
PIOTR FULMAŃSKI

Learn Swift by examples
BEGINNER LEVEL

EARLY ACCESS VERSION
EDITION 1.0, JUNE 2021

SIMPLE INTRODUCTION SERIES

Learn Swift by examples
Beginner level
SIMPLE INTRODUCTION SERIES

Copyright © 2021-2022, Piotr Fulmański
All rights reserved
www: https://fulmanski.pl
email: book@fulmanski.pl
GitHub: https://github.com/fulmanp/Learn-Swift-by-examples-beginner

Edition: 1
First published: 1.0, January 2022 (planned)
This edition: 1.0, June 2021 (early access)
Build number: 202106251400

eBook (pdf, epub)
ISBN-13: 978-83-957405-1-0

https://fulmanski.pl
mailto:book@fulmanski.pl
https://github.com/fulmanp/Learn-Swift-by-examples-beginner

While the author has used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages
resulting from the use of or reliance on this work. Use of the information and
instructions contained in this work is at your own risk. The author makes no warranty,
express or implied, with respect to the material contained herein.

If any code samples, software or any other technology this work contains or describes
is subject to open source licenses or the intellectual property rights of others, it is your
responsibility to ensure that your use thereof complies with such licenses and/or
rights.

All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Release Notes

(A – add, N – new, U – update)

Edition 1.0
release: June 2021

• List of topics and terms (N)
• Chapter 2: Variables and functions (A) [add escaping closures]
• Chapter 9: Protocols and generics (A) [add more examples]
• Chapter 10: Miscellaneous topics (A) [add case-let pattern]

Edition 1.0
release: May 2021

• Chapter 7: Code completion (A) [add solutions to tasks]
• Chapter 9: Protocols and generics (A) [add image, add new subsections]

Edition 1.0
release: April 2021

• Chapter 1, Section 1: Battleship game (N)
• Chapter 6: Properties, dictionaries and sets (N)
• Chapter 7: Code completion (N)
• Chapter 8: Structures, inheritance and errors handling (N)
• Chapter 9: Protocols and generics (N)
• Chapter 10: Miscellaneous topics (N)

Edition 1.0
release: March 2021

• Preface (N)
• Chapter 1: Initial steps (N)
• Chapter 2: Variables and functions (N)
• Chapter 3: Arrays and enumerations (N)
• Chapter 4: Type methods, guards and string interpolations (N)
• Chapter 5: Tuples, switch and extensions (N)

Table of contents

Preface xv ..

Initial steps 23 ..

Battleship game 25 ...

Create project 29 ..

Variables and functions 37 ...

Variables 39 ..

Optionals 49 ...

Functions 57 ...

More about functions – closures 71 ...

Arrays and enumerations 87 ..

Arrays 89 ..

Enumerations 101 ..

Range operators 107 ..

Game code – add initializer 109 ..

Type methods, guards and string interpolation 115

Type methods 117 ...

Guards 123 ...

String interpolation 129 ...

Game code 133 ...

Tuples, switch and extensions 137 ...

Tuples 139 ..

switch - case statement 143 ...

Extensions 149 ...

Game code 157 ..

v i i

Properties, dictionaries and sets 165 ..

Property types 167 ..

Dictionaries 179 ..

Sets 185 ...

Game code 189 ...

Code completion 201 ..

Tasks to complete, part 1 203 ..

Tests for part 1 209 ..

Tasks solutions, part 1 215 ...

Tasks to complete, part 2 221 ..

Tasks solutions, part 2 229 ..

Structures, inheritance and errors handling 233 ...

Structures 235 ..

Inheritance 243 ..

Type checking and casting 249 ..

Access control 259 ...

Errors handling 265 ...

Protocols and generics 271 ...

Protocols 273 ..

Structs and inheritance 295 ...

Generics 305 ..

Miscellaneous topics 317 ..

This is not the end 319 ...

case-let pattern 321 ..

Bibliography 327...

v i i i

i x

x

array
- predefined size
- concatenate
- range
- iterate over
case
- bind values
- case-let
- for-case-let
- guard-case-let
- if-case-let
- pattern matching
- switch-case
class
- access control
- class method (type method)
- final
- function (method, action)
- instance
- instance method
- object
closure
- trailing closure
- escaping closure (@escaping)
constant
defer (see also: error)
dictionary
enumeration (enum)
- enumeration associated values
error
- throw
- do-catch
extension
fall through

force unwrap (!)
function (see also: method)
- anonymous function
- argument label
- default parameter
- in-out parameter
- nested function
- parameter name
- return implicit
- throwing function
- type
- unwanted result (_)
- variadic parameter
generic
guard
inheritance
initializer
instance method 114
method (action)
- class (type) method
- instance method
- mutating method
- override
operator
- closed range operator (...)
- half-open range operator (..<)
optional
- binding
- implicitly unwrapped optionals (!)
- multiple optional chaining
- nil-coalescing operator (??)
polymorphism
property (field)
- computed property

x i

List of topics and terms

- lazy stored property
- property observer
- stored property
- type property
- property wrapper
protocol
- associated type
- protocol composition
- protocol default implementation
- required
string interpolation
structure
switch-case
- fall through
- see also: case
tuple
type
- type annotation
- associated type
- reference type
- value type
variable

x i i

x i i i

x i v

Preface

Who this book is for

This book is addressed to all the people who want to learn basics
of Swift. Although I pay great attention to make all the contents
intuitive and easy to follow, this is not a book to learn
programming – I assume you have at least basic programming skills.
Moreover, you should have basic general programming knowledge
(what a loop is, what kinds of loops we have, what a conditional
statement is etc) as well as basic knowledge about object oriented
programming paradigms (what a class is, methods and properties).
This book is NOT intended to give you a complete Swift
programming overview. I will not discuss all the topic exhaustively;
of course I do my best to show as much aspect of Swift as I only can but
not in price of clearness, readability and understandability. I want to
give you as many examples as I only can. My idea is to give all
the people who ever known any other (imperative)
programming language a good starting point to work with and
learn Swift. If you think: Great, I know C (or Java, Python, Pascal,
etc) and I want to know some basics of Swift to get know if it's worth
to spend my time to learn it – then this book is for you.

