read as:

If we’ve entered the correct door code and passed the retina scan, or
if we have a valid door key, or if we know the emergency override

PDF conversion courtesy of www.appsdissected.com

password, then allow access.

Based on the values of enteredDoorCode, passedRetinaScan, and
hasDoorKey, the first two subexpressions are false. However, the
emergency override password is known, so the overall compound
expression still evaluates to true.

NOTE

The Swift logical operators && and | | are left-associative, meaning that
compound expressions with multiple logical operators evaluate the leftmost
subexpression first.

Explicit Parentheses

It’'s sometimes useful to include parentheses when they’re not strictly
needed, to make the intention of a complex expression easier to
read. In the door access example above, it’s useful to add
parentheses around the first part of the compound expression to
make its intent explicit:

1 if (enteredDoorCode && passedRetinaScan) ||

hasDoorKey || knowsOverridePassword {
2 print("Welcome!")
3 } else {
4 print("ACCESS DENIED")
5 %}
6 // Prints "Welcome!"

The parentheses make it clear that the first two values are
considered as part of a separate possible state in the overall logic.
The output of the compound expression doesn’t change, but the
overall intention is clearer to the reader. Readability is always

PDF conversion courtesy of www.appsdissected.com

preferred over brevity; use parentheses where they help to make
your intentions clear.

PDF conversion courtesy of www.appsdissected.com

Strings and Characters

A string is a series of characters, such as "hello, world" or
"albatross". Swift strings are represented by the String type. The
contents of a String can be accessed in various ways, including as a
collection of Character values.

Swift’s String and Character types provide a fast, Unicode-compliant
way to work with text in your code. The syntax for string creation and
manipulation is lightweight and readable, with a string literal syntax
that’s similar to C. String concatenation is as simple as combining two
strings with the + operator, and string mutability is managed by
choosing between a constant or a variable, just like any other value in
Swift. You can also use strings to insert constants, variables, literals,
and expressions into longer strings, in a process known as string
interpolation. This makes it easy to create custom string values for
display, storage, and printing.

Despite this simplicity of syntax, Swift’s String type is a fast, modern
string implementation. Every string is composed of encoding-
independent Unicode characters, and provides support for accessing
those characters in various Unicode representations.

NOTE

Swift’s String type is bridged with Foundation’s NSString class. Foundation
also extends String to expose methods defined by NSSt ring. This means, if
you import Foundation, you can access those NSString methods on String

without casting.

For more information about using St ring with Foundation and Cocoa, see
Bridging Between String_and NSString.

String Literals

PDF conversion courtesy of www.appsdissected.com

https://developer.apple.com/documentation/swift/string#2919514

You can include predefined String values within your code as string
literals. A string literal is a sequence of characters surrounded by
double quotation marks ().

Use a string literal as an initial value for a constant or variable:

let someString = "Some string literal value"

Note that Swift infers a type of String for the someString constant
because it’s initialized with a string literal value.

Multiline String Literals

If you need a string that spans several lines, use a multiline string
literal—a sequence of characters surrounded by three double
quotation marks:

1 let quotation =
2 The White Rabbit put on his spectacles. '"Where shall
I begin,

3 please your Majesty?" he asked.

5 "Begin at the beginning," the King said gravely, "and
go on

6 till you come to the end; then stop."

7 min

A multiline string literal includes all of the lines between its opening
and closing quotation marks. The string begins on the first line after
the opening quotation marks (""") and ends on the line before the

PDF conversion courtesy of www.appsdissected.com

closing quotation marks, which means that neither of the strings below
start or end with a line break:

~ W NN -

let singleLineString = "These are the same."

let multilineString =

These are the same.

When your source code includes a line break inside of a multiline
string literal, that line break also appears in the string’s value. If you
want to use line breaks to make your source code easier to read, but
you don’t want the line breaks to be part of the string’s value, write a
backslash (\) at the end of those lines:

let softWrappedQuotation = """

The White Rabbit put on his spectacles. "Where shall
I begin, \

please your Majesty?" he asked.

"Begin at the beginning," the King said gravely, "and
go on \

till you come to the end; then stop."

To make a multiline string literal that begins or ends with a line feed,
write a blank line as the first or last line. For example:

PDF conversion courtesy of www.appsdissected.com

let lineBreaks =

This string starts with a line break.

It also ends with a line break.

o U1 A W N R

A multiline string can be indented to match the surrounding code. The
whitespace before the closing quotation marks (""") tells Swift what
whitespace to ignore before all of the other lines. However, if you write
whitespace at the beginning of a line in addition to what’s before the
closing quotation marks, that whitespace is included.

let linesWithIndentation = ""!

CJOJ)() This line doesn’t begin with whitespace.
Space ignored —————
NN This line begins with four spaces.
Appears in string - _
WM This line doesn’t begin with whitespace.

In the example above, even though the entire multiline string literal is
indented, the first and last lines in the string don’t begin with any
whitespace. The middle line has more indentation than the closing
quotation marks, so it starts with that extra four-space indentation.

Special Characters in String Literals
String literals can include the following special characters:

« The escaped special characters \ 0 (null character), \\
(backslash), \t (horizontal tab), \n (line feed), \ r (carriage return),
\'* (double quotation mark) and \ ' (single quotation mark)

PDF conversion courtesy of www.appsdissected.com

« An arbitrary Unicode scalar value, written as \u{n}, where nis a
1-8 digit hexadecimal number (Unicode is discussed in Unicode
below)

The code below shows four examples of these special characters. The
wiseWords constant contains two escaped double quotation marks.
The dollarSign, blackHeart, and sparklingHeart constants
demonstrate the Unicode scalar format:

1 let wiseWords = "\"Imagination is more important than
knowledge\" - Einstein"

2 // "Imagination is more important than knowledge" -

Einstein

3 let dollarSign = "\u{24}" // $, Unicode
scalar U+0024

4 let blackHeart = "\u{2665}" // %, Unicode

scalar U+2665
5 let sparklingHeart = "\u{1F496}" // %, Unicode
scalar U+1F496

Because multiline string literals use three double quotation marks
instead of just one, you can include a double quotation mark (") inside
of a multiline string literal without escaping it. To include the text """ in
a multiline string, escape at least one of the quotation marks. For
example:

let threeDoubleQuotationMarks = """
Escaping the first quotation mark \"""

Escaping all three quotation marks \"\"\"

A W NN -

PDF conversion courtesy of www.appsdissected.com

Extended String Delimiters

You can place a string literal within extended delimiters to include
special characters in a string without invoking their effect. You place
your string within quotation marks (") and surround that with number
signs (#). For example, printing the string literal #"Line 1\nLine 2"#
prints the line feed escape sequence (\n) rather than printing the
string across two lines.

If you need the special effects of a character in a string literal, match
the number of number signs within the string following the escape
character (\). For example, if your string is #"Line 1\nLine 2"# and
you want to break the line, you can use #"Line 1\#nLine 2"# instead.
Similarly, ###" Linel\###nLine2" ### also breaks the line.

String literals created using extended delimiters can also be multiline
string literals. You can use extended delimiters to include the text """
in a multiline string, overriding the default behavior that ends the
literal. For example:

1 let threeMoreDoubleQuotationMarks = #"""

2 Here are three more double quotes:

3 IIIIII#

Initializing an Empty String
To create an empty String value as the starting point for building a

longer string, either assign an empty string literal to a variable, or
initialize a new String instance with initializer syntax:

PDF conversion courtesy of www.appsdissected.com

1 var emptyString = "" // empty string
literal

2 var anotherEmptyString = String() // initializer
syntax

3 // these two strings are both empty, and are

equivalent to each other

Find out whether a String value is empty by checking its Boolean
isEmpty property:

1 if emptyString.isEmpty {

2 print("Nothing to see here")
3)
4

// Prints "Nothing to see here"

String Mutability

You indicate whether a particular String can be modified (or mutated)
by assigning it to a variable (in which case it can be modified), or to a
constant (in which case it can’t be modified):

PDF conversion courtesy of www.appsdissected.com

1 var variableString = "Horse"

2 variableString += " and carriage"

3 // variableString is now "Horse and carriage"

4

5 let constantString = "Highlander"

6 constantString += " and another Highlander"

7 // this reports a compile-time error — a constant
string cannot be modified

NOTE

This approach is different from string mutation in Objective-C and Cocoa,
where you choose between two classes (NSString and NSMutableString) to
indicate whether a string can be mutated.

Strings Are Value Types

Swift’s String type is a value type. If you create a new String value,
that String value is copied when it’s passed to a function or method,
or when it’s assigned to a constant or variable. In each case, a new
copy of the existing String value is created, and the new copy is
passed or assigned, not the original version. Value types are
described in Structures and Enumerations Are Value Types.

Swift’s copy-by-default St ring behavior ensures that when a function
or method passes you a String value, it’s clear that you own that
exact String value, regardless of where it came from. You can be
confident that the string you are passed won’t be modified unless you
modify it yourself.

PDF conversion courtesy of www.appsdissected.com

Behind the scenes, Swift’s compiler optimizes string usage so that
actual copying takes place only when absolutely necessary. This
means you always get great performance when working with strings
as value types.

Working with Characters

You can access the individual Character values for a String by
iterating over the string with a for-in loop:

1 for character in "Dog!é" {
2 print(character)

3}

4 // D

5 // o

6 // 49

7/

8 /] €3

The for-in loop is described in For-In Loops.

Alternatively, you can create a stand-alone Character constant or
variable from a single-character string literal by providing a Character
type annotation:

let exclamationMark: Character = "I"

String values can be constructed by passing an array of Character
values as an argument to its initializer:

PDF conversion courtesy of www.appsdissected.com

1 let catCharacters: [Character] = ["C", "a", "t", "!",
"]

2 let catString = String(catCharacters)

3 print(catString)

4 // Prints "Cat!&™"

Concatenating Strings and Characters

String values can be added together (or concatenated) with the
addition operator (+) to create a new String value:

"hello"

let stringl

" there"

let string2

1

2

3 var welcome = stringl + string2
4

// welcome now equals "hello there"

You can also append a String value to an existing String variable
with the addition assignment operator (+=):

1 var instruction = "look over"
2 instruction += string2

3 // instruction now equals "look over there"

You can append a Character value to a String variable with the
String type’s append () method:

PDF conversion courtesy of www.appsdissected.com

1 let exclamationMark: Character = "1I"
2 welcome.append(exclamationMark)

3 // welcome now equals "hello there!"

NOTE

You can’t append a String or Character to an existing Character variable,
because a Character value must contain a single character only.

If you’re using multiline string literals to build up the lines of a longer
string, you want every line in the string to end with a line break,
including the last line. For example:

PDF conversion courtesy of www.appsdissected.com

1 let badStart = """

2 one

3 two

4 wwn

5 let end = """

6 three

AL

8 print(badStart + end)
9 // Prints two lines:
10 // one

11 // twothree

12

13 let goodStart = """
14 one

15 two

16

17 "

18 print(goodStart + end)
19 // Prints three lines:
20 // one

21 // two

22 // three

In the code above, concatenating badStart with end produces a two-
line string, which isn’t the desired result. Because the last line of
badStart doesn’t end with a line break, that line gets combined with
the first line of end. In contrast, both lines of goodStart end with a line

PDF conversion courtesy of www.appsdissected.com

break, so when it’'s combined with end the result has three lines, as
expected.

String Interpolation

String interpolation is a way to construct a new String value from a
mix of constants, variables, literals, and expressions by including their
values inside a string literal. You can use string interpolation in both
single-line and multiline string literals. Each item that you insert into
the string literal is wrapped in a pair of parentheses, prefixed by a
backslash (\):

1 let multiplier = 3
2 let message = "\(multiplier) times 2.5 is \
(Double(multiplier) * 2.5)"

3 // message is "3 times 2.5 is 7.5"

In the example above, the value of multiplier isinserted into a string
literal as \ (multiplier). This placeholder is replaced with the actual
value of multiplier when the string interpolation is evaluated to
create an actual string.

The value of multiplier is also part of a larger expression later in the
string. This expression calculates the value of Double(multiplier) x
2.5 and inserts the result (7.5) into the string. In this case, the
expression is written as \ (Double(multiplier) * 2.5) whenit’s
included inside the string literal.

You can use extended string delimiters to create strings containing
characters that would otherwise be treated as a string interpolation.
For example:

PDF conversion courtesy of www.appsdissected.com

1 print(#'Write an interpolated string in Swift using \
(multiplier)."#)
2 // Prints "Write an interpolated string in Swift

using \(multiplier)."

To use string interpolation inside a string that uses extended
delimiters, match the number of number signs after the backslash to
the number of number signs at the beginning and end of the string.
For example:

1 print(#"6 times 7 is \#(6 x 7)."#)
2 // Prints "6 times 7 1is 42."

NOTE

The expressions you write inside parentheses within an interpolated string
can’t contain an unescaped backslash (\), a carriage return, or a line feed.
However, they can contain other string literals.

Unicode

Unicode is an international standard for encoding, representing, and
processing text in different writing systems. It enables you to represent
almost any character from any language in a standardized form, and
to read and write those characters to and from an external source
such as a text file or web page. Swift’'s String and Character types
are fully Unicode-compliant, as described in this section.

Unicode Scalar Values

PDF conversion courtesy of www.appsdissected.com

Behind the scenes, Swift’s native String type is built from Unicode
scalar values. A Unicode scalar value is a unique 21-bit number for a
character or modifier, such as U+0061 for LATIN SMALL LETTER A ("a"),
or U+1F425 for FRONT-FACING BABY CHICK (" ").

Note that not all 21-bit Unicode scalar values are assigned to a
character—some scalars are reserved for future assignment or for use
in UTF-16 encoding. Scalar values that have been assigned to a
character typically also have a name, such as LATIN SMALL LETTER A
and FRONT-FACING BABY CHICK inthe examples above.

Extended Grapheme Clusters

Every instance of Swift’s Character type represents a single extended
grapheme cluster. An extended grapheme cluster is a sequence of
one or more Unicode scalars that (when combined) produce a single
human-readable character.

Here’s an example. The letter é can be represented as the single
Unicode scalar é (LATIN SMALL LETTER E WITH ACUTE, Oor U+00E9).
However, the same letter can also be represented as a pair of scalars
—a standard letter e (LATIN SMALL LETTER E, or U+0065), followed by
the COMBINING ACUTE ACCENT scalar (U+0301). The COMBINING ACUTE
ACCENT scalar is graphically applied to the scalar that precedes it,
turning an e into an é when it’s rendered by a Unicode-aware text-
rendering system.

In both cases, the letter ¢ is represented as a single Swift Character
value that represents an extended grapheme cluster. In the first case,
the cluster contains a single scalar; in the second case, it’s a cluster of
two scalars:

PDF conversion courtesy of www.appsdissected.com

1 let eAcute: Character = "\u{E9}"
// €

2 let combinedEAcute: Character = "\u{65}\u{301}"
// e followed by

3 // eAcute is é, combinedEAcute is é

Extended grapheme clusters are a flexible way to represent many
complex script characters as a single Character value. For example,
Hangul syllables from the Korean alphabet can be represented as
either a precomposed or decomposed sequence. Both of these
representations qualify as a single Character value in Swift:

1 let precomposed: Character = "\u{D55C}"
//
2 let decomposed: Character =

"\u{1112}\u{1161}\u{11AB}" // &, F, L

o

3 // precomposed is oF, decomposed is &t

Extended grapheme clusters enable scalars for enclosing marks
(such as COMBINING ENCLOSING CIRCLE, or U+20DD) to enclose other
Unicode scalars as part of a single Character value:

1 let enclosedEAcute: Character = "\u{E9}\u{20DD}"

2 // enclosedEAcute is é

Unicode scalars for regional indicator symbols can be combined in
pairs to make a single Character value, such as this combination of
REGIONAL INDICATOR SYMBOL LETTER U (U+1F1FA) and REGIONAL
INDICATOR SYMBOL LETTER S (U+1F1F8):

PDF conversion courtesy of www.appsdissected.com

1 let regionallndicatorForUS: Character =
"\u{1F1FAX\u{1F1F8}"

2 // regionallndicatorForUS is =

Counting Characters

To retrieve a count of the Character values in a string, use the count
property of the string:

1 let unusualMenagerie = "Koala @, Snail @, Penguin
&, Dromedary #"

2 print("unusualMenagerie has \(unusualMenagerie.count)
characters")

3 // Prints "unusualMenagerie has 40 characters"

Note that Swift’s use of extended grapheme clusters for Character
values means that string concatenation and modification may not
always affect a string’s character count.

For example, if you initialize a new string with the four-character word
cafe, and then append a COMBINING ACUTE ACCENT (U+0301) to the end
of the string, the resulting string will still have a character count of 4,
with a fourth character of ¢, not e:

PDF conversion courtesy of www.appsdissected.com

1 var word = "cafe"
2 print("the number of characters in \(word) is \
(word.count)")

3 // Prints "the number of characters in cafe is 4"

4

5 word += "\u{301}" // COMBINING ACUTE ACCENT,
U+0301

6

7 print("the number of characters in \(word) is \
(word.count)")

8 // Prints "the number of characters in café is 4"

NOTE

Extended grapheme clusters can be composed of multiple Unicode scalars.
This means that different characters—and different representations of the
same character—can require different amounts of memory to store. Because
of this, characters in Swift don’t each take up the same amount of memory
within a string’s representation. As a result, the number of characters in a string
can’t be calculated without iterating through the string to determine its
extended grapheme cluster boundaries. If you are working with particularly
long string values, be aware that the count property must iterate over the
Unicode scalars in the entire string in order to determine the characters for that
string.

The count of the characters returned by the count property isn’t always the
same as the length property of an NSString that contains the same
characters. The length of an NSString is based on the number of 16-bit code
units within the string’s UTF-16 representation and not the number of Unicode
extended grapheme clusters within the string.

Accessing and Modifying a String

PDF conversion courtesy of www.appsdissected.com

You access and modify a string through its methods and properties, or
by using subscript syntax.

String Indices
Each String value has an associated index type, String. Index, which
corresponds to the position of each Character in the string.

As mentioned above, different characters can require different
amounts of memory to store, so in order to determine which Character
is at a particular position, you must iterate over each Unicode scalar
from the start or end of that String. For this reason, Swift strings can’t
be indexed by integer values.

Use the startIndex property to access the position of the first
Character of a String. The endIndex property is the position after the
last character in a String. As a result, the endIndex property isn’t a
valid argument to a string’s subscript. If a String is empty, startIndex
and endIndex are equal.

You access the indices before and after a given index using the
index(before:) and index(after:) methods of String. To access an
index farther away from the given index, you can use the
index(_:offsetBy:) method instead of calling one of these methods
multiple times.

You can use subscript syntax to access the Character at a particular
String index.

PDF conversion courtesy of www.appsdissected.com

let greeting = "Guten Tag!"
greeting[greeting.startIndex]

// G

greeting[greeting.index(before: greeting.endIndex)]
/]!

greeting[greeting.index(after: greeting.startIndex)]
// u

let index = greeting.index(greeting.startIndex,

offsetBy: 7)

o N o ui A W N R

9 greetingl[index]

10 // a

Attempting to access an index outside of a string’s range or a
Character at an index outside of a string’s range will trigger a runtime
error.

1 greetinglgreeting.endIndex] // Error

2 greeting.index(after: greeting.endIndex) // Error

Use the indices property to access all of the indices of individual
characters in a string.

1 for index in greeting.indices {

2 print("\(greeting[index]) ", terminator: "")
3}

4 // Prints "Guten Tag!™"

PDF conversion courtesy of www.appsdissected.com

NOTE

You can use the startIndex and endIndex properties and the
index(before:), index(after:), and index(_:offsetBy:) methods on any
type that conforms to the Collection protocol. This includes String, as
shown here, as well as collection types such as Array, Dictionary, and Set.

Inserting and Removing

To insert a single character into a string at a specified index, use the
insert(_:at:) method, and to insert the contents of another string at
a specified index, use the insert(contents0f:at:) method.

var welcome = "hello"
welcome.insert("!", at: welcome.endIndex)

1
2
3 // welcome now equals "hello!"
4
5

welcome.insert(contentsOf: " there", at:
welcome. index(before: welcome.endIndex))

6 // welcome now equals "hello there!"

To remove a single character from a string at a specified index, use
the remove(at:) method, and to remove a substring at a specified
range, use the removeSubrange(_:) method:

PDF conversion courtesy of www.appsdissected.com

1 welcome.remove(at: welcome.index(before:
welcome.endIndex))

2 // welcome now equals "hello there"

4 let range = welcome.index(welcome.endIndex, offsetBy:
-6) . .<welcome.endIndex
5 welcome.removeSubrange(range)

6 // welcome now equals "hello"

NOTE

You can use the insert(_:at:), insert(contentsOf:at:), remove(at:),
and removeSubrange(_:) methods on any type that conforms to the
RangeReplaceableCollection protocol. This includes String, as shown
here, as well as collection types such as Array, Dictionary, and Set.

Substrings

When you get a substring from a string—for example, using a
subscript or a method like prefix(_:)—the result is an instance of
Substring, not another string. Substrings in Swift have most of the
same methods as strings, which means you can work with substrings
the same way you work with strings. However, unlike strings, you use
substrings for only a short amount of time while performing actions on
a string. When you’re ready to store the result for a longer time, you
convert the substring to an instance of String. For example:

PDF conversion courtesy of www.appsdissected.com

https://developer.apple.com/documentation/swift/substring

1 let greeting = "Hello, world!"

2 let index = greeting.firstIndex(of: ",") ??
greeting.endIndex

let beginning = greetingl[..<index]

// beginning is "Hello"

S Ul b~ W

// Convert the result to a String for long-term
storage.

7 let newString = String(beginning)

Like strings, each substring has a region of memory where the
characters that make up the substring are stored. The difference
between strings and substrings is that, as a performance optimization,
a substring can reuse part of the memory that’s used to store the
original string, or part of the memory that’s used to store another
substring. (Strings have a similar optimization, but if two strings share
memory, they’re equal.) This performance optimization means you
don’t have to pay the performance cost of copying memory until you
modify either the string or substring. As mentioned above, substrings
aren’t suitable for long-term storage —because they reuse the storage
of the original string, the entire original string must be kept in memory
as long as any of its substrings are being used.

In the example above, greeting is a string, which means it has a
region of memory where the characters that make up the string are
stored. Because beginning is a substring of greeting, it reuses the
memory that greeting uses. In contrast, newString is a string—when
it’s created from the substring, it has its own storage. The figure below
shows these relationships:

PDF conversion courtesy of www.appsdissected.com

Storage

Hello,

String -

Substring _ WOYTY 1d !

Storage
oitg : - Hello
NOTE

Both String and Substring conform to the StringProtocol protocol, which
means it’s often convenient for string-manipulation functions to accept a
StringProtocol value. You can call such functions with either a String or
Substring value.

Comparing Strings

Swift provides three ways to compare textual values: string and
character equality, prefix equality, and suffix equality.

String and Character Equality

String and character equality is checked with the “equal to” operator
(==) and the “not equal to” operator (!=), as described in Comparison
Operators:

PDF conversion courtesy of www.appsdissected.com

https://developer.apple.com/documentation/swift/stringprotocol

1 let quotation = "We're a lot alike, you and I."

2 let sameQuotation = "We're a lot alike, you and I."
3 if quotation == sameQuotation {

4 print("These two strings are considered equal)
5 }

6 // Prints "These two strings are considered equal"

Two String values (or two Character values) are considered equal if
their extended grapheme clusters are canonically equivalent.
Extended grapheme clusters are canonically equivalent if they have
the same linguistic meaning and appearance, even if they’re
composed from different Unicode scalars behind the scenes.

For example, LATIN SMALL LETTER E WITH ACUTE (U+QQE9) is
canonically equivalent to LATIN SMALL LETTER E (U+0065) followed by
COMBINING ACUTE ACCENT (U+0301). Both of these extended grapheme
clusters are valid ways to represent the character ¢, and so they’re
considered to be canonically equivalent:

PDF conversion courtesy of www.appsdissected.com

O© 00 N O

10

// "Voulez-vous un café?" using LATIN SMALL LETTER E
WITH ACUTE

let eAcuteQuestion = "Voulez-vous un caf\u{E9}?"

// "Voulez-vous un café?" using LATIN SMALL LETTER E
and COMBINING ACUTE ACCENT

let combinedEAcuteQuestion = "Voulez-vous un
caf\u{65}\u{301}?"
if eAcuteQuestion == combinedEAcuteQuestion {

print("These two strings are considered equal')

}

// Prints "These two strings are considered equal"

Conversely, LATIN CAPITAL LETTER A (U+0041,0r "A"), as used in
English, is not equivalent to CYRILLIC CAPITAL LETTER A (U+0410, or
"A"), as used in Russian. The characters are visually similar, but don’t
have the same linguistic meaning:

let latinCapitallLetterA: Character = "\u{41}"

let cyrillicCapitallLetterA: Character = "\u{0410}"

if latinCapitallLetterA != cyrillicCapitallLetterA {

print("These two characters aren't equivalent.")

¥

// Prints "These two characters aren't equivalent."

PDF conversion courtesy of www.appsdissected.com

NOTE

String and character comparisons in Swift aren’t locale-sensitive.

Prefix and Suffix Equality

To check whether a string has a particular string prefix or suffix, call
the string’s hasPrefix(_:) and hasSuffix(_:) methods, both of which
take a single argument of type String and return a Boolean value.

The examples below consider an array of strings representing the
scene locations from the first two acts of Shakespeare’s Romeo and

Juliet:
1 let romeoAndJuliet
2 "Act 1 Scene 1:
3 "Act 1 Scene 2
4 "Act 1 Scene 3:
5 "Act 1 Scene 4
mansion",
6 "Act 1 Scene 5:
mansion",
7 "Act 2 Scene 1:
8 "Act 2 Scene 2:
9 "Act 2 Scene 3:
10 "Act 2 Scene 4
11 "Act 2 Scene 5
12 "Act 2 Scene 6:

13]

= [

Verona, A public place",

: Capulet's mansion",

A room in Capulet's mansion",

: A street outside Capulet's

The Great Hall in Capulet's

Outside Capulet's mansion",
Capulet's orchard",

Outside Friar Lawrence's cell",

: A street in Verona",

: Capulet's mansion",

Friar Lawrence's cell"

PDF conversion courtesy of www.appsdissected.com

You can use the hasPrefix(_:) method with the romeoAndJuliet array
to count the number of scenes in Act 1 of the play:

1 var actlSceneCount = 0

2 for scene in romeoAndJuliet {

3 if scene.hasPrefix("Act 1 ") {

4 actlSceneCount += 1

5 ¥

6 1}

7 print("There are \(actlSceneCount) scenes in Act 1")
8 // Prints "There are 5 scenes in Act 1"

Similarly, use the hasSuffix(_:) method to count the number of
scenes that take place in or around Capulet’s mansion and Friar
Lawrence’s cell:

PDF conversion courtesy of www.appsdissected.com

1 var mansionCount = 0

2 var cellCount =0

3 for scene in romeoAndJuliet {

4 if scene.hasSuffix("Capulet's mansion") {

5 mansionCount += 1

6 } else if scene.hasSuffix("Friar Lawrence's
cell") {

7 cellCount +=1

8 ¥

9 }

10 print("\(mansionCount) mansion scenes; \(cellCount)
cell scenes")

11 // Prints "6 mansion scenes; 2 cell scenes"

NOTE

The hasPrefix(_:) and hasSuffix(_:) methods perform a character-by-
character canonical equivalence comparison between the extended grapheme
clusters in each string, as described in String and Character Equality.

Unicode Representations of Strings

When a Unicode string is written to a text file or some other storage,
the Unicode scalars in that string are encoded in one of several
Unicode-defined encoding forms. Each form encodes the string in
small chunks known as code units. These include the UTF-8 encoding
form (which encodes a string as 8-bit code units), the UTF-16
encoding form (which encodes a string as 16-bit code units), and the
UTF-32 encoding form (which encodes a string as 32-bit code units).

PDF conversion courtesy of www.appsdissected.com

Swift provides several different ways to access Unicode
representations of strings. You can iterate over the string with a for-in
statement, to access its individual Character values as Unicode
extended grapheme clusters. This process is described in Working
with Characters.

Alternatively, access a String value in one of three other Unicode-
compliant representations:

« A collection of UTF-8 code units (accessed with the string’s ut 8
property)

« A collection of UTF-16 code units (accessed with the string’s
utf16 property)

« A collection of 21-bit Unicode scalar values, equivalent to the
string’s UTF-32 encoding form (accessed with the string’s
unicodeScalars property)

Each example below shows a different representation of the following
string, which is made up of the characters b, o, g, !! (DOUBLE
EXCLAMATION MARK, or Unicode scalar U+203C), and the 4# character
(DOG FACE, or Unicode scalar U+1F436):

let dogString = "Dog!lés"

UTF-8 Representation

You can access a UTF-8 representation of a String by iterating over
its ut 8 property. This property is of type String.UTF8View, which is a
collection of unsigned 8-bit (UInt8) values, one for each byte in the
string’s UTF-8 representation:

PDF conversion courtesy of www.appsdissected.com

o g n)

D
SLLELA U40044 U+006F U+0067 U+203C U+1F436

UTF-8

Code Unit 68 m 103 226 128 188 240 159 144 182

1 for codeUnit in dogString.utf8 {

2 print("\(codeUnit) ", terminator: "")
3}

4 print("")

5

// Prints "68 111 103 226 128 188 240 159 144 182 "

In the example above, the first three decimal codeUnit values (68, 111,
103) represent the characters D, o, and g, whose UTF-8 representation
is the same as their ASCII representation. The next three decimal
codeUnit values (226, 128, 188) are a three-byte UTF-8 representation
of the DOUBLE EXCLAMATION MARK character. The last four codeUnit
values (240, 159, 144, 182) are a four-byte UTF-8 representation of the
DOG FACE character.

UTF-16 Representation

You can access a UTF-16 representation of a String by iterating over
its ut 16 property. This property is of type String.UTF16View, which is
a collection of unsigned 16-bit (UInt16) values, one for each 16-bit
code unit in the string’s UTF-16 representation:

PDF conversion courtesy of www.appsdissected.com

D 0 q " .8
U+0044 U+006F U+0067 U+203C U+1F436

UTF-16 68 11 103 8252 5563567 56374

Code Unit

1 for codeUnit in dogString.utf16 {

- print("\(codeUnit) ", terminator: "")
3}

4 print("")

5

// Prints "68 111 103 8252 55357 56374 "

Again, the first three codeUnit values (68, 111, 103) represent the
characters b, o, and g, whose UTF-16 code units have the same
values as in the string’s UTF-8 representation (because these
Unicode scalars represent ASCII characters).

The fourth codeUnit value (8252) is a decimal equivalent of the
hexadecimal value 203C, which represents the Unicode scalar U+203C
for the DOUBLE EXCLAMATION MARK character. This character can be
represented as a single code unit in UTF-16.

The fifth and sixth codeunit values (55357 and 56374) are a UTF-16
surrogate pair representation of the DOG FACE character. These values
are a high-surrogate value of U+D83D (decimal value 55357) and a low-
surrogate value of U+DC36 (decimal value 56374).

Unicode Scalar Representation

PDF conversion courtesy of www.appsdissected.com

You can access a Unicode scalar representation of a String value by
iterating over its unicodeScalars property. This property is of type
UnicodeScalarView, which is a collection of values of type
UnicodeScalar.

Each UnicodeScalar has a value property that returns the scalar’s 21-
bit value, represented within a UInt32 value:

D o g9 11 8

u+0044 U+006GF U+0067 U+203C U+1F436
Unicode
Scalar 68 11 103 8252 128054
Code Unit
0 1 2 3 4

1 for scalar in dogString.unicodeScalars {

2 print("\(scalar.value) ", terminator: "")
3 %

4 print("")

5

// Prints "68 111 103 8252 128054 "

The value properties for the first three UnicodeScalar values (68, 111,
103) once again represent the characters D, o, and g.

The fourth codeunit value (8252) is again a decimal equivalent of the
hexadecimal value 203C, which represents the Unicode scalar U+203C
for the DOUBLE EXCLAMATION MARK character.

The value property of the fifth and final UnicodeScalar, 128054, is a
decimal equivalent of the hexadecimal value 1F436, which represents

PDF conversion courtesy of www.appsdissected.com

the Unicode scalar U+1F436 for the DOG FACE character.

As an alternative to querying their value properties, each
UnicodeScalar value can also be used to construct a new String
value, such as with string interpolation:

for scalar in dogString.unicodeScalars {

print("\(scalar) ")

1
2
3
4 // D
5 // o
6 // g
7 /N
8 // &

PDF conversion courtesy of www.appsdissected.com

Collection Types

Swift provides three primary collection types, known as arrays, sets,
and dictionaries, for storing collections of values. Arrays are ordered
collections of values. Sets are unordered collections of unique values.
Dictionaries are unordered collections of key-value associations.

Indexes Values Values Keys Values
0 Six Egas = & YYZ ———» Toronto Pearson
1 Milk -

. Jazz
2 Flour : DuB London Heathrow
3 Baking Powder ><:
4 Bananas Clistioat LHR Dublin Airport

Hip Hop

Arrays, sets, and dictionaries in Swift are always clear about the types
of values and keys that they can store. This means that you can’t
insert a value of the wrong type into a collection by mistake. It also
means you can be confident about the type of values you will retrieve
from a collection.

NOTE

Swift’s array, set, and dictionary types are implemented as generic collections.
For more about generic types and collections, see Generics.

Mutability of Collections

If you create an array, a set, or a dictionary, and assign it to a variable,
the collection that’s created will be mutable. This means that you can
change (or mutate) the collection after it’s created by adding,

PDF conversion courtesy of www.appsdissected.com

removing, or changing items in the collection. If you assign an array, a
set, or a dictionary to a constant, that collection is immutable, and its
size and contents can’t be changed.

NOTE

It’s good practice to create immutable collections in all cases where the
collection doesn’t need to change. Doing so makes it easier for you to reason
about your code and enables the Swift compiler to optimize the performance of
the collections you create.

Arrays

An array stores values of the same type in an ordered list. The same
value can appear in an array multiple times at different positions.

NOTE
Swift’s Array type is bridged to Foundation’s NSArray class.

For more information about using Array with Foundation and Cocoa, see
Bridging Between Array and NSArray.

Array Type Shorthand Syntax

The type of a Swift array is written in full as Array<Element>, where
Element is the type of values the array is allowed to store. You can
also write the type of an array in shorthand form as [Element].
Although the two forms are functionally identical, the shorthand form is
preferred and is used throughout this guide when referring to the type
of an array.

Creating an Empty Array

PDF conversion courtesy of www.appsdissected.com

https://developer.apple.com/documentation/swift/array#2846730

You can create an empty array of a certain type using initializer
syntax:

1 var someInts: [Int] = []
2 print("somelInts is of type [Int] with \
(someInts.count) items.")

3 // Prints "someInts is of type [Int] with @ items."

Note that the type of the someInts variable is inferred to be [Int] from
the type of the initializer.

Alternatively, if the context already provides type information, such as
a function argument or an already typed variable or constant, you can
create an empty array with an empty array literal, which is written as
[] (an empty pair of square brackets):

1 somelnts.append(3)

2 // somelnts now contains 1 value of type Int

3 somelnts = []

4 // someInts is now an empty array, but is still of

type [Int]

Creating an Array with a Default Value

Swift’s Array type also provides an initializer for creating an array of a
certain size with all of its values set to the same default value. You
pass this initializer a default value of the appropriate type (called
repeating): and the number of times that value is repeated in the new
array (called count):

PDF conversion courtesy of www.appsdissected.com

1 var threeDoubles = Array(repeating: 0.0, count: 3)
2 // threeDoubles is of type [Double], and equals [0.0,
0.0, 0.0]

Creating an Array by Adding Two Arrays Together

You can create a new array by adding together two existing arrays
with compatible types with the addition operator (+). The new array’s
type is inferred from the type of the two arrays you add together:

1 var anotherThreeDoubles = Array(repeating: 2.5,
count: 3)

2 // anotherThreeDoubles is of type [Double], and
equals [2.5, 2.5, 2.5]

4 var sixDoubles = threeDoubles + anotherThreeDoubles
5 // sixDoubles is inferred as [Double], and equals

(0.0, 0.0, 0.0, 2.5, 2.5, 2.5]

Creating an Array with an Array Literal

You can also initialize an array with an array literal, which is a
shorthand way to write one or more values as an array collection. An
array literal is written as a list of values, separated by commas,
surrounded by a pair of square brackets:

[value 1, value 2, value 31

The example below creates an array called shoppingList to store
String values:

PDF conversion courtesy of www.appsdissected.com

1 var shoppingList: [String] = ["Eggs", "Milk"]
2 // shoppingList has been initialized with two initial

items

The shoppinglList variable is declared as “an array of string values”,
written as [String]. Because this particular array has specified a
value type of String, it’s allowed to store String values only. Here, the
shoppinglList array is initialized with two String values ("Eggs" and
"Milk"), written within an array literal.

NOTE

The shoppinglList array is declared as a variable (with the var introducer)
and not a constant (with the let introducer) because more items are added to
the shopping list in the examples below.

In this case, the array literal contains two St ring values and nothing
else. This matches the type of the shoppinglList variable’s declaration
(an array that can only contain String values), and so the assignment
of the array literal is permitted as a way to initialize shoppingList with
two initial items.

Thanks to Swift’s type inference, you don’t have to write the type of
the array if you’re initializing it with an array literal containing values of
the same type. The initialization of shoppingList could have been
written in a shorter form instead:

var shoppingList = ["Eggs", "Milk"]

Because all values in the array literal are of the same type, Swift can
infer that [String] is the correct type to use for the shoppingList
variable.

PDF conversion courtesy of www.appsdissected.com

Accessing and Modifying an Array
You access and modify an array through its methods and properties,
or by using subscript syntax.

To find out the number of items in an array, check its read-only count
property:

1 print("The shopping list contains \
(shoppingList.count) items.")

2 // Prints "The shopping list contains 2 items."

Use the Boolean isEmpty property as a shortcut for checking whether
the count property is equal to 0:

if shoppingList.isEmpty {
print("The shopping list is empty.")
} else {

by

1

2

3

4 print("The shopping list isn't empty.")
5

6 // Prints "The shopping list isn't empty."

You can add a new item to the end of an array by calling the array’s
append(_:) method:

1 shoppinglList.append("Flour")
2 // shoppingList now contains 3 items, and someone 1is

making pancakes

Alternatively, append an array of one or more compatible items with
the addition assignment operator (+=):

PDF conversion courtesy of www.appsdissected.com

1 shoppinglList += ["Baking Powder"]

2 // shoppingList now contains 4 items

3 shoppingList += ["Chocolate Spread", "Cheese",
"Butter"]

4 // shoppingList now contains 7 items

Retrieve a value from the array by using subscript syntax, passing the
index of the value you want to retrieve within square brackets
immediately after the name of the array:

1 var firstItem = shoppingList[0]
2 // firstItem is equal to "Eggs"

NOTE

The first item in the array has an index of 0, not 1. Arrays in Swift are always
zero-indexed.

You can use subscript syntax to change an existing value at a given
index:

1 shoppingList[@] = "Six eggs"
2 // the first item in the list is now equal to "Six

eggs" rather than "Eggs"

When you use subscript syntax, the index you specify needs to be
valid. For example, writing shoppingList[shoppinglList.count] =
"Salt" to try to append an item to the end of the array results in a
runtime error.

You can also use subscript syntax to change a range of values at
once, even if the replacement set of values has a different length than

PDF conversion courtesy of www.appsdissected.com

the range you are replacing. The following example replaces
"Chocolate Spread", "Cheese", and "Butter" with "Bananas" and
"Apples":

1 shoppingList[4...6] = ["Bananas", "Apples"]

2 // shoppingList now contains 6 items

To insert an item into the array at a specified index, call the array’s
insert(:at:) method:

1 shoppingList.insert("Maple Syrup", at: 0)
2 // shoppingList now contains 7 items

3 // "Maple Syrup" is now the first item in the list

This call to the insert(:at:) method inserts a new item with a value

of "Maple Syrup" atthe very beginning of the shopping list, indicated
by an index of 0.

Similarly, you remove an item from the array with the remove (at:)
method. This method removes the item at the specified index and
returns the removed item (although you can ignore the returned value
if you don’t need it):

1 let mapleSyrup = shoppingList.remove(at: 0)

2 // the item that was at index @ has just been removed

3 // shoppingList now contains 6 items, and no Maple
Syrup

4 // the mapleSyrup constant is now equal to the

removed "Maple Syrup" string

PDF conversion courtesy of www.appsdissected.com

NOTE

If you try to access or modify a value for an index that’s outside of an array’s
existing bounds, you will trigger a runtime error. You can check that an index is
valid before using it by comparing it to the array’s count property. The largest
valid index in an array is count - 1 because arrays are indexed from zero—
however, when count is @ (meaning the array is empty), there are no valid
indexes.

Any gaps in an array are closed when an item is removed, and so the
value at index 0 is once again equal to "Six eggs':

1 firstItem = shoppingList[0]

2 // firstItem is now equal to "Six eggs"

If you want to remove the final item from an array, use the
removelLast () method rather than the remove(at:) method to avoid
the need to query the array’s count property. Like the remove(at:)
method, removelast () returns the removed item:

let apples = shoppinglList.removelLast()
// the last item in the array has just been removed

// shoppinglList now contains 5 items, and no apples

~ W NN

// the apples constant is now equal to the removed

"Apples" string

Iterating Over an Array
You can iterate over the entire set of values in an array with the for-in
loop:

PDF conversion courtesy of www.appsdissected.com

// Bananas

for item in shoppinglList {

// Baking Powder

1

2 print(item)
3}

4 // Six eggs

5 // Milk

6 // Flour

7

8

If you need the integer index of each item as well as its value, use the
enumerated() method to iterate over the array instead. For each item
in the array, the enumerated() method returns a tuple composed of an
integer and the item. The integers start at zero and count up by one for
each item; if you enumerate over a whole array, these integers match
the items’ indices. You can decompose the tuple into temporary
constants or variables as part of the iteration:

I

// Item
// Item
// Item
// Item
// Item

oo N o ul A W N B

o A W N B

for (index, value) in shoppingList.enumerated() {

print("Item \(index + 1): \(value)")

: Six eggs
: Milk

Flour

Baking Powder

: Bananas

For more about the for-in loop, see For-In Loops.

PDF conversion courtesy of www.appsdissected.com

Sets

A set stores distinct values of the same type in a collection with no
defined ordering. You can use a set instead of an array when the order
of items isn’t important, or when you need to ensure that an item only
appears once.

NOTE
Swift’s Set type is bridged to Foundation’s NSSet class.

For more information about using Set with Foundation and Cocoa, see
Bridging Between Set and NSSet.

Hash Values for Set Types

A type must be hashable in order to be stored in a set—that is, the
type must provide a way to compute a hash value for itself. A hash
value is an Int value that’s the same for all objects that compare
equally, such that if a2 == b, the hash value of a is equal to the hash
value of b.

All of Swift’s basic types (such as String, Int, Double, and Bool) are
hashable by default, and can be used as set value types or dictionary
key types. Enumeration case values without associated values (as
described in Enumerations) are also hashable by default.

NOTE

You can use your own custom types as set value types or dictionary key types
by making them conform to the Hashab e protocol from the Swift standard
library. For information about implementing the required hash(into:) method,
see Hashable. For information about conforming to protocols, see Protocols.

Set Type Syntax

PDF conversion courtesy of www.appsdissected.com

https://developer.apple.com/documentation/swift/set#2845530
https://developer.apple.com/documentation/swift/hashable

The type of a Swift set is written as Set<Element>, where Element is
the type that the set is allowed to store. Unlike arrays, sets don’t have
an equivalent shorthand form.

Creating and Initializing an Empty Set
You can create an empty set of a certain type using initializer syntax:

1 var letters = Set<Character>()

2 print("letters is of type Set<Character> with \
(letters.count) items.")

3 // Prints "letters is of type Set<Character> with 0

items."

NOTE

The type of the letters variable is inferred to be Set<Character=, from the
type of the initializer.

Alternatively, if the context already provides type information, such as
a function argument or an already typed variable or constant, you can
create an empty set with an empty array literal:

letters.insert("a")
// letters now contains 1 value of type Character

letters = []

~ W N

// letters is now an empty set, but is still of type

Set<Character>

Creating a Set with an Array Literal

PDF conversion courtesy of www.appsdissected.com

You can also initialize a set with an array literal, as a shorthand way to
write one or more values as a set collection.

The example below creates a set called favoriteGenres to store
String values:

1 var favoriteGenres: Set<String> = ["Rock",
"Classical"™, "Hip hop"]
2 // favoriteGenres has been initialized with three

initial items

The favoriteGenres variable is declared as “a set of String values”,
written as Set<String>. Because this particular set has specified a
value type of String, it’s only allowed to store String values. Here, the
favoriteGenres set is initialized with three String values (""Rock",
"Classical”,and "Hip hop"), written within an array literal.

NOTE

The favoriteGenres setis declared as a variable (with the var introducer)
and not a constant (with the let introducer) because items are added and
removed in the examples below.

A set type can’t be inferred from an array literal alone, so the type Set
must be explicitly declared. However, because of Swift’s type
inference, you don’t have to write the type of the set’s elements if
you’re initializing it with an array literal that contains values of just one
type. The initialization of favoriteGenres could have been written in a
shorter form instead:

var favoriteGenres: Set = ["Rock", "Classical", "Hip

hopll]

PDF conversion courtesy of www.appsdissected.com

Because all values in the array literal are of the same type, Swift can
infer that Set<String> is the correct type to use for the
favoriteGenres variable.

Accessing and Modifying a Set
You access and modify a set through its methods and properties.

To find out the number of items in a set, check its read-only count
property:

1 print("I have \(favoriteGenres.count) favorite music
genres.")

2 // Prints "I have 3 favorite music genres."

Use the Boolean isEmpty property as a shortcut for checking whether
the count property is equal to 0:

1 if favoriteGenres.isEmpty {

2 print("As far as music goes, I'm not picky.")
3 } else {

4 print("I have particular music preferences.")
5 %

6 // Prints "I have particular music preferences."

You can add a new item into a set by calling the set’s insert(_:)
method:

1 favoriteGenres.insert("Jazz")

2 // favoriteGenres now contains 4 items

PDF conversion courtesy of www.appsdissected.com

You can remove an item from a set by calling the set’s remove(_:)
method, which removes the item if it’'s a member of the set, and
returns the removed value, or returns nil if the set didn’t contain it.
Alternatively, all items in a set can be removed with its removeAl1()
method.

1 if let removedGenre = favoriteGenres.remove("Rock") {
2 print("\(removedGenre)? I'm over it.")

3)} else {

4 print("I never much cared for that.")

5 }

6 // Prints "Rock? I'm over it."

To check whether a set contains a particular item, use the
contains(_:) method.

1 if favoriteGenres.contains("Funk") {

2 print("I get up on the good foot.")
3)} else {

4 print("It's too funky in here.")
5}

6 // Prints "It's too funky in here."

Iterating Over a Set
You can iterate over the values in a set with a for-in loop.

PDF conversion courtesy of www.appsdissected.com

for genre in favoriteGenres {
print("\(genre)")

Iy

// Classical

// Jazz

// Hip hop

o Ul A W N R

For more about the for-in loop, see For-In Loops.

Swift’s Set type doesn’t have a defined ordering. To iterate over the
values of a set in a specific order, use the sorted() method, which
returns the set’s elements as an array sorted using the < operator.

1 for genre in favoriteGenres.sorted() {
2 print("\(genre)")

3}

4 // Classical

5 // Hip hop

6 // Jazz

Performing Set Operations

You can efficiently perform fundamental set operations, such as
combining two sets together, determining which values two sets have
in common, or determining whether two sets contain all, some, or
none of the same values.

PDF conversion courtesy of www.appsdissected.com

Fundamental Set Operations
The illustration below depicts two sets—a and b—with the results of
various set operations represented by the shaded regions.

a.intersection(a.symmetricDifference(b)
a.union(h) a.subtracting(b)

© (

« Use the intersection(_:) method to create a new set with only
the values common to both sets.

o Usethe symmetricDifference(_:) method to create a new set
with values in either set, but not both.

. Usethe union(:) method to create a new set with all of the
values in both sets.

« Use the subtracting(_:) method to create a new set with values
not in the specified set.

PDF conversion courtesy of www.appsdissected.com

© 00 N o ul A~ W N B

10
11

12

let oddDigits: Set = [1, 3, 5, 7, 9]
let evenDigits: Set = [0, 2, 4, 6, 8]
let singleDigitPrimeNumbers: Set = [2, 3, 5, 7]

oddDigits.union(evenDigits).sorted()

// le, 1, 2, 3, 4, 5, 6, 7, 8, 9]

oddDigits.intersection(evenDigits).sorted()

// 1]

oddDigits.subtracting(singleDigitPrimeNumbers).sorted
()

// [1, 9]

oddDigits.symmetricDifference(singleDigitPrimeNumbers
).sorted()

// 11, 2, 9]

Set Membership and Equality

The illustration below depicts three sets—a, b and c—with overlapping
regions representing elements shared among sets. Set a is a superset
of set b, because a contains all elements in b. Conversely, set b is a
subset of set a, because all elements in b are also contained by a. Set
b and set c are disjoint with one another, because they share no
elements in common.

PDF conversion courtesy of www.appsdissected.com

Use the “is equal” operator (==) to determine whether two sets
contain all of the same values.

Use the isSubset(of:) method to determine whether all of the
values of a set are contained in the specified set.

Use the isSuperset(of:) method to determine whether a set
contains all of the values in a specified set.

Use the isStrictSubset(of:) or isStrictSuperset(of:)
methods to determine whether a set is a subset or superset, but
not equal to, a specified set.

Use the isDisjoint(with:) method to determine whether two
sets have no values in common.

PDF conversion courtesy of www.appsdissected.com

1 let houseAnimals: Set = ["e", "&"]
2 let farmAnimals: Set = ["@&", "©€", "\QJ", """, "&"]
3 let cityAnimals: Set = ["@", "@&"]
4
5 houseAnimals.isSubset(of: farmAnimals)
6 // true
7 farmAnimals.isSuperset(of: houseAnimals)
8 // true
9 farmAnimals.isDisjoint(with: cityAnimals)
10 // true
Dictionaries

A dictionary stores associations between keys of the same type and
values of the same type in a collection with no defined ordering. Each
value is associated with a unique key, which acts as an identifier for
that value within the dictionary. Unlike items in an array, items in a
dictionary don’t have a specified order. You use a dictionary when you
need to look up values based on their identifier, in much the same way
that a real-world dictionary is used to look up the definition for a
particular word.

NOTE
Swift’s Dictionary type is bridged to Foundation’s NSDictionary class.

For more information about using Dictionary with Foundation and Cocoa,
see Bridging Between Dictionary and NSDictionary.

PDF conversion courtesy of www.appsdissected.com

https://developer.apple.com/documentation/swift/dictionary#2846239

Dictionary Type Shorthand Syntax

The type of a Swift dictionary is written in full as Dictionary<Key,
Value>, where Key is the type of value that can be used as a dictionary
key, and value is the type of value that the dictionary stores for those
keys.

NOTE

A dictionary Key type must conform to the Hashab Le protocol, like a set’s value
type.

You can also write the type of a dictionary in shorthand form as [Key:
Value]. Although the two forms are functionally identical, the
shorthand form is preferred and is used throughout this guide when
referring to the type of a dictionary.

Creating an Empty Dictionary
As with arrays, you can create an empty Dictionary of a certain type
by using initializer syntax:

1 var namesOfIntegers: [Int: String] = [:]
2 // namesOfIntegers is an empty [Int: String]

dictionary

This example creates an empty dictionary of type [Int: String] to
store human-readable names of integer values. Its keys are of type
Int, and its values are of type String.

If the context already provides type information, you can create an
empty dictionary with an empty dictionary literal, which is written as
[:] (acolon inside a pair of square brackets):

PDF conversion courtesy of www.appsdissected.com

namesOfIntegers[16] = "sixteen"
// namesOfIntegers now contains 1 key-value pair

namesOfIntegers = [:]

A W NN -

// namesOfIntegers is once again an empty dictionary

of type [Int: Stringl

Creating a Dictionary with a Dictionary Literal

You can also initialize a dictionary with a dictionary literal, which has a
similar syntax to the array literal seen earlier. A dictionary literal is a
shorthand way to write one or more key-value pairs as aDictionary
collection.

A key-value pairis a combination of a key and a value. In a dictionary
literal, the key and value in each key-value pair are separated by a
colon. The key-value pairs are written as a list, separated by commas,
surrounded by a pair of square brackets:

[key 1 : value 1, key 2: value 2, key 3:

value 3]

The example below creates a dictionary to store the names of
international airports. In this dictionary, the keys are three-letter
International Air Transport Association codes, and the values are
airport names:

var airports: [String: String] = ["YYZ": "Toronto

Pearson", "DUB": "Dublin"]

The airports dictionary is declared as having a type of [String:
Stringl, which means “a Dictionary whose keys are of type String,
and whose values are also of type String”.

PDF conversion courtesy of www.appsdissected.com

NOTE

The airports dictionary is declared as a variable (with the var introducer),
and not a constant (with the let introducer), because more airports are added
to the dictionary in the examples below.

The airports dictionary is initialized with a dictionary literal containing
two key-value pairs. The first pair has a key of "Yyz" and a value of
"Toronto Pearson'. The second pair has a key of "DUB" and a value
of "Dublin".

This dictionary literal contains two String: String pairs. This key-
value type matches the type of the airports variable declaration (a
dictionary with only String keys, and only String values), and so the
assignment of the dictionary literal is permitted as a way to initialize
the airports dictionary with two initial items.

As with arrays, you don’t have to write the type of the dictionary if
you’re initializing it with a dictionary literal whose keys and values
have consistent types. The initialization of airports could have been
written in a shorter form instead:

var airports = ["YYZ": "Toronto Pearson", "DUB":

"Dublin"]

Because all keys in the literal are of the same type as each other, and
likewise all values are of the same type as each other, Swift can infer
that [String: Stringl isthe correct type to use forthe airports
dictionary.

Accessing and Modifying a Dictionary
You access and modify a dictionary through its methods and
properties, or by using subscript syntax.

PDF conversion courtesy of www.appsdissected.com

As with an array, you find out the number of items ina Dictionary by
checking its read-only count property:

1 print("The airports dictionary contains \
(airports.count) items.")

2 // Prints "The airports dictionary contains 2 items."

Use the Boolean isEmpty property as a shortcut for checking whether
the count property is equal to 0:

1 if airports.isEmpty {

2 print("The airports dictionary is empty.")
3} else {

4 print("The airports dictionary isn't empty.")
5 %

6

// Prints "The airports dictionary isn't empty."

You can add a new item to a dictionary with subscript syntax. Use a
new key of the appropriate type as the subscript index, and assign a
new value of the appropriate type:

1 airports["LHR"] = "London"

2 // the airports dictionary now contains 3 items

You can also use subscript syntax to change the value associated with
a particular key:

1 airports["LHR"] = "London Heathrow"
2 // the value for "LHR" has been changed to "London

Heathrow"

PDF conversion courtesy of www.appsdissected.com

As an alternative to subscripting, use a dictionary’s
updateValue(_:forKey:) method to set or update the value for a
particular key. Like the subscript examples above, the
updateValue(_:forKey:) method sets a value for a key if none exists,
or updates the value if that key already exists. Unlike a subscript,
however, the updateValue(_:forKey:) method returns the old value
after performing an update. This enables you to check whether or not
an update took place.

The updatevalue(_:forKey:) method returns an optional value of the
dictionary’s value type. For a dictionary that stores St ring values, for
example, the method returns a value of type String?, or “optional
String”. This optional value contains the old value for that key if one
existed before the update, or nil if no value existed:

1 if let oldValue = airports.updateValue("Dublin
Airport", forKey: "DUB") {
2 print("The old value for DUB was \(oldValue).")

3 1}
4 // Prints "The old value for DUB was Dublin."

You can also use subscript syntax to retrieve a value from the
dictionary for a particular key. Because it’s possible to request a key
for which no value exists, a dictionary’s subscript returns an optional
value of the dictionary’s value type. If the dictionary contains a value
for the requested key, the subscript returns an optional value
containing the existing value for that key. Otherwise, the subscript
returns nil:

PDF conversion courtesy of www.appsdissected.com

1 if let airportName = airports["DUB"] {

2 print("The name of the airport is \
(airportName).")

3)} else {

4 print("That airport isn't in the airports
dictionary.")

5 1

// Prints "The name of the airport is Dublin

(®)]

Airport."

You can use subscript syntax to remove a key-value pair from a
dictionary by assigning a value of nil for that key:

1 airports["APL"] = "Apple International"

2 // "Apple International™ isn't the real airport for
APL, so delete it

3 airports["APL"] = nil

4 // APL has now been removed from the dictionary

Alternatively, remove a key-value pair from a dictionary with the
removeValue(forKey:) method. This method removes the key-value
pair if it exists and returns the removed value, or returns nil if no
value existed:

PDF conversion courtesy of www.appsdissected.com

1 if let removedValue = airports.removeValue(forKey:
||DUB||) {
2 print("The removed airport's name is \

(removedValue).")

3)} else {

4 print("The airports dictionary doesn't contain a
value for DUB.")

5 1

6 // Prints "The removed airport's name is Dublin

Airport."

Iterating Over a Dictionary

You can iterate over the key-value pairs in a dictionary with a for-in
loop. Each item in the dictionary is returned as a (key, value) tuple,
and you can decompose the tuple’s members into temporary
constants or variables as part of the iteration:

for (airportCode, airportName) in airports {

print("\(airportCode): \(airportName)")

1
2
3}
4 // LHR: London Heathrow
5 // YYZ: Toronto Pearson

For more about the for-in loop, see For-In Loops.

You can also retrieve an iterable collection of a dictionary’s keys or
values by accessing its keys and values properties:

PDF conversion courtesy of www.appsdissected.com

1 for airportCode in airports.keys {

2 print("Airport code: \(airportCode)")
3}

4 // Airport code: LHR

5 // Airport code: YYZ

6

7 for airportName in airports.values {

8 print("Airport name: \(airportName)")
9 }

10 // Airport name: London Heathrow

11 // Airport name: Toronto Pearson

If you need to use a dictionary’s keys or values with an API that takes
an Array instance, initialize a new array with the keys or values

property:

let airportCodes = [String]l(airports.keys)
// airportCodes is ["LHR", "YYZ"]

let airportNames = [String](airports.values)
// airportNames is ["London Heathrow", "Toronto

Pearson"]

Swift’s Dictionary type doesn’t have a defined ordering. To iterate
over the keys or values of a dictionary in a specific order, use the
sorted() method on its keys or values property.

PDF conversion courtesy of www.appsdissected.com

Control Flow

Swift provides a variety of control flow statements. These include while loops to
perform a task multiple times; if, guard, and switch statements to execute
different branches of code based on certain conditions; and statements such as
break and continue to transfer the flow of execution to another point in your
code.

Swift also provides a for-in loop that makes it easy to iterate over arrays,
dictionaries, ranges, strings, and other sequences.

Swift’s switch statement is considerably more powerful than its counterpart in
many C-like languages. Cases can match many different patterns, including
interval matches, tuples, and casts to a specific type. Matched values in a
switch case can be bound to temporary constants or variables for use within the
case’s body, and complex matching conditions can be expressed with a where
clause for each case.

For-In Loops

You use the for-in loop to iterate over a sequence, such as items in an array,
ranges of numbers, or characters in a string.

This example uses a for-in loop to iterate over the items in an array:

let names = ["Anna", "Alex", "Brian", "Jack"]
for name in names {
print("Hello, \(name)!")
¥
// Hello, Anna!
// Hello, Alex!
// Hello, Brian!
// Hello, Jack!

0 N o u A W N P

PDF conversion courtesy of www.appsdissected.com

You can also iterate over a dictionary to access its key-value pairs. Each item in
the dictionary is returned as a (key, value) tuple when the dictionary is
iterated, and you can decompose the (key, value) tuple’s members as
explicitly named constants for use within the body of the for-in loop. In the code
example below, the dictionary’s keys are decomposed into a constant called
animalName, and the dictionary’s values are decomposed into a constant called
legCount.

let numberOfLegs = ["spider": 8, "ant": 6, "cat": 4]

for (animalName, legCount) in numberOfLegs {
print("\(animalName)s have \(legCount) legs")

¥

// cats have 4 legs

// ants have 6 legs

N o o A WNN R

// spiders have 8 legs

The contents of a Dictionary are inherently unordered, and iterating over them
doesn’t guarantee the order in which they will be retrieved. In particular, the
order you insert items into a Dictionary doesn’t define the order they’re
iterated. For more about arrays and dictionaries, see Collection Types.

You can also use for-in loops with numeric ranges. This example prints the first
few entries in a five-times table:

1 for index in 1...5 {

2 print("\(index) times 5 is \(index % 5)")
3 %

4 // 1 times 5 is 5

5 // 2 times 5 is 10

6 // 3 times 5 is 15

7 // 4 times 5 is 20

8 // 5 times 5 is 25

The sequence being iterated over is a range of numbers from 1 to 5, inclusive,
as indicated by the use of the closed range operator (.. .). The value of index is

PDF conversion courtesy of www.appsdissected.com

set to the first number in the range (1), and the statements inside the loop are
executed. In this case, the loop contains only one statement, which prints an
entry from the five-times table for the current value of index. After the statement
is executed, the value of index is updated to contain the second value in the
range (2), and the print(_:separator:terminator:) function is called again.
This process continues until the end of the range is reached.

In the example above, index is a constant whose value is automatically set at
the start of each iteration of the loop. As such, index doesn’t have to be
declared before it’s used. It’s implicitly declared simply by its inclusion in the
loop declaration, without the need for a let declaration keyword.

If you don’t need each value from a sequence, you can ignore the values by
using an underscore in place of a variable name.

let base = 3
let power = 10
var answer =1
for _ in 1...power {
answer *= base
b
print("\(base) to the power of \(power) is \(answer)")

// Prints "3 to the power of 10 is 59049"

0o N o U~ W N P

The example above calculates the value of one number to the power of another
(in this case, 3 to the power of 10). It multiplies a starting value of 1 (that is, 3 to
the power of 0) by 3, ten times, using a closed range that starts with 1 and ends
with 10. For this calculation, the individual counter values each time through the
loop are unnecessary—the code simply executes the loop the correct number of
times. The underscore character (_) used in place of a loop variable causes the
individual values to be ignored and doesn’t provide access to the current value
during each iteration of the loop.

In some situations, you might not want to use closed ranges, which include both
endpoints. Consider drawing the tick marks for every minute on a watch face.
You want to draw 60 tick marks, starting with the @ minute. Use the half-open
range operator (. . <) to include the lower bound but not the upper bound. For
more about ranges, see Range Operators.

PDF conversion courtesy of www.appsdissected.com

1 let minutes = 60

2 for tickMark in @..<minutes {

3 // render the tick mark each minute (60 times)
4 '}

Some users might want fewer tick marks in their Ul. They could prefer one mark
every 5 minutes instead. Use the stride(from:to:by:) function to skip the
unwanted marks.

=

let minuteInterval = 5

2 for tickMark in stride(from: @, to: minutes, by:
minuteInterval) {

3 // render the tick mark every 5 minutes (@, 5, 10, 15 ...

45, 50, 55)

Closed ranges are also available, by using stride(from:through:by:) instead:

1 let hours = 12

2 let hourInterval = 3

3 for tickMark in stride(from: 3, through: hours, by:
hourInterval) {

4 // render the tick mark every 3 hours (3, 6, 9, 12)

5 %

The examples above use a for-in loop to iterate ranges, arrays, dictionaries,
and strings. However, you can use this syntax to iterate any collection, including
your own classes and collection types, as long as those types conform to the
Sequence protocol.

While Loops

PDF conversion courtesy of www.appsdissected.com

https://developer.apple.com/documentation/swift/sequence

A whi'le loop performs a set of statements until a condition becomes false.
These kinds of loops are best used when the number of iterations isn’t known
before the first iteration begins. Swift provides two kinds of while loops:

« while evaluates its condition at the start of each pass through the loop.

» repeat-while evaluates its condition at the end of each pass through the
loop.

While
A whi'le loop starts by evaluating a single condition. If the condition is true, a set
of statements is repeated until the condition becomes false.

Here’s the general form of a while loop:
while condition <{

statements

This example plays a simple game of Snakes and Ladders (also known as
Chutes and Ladders):

21 |22 24
e '-------- ----+
121 22 23 24 25
i
\----I-----—-q-~
20 19 18 17 A\ 16
I
’
’I-----——‘----‘
fn 12 13 1 15
§ !
\'h oy,
10) 8 7 \,“ 6
-----.---------‘
1 2 3 a4 5

The rules of the game are as follows:
« The board has 25 squares, and the aim is to land on or beyond square 25.

« The player’s starting square is “square zero”, which is just off the bottom-
left corner of the board.

PDF conversion courtesy of www.appsdissected.com

« Each turn, you roll a six-sided dice and move by that number of squares,
following the horizontal path indicated by the dotted arrow above.

« If your turn ends at the bottom of a ladder, you move up that ladder.
« If your turn ends at the head of a snake, you move down that snake.

The game board is represented by an array of Int values. Its size is based on a
constant called finalSquare, which is used to initialize the array and also to
check for a win condition later in the example. Because the players start off the
board, on “square zero”, the board is initialized with 26 zero Int values, not 25.

1 let finalSquare = 25

2 var board = [Int](repeating: @0, count: finalSquare + 1)

Some squares are then set to have more specific values for the snakes and
ladders. Squares with a ladder base have a positive number to move you up the
board, whereas squares with a snake head have a negative number to move
you back down the board.

1 board[03] = +08; board[06]
= +02

2 board[14] = -10; board[19]
= -08

+11; board[09]

+09; board[10]

-11; board[22] -02; board[24]

Square 3 contains the bottom of a ladder that moves you up to square 11. To
represent this, board [03] is equal to +08, which is equivalent to an integer value
of 8 (the difference between 3 and 11). To align the values and statements, the
unary plus operator (+1) is explicitly used with the unary minus operator (-1i) and
numbers lower than 10 are padded with zeros. (Neither stylistic technique is
strictly necessary, but they lead to neater code.)

PDF conversion courtesy of www.appsdissected.com

1 var square = 0

2 var diceRoll = 0

3 while square < finalSquare {

4 // roll the dice

5 diceRoll += 1

6 if diceRoll == 7 { diceRoll =1 }

7 // move by the rolled amount

8 square += diceRoll

9 if square < board.count {

10 // if we're still on the board, move up or down for a
snake or a ladder

11 square += board[square]

12 }

13}

14 print("Game over!")

The example above uses a very simple approach to dice rolling. Instead of
generating a random number, it starts with a diceRol1 value of 0. Each time
through the while loop, diceRoll is incremented by one and is then checked to
see whether it has become too large. Whenever this return value equals 7, the
dice roll has become too large and is reset to a value of 1. The result is a
sequence of diceRoll values that’s always 1, 2, 3, 4, 5, 6, 1, 2 and so on.

After rolling the dice, the player moves forward by diceRol1l squares. It’s
possible that the dice roll may have moved the player beyond square 25, in
which case the game is over. To cope with this scenario, the code checks that
square is less than the board array’s count property. If square is valid, the value
stored in board[square] is added to the current square value to move the player
up or down any ladders or snakes.

NOTE

If this check isn’t performed, board [square] might try to access a value outside the
bounds of the board array, which would trigger a runtime error.

PDF conversion courtesy of www.appsdissected.com

The current whi'le loop execution then ends, and the loop’s condition is checked
to see if the loop should be executed again. If the player has moved on or
beyond square number 25, the loop’s condition evaluates to false and the game
ends.