Early access

This book is a work in progress, presented in early access version. Early
access allows to publish and share some ideas before the final version
appears. This way, participating in an early access, you may contribute

x v

how the final version will look like. English is not my native language
and I know that I make a lot of mistakes but I hope that text is more
than readable and at least a little bit understandable. I believe that
everything can be better and there is always a space for improvements. I
can say that the Toyota Way is the way I live and work focusing
on continuous improvement, and respect for people. That is
why I would be very grateful if you somehow contribute improving this
book. Any comments, corrections and suggestions are more than
welcome. I write this book not for myself but to share what I know with
others, so help me make it’s contents better.

I want this book to be available for free in full version. However if you
want to financially support me you can choose a paid option.
I need money to finish it and to make it better. Everything costs. The
most precious is time. I, as all other people, have to work to live and to
support my family. And this consumes most of my days. Then I have a
choice: play with kids or write a book. I choose playing with kids. I don’t
want to reduce a time spent with my family because I don’t want to be a
virtual parent. So I have just a little time for book. Paying for a book you
allow me to reduce my job engagement (from full-time to half-time) and
spending more time on book without sacrificing my family life.
Moreover, having money I can pay for professional translation, text
correction or simply buy better images.

I believe there is no book like this on the market and I want to make it
better and better. I can do this. I don’t have to ask publisher if they
agree to prepare another version. If something deserves for
improvement I simply do this and publish right after that.

What will you learn in this book?

I don’t want to write this book and forget. My idea is to keep it as
accurate and up to date as it is only possible so you can expect updates
in a future even if I reach stable “final” version. As I wrote above, always

x v i

there is something to improve. As for now book covers the following
topics:

Preface This is what you are reading right now. Here I explain what
you can expect in this book. I also try to convince you to actively
participate in shaping it’s contents.

Chapter 1 Initial steps. Battleship game is a simple game but there are
few variants so I will present rules you have to preserve during
implementation. Next you will create a project. In this chapter you will
learn how to create a project.

Chapter 2 Variables and functions. You will learn about the most
fundamental bricks of every code: constants, variables and functions.
You will also get knowledge about optional types and create your first
class "stub".

Chapter 3 Arrays and enumerations. In this chapter you will create a
very basic classes with properties, initializers and methods. One of them
you will use to represent game board and another one to be an entry
point to the whole game logic. You will learn how to create and use
arrays. You will also get knowledge about enumerations and very useful
range operators.

Chapter 4 Type methods, guards and string interpolation. In this part
you will start implement method to printing game board. You will learn
what type methods are and how they differ from instance methods. I
will try to convince you that guards are not only just a replacement to
ifs. You will also get knowledge how to use string interpolation to
construct a new string from a mix of constants, variables, literals, and
expressions by including their values inside a string literal.

Chapter 5 Tuples, switch and extensions. You will finish implementing
printing game board method. You will also create a class related to ships
and implement one method to use with this type. You will learn about

x v i i

tuples – "small thing" making your programmers life simpler. I will
show you how Swift turns switch-case statement into handy tool and
how to separate your code with extensions.

Chapter 6 Properties, dictionaries and sets. You will finish
implementing printing game board method. You will also create a class
related to ships and implement one method to use with this type. You
will learn about various property types. After reading this chapter you
will have also good understanding how to create and use two important
data structures: dictionaries and sets.

Chapter 7 Code completion. This chapter allows you to test yourself. I
will give you some simple tasks related to battleship game and you will
try to implement adequate solutions. Next you can compare your code
with mine. In this chapter you will finish game code.

Chapter 8 Structures, inheritance and errors handling. In this part you
will extend your knowledge with information on more advanced topics.
You will learn about structures, inheritance and exceptions.

Chapter 9 Protocols and generics. In this part you will continue
extending your knowledge with information on more advanced topics.
You will learn about protocols and writing write general purpose code
with generics.

Chapter 10 This is not the end. This chapter is a summary chapter.

What you will NOT learn in this book?

This book is not intended to give a complete Swift
programming overview. I will not discuss all the topic
exhaustively, and only deal with topics that are necessary to
understand the content and most important features of Swift.

x v i i i

Final word

If some part of text or code is not clear and you have problems to
understand it, please let me know. I will try to rewrite it to make it more
clear. Remember: this book is written by me for you not just for
my complacency.

Give this book a try, and please let me know what you think. Any
feedback is very much encouraged and welcomed! If you think that my
time is worth this effort, you can support what I’m doing now and help
me finalize this project. Please use email (book@fulmanski.pl) or
GitHub (https://github.com/fulmanp/Learn-Swift-by-examples-
beginner/issues) to give your positive or negative, but in all cases
constructive, feedback.

Thank you for your engagement.

Piotr Fulmański

x i x

mailto:book@fulmanski.pl
https://github.com/fulmanp/Learn-Swift-by-examples-beginner/issues
https://github.com/fulmanp/Learn-Swift-by-examples-beginner/issues
https://github.com/fulmanp/Learn-Swift-by-examples-beginner/issues

Conventions used in this book

For your convenience I will use the following typographical convention:

Italic
Indicates new terms.

Italic
Indicates old terms but for some reason I want to distinguish them from
normal text flow, definitions, citations.

Constant width
Indicates filenames, file extensions, text of Xcode messages.

Constant width
Indicates commands or any other text that you should type literally (as
it is given), for example text filed input.

Constant width
Indicates anything which is related to source code but is placed inline.

Bold
Indicates application names, menu. It also indicates statements which
you need to pay special attention to.

Sometimes it is used in combination with previous styles, for example:
Constant width with bolded part  
This way I will mark for example crucial parameter in some important
command.

This is how source  
code is displayed

x x

This is how a terminal  
text is displayed with  
bolded command prompt.

Something worth to remember or just one-sentence summary of
some part of a section or chapter.

NOTE

Note block

I use this block to give you some additional explanation or information,

possibly loosely related to a main text.

x x i

x x i i

CHAPTER 1

Initial steps

You will do:

Battleship game is a simple game but there are few variants so I will

present rules you have to preserve during implementation. Next you

will create a project.

You will learn:

• You will learn how to create a project.

2 4

SECTION 1

Battleship game

Showing you all Swift's concept I try to wrap them in one consistent
form. I decide to build my narration around simple game – simple
enough not to have to explain complex rules and at the same time giving
enough flexibility to be able to show as much as possible.

Battleship is known worldwide as a pencil and paper game which dates
from World War I. The game is played on four grids, two for each
player. On one grid the player arranges ships and records the shots by
the opponent. On the other grid the player records their own shots.

The grids are typically square – usually 10 by 10 – and the individual
cells (squares) in the grid are identified by letter and number (one of
them to specify row and the other for column). In version you will
implement, numbers will be used for both rows and columns – you will
provide cell coordinates as a pair of numbers, where first component
corresponds to row and second to column. This assumption allows to
create arbitrary large game boards (grids) without fear of running out of
letters to indicate one of coordinates. Moreover you can treat both
coordinates as integer values and use directly to index array element.

Before play begins, each player secretly arranges their ships on their
primary grid. Each ship occupies a number of consecutive cells on the
grid, arranged either horizontally or vertically. The number of cells for
each ship is determined by the type of the ship. The ships cannot
overlap (i.e., only one ship can occupy any given cell in the grid) or
touch themselves (there must be minimum one cell separating two cells

2 5

belonging to two different ships). The types and numbers of ships
allowed are the same for each player. These may vary depending on the
rules. In version you will implement, you may use any number of ships
of any size you want of course, as long as they fit on the board without
breaking any game rules. Below I give some examples of correct and
incorrect ships arrangements (1 ship of size 4, 2 of size 3, 3 of size 2 and
4 of size 1):

 Correct Incorrect

 1 1
 1234567890 1234567890
 1..XX.....X 1D......X..
 2.......... 2D.........
 3.XX..X.... 3.EEE......
 4.....X.X.. 4.....AA..X
 5...X.X.... 5.....A.....
 6...X.X..X. 6.....A.....
 7...X...... 7.X........
 8.......... 8......B&..
 9XX....XXX. 9F......C..
10...X...... 10FG.....C..

To allow easier identification of ships breaking rules, I marked them
with letters different than X:

• Ship A: this is a ship of size 4 and it doesn't lay in a straight line.

• Ship B is of size 3 and overlaps (cell marked with & character) with
ship C of size 3.

• Ship D is of size 2 and touches diagonally ship E of size 3.

• Ship F is of size 2 and touches linearly ship G of size 1.

After the ships have been positioned, the game proceeds in a series of
rounds. In each round, each player takes a turn to announce a target cell
in the opponent's grid which is to be shot at. The opponent replies
whether or not the cell is occupied by a ship and in consequence wether
it is a hit or miss. Both players mark result (hit or miss) on their

2 6

respective grids. The attacked player do this to know how many ships
are still under his or her command. The attacking player marks shot
results, in order to build up a picture of the opponent's fleet.

When all of the cells of a ship have been hit, the ship's owner announces
its sinking. If all of a player's ships have been sunk, the game is over and
their opponent wins.

2 7

2 8

SECTION 2

Create project

Creating a project is quite simple and involves just a few steps. To play
with Swift you have to use right tool. If you have an Apple computer,
Xcode application is a right choice.

On Apple computer please follow these steps:

1. Find Xcode and run it clicking on it's icon:

2. Just after start a welcome screen will be displayed:

2 9

Select Create a new Xcode project. If this window is not present on
a screen press Shift + Command + N or select from top menu File /
New / Project.... In either case a new project template selection
window is displayed:

Select Command line tool.

3. Next you have to provide some project identification data:

3 0

• Product Name – it is a name of our "product". Choose it carefully,
because changing it in a future, although possible, is not so easy.

• Team – select your team if you have any.

• Organization Identifier – an identifier of an "organization"; may
be a company name, developer name, reverse domain name as it is
in my case or any other name.

• Bundle Identifier – this is something which identifies your
"product" and is formed as a result of concatenating Organization
Identifier and Product Name. Must be unique if you want one
day upload your product to App Store. This is why Organization
Identifier should be something really unique – reverse domain
name is on of a method to meet this condition. As long as we only
test some code or we don't want to put it in the App Store both
names may be any strings you want.

• Language – select Swift.

Click Next button.

4. Now you have to select location where you want to save your project:

3 1

If you want to keep the code under source control, check Create Git
repository on my Mac.

This was the last step and main Xcode window will appear:

Selecting main.swift file from the tree displayed in the Project
navigator located on the left part of the main window displays the code
located in this file:

3 2

Press Command + R or select from top menu Product / Run, or
press "play" button to compile and execute a code.

Sometimes firs run takes more time than you expect. Please be patient
and be sure that Console Output window is displayed in Debug
Area. If not, it can be turn on with a button located in the right-bottom
corner of a main window. It’s the last icon on the lower right side of the
panel:

Sometimes it might happen that there is no Debug Area window. In
such a case press Shift + Command + Y to show or hide it. You need
Console Output window as it is a place where all messages from your
application will be displayed. Now you will see:

Hello, World!
Program ended with exit code: 0

3 3

That's all. Now your project is ready and you can work on it.

3 4

3 5

3 6

CHAPTER 2

Variables and functions

You will do:

You will learn about the most fundamental bricks of every code:

variables and functions.

You will learn:

• How to declare and define constants, variables and what optional
types are.

• How to define functions and methods.

• How to create basic class.