A whi'le loop is appropriate in this case, because the length of the game isn’t
clear at the start of the while loop. Instead, the loop is executed until a particular
condition is satisfied.

Repeat-While

The other variation of the while loop, known as the repeat-while loop, performs
a single pass through the loop block first, before considering the loop’s
condition. It then continues to repeat the loop until the condition is false.

NOTE

The repeat-while loop in Swift is analogous to a do-whi'le loop in other languages.

Here’s the general form of a repeat-while loop:

repeat {
statements

} while condition

Here’s the Snakes and Ladders example again, written as a repeat-while loop
rather than a while loop. The values of finalSquare, board, square, and
diceRoll are initialized in exactly the same way as with a while loop.

1 let finalSquare = 25
[Int] (repeating: @, count: finalSquare + 1)

+08; board[06] +11; board[09] +09; board[10]

2 var board

3 board[@3]
= +02

4 board[14] = -10; board[19]
= -08

-11; board[22] -02; board[24]

5 var square = 0

6 var diceRoll = 0

PDF conversion courtesy of www.appsdissected.com

In this version of the game, the first action in the loop is to check for a ladder or a
snake. No ladder on the board takes the player straight to square 25, and so it
isn’t possible to win the game by moving up a ladder. Therefore, it’s safe to
check for a snake or a ladder as the first action in the loop.

At the start of the game, the player is on “square zero”. board [0] always equals
0 and has no effect.

1 repeat {

2 // move up or down for a snake or ladder
3 square += board[square]

4 // roll the dice

5 diceRoll += 1

6 if diceRoll == 7 { diceRoll =1 }

7 // move by the rolled amount

8 square += diceRoll

9 } while square < finalSquare

10 print("Game over!")

After the code checks for snakes and ladders, the dice is rolled and the player is
moved forward by diceRoll squares. The current loop execution then ends.

The loop’s condition (while square < finalSquare)is the same as before, but
this time it’s not evaluated until the end of the first run through the loop. The
structure of the repeat-while loop is better suited to this game than the while
loop in the previous example. In the repeat-while loop above, square +=
board[square] is always executed immediately after the loop’s while condition
confirms that square is still on the board. This behavior removes the need for the
array bounds check seen in the while loop version of the game described
earlier.

Conditional Statements

PDF conversion courtesy of www.appsdissected.com

It’s often useful to execute different pieces of code based on certain conditions.
You might want to run an extra piece of code when an error occurs, or to display
a message when a value becomes too high or too low. To do this, you make
parts of your code conditional.

Swift provides two ways to add conditional branches to your code: the if
statement and the switch statement. Typically, you use the if statement to
evaluate simple conditions with only a few possible outcomes. The switch
statement is better suited to more complex conditions with multiple possible
permutations and is useful in situations where pattern matching can help select
an appropriate code branch to execute.

If
In its simplest form, the if statement has a single if condition. It executes a set
of statements only if that condition is true.

1 var temperatureInFahrenheit = 30

2 if temperatureInFahrenheit <= 32 {

3 print("It's very cold. Consider wearing a scarf.")
4}

5 // Prints "It's very cold. Consider wearing a scarf."

The example above checks whether the temperature is less than or equal to 32
degrees Fahrenheit (the freezing point of water). If it is, a message is printed.
Otherwise, no message is printed, and code execution continues after the if
statement’s closing brace.

The if statement can provide an alternative set of statements, known as an
else clause, for situations when the if condition is false. These statements are
indicated by the else keyword.

PDF conversion courtesy of www.appsdissected.com

1 temperatureInFahrenheit = 40

2 if temperatureInFahrenheit <= 32 {

3 print("It's very cold. Consider wearing a scarf.")
4} else {

5 print("It's not that cold. Wear a t-shirt.")

6

7

}
// Prints "It's not that cold. Wear a t-shirt."

One of these two branches is always executed. Because the temperature has
increased to 40 degrees Fahrenheit, it’s no longer cold enough to advise
wearing a scarf and so the else branch is triggered instead.

You can chain multiple if statements together to consider additional clauses.

1 temperatureInFahrenheit = 90

2 if temperatureInFahrenheit <= 32 {

3 print("It's very cold. Consider wearing a scarf.")

4 } else if temperatureInFahrenheit >= 86 {

5 print("It's really warm. Don't forget to wear
sunscreen.")

6 } else {

7 print("It's not that cold. Wear a t-shirt.")

8 }

9 // Prints "It's really warm. Don't forget to wear sunscreen."

Here, an additional if statement was added to respond to particularly warm
temperatures. The final else clause remains, and it prints a response for any
temperatures that are neither too warm nor too cold.

The final e lse clause is optional, however, and can be excluded if the set of
conditions doesn’t need to be complete.

PDF conversion courtesy of www.appsdissected.com

temperatureInFahrenheit = 72
if temperatureInFahrenheit <= 32 {

1
2
3 print("It's very cold. Consider wearing a scarf.")
4 } else if temperatureInFahrenheit >= 86 {

5

print("It's really warm. Don't forget to wear

sunscreen.")

Because the temperature is neither too cold nor too warm to trigger the if or
else if conditions, no message is printed.

Switch

A switch statement considers a value and compares it against several possible
matching patterns. It then executes an appropriate block of code, based on the
first pattern that matches successfully. A switch statement provides an
alternative to the if statement for responding to multiple potential states.

In its simplest form, a switch statement compares a value against one or more
values of the same type.

switch some value to consider {
case value 1 :

respond to value 1
case value 2,

value 3 :

respond to value 2 or 3
default:

otherwise, do something else

Every switch statement consists of multiple possible cases, each of which
begins with the case keyword. In addition to comparing against specific values,
Swift provides several ways for each case to specify more complex matching
patterns. These options are described later in this chapter.

PDF conversion courtesy of www.appsdissected.com

Like the body of an if statement, each case is a separate branch of code
execution. The switch statement determines which branch should be selected.
This procedure is known as switching on the value that’s being considered.

Every switch statement must be exhaustive. That is, every possible value of the
type being considered must be matched by one of the switch cases. If it’s not
appropriate to provide a case for every possible value, you can define a default
case to cover any values that aren’t addressed explicitly. This default case is
indicated by the default keyword, and must always appear last.

This example uses a switch statement to consider a single lowercase character
called someCharacter:

1 let someCharacter: Character = "z"

2 switch someCharacter {

3 case "a":

4 print("The first letter of the alphabet")
5 case "z":

6 print("The last letter of the alphabet")
7 default:

8 print("Some other character")

9 }

10 // Prints "The last letter of the alphabet"

The switch statement’s first case matches the first letter of the English alphabet,
a, and its second case matches the last letter, 2. Because the switch must have
a case for every possible character, not just every alphabetic character, this
switch statement uses a default case to match all characters other than a and
z. This provision ensures that the switch statement is exhaustive.

No Implicit Fallthrough

In contrast with switch statements in C and Objective-C, switch statements in
Swift don’t fall through the bottom of each case and into the next one by default.
Instead, the entire switch statement finishes its execution as soon as the first
matching switch case is completed, without requiring an explicit break

PDF conversion courtesy of www.appsdissected.com

statement. This makes the switch statement safer and easier to use than the
one in C and avoids executing more than one switch case by mistake.

NOTE

Although break isn’t required in Swift, you can use a break statement to match and ignore
a particular case or to break out of a matched case before that case has completed its
execution. For details, see Break in a Switch Statement.

The body of each case must contain at least one executable statement. It isn’t
valid to write the following code, because the first case is empty:

let anotherCharacter: Character = "a
switch anotherCharacter {
case "a": // Invalid, the case has an empty body
case "A":
print("The letter A")
default:
print("Not the letter A")
}

// This will report a compile-time error.

© 00 N O U A W N P

Unlike a switch statementin C, this switch statement doesn’t match both "a"
and "A". Rather, it reports a compile-time error that case "a": doesn’t contain
any executable statements. This approach avoids accidental fallthrough from
one case to another and makes for safer code that’s clearer in its intent.

To make a switch with a single case that matches both "a" and "A", combine
the two values into a compound case, separating the values with commas.

PDF conversion courtesy of www.appsdissected.com

let anotherCharacter: Character = "a"
switch anotherCharacter {
case "a", "A":
print("The letter A")
default:
print("Not the letter A")

}
// Prints "The letter A"

0 N o U B~ W N R

For readability, a compound case can also be written over multiple lines. For
more information about compound cases, see Compound Cases.

NOTE

To explicitly fall through at the end of a particular switch case, use the fallthrough
keyword, as described in Fallthrough.

Interval Matching
Values in switch cases can be checked for their inclusion in an interval. This

example uses number intervals to provide a natural-language count for
numbers of any size:

PDF conversion courtesy of www.appsdissected.com

1 let approximateCount = 62

2 let countedThings = "moons orbiting Saturn"
3 let naturalCount: String

4 switch approximateCount {

5 case 0:

6 naturalCount = "no"

7 case 1..<5:

8 naturalCount = "a few"

9 case 5..<12:

10 naturalCount = "several"

11 case 12..<100:

12 naturalCount = "dozens of"

13 case 100..<1000:

14 naturalCount = "hundreds of"

15 default:

16 naturalCount = "many"

17 }

18 print("There are \(naturalCount) \(countedThings).")

19 // Prints "There are dozens of moons orbiting Saturn."

In the above example, approximateCount is evaluated in a switch statement.
Each case compares that value to a number or interval. Because the value of
approximateCount falls between 12 and 100, naturalCount is assigned the value
"dozens of", and execution is transferred out of the switch statement.

Tuples

You can use tuples to test multiple values in the same switch statement. Each
element of the tuple can be tested against a different value or interval of values.
Alternatively, use the underscore character (_), also known as the wildcard
pattern, to match any possible value.

The example below takes an (x, y) point, expressed as a simple tuple of type
(Int, Int),and categorizes it on the graph that follows the example.

PDF conversion courtesy of www.appsdissected.com

© 00 N O Ul A W N P

e S T = Sy
2 W N R O

let somePoint = (1, 1)
switch somePoint {
case (0, 0):
print("\(somePoint)
case (_, 0):
print("\(somePoint)
case (0, _):
print("\(somePoint)
case (-2...2, -2...2):
print("\(somePoint)
default:
print("\(somePoint)

}

is at the origin")

is on the x-axis")

is on the y-axis")

is inside the box")

is outside of the box")

// Prints "(1, 1) is inside the box"

PDF conversion courtesy of www.appsdissected.com

The switch statement determines whether the point is at the origin (0, 0), on the
red x-axis, on the green y-axis, inside the blue 4-by-4 box centered on the origin,
or outside of the box.

Unlike C, Swift allows multiple switch cases to consider the same value or
values. In fact, the point (0, 0) could match all four of the cases in this example.
However, if multiple matches are possible, the first matching case is always
used. The point (0, 0) would match case (0, 0) first, and so all other matching
cases would be ignored.

Value Bindings

A switch case can name the value or values it matches to temporary constants
or variables, for use in the body of the case. This behavior is known as value
binding, because the values are bound to temporary constants or variables
within the case’s body.

The example below takes an (X, y) point, expressed as a tuple of type (Int,
Int), and categorizes it on the graph that follows:

PDF conversion courtesy of www.appsdissected.com

1 let anotherPoint = (2, 0)
2 switch anotherPoint {
3 case (let x, 0):
4 print("on the x-axis with an x value of \(x)")
5 case (0, let y):
6 print("on the y-axis with a y value of \(y)")
7 case let (x, y):
8 print("somewhere else at (\(x), \(y))")
9 1}
10 // Prints "on the x-axis with an x value of 2"
y
2
1
X
-2 1 0 1 2

The switch statement determines whether the point is on the red x-axis, on the
green y-axis, or elsewhere (on neither axis).

PDF conversion courtesy of www.appsdissected.com

The three switch cases declare placeholder constants x and y, which
temporarily take on one or both tuple values from anotherPoint. The first case,
case (let x, 0), matches any point with a y value of o and assigns the point’s
x value to the temporary constant x. Similarly, the second case, case (0, let
y), matches any point with an x value of ¢ and assigns the point’s y value to the
temporary constant y.

After the temporary constants are declared, they can be used within the case’s
code block. Here, they’re used to print the categorization of the point.

This switch statement doesn’t have a default case. The final case, case let
(x, v), declares a tuple of two placeholder constants that can match any value.
Because anotherPoint is always a tuple of two values, this case matches all
possible remaining values, and a default case isn’t needed to make the switch
statement exhaustive.

Where

A switch case can use a where clause to check for additional conditions.

The example below categorizes an (x, y) point on the following graph:

1 let yetAnotherPoint = (1, -1)

2 switch yetAnotherPoint {

3 case let (x, y) where x == y:

4 print("(\(x), \(y)) is on the line x == y")

5 case let (x, y) where x == -vy:

6 print("(\(x), \(y)) is on the line x == -y")

7 case let (x, y):

8 print("(\(x), \(y)) is just some arbitrary point")
9 1}

10 // Prints "(1, -1) is on the line x == -y"

PDF conversion courtesy of www.appsdissected.com

The switch statement determines whether the point is on the green diagonal
line where x == vy, on the purple diagonal line where x == -y, or neither.

The three switch cases declare placeholder constants x and y, which
temporarily take on the two tuple values from yetAnotherPoint. These
constants are used as part of a where clause, to create a dynamic filter. The
switch case matches the current value of point only if the where clause’s
condition evaluates to true for that value.

As in the previous example, the final case matches all possible remaining
values, and so a default case isn’'t needed to make the switch statement
exhaustive.

Compound Cases

Multiple switch cases that share the same body can be combined by writing
several patterns after case, with a comma between each of the patterns. If any
of the patterns match, then the case is considered to match. The patterns can
be written over multiple lines if the list is long. For example:

PDF conversion courtesy of www.appsdissected.com

1 let someCharacter: Character = "e"

2 switch someCharacter {

3 case "a", "e", "i", "o", "u":

4 print("\(someCharacter) is a vowel")

5 case "b", "c", "d", "f", "g", "h", "j", "k, "1, "m",

6 "n', "p", "q", "r", "s", "', "y, "w", Ux", "y", "z":
7 print("\(someCharacter) is a consonant")

8 default:

9 print("\(someCharacter) isn't a vowel or a consonant")
10 }

11 // Prints "e is a vowel"

The switch statement’s first case matches all five lowercase vowels in the
English language. Similarly, its second case matches all lowercase English
consonants. Finally, the default case matches any other character.

Compound cases can also include value bindings. All of the patterns of a
compound case have to include the same set of value bindings, and each
binding has to get a value of the same type from all of the patterns in the
compound case. This ensures that, no matter which part of the compound case
matched, the code in the body of the case can always access a value for the
bindings and that the value always has the same type.

let stillAnotherPoint = (9, 0)
switch stillAnotherPoint {
case (let distance, 0), (0, let distance):
print("0On an axis, \(distance) from the origin")
default:
print("Not on an axis")
b

// Prints "On an axis, 9 from the origin"

0o N o o B~ W N P

The case above has two patterns: (let distance, ©) matches points on the x-
axisand (0, let distance) matches points on the y-axis. Both patterns include

PDF conversion courtesy of www.appsdissected.com

a binding for distance and distance is an integer in both patterns—which
means that the code in the body of the case can always access a value for
distance.

Control Transfer Statements

Control transfer statements change the order in which your code is executed, by
transferring control from one piece of code to another. Swift has five control
transfer statements:

e continue

» break

o fallthrough
e return

o throw

The continue, break, and fallthrough statements are described below. The
return statement is described in Functions, and the throw statement is

Continue

The continue statement tells a loop to stop what it’s doing and start again at the
beginning of the next iteration through the loop. It says “I am done with the
current loop iteration” without leaving the loop altogether.

The following example removes all vowels and spaces from a lowercase string
to create a cryptic puzzle phrase:

PDF conversion courtesy of www.appsdissected.com

1 let puzzleInput = "great minds think alike"
2 var puzzleQutput = ""
3 let charactersToRemove: [Character] = ["a", "e", "i", "o",
tut,]
for character in puzzleInput {
if charactersToRemove.contains(character) {
continue

b
puzzleOutput.append(character)

© 00 N O U B

}
10 print(puzzleOutput)

11 // Prints "grtmndsthnklk"

The code above calls the continue keyword whenever it matches a vowel or a
space, causing the current iteration of the loop to end immediately and to jump
straight to the start of the next iteration.

Break

The break statement ends execution of an entire control flow statement
immediately. The break statement can be used inside a switch or loop
statement when you want to terminate the execution of the switch or loop
statement earlier than would otherwise be the case.

Break in a Loop Statement

When used inside a loop statement, break ends the loop’s execution
immediately and transfers control to the code after the loop’s closing brace (}).
No further code from the current iteration of the loop is executed, and no further
iterations of the loop are started.

Break in a Switch Statement

When used inside a switch statement, break causes the switch statement to
end its execution immediately and to transfer control to the code after the

PDF conversion courtesy of www.appsdissected.com

switch statement’s closing brace (}).

This behavior can be used to match and ignore one or more cases in a switch
statement. Because Swift’s switch statement is exhaustive and doesn’t allow
empty cases, it's sometimes necessary to deliberately match and ignore a case
in order to make your intentions explicit. You do this by writing the break
statement as the entire body of the case you want to ignore. When that case is
matched by the switch statement, the break statement inside the case ends the
switch statement’s execution immediately.

NOTE

A switch case that contains only a comment is reported as a compile-time error.
Comments aren’t statements and don’t cause a switch case to be ignored. Always use a
break statement to ignore a switch case.

The following example switches on a Character value and determines whether
it represents a number symbol in one of four languages. For brevity, multiple
values are covered in a single switch case.

PDF conversion courtesy of www.appsdissected.com

1 let numberSymbol: Character = "=" // Chinese symbol for the

number 3
2 var possibleIntegerValue: Int?
3 switch numberSymbol {
4 case "1", "y, "—=", "o":
5 possibleIntegerValue = 1
6 case "2", '"y", "Z", "e":
7 possibleIntegerValue = 2
8 case "3", '"y", "Z=", "o":
9 possibleIntegerValue = 3
10 case "4", "', M, "'
11 possibleIntegerValue = 4
12 default:
13 break
14 }
15 if let integerValue = possibleIntegerValue {
16 print("The integer value of \(numberSymbol) is \

(integervalue).")

17} else {

18 print("An integer value couldn't be found for \
(numberSymbol).")

19 1}

20 // Prints "The integer value of = is 3."

This example checks numberSymbol to determine whether it’s a Latin, Arabic,
Chinese, or Thai symbol for the numbers 1 to 4. If a match is found, one of the
switch statement’s cases sets an optional Int? variable called
possibleIntegerValue to an appropriate integer value.

After the switch statement completes its execution, the example uses optional
binding to determine whether a value was found. The possibleIntegerValue
variable has an implicit initial value of nil by virtue of being an optional type,

PDF conversion courtesy of www.appsdissected.com

and so the optional binding will succeed only if possibleIntegervalue was set
to an actual value by one of the switch statement’s first four cases.

Because it’s not practical to list every possible Character value in the example
above, a default case handles any characters that aren’t matched. This
default case doesn’t need to perform any action, and so it’s written with a
single break statement as its body. As soon as the default case is matched, the
break statement ends the switch statement’s execution, and code execution
continues from the if let statement.

Fallthrough

In Swift, switch statements don’t fall through the bottom of each case and into
the next one. That is, the entire switch statement completes its execution as
soon as the first matching case is completed. By contrast, C requires you to
insert an explicit break statement at the end of every switch case to prevent
fallthrough. Avoiding default fallthrough means that Swift switch statements are
much more concise and predictable than their counterparts in C, and thus they
avoid executing multiple switch cases by mistake.

If you need C-style fallthrough behavior, you can opt in to this behavior on a
case-by-case basis with the fallthrough keyword. The example below uses
fallthrough to create a textual description of a number.

1 let integerToDescribe = 5

2 var description = "The number \(integerToDescribe) is"
3 switch integerToDescribe {

4 case 2, 3, 5, 7, 11, 13, 17, 19:

5 description += " a prime number, and also"

6 fallthrough

7 default:

8 description += " an integer."

9 }

10 print(description)

11 // Prints "The number 5 is a prime number, and also an

integer."

PDF conversion courtesy of www.appsdissected.com

This example declares a new String variable called description and assigns it
an initial value. The function then considers the value of integerToDescribe
using a switch statement. If the value of integerToDescribe is one of the prime
numbers in the list, the function appends text to the end of description, to note
that the number is prime. It then uses the fallthrough keyword to “fall into” the
default case as well. The default case adds some extra text to the end of the
description, and the switch statement is complete.

Unless the value of integerToDescribe is in the list of known prime numbers, it
isn’t matched by the first switch case at all. Because there are no other specific
cases, integerToDescribe is matched by the default case.

After the switch statement has finished executing, the number’s description is
printed using the print(_:separator:terminator:) function. In this example,
the number 5 is correctly identified as a prime number.

NOTE

The fallthrough keyword doesn’t check the case conditions for the switch case that it
causes execution to fall into. The fallthrough keyword simply causes code execution to
move directly to the statements inside the next case (or default case) block, asin C’s
standard switch statement behavior.

Labeled Statements

In Swift, you can nest loops and conditional statements inside other loops and
conditional statements to create complex control flow structures. However,
loops and conditional statements can both use the break statement to end their
execution prematurely. Therefore, it’s sometimes useful to be explicit about
which loop or conditional statement you want a break statement to terminate.
Similarly, if you have multiple nested loops, it can be useful to be explicit about
which loop the continue statement should affect.

To achieve these aims, you can mark a loop statement or conditional statement
with a statement label. With a conditional statement, you can use a statement
label with the break statement to end the execution of the labeled statement.
With a loop statement, you can use a statement label with the break or continue
statement to end or continue the execution of the labeled statement.

A labeled statement is indicated by placing a label on the same line as the
statement’s introducer keyword, followed by a colon. Here’s an example of this

PDF conversion courtesy of www.appsdissected.com

syntax for a while loop, although the principle is the same for all loops and
switch statements:

label name : while condition {

statements

The following example uses the break and continue statements with a labeled
whi'le loop for an adapted version of the Snakes and Ladders game that you
saw earlier in this chapter. This time around, the game has an extra rule:

« To win, you must land exactly on square 25.

If a particular dice roll would take you beyond square 25, you must roll again
until you roll the exact number needed to land on square 25.

The game board is the same as before.

21 |22 24
Ff '------------*
23 121 22 23 24 25
i
\h---u-------.-~
20 19 18 7| %16
I
'u-—--—-_|----ﬂ,
_l11 12 13 14 15
L]
\-u.___________.‘
10 9 8 7 \| 6|
'
_____T______"f
1 2 3 a 5

The values of finalSquare, board, square, and diceRoll are initialized in the
same way as before:

PDF conversion courtesy of www.appsdissected.com

1 let finalSquare = 25

2 var board

3 board[03]
= +02

4 board[14] = -10; board[19] = -11; board[22]
= -08

[Int] (repeating: @, count: finalSquare + 1)
+08; board[06] = +11; board[09] = +09; board[10]

-02; board[24]

5 var square = 0

6 var diceRoll = 0

This version of the game uses a while loop and a switch statement to
implement the game’s logic. The whi'le loop has a statement label called
gameLoop to indicate that it’s the main game loop for the Snakes and Ladders
game.

The while loop’s condition is while square != finalSquare, to reflect that you
must land exactly on square 25.

PDF conversion courtesy of www.appsdissected.com

1 gamelLoop: while square != finalSquare {

2 diceRoll += 1

3 if diceRoll == 7 { diceRoll =1 }

4 switch square + diceRoll {

5 case finalSquare:

6 // diceRoll will move us to the final square, so the
game is over

7 break gamelLoop

8 case let newSquare where newSquare > finalSquare:

9 // diceRoll will move us beyond the final square, so
roll again

10 continue gamelLoop

11 default:

12 // this is a valid move, so find out its effect

13 square += diceRoll

14 square += board[square]

15 }

16}

17 print("Game over!")

The dice is rolled at the start of each loop. Rather than moving the player
immediately, the loop uses a switch statement to consider the result of the
move and to determine whether the move is allowed:

« If the dice roll will move the player onto the final square, the game is over.
The break gameloop statement transfers control to the first line of code
outside of the while loop, which ends the game.

« If the dice roll will move the player beyond the final square, the move is
invalid and the player needs to roll again. The continue gameLoop
statement ends the current whi'le loop iteration and begins the next
iteration of the loop.

PDF conversion courtesy of www.appsdissected.com

« In all other cases, the dice roll is a valid move. The player moves forward by
diceRoll squares, and the game logic checks for any snakes and ladders.
The loop then ends, and control returns to the while condition to decide
whether another turn is required.

NOTE

If the break statement above didn’t use the gamelLoop label, it would break out of the
switch statement, not the whi'le statement. Using the gameLoop label makes it clear which
control statement should be terminated.

It isn’t strictly necessary to use the gamelLoop label when calling continue gameloop to
jump to the next iteration of the loop. there’s only one loop in the game, and therefore no
ambiguity as to which loop the continue statement will affect. However, there’s no harm in
using the gameloop label with the continue statement. Doing so is consistent with the
label’s use alongside the break statement and helps make the game’s logic clearer to read
and understand.

Early Exit

A guard statement, like an if statement, executes statements depending on the
Boolean value of an expression. You use a guard statement to require that a
condition must be true in order for the code after the guard statement to be
executed. Unlike an if statement, a guard statement always has an else clause
—the code inside the e1se clause is executed if the condition isn’t true.

PDF conversion courtesy of www.appsdissected.com

21

func greet(person: [String: Stringl) {
guard let name = person["name"] else {

return

print("Hello \(name)!'")

guard let location = person["location"] else {
print("I hope the weather is nice near you.")

return

print("I hope the weather is nice in \(location).")

greet(person: ["name": "John"])

// Prints "Hello John!"

// Prints "I hope the weather is nice near you."
greet(person: ["name": "Jane", "location": "Cupertino"])
// Prints "Hello Jane!"

// Prints "I hope the weather is nice in Cupertino."

If the guard statement’s condition is met, code execution continues after the
guard statement’s closing brace. Any variables or constants that were assigned
values using an optional binding as part of the condition are available for the
rest of the code block that the guard statement appears in.

If that condition isn’t met, the code inside the else branch is executed. That
branch must transfer control to exit the code block in which the guard statement
appears. It can do this with a control transfer statement such as return, break,
continue, or throw, or it can call a function or method that doesn’t return, such
as fatalError(_:file:line:).

PDF conversion courtesy of www.appsdissected.com

Using a guard statement for requirements improves the readability of your code,
compared to doing the same check with an if statement. It lets you write the
code that’s typically executed without wrapping it in an else block, and it lets
you keep the code that handles a violated requirement next to the requirement.

Checking API Availability

Swift has built-in support for checking API availability, which ensures that you
don’t accidentally use APIs that are unavailable on a given deployment target.

The compiler uses availability information in the SDK to verify that all of the APIs
used in your code are available on the deployment target specified by your
project. Swift reports an error at compile time if you try to use an API that isn’t
available.

You use an availability condition in an if or guard statement to conditionally
execute a block of code, depending on whether the APIs you want to use are
available at runtime. The compiler uses the information from the availability
condition when it verifies that the APIs in that block of code are available.

1 if #available(iOS 10, mac0S 10.12, *) {

2 // Use i0S 10 APIs on i0S, and use macOS 10.12 APIs on
macO0S

3 } else {

4 // Fall back to earlier i0S and macO0S APIs

The availability condition above specifies that in iOS, the body of the if
statement executes only in iOS 10 and later; in macOS, only in macOS 10.12
and later. The last argument, =, is required and specifies that on any other
platform, the body of the if executes on the minimum deployment target
specified by your target.

In its general form, the availability condition takes a list of platform names and
versions. You use platform names such as i0S, mac0S, watch0S, and tv0s—for
the full list, see Declaration Attributes. In addition to specifying major version

PDF conversion courtesy of www.appsdissected.com

numbers like iOS 8 or macOS 10.10, you can specify minor versions numbers
like iOS 11.2.6 and macOS 10.13.3.

if #available(platform name version, ..., *) {
statements to execute if the APIs are available
} else {

fallback statements to execute if the APIs are unavailable

When you use an availability condition with a guard statement, it refines the
availability information that’s used for the rest of the code in that code block.

1 @available(mac0S 10.12, x)

2 struct ColorPreference {

3 var bestColor = "blue"

4}

5

6 func chooseBestColor() —> String {
7 guard #available(mac0S 10.12, *) else {
8 return "gray"

9 ¥

10 let colors = ColorPreference()
11 return colors.bestColor

12}

In the example above, the ColorPreference structure requires macOS 10.12 or
later. The chooseBestColor() function begins with an availability guard. If the
platform version is too old to use ColorPreference, it falls back to behavior that’s
always available. After the guard statement, you can use APIs that require
macOS 10.12 or later.

PDF conversion courtesy of www.appsdissected.com

In addition to #available, Swift also supports the opposite check using an
unavailability condition. For example, the following two checks do the same
thing:

if #available(i0S 10, *) {
} else {
// Fallback code

if #unavailable(i0S 10) {
// Fallback code

Using the #unavailable form helps make your code more readable when the
check contains only fallback code.

PDF conversion courtesy of www.appsdissected.com

Functions

Functions are self-contained chunks of code that perform a specific
task. You give a function a name that identifies what it does, and this
name is used to “call’ the function to perform its task when needed.

Swift’s unified function syntax is flexible enough to express anything
from a simple C-style function with no parameter names to a complex
Objective-C-style method with names and argument labels for each
parameter. Parameters can provide default values to simplify function
calls and can be passed as in-out parameters, which modify a passed
variable once the function has completed its execution.

Every function in Swift has a type, consisting of the function’s
parameter types and return type. You can use this type like any other
type in Swift, which makes it easy to pass functions as parameters to
other functions, and to return functions from functions. Functions can
also be written within other functions to encapsulate useful
functionality within a nested function scope.

Defining and Calling Functions

When you define a function, you can optionally define one or more
named, typed values that the function takes as input, known as
parameters. You can also optionally define a type of value that the
function will pass back as output when it’s done, known as its return

type.

Every function has a function name, which describes the task that the
function performs. To use a function, you “call” that function with its
name and pass it input values (known as arguments) that match the

PDF conversion courtesy of www.appsdissected.com

types of the function’s parameters. A function’s arguments must
always be provided in the same order as the function’s parameter list.

The function in the example below is called greet (person:), because
that’s what it does—it takes a person’s name as input and returns a
greeting for that person. To accomplish this, you define one input
parameter—a String value called person—and a return type of
String, which will contain a greeting for that person:

1 func greet(person: String) —> String {

2 let greeting = "Hello, " + person + "!"
3 return greeting

4}

All of this information is rolled up into the function’s definition, which is
prefixed with the func keyword. You indicate the function’s return type
with the return arrow —> (a hyphen followed by a right angle bracket),
which is followed by the name of the type to return.

The definition describes what the function does, what it expects to
receive, and what it returns when it’s done. The definition makes it
easy for the function to be called unambiguously from elsewhere in
your code:

print(greet(person: "Anna"))
// Prints "Hello, Anna!"

print(greet(person: "Brian"))

~ W N R

// Prints "Hello, Brian!"

You call the greet (person:) function by passing ita String value
after the person argument label, such as greet(person: "Anna").
Because the function returns a String value, greet(person:) can be

PDF conversion courtesy of www.appsdissected.com

wrapped in a calltothe print(_:separator:terminator:) function to
print that string and see its return value, as shown above.

NOTE

The print(_:separator:terminator:) function doesn’t have a label for its
first argument, and its other arguments are optional because they have a
default value. These variations on function syntax are discussed below in
Function Argument Labels and Parameter Names and Default Parameter
Values.

The body of the greet (person:) function starts by defining a new
String constant called greeting and setting it to a simple greeting
message. This greeting is then passed back out of the function using
the return keyword. In the line of code that says return greeting,
the function finishes its execution and returns the current value of
greeting.

You can call the greet (person:) function multiple times with different
input values. The example above shows what happens if it’s called
with an input value of “Anna", and an input value of "Brian". The
function returns a tailored greeting in each case.

To make the body of this function shorter, you can combine the
message creation and the return statement into one line:

func greetAgain(person: String) —-> String {

return "Hello again, + person + "!"

1
2
3 0}
4 print(greetAgain(person: "Anna"))
5

// Prints "Hello again, Anna!"

PDF conversion courtesy of www.appsdissected.com

Function Parameters and Return Values

Function parameters and return values are extremely flexible in Swift.
You can define anything from a simple utility function with a single
unnamed parameter to a complex function with expressive parameter
names and different parameter options.

Functions Without Parameters

Functions aren’t required to define input parameters. Here’s a
function with no input parameters, which always returns the same
String message whenever it’s called:

func sayHelloWorld() —> String {

return "hello, world"

1
2
3%
4 print(sayHelloWorld())
5

// Prints "hello, world"
The function definition still needs parentheses after the function’s
name, even though it doesn’t take any parameters. The function

name is also followed by an empty pair of parentheses when the
function is called.

Functions With Multiple Parameters
Functions can have multiple input parameters, which are written
within the function’s parentheses, separated by commas.

This function takes a person’s name and whether they have already
been greeted as input, and returns an appropriate greeting for that
person:

PDF conversion courtesy of www.appsdissected.com

1 func greet(person: String, alreadyGreeted: Bool) —>

String {
2 if alreadyGreeted {
3 return greetAgain(person: person)
4 } else {
5 return greet(person: person)
6 ¥
7}
8 print(greet(person: "Tim", alreadyGreeted: true))
9 // Prints "Hello again, Tim!"

You call the greet(person:alreadyGreeted:) function by passing it
both a String argument value labeled person and a Bool argument
value labeled alreadyGreeted in parentheses, separated by commas.
Note that this function is distinct from the greet (person:) function
shown in an earlier section. Although both functions have names that
begin with greet, the greet (person:alreadyGreeted:) function takes
two arguments but the greet (person:) function takes only one.

Functions Without Return Values

Functions aren’t required to define a return type. Here’s a version of
the greet(person:) function, which prints its own String value rather
than returning it:

PDF conversion courtesy of www.appsdissected.com

func greet(person: String) {
print("Hello, \(person)!")
}

greet(person: '"Dave")

u B~ W N =

// Prints "Hello, Dave!"

Because it doesn’t need to return a value, the function’s definition
doesn’t include the return arrow (—>) or a return type.

NOTE

Strictly speaking, this version of the greet (person:) function does still return
a value, even though no return value is defined. Functions without a defined
return type return a special value of type Void. This is simply an empty tuple,
which is written as ().

The return value of a function can be ignored when it’s called:

func printAndCount(string: String) —> Int {
print(string)
return string.count

¥

func printWithoutCounting(string: String) {
let _ = printAndCount(string: string)

I

printAndCount(string: "hello, world")

O 00 N o U Ao W N B

// prints "hello, world" and returns a value of 12
10 printWithoutCounting(string: "hello, world")

11 // prints "hello, world" but doesn't return a value

PDF conversion courtesy of www.appsdissected.com

The first function, printAndCount(string:), prints a string, and then
returns its character count as an Int. The second function,
printWithoutCounting(string:), calls the first function, but ignores
its return value. When the second function is called, the message is
still printed by the first function, but the returned value isn’t used.

NOTE

Return values can be ignored, but a function that says it will return a value
must always do so. A function with a defined return type can’t allow control to
fall out of the bottom of the function without returning a value, and attempting
to do so will result in a compile-time error.

Functions with Multiple Return Values
You can use a tuple type as the return type for a function to return
multiple values as part of one compound return value.

The example below defines a function called minMax(array:), which
finds the smallest and largest numbers in an array of Int values:

PDF conversion courtesy of www.appsdissected.com

1 func minMax(array: [Int]) —> (min: Int, max: Int) {
2 var currentMin = array[0]

3 var currentMax = array|[0]

4 for value in array[l..<array.count] {
5 if value < currentMin {

6 currentMin = value

7 } else if value > currentMax {

8 currentMax = value

9 }

10 }

11 return (currentMin, currentMax)
12}

The minMax(array:) function returns a tuple containing two Int
values. These values are labeled min and max so that they can be
accessed by name when querying the function’s return value.

The body of the minMax(array:) function starts by setting two
working variables called currentMin and currentMax to the value of
the first integer in the array. The function then iterates over the
remaining values in the array and checks each value to see if it’s
smaller or larger than the values of currentMin and currentMax
respectively. Finally, the overall minimum and maximum values are
returned as a tuple of two Int values.

Because the tuple’s member values are named as part of the
function’s return type, they can be accessed with dot syntax to
retrieve the minimum and maximum found values:

PDF conversion courtesy of www.appsdissected.com

1 let bounds = minMax(array: [8, -6, 2, 109, 3, 711)
2 print("min is \(bounds.min) and max is \
(bounds.max)")

3 // Prints "min is -6 and max 1is 109"

Note that the tuple’s members don’t need to be named at the point
that the tuple is returned from the function, because their names are
already specified as part of the function’s return type.

Optional Tuple Return Types

If the tuple type to be returned from a function has the potential to
have “no value” for the entire tuple, you can use an optional tuple
return type to reflect the fact that the entire tuple can be nil. You
write an optional tuple return type by placing a question mark after
the tuple type’s closing parenthesis, such as (Int, Int)?or (String,
Int, Bool)?.

NOTE

An optional tuple type such as (Int, Int)? is differentfrom a tuple that
contains optional types such as (Int?, Int?).With an optional tuple type,
the entire tuple is optional, not just each individual value within the tuple.

The minMax(array:) function above returns a tuple containing two
Int values. However, the function doesn’t perform any safety checks
on the array it’s passed. If the array argument contains an empty
array, the minMax(array:) function, as defined above, will trigger a
runtime error when attempting to access array[0].

To handle an empty array safely, write the minMax(array:) function
with an optional tuple return type and return a value of nil when the
array is empty:

PDF conversion courtesy of www.appsdissected.com

1
2
3
4
5
6
7
8
9

10
11
12
13

func minMax(array: [Int]) —> (min: Int, max:

if array.isEmpty { return nil }

var
var

for

currentMin = array[0]

currentMax = array[0]

value in arrayl[l..<array.count] {
if value < currentMin {

currentMin = value

Int)? {

1 else if value > currentMax {

currentMax = value

¥

return (currentMin, currentMax)

You can use optional binding to check whether this version of the
minMax(array:) function returns an actual tuple value or nil:

1

3
4

if let bounds = minMax(array: [8, -6, 2, 109, 3,

by

711) A

print("min is \(bounds.min) and max is \

(bounds.max)")

// Prints "min is -6 and max is 109"

Functions With an Implicit Return
If the entire body of the function is a single expression, the function
implicitly returns that expression. For example, both functions below

PDF conversion courtesy of www.appsdissected.com

have the same behavior:

1
2
3
4
5
6
7
8
9

10
11

func greeting(for person: String) —> String {
"Hello, " + person + "!I"

¥

print(greeting(for: "Dave"))

// Prints "Hello, Dave!"

func anotherGreeting(for person: String) —> String {

return "Hello, + person + "!"
s

print(anotherGreeting(for: "Dave"))

// Prints "Hello, Dave!"

The entire definition of the greeting(for:) function is the greeting
message that it returns, which means it can use this shorter form. The
anotherGreeting(for:) function returns the same greeting message,
using the return keyword like a longer function. Any function that you
write as just one return line can omit the return.

As you’ll see in Shorthand Getter Declaration, property getters can
also use an implicit return.

NOTE

The code you write as an implicit return value needs to return some value. For
example, you can’t use print(13) as an implicit return value. However, you
can use a function that never returns like fatalError("0h no!") asan
implicit return value, because Swift knows that the implicit return doesn’t
happen.

PDF conversion courtesy of www.appsdissected.com

Function Argument Labels and Parameter Names

Each function parameter has both an argument label and a
parameter name. The argument label is used when calling the
function; each argument is written in the function call with its
argument label before it. The parameter name is used in the
implementation of the function. By default, parameters use their
parameter name as their argument label.

1 func someFunction(firstParameterName: Int,

secondParameterName: Int) {

2 // In the function body, firstParameterName and
secondParameterName
3 // refer to the argument values for the first

and second parameters.
4 '}
5 someFunction(firstParameterName: 1,

secondParameterName: 2)

All parameters must have unique names. Although it’s possible for
multiple parameters to have the same argument label, unique
argument labels help make your code more readable.

Specifying Argument Labels
You write an argument label before the parameter name, separated
by a space:

PDF conversion courtesy of www.appsdissected.com

1 func someFunction(argumentlLabel parameterName: Int)

{

2 // In the function body, parameterName refers to

the argument value

w

// for that parameter.

Here’s a variation of the greet (person:) function that takes a
person’s name and hometown and returns a greeting:

1 func greet(person: String, from hometown: String) —>
String {

2 return "Hello \(person)! Glad you could visit
from \(hometown)."

3}

4 print(greet(person: "Bill", from: "Cupertino"))

5 // Prints "Hello Bill! Glad you could visit from

Cupertino.™

The use of argument labels can allow a function to be called in an
expressive, sentence-like manner, while still providing a function
body that’s readable and clear in intent.

Omitting Argument Labels

If you don’t want an argument label for a parameter, write an
underscore (_) instead of an explicit argument label for that
parameter.

PDF conversion courtesy of www.appsdissected.com

1 func someFunction(_ firstParameterName: Int,

secondParameterName: Int) {

2 // In the function body, firstParameterName and
secondParameterName
3 // refer to the argument values for the first

and second parameters.

4}

5 someFunction(1, secondParameterName: 2)

If a parameter has an argument label, the argument must be labeled
when you call the function.

Default Parameter Values

You can define a default value for any parameter in a function by
assigning a value to the parameter after that parameter’s type. If a
default value is defined, you can omit that parameter when calling the
function.

PDF conversion courtesy of www.appsdissected.com

func someFunction(parameterWithoutDefault: Int,
parameterWithDefault: Int = 12) {
// If you omit the second argument when calling
this function, then
// the value of parameterWithDefault is 12
inside the function body.
¥
someFunction(parameterWithoutDefault: 3,
parameterWithDefault: 6) //
parameterWithDefault is 6
someFunction(parameterWithoutDefault: 4) //

parameterWithDefault is 12

Place parameters that don’t have default values at the beginning of a
function’s parameter list, before the parameters that have default
values. Parameters that don’t have default values are usually more
important to the function’s meaning—writing them first makes it
easier to recognize that the same function is being called, regardless
of whether any default parameters are omitted.

Variadic Parameters

A variadic parameter accepts zero or more values of a specified type.
You use a variadic parameter to specify that the parameter can be
passed a varying number of input values when the function is called.
Write variadic parameters by inserting three period characters (. . .)
after the parameter’s type name.

The values passed to a variadic parameter are made available within
the function’s body as an array of the appropriate type. For example,
a variadic parameter with a name of numbers and a type of Double. ..

PDF conversion courtesy of www.appsdissected.com

is made available within the function’s body as a constant array called
numbers of type [Double].

The example below calculates the arithmetic mean (also known as
the average) for a list of numbers of any length:

1

O© 00 N O Ul A W N

10
11

func arithmeticMean(_ numbers: Double...) —> Double
{
var total: Double = 0
for number in numbers {
total += number
}
return total / Double(numbers.count)
I
arithmeticMean(1, 2, 3, 4, 5)
// returns 3.0, which is the arithmetic mean of
these five numbers
arithmeticMean(3, 8.25, 18.75)
// returns 10.0, which is the arithmetic mean of

these three numbers

A function can have multiple variadic parameters. The first parameter
that comes after a variadic parameter must have an argument label.
The argument label makes it unambiguous which arguments are
passed to the variadic parameter and which arguments are passed to
the parameters that come after the variadic parameter.

In-Out Parameters

PDF conversion courtesy of www.appsdissected.com

Function parameters are constants by default. Trying to change the
value of a function parameter from within the body of that function
results in a compile-time error. This means that you can’t change the
value of a parameter by mistake. If you want a function to modify a
parameter’s value, and you want those changes to persist after the
function call has ended, define that parameter as an in-out parameter
instead.

You write an in-out parameter by placing the inout keyword right
before a parameter’s type. An in-out parameter has a value that’s
passed in to the function, is modified by the function, and is passed
back out of the function to replace the original value. For a detailed
discussion of the behavior of in-out parameters and associated
compiler optimizations, see |In-Out Parameters.

You can only pass a variable as the argument for an in-out
parameter. You can’t pass a constant or a literal value as the
argument, because constants and literals can’t be modified. You
place an ampersand (&) directly before a variable’s name when you
pass it as an argument to an in-out parameter, to indicate that it can
be modified by the function.

NOTE

In-out parameters can’t have default values, and variadic parameters can’t be
marked as inout.

Here’s an example of a function called swapTwoInts(_:_:), which has
two in-out integer parameters called a and b:

PDF conversion courtesy of www.appsdissected.com

1 func swapTwoInts(_ a: inout Int, _ b: inout Int) {
2 let temporaryA = a
3 a=>b
4 b = temporaryA
5 %}
The swapTwoInts(_:_:) function simply swaps the value of b into a,

and the value of a into b. The function performs this swap by storing
the value of a in a temporary constant called temporaryA, assigning
the value of b to a, and then assigning temporaryA to b.

You can call the swapTwoInts(_: :) function with two variables of
type Int to swap their values. Note that the names of someInt and
anotherInt are prefixed with an ampersand when they’re passed to
the swapTwoInts(_ : :) function:

var someInt = 3
var anotherInt = 107

swapTwoInts(&somelnt, &anotherInt)

~ W NN

print("someInt is now \(someInt), and anotherInt is
now \(anotherInt)")
5 // Prints "somelInt is now 107, and anotherInt is now

3II

The example above shows that the original values of someInt and
anotherInt are modified by the swapTwoInts(_:_:) function, even
though they were originally defined outside of the function.

PDF conversion courtesy of www.appsdissected.com

NOTE

In-out parameters aren’t the same as returning a value from a function. The
swapTwoInts example above doesn’t define a return type or return a value,
but it still modifies the values of someInt and anotherInt. In-out parameters
are an alternative way for a function to have an effect outside of the scope of
its function body.

Function Types

Every function has a specific function type, made up of the parameter
types and the return type of the function.

For example:
1 func addTwoInts(_ a: Int, _ b: Int) —> Int {
2 return a + b
3}
4 func multiplyTwoInts(_ a: Int, _ b: Int) —> Int {
5 return a *x b
6 1}

This example defines two simple mathematical functions called
addTwoInts and multiplyTwoInts. These functions each take two Int
values, and return an Int value, which is the result of performing an
appropriate mathematical operation.

The type of both of these functions is (Int, Int) —> Int.Thiscan
be read as:

“A function that has two parameters, both of type Int, and that returns
a value of type Int.”

PDF conversion courtesy of www.appsdissected.com

Here’s another example, for a function with no parameters or return
value:

1 func printHelloworld() {
2 print('"hello, world")
3}

The type of this function is () -> Void, or “a function that has no
parameters, and returns Void.”

Using Function Types

You use function types just like any other types in Swift. For example,
you can define a constant or variable to be of a function type and
assign an appropriate function to that variable:

var mathFunction: (Int, Int) —> Int = addTwoInts

This can be read as:

“Define a variable called mathFunction, which has a type of ‘a
function that takes two Int values, and returns an Int value.’ Set this
new variable to refer to the function called addTwoInts.”

The addTwoInts(_:_:) function has the same type as the
mathFunction variable, and so this assignment is allowed by Swift’s
type-checker.

You can now call the assigned function with the name mathFunction:

1 print("Result: \(mathFunction(2, 3))")
2 // Prints "Result: 5"

PDF conversion courtesy of www.appsdissected.com

A different function with the same matching type can be assigned to
the same variable, in the same way as for nonfunction types:

1 mathFunction = multiplyTwoInts
2 print("Result: \(mathFunction(2, 3))")
3 // Prints "Result: 6"

As with any other type, you can leave it to Swift to infer the function
type when you assign a function to a constant or variable:

1 let anotherMathFunction = addTwoInts
2 // anotherMathFunction is inferred to be of type
(Int, Int) —> Int

Function Types as Parameter Types

You can use a function type such as (Int, Int) —> Intasa
parameter type for another function. This enables you to leave some
aspects of a function’s implementation for the function’s caller to
provide when the function is called.

Here’s an example to print the results of the math functions from
above:

1 func printMathResult(_ mathFunction: (Int, Int) —>
Int, a: Int, _ b: Int) {

print("Result: \(mathFunction(a, b))")

}
printMathResult(addTwoInts, 3, 5)

// Prints "Result: 8"

o B~ W N

PDF conversion courtesy of www.appsdissected.com

This example defines a function called printMathResult(_: : 1),
which has three parameters. The first parameter is called
mathFunction, andis of type (Int, Int) —> Int.You can pass any
function of that type as the argument for this first parameter. The
second and third parameters are called a and b, and are both of type
Int. These are used as the two input values for the provided math
function.

When printMathResult(_:_:_ :) is called, it’s passed the
addTwoInts(_:_:) function, and the integer values 3 and 5. It calls the
provided function with the values 3 and 5, and prints the result of 8.

The role of printMathResult(_:_:_:) isto print the result of a call to
a math function of an appropriate type. It doesn’t matter what that
function’s implementation actually does—it matters only that the
function is of the correct type. This enables
printMathResult(_:_:_ :) to hand off some of its functionality to the
caller of the function in a type-safe way.

Function Types as Return Types

You can use a function type as the return type of another function.
You do this by writing a complete function type immediately after the
return arrow (—>) of the returning function.

The next example defines two simple functions called
stepForward(_:) and stepBackward(_:). The stepForward(_:)
function returns a value one more than its input value, and the
stepBackward(_:) function returns a value one less than its input
value. Both functions have a type of (Int) —> Int:

PDF conversion courtesy of www.appsdissected.com

func stepForward(_ input: Int) —> Int {
return input + 1

}

func stepBackward(_ input: Int) —> Int {

return input - 1

o U1 B~ W N R

Here’s a function called chooseStepFunction(backward:), whose
returntypeis (Int) —> Int. The chooseStepFunction(backward:)
function returns the stepForward(_:) function or the
stepBackward(_:) function based on a Boolean parameter called
backward:

1 func chooseStepFunction(backward: Bool) —> (Int) —>

Int {

N

return backward ? stepBackward : stepForward

You can now use chooseStepFunction(backward:) to obtain a
function that will step in one direction or the other:

1 var currentValue = 3

2 let moveNearerToZero = chooseStepFunction(backward:
currentValue > 0)

3 // moveNearerToZero now refers to the stepBackward()

function

The example above determines whether a positive or negative step is
needed to move a variable called currentValue progressively closer

PDF conversion courtesy of www.appsdissected.com

to zero. currentValue has an initial value of 3, which means that
currentValue > 0 returns true, causing
chooseStepFunction(backward:) to return the stepBackward(_:)
function. A reference to the returned function is stored in a constant
called moveNearerToZero.

Now that moveNearerToZero refers to the correct function, it can be
used to count to zero:

1 print("Counting to zero:")

2 // Counting to zero:

3 while currentValue !'= 0 {

4 print("\(currentvalue)... ")
5 currentValue = moveNearerToZero(currentValue)
6 }

7 print("zero!")

8 // 3...

9 // 2...

10 // 1...

11 // zero!

Nested Functions

All of the functions you have encountered so far in this chapter have
been examples of global functions, which are defined at a global
scope. You can also define functions inside the bodies of other
functions, known as nested functions.

PDF conversion courtesy of www.appsdissected.com

Nested functions are hidden from the outside world by default, but
can still be called and used by their enclosing function. An enclosing
function can also return one of its nested functions to allow the
nested function to be used in another scope.

You can rewrite the chooseStepFunction(backward:) example above
to use and return nested functions:

PDF conversion courtesy of www.appsdissected.com

N O o B

10
11
12
13
14
15
16
17
18

func chooseStepFunction(backward: Bool) —> (Int) —>
Int {
func stepForward(input: Int) —> Int { return
input + 1 }
func stepBackward(input: Int) —> Int { return
input - 1 }
return backward ? stepBackward : stepForward
+
var currentValue = -4
let moveNearerToZero = chooseStepFunction(backward:
currentValue > 0)
// moveNearerToZero now refers to the nested
stepForward() function
while currentValue != 0 {
print("\(currentvValue)... ")

currentValue = moveNearerToZero(currentValue)

s
print(“zero!")
/] —4...

// =3...

/] =2...

// -1...

// zero!

PDF conversion courtesy of www.appsdissected.com

Closures

Closures are self-contained blocks of functionality that can be passed
around and used in your code. Closures in Swift are similar to blocks
in C and Objective-C and to lambdas in other programming
languages.

Closures can capture and store references to any constants and
variables from the context in which they’re defined. This is known as
closing over those constants and variables. Swift handles all of the
memory management of capturing for you.

NOTE

Don’t worry if you aren’t familiar with the concept of capturing. It’s explained in
detail below in Capturing Values.

Global and nested functions, as introduced in Functions, are actually
special cases of closures. Closures take one of three forms:

« Global functions are closures that have a name and don’t
capture any values.

« Nested functions are closures that have a name and can capture
values from their enclosing function.

« Closure expressions are unnamed closures written in a
lightweight syntax that can capture values from their surrounding
context.

Swift’s closure expressions have a clean, clear style, with
optimizations that encourage brief, clutter-free syntax in common
scenarios. These optimizations include:

« Inferring parameter and return value types from context

PDF conversion courtesy of www.appsdissected.com

« Implicit returns from single-expression closures
« Shorthand argument names

« Trailing closure syntax

Closure Expressions

Nested functions, as introduced in Nested Functions, are a
convenient means of naming and defining self-contained blocks of
code as part of a larger function. However, it's sometimes useful to
write shorter versions of function-like constructs without a full
declaration and name. This is particularly true when you work with
functions or methods that take functions as one or more of their
arguments.

Closure expressions are a way to write inline closures in a brief,
focused syntax. Closure expressions provide several syntax
optimizations for writing closures in a shortened form without loss of
clarity or intent. The closure expression examples below illustrate
these optimizations by refining a single example of the sorted(by:)
method over several iterations, each of which expresses the same
functionality in a more succinct way.

The Sorted Method

Swift’s standard library provides a method called sorted(by:), which
sorts an array of values of a known type, based on the output of a
sorting closure that you provide. Once it completes the sorting
process, the sorted(by:) method returns a new array of the same
type and size as the old one, with its elements in the correct sorted
order. The original array isn’t modified by the sorted(by:) method.

PDF conversion courtesy of www.appsdissected.com

The closure expression examples below use the sorted(by:) method
to sort an array of String values in reverse alphabetical order. Here’s
the initial array to be sorted:

let names = ["Chris", "Alex", "Ewa", "Barry",

"Daniella"]

The sorted(by:) method accepts a closure that takes two arguments
of the same type as the array’s contents, and returns a Boo'l value to
say whether the first value should appear before or after the second
value once the values are sorted. The sorting closure needs to return
true if the first value should appear before the second value, and
false otherwise.

This example is sorting an array of String values, and so the sorting
closure needs to be a function of type (String, String) -> Bool.

One way to provide the sorting closure is to write a normal function of
the correct type, and to pass it in as an argument to the sorted(by:)
method:

func backward(_ sl1: String, _ s2: String) —> Bool {
return s1 > s2
b

var reversedNames = names.sorted(by: backward)

u B~ W N =

// reversedNames is equal to ["Ewa", "Daniella",

"Chris", "Barry", "Alex"]

If the first string (s1) is greater than the second string (s2), the
backward(_:_:) function will return true, indicating that s1 should
appear before s2 in the sorted array. For characters in strings,
“greater than” means “appears later in the alphabet than”. This
means that the letter "B" is “greater than” the letter "A", and the string

PDF conversion courtesy of www.appsdissected.com

"Tom" is greater than the string "Tim". This gives a reverse
alphabetical sort, with "Barry" being placed before "Alex", and so
on.

However, this is a rather long-winded way to write what is essentially
a single-expression function (a > b). In this example, it would be
preferable to write the sorting closure inline, using closure expression
syntax.

Closure Expression Syntax
Closure expression syntax has the following general form:

{ (parameters) —> return type in

statements

The parameters in closure expression syntax can be in-out
parameters, but they can’t have a default value. Variadic parameters
can be used if you name the variadic parameter. Tuples can also be
used as parameter types and return types.

The example below shows a closure expression version of the
backward(_:_:) function from above:

1 reversedNames = names.sorted(by: { (sl: String, s2:
String) —> Bool in
2 return s1 > s2

31

Note that the declaration of parameters and return type for this inline
closure is identical to the declaration from the backward(_:_:)

function. In both cases, it’'s written as (s1: String, s2: String) —>

PDF conversion courtesy of www.appsdissected.com

Bool. However, for the inline closure expression, the parameters and
return type are written inside the curly braces, not outside of them.

The start of the closure’s body is introduced by the in keyword. This
keyword indicates that the definition of the closure’s parameters and
return type has finished, and the body of the closure is about to begin.

Because the body of the closure is so short, it can even be written on
a single line:

reversedNames = names.sorted(by: { (sl: String, s2:

String) —> Bool in return sl > s2 })

This illustrates that the overall call to the sorted(by:) method has
remained the same. A pair of parentheses still wrap the entire
argument for the method. However, that argument is now an inline
closure.

Inferring Type From Context

Because the sorting closure is passed as an argument to a method,
Swift can infer the types of its parameters and the type of the value it
returns. The sorted(by:) method is being called on an array of
strings, so its argument must be a function of type (String, String)
—> Bool. This means thatthe (String, String) and Bool types don’t
need to be written as part of the closure expression’s definition.
Because all of the types can be inferred, the return arrow (->) and the
parentheses around the names of the parameters can also be
omitted:

reversedNames = names.sorted(by: { sl1, s2 in return

sl >5s2 })

PDF conversion courtesy of www.appsdissected.com

It’s always possible to infer the parameter types and return type when
passing a closure to a function or method as an inline closure
expression. As a result, you never need to write an inline closure in its
fullest form when the closure is used as a function or method
argument.

Nonetheless, you can still make the types explicit if you wish, and
doing so is encouraged if it avoids ambiguity for readers of your code.
In the case of the sorted(by:) method, the purpose of the closure is
clear from the fact that sorting is taking place, and it’s safe for a
reader to assume that the closure is likely to be working with String
values, because it’s assisting with the sorting of an array of strings.

Implicit Returns from Single-Expression Closures
Single-expression closures can implicitly return the result of their
single expression by omitting the return keyword from their
declaration, as in this version of the previous example:

reversedNames = names.sorted(by: { s1, s2 in sl > s2

})

Here, the function type of the sorted(by:) method’s argument makes
it clear that a Boo1 value must be returned by the closure. Because
the closure’s body contains a single expression (s1 > s2) that returns
a Bool value, there’s no ambiguity, and the return keyword can be
omitted.

Shorthand Argument Names

Swift automatically provides shorthand argument names to inline
closures, which can be used to refer to the values of the closure’s
arguments by the names $0, $1, $2, and so on.

PDF conversion courtesy of www.appsdissected.com

If you use these shorthand argument names within your closure
expression, you can omit the closure’s argument list from its
definition. The type of the shorthand argument names is inferred from
the expected function type, and the highest numbered shorthand
argument you use determines the number of arguments that the
closure takes. The in keyword can also be omitted, because the
closure expression is made up entirely of its body:

reversedNames = names.sorted(by: { $0 > $1 })

Here, $0 and $1 refer to the closure’s first and second String
arguments. Because 51 is the shorthand argument with highest
number, the closure is understood to take two arguments. Because
the sorted(by:) function here expects a closure whose arguments
are both strings, the shorthand arguments $0 and $1 are both of type
String.

Operator Methods

There’s actually an even shorter way to write the closure expression
above. Swift’s String type defines its string-specific implementation
of the greater-than operator (>) as a method that has two parameters
of type String, and returns a value of type Bool. This exactly matches
the method type needed by the sorted(by:) method. Therefore, you
can simply pass in the greater-than operator, and Swift will infer that
you want to use its string-specific implementation:

reversedNames = names.sorted(by: >)

For more about operator methods, see Operator Methods.

PDF conversion courtesy of www.appsdissected.com

Trailing Closures

If you need to pass a closure expression to a function as the
function’s final argument and the closure expression is long, it can be
useful to write it as a frailing closure instead. You write a trailing
closure after the function call’s parentheses, even though the trailing
closure is still an argument to the function. When you use the trailing
closure syntax, you don’t write the argument label for the first closure
as part of the function call. A function call can include multiple trailing
closures; however, the first few examples below use a single trailing
closure.

PDF conversion courtesy of www.appsdissected.com

v B~ W N

O 00 N O

10
11

12
13
14
15

func someFunctionThatTakesAClosure(closure: () —>
Void) {

// function body goes here

// Here's how you call this function without using a

trailing closure:

someFunctionThatTakesAClosure(closure: {

// closure's body goes here

})

// Here's how you call this function with a trailing

closure instead:

someFunctionThatTakesAClosure() {

// trailing closure's body goes here

The string-sorting closure from the Closure Expression Syntax
section above can be written outside of the sorted(by:) method’s
parentheses as a trailing closure:

reversedNames = names.sorted() { $0 > $1 }

If a closure expression is provided as the function’s or method’s only
argument and you provide that expression as a trailing closure, you

PDF conversion courtesy of www.appsdissected.com

don’t need to write a pair of parentheses () after the function or
method’s hame when you call the function:

reversedNames = names.sorted { $0 > $1 }

Trailing closures are most useful when the closure is sufficiently long
that it isn’t possible to write it inline on a single line. As an example,
Swift’s Array type has amap(_:) method, which takes a closure
expression as its single argument. The closure is called once for each
item in the array, and returns an alternative mapped value (possibly
of some other type) for that item. You specify the nature of the
mapping and the type of the returned value by writing code in the
closure that you pass to map(_:).

After applying the provided closure to each array element, the
map(_:) method returns a new array containing all of the new
mapped values, in the same order as their corresponding values in
the original array.

Here’s how you can use the map(_:) method with a trailing closure to
convert an array of Int values into an array of String values. The
array [16, 58, 510] is used to create the new array ["0neSix",
"FiveEight", "FiveOneZero"]:

[

1 let digitNames

2 0: "Zero", 1: "One", 2: "Two", 3: "Three", 4:
"Four",

3 5: "Five", 6: "Six", 7: "Seven', 8: "Eight", 9:
"Nine"

4 1]

5 let numbers = [16, 58, 510]

PDF conversion courtesy of www.appsdissected.com

The code above creates a dictionary of mappings between the
integer digits and English-language versions of their names. It also
defines an array of integers, ready to be converted into strings.

You can now use the numbers array to create an array of String
values, by passing a closure expression to the array’s map(_:)
method as a trailing closure:

1 let strings = numbers.map { (number) —> String in

2 var number = number

3 var output = ""

4 repeat {

5 output = digitNames[number % 10]! + output

6 number /= 10

7 } while number > 0

8 return output

9 }

10 // strings is inferred to be of type [String]

11 // its value is ["OneSix", "FiveEight",
"FiveOneZero"]

The map(_:) method calls the closure expression once for each item

in the array. You don’t need to specify the type of the closure’s input
parameter, number, because the type can be inferred from the values
in the array to be mapped.

In this example, the variable number is initialized with the value of the
closure’s number parameter, so that the value can be modified within
the closure body. (The parameters to functions and closures are
always constants.) The closure expression also specifies a return

PDF conversion courtesy of www.appsdissected.com

type of String, to indicate the type that will be stored in the mapped
output array.

The closure expression builds a string called output each time it’s
called. It calculates the last digit of number by using the remainder
operator (number % 10), and uses this digit to look up an appropriate
string in the digitNames dictionary. The closure can be used to create
a string representation of any integer greater than zero.

NOTE

The call to the digitNames dictionary’s subscript is followed by an
exclamation point (!), because dictionary subscripts return an optional value
to indicate that the dictionary lookup can fail if the key doesn’t exist. In the
example above, it’s guaranteed that number % 10 will always be a valid
subscript key for the digitNames dictionary, and so an exclamation point is
used to force-unwrap the String value stored in the subscript’s optional
return value.

The string retrieved from the digitNames dictionary is added to the
front of output, effectively building a string version of the number in
reverse. (The expression number % 10 gives a value of 6 for 16, 8 for
58, and 0 for 510.)

The number variable is then divided by 10. Because it’s an integer, it’s
rounded down during the division, so 16 becomes 1, 58 becomes 5,
and 510 becomes 51.

The process is repeated until number is equal to 0, at which point the
output string is returned by the closure, and is added to the output
array by the map(_:) method.

The use of trailing closure syntax in the example above neatly
encapsulates the closure’s functionality immediately after the function
that closure supports, without needing to wrap the entire closure
within the map(_:) method’s outer parentheses.

PDF conversion courtesy of www.appsdissected.com

If a function takes multiple closures, you omit the argument label for
the first trailing closure and you label the remaining trailing closures.
For example, the function below loads a picture for a photo gallery:

1 func loadPicture(from server: Server, completion:

(Picture) —> Void, onFailure: () —-> Void) {

2 if let picture = download("photo.jpg", from:
server) {

3 completion(picture)

4 } else {

5 onFailure()

6 ¥

7 %}

When you call this function to load a picture, you provide two
closures. The first closure is a completion handler that displays a
picture after a successful download. The second closure is an error
handler that displays an error to the user.

loadPicture(from: someServer) { picture in
someView.currentPicture = picture
} onFailure: {

print("Couldn't download the next picture.")

u B~ W N =

In this example, the loadPicture(from:completion:onFailure:)
function dispatches its network task into the background, and calls
one of the two completion handlers when the network task finishes.
Writing the function this way lets you cleanly separate the code that’s
responsible for handling a network failure from the code that updates

PDF conversion courtesy of www.appsdissected.com

the user interface after a successful download, instead of using just
one closure that handles both circumstances.

NOTE

Completion handlers can become hard to read, especially when you have to
nest multiple handlers. An alternate approach is to use asynchronous code,
as described in Concurrency.

Capturing Values

A closure can capture constants and variables from the surrounding
context in which it’s defined. The closure can then refer to and modify
the values of those constants and variables from within its body, even
if the original scope that defined the constants and variables no
longer exists.

In Swift, the simplest form of a closure that can capture values is a
nested function, written within the body of another function. A nested
function can capture any of its outer function’s arguments and can
also capture any constants and variables defined within the outer
function.

Here’s an example of a function called makeIncrementer, which
contains a nested function called incrementer. The nested
incrementer () function captures two values, runningTotal and
amount, from its surrounding context. After capturing these values,
incrementer is returned by makeIncrementer as a closure that
increments runningTotal by amount each time it’s called.

PDF conversion courtesy of www.appsdissected.com

1 func makeIncrementer(forIncrement amount: Int) —> ()
- Int {
var runningTotal = 0
func incrementer() —> Int {
runningTotal += amount
return runningTotal
}

return incrementer

0o N oo U B~ W N

The return type of makeIncrementeris () —-> Int. This means that it
returns a function, rather than a simple value. The function it returns
has no parameters, and returns an Int value each time it’s called. To
learn how functions can return other functions, see Function Types as
Return Types.

The makeIncrementer(forIncrement:) function defines an integer
variable called runningTotal, to store the current running total of the
incrementer that will be returned. This variable is initialized with a
value of 0.

The makeIncrementer(forIncrement:) function has a single Int
parameter with an argument label of forIncrement, and a parameter
name of amount. The argument value passed to this parameter
specifies how much runningTotal should be incremented by each
time the returned incrementer function is called. The
makeIncrementer function defines a nested function called
incrementer, which performs the actual incrementing. This function
simply adds amount to runningTotal, and returns the result.