3 8

SECTION 1

Variables

You start with creating a Board class to be used to represent game
board in your game. Press Command + N or select from top menu
File / New / File...:

Alternatively you can select EngineGameBattleship group in the
Project navigator, right click on it and select from pop-up menu New
File...:

3 9

In either case you will see template selecting dialog:

4 0

Then select macOS and Swift File and accept it pressing Next button.

Provide file name (Board), which in case of Swift doesn't have to be
consistent with the class name you are going to put inside (although it's
a good habit):

Press Create to create the file. Initial contents of this file is almost
empty except import declaration:

import Foundation

Import lets you have an access to symbols that are declared in another
module/library/framework (different names are used). The
Foundation is one of the fundamental framework. It provides a base
layer of functionality for apps and other frameworks, including data
storage and persistence, text processing, date and time calculations,
sorting and filtering, and networking.

4 1

Add to Board.swift file your board class stub:

class Board {

}

This is a "frame" enclosing code of a class. At the very first beginning
add some variables to store information about board: number of rows
and columns as well as board cell types (variables present inside a class
are called properties):

class Board {
 private let rows, cols: Int
 private var board: [[CellType]]
}

Classes (and structures) are general-purpose, fundamental building
blocks of any programming language supporting object-oriented
paradigm. With classes you define "template" to create objects
(instantiate class) possessing the same set of properties and with the
same set of actions (functions; sometimes known as methods) typical
for a given type of objects. You define properties and functions in your
classes and structures using the same syntax you use to define typical
unrelated constants, variables, and functions.

Is's worth to note that in Swift the term instance is preferred over the
term object, mostly because it is right both in case of instances of
classes, typically in other programming languages named an objects,
and in case of instances of structures.

To get an access to properties or functions of instantiated class you use a
typical "dot notation":

let instance = someClass()
print(instance.x) // Get an access to a property 'x'
instance.someFunction() // Call function 'someFunction'

4 2

See Chapter 8: Structures, inheritance and errors handling, Section 1:
Structures for informations about structures and brief comparison
between classes and structures.

This two simple "additions" defining three properties: rows, cols and
board, require a lot of explanations to understand what you are doing
and to fix errors which you can see know:

• Class 'Board' has no initializers

• Cannot find type 'CellType' in scope

According to Xcode's errors, there are two problems you have to solve.
First error is related to properties (variables) you have in Board class –
Swift doesn't have all the information it needs to correctly instantiate
them. To fix this you have to either provide explicite values for your
variables or provide a special method called initializer (known as
constructor in other programming languages) with code initializing
variables. Second error is related to unknown CellType type. To fix
both errors you have to:

4 3

• Get knowledge about variables in Swift – you will do it in the following
subsection.

• Get knowledge about functions to be able to implement initializer
(initializer is a special type of function) – you will do it in a Section 3:
Functions of this chapter.

• Get knowledge about arrays – you will do it in Chapter 3: Arrays and
enumerations, Section 1: Arrays.

• Get knowledge about enumeration types to implement CellType
type – you will do it in Chapter 3: Arrays and enumerations, Section 2:
Enumerations.

• Combining all this knowledge into consistent code – you will do it in
the final section of Chapter 3: Array and enumerations, Section 4:
Implementing initializers.

As you can see, at the beginning there is a lot to learn. Please don't run
away and let me explain all those topics in a simple words. Please, give
me a chance!

let and var keyword

To be able to make some experiments, please comment Board class
body:

class Board {
 //private let rows, cols: Int
 //private var board: [[CellType]]
}

Declaring "variables" in Swift you have two options:

• With keyword var you can declare real variable – a components of
your code whose contents you can change through a time. It may be

4 4

initiated as integer storing value 7 and later it can be changed to 3 or
any other value you want.

• With keyword let you can declare constant (variable) – a
components of your code whose contents, when initiated, may not be
change through a time. If initiated as integer storing value 7 it cannot
be changed and it keeps this value forever.

Remarks:

• Both variables and constants are called field or property if they are
used in a class (for example, rows is a property of Board class).

• Despite formally we differ variables and constants, if this not lead to
confusion, I will refer to both as variables.

Every object in Swift must have a type and this type must be known
during compilation. Types in Swift fall into one of two categories:

• value types, where each instance keeps a unique copy of its
data, usually defined as a struct, enum, or tuple.

• reference types, where instances share a single copy of the data, and
the type is usually defined as a class.

Type defines kind of object allowed to be stored inside an object.

• You can explicitly define a type using type annotation:

let rows, cols: Int
var board: [[CellType]]

From this code Swift knows that both rows and cols are of integer
type (Int) while board is a two-dimensional array (because of double
square brackets pairs [[]]) of objects of type CellType.

4 5

• Type can be inferred based on the object substitution instruction.
From the code below:

var foo = 1

Swift infer that foo variable must be an integer.

So, to avoid Type annotation missing in pattern error you
have to provide either a type annotation when you declare constant or
variable, or you have to assign a value to allow compiler infer the type.

In Swift every object must have a value. The following code possible to
compile in C will not compile in Swift (I skip here the matter of different
syntax):

#include <stdio.h>

int main() {
 int x;
 printf("%d", x);

 return 0;
}

In this code, first I declare variable x to be an integer and then I print it
with printf(). Every time you run this code, you may see different
result, a "random" result. Of course it is not random but x takes value
which is stored in memory cell allocated for it. If you try to write
equivalent code in Swift:

var x
print(x)

immediately you will see a Type annotation missing in
pattern error. In some sense there is an option to have uninitialized
variable in Swift if you explicitly define it as optional. Optional is a way
to indicate that some object may not have a correct value. And this is
important distinction: with optional you not say that some object has no
value but rather you say that value it has is not a correct value of a given

4 6

type. This is a little bit tricky concept so I decided to devote a separate
section discussing it.

At this moment, if you uncomment for a while variables located in
Board class you will see Class 'Board' has no initializers
message, which is the way Swift tells you that some properties in your
class have no values, which is not acceptable by Swift. Even if you add
an initializer to some of them but don't initialize all properties you will
see another message: Return from initializer without
initializing all stored properties.

4 7

4 8

SECTION 2

Optionals

As you know from previous section, every object must have a value or
must be explicitly defined as optional which is a way to indicate that this
object may not have a value. You set an optional variable to a valueless
state by assigning it the special value nil. In Swift, nil is used in case
of the absence of a (correct) value of a certain type. You may say, that
nil is a value which tells that there is no correct value. If it sounds a
little bit crazy, recall NaN "number" which is a sequence of bits
interpreted not as a number but as incorrect (non-existing) numeric
value. Optionals of any type you want can be set to nil, not just object
types. Conversely, nil cannot be used with non-optionals. If a variable
(rather constant) in your code needs to take no value, you have to
declare it as an optional value of the appropriate type.

If a variable (rather constant) in needs to take no value, you have
to declare it as an optional value of the appropriate type.

Optional is denoted by question mark ? suffixes type name: Int?,
Ship? etc. The key question is: How we can use optionals? And the
answer is not so obvious. We have few options.

DO NOTHING

Do nothing and treat optional as any other type:

var thisMayBeEmpty: Int?

4 9

print(thisMayBeEmpty)
thisMayBeEmpty = 1
print(thisMayBeEmpty)
thisMayBeEmpty = nil
print(thisMayBeEmpty)

In result you will see:

nil
Optional(1)
nil

Probably this is not what you want, as you have Optional(1) instead
of 1. Moreover, a warning message is displayed: Expression
implicitly coerced from Int? to Any which is a clear signal
that something is not used correctly.

FORCE UNWRAP

If you are sure (but you have to be sure if you don't want to crash your
application) that optional contains a non-nil value, you can force
unwrap its value with an exclamation mark ! added at the end of the
optional variable's name:

print(thisMayBeEmpty!)

if (thisMayBeEmpty != nil){
 print("Have some nonempty value: " + String(thisMayBeEmpty!))
} else {
 print("Nothing to print")
}

OPTIONAL BINDING WITH if-else

When working with optionals, if-else is something you have to use.
There is a special syntax you can use in this context. Optional binding is
used to find out whether an optional contains a value, and if so, to make
that value available as a temporary constant or variable:

if let nonempty = thisMayBeEmpty {
 print("Have some nonempty value: " + String(nonempty))
} else {
 print("Nothing to print")

5 0

}

Notice that for nonempty you don't have to use an exclamation mark.

If you chain together multiple optional bindings, the entire chain
fails gracefully if any link in the chain is nil.

You can do even more: you can chain together multiple optional
bindings, and the entire chain fails gracefully if any link in the chain is
nil:

let number1: Int?
let number2: Int?

number1 = 2
number2 = nil

if let value1 = number1, let value2 = number2 {
 print(value1, value2)
} else {
 print("One of values is nil")
}

In this case you will see:

One of values is nil

USE nil-COALESCING OPERATOR

Another handy tool you can use is the nil-coalescing operator ??. When
used, for example in expression (a ?? b), it unwraps an optional a if
it contains a value, or return a default value b if a is nil. The expression
b must match the type that is stored inside a. Executing the following
code:

var thisMayBeEmpty: Int?
print(thisMayBeEmpty ?? 3)

you will see:

3

5 1

The nil-coalescing operator is a shorthand for:

a != nil ? a! : b

USE EXCLAMATION MARK !

1. How it was not so long time ago
Not so long time ago, when you were sure that optional had some value
every time you were going to use it, you could get rid of the need to
check and unwrap the optional's value every time it was accessed. It was
possible thanks to assumption that you had a value all of the time when
you needed it. These kinds of optionals were defined as implicitly
unwrapped optionals (IUO in short) and you denoted them by placing
an exclamation mark ! instead of question mark ? after the type you
wanted to make optional. For example, this code

var implicitOptional: Int!
print(implicitOptional)

in contrast to:

var thisMayBeEmpty: Int?
print(thisMayBeEmpty)

didn't generate any warning or error and you could use
implicitOptional variable without need of any explicit unwrapping
with an exclamation mark:

implicitOptional = 1
print(implicitOptional)

Implicitly unwrapped optional are fine if you know what you are doing.
They require you to be absolutely sure there is a non-nil value before
you use it. If you try to use a value that contains nil, your application
will crash. You can’t catch the error and you can’t stop it from
happening: your code will crash immediately.

5 2

2. How it is now
Today things has changed. When you use an exclamation mark ! your
code will compile but you will get a warning: Coercion of
implicitly unwrappable value of type 'Int?' to 'Any'
does not unwrap optional along with number of possible fixes:

• Provide a default value to avoid this warning

• Force-unwrap the value to avoid this warning

• Explicitly cast to 'Any' with 'as Any' to silence this warning

The warning comes from the way modern Swift handles IUO’s. See
[IOU:1-2] for the details. According to those documents, the appearance
of ! at the end of a property or variable declaration’s type no longer
indicates that the declaration has IUO type; rather, it indicates
that

1. the declaration has optional type, and

2. the declaration has an attribute indicating that its value may be
implicitly forced.

In consequence now you should consider ! to be a synonym for ? with
the addition that it adds a flag on the declaration letting the compiler
know that the declared value can be implicitly unwrapped if needed.

You can read Int! as: this value has the type Optional<Int> as it
would have in case of Int? declaration but also carries additional
information saying that it can be implicitly unwrapped if needed”.

Because ! tells the compiler that it can be implicitly unwrapped, so it
can help ease in the need for optional chaining – see examples below.

Example 2.2.1
class A {

5 3

 var n: Int? = 1
}

class B {
 var a: A? = A()
}

let b: B? = B()
print(b?.a?.n ?? 0)

When you run this code, you will see:

1

Please note:

• I use default value 0 given after ?? operator in print statement to
avoid Expression implicitly coerced from 'Int?' to
'Any' warning.