When considered in isolation, the nested incrementer() function
might seem unusual:

PDF conversion courtesy of www.appsdissected.com

1 func incrementer() —> Int {
2 runningTotal += amount
3 return runningTotal

4 '}

The incrementer() function doesn’t have any parameters, and yet it
refers to runningTotal and amount from within its function body. It
does this by capturing a reference to runningTotal and amount from
the surrounding function and using them within its own function body.
Capturing by reference ensures that runningTotal and amount don’t
disappear when the call to makeIncrementer ends, and also ensures
that runningTotal is available the next time the incrementer function
is called.

NOTE

As an optimization, Swift may instead capture and store a copy of a value if
that value isn’t mutated by a closure, and if the value isn’t mutated after the
closure is created.

Swift also handles all memory management involved in disposing of variables
when they’re no longer needed.

Here’s an example of makeIncrementer in action:

let incrementByTen = makeIncrementer(forIncrement:

10)

This example sets a constant called incrementByTen to refer to an
incrementer function that adds 10 to its runningTotal variable each
time it’s called. Calling the function multiple times shows this behavior
in action:

PDF conversion courtesy of www.appsdissected.com

incrementByTen()
// returns a value of 10
incrementByTen()
// returns a value of 20

incrementByTen()

o U1 B~ W N R

// returns a value of 30

If you create a second incrementer, it will have its own stored
reference to a new, separate runningTotal variable:

1 let incrementBySeven = makeIncrementer(forIncrement:
7)
2 incrementBySeven()

3 // returns a value of 7

Calling the original incrementer (incrementByTen) again continues to
increment its own runningTotal variable, and doesn’t affect the
variable captured by incrementBySeven:

1 incrementByTen()

2 // returns a value of 40

NOTE

If you assign a closure to a property of a class instance, and the closure
captures that instance by referring to the instance or its members, you will
create a strong reference cycle between the closure and the instance. Swift
uses capture lists to break these strong reference cycles. For more
information, see Strong Reference Cycles for Closures.

PDF conversion courtesy of www.appsdissected.com

Closures Are Reference Types

In the example above, incrementBySeven and incrementByTen are
constants, but the closures these constants refer to are still able to
increment the runningTotal variables that they have captured. This is
because functions and closures are reference types.

Whenever you assign a function or a closure to a constant or a
variable, you are actually setting that constant or variable to be a
reference to the function or closure. In the example above, it’s the
choice of closure that incrementByTen refers to that’s constant, and
not the contents of the closure itself.

This also means that if you assign a closure to two different constants
or variables, both of those constants or variables refer to the same
closure.

let alsoIncrementByTen = incrementByTen
alsoIncrementByTen()

// returns a value of 50

incrementByTen()

// returns a value of 60

The example above shows that calling alsoIncrementByTen is the
same as calling incrementByTen. Because both of them refer to the
same closure, they both increment and return the same running total.

Escaping Closures

PDF conversion courtesy of www.appsdissected.com

A closure is said to escape a function when the closure is passed as
an argument to the function, but is called after the function returns.
When you declare a function that takes a closure as one of its
parameters, you can write @escaping before the parameter’s type to
indicate that the closure is allowed to escape.

One way that a closure can escape is by being stored in a variable
that’s defined outside the function. As an example, many functions
that start an asynchronous operation take a closure argument as a
completion handler. The function returns after it starts the operation,
but the closure isn’t called until the operation is completed—the
closure needs to escape, to be called later. For example:

1 var completionHandlers: [() —> Void] = []

2 func
someFunctionWithEscapingClosure(completionHandl
er: @escaping () —-> Void) {

3 completionHandlers.append(completionHandler)

The someFunctionWithEscapingClosure(_:) function takes a closure
as its argument and adds it to an array that’s declared outside the
function. If you didn’t mark the parameter of this function with
@escaping, you would get a compile-time error.

An escaping closure that refers to self needs special consideration if
self refers to an instance of a class. Capturing self in an escaping
closure makes it easy to accidentally create a strong reference cycle.
For information about reference cycles, see Automatic Reference
Counting.

Normally, a closure captures variables implicitly by using them in the
body of the closure, but in this case you need to be explicit. If you
want to capture self, write self explicitly when you use it, or include

PDF conversion courtesy of www.appsdissected.com

self in the closure’s capture list. Writing self explicitly lets you
express your intent, and reminds you to confirm that there isn’t a
reference cycle. For example, in the code below, the closure passed
to someFunctionWithEscapingClosure(_:) refersto self explicitly. In
contrast, the closure passed to
someFunctionWithNonescapingClosure(_:) iS a nonescaping closure,
which means it can refer to seLf implicitly.

PDF conversion courtesy of www.appsdissected.com

1 func someFunctionWithNonescapingClosure(closure: ()

-> Void) A{

2 closure()

3}

4

5 class SomeClass {

6 var x = 10

7 func doSomething() {

8 someFunctionWithEscapingClosure { self.x =
100 }

9 someFunctionWithNonescapingClosure { x = 200
by

10 by

11}

12

13 let instance = SomeClass()
14 instance.doSomething()

15 print(instance.x)

16 // Prints "200"

17

18 completionHandlers.first?()
19 print(instance.x)

20 // Prints "100"

Here’s a version of doSomething() that captures self by including it
in the closure’s capture list, and then refers to se L f implicitly:

PDF conversion courtesy of www.appsdissected.com

1 class SomeOtherClass {

2 var x = 10

3 func doSomething() {

4 someFunctionWithEscapingClosure { [self] in
x = 100 }

5 someFunctionWithNonescapingClosure { x = 200
b

6 ¥

7%}

If self is an instance of a structure or an enumeration, you can
always refer to seLf implicitly. However, an escaping closure can’t
capture a mutable reference to se1f when self is an instance of a
structure or an enumeration. Structures and enumerations don'’t allow
shared mutability, as discussed in Structures and Enumerations Are
Value Types.

1 struct SomeStruct {

2 var x = 10

3 mutating func doSomething() {

4 someFunctionWithNonescapingClosure { x = 200
} // Ok

5 someFunctionWithEscapingClosure { x = 100 }
// Error

6 ¥

7}

PDF conversion courtesy of www.appsdissected.com

The call to the someFunctionWithEscapingClosure functionin the
example above is an error because it’s inside a mutating method, so
self is mutable. That violates the rule that escaping closures can'’t
capture a mutable reference to self for structures.

Autoclosures

An autoclosure is a closure that’s automatically created to wrap an
expression that’s being passed as an argument to a function. It
doesn’t take any arguments, and when it’s called, it returns the value
of the expression that’s wrapped inside of it. This syntactic
convenience lets you omit braces around a function’s parameter by
writing a normal expression instead of an explicit closure.

It's common to call functions that take autoclosures, but it’s not
common to implement that kind of function. For example, the
assert(condition:message:file: line:) function takes an
autoclosure for its condition and message parameters; its condition
parameter is evaluated only in debug builds and its message
parameter is evaluated only if conditionis false.

An autoclosure lets you delay evaluation, because the code inside
isn’t run until you call the closure. Delaying evaluation is useful for
code that has side effects or is computationally expensive, because it
lets you control when that code is evaluated. The code below shows
how a closure delays evaluation.

PDF conversion courtesy of www.appsdissected.com

1 var customersInLine = ["Chris", "Alex", "Ewa",

"Barry", "Daniella"]

2 print(customersInLine.count)

3 // Prints "5"

4

5 let customerProvider = { customersInLine.remove(at:
o) }

6 print(customersInLine.count)

7 // Prints "5"

8

9 print("Now serving \(customerProvider())!")

10 // Prints "Now serving Chris!"
11 print(customersInLine.count)

12 // Prints "4"

Even though the first element of the customersInLine array is
removed by the code inside the closure, the array element isn’t
removed until the closure is actually called. If the closure is never
called, the expression inside the closure is never evaluated, which
means the array element is never removed. Note that the type of
customerProviderisn’t String but () -> String—a function with no
parameters that returns a string.

You get the same behavior of delayed evaluation when you pass a
closure as an argument to a function.

PDF conversion courtesy of www.appsdissected.com

S U1 &~ W

// customersInLine is ["Alex", "Ewa", "Barry",
"Daniella"]
func serve(customer customerProvider: () —> String)
{
print("Now serving \(customerProvider())!")
I
serve(customer: { customersInLine.remove(at: @) })

// Prints "Now serving Alex!"

The serve(customer:) function in the listing above takes an explicit
closure that returns a customer’s name. The version of
serve(customer:) below performs the same operation but, instead of
taking an explicit closure, it takes an autoclosure by marking its
parameter’s type with the @autoclosure attribute. Now you can call
the function as if it took a String argument instead of a closure. The
argument is automatically converted to a closure, because the
customerProvider parameter’s type is marked with the @autoclosure

attribute.
1 // customersInLine is ["Ewa", "Barry", "Daniella"]
2 func serve(customer customerProvider: @autoclosure

() —> String) {

3 print("Now serving \(customerProvider())!'")
4}
5 serve(customer: customersInLine.remove(at: 0))
6 // Prints "Now serving Ewa!"

PDF conversion courtesy of www.appsdissected.com

NOTE

Overusing autoclosures can make your code hard to understand. The context
and function name should make it clear that evaluation is being deferred.

If you want an autoclosure that’s allowed to escape, use both the
@autoclosure and @escaping attributes. The @escaping attribute is
described above in Escaping_Closures.

1 // customersInLine is ["Barry", "Daniella"]

2 var customerProviders: [() —> String] = []

3 func collectCustomerProviders(_ customerProvider:
@autoclosure @escaping () —> String) {

4 customerProviders.append(customerProvider)

5 %

6 collectCustomerProviders(customersInLine.remove(at:
2))

7 collectCustomerProviders(customersInLine.remove(at:

0))

9 print("Collected \(customerProviders.count)
closures.")

10 // Prints "Collected 2 closures."”

11 for customerProvider in customerProviders {

12 print("Now serving \(customerProvider())!")

13}

14 // Prints "Now serving Barry!"

15 // Prints "Now serving Daniella!"

PDF conversion courtesy of www.appsdissected.com

In the code above, instead of calling the closure passed to it as its
customerProvider argument, the collectCustomerProviders(_:)
function appends the closure to the customerProviders array. The
array is declared outside the scope of the function, which means the
closures in the array can be executed after the function returns. As a
result, the value of the customerProvider argument must be allowed

to escape the function’s scope.

PDF conversion courtesy of www.appsdissected.com

Enumerations

An enumeration defines a common type for a group of related values
and enables you to work with those values in a type-safe way within
your code.

If you are familiar with C, you will know that C enumerations assign
related names to a set of integer values. Enumerations in Swift are
much more flexible, and don’t have to provide a value for each case
of the enumeration. If a value (known as a raw value) is provided for
each enumeration case, the value can be a string, a character, or a
value of any integer or floating-point type.

Alternatively, enumeration cases can specify associated values of
any type to be stored along with each different case value, much as
unions or variants do in other languages. You can define a common
set of related cases as part of one enumeration, each of which has a
different set of values of appropriate types associated with it.

Enumerations in Swift are first-class types in their own right. They
adopt many features traditionally supported only by classes, such as
computed properties to provide additional information about the
enumeration’s current value, and instance methods to provide
functionality related to the values the enumeration represents.
Enumerations can also define initializers to provide an initial case
value; can be extended to expand their functionality beyond their
original implementation; and can conform to protocols to provide
standard functionality.

For more about these capabilities, see Properties, Methods,
Initialization, Extensions, and Protocols.

PDF conversion courtesy of www.appsdissected.com

Enumeration Syntax

You introduce enumerations with the enum keyword and place their
entire definition within a pair of braces:

1 enum SomeEnumeration {

2 // enumeration definition goes here

3%

Here’s an example for the four main points of a compass:

1 enum CompassPoint {
2 case north

3 case south

4 case east

5 case west

6}

The values defined in an enumeration (such as north, south, east,
and west) are its enumeration cases. You use the case keyword to
introduce new enumeration cases.

NOTE

Swift enumeration cases don’t have an integer value set by default, unlike
languages like C and Objective-C. In the CompassPoint example above,
north, south, east and west don’t implicitly equal ¢, 1, 2 and 3. Instead, the
different enumeration cases are values in their own right, with an explicitly
defined type of CompassPoint.

Multiple cases can appear on a single line, separated by commas:

PDF conversion courtesy of www.appsdissected.com

1 enum Planet {
2 case mercury, venus, earth, mars, jupiter,

saturn, uranus, neptune

Each enumeration definition defines a new type. Like other types in
Swift, their names (such as CompassPoint and Planet) start with a
capital letter. Give enumeration types singular rather than plural
names, so that they read as self-evident:

var directionToHead = CompassPoint.west

The type of directionToHead is inferred when it’s initialized with one
of the possible values of CompassPoint. Once directionToHead is
declared as a CompassPoint, you can set it to a different CompassPoint
value using a shorter dot syntax:

directionToHead = .east

The type of directionToHead is already known, and so you can drop
the type when setting its value. This makes for highly readable code
when working with explicitly typed enumeration values.

Matching Enumeration Values with a Switch
Statement

You can match individual enumeration values with a switch
statement:

PDF conversion courtesy of www.appsdissected.com

1 directionToHead = .south

2 switch directionToHead {

3 case .north:

4 print("Lots of planets have a north")
5 case .south:

6 print("Watch out for penguins")

/ case .east:

8 print("Where the sun rises")

9 case .west:

10 print("Where the skies are blue")
11}

12 // Prints "Watch out for penguins"

You can read this code as:

“Consider the value of directionToHead. In the case where it equals
.north, print "Lots of planets have a north".Inthe case where it
equals .south, print "watch out for penguins™.”

...and so on.

As described in Control Flow, a switch statement must be exhaustive
when considering an enumeration’s cases. If the case for .west is
omitted, this code doesn’t compile, because it doesn’t consider the
complete list of CompassPoint cases. Requiring exhaustiveness
ensures that enumeration cases aren’t accidentally omitted.

When it isn’t appropriate to provide a case for every enumeration
case, you can provide a default case to cover any cases that aren’t
addressed explicitly:

PDF conversion courtesy of www.appsdissected.com

o N o ul A W N R

let somePlanet = Planet.earth
switch somePlanet {
case .earth:
print("Mostly harmless")
default:
print("Not a safe place for humans")

b
// Prints "Mostly harmless"

Iterating over Enumeration Cases

For some enumerations, it’s useful to have a collection of all of that
enumeration’s cases. You enable this by writing : CaseIterable after
the enumeration’s name. Swift exposes a collection of all the cases
as an allCases property of the enumeration type. Here’s an example:

S Ul A WNN R

enum Beverage: Caselterable {
case coffee, tea, juice
}
let numberOfChoices = Beverage.allCases.count
print("\(number0fChoices) beverages available")

// Prints "3 beverages available"

In the example above, you write Beverage.allCases to access a
collection that contains all of the cases of the Beverage enumeration.
You can use allCases like any other collection—the collection’s
elements are instances of the enumeration type, so in this case

PDF conversion courtesy of www.appsdissected.com

they’re Beverage values. The example above counts how many cases
there are, and the example below uses a for-in loop to iterate over
all the cases.

1 for beverage in Beverage.allCases {
2 print(beverage)

3}

4 // coffee

5 // tea

6 // juice

The syntax used in the examples above marks the enumeration as
conforming to the CaseIterable protocol. For information about
protocols, see Protocols.

Associated Values

The examples in the previous section show how the cases of an
enumeration are a defined (and typed) value in their own right. You
can set a constant or variable to Planet.earth, and check for this
value later. However, it’s sometimes useful to be able to store values
of other types alongside these case values. This additional
information is called an associated value, and it varies each time you
use that case as a value in your code.

You can define Swift enumerations to store associated values of any
given type, and the value types can be different for each case of the
enumeration if needed. Enumerations similar to these are known as
discriminated unions, tagged unions, or variants in other
programming languages.

PDF conversion courtesy of www.appsdissected.com

https://developer.apple.com/documentation/swift/caseiterable

For example, suppose an inventory tracking system needs to track
products by two different types of barcode. Some products are
labeled with 1D barcodes in UPC format, which uses the numbers 0
to 9. Each barcode has a number system digit, followed by five
manufacturer code digits and five product code digits. These are
followed by a check digit to verify that the code has been scanned

correctly:

g8 85909 51226 3

Other products are labeled with 2D barcodes in QR code format,
which can use any ISO 8859-1 character and can encode a string up
to 2,953 characters long:

oo
O

It’s convenient for an inventory tracking system to store UPC
barcodes as a tuple of four integers, and QR code barcodes as a
string of any length.

In Swift, an enumeration to define product barcodes of either type
might look like this:

PDF conversion courtesy of www.appsdissected.com

1 enum Barcode {

2 case upc(Int, Int, Int, Int)
3 case qrCode(String)

4}

This can be read as:

“Define an enumeration type called Barcode, which can take either a
value of upc with an associated value of type (Int, Int, Int, Int), ora
value of qrCode with an associated value of type String.”

This definition doesn’t provide any actual Int or String values—it just
defines the type of associated values that Barcode constants and
variables can store when they’re equal to Barcode.upc or
Barcode.qrCode.

You can then create new barcodes using either type:

var productBarcode = Barcode.upc(8, 85909, 51226, 3)

This example creates a new variable called productBarcode and
assigns it a value of Barcode. upc with an associated tuple value of
(8, 85909, 51226, 3).

You can assign the same product a different type of barcode:

productBarcode = .qrCode("ABCDEFGHIJKLMNOP")

At this point, the original Barcode.upc and its integer values are
replaced by the new Barcode. grCode and its string value. Constants
and variables of type Barcode can store either a .upc ora .qrCode
(together with their associated values), but they can store only one of
them at any given time.

PDF conversion courtesy of www.appsdissected.com

You can check the different barcode types using a switch statement,
similar to the example in Maiching Enumeration Values with a Switch
Statement. This time, however, the associated values are extracted
as part of the switch statement. You extract each associated value as
a constant (with the let prefix) or a variable (with the var prefix) for
use within the switch case’s body:

1 switch productBarcode {
2 case .upc(let numberSystem, let manufacturer, let
product, let check):
3 print("UPC: \(numberSystem), \(manufacturer), \
(product), \(check).")
case .qrCode(let productCode):
print("QR code: \(productCode).")
I3
// Prints "QR code: ABCDEFGHIJKLMNOP."

N O o B

If all of the associated values for an enumeration case are extracted
as constants, or if all are extracted as variables, you can place a
single var or let annotation before the case name, for brevity:

PDF conversion courtesy of www.appsdissected.com

1 switch productBarcode {

2 case let .upc(numberSystem, manufacturer, product,
check):

3 print("UPC : \(numberSystem), \(manufacturer), \
(product), \(check).")

4 case let .qrCode(productCode):

5 print("QR code: \(productCode).")

6 }

7 // Prints "QR code: ABCDEFGHIJKLMNOP."
Raw Values

The barcode example in Associated Values shows how cases of an
enumeration can declare that they store associated values of
different types. As an alternative to associated values, enumeration
cases can come prepopulated with default values (called raw values),
which are all of the same type.

Here’s an example that stores raw ASCII values alongside named
enumeration cases:

1 enum ASCIIControlCharacter: Character {
2 case tab = "\t"

3 case lineFeed = "\n"

4 case carriageReturn = "\r"

5 %

PDF conversion courtesy of www.appsdissected.com

Here, the raw values for an enumeration called
ASCIIControlCharacter are defined to be of type Character, and are
set to some of the more common ASCII control characters. Character
values are described in Strings and Characters.

Raw values can be strings, characters, or any of the integer or
floating-point number types. Each raw value must be unique within its
enumeration declaration.

NOTE

Raw values are not the same as associated values. Raw values are set to
prepopulated values when you first define the enumeration in your code, like
the three ASCII codes above. The raw value for a particular enumeration case
is always the same. Associated values are set when you create a new
constant or variable based on one of the enumeration’s cases, and can be
different each time you do so.

Implicitly Assigned Raw Values

When you’re working with enumerations that store integer or string
raw values, you don’t have to explicitly assign a raw value for each
case. When you don’t, Swift automatically assigns the values for you.

For example, when integers are used for raw values, the implicit
value for each case is one more than the previous case. If the first
case doesn’t have a value set, its value is 0.

The enumeration below is a refinement of the earlier Planet
enumeration, with integer raw values to represent each planet’s order
from the sun:

PDF conversion courtesy of www.appsdissected.com

1 enum Planet: Int {
2 case mercury = 1, venus, earth, mars, jupiter,

saturn, uranus, neptune

In the example above, Planet.mercury has an explicit raw value of 1,
Planet.venus has an implicit raw value of 2, and so on.

When strings are used for raw values, the implicit value for each case
is the text of that case’s name.

The enumeration below is a refinement of the earlier CompassPoint
enumeration, with string raw values to represent each direction’s
name:

1 enum CompassPoint: String {

2 case north, south, east, west

3%

In the example above, CompassPoint.south has an implicit raw value
of "south", and so on.

You access the raw value of an enumeration case with its rawVvalue
property:

let earthsOrder = Planet.earth.rawValue

// earthsOrder is 3

let sunsetDirection = CompassPoint.west.rawValue

o B~ W N =

// sunsetDirection is "west"

PDF conversion courtesy of www.appsdissected.com

Initializing from a Raw Value

If you define an enumeration with a raw-value type, the enumeration
automatically receives an initializer that takes a value of the raw
value’s type (as a parameter called rawvalue) and returns either an
enumeration case or nil. You can use this initializer to try to create a
new instance of the enumeration.

This example identifies Uranus from its raw value of 7:

1 let possiblePlanet = Planet(rawValue: 7)
2 // possiblePlanet is of type Planet? and equals

Planet.uranus

Not all possible Int values will find a matching planet, however.
Because of this, the raw value initializer always returns an optional
enumeration case. In the example above, possiblePlanet is of type
Planet?, or “optional Planet.”

NOTE

The raw value initializer is a failable initializer, because not every raw value
will return an enumeration case. For more information, see Failable
Initializers.

If you try to find a planet with a position of 11, the optional Planet
value returned by the raw value initializer will be nitl:

PDF conversion courtesy of www.appsdissected.com

1 let positionToFind = 11

2 if let somePlanet = Planet(rawValue: positionToFind)

{

3 switch somePlanet {

4 case .earth:

5 print("Mostly harmless")

6 default:

7 print("Not a safe place for humans")

8 }

9 } else {

10 print("There isn't a planet at position \
(positionToFind)")

11}

12 // Prints "There isn't a planet at position 11"

This example uses optional binding to try to access a planet with a
raw value of 11. The statement if let somePlanet =
Planet(rawValue: 11) creates an optional Planet, and sets
somePlanet to the value of that optional Planet if it can be retrieved.
In this case, it isn’t possible to retrieve a planet with a position of 11,
and so the else branch is executed instead.

Recursive Enumerations
A recursive enumeration is an enumeration that has another instance

of the enumeration as the associated value for one or more of the
enumeration cases. You indicate that an enumeration case is

PDF conversion courtesy of www.appsdissected.com

recursive by writing indirect before it, which tells the compiler to
insert the necessary layer of indirection.

For example, here is an enumeration that stores simple arithmetic
expressions:

1 enum ArithmeticExpression {

2 case number(Int)

3 indirect case addition(ArithmeticExpression,
ArithmeticExpression)

4 indirect case
multiplication(ArithmeticExpression,

ArithmeticExpression)

You can also write indirect before the beginning of the enumeration
to enable indirection for all of the enumeration’s cases that have an
associated value:

1 indirect enum ArithmeticExpression {

2 case number(Int)

3 case addition(ArithmeticExpression,
ArithmeticExpression)

4 case multiplication(ArithmeticExpression,
ArithmeticExpression)

5 %

This enumeration can store three kinds of arithmetic expressions: a
plain number, the addition of two expressions, and the multiplication
of two expressions. The additionand multiplication cases have

PDF conversion courtesy of www.appsdissected.com

associated values that are also arithmetic expressions—these
associated values make it possible to nest expressions. For example,
the expression (5 + 4) x 2 has a number on the right-hand side of
the multiplication and another expression on the left-hand side of the
multiplication. Because the data is nested, the enumeration used to
store the data also needs to support nesting—this means the
enumeration needs to be recursive. The code below shows the
ArithmeticExpression recursive enumeration being created for (5 +
4) x 2:

let five = ArithmeticExpression.number(5)

let four = ArithmeticExpression.number(4)

let sum = ArithmeticExpression.addition(five, four)

~ W N -

let product =
ArithmeticExpression.multiplication(sum,

ArithmeticExpression.number(2))

A recursive function is a straightforward way to work with data that
has a recursive structure. For example, here’s a function that
evaluates an arithmetic expression:

PDF conversion courtesy of www.appsdissected.com

© 00 N O Ul B W N

N
N RS

13

func evaluate(_ expression: ArithmeticExpression) —>
Int {
switch expression {
case let .number(value):
return value
case let .addition(left, right):
return evaluate(left) + evaluate(right)
case let .multiplication(left, right):

return evaluate(left) x evaluate(right)

print(evaluate(product))

// Prints "18"

This function evaluates a plain number by simply returning the
associated value. It evaluates an addition or multiplication by
evaluating the expression on the left-hand side, evaluating the
expression on the right-hand side, and then adding them or
multiplying them.

PDF conversion courtesy of www.appsdissected.com

Structures and Classes

Structures and classes are general-purpose, flexible constructs that
become the building blocks of your program’s code. You define
properties and methods to add functionality to your structures and
classes using the same syntax you use to define constants, variables,
and functions.

Unlike other programming languages, Swift doesn’t require you to
create separate interface and implementation files for custom
structures and classes. In Swift, you define a structure or class in a
single file, and the external interface to that class or structure is
automatically made available for other code to use.

NOTE

An instance of a class is traditionally known as an object. However, Swift
structures and classes are much closer in functionality than in other languages,
and much of this chapter describes functionality that applies to instances of
either a class or a structure type. Because of this, the more general term
instance is used.

Comparing Structures and Classes

Structures and classes in Swift have many things in common. Both
can:

« Define properties to store values
« Define methods to provide functionality

« Define subscripts to provide access to their values using
subscript syntax

PDF conversion courtesy of www.appsdissected.com

« Define initializers to set up their initial state

« Be extended to expand their functionality beyond a default
implementation

« Conform to protocols to provide standard functionality of a certain
kind

For more information, see Properties, Methods, Subscripts,
Initialization, Extensions, and Protocols.

Classes have additional capabilities that structures don’t have:

« Inheritance enables one class to inherit the characteristics of
another.

« Type casting enables you to check and interpret the type of a
class instance at runtime.

« Deinitializers enable an instance of a class to free up any
resources it has assigned.

« Reference counting allows more than one reference to a class
instance.

For more information, see Inheritance, Type Casting, Deinitialization,
and Automatic Reference Counting.

The additional capabilities that classes support come at the cost of
increased complexity. As a general guideline, prefer structures
because they’re easier to reason about, and use classes when they’re
appropriate or necessary. In practice, this means most of the custom
data types you define will be structures and enumerations. For a more
detailed comparison, see Choosing Between Structures and Classes.

PDF conversion courtesy of www.appsdissected.com

https://developer.apple.com/documentation/swift/choosing_between_structures_and_classes

NOTE

Classes and actors share many of the same characteristics and behaviors. For
information about actors, see Concurrency.

Definition Syntax

Structures and classes have a similar definition syntax. You introduce
structures with the struct keyword and classes with the class
keyword. Both place their entire definition within a pair of braces:

1 struct SomeStructure {
2 // structure definition goes here
3}

4 class SomeClass {
5

6

// class definition goes here

NOTE

Whenever you define a new structure or class, you define a new Swift type.
Give types UpperCamelCase names (such as SomeStructure and SomeClass
here) to match the capitalization of standard Swift types (such as String, Int,
and Bool). Give properties and methods LowerCamelCase names (such as
frameRate and incrementCount) to differentiate them from type names.

Here’s an example of a structure definition and a class definition:

PDF conversion courtesy of www.appsdissected.com

1 struct Resolution {

2 var width = 0

3 var height = 0

4}

5 class VideoMode {

6 var resolution = Resolution()
7 var interlaced = false

8 var frameRate = 0.0

9 var name: String?

10 %

The example above defines a new structure called Resolution, to
describe a pixel-based display resolution. This structure has two
stored properties called width and height. Stored properties are
constants or variables that are bundled up and stored as part of the
structure or class. These two properties are inferred to be of type Int
by setting them to an initial integer value of 0.

The example above also defines a new class called VideolMode, to
describe a specific video mode for video display. This class has four
variable stored properties. The first, resolution, is initialized with a
new Resolution structure instance, which infers a property type of
Resolution. For the other three properties, new VideolMode instances
will be initialized with an interlaced setting of false (meaning
“noninterlaced video”), a playback frame rate of 0.0, and an optional
String value called name. The name property is automatically given a
default value of ni1, or “no name value”, because it’s of an optional

type.

Structure and Class Instances

PDF conversion courtesy of www.appsdissected.com

The Resolution structure definition and the VideoMode class definition
only describe what a Resolution or VideoMode will look like. They
themselves don’t describe a specific resolution or video mode. To do
that, you need to create an instance of the structure or class.

The syntax for creating instances is very similar for both structures
and classes:

1 1let someResolution = Resolution()

2 let someVideoMode = VideoMode()

Structures and classes both use initializer syntax for new instances.
The simplest form of initializer syntax uses the type name of the class
or structure followed by empty parentheses, such as Resolution() or
VideoMode (). This creates a new instance of the class or structure,
with any properties initialized to their default values. Class and
structure initialization is described in more detail in |nitialization.

Accessing Properties

You can access the properties of an instance using dot syntax. In dot
syntax, you write the property name immediately after the instance
name, separated by a period (.), without any spaces:

1 print("The width of someResolution is \
(someResolution.width)")

2 // Prints "The width of someResolution is 0"

In this example, someResolution.width refers to the width property of
someResolution, and returns its default initial value of 0.

You can drill down into subproperties, such as the width property in
the resolution property of a VideoMode:

PDF conversion courtesy of www.appsdissected.com

1 print("The width of someVideoMode is \
(someVideoMode.resolution.width)")

2 // Prints "The width of someVideoMode is 0"

You can also use dot syntax to assign a new value to a variable
property:

1 someVideoMode.resolution.width = 1280
2 print("The width of someVideoMode is now \
(someVideoMode.resolution.width)")

3 // Prints "The width of someVideoMode is now 1280"

Memberwise Initializers for Structure Types

All structures have an automatically generated memberwise initializer,
which you can use to initialize the member properties of new structure
instances. Initial values for the properties of the new instance can be
passed to the memberwise initializer by name:

let vga = Resolution(width: 640, height: 480)

Unlike structures, class instances don’t receive a default memberwise
initializer. Initializers are described in more detail in Initialization.

Structures and Enumerations Are Value Types

A value type is a type whose value is copied when it’s assigned to a
variable or constant, or when it’s passed to a function.

PDF conversion courtesy of www.appsdissected.com

You'’ve actually been using value types extensively throughout the
previous chapters. In fact, all of the basic types in Swift—integers,
floating-point numbers, Booleans, strings, arrays and dictionaries—
are value types, and are implemented as structures behind the
scenes.

All structures and enumerations are value types in Swift. This means
that any structure and enumeration instances you create—and any
value types they have as properties—are always copied when they’re
passed around in your code.

NOTE

Collections defined by the standard library like arrays, dictionaries, and strings
use an optimization to reduce the performance cost of copying. Instead of
making a copy immediately, these collections share the memory where the
elements are stored between the original instance and any copies. If one of the
copies of the collection is modified, the elements are copied just before the
modification. The behavior you see in your code is always as if a copy took
place immediately.

Consider this example, which uses the Resolution structure from the
previous example:

1 let hd = Resolution(width: 1920, height: 1080)

2 var cinema = hd

This example declares a constant called hd and sets it to a Resolution
instance initialized with the width and height of full HD video (1920
pixels wide by 1080 pixels high).

It then declares a variable called cinema and sets it to the current
value of hd. Because Resolution is a structure, a copy of the existing
instance is made, and this new copy is assigned to cinema. Even
though hd and cinema now have the same width and height, they’re
two completely different instances behind the scenes.

PDF conversion courtesy of www.appsdissected.com

Next, the width property of cinema is amended to be the width of the
slightly wider 2K standard used for digital cinema projection (2048
pixels wide and 1080 pixels high):

cinema.width = 2048

Checking the width property of cinema shows that it has indeed
changed to be 2048:

1 print("cinema is now \(cinema.width) pixels wide")

2 // Prints "cinema is now 2048 pixels wide"

However, the width property of the original hd instance still has the old
value of 1920:

1 print("hd is still \(hd.width) pixels wide")
2 // Prints "hd is still 1920 pixels wide"

When cinema was given the current value of hd, the values stored in hd
were copied into the new cinema instance. The end result was two
completely separate instances that contained the same numeric
values. However, because they’re separate instances, setting the
width of cinema to 2048 doesn’t affect the width stored in hd, as shown
in the figure below:

PDF conversion courtesy of www.appsdissected.com

Before After

Resolution

Resolution

hd height = 1088@ hd height = 1688@
width = 1928

width = 192@

Resolution

cinema height = 1086
width = 2048

The same behavior applies to enumerations:

1 enum CompassPoint {

2 case north, south, east, west

3 mutating func turnNorth() {

4 self = .north

5 I

6 }

7 var currentDirection = CompassPoint.west

8 let rememberedDirection = currentDirection
9 currentDirection.turnNorth()

10

11 print("The current direction is \(currentDirection)")
12 print("The remembered direction is \

(rememberedDirection)")
13 // Prints "The current direction 1is north"

14 // Prints "The remembered direction is west"

When rememberedDirection is assigned the value of
currentDirection, it's actually set to a copy of that value. Changing

PDF conversion courtesy of www.appsdissected.com

the value of currentDirection thereafter doesn’t affect the copy of the
original value that was stored in rememberedDirection.

Classes Are Reference Types

Unlike value types, reference types are not copied when they’re
assigned to a variable or constant, or when they’re passed to a
function. Rather than a copy, a reference to the same existing
instance is used.