• The following will not compile as compiler will not implicitly unwrap
optionals:

print(b.a.n)

Instead you will see the error: Value of optional type 'B?'
must be unwrapped to refer to member 'a' of wrapped
base type 'B'

Example 2.2.2
class A {
 var n: Int! = 1
}

class B {
 var a: A! = A()
}

let b: B! = B()
print(b.a.n)

5 4

Again, when you run this code, you will see:

1

Please note:

• In statement:

print(b.a.n)

compiler implicitly unwrap ! as if I would write:

print(b!.a!.n)

• To avoid Coercion of implicitly unwrappable value of
type 'Int?' to 'Any' does not unwrap optional warning
you may type:

print(b.a.n!)

or

print(b.a.n ?? 0)

• You can still safely unwrap, if you want:

print(b?.a?.n)

As a final word, I can say it seems that coexistence of both ! and ? is
temporal and one day ! will be removed from Swift.

5 5

5 6

SECTION 3

Functions

Swift functions can be characterized as follow (this list comprises only
information you need in this book – full function characteristic is much
more complex):

1. Each function parameter has both an argument label and
parameter name.

2. You write an argument label before the parameter name,
separated by a space.

3. The argument label is used when calling the function.

4. The parameter name is used in the implementation of the
function.

5. By default, parameters use their parameter name as their argument
label; in such case it is enough to specify only parameter name.

6. All parameters must have use unique names.

7. It is possible for multiple parameters to have the same argument
label.

8. If you don't want to use an argument label for a parameter, an
underscore character _ must be used as label for that parameter.

5 7

9. If we use an underscore character, you cannot use a parameter name
as an argument label.

10. If a parameter has an argument label, it must be used when you call
the function.

11. Although arguments have their labels, you cannot change arguments
order.

The following examples will clarify rules given above.

FUNCTION TAKING NO PARAMETERS

The simplest form of a function, taking no parameters and returning
nothing, is as follow:

func functionSimplestForm(){
 print("functionSimplestForm")
}

and we call it as:

functionSimplestForm()

If you want to test it, you can simply paste this code into main.swift
file:

import Foundation

func functionSimplestForm(){
 print("functionSimplestForm")
}

functionSimplestForm()

and run it; you will see in the Console:

functionSimplestForm

5 8

Program ended with exit code: 0

We may also explicitly define, with Void keyword following right arrow
->, that function returns no value:

func functionSimplestFormVersion2() -> Void {
 print("functionSimplestFormVersion2")
}

but this is not Swifty style. Remember: in Swift type only what is really
necessary. If your function returns something, for example String,
this must be specified:

func functionReturningString() -> String {
 return "Just a string"
}

print(functionReturningString())

If you forget to type -> String, Swift will complain: Unexpected
non-void return value in void function.

FUNCTION WITH AN IMPLICIT RETURN

If the entire body of the function is a single expression, the function
implicitly returns that expression so you don't have to type return:

func funcWithImplicitReturn(param1: Int, param2: Int) -> Int {
 param1 * 3 + param2 * 5
}

Of course if you want, you can type it but remember: in Swift type only
what is really necessary:

func funcWithReturn(param1: Int, param2: Int) -> Int {
 return param1 * 3 + param2 * 5
}

5 9

FUNCTION WITH PARAMETERS

In the simplest form you specify only one parameter name (param1):

func functionWithOneParameter(param1: String) -> String {
 return "Parameter value: " + param1
}

and then call it as:

let result = functionWithOneParameter(param1: "foo")

If you missing argument label param1 in call, you will get an error:
Missing argument label 'parameter1:' in call.

In case of more than one parameter, you write them separated by
comma ,:

func functWithMultipleParams(
 param1: String,
 param2: String
) -> String {
 return "Parameter value: " + param1 + " : " + param2
}

and call as:

let result = functWithMultipleParams(
 param1: "foo",
 param2: "bar")

Notice how I format source code lines which are too long. Of course it is
not a rule but it is a good habit to keep your code neat, clean and
consistent.

6 0

RETURNING MULTIPLE VALUES

As in many programming languages, in Swift you can't return multiple
values. It doesn't mean that you can't return multiple values. What?!
Formally, every function may return only one thing. This thing could be
a primitive type and then you will return only one value. Thing could be
also a complex type, for example class, struct, tuple or array. In such a
case you can pack multiple values into complex type. Then formally you
return only one thing with multiple values "hidden" inside.

The following example shows how you can use tuples to return two
values (I explain you tuples in Chapter 5: Tuples, switch and extensions,
Section 1: Tuples):

func functionWithMultipleReturnValues(
 val1: Int,
 val2: Int
) -> (sum: Int, product: Int) {
 let sum = val1 + val2
 let prod = val1 * val2

 return (sum, prod)
}

let result = functionWithMultipleReturnValues(val1: 2, val2: 3)
let s = result.sum
let p = result.product

HOW TO USE ARGUMENT LABEL AND PARAMETER NAME

Example below shows all possible combinations of argument label and
parameter name usage (in comment given after two slashes // I put
number of "rule" applying to given line):

func functionLabelsTest(
 argumentLabel parameterName: String, // 2
 parameterWithDefaultLabel: String, // 5
 _ parameterWithNoArgumentLabel: String, // 8
 justALabel parameter1: String, // 6, 7
 justALabel parameter2: String // 6, 7
) {
 print(
 parameterName + ":" + // 4

6 1

 parameterWithDefaultLabel + ":" + // 4
 parameterWithNoArgumentLabel + ":" + // 4
 parameter1 + ":" + parameter2) // 4
}

functionLabelsTest(
 argumentLabel: "first", // 3, 10
 parameterWithDefaultLabel: "second", // 5
 "third", // 9
 justALabel: "fourth", // 3, 10
 justALabel: "fifth") // 3, 10

You may ask, why do we have both argument label and parameter
name? My answer is: to make developers life easier and to keep your
code neat, clean and consistent. Argument label is for callee – it should
be descriptive so the person who calls function knows for what
argument is used, what it should be etc. Notice that correct function
name in Swift contains both function name and all argument labels. So

functionLabelsTest

is not correct; you should say:

functionLabelsTest(argumentLabel:parameterWithDefaultLabel:_:ju
stALabel:justALabel:)

Every argument label should correspond to function name and other
labels so when you read all of them as a one sentence it should sound as
a one sentence. Because argument labels are only hints for callee, and
all arguments must preserve their order (see rule 11), there is no danger
of confusing them with each other.