Here’s an example, using the VideoMode class defined above:

let tenEighty = VideoMode()
tenEighty.resolution = hd
tenEighty.interlaced = true

tenEighty.name = "10801"

o B~ W N B

tenEighty.frameRate = 25.0

This example declares a new constant called tenEighty and sets it to
refer to a new instance of the VideoMode class. The video mode is
assigned a copy of the HD resolution of 1920 by 1080 from before. It’s
set to be interlaced, its name is set to "10801", and its frame rate is set
to 25.0 frames per second.

Next, tenEighty is assigned to a new constant, called alsoTenEighty,
and the frame rate of alsoTenEighty is modified:

1 let alsoTenEighty = tenEighty
2 alsoTenEighty.frameRate = 30.0

PDF conversion courtesy of www.appsdissected.com

Because classes are reference types, tenEighty and alsoTenEighty
actually both refer to the same VideolMode instance. Effectively, they’re
just two different names for the same single instance, as shown in the
figure below:

Before After

VideoMode

VideoMode

resolution = hd tenEighty resolution = hd

interlaced = true
tenEighty name = "108@i"

frameRate = 25.8

interlaced = true
name = "1088i"
frameRate = 38.0

alsoTenEighty

Checking the frameRate property of tenEighty shows that it correctly
reports the new frame rate of 30. 0 from the underlying VideoMode
instance:

1 print("The frameRate property of tenEighty is now \
(tenEighty.frameRate)")

2 // Prints "The frameRate property of tenEighty is now
30.0"

This example also shows how reference types can be harder to
reason about. If tenEighty and alsoTenEighty were far apart in your
program’s code, it could be difficult to find all the ways that the video
mode is changed. Wherever you use tenEighty, you also have to
think about the code that uses alsoTenEighty, and vice versa. In
contrast, value types are easier to reason about because all of the
code that interacts with the same value is close together in your
source files.

Note that tenEighty and alsoTenEighty are declared as constants,
rather than variables. However, you can still change

tenEighty. frameRate and alsoTenEighty. frameRate because the
values of the tenEighty and alsoTenEighty constants themselves
don’t actually change. tenEighty and alsoTenEighty themselves don’t

PDF conversion courtesy of www.appsdissected.com

“store” the VideoMode instance —instead, they both referto a
VideoMode instance behind the scenes. It’s the frameRate property of
the underlying VideoMode that’s changed, not the values of the
constant references to that VideoMode.

Identity Operators

Because classes are reference types, it’s possible for multiple
constants and variables to refer to the same single instance of a class
behind the scenes. (The same isn’t true for structures and
enumerations, because they’re always copied when they’re assigned
to a constant or variable, or passed to a function.)

It can sometimes be useful to find out whether two constants or
variables refer to exactly the same instance of a class. To enable this,
Swift provides two identity operators:

. Identical to (===
« Not identical to (!==)

Use these operators to check whether two constants or variables refer
to the same single instance:

1 if tenEighty === alsoTenEighty {

2 print("tenEighty and alsoTenEighty refer to the
same VideoMode instance.")

3}

4 // Prints "tenEighty and alsoTenEighty refer to the

same VideoMode instance."

Note that identical to (represented by three equals signs, or ===
doesn’t mean the same thing as equal to (represented by two equals
signs, or ==). Identical to means that two constants or variables of

PDF conversion courtesy of www.appsdissected.com

class type refer to exactly the same class instance. Equal to means
that two instances are considered equal or equivalent in value, for
some appropriate meaning of equal, as defined by the type’s designer.

When you define your own custom structures and classes, it’s your
responsibility to decide what qualifies as two instances being equal.
The process of defining your own implementations of the == and !=
operators is described in Equivalence Operators.

Pointers

If you have experience with C, C++, or Objective-C, you may know
that these languages use pointers to refer to addresses in memory. A
Swift constant or variable that refers to an instance of some reference
type is similar to a pointer in C, but isn’t a direct pointer to an address
in memory, and doesn’t require you to write an asterisk (x) to indicate
that you are creating a reference. Instead, these references are
defined like any other constant or variable in Swift. The standard
library provides pointer and buffer types that you can use if you need
to interact with pointers directly—see Manual Memory Management.

PDF conversion courtesy of www.appsdissected.com

https://developer.apple.com/documentation/swift/swift_standard_library/manual_memory_management

Properties

Properties associate values with a particular class, structure, or
enumeration. Stored properties store constant and variable values as
part of an instance, whereas computed properties calculate (rather
than store) a value. Computed properties are provided by classes,
structures, and enumerations. Stored properties are provided only by
classes and structures.

Stored and computed properties are usually associated with
instances of a particular type. However, properties can also be
associated with the type itself. Such properties are known as type
properties.

In addition, you can define property observers to monitor changes in
a property’s value, which you can respond to with custom actions.
Property observers can be added to stored properties you define
yourself, and also to properties that a subclass inherits from its
superclass.

You can also use a property wrapper to reuse code in the getter and
setter of multiple properties.

Stored Properties

In its simplest form, a stored property is a constant or variable that’s
stored as part of an instance of a particular class or structure. Stored
properties can be either variable stored properties (introduced by the
var keyword) or constant stored properties (introduced by the let
keyword).

PDF conversion courtesy of www.appsdissected.com

You can provide a default value for a stored property as part of its
definition, as described in Default Property Values. You can also set
and modify the initial value for a stored property during initialization.
This is true even for constant stored properties, as described in
Assigning_Constant Properties During_Initialization.

The example below defines a structure called FixedlLengthRange,
which describes a range of integers whose range length can’t be
changed after it’s created:

1 struct FixedLengthRange {

2 var firstValue: Int

3 let length: Int

4}

5 var rangeOfThreeltems = FixedLengthRange(firstValue:

0, length: 3)
6 // the range represents integer values 0, 1, and 2
7 rangeOfThreeItems.firstValue = 6
8 // the range now represents integer values 6, 7, and

8

Instances of FixedLengthRange have a variable stored property called
firstValue and a constant stored property called length. In the
example above, length is initialized when the new range is created
and can’t be changed thereafter, because it’s a constant property.

Stored Properties of Constant Structure Instances

If you create an instance of a structure and assign that instance to a
constant, you can’t modify the instance’s properties, even if they were
declared as variable properties:

PDF conversion courtesy of www.appsdissected.com

1 let rangeOfFourItems = FixedLengthRange(firstValue:
0, length: 4)

2 // this range represents integer values 0, 1, 2, and
3

3 rangeOfFourItems.firstValue = 6

4 // this will report an error, even though firstValue

is a variable property

Because range0fFourItems is declared as a constant (with the let
keyword), it isn’t possible to change its firstVvalue property, even
though firstVvalue is a variable property.

This behavior is due to structures being value types. When an
instance of a value type is marked as a constant, so are all of its
properties.

The same isn’t true for classes, which are reference types. If you
assign an instance of a reference type to a constant, you can still
change that instance’s variable properties.

Lazy Stored Properties

A lazy stored property is a property whose initial value isn’t calculated
until the first time it’s used. You indicate a lazy stored property by
writing the lazy modifier before its declaration.

NOTE

You must always declare a lazy property as a variable (with the var keyword),
because its initial value might not be retrieved until after instance initialization
completes. Constant properties must always have a value before initialization
completes, and therefore can’t be declared as lazy.

PDF conversion courtesy of www.appsdissected.com

Lazy properties are useful when the initial value for a property is
dependent on outside factors whose values aren’t known until after
an instance’s initialization is complete. Lazy properties are also useful
when the initial value for a property requires complex or
computationally expensive setup that shouldn’t be performed unless
or until it’s needed.

The example below uses a lazy stored property to avoid unnecessary
initialization of a complex class. This example defines two classes
called DataImporter and DataManager, neither of which is shown in
full:

PDF conversion courtesy of www.appsdissected.com

10
11
12
13

14
15
16
17
18
19

class DataImporter {

/*

DatalImporter is a class to import data from an
external file.

The class is assumed to take a nontrivial amount
of time to initialize.

*/

var filename = "data.txt"

// the DatalImporter class would provide data

importing functionality here

class DataManager {
lazy var importer = DataImporter()
var data: [Stringl = []
// the DataManager class would provide data

management functionality here

let manager = DataManager()
manager.data.append('"Some data")
manager.data.append('"Some more data")

// the Datalmporter instance for the importer

property hasn't yet been created

PDF conversion courtesy of www.appsdissected.com

The DataManager class has a stored property called data, which is
initialized with a new, empty array of String values. Although the rest
of its functionality isn’t shown, the purpose of this DataManager class
is to manage and provide access to this array of String data.

Part of the functionality of the DataManager class is the ability to
import data from a file. This functionality is provided by the
DataImporter class, which is assumed to take a nontrivial amount of
time to initialize. This might be because a DataImporter instance
needs to open a file and read its contents into memory when the
DataImporter instance is initialized.

Because it’s possible for a DataManager instance to manage its data
without ever importing data from a file, DataManager doesn’t create a
new DataImporter instance when the DataManager itself is created.
Instead, it makes more sense to create the DataImporter instance if
and when it’s first used.

Because it’s marked with the 1azy modifier, the DataImporter
instance for the importer property is only created when the importer
property is first accessed, such as when its filename property is
queried:

1 print(manager.importer.filename)
2 // the Datalmporter instance for the importer
property has now been created

3 // Prints "data.txt"

NOTE

If a property marked with the 1azy modifier is accessed by multiple threads
simultaneously and the property hasn’t yet been initialized, there’s no
guarantee that the property will be initialized only once.

PDF conversion courtesy of www.appsdissected.com

Stored Properties and Instance Variables

If you have experience with Objective-C, you may know that it
provides two ways to store values and references as part of a class
instance. In addition to properties, you can use instance variables as
a backing store for the values stored in a property.

Swift unifies these concepts into a single property declaration. A Swift
property doesn’t have a corresponding instance variable, and the
backing store for a property isn’t accessed directly. This approach
avoids confusion about how the value is accessed in different
contexts and simplifies the property’s declaration into a single,
definitive statement. All information about the property —including its
name, type, and memory management characteristics—is defined in
a single location as part of the type’s definition.

Computed Properties

In addition to stored properties, classes, structures, and
enumerations can define computed properties, which don’t actually
store a value. Instead, they provide a getter and an optional setter to
retrieve and set other properties and values indirectly.

PDF conversion courtesy of www.appsdissected.com

© 00 N O Ul A W N BB

I
N B

13

14
15
16
17

18

19
20
21
22

struct Point {
var x = 0.0, y = 0.0
b
struct Size {
var width = 0.0, height = 0.0
I
struct Rect {
var origin = Point()
var size = Size()
var center: Point {
get {

let centerX

origin.x + (size.width /

2)
let centerY = origin.y + (size.height /
2)
return Point(x: centerX, y: centerY)
s
set(newCenter) {
origin.x = newCenter.x - (size.width /
2)
origin.y = newCenter.y - (size.height /
2)
}
+

¥

var square = Rect(origin: Point(x: 0.0, y: 0.0),

PDF conversion courtesy of www.appsdissected.com

23 size: Size(width: 10.0, height:
10.0))

24 let initialSquareCenter = square.center

25 // initialSquareCenter is at (5.0, 5.0)

26 square.center = Point(x: 15.0, y: 15.0)

27 print("square.origin is now at (\(square.origin.x),
\(square.origin.y))")

28 // Prints "square.origin is now at (10.0, 10.0)"

This example defines three structures for working with geometric
shapes:

« Point encapsulates the x- and y-coordinate of a point.
« Size encapsulates awidth and a height.
« Rect defines a rectangle by an origin point and a size.

The Rect structure also provides a computed property called center.
The current center position of a Rect can always be determined from
its origin and size, and so you don’t need to store the center point
as an explicit Point value. Instead, Rect defines a custom getter and
setter for a computed variable called center, to enable you to work
with the rectangle’s center as if it were a real stored property.

The example above creates a new Rect variable called square. The
square variable is initialized with an origin point of (2, ©), and a width
and height of 10. This square is represented by the light green square
in the diagram below.

The square variable’s center property is then accessed through dot
syntax (square.center), which causes the getter for center to be
called, to retrieve the current property value. Rather than returning an

PDF conversion courtesy of www.appsdissected.com

existing value, the getter actually calculates and returns a new Point
to represent the center of the square. As can be seen above, the
getter correctly returns a center point of (5, 5).

The center property is then set to a new value of (15, 15), which
moves the square up and to the right, to the new position shown by
the dark green square in the diagram below. Setting the center
property calls the setter for center, which modifies the x and y values
of the stored origin property, and moves the square to its new
position.

20

: 0

10

Shorthand Setter Declaration

PDF conversion courtesy of www.appsdissected.com

If a computed property’s setter doesn’t define a name for the new
value to be set, a default name of newvalue is used. Here’s an
alternative version of the Rect structure that takes advantage of this
shorthand notation:

1 struct AlternativeRect {

2 var origin = Point()

3 var size = Size()

4 var center: Point {

5 get {

6 let centerX = origin.x + (size.width /
2)

7 let centerY = origin.y + (size.height /
2)

8 return Point(x: centerX, y: centerY)

9 I

10 set {

11 origin.x = newValue.x - (size.width / 2)

12 origin.y = newValue.y - (size.height /
2)

13 by

14 Iy

15 }

Shorthand Getter Declaration
If the entire body of a getter is a single expression, the getter implicitly
returns that expression. Here’s an another version of the Rect

PDF conversion courtesy of www.appsdissected.com

structure that takes advantage of this shorthand notation and the
shorthand notation for setters:

1 struct CompactRect {

2 var origin = Point()

3 var size = Size()

4 var center: Point {

5 get {

6 Point(x: origin.x + (size.width / 2),

7 y: origin.y + (size.height / 2))

8 s

9 set {

10 origin.x = newValue.x - (size.width / 2)

11 origin.y = newValue.y - (size.height /
2)

12 }

13 ¥

14 }

Omitting the return from a getter follows the same rules as omitting
return from a function, as described in Functions With an Implicit
Return.

Read-Only Computed Properties

A computed property with a getter but no setter is known as a read-
only computed property. A read-only computed property always
returns a value, and can be accessed through dot syntax, but can’t be
set to a different value.

PDF conversion courtesy of www.appsdissected.com

NOTE

You must declare computed properties—including read-only computed
properties—as variable properties with the var keyword, because their value
isn’t fixed. The let keyword is only used for constant properties, to indicate
that their values can’t be changed once they’re set as part of instance
initialization.

You can simplify the declaration of a read-only computed property by
removing the get keyword and its braces:

struct Cuboid {
var width = 0.0, height = 0.0, depth = 0.0
var volume: Double {

return width * height * depth

b
let fourByFiveByTwo = Cuboid(width: 4.0, height:
5.0, depth: 2.0)

N o o A WWNN R

8 print("the volume of fourByFiveByTwo is \

(fourByFiveByTwo.volume)")

(e}

// Prints "the volume of fourByFiveByTwo is 40.0"

This example defines a new structure called Cuboid, which
represents a 3D rectangular box with width, height, and depth
properties. This structure also has a read-only computed property
called volume, which calculates and returns the current volume of the
cuboid. It doesn’t make sense for volume to be settable, because it
would be ambiguous as to which values of width, height, and depth
should be used for a particular volume value. Nonetheless, it’s useful
for a Cuboid to provide a read-only computed property to enable
external users to discover its current calculated volume.

PDF conversion courtesy of www.appsdissected.com

Property Observers

Property observers observe and respond to changes in a property’s
value. Property observers are called every time a property’s value is
set, even if the new value is the same as the property’s current value.

You can add property observers in the following places:
« Stored properties that you define
« Stored properties that you inherit
« Computed properties that you inherit

For an inherited property, you add a property observer by overriding
that property in a subclass. For a computed property that you define,
use the property’s setter to observe and respond to value changes,
instead of trying to create an observer. Overriding properties is
described in Overriding.

You have the option to define either or both of these observers on a
property:

« willSet is called just before the value is stored.

« didSet is called immediately after the new value is stored.

If you implement a willSet observer, it’s passed the new property
value as a constant parameter. You can specify a name for this
parameter as part of your willSet implementation. If you don’t write
the parameter name and parentheses within your implementation,
the parameter is made available with a default parameter name of
newVa lue.

Similarly, if you implement a didSet observer, it’'s passed a constant
parameter containing the old property value. You can name the
parameter or use the default parameter name of oldvalue. If you

PDF conversion courtesy of www.appsdissected.com

assign a value to a property within its own didSet observer, the new
value that you assign replaces the one that was just set.

NOTE

The willSet and didSet observers of superclass properties are called when
a property is set in a subclass initializer, after the superclass initializer has
been called. They aren’t called while a class is setting its own properties,
before the superclass initializer has been called.

For more information about initializer delegation, see Initializer Delegation for
Value Types and Initializer Delegation for Class Types.

Here’s an example of willSet and didSet in action. The example
below defines a new class called StepCounter, which tracks the total
number of steps that a person takes while walking. This class might
be used with input data from a pedometer or other step counter to
keep track of a person’s exercise during their daily routine.

PDF conversion courtesy of www.appsdissected.com

~ W NN -

o N o U

10
11
12
13
14
15
16
17
18
19
20
21
22

class StepCounter {
var totalSteps: Int = 0 {
willSet(newTotalSteps) {
print("About to set totalSteps to \
(newTotalSteps)")
I
didSet {
if totalSteps > oldValue A
print("Added \(totalSteps -
oldValue) steps")
b

¥

let stepCounter = StepCounter()
stepCounter.totalSteps = 200

// About to set totalSteps to 200
// Added 200 steps
stepCounter.totalSteps = 360

// About to set totalSteps to 360
// Added 160 steps
stepCounter.totalSteps = 896

// About to set totalSteps to 896
// Added 536 steps

PDF conversion courtesy of www.appsdissected.com

The StepCounter class declares a totalSteps property of type Int.
This is a stored property with willSet and didSet observers.

The willSet and didSet observers for totalSteps are called
whenever the property is assigned a new value. This is true even if
the new value is the same as the current value.

This example’s willSet observer uses a custom parameter name of
newTotalSteps for the upcoming new value. In this example, it simply
prints out the value that’s about to be set.

The didSet observer is called after the value of totalSteps is
updated. It compares the new value of totalSteps against the old
value. If the total number of steps has increased, a message is
printed to indicate how many new steps have been taken. The didSet
observer doesn’t provide a custom parameter name for the old value,
and the default name of oldVvalue is used instead.

NOTE

If you pass a property that has observers to a function as an in-out parameter,
the willSet and didSet observers are always called. This is because of the
copy-in copy-out memory model for in-out parameters: The value is always
written back to the property at the end of the function. For a detailed
discussion of the behavior of in-out parameters, see In-Out Parameters.

Property Wrappers

A property wrapper adds a layer of separation between code that
manages how a property is stored and the code that defines a
property. For example, if you have properties that provide thread-
safety checks or store their underlying data in a database, you have
to write that code on every property. When you use a property
wrapper, you write the management code once when you define the

PDF conversion courtesy of www.appsdissected.com

wrapper, and then reuse that management code by applying it to
multiple properties.

To define a property wrapper, you make a structure, enumeration, or
class that defines a wrappedValue property. In the code below, the
TwelveOrLess structure ensures that the value it wraps always
contains a number less than or equal to 12. If you ask it to store a
larger number, it stores 12 instead.

1 @propertyWrapper

2 struct TwelveOrLess {

3 private var number = 0

4 var wrappedValue: Int {

5 get { return number }

6 set { number = min(newValue, 12) }
7 ¥

8 }

The setter ensures that new values are less than or equal to 12, and
the getter returns the stored value.

NOTE

The declaration for number in the example above marks the variable as
private, which ensures number is used only in the implementation of
TwelveOrLess. Code that’s written anywhere else accesses the value using
the getter and setter for wrappedValue, and can’t use number directly. For
information about private, see Access Control.

You apply a wrapper to a property by writing the wrapper’s name
before the property as an attribute. Here’s a structure that stores a
rectangle that uses the TwelveOrLess property wrapper to ensure its
dimensions are always 12 or less:

PDF conversion courtesy of www.appsdissected.com

1 struct SmallRectangle {

2 @TwelveOrLess var height: Int
3 @TwelveOrLess var width: Int
4}

5

6 var rectangle = SmallRectangle()
7 print(rectangle.height)

8 // Prints "0"

9

10 rectangle.height = 10

11 print(rectangle.height)

12 // Prints "10"

13

14 rectangle.height = 24

15 print(rectangle.height)

16 // Prints "12"

The height and width properties get their initial values from the
definition of TwelveOrLess, which sets TwelveOrlLess.number to zero.
The setter in TwelveOrLess treats 10 as a valid value so storing the
number 10 in rectangle.height proceeds as written. However, 24 is
larger than TwelveOrLess allows, so trying to store 24 end up setting
rectangle.height to 12 instead, the largest allowed value.

When you apply a wrapper to a property, the compiler synthesizes
code that provides storage for the wrapper and code that provides
access to the property through the wrapper. (The property wrapper is
responsible for storing the wrapped value, so there’s no synthesized
code for that.) You could write code that uses the behavior of a
property wrapper, without taking advantage of the special attribute

PDF conversion courtesy of www.appsdissected.com

syntax. For example, here’s a version of SmallRectangle from the
previous code listing that wraps its properties in the TwelveOrLess
structure explicitly, instead of writing @TwelveOrLess as an attribute:

1 struct SmallRectangle {

2 private var _height = TwelveOrLess()

3 private var _width = TwelveOrLess()

4 var height: Int {

5 get { return _height.wrappedValue }

6 set { _height.wrappedvValue = newValue }
7 ¥

8 var width: Int {

9 get { return _width.wrappedValue }

10 set { _width.wrappedValue = newValue }
11 s

12}

The _height and _width properties store an instance of the property
wrapper, TwelveOrLess. The getter and setter for height and width
wrap access to the wrappedValue property.

Setting Initial Values for Wrapped Properties

The code in the examples above sets the initial value for the wrapped
property by giving number an initial value in the definition of
TwelveOrLess. Code that uses this property wrapper can’t specify a
different initial value for a property that’s wrapped by TwelveOrLess—
for example, the definition of SmallRectangle can’t give height or
width initial values. To support setting an initial value or other
customization, the property wrapper needs to add an initializer.

PDF conversion courtesy of www.appsdissected.com

Here’s an expanded version of TwelveOrLess called SmallNumber that
defines initializers that set the wrapped and maximum value:

@propertyWrapper
struct SmallNumber {
private var maximum: Int

private var number: Int

var wrappedValue: Int {
get { return number }

set { number = min(newValue, maximum) }

}

init() {
maximum = 12
number = @

}

init(wrappedvValue: Int) {

maximum = 12

number = min(wrappedValue, maximum)
b
init(wrappedValue: Int, maximum: Int) {
self.maximum = maximum

number = min(wrappedValue, maximum)

PDF conversion courtesy of www.appsdissected.com

The definition of SmalNumber includes three initializers—init (),
init(wrappedValue:), and init(wrappedValue:maximum:) —which
the examples below use to set the wrapped value and the maximum
value. For information about initialization and initializer syntax, see
Initialization.

When you apply a wrapper to a property and you don’t specify an
initial value, Swift uses the init() initializer to set up the wrapper. For
example:

struct ZeroRectangle {
@SmallNumber var height: Int
@SmallNumber var width: Int

var zeroRectangle = ZeroRectangle()
print(zeroRectangle.height, zeroRectangle.width)

// Prints "0 0"

The instances of SmallNumber that wrap height and width are
created by calling SmallNumber (). The code inside that initializer sets
the initial wrapped value and the initial maximum value, using the
default values of zero and 12. The property wrapper still provides all
of the initial values, like the earlier example that used TwelveOrLess in
SmallRectangle. Unlike that example, SmallNumber also supports
writing those initial values as part of declaring the property.

When you specify an initial value for the property, Swift uses the
init(wrappedValue:) initializer to set up the wrapper. For example:

PDF conversion courtesy of www.appsdissected.com

struct UnitRectangle {
@SmallNumber var height: Int =1
@SmalWNumber var width: Int =1

var unitRectangle = UnitRectangle()
print(unitRectangle.height, unitRectangle.width)
// Prints "1 1"

o N o ul A W N R

When you write = 1 on a property with a wrapper, that’s translated
into a call to the init(wrappedvalue:) initializer. The instances of
SmallNumber that wrap height and width are created by calling
SmallNumber(wrappedValue: 1). The initializer uses the wrapped
value that’s specified here, and it uses the default maximum value of
12.

When you write arguments in parentheses after the custom attribute,
Swift uses the initializer that accepts those arguments to set up the
wrapper. For example, if you provide an initial value and a maximum
value, Swift uses the init(wrappedValue:maximum:) initializer:

PDF conversion courtesy of www.appsdissected.com

1 struct NarrowRectangle {

2 @SmallNumber(wrappedValue: 2, maximum: 5) var
height: Int

3 @SmallNumber(wrappedValue: 3, maximum: 4) var
width: Int

4.}

5

6 var narrowRectangle = NarrowRectangle()

7 print(narrowRectangle.height, narrowRectangle.width)

8 // Prints "2 3"

9

10 narrowRectangle.height = 100
11 narrowRectangle.width = 100
12 print(narrowRectangle.height, narrowRectangle.width)

13 // Prints "5 4"

The instance of SmallNumber that wraps height is created by calling
SmallNumber(wrappedValue: 2, maximum: 5), and the instance that
wraps width is created by calling SmallNumber (wrappedvValue: 3,
maximum: 4).

By including arguments to the property wrapper, you can set up the
initial state in the wrapper or pass other options to the wrapper when
it’s created. This syntax is the most general way to use a property
wrapper. You can provide whatever arguments you need to the
attribute, and they’re passed to the initializer.

When you include property wrapper arguments, you can also specify
an initial value using assignment. Swift treats the assignment like a

PDF conversion courtesy of www.appsdissected.com

wrappedValue argument and uses the initializer that accepts the
arguments you include. For example:

struct MixedRectangle {
@SmallNumber var height: Int =1

@SmallWNumber(maximum: 9) var width: Int = 2

var mixedRectangle = MixedRectangle()
print(mixedRectangle.height)
// Prints "1"

10 mixedRectangle.height = 20
11 print(mixedRectangle.height)
12 // Prints "12"

The instance of SmallNumber that wraps height is created by calling
SmallNumber(wrappedValue: 1), which uses the default maximum
value of 12. The instance that wraps width is created by calling
SmallNumber(wrappedValue: 2, maximum: 9).

Projecting a Value From a Property Wrapper

In addition to the wrapped value, a property wrapper can expose
additional functionality by defining a projected value—for example, a
property wrapper that manages access to a database can expose a
flushDatabaseConnection() method on its projected value. The
name of the projected value is the same as the wrapped value,
except it begins with a dollar sign ($). Because your code can’t define

PDF conversion courtesy of www.appsdissected.com

properties that start with $ the projected value never interferes with
properties you define.

In the SmallNumber example above, if you try to set the property to a
number that’s too large, the property wrapper adjusts the number
before storing it. The code below adds a projectedvalue property to
the SmallNumber structure to keep track of whether the property
wrapper adjusted the new value for the property before storing that
new value.

PDF conversion courtesy of www.appsdissected.com

@propertyWrapper
struct SmallNumber {

private var number: Int

private(set) var projectedValue: Bool

var wrappedValue: Int {
get { return number }
set {
if newValue > 12 {
number = 12
projectedValue = true
} else {
number = newValue

projectedValue = false

}
s
s
init() {
self.number = 0
self.projectedValue = false
}

}
struct SomeStructure {

@SmalWNumber var someNumber: Int

PDF conversion courtesy of www.appsdissected.com

27 var someStructure = SomeStructure()
28

29 someStructure.someNumber = 4

30 print(someStructure.$someNumber)

31 // Prints "false"

32

33 someStructure.someNumber = 55

34 print(someStructure.$someNumber)

35 // Prints "true"

Writing someStructure. $someNumber accesses the wrapper’s
projected value. After storing a small number like four, the value of
someStructure.$someNumber is false. However, the projected value
is true after trying to store a number that’s too large, like 55.

A property wrapper can return a value of any type as its projected
value. In this example, the property wrapper exposes only one piece
of information—whether the number was adjusted—so it exposes
that Boolean value as its projected value. A wrapper that needs to
expose more information can return an instance of some other data
type, or it can return sel1f to expose the instance of the wrapper as its
projected value.

When you access a projected value from code that’s part of the type,
like a property getter or an instance method, you can omit self.
before the property name, just like accessing other properties. The
code in the following example refers to the projected value of the
wrapper around height and width as $height and $width:

PDF conversion courtesy of www.appsdissected.com

1 enum Size {

2 case small, large

3%

4

5 struct SizedRectangle {

6 @SmallNumber var height: Int
7 @SmallNumber var width: Int
8

9 mutating func resize(to size: Size) —> Bool {
10 switch size {

11 case .small:

12 height = 10

13 width = 20

14 case . large:

15 height = 100

16 width = 100

17 ¥

18 return $height || $width
19 ¥

20}

Because property wrapper syntax is just syntactic sugar for a
property with a getter and a setter, accessing height and width
behaves the same as accessing any other property. For example, the
codein resize(to:) accesses height and width using their property
wrapper. If you call resize(to: .large), the switch case for . large
sets the rectangle’s height and width to 100. The wrapper prevents
the value of those properties from being larger than 12, and it sets the

PDF conversion courtesy of www.appsdissected.com

projected value to true, to record the fact that it adjusted their values.
At the end of resize(to:), the return statement checks sheight and
$width to determine whether the property wrapper adjusted either
height or width.

Global and Local Variables

The capabilities described above for computing and observing
properties are also available to global variables and local variables.
Global variables are variables that are defined outside of any
function, method, closure, or type context. Local variables are
variables that are defined within a function, method, or closure
context.

The global and local variables you have encountered in previous
chapters have all been stored variables. Stored variables, like stored
properties, provide storage for a value of a certain type and allow that
value to be set and retrieved.

However, you can also define computed variables and define
observers for stored variables, in either a global or local scope.
Computed variables calculate their value, rather than storing it, and
they’re written in the same way as computed properties.

NOTE

Global constants and variables are always computed lazily, in a similar
manner to Lazy Stored Properties. Unlike lazy stored properties, global
constants and variables don’t need to be marked with the 1azy modifier.

Local constants and variables are never computed lazily.

You can apply a property wrapper to a local stored variable, but not to
a global variable or a computed variable. For example, in the code

PDF conversion courtesy of www.appsdissected.com

below, myNumber uses SmallNumber as a property wrapper.

func someFunction() {

@SmallNumber var myNumber: Int = 0

myNumber = 10

// now myNumber is 10

myNumber = 24

// now myNumber is 12

© 00 N O Ul A W N -

Like when you apply SmallNumber to a property, setting the value of
myNumber to 10 is valid. Because the property wrapper doesn’t allow
values higher than 12, it sets myNumber to 12 instead of 24.

Type Properties

Instance properties are properties that belong to an instance of a
particular type. Every time you create a new instance of that type, it
has its own set of property values, separate from any other instance.

You can also define properties that belong to the type itself, not to any
one instance of that type. There will only ever be one copy of these
properties, no matter how many instances of that type you create.
These kinds of properties are called type properties.

Type properties are useful for defining values that are universal to all
instances of a particular type, such as a constant property that all

PDF conversion courtesy of www.appsdissected.com

instances can use (like a static constant in C), or a variable property
that stores a value that’s global to all instances of that type (like a
static variable in C).

Stored type properties can be variables or constants. Computed type
properties are always declared as variable properties, in the same
way as computed instance properties.

NOTE

Unlike stored instance properties, you must always give stored type properties
a default value. This is because the type itself doesn’t have an initializer that
can assign a value to a stored type property at initialization time.

Stored type properties are lazily initialized on their first access. They’re
guaranteed to be initialized only once, even when accessed by multiple
threads simultaneously, and they don’t need to be marked with the lazy
modifier.

Type Property Syntax

In C and Objective-C, you define static constants and variables
associated with a type as global static variables. In Swift, however,
type properties are written as part of the type’s definition, within the
type’s outer curly braces, and each type property is explicitly scoped
to the type it supports.

You define type properties with the static keyword. For computed
type properties for class types, you can use the class keyword
instead to allow subclasses to override the superclass’s
implementation. The example below shows the syntax for stored and
computed type properties:

PDF conversion courtesy of www.appsdissected.com

1 struct SomeStructure {

2 static var storedTypeProperty = "Some value."
3 static var computedTypeProperty: Int {

2 return 1

5 }

6}

7 enum SomeEnumeration {

8 static var storedTypeProperty = "Some value."
9 static var computedTypeProperty: Int {
10 return 6
11 ¥
12}
13 class SomeClass {
14 static var storedTypeProperty = "Some value."
15 static var computedTypeProperty: Int {
16 return 27
17 hy
18 class var overrideableComputedTypeProperty: Int

{

19 return 107
20 by
21 }

NOTE

The computed type property examples above are for read-only computed type
properties, but you can also define read-write computed type properties with
the same syntax as for computed instance properties.

PDF conversion courtesy of www.appsdissected.com

Querying and Setting Type Properties

Type properties are queried and set with dot syntax, just like instance
properties. However, type properties are queried and set on the type,
not on an instance of that type. For example:

print(SomeStructure.storedTypeProperty)

// Prints "Some value."
SomeStructure.storedTypeProperty = "Another value."
print(SomeStructure.storedTypeProperty)

// Prints "Another value."
print(SomeEnumeration.computedTypeProperty)

// Prints "o"

print(SomeClass.computedTypeProperty)

// Prints "27"

© 00 N O Ul A W N -

The examples that follow use two stored type properties as part of a
structure that models an audio level meter for a number of audio
channels. Each channel has an integer audio level between 0 and 10
inclusive.