On the other hand, parameter name is used internally, in the function
body. The one who uses it knows what they are doing and why so this
name don't have to be descriptive but must allow the parameters to be
clearly distinguished from each other so they may be used in
implementation.

6 2

Without any example it may still sound strange, so below I'm giving one
wich will clarify the case:

func greeting(for who: String) -> String {
 return "Hello, " + who + "!"
}
print(greeting(for: "Piotr"))

In this case correct function name is neither

greeting

nor

greeting(who:)

but

greeting(for:)

For me, the last one sounds best and this is why in Swift you may use
two different names for the same thing: first is used outside and should
"sounds good" while second is visible only internally.

NOTE

Argument or parameter?

The terms parameter and argument are sometimes used

interchangeably, and the context is used to distinguish the meaning.

The term parameter (sometimes called formal parameter) is often

used to refer to the variable as found in the function definition, while

argument (sometimes called actual parameter) refers to the actual

6 3

input passed. For example, in the function definition the

variable is a parameter; in the function call the value is the

argument of the function. Loosely, a parameter is a type, and an

argument is an instance.

Please keep in mind that for example in the classical The C

Programming Language by Brian W. Kernighan and Dennis M. Ritchie

book, in section 5.10 Command-line Arguments you can find the

following code:

#include <stdio.h>  
main(int argc, char *argv[])  
{  
...  
}

As you can see there is no paramc but argc and not paramv but

argv.

Naming the first parameter argc isn't a mistake or error. At run time

the value you use is an argument. We reserve the term parameter for

situations when discussing subroutine definitions.

According to authors explanation of this part of code: When main is

called, it is called with two arguments. The first (conventionally called

argc, for argument count) is the number of command-line arguments

the program was invoked with; the second (argv, for argument vector)

is a pointer to an array of character strings that contain the arguments,

one per string.

Swift elegantly solves this naming problem using both argument label

and parameter name.

f (x) = 2x
x f (2) 2

6 4

PARAMETERS WITH DEFAULT VALUES

There are situations when function in most cases is called with the same
parameters values. If it is also in your case, you can make other
developer's life easier and provide default values for those parameters.
If they want, they may override them, but if default values work for
them it's fine.

func fooFunction(
 noDefaultParameter: String,
 defaultParameter: String = "defaultValue"
) {
 return noDefaultParameter + " " + defaultParameter)
}

fooFunction(noDefaultParameter: "mustBeDefinedByUser")
fooFunction(
 noDefaultParameter: "mustBeDefinedByUser",
 defaultParameter: "alsoDefinedByUser")

If you have default parameters, you can omit any default parameter you
want:

func funcWithDefaults(
 param1: Int = 2,
 param2: Int = 3
) {
 print(param1 * 3 + param2 * 5)
}

funcWithDefaults()
// Prints: 2 * 3 + 3 * 5 = 6 + 15 = 21

funcWithDefaults(param1: 4)
// Prints: 4 * 3 + 3 * 5 = 12 + 15 = 27

funcWithDefaults(param2: 5)
// Prints: 2 * 3 + 5 * 5 = 6 + 25 = 31

VARIADIC PARAMETERS

A variadic parameter accepts zero or more values of a specified type.
You use a variadic parameter to specify that the parameter can be

6 5

passed a varying number of input values when the function is called.
You declare variadic parameters by inserting three period
characters ... after the parameter’s type name.

The values passed to a variadic parameter are made available within the
function’s body as an array of the appropriate type. For example, a
variadic parameter with a name of numbers and a type of Int... is
made available within the function’s body as a constant array called
numbers of type [Int]. I will explain you arrays in Chapter 3: Arrays
and enumeration, Section 1: Arrays, but I hope the following example
will. be intuitively understandable for you.

Note that the first parameter that comes after a variadic parameter must
have an argument label to avoid any ambiguity which arguments are
passed to the variadic parameter and which arguments are passed to the
parameters that come after the variadic parameter.

Starting of Swift 5.4 a function can have multiple variadic parameters.

Now you can see how it works in real example:

func calculate(
 sumOf numbersSequence1: Int...,
 productOf numbersSequence2: Int...,
 multipliedBy multiplier: Int
) -> (sum: Int, product: Int) {
 var sum = 0
 for number in numbersSequence1 {
 sum += number
 }

 var product = 1
 for number in numbersSequence2 {
 product *= number
 }

 return (sum * multiplier, product * multiplier)
}

let result = calculate(sumOf: 6, 5, 4, productOf: 3, 2, 1,
multipliedBy: 2)
print(result.sum)

6 6

// Prints:
// 30
print(result.product)
// Prints:
// 12

IN-OUT PARAMETERS

Function parameters are constants by default. Trying to change the
value of a function parameter from within the body of that function
results in a compile-time error. If you want a function to modify a
parameter’s value, and you want those changes to persist after the
function call has ended, define that parameter as an in-out parameter
instead.

You write an in-out parameter by placing the inout keyword right
before a parameter’s type. You place an ampersand & directly before a
variable’s name when you pass it as an argument to an in-out
parameter, to indicate that it can be modified by the function.