The figure below illustrates how two of these audio channels can be
combined to model a stereo audio level meter. When a channel’s
audio level is 2, none of the lights for that channel are lit. When the
audio level is 10, all of the lights for that channel are lit. In this figure,
the left channel has a current level of 9, and the right channel has a
current level of 7:

PDF conversion courtesy of www.appsdissected.com

—
o

10

(03] [{e]

~

(67

15

w (o)}
a1

[A®]

Left Right

The audio channels described above are represented by instances of
the AudioChannel structure:

PDF conversion courtesy of www.appsdissected.com

o U1 B~ W N R

10

11

12

13

14

15
16

struct AudioChannel {
static let thresholdLevel = 10
static var maxInputLevelForAllChannels = 0
var currentLevel: Int = 0 {
didSet {
if currentLevel >
AudioChannel.thresholdLevel {
// cap the new audio level to the
threshold level
currentLevel =
AudioChannel.thresholdLevel
}
if currentLevel >
AudioChannel.maxInputLevelForAllChannels {
// store this as the new overall

maximum input level

AudioChannel.maxInputLevelForAllChannels =

currentLevel

¥

The AudioChannel structure defines two stored type properties to
support its functionality. The first, thresholdLevel, defines the
maximum threshold value an audio level can take. This is a constant

PDF conversion courtesy of www.appsdissected.com

value of 10 for all AudioChannel instances. If an audio signal comes in
with a higher value than 10, it will be capped to this threshold value
(as described below).

The second type property is a variable stored property called
maxInputLevelForAllChannels. This keeps track of the maximum
input value that has been received by any AudioChannel instance. It
starts with an initial value of 0.

The AudioChannel structure also defines a stored instance property
called currentLevel, which represents the channel’s current audio
level on a scale of 0 to 10.

The currentLevel property has a didSet property observer to check
the value of currentLevel whenever it’s set. This observer performs
two checks:

« If the new value of currentLevel is greater than the allowed
thresholdLevel, the property observer caps currentLevel to
thresholdLevel.

« If the new value of currentLevel (after any capping) is higher
than any value previously received by any AudioChannel
instance, the property observer stores the new currentlLevel
value in the maxInputLevelForAllChannels type property.

NOTE

In the first of these two checks, the didSet observer sets currentLevel to a
different value. This doesn’t, however, cause the observer to be called again.

You can use the AudioChannel structure to create two new audio
channels called leftChannel and rightChannel, to represent the
audio levels of a stereo sound system:

PDF conversion courtesy of www.appsdissected.com

1 var leftChannel = AudioChannel()
2 var rightChannel = AudioChannel()

If you set the currentLevel of the left channel to 7, you can see that
the maxInputLevelForAllChannels type property is updated to equal
7:

leftChannel.currentLevel = 7
print(leftChannel.currentLevel)

// Prints "7"
print(AudioChannel.maxInputLevelForAllChannels)

u B~ W N =

// Prints "7"

If you try to set the currentLevel of the right channel to 11, you can
see that the right channel’s currentlLevel property is capped to the
maximum value of 10, and the maxInputLevelForAllChannels type
property is updated to equal 10:

rightChannel.currentLevel = 11
print(rightChannel.currentLevel)

// Prints "10"
print(AudioChannel.maxInputLevelForAllChannels)

u B~ W N =

// Prints "10"

PDF conversion courtesy of www.appsdissected.com

Methods

Methods are functions that are associated with a particular type.
Classes, structures, and enumerations can all define instance
methods, which encapsulate specific tasks and functionality for
working with an instance of a given type. Classes, structures, and
enumerations can also define type methods, which are associated
with the type itself. Type methods are similar to class methods in
Objective-C.

The fact that structures and enumerations can define methods in
Swift is a major difference from C and Objective-C. In Objective-C,
classes are the only types that can define methods. In Swift, you can
choose whether to define a class, structure, or enumeration, and still
have the flexibility to define methods on the type you create.

Instance Methods

Instance methods are functions that belong to instances of a
particular class, structure, or enumeration. They support the
functionality of those instances, either by providing ways to access
and modify instance properties, or by providing functionality related to
the instance’s purpose. Instance methods have exactly the same
syntax as functions, as described in Functions.

You write an instance method within the opening and closing braces
of the type it belongs to. An instance method has implicit access to all
other instance methods and properties of that type. An instance
method can be called only on a specific instance of the type it
belongs to. It can’t be called in isolation without an existing instance.

PDF conversion courtesy of www.appsdissected.com

Here’s an example that defines a simple Counter class, which can be
used to count the number of times an action occurs:

1 class Counter {

2 var count = 0

3 func increment() {
4 count +=1

5 }

6 func increment(by amount: Int) {
7 count 4= amount
8 ¥

9 func reset() {

10 count = 0

11 s

12}

The Counter class defines three instance methods:
« increment() increments the counter by 1.

« increment(by: Int) increments the counter by a specified
integer amount.

« reset() resets the counter to zero.

The Counter class also declares a variable property, count, to keep
track of the current counter value.

You call instance methods with the same dot syntax as properties:

PDF conversion courtesy of www.appsdissected.com

let counter = Counter()

// the initial counter value is ©
counter.increment()

// the counter's value is now 1
counter.increment(by: 5)

// the counter's value is now 6

counter.reset()

o N o ul A W N R

// the counter's value is now 0

Function parameters can have both a name (for use within the
function’s body) and an argument label (for use when calling the
function), as described in Function Argument Labels and Parameter
Names. The same is true for method parameters, because methods
are just functions that are associated with a type.

The self Property

Every instance of a type has an implicit property called self, which is
exactly equivalent to the instance itself. You use the self property to
refer to the current instance within its own instance methods.

The increment () method in the example above could have been
written like this:

1 func increment() {
2 self.count += 1

3%

In practice, you don’t need to write self in your code very often. If you
don’t explicitly write se1f, Swift assumes that you are referring to a
property or method of the current instance whenever you use a

PDF conversion courtesy of www.appsdissected.com

known property or method name within a method. This assumption is
demonstrated by the use of count (rather than self. count) inside the
three instance methods for Counter.

The main exception to this rule occurs when a parameter name for an
instance method has the same name as a property of that instance.
In this situation, the parameter name takes precedence, and it
becomes necessary to refer to the property in a more qualified way.
You use the self property to distinguish between the parameter
name and the property name.

Here, self disambiguates between a method parameter called x and
an instance property that’s also called x:

1 struct Point {

2 var x = 0.0, y = 0.0

3 func isToTheRightOf(x: Double) —> Bool {

4 return self.x > x

5 by

6}

7 let somePoint = Point(x: 4.0, y: 5.0)

8 if somePoint.isToTheRightOf(x: 1.0) {

9 print("This point is to the right of the 1line

where x == 1.0")
10}
11 // Prints "This point is to the right of the line

where x == 1.0"

Without the self prefix, Swift would assume that both uses of x
referred to the method parameter called x.

PDF conversion courtesy of www.appsdissected.com

Modifying Value Types from Within Instance Methods
Structures and enumerations are value types. By default, the
properties of a value type can’t be modified from within its instance
methods.

However, if you need to modify the properties of your structure or
enumeration within a particular method, you can opt in to mutating
behavior for that method. The method can then mutate (that is,
change) its properties from within the method, and any changes that
it makes are written back to the original structure when the method
ends. The method can also assign a completely new instance to its
implicit seLf property, and this new instance will replace the existing
one when the method ends.

You can opt in to this behavior by placing the mutating keyword
before the func keyword for that method:

1 struct Point {
2 var x = 0.0, y = 0.0
3 mutating func moveBy(x deltaX: Double, y deltaY:
Double) {
x += deltaX
y += deltaY

by

var somePoint = Point(x: 1.0, y: 1.0)

© 0w N o U b~
—

somePoint.moveBy(x: 2.0, y: 3.0)
10 print("The point is now at (\(somePoint.x), \
(somePoint.y))")

11 // Prints "The point is now at (3.0, 4.0)"

PDF conversion courtesy of www.appsdissected.com

The Point structure above defines a mutating moveBy (x:y:) method,
which moves a Point instance by a certain amount. Instead of
returning a new point, this method actually modifies the point on
which it’s called. The mutating keyword is added to its definition to
enable it to modify its properties.

Note that you can’t call a mutating method on a constant of structure
type, because its properties can’t be changed, even if they’re variable
properties, as described in Stored Properties of Constant Structure
Instances:

1 let fixedPoint = Point(x: 3.0, y: 3.0)
2 fixedPoint.moveBy(x: 2.0, y: 3.0)

3 // this will report an error

Assigning to self Within a Mutating Method
Mutating methods can assign an entirely new instance to the implicit

self property. The Point example shown above could have been
written in the following way instead:

1 struct Point {

2 var x = 0.0, y = 0.0

3 mutating func moveBy(x deltaX: Double, y deltaY:
Double) {

4 self = Point(x: x + deltaX, y: y + deltaY)

5 ¥

6}

This version of the mutating moveBy (x:y:) method creates a new
structure whose x and y values are set to the target location. The end

PDF conversion courtesy of www.appsdissected.com

result of calling this alternative version of the method will be exactly
the same as for calling the earlier version.

Mutating methods for enumerations can set the implicit se 1 f
parameter to be a different case from the same enumeration:

1 enum TriStateSwitch {

2 case off, low, high
3 mutating func next() {
4 switch self {

5 case .off:

6 self = .low
7 case . low:

8 self = .high
9 case .high:

10 self = .off
11 I

12 hy

13}

14 var ovenLight = TriStateSwitch. low
15 ovenLight.next()

16 // ovenLight is now equal to .high
17 ovenLight.next()

18 // ovenLight is now equal to .off

This example defines an enumeration for a three-state switch. The
switch cycles between three different power states (off, low and
high) every time its next () method is called.

PDF conversion courtesy of www.appsdissected.com

Type Methods

Instance methods, as described above, are methods that you call on
an instance of a particular type. You can also define methods that are
called on the type itself. These kinds of methods are called type
methods. You indicate type methods by writing the static keyword
before the method’s func keyword. Classes can use the class
keyword instead, to allow subclasses to override the superclass’s
implementation of that method.

NOTE

In Objective-C, you can define type-level methods only for Objective-C
classes. In Swift, you can define type-level methods for all classes, structures,
and enumerations. Each type method is explicitly scoped to the type it
supports.

Type methods are called with dot syntax, like instance methods.
However, you call type methods on the type, not on an instance of
that type. Here’s how you call a type method on a class called
SomeClass:

1 class SomeClass {

2 class func someTypeMethod() {

3 // type method implementation goes here
4 ¥

5 %}

6 SomeClass.someTypeMethod()

Within the body of a type method, the implicit se L f property refers to
the type itself, rather than an instance of that type. This means that
you can use self to disambiguate between type properties and type
method parameters, just as you do for instance properties and
instance method parameters.

PDF conversion courtesy of www.appsdissected.com

More generally, any unqualified method and property names that you
use within the body of a type method will refer to other type-level
methods and properties. A type method can call another type method
with the other method’s name, without needing to prefix it with the
type name. Similarly, type methods on structures and enumerations
can access type properties by using the type property’s name without
a type name prefix.

The example below defines a structure called LevelTracker, which
tracks a player’s progress through the different levels or stages of a
game. It's a single-player game, but can store information for multiple
players on a single device.

All of the game’s levels (apart from level one) are locked when the
game is first played. Every time a player finishes a level, that level is
unlocked for all players on the device. The LevelTracker structure
uses type properties and methods to keep track of which levels of the
game have been unlocked. It also tracks the current level for an
individual player.

PDF conversion courtesy of www.appsdissected.com

o U1 B~ W N R

~

9
10
11
12
13
14
15
16
17
18
19
20
21
22

struct LevelTracker {

static var highestUnlockedLevel =1

var currentLevel =1

static func unlock(_ level: Int) {
if level > highestUnlockedLevel {
highestUnlockedLevel = level }
¥

static func isUnlocked(_ level: Int) —> Bool {

return level <= highestUnlockedLevel

@discardableResult
mutating func advance(to level: Int) —> Bool {
if LevelTracker.isUnlocked(level) {
currentLevel = level
return true
} else {

return false

The LevelTracker structure keeps track of the highest level that any
player has unlocked. This value is stored in a type property called
highestUnlockedLevel.

PDF conversion courtesy of www.appsdissected.com

LevelTracker also defines two type functions to work with the
highestUnlockedLevel property. The first is a type function called
unlock(_:), which updates the value of highestUnlockedLevel
whenever a new level is unlocked. The second is a convenience type
function called isUnlocked(_:), which returns true if a particular
level number is already unlocked. (Note that these type methods can
access the highestUnlockedLevel type property without your needing
to write itas LevelTracker.highestUnlockedLevel.)

In addition to its type property and type methods, LevelTracker
tracks an individual player’s progress through the game. It uses an
instance property called currentLevel to track the level that a player
is currently playing.

To help manage the currentLevel property, LevelTracker defines an
instance method called advance(to:). Before updating currentlLevel,
this method checks whether the requested new level is already
unlocked. The advance(to:) method returns a Boolean value to
indicate whether or not it was actually able to set currentLevel.
Because it’s not necessarily a mistake for code that calls the
advance(to:) method to ignore the return value, this function is
marked with the @discardableResult attribute. For more information
about this attribute, see Atiributes.

The LevelTracker structure is used with the Player class, shown
below, to track and update the progress of an individual player:

PDF conversion courtesy of www.appsdissected.com

1 class Player {

2 var tracker = LevelTracker()

3 let playerName: String

4 func complete(level: Int) {

5 LevelTracker.unlock(level + 1)
6 tracker.advance(to: level + 1)
7 }

8 init(name: String) {

9 playerName = name

10 Iy

11}

The Player class creates a new instance of LevelTracker to track
that player’s progress. It also provides a method called
complete(level:), which is called whenever a player completes a
particular level. This method unlocks the next level for all players and
updates the player’s progress to move them to the next level. (The
Boolean return value of advance(to:) is ignored, because the level is
known to have been unlocked by the call to
LevelTracker.unlock(_:) onthe previous line.)

You can create an instance of the Player class for a new player, and
see what happens when the player completes level one:

1 var player = Player(name: "Argyrios")

2 player.complete(level: 1)

3 print("highest unlocked level is now \
(LevelTracker.highestUnlockedLevel)")

4 // Prints "highest unlocked level is now 2"

PDF conversion courtesy of www.appsdissected.com

If you create a second player, whom you try to move to a level that’s
not yet unlocked by any player in the game, the attempt to set the
player’s current level fails:

player = Player(name: "Beto")
if player.tracker.advance(to: 6) {

print("player is now on level 6")

print("level 6 hasn't yet been unlocked")

by

1
2
3
4} else {
5
6
7 // Prints "level 6 hasn't yet been unlocked"

PDF conversion courtesy of www.appsdissected.com

Subscripts

Classes, structures, and enumerations can define subscripts, which
are shortcuts for accessing the member elements of a collection, list,
or sequence. You use subscripts to set and retrieve values by index
without needing separate methods for setting and retrieval. For
example, you access elements in an Array instance as
someArray[index] and elementsinaDictionary instance as
someDictionary[key].

You can define multiple subscripts for a single type, and the
appropriate subscript overload to use is selected based on the type of
index value you pass to the subscript. Subscripts aren’t limited to a
single dimension, and you can define subscripts with multiple input
parameters to suit your custom type’s needs.

Subscript Syntax

Subscripts enable you to query instances of a type by writing one or
more values in square brackets after the instance name. Their syntax
is similar to both instance method syntax and computed property
syntax. You write subscript definitions with the subscript keyword,
and specify one or more input parameters and a return type, in the
same way as instance methods. Unlike instance methods, subscripts
can be read-write or read-only. This behavior is communicated by a
getter and setter in the same way as for computed properties:

PDF conversion courtesy of www.appsdissected.com

1 subscript(index: Int) —> Int {

2 get {

3 // Return an appropriate subscript value
here.

4 ¥

5 set(newValue) {

6 // Perform a suitable setting action here.

7 ¥

8 1}

The type of newValue is the same as the return value of the subscript.
As with computed properties, you can choose not to specify the
setter’s (newvalue) parameter. A default parameter called newvalue
is provided to your setter if you don’t provide one yourself.

As with read-only computed properties, you can simplify the
declaration of a read-only subscript by removing the get keyword and
its braces:

1 subscript(index: Int) —> Int {
2 // Return an appropriate subscript value here.

3}

Here’s an example of a read-only subscript implementation, which
defines a TimesTable structure to represent an n-times-table of
integers:

PDF conversion courtesy of www.appsdissected.com

1 struct TimesTable {

2 let multiplier: Int

3 subscript(index: Int) —-> Int {

4 return multiplier * index

5 ¥

6}

7 let threeTimesTable = TimesTable(multiplier: 3)

8 print("six times three is \(threeTimesTable[6])")
9 // Prints "six times three is 18"

In this example, a new instance of TimesTable is created to represent
the three-times-table. This is indicated by passing a value of 3 to the
structure’s initializer as the value to use for the instance’s
multiplier parameter.

You can query the threeTimesTable instance by calling its subscript,
as shown in the callto threeTimesTable [6]. This requests the sixth
entry in the three-times-table, which returns a value of 18, or 3 times
6.

NOTE

An n-times-table is based on a fixed mathematical rule. It isn’t appropriate to
set threeTimesTable[someIndex] to a new value, and so the subscript for
TimesTable is defined as a read-only subscript.

Subscript Usage

The exact meaning of “subscript” depends on the context in which it’s
used. Subscripts are typically used as a shortcut for accessing the

PDF conversion courtesy of www.appsdissected.com

member elements in a collection, list, or sequence. You are free to
implement subscripts in the most appropriate way for your particular
class or structure’s functionality.

For example, Swift’'s Dictionary type implements a subscript to set
and retrieve the values stored in a Dictionary instance. You can set
a value in a dictionary by providing a key of the dictionary’s key type
within subscript brackets, and assigning a value of the dictionary’s
value type to the subscript:

1 var numberOfLegs = ["spider": 8, "ant": 6, "cat": 4]

2 numberOfLegs["bird"] = 2

The example above defines a variable called number0fLegs and
initializes it with a dictionary literal containing three key-value pairs.
The type of the number0fLegs dictionary is inferred to be [String:
Int]. After creating the dictionary, this example uses subscript
assignment to add a String key of "bird" and an Int value of 2 to
the dictionary.

For more information about Dictionary subscripting, see Accessing
and Modifying_a Dictionary.

NOTE

Swift’s Dictionary type implements its key-value subscripting as a subscript
that takes and returns an optional type. For the numberOfLegs dictionary
above, the key-value subscript takes and returns a value of type Int?, or
“optional int”. The Dictionary type uses an optional subscript type to model
the fact that not every key will have a value, and to give a way to delete a
value for a key by assigning a nil value for that key.

Subscript Options

PDF conversion courtesy of www.appsdissected.com

Subscripts can take any number of input parameters, and these input
parameters can be of any type. Subscripts can also return a value of

any type.

Like functions, subscripts can take a varying number of parameters
and provide default values for their parameters, as discussed in
Variadic Parameters and Default Parameter Values. However, unlike
functions, subscripts can’t use in-out parameters.

A class or structure can provide as many subscript implementations
as it needs, and the appropriate subscript to be used will be inferred
based on the types of the value or values that are contained within
the subscript brackets at the point that the subscript is used. This
definition of multiple subscripts is known as subscript overloading.

While it’'s most common for a subscript to take a single parameter,
you can also define a subscript with multiple parameters if it’s
appropriate for your type. The following example defines a Matrix
structure, which represents a two-dimensional matrix of Double
values. The Matrix structure’s subscript takes two integer
parameters:

PDF conversion courtesy of www.appsdissected.com

N o o W NN R

10

11
12
13
14

15

16

17

18

19

20

struct Matrix {
let rows: Int, columns: Int
var grid: [Double]
init(rows: Int, columns: Int) {
self.rows = rows
self.columns = columns
grid = Array(repeating: 0.0, count: rows x
columns)
}
func indexIsValid(row: Int, column: Int) —-> Bool
{
return row >= 0 && row < rows && column >= 0
&& column < columns
}
subscript(row: Int, column: Int) —> Double {
get {
assert(indexIsValid(row: row, column:
column), "Index out of range")
return grid[(row * columns) + column]
+
set {
assert(indexIsValid(row: row, column:
column), "Index out of range")
grid[(row x columns) + column] =

newValue

¥

PDF conversion courtesy of www.appsdissected.com

21 }
22}

Matrix provides an initializer that takes two parameters called rows
and columns, and creates an array that’s large enough to store rows =
columns values of type Double. Each position in the matrix is given an
initial value of 0. 0. To achieve this, the array’s size, and an initial cell
value of 0.0, are passed to an array initializer that creates and
initializes a new array of the correct size. This initializer is described
in more detail in Creating_an Array with a Default Value.

You can construct a new Matrix instance by passing an appropriate
row and column count to its initializer:

var matrix = Matrix(rows: 2, columns: 2)

The example above creates a new Matrix instance with two rows and
two columns. The grid array for this Matrix instance is effectively a
flattened version of the matrix, as read from top left to bottom right:

grid = [e.0, 0.0, 0.0, 0.0]

column
0 1

o |[e.0, 0.0,
1 0.0, @.@]

ro

PDF conversion courtesy of www.appsdissected.com

Values in the matrix can be set by passing row and column values
into the subscript, separated by a comma:

1 matrix[0, 1] 1.5

3.2

2 matrix[1, 0]

These two statements call the subscript’s setter to set a value of 1.5
in the top right position of the matrix (where rowis 2 and column is 1),
and 3.2 in the bottom left position (where rowis 1 and column is 0):

The Matrix subscript’s getter and setter both contain an assertion to
check that the subscript’s row and column values are valid. To assist
with these assertions, Matrix includes a convenience method called
indexIsValid(row:column:), which checks whether the requested
row and column are inside the bounds of the matrix:

1 func indexIsValid(row: Int, column: Int) —> Bool {
2 return row >= 0 && row < rows && column >= 0 &&

column < columns

An assertion is triggered if you try to access a subscript that’s outside
of the matrix bounds:

PDF conversion courtesy of www.appsdissected.com

1 let someValue = matrix[2, 2]
2 // This triggers an assert, because [2, 2] is

outside of the matrix bounds.

Type Subscripts

Instance subscripts, as described above, are subscripts that you call
on an instance of a particular type. You can also define subscripts
that are called on the type itself. This kind of subscript is called a type
subscript. You indicate a type subscript by writing the static keyword
before the subscript keyword. Classes can use the class keyword
instead, to allow subclasses to override the superclass’s
implementation of that subscript. The example below shows how you
define and call a type subscript:

1 enum Planet: Int {
2 case mercury = 1, venus, earth, mars, jupiter,

saturn, uranus, neptune

3 static subscript(n: Int) —> Planet {
4 return Planet(rawValue: n)!

5 ¥

6 1}

7 let mars = Planet[4]

8 print(mars)

PDF conversion courtesy of www.appsdissected.com

Inheritance

A class can inherit methods, properties, and other characteristics
from another class. When one class inherits from another, the
inheriting class is known as a subclass, and the class it inherits from
is known as its superclass. Inheritance is a fundamental behavior that
differentiates classes from other types in Swift.

Classes in Swift can call and access methods, properties, and
subscripts belonging to their superclass and can provide their own
overriding versions of those methods, properties, and subscripts to
refine or modify their behavior. Swift helps to ensure your overrides
are correct by checking that the override definition has a matching
superclass definition.

Classes can also add property observers to inherited properties in
order to be notified when the value of a property changes. Property
observers can be added to any property, regardless of whether it was
originally defined as a stored or computed property.

Defining a Base Class

Any class that doesn’t inherit from another class is known as a base
class.

NOTE

Swift classes don’t inherit from a universal base class. Classes you define
without specifying a superclass automatically become base classes for you to
build upon.

PDF conversion courtesy of www.appsdissected.com

The example below defines a base class called vehicle. This base
class defines a stored property called currentSpeed, with a default
value of 0.0 (inferring a property type of Double). The currentSpeed
property’s value is used by a read-only computed String property
called description to create a description of the vehicle.

The vehicle base class also defines a method called makeNoise. This
method doesn’t actually do anything for a base Vehicle instance, but
will be customized by subclasses of vehicle later on:

1 class Vehicle {

2 var currentSpeed = 0.0

3 var description: String {

4 return "traveling at \(currentSpeed) miles
per hour"

5 }

6 func makeNoise() {

7 // do nothing - an arbitrary vehicle doesn't

necessarily make a noise

8 ¥
You create a new instance of Vehicle with initializer syntax, which is
written as a type name followed by empty parentheses:

let someVehicle = Vehicle()

Having created a new Vehicle instance, you can access its
description property to print a human-readable description of the
vehicle’s current speed:

PDF conversion courtesy of www.appsdissected.com

1 print("Vehicle: \(someVehicle.description)")

2 // Vehicle: traveling at 0.0 miles per hour

The vehicle class defines common characteristics for an arbitrary
vehicle, but isn’t much use in itself. To make it more useful, you need
to refine it to describe more specific kinds of vehicles.

Subclassing

Subclassing is the act of basing a new class on an existing class. The
subclass inherits characteristics from the existing class, which you
can then refine. You can also add new characteristics to the subclass.

To indicate that a subclass has a superclass, write the subclass name
before the superclass name, separated by a colon:

1 class SomeSubclass: SomeSuperclass {
2 // subclass definition goes here

3 1}

The following example defines a subclass called Bicycle, with a
superclass of Vehicle:

1 class Bicycle: Vehicle {
2 var hasBasket = false

3}

The new Bicycle class automatically gains all of the characteristics of
Vehicle, such asits currentSpeed and description properties and its

PDF conversion courtesy of www.appsdissected.com

makeNoise () method.

In addition to the characteristics it inherits, the Bicycle class defines
a new stored property, hasBasket, with a default value of false
(inferring a type of Boo for the property).

By default, any new Bicycle instance you create will not have a
basket. You can set the hasBasket property to true for a particular
Bicycle instance after that instance is created:

1 let bicycle = Bicycle()

2 bicycle.hasBasket = true

You can also modify the inherited currentSpeed property of aBicycle
instance, and query the instance’s inherited description property:

1 bicycle.currentSpeed = 15.0
2 print("Bicycle: \(bicycle.description)")
3 // Bicycle: traveling at 15.0 miles per hour

Subclasses can themselves be subclassed. The next example
creates a subclass of Bicycle for a two-seater bicycle known as a
“tandem”:

1 class Tandem: Bicycle {

2 var currentNumberOfPassengers = 0

3 1}

Tandem inherits all of the properties and methods from Bicycle, which
in turn inherits all of the properties and methods from vehicle. The
Tandem subclass also adds a new stored property called
currentNumberOfPassengers, with a default value of 0.

PDF conversion courtesy of www.appsdissected.com

If you create an instance of Tandem, you can work with any of its new
and inherited properties, and query the read-only description
property it inherits from vehicle:

1 let tandem = Tandem()

2 tandem.hasBasket = true

3 tandem.currentNumberOfPassengers = 2

4 tandem.currentSpeed = 22.0

5 print("Tandem: \(tandem.description)")

6 // Tandem: traveling at 22.0 miles per hour
Overriding

A subclass can provide its own custom implementation of an instance
method, type method, instance property, type property, or subscript
that it would otherwise inherit from a superclass. This is known as
overriding.

To override a characteristic that would otherwise be inherited, you
prefix your overriding definition with the override keyword. Doing so
clarifies that you intend to provide an override and haven’t provided a
matching definition by mistake. Overriding by accident can cause
unexpected behavior, and any overrides without the override
keyword are diagnosed as an error when your code is compiled.

The override keyword also prompts the Swift compiler to check that
your overriding class’s superclass (or one of its parents) has a
declaration that matches the one you provided for the override. This
check ensures that your overriding definition is correct.

PDF conversion courtesy of www.appsdissected.com

Accessing Superclass Methods, Properties, and Subscripts
When you provide a method, property, or subscript override for a
subclass, it’'s sometimes useful to use the existing superclass
implementation as part of your override. For example, you can refine
the behavior of that existing implementation, or store a modified value
in an existing inherited variable.

Where this is appropriate, you access the superclass version of a
method, property, or subscript by using the super prefix:

« An overridden method named someMethod() can call the
superclass version of someMethod () by calling
super.someMethod () within the overriding method
implementation.

« An overridden property called someProperty can access the
superclass version of someProperty as super.someProperty
within the overriding getter or setter implementation.

« An overridden subscript for someIndex can access the superclass
version of the same subscript as super[someIndex] from within
the overriding subscript implementation.

Overriding Methods

You can override an inherited instance or type method to provide a
tailored or alternative implementation of the method within your
subclass.

The following example defines a new subclass of vehicle called
Train, which overrides the makeNoise () method that Train inherits
from vehicle:

PDF conversion courtesy of www.appsdissected.com

1 class Train: Vehicle {

2 override func makeNoise() {
3 print("Choo Choo")

4 ¥

5 %}

If you create a new instance of Train and call its makeNoise()
method, you can see that the Train subclass version of the method is
called:

1 let train = Train()
2 train.makeNoise()

3 // Prints "Choo Choo"

Overriding Properties

You can override an inherited instance or type property to provide
your own custom getter and setter for that property, or to add
property observers to enable the overriding property to observe when
the underlying property value changes.

Overriding Property Getters and Setters

You can provide a custom getter (and setter, if appropriate) to
override any inherited property, regardless of whether the inherited
property is implemented as a stored or computed property at source.
The stored or computed nature of an inherited property isn’t known
by a subclass—it only knows that the inherited property has a certain
name and type. You must always state both the name and the type of
the property you are overriding, to enable the compiler to check that
your override matches a superclass property with the same name
and type.

PDF conversion courtesy of www.appsdissected.com

You can present an inherited read-only property as a read-write
property by providing both a getter and a setter in your subclass
property override. You can’t, however, present an inherited read-write
property as a read-only property.

NOTE

If you provide a setter as part of a property override, you must also provide a
getter for that override. If you don’t want to modify the inherited property’s
value within the overriding getter, you can simply pass through the inherited
value by returning super.someProperty from the getter, where
someProperty is the name of the property you are overriding.

The following example defines a new class called Car, which is a
subclass of vehicle. The Car class introduces a new stored property
called gear, with a default integer value of 1. The Car class also
overrides the description property it inherits from vehicle, to
provide a custom description that includes the current gear:

1 class Car: Vehicle {

2 var gear =1

3 override var description: String {

4 return super.description + " in gear \
(gear)"

5 }

6}

The override of the description property starts by calling
super.description, which returns the vehicle class’s description
property. The Car class’s version of description then adds some
extra text onto the end of this description to provide information about
the current gear.

PDF conversion courtesy of www.appsdissected.com

If you create an instance of the Car class and set its gear and
currentSpeed properties, you can see that its description property
returns the tailored description defined within the Car class:

let car = Car()
car.currentSpeed = 25.0
car.gear = 3

print("Car: \(car.description)")

v B~ W N =

// Car: traveling at 25.0 miles per hour in gear 3

Overriding Property Observers

You can use property overriding to add property observers to an
inherited property. This enables you to be notified when the value of
an inherited property changes, regardless of how that property was
originally implemented. For more information on property observers,
see Property Observers.

NOTE

You can’t add property observers to inherited constant stored properties or
inherited read-only computed properties. The value of these properties can’t
be set, and so it isn’t appropriate to provide awillSet or didSet
implementation as part of an override.

Note also that you can’t provide both an overriding setter and an overriding
property observer for the same property. If you want to observe changes to a
property’s value, and you are already providing a custom setter for that
property, you can simply observe any value changes from within the custom
setter.

The following example defines a new class called AutomaticCar,
which is a subclass of Car. The AutomaticCar class represents a car
with an automatic gearbox, which automatically selects an
appropriate gear to use based on the current speed:

PDF conversion courtesy of www.appsdissected.com

1 class AutomaticCar: Car {

2 override var currentSpeed: Double {

3 didSet {

4 gear = Int(currentSpeed / 10.0) + 1
5 I

6 }

7}

Whenever you set the currentSpeed property of an AutomaticCar
instance, the property’s didSet observer sets the instance’s gear
property to an appropriate choice of gear for the new speed.
Specifically, the property observer chooses a gear that’s the new
currentSpeed value divided by 10, rounded down to the nearest
integer, plus 1. A speed of 35.0 produces a gear of 4:

let automatic = AutomaticCar()
automatic.currentSpeed = 35.0

print("AutomaticCar: \(automatic.description)")

~ W N BB

// AutomaticCar: traveling at 35.0 miles per hour in

gear 4

Preventing Overrides

You can prevent a method, property, or subscript from being
overridden by marking it as final. Do this by writing the final modifier
before the method, property, or subscript’s introducer keyword (such
as final var, final func, final class func,and final subscript).

PDF conversion courtesy of www.appsdissected.com

Any attempt to override a final method, property, or subscript in a
subclass is reported as a compile-time error. Methods, properties, or
subscripts that you add to a class in an extension can also be marked
as final within the extension’s definition.

You can mark an entire class as final by writing the final modifier
before the class keyword in its class definition (final class). Any
attempt to subclass a final class is reported as a compile-time error.

PDF conversion courtesy of www.appsdissected.com

Initialization

Initialization is the process of preparing an instance of a class,
structure, or enumeration for use. This process involves setting an
initial value for each stored property on that instance and performing
any other setup or initialization that’s required before the new
instance is ready for use.

You implement this initialization process by defining initializers, which
are like special methods that can be called to create a new instance
of a particular type. Unlike Objective-C initializers, Swift initializers
don’t return a value. Their primary role is to ensure that new
instances of a type are correctly initialized before they’re used for the
first time.

Instances of class types can also implement a deinitializer, which
performs any custom cleanup just before an instance of that class is
deallocated. For more information about deinitializers, see
Deinitialization.

Setting Initial Values for Stored Properties

Classes and structures must set all of their stored properties to an
appropriate initial value by the time an instance of that class or
structure is created. Stored properties can’t be left in an
indeterminate state.

You can set an initial value for a stored property within an initializer, or
by assigning a default property value as part of the property’s
definition. These actions are described in the following sections.

PDF conversion courtesy of www.appsdissected.com

NOTE

When you assign a default value to a stored property, or set its initial value
within an initializer, the value of that property is set directly, without calling any
property observers.

Initializers

Initializers are called to create a new instance of a particular type. In
its simplest form, an initializer is like an instance method with no
parameters, written using the init keyword:

1 init() {
2 // perform some initialization here
3 %

The example below defines a new structure called Fahrenheit to
store temperatures expressed in the Fahrenheit scale. The
Fahrenheit structure has one stored property, temperature, which is
of type Double:

PDF conversion courtesy of www.appsdissected.com

1 struct Fahrenheit {

2 var temperature: Double

3 init() {

4 temperature = 32.0

5 ¥

6}

7 var f = Fahrenheit()

8 print("The default temperature is \(f.temperature)®

Fahrenheit")
9 // Prints "The default temperature is 32.0°

Fahrenheit"

The structure defines a single initializer, init, with no parameters,
which initializes the stored temperature with a value of 32.0 (the
freezing point of water in degrees Fahrenheit).

Default Property Values

You can set the initial value of a stored property from within an
initializer, as shown above. Alternatively, specify a default property
value as part of the property’s declaration. You specify a default
property value by assigning an initial value to the property when it’s
defined.

PDF conversion courtesy of www.appsdissected.com

NOTE

If a property always takes the same initial value, provide a default value rather
than setting a value within an initializer. The end result is the same, but the
default value ties the property’s initialization more closely to its declaration. It
makes for shorter, clearer initializers and enables you to infer the type of the
property from its default value. The default value also makes it easier for you
to take advantage of default initializers and initializer inheritance, as described
later in this chapter.

You can write the Fahrenheit structure from above in a simpler form
by providing a default value for its temperature property at the point
that the property is declared:

1 struct Fahrenheit {
2 var temperature = 32.0

3}

Customizing Initialization

You can customize the initialization process with input parameters
and optional property types, or by assigning constant properties
during initialization, as described in the following sections.

Initialization Parameters

You can provide initialization parameters as part of an initializer’s
definition, to define the types and names of values that customize the
initialization process. Initialization parameters have the same
capabilities and syntax as function and method parameters.

PDF conversion courtesy of www.appsdissected.com

The following example defines a structure called Celsius, which
stores temperatures expressed in degrees Celsius. The Celsius
structure implements two custom initializers called
init(fromFahrenheit:) and init(fromKelvin:), which initialize a
new instance of the structure with a value from a different
temperature scale:

1 struct Celsius {

2 var temperatureInCelsius: Double

3 init(fromFahrenheit fahrenheit: Double) {

4 temperatureInCelsius = (fahrenheit - 32.0) /
1.8

5 }

6 init(fromKelvin kelvin: Double) {

7 temperatureInCelsius = kelvin - 273.15

8 }

9 1}

10 let boilingPointOfWater = Celsius(fromFahrenheit:
212.0)

11 // boilingPointOfWater.temperatureInCelsius is 100.0
12 let freezingPointOfWater = Celsius(fromKelvin:
273.15)

13 // freezingPointOfWater.temperatureInCelsius is 0.0

The first initializer has a single initialization parameter with an
argument label of fromFahrenheit and a parameter name of
fahrenheit. The second initializer has a single initialization
parameter with an argument label of fromkelvin and a parameter
name of kelvin. Both initializers convert their single argument into

PDF conversion courtesy of www.appsdissected.com

the corresponding Celsius value and store this value in a property
called temperatureInCelsius.

Parameter Names and Argument Labels

As with function and method parameters, initialization parameters
can have both a parameter name for use within the initializer’s body
and an argument label for use when calling the initializer.

However, initializers don’t have an identifying function name before
their parentheses in the way that functions and methods do.
Therefore, the names and types of an initializer’s parameters play a
particularly important role in identifying which initializer should be
called. Because of this, Swift provides an automatic argument label
for every parameter in an initializer if you don’t provide one.

The following example defines a structure called Color, with three
constant properties called red, green, and blue. These properties
store a value between 0.0 and 1.0 to indicate the amount of red,
green, and blue in the color.

Color provides an initializer with three appropriately named
parameters of type Double for its red, green, and blue components.
Color also provides a second initializer with a single white
parameter, which is used to provide the same value for all three color
components.

PDF conversion courtesy of www.appsdissected.com

1 struct Color {

2 let red, green, blue: Double
3 init(red: Double, green: Double, blue: Double) {
4 self.red = red

5 self.green = green

6 self.blue = blue

7 }

8 init(white: Double) {

9 red = white

10 green = white

11 blue = white

12 s
13}

Both initializers can be used to create a new Color instance, by
providing named values for each initializer parameter:

1 let magenta = Color(red: 1.0, green: 0.0, blue: 1.0)
2 let halfGray = Color(white: 0.5)

Note that it isn’t possible to call these initializers without using
argument labels. Argument labels must always be used in an
initializer if they’re defined, and omitting them is a compile-time error:

1 let veryGreen = Color(0.0, 1.0, 0.0)
2 // this reports a compile-time error — argument

labels are required

PDF conversion courtesy of www.appsdissected.com

Initializer Parameters Without Argument Labels

If you don’t want to use an argument label for an initializer parameter,
write an underscore (_) instead of an explicit argument label for that
parameter to override the default behavior.

Here’s an expanded version of the Celsius example from
Initialization Parameters above, with an additional initializer to create
anew Celsius instance from a Double value that’s already in the
Celsius scale:

~ W NN

O© 00 N O U

10
11
12
13
14

struct Celsius {

var temperatureInCelsius: Double

init(fromFahrenheit fahrenheit: Double) {
temperatureInCelsius = (fahrenheit - 32.0) /

1.8

s

init(fromKelvin kelvin: Double) {
temperatureInCelsius = kelvin - 273.15

}

init(_ celsius: Double) {

temperatureInCelsius = celsius

s
let bodyTemperature = Celsius(37.0)

// bodyTemperature.temperatureInCelsius is 37.0

The initializer call Celsius(37.0) is clear in its intent without the need
for an argument label. It’s therefore appropriate to write this initializer
as init(_ celsius: Double) so thatit can be called by providing an

unnamed Double value.

PDF conversion courtesy of www.appsdissected.com

Optional Property Types

If your custom type has a stored property that’s logically allowed to
have “no value”—perhaps because its value can’t be set during
initialization, or because it’s allowed to have “no value” at some later
point—declare the property with an optional type. Properties of
optional type are automatically initialized with a value of nil,
indicating that the property is deliberately intended to have “no value
yet” during initialization.

The following example defines a class called SurveyQuestion, with an
optional String property called response:

class SurveyQuestion {
var text: String
var response: String?

init(text: String) {

1

2

3

4

5 self.text = text

6 }

7 func ask() {

8 print(text)

9

10}

11 let cheeseQuestion = SurveyQuestion(text: "Do you
like cheese?")

12 cheeseQuestion.ask()

13 // Prints "Do you like cheese?"

14 cheeseQuestion.response = "Yes, I do like cheese."

The response to a survey question can’t be known until it’s asked,
and so the response property is declared with a type of String?, or

PDF conversion courtesy of www.appsdissected.com

“optional String”. It’s automatically assigned a default value of nil,
meaning “no string yet”, when a new instance of SurveyQuestion is
initialized.

Assigning Constant Properties During Initialization

You can assign a value to a constant property at any point during
initialization, as long as it’s set to a definite value by the time
initialization finishes. Once a constant property is assigned a value, it
can’t be further modified.

NOTE

For class instances, a constant property can be modified during initialization
only by the class that introduces it. It can’t be modified by a subclass.

You can revise the SurveyQuestion example from above to use a
constant property rather than a variable property for the text property
of the question, to indicate that the question doesn’t change once an
instance of SurveyQuestion is created. Even though the text
property is now a constant, it can still be set within the class’s
initializer:

PDF conversion courtesy of www.appsdissected.com

1 class SurveyQuestion {

2 let text: String

3 var response: String?
4 init(text: String) {
5 self.text = text
6 }

7 func ask() {

8 print(text)

9 }

10}

11 let beetsQuestion = SurveyQuestion(text: "How about
beets?")

12 beetsQuestion.ask()

13 // Prints "How about beets?"

14 beetsQuestion.response = "I also like beets. (But

not with cheese.)"

Default Initializers

Swift provides a default initializer for any structure or class that
provides default values for all of its properties and doesn’t provide at
least one initializer itself. The default initializer simply creates a new
instance with all of its properties set to their default values.

This example defines a class called ShoppingListItem, which
encapsulates the name, quantity, and purchase state of an itemin a
shopping list:

PDF conversion courtesy of www.appsdissected.com

class ShoppingListItem {
var name: String?
var quantity =1
var purchased = false
I
var item = ShoppingListItem()

o U1 B~ W N R

Because all properties of the ShoppingListItem class have default
values, and because it’s a base class with no superclass,
ShoppingListItem automatically gains a default initializer
implementation that creates a new instance with all of its properties
set to their default values. (The name property is an optional String
property, and so it automatically receives a default value of ni1, even
though this value isn’t written in the code.) The example above uses
the default initializer for the ShoppingListItem class to create a new
instance of the class with initializer syntax, written as
ShoppingListItem(), and assigns this new instance to a variable
called item.

Memberwise Initializers for Structure Types

Structure types automatically receive a memberwise initializer if they
don’t define any of their own custom initializers. Unlike a default
initializer, the structure receives a memberwise initializer even if it
has stored properties that don’t have default values.

The memberwise initializer is a shorthand way to initialize the
member properties of new structure instances. Initial values for the
properties of the new instance can be passed to the memberwise
initializer by name.

The example below defines a structure called Size with two
properties called width and height. Both properties are inferred to be

PDF conversion courtesy of www.appsdissected.com

of type Double by assigning a default value of 0. 0.

The Size structure automatically receives an init(width:height:)
memberwise initializer, which you can use to initialize a new Size
instance:

1 struct Size {

2 var width = 0.0, height = 0.0

3}

4 let twoByTwo = Size(width: 2.0, height: 2.0)

When you call a memberwise initializer, you can omit values for any
properties that have default values. In the example above, the Size
structure has a default value for both its height and width properties.
You can omit either property or both properties, and the initializer
uses the default value for anything you omit. For example:

let zeroByTwo = Size(height: 2.0)
print(zeroByTwo.width, zeroByTwo.height)
// Prints "0.0 2.0"

let zeroByZero = Size()
print(zeroByZero.width, zeroByZero.height)
// Prints "0.0 0.0"

N o o A WNN R

Initializer Delegation for Value Types

PDF conversion courtesy of www.appsdissected.com

Initializers can call other initializers to perform part of an instance’s
initialization. This process, known as initializer delegation, avoids
duplicating code across multiple initializers.

The rules for how initializer delegation works, and for what forms of
delegation are allowed, are different for value types and class types.
Value types (structures and enumerations) don’t support inheritance,
and so their initializer delegation process is relatively simple, because
they can only delegate to another initializer that they provide
themselves. Classes, however, can inherit from other classes, as
described in Inheritance. This means that classes have additional
responsibilities for ensuring that all stored properties they inherit are
assigned a suitable value during initialization. These responsibilities
are described in Class Inheritance and Initialization below.

For value types, you use self. init to refer to other initializers from
the same value type when writing your own custom initializers. You
can call self.init only from within an initializer.

Note that if you define a custom initializer for a value type, you will no
longer have access to the default initializer (or the memberwise
initializer, if it’s a structure) for that type. This constraint prevents a
situation in which additional essential setup provided in a more
complex initializer is accidentally circumvented by someone using
one of the automatic initializers.

NOTE

If you want your custom value type to be initializable with the default initializer
and memberwise initializer, and also with your own custom initializers, write
your custom initializers in an extension rather than as part of the value type’s
original implementation. For more information, see Extensions.

The following example defines a custom Rect structure to represent a
geometric rectangle. The example requires two supporting structures
called Size and Point, both of which provide default values of .o for
all of their properties:

PDF conversion courtesy of www.appsdissected.com

1 struct Size {
2 var width = 0.0, height = 0.0
3%

4 struct Point {
5 var x = 0.0, y = 0.0
6

You can initialize the Rect structure below in one of three ways—by
using its default zero-initialized origin and size property values, by
providing a specific origin point and size, or by providing a specific
center point and size. These initialization options are represented by
three custom initializers that are part of the Rect structure’s definition:

PDF conversion courtesy of www.appsdissected.com

1 struct Rect {

2 var origin = Point()

3 var size = Size()

4 init() {}

5 init(origin: Point, size: Size) {

6 self.origin = origin

7 self.size = size

8 }

9 init(center: Point, size: Size) {

10 let originX = center.x - (size.width / 2)
11 let originY = center.y - (size.height / 2)
12 self.init(origin: Point(x: originX, y:

originY), size: size)

13 by
14 }

The first Rect initializer, init (), is functionally the same as the default
initializer that the structure would have received if it didn’t have its
own custom initializers. This initializer has an empty body,
represented by an empty pair of curly braces {}. Calling this initializer
returns a Rect instance whose origin and size properties are both
initialized with the default values of Point(x: 0.0, y: 0.0) and
Size(width: 0.0, height: 0.0) from their property definitions:

1 let basicRect = Rect()
2 // basicRect's origin is (0.0, 0.0) and its size is

(0.0, 0.0)

PDF conversion courtesy of www.appsdissected.com

The second Rect initializer, init(origin:size:), is functionally the
same as the memberwise initializer that the structure would have
received if it didn’t have its own custom initializers. This initializer
simply assigns the origin and size argument values to the
appropriate stored properties:

1 let originRect = Rect(origin: Point(x: 2.0, y: 2.0),

2 size: Size(width: 5.0, height:
5.0))

3 // originRect's origin is (2.0, 2.0) and its size is

(5.0, 5.0)

The third Rect initializer, init(center:size:), is slightly more
complex. It starts by calculating an appropriate origin point based on
a center point and a size value. It then calls (or delegates) to the
init(origin:size:) initializer, which stores the new origin and size
values in the appropriate properties:

1 let centerRect = Rect(center: Point(x: 4.0, y: 4.0),

2 size: Size(width: 3.0, height:
3.0))

3 // centerRect's origin is (2.5, 2.5) and its size is

(3.0, 3.0)

The init(center:size:) initializer could have assigned the new
values of origin and size to the appropriate properties itself.
However, it’'s more convenient (and clearer in intent) for the
init(center:size:) initializer to take advantage of an existing
initializer that already provides exactly that functionality.

PDF conversion courtesy of www.appsdissected.com

NOTE

For an alternative way to write this example without defining the init () and
init(origin:size:) initializers yourself, see Extensions.

Class Inheritance and Initialization

All of a class’s stored properties—including any properties the class
inherits from its superclass—must be assigned an initial value during
initialization.

Swift defines two kinds of initializers for class types to help ensure all
stored properties receive an initial value. These are known as
designated initializers and convenience initializers.

Designated Initializers and Convenience Initializers
Designated initializers are the primary initializers for a class. A
designated initializer fully initializes all properties introduced by that
class and calls an appropriate superclass initializer to continue the
initialization process up the superclass chain.

Classes tend to have very few designated initializers, and it’s quite
common for a class to have only one. Designated initializers are
“funnel” points through which initialization takes place, and through
which the initialization process continues up the superclass chain.

Every class must have at least one designated initializer. In some
cases, this requirement is satisfied by inheriting one or more
designated initializers from a superclass, as described in Automatic
Initializer Inheritance below.

PDF conversion courtesy of www.appsdissected.com

Convenience initializers are secondary, supporting initializers for a
class. You can define a convenience initializer to call a designated
initializer from the same class as the convenience initializer with
some of the designated initializer’s parameters set to default values.
You can also define a convenience initializer to create an instance of
that class for a specific use case or input value type.

You don’t have to provide convenience initializers if your class
doesn’t require them. Create convenience initializers whenever a
shortcut to a common initialization pattern will save time or make
initialization of the class clearer in intent.

Syntax for Designated and Convenience Initializers
Designated initializers for classes are written in the same way as
simple initializers for value types:

init(parameters) {

statements

Convenience initializers are written in the same style, but with the
convenience modifier placed before the init keyword, separated by
a space:

convenience init(parameters) {

statements

Initializer Delegation for Class Types
To simplify the relationships between designated and convenience
initializers, Swift applies the following three rules for delegation calls

PDF conversion courtesy of www.appsdissected.com

between initializers:
Rule 1

A designated initializer must call a designated initializer from its
immediate superclass.

Rule 2

A convenience initializer must call another initializer from the
same class.

Rule 3

A convenience initializer must ultimately call a designated
initializer.

A simple way to remember this is:
« Designated initializers must always delegate up.
« Convenience initializers must always delegate across.

These rules are illustrated in the figure below:

Superclass

Designated <«—— Convenience <——— Convenience

\ Subclass

Designated Designated -«—— Convenience

PDF conversion courtesy of www.appsdissected.com

Here, the superclass has a single designated initializer and two
convenience initializers. One convenience initializer calls another
convenience initializer, which in turn calls the single designated
initializer. This satisfies rules 2 and 3 from above. The superclass
doesn't itself have a further superclass, and so rule 1 doesn’t apply.

The subclass in this figure has two designated initializers and one
convenience initializer. The convenience initializer must call one of
the two designated initializers, because it can only call another
initializer from the same class. This satisfies rules 2 and 3 from
above. Both designated initializers must call the single designated
initializer from the superclass, to satisfy rule 1 from above.

NOTE

These rules don’t affect how users of your classes create instances of each
class. Any initializer in the diagram above can be used to create a fully
initialized instance of the class they belong to. The rules only affect how you
write the implementation of the class’s initializers.

The figure below shows a more complex class hierarchy for four
classes. It illustrates how the designated initializers in this hierarchy
act as “funnel” points for class initialization, simplifying the
interrelationships among classes in the chain:

PDF conversion courtesy of www.appsdissected.com

Designated -«+——— Convenience -——— Convenience

*®

AN

™
0

Convenience ——» Designated <—— Convenience

|

Convenience ——» Designated <—— Convenience

Designated Designated <—— Convenience

Two-Phase Initialization

Class initialization in Swift is a two-phase process. In the first phase,
each stored property is assigned an initial value by the class that
introduced it. Once the initial state for every stored property has been
determined, the second phase begins, and each class is given the
opportunity to customize its stored properties further before the new
instance is considered ready for use.

The use of a two-phase initialization process makes initialization safe,
while still giving complete flexibility to each class in a class hierarchy.
Two-phase initialization prevents property values from being
accessed before they’re initialized, and prevents property values from
being set to a different value by another initializer unexpectedly.

PDF conversion courtesy of www.appsdissected.com

NOTE

Swift’s two-phase initialization process is similar to initialization in Objective-C.
The main difference is that during phase 1, Objective-C assigns zero or null
values (such as 0 or nil) to every property. Swift’s initialization flow is more
flexible in that it lets you set custom initial values, and can cope with types for
which 0 or nil isn’t a valid default value.

Swift’'s compiler performs four helpful safety-checks to make sure that
two-phase initialization is completed without error:

Safety check 1

A designated initializer must ensure that all of the properties
introduced by its class are initialized before it delegates up to a
superclass initializer.

As mentioned above, the memory for an object is only considered
fully initialized once the initial state of all of its stored properties is
known. In order for this rule to be satisfied, a designated initializer
must make sure that all of its own properties are initialized before it
hands off up the chain.

Safety check 2

A designated initializer must delegate up to a superclass
initializer before assigning a value to an inherited property. If it
doesn’t, the new value the designated initializer assigns will be
overwritten by the superclass as part of its own initialization.

Safety check 3

A convenience initializer must delegate to another initializer
before assigning a value to any property (including properties
defined by the same class). If it doesn’t, the new value the
convenience initializer assigns will be overwritten by its own
class’s designated initializer.

PDF conversion courtesy of www.appsdissected.com

Safety check 4

An initializer can’t call any instance methods, read the values of
any instance properties, or refer to se1f as a value until after the
first phase of initialization is complete.

The class instance isn’t fully valid until the first phase ends.
Properties can only be accessed, and methods can only be called,
once the class instance is known to be valid at the end of the first
phase.

Here’s how two-phase initialization plays out, based on the four
safety checks above:

Phase 1

A designated or convenience initializer is called on a class.

Memory for a new instance of that class is allocated. The
memory isn’t yet initialized.

A designated initializer for that class confirms that all stored
properties introduced by that class have a value. The memory for
these stored properties is now initialized.

The designated initializer hands off to a superclass initializer to
perform the same task for its own stored properties.

This continues up the class inheritance chain until the top of the
chain is reached.

Once the top of the chain is reached, and the final class in the
chain has ensured that all of its stored properties have a value,
the instance’s memory is considered to be fully initialized, and
phase 1 is complete.

Phase 2

PDF conversion courtesy of www.appsdissected.com

« Working back down from the top of the chain, each designated
initializer in the chain has the option to customize the instance
further. Initializers are now able to access self and can modify
its properties, call its instance methods, and so on.

« Finally, any convenience initializers in the chain have the option
to customize the instance and to work with self.

Here’s how phase 1 looks for an initialization call for a hypothetical
subclass and superclass:

Superclass

Safety check 1

N Subclass

Safety check1 —=—— Called

In this example, initialization begins with a call to a convenience
initializer on the subclass. This convenience initializer can’t yet
modify any properties. It delegates across to a designated initializer
from the same class.

The designated initializer makes sure that all of the subclass’s
properties have a value, as per safety check 1. It then calls a
designated initializer on its superclass to continue the initialization up
the chain.

The superclass’s designated initializer makes sure that all of the
superclass properties have a value. There are no further
superclasses to initialize, and so no further delegation is needed.

PDF conversion courtesy of www.appsdissected.com

As soon as all properties of the superclass have an initial value, its
memory is considered fully initialized, and phase 1 is complete.

Here’s how phase 2 looks for the same initialization call:

Superclass

Customize

N\ Subclass

Customize —_— Customize

The superclass’s designated initializer now has an opportunity to
customize the instance further (although it doesn’t have to).

Once the superclass’s designated initializer is finished, the subclass’s
designated initializer can perform additional customization (although
again, it doesn’t have to).

Finally, once the subclass’s designated initializer is finished, the
convenience initializer that was originally called can perform
additional customization.

Initializer Inheritance and Overriding

Unlike subclasses in Objective-C, Swift subclasses don’t inherit their
superclass initializers by default. Swift’s approach prevents a
situation in which a simple initializer from a superclass is inherited by
a more specialized subclass and is used to create a new instance of
the subclass that isn’t fully or correctly initialized.

PDF conversion courtesy of www.appsdissected.com

NOTE

Superclass initializers are inherited in certain circumstances, but only when
it’s safe and appropriate to do so. For more information, see Automatic
Initializer Inheritance below.

If you want a custom subclass to present one or more of the same
initializers as its superclass, you can provide a custom
implementation of those initializers within the subclass.

When you write a subclass initializer that matches a superclass
designated initializer, you are effectively providing an override of that
designated initializer. Therefore, you must write the override modifier
before the subclass’s initializer definition. This is true even if you are
overriding an automatically provided default initializer, as described in
Default Initializers.

As with an overridden property, method or subscript, the presence of
the override modifier prompts Swift to check that the superclass has
a matching designated initializer to be overridden, and validates that
the parameters for your overriding initializer have been specified as
intended.

NOTE

You always write the override modifier when overriding a superclass
designated initializer, even if your subclass’s implementation of the initializer
is a convenience initializer.

Conversely, if you write a subclass initializer that matches a
superclass convenience initializer, that superclass convenience
initializer can never be called directly by your subclass, as per the
rules described above in |nitializer Delegation for Class Types.
Therefore, your subclass is not (strictly speaking) providing an
override of the superclass initializer. As a result, you don’t write the
override modifier when providing a matching implementation of a
superclass convenience initializer.

PDF conversion courtesy of www.appsdissected.com

The example below defines a base class called vehicle. This base
class declares a stored property called number0fwheels, with a default
Int value of 0. The numberofwheels property is used by a computed
property called description to create a String description of the
vehicle’s characteristics:

1 class Vehicle {

2 var numberOfWheels = 0

3 var description: String {

4 return "\ (numberOfWheels) wheel(s)"
5 }

6}

The vehicle class provides a default value for its only stored
property, and doesn’t provide any custom initializers itself. As a
result, it automatically receives a default initializer, as described in
Default Initializers. The default initializer (when available) is always a
designated initializer for a class, and can be used to create a new
Vehicle instance with a number0fwheels of 0:

1 let vehicle = Vehicle()
2 print("Vehicle: \(vehicle.description)")

3 // Vehicle: 0 wheel(s)

The next example defines a subclass of vehicle called Bicycle:

PDF conversion courtesy of www.appsdissected.com

1 class Bicycle: Vehicle {

2 override init() {

3 super.init()

2 numberOfWheels = 2
5 ¥

6 }

The Bicycle subclass defines a custom designated initializer, init().
This designated initializer matches a designated initializer from the
superclass of Bicycle, and so the Bicycle version of this initializer is
marked with the override modifier.

The init() initializer for Bicycle starts by calling super.init(),
which calls the default initializer for the Bicycle class’s superclass,
Vehicle. This ensures that the numberOfwheels inherited property is
initialized by Vehicle before Bicycle has the opportunity to modify
the property. After calling super.init (), the original value of
numberOfWheels is replaced with a new value of 2.

If you create an instance of Bicycle, you can call its inherited
description computed property to see how its numberOfWheels
property has been updated:

1 let bicycle = Bicycle()
2 print("Bicycle: \(bicycle.description)")
3 // Bicycle: 2 wheel(s)

If a subclass initializer performs no customization in phase 2 of the
initialization process, and the superclass has a synchronous, zero-
argument designated initializer, you can omit a call to super.init()
after assigning values to all of the subclass’s stored properties. If the

PDF conversion courtesy of www.appsdissected.com

superclass’s initializer is asynchronous, you need to write await
super.init() explicitly.

This example defines another subclass of vehicle, called
Hoverboard. In its initializer, the Hoverboard class sets only its color
property. Instead of making an explicit call to super.init(), this
initializer relies on an implicit call to its superclass’s initializer to
complete the process.

1 class Hoverboard: Vehicle {

2 var color: String

3 init(color: String) {

4 self.color = color

5 // super.init() implicitly called here

6 }

7 override var description: String {

8 return "\(super.description) in a beautiful
\(color)"

9 ¥

10}

An instance of Hoverboard uses the default number of wheels
supplied by the vehicle initializer.

1 let hoverboard = Hoverboard(color: "silver")
2 print("Hoverboard: \(hoverboard.description)")

3 // Hoverboard: O wheel(s) in a beautiful silver

PDF conversion courtesy of www.appsdissected.com

NOTE

Subclasses can modify inherited variable properties during initialization, but
can’t modify inherited constant properties.

Automatic Initializer Inheritance

As mentioned above, subclasses don’t inherit their superclass
initializers by default. However, superclass initializers are
automatically inherited if certain conditions are met. In practice, this
means that you don’t need to write initializer overrides in many
common scenarios, and can inherit your superclass initializers with
minimal effort whenever it’s safe to do so.

Assuming that you provide default values for any new properties you
introduce in a subclass, the following two rules apply:

Rule 1

If your subclass doesn’t define any designated initializers, it
automatically inherits all of its superclass designated initializers.

Rule 2

If your subclass provides an implementation of all of its
superclass designated initializers —either by inheriting them as
per rule 1, or by providing a custom implementation as part of its
definition—then it automatically inherits all of the superclass
convenience initializers.

These rules apply even if your subclass adds further convenience
initializers.

NOTE

A subclass can implement a superclass designated initializer as a subclass
convenience initializer as part of satisfying rule 2.

PDF conversion courtesy of www.appsdissected.com

Designated and Convenience Initializers in Action

The following example shows designated initializers, convenience
initializers, and automatic initializer inheritance in action. This
example defines a hierarchy of three classes called Food,
Recipelngredient, and ShoppingListItem, and demonstrates how
their initializers interact.

The base class in the hierarchy is called Food, which is a simple class
to encapsulate the name of a foodstuff. The Food class introduces a
single String property called name and provides two initializers for
creating Food instances:

class Food {
var name: String
init(name: String) {

self.name = name

convenience init() {

1

2

3

4

5 ¥
6

7 self.init(name: " [Unnamed]")
8

9

by

The figure below shows the initializer chain for the Food class:

class Food
var name: String

Convenience Designated

. —_—
Tnitil) init(name)

PDF conversion courtesy of www.appsdissected.com

Classes don’t have a default memberwise initializer, and so the Food
class provides a designated initializer that takes a single argument
called name. This initializer can be used to create a new Food instance
with a specific name:

1 let namedMeat = Food(name: "Bacon")

2 // namedMeat's name 1is "Bacon"

The init(name: String) initializer from the Food class is provided as
a designated initializer, because it ensures that all stored properties
of a new Food instance are fully initialized. The Food class doesn’t
have a superclass, and so the init(name: String) initializer doesn’t
need to call super.init() to complete its initialization.

The Food class also provides a convenience initializer, init (), with
no arguments. The init () initializer provides a default placeholder
name for a new food by delegating across to the Food class’s
init(name: String) with a name value of [Unnamed]:

1 let mysteryMeat = Food()

2 // mysteryMeat's name is " [Unnamed]"

The second class in the hierarchy is a subclass of Food called
RecipeIngredient. The RecipeIngredient class models an ingredient
in a cooking recipe. It introduces an Int property called quantity (in
addition to the name property it inherits from Food) and defines two
initializers for creating RecipeIngredient instances:

PDF conversion courtesy of www.appsdissected.com

1 class RecipeIngredient: Food {

2 var quantity: Int

3 init(name: String, quantity: Int) {

4 self.quantity = quantity

5 super.init(name: name)

6 }

7 override convenience init(name: String) {
8 self.init(name: name, quantity: 1)

9 }

10 %

The figure below shows the initializer chain for the RecipeIngredient
class:

class Food
var name: String

class Recipelngredient: Food
var quantity: Int

The RecipelIngredient class has a single designated initializer,
init(name: String, quantity: Int),which can be used to populate

PDF conversion courtesy of www.appsdissected.com

all of the properties of a new Recipelngredient instance. This
initializer starts by assigning the passed quantity argument to the
quantity property, which is the only new property introduced by
RecipeIngredient. After doing so, the initializer delegates up to the
init(name: String) initializer of the Food class. This process
satisfies safety check 1 from Two-Phase Initialization above.

RecipeIngredient also defines a convenience initializer, init (name:
String), which is used to create a Recipelngredient instance by
name alone. This convenience initializer assumes a quantity of 1 for
any RecipeIngredient instance that’s created without an explicit
quantity. The definition of this convenience initializer makes
Recipelngredient instances quicker and more convenient to create,
and avoids code duplication when creating several single-quantity
RecipeIngredient instances. This convenience initializer simply
delegates across to the class’s designated initializer, passing in a
quantity value of 1.

The init(name: String) convenience initializer provided by
RecipeIngredient takes the same parameters as the init(name:
String) designated initializer from Food. Because this convenience
initializer overrides a designated initializer from its superclass, it must
be marked with the override modifier (as described in Initializer
Inheritance and Overriding).

Even though Recipelngredient provides the init(name: String)
initializer as a convenience initializer, RecipeIngredient has
nonetheless provided an implementation of all of its superclass’s
designated initializers. Therefore, Recipelngredient automatically
inherits all of its superclass’s convenience initializers too.

In this example, the superclass for RecipeIngredient is Food, which
has a single convenience initializer called init (). This initializer is
therefore inherited by Recipelngredient. The inherited version of
init() functions in exactly the same way as the Food version, except

PDF conversion courtesy of www.appsdissected.com

that it delegates to the RecipeIngredient version of init(name:
String) rather than the Food version.

All three of these initializers can be used to create new
Recipelngredient instances:

1 let oneMysteryItem = Recipelngredient()
2 let oneBacon = Recipelngredient(name: "Bacon")
3 let sixEggs = Recipelngredient(name: "Eggs",

quantity: 6)

The third and final class in the hierarchy is a subclass of
RecipeIngredient called ShoppingListItem. The ShoppinglListItem
class models a recipe ingredient as it appears in a shopping list.

Every item in the shopping list starts out as “unpurchased”. To
represent this fact, ShoppingListItem introduces a Boolean property
called purchased, with a default value of false. ShoppingListItem
also adds a computed description property, which provides a textual
description of a ShoppingListIteminstance:

class ShoppingListItem: RecipeIngredient {
var purchased = false
var description: String {
var output = "\(quantity) x \(name)"
output += purchased ? " +»" : " x"

return output

o N o ul A W N R

PDF conversion courtesy of www.appsdissected.com

NOTE

ShoppinglListItem doesn’t define an initializer to provide an initial value for
purchased, because items in a shopping list (as modeled here) always start
out unpurchased.

Because it provides a default value for all of the properties it
introduces and doesn’t define any initializers itself, ShoppingListItem
automatically inherits all of the designated and convenience
initializers from its superclass.

The figure below shows the overall initializer chain for all three
classes:

PDF conversion courtesy of www.appsdissected.com

class Food
var name: String

--

class RecipeIngredient: Food
var quantity: Int

class ShoppingListItem: Rgcipelngredient
var purchased = false

You can use all three of the inherited initializers to create a new
ShoppingListItem instance:

PDF conversion courtesy of www.appsdissected.com

1 var breakfastList = [

2 ShoppingListItem(),

3 ShoppingListItem(name: "Bacon"),

4 ShoppingListItem(name: "Eggs", quantity: 6),
5 1

6 breakfastList[@].name = "Orange juice"
7 breakfastList[@].purchased = true

8 for item in breakfastList {

9 print(item.description)

10}

11 // 1 x Orange juice v

12 // 1 x Bacon x

13 // 6 x Eggs x

Here, a new array called breakfastList is created from an array
literal containing three new ShoppingListItem instances. The type of
the array is inferred to be [ShoppingListItem]. After the array is
created, the name of the ShoppingListItem atthe start of the array is
changed from " [Unnamed]" to "Orange juice" and it’s marked as
having been purchased. Printing the description of each item in the
array shows that their default states have been set as expected.

Fail