Here’s a typical example of a swap function which interchanges two
numbers:

func swap(integer a: inout Int, withInteger b: inout Int) {
 let temp = a
 a = b
 b = temp
}

var x = 3, y = 4
swap(integer: &x, withInteger: &y)
print(x)
// Prints: 4

print(y)
// Prints: 3

UNWANTED RESULTS

Sometimes, this is rare but may happen, you may not need result
returned by a function:

6 7

func doSomethingWithInteger(arg: Int) -> Int {
 let newValue = 2 * arg

 print(newValue)

 return newValue
}

doSomethingWithInteger(arg: 3)

If you leave code as it is given above, you will have to tolerate annoying
warning: Result of call to
'doSomethingWithInteger(arg:)' is unused. This warning is
a valuable information for developer: This function returns something
but you don't use it. Maybe this is OK, but maybe you forget about
something. If you really don't wan't to use result, you have to tell it to
Swift with underscore mark _:

_ = doSomethingWithInteger(arg: 3)

You can treat it as a way to say: I don't care about this value.

THIS IS NOT THE END

This is not the whole story about functions. Some topics are still
untouched:

1. How to use function as any other type.

2. What nested functions are.

3. What closures are, how we can use them.

I will discuss them in the next section. If it is first time you read about
Swift you may consider those topics as too complicated. You may safely
skip next chapter now and return when you will be ready to know more
about functions.

6 8

6 9

7 0

SECTION 4

More about functions –
closures

At first read you may safely skip this chapter and return when you will
be ready to know more about functions.

Functions as type

Every function in Swift has a specific function type consisting of the
parameter types and the return type of the function.

For example, function defined as:

func foo(){
 // Some code goes here
}

is of the type () -> Void while function:

func bar(_ a1:String, _ a2: String) -> String {
 // Some code goes here
}

is of the type (String, String) -> String. A function type is
used just like any other type:

var action: (Int, Int) -> Int // Function type

func add (x: Int, y: Int) -> Int {

7 1

 return x + y
}

func sub (x: Int, y: Int) -> Int {
 return x - y
}

action = add

print(add(x: 3, y: 5))
// Prints: 8
print(action(3, 5))
// Prints: 8

Notice that despite both add(x:y:) and sub(x:y:) have parameters
x and y, and you have to use parameters name when you call directly
add(x:y:) or sub(x:y:), you call action without any parameters
name; otherwise you will get a Extraneous argument labels
'x:y:' in call compilation error.

You can use function type as a parameter type for another function:

func doSomethingWithTwoInts(
 _ int1: Int,
 _ int2: Int,
 _ action: (Int, Int) -> Int
) {
 let result = action(int1, int2)
 print(result)
}

doSomethingWithTwoInts(3, 5, add)
// Prints: 8

An interesting question is: How you can use a function type as the
return type of another function? An answer: As any other existing type.
For example, the function selectAction(_) defined as:

func selectAction(
 _ decision: String = "add"
) -> ((Int, Int) -> Int) {
 switch decision {
 case "sub":
 return sub
 default:

7 2

 return add
 }
}

returns a function of type (Int, Int) -> Int. You can use this
function as it is showed below:

action = selectAction()
print(action(3, 5))
// Prints: 8

// or

print(selectAction()(3, 5))
// Prints: 8

Nested functions

Swift allowed you to do more with functions: it can be seen as strange
and awkward but you can define functions inside the bodies of other
functions – this way you have so called nested functions to distinguish
from previously discussed global functions. Nested functions are hidden
from the outside, but of course can be called by and used by enclosing
function. An enclosing function can also return one of its nested
functions which allow the nested function to be used in another scope.

As an example you can reimplement selectAction(_) function
"embedding" add(x:y) and sub(x:y:) inside:

func selectAction(
 _ decision: String = "add"
) -> ((Int, Int) -> Int) {

 func add(x: Int, y :Int) -> Int {x + y}
 func sub(x: Int, y: Int) -> Int {x - y}

 switch decision {
 case "sub":
 return sub
 default:
 return add
 }

7 3

}

action = selectAction("sub")
print(action(4,5))
// Prints: -1

Closures

Closures are self-contained blocks of code that can be passed around
and used in your code. Closures in Swift are similar to blocks in
Objective-C and to lambdas in other programming languages. In short,
closures are Swift’s anonymous functions.

Closures are a technique for implementing lexically scoped name
binding. You can think of it as a "box" storing a function together with
an "environment" needed to execute this function. Each variable that is
used locally, but defined in an enclosing scope is associate with the
value or storage location to which the name was bound when the closure
was created. What is important, a closure, unlike a plain function,
allows the function to access those captured variables through the
closure's reference to them, even when the function is invoked outside
their scope. Don't worry if this explanation doesn't explain you
anything. The subsequent subsection clarifies general idea behind
closures.

GENERAL IDEA

To understand how it works, let's analyze the following example:

var f: () -> Int
func constant() -> Int { 0 }
f = constant

print("Call to f(): \(f())") // 1

func foo() {
 var x=1 // 2
 func nested() -> Int { x += 1; return x } // 3

7 4

 f = nested // 4
 let result = f() // 5
 print("Inside foo, call to f(): \(result)") // 6
}

foo() // 7
print("Call to f(): \(f())") // 8

In line marked with comment // 3:

func nested() -> Int { x += 1; return x }

you define a nested function. Variable x is defined outside of this
function in line // 2 but is used inside. So, you can say, that this
function needs x to work correctly. And there is nothing surprising that
call:

foo() // 7

and in consequence:

let result = f() // 5

works and returns correct value (line marked with // 6):

Inside foo, call to f(): 2

The question is how it is possible that code at line //8:

print("Call to f(): \(f())")

also works?! Now you are outside of foo() function and you try to call
f(). How it could be that f() knows value of the x variable which is
visible only within the scope of foo() function? This is when closure
comes into play.

The assignment statement:

7 5

f = nested // 4

''saves'' function along with all the outer environment needed to execute
this function (in this case, x variable).

Consider a second example:

func referenceValue(_ x: Int) -> ((Int) -> (Int)){
 func innerFunction(y: Int) -> Int {
 return y + x
 }

 return innerFunction
}

var moveFrom3By = referenceValue(3)
var moveFrom5By = referenceValue(5)

print(moveFrom3By(7))
// Prints: 10
print(moveFrom5By(9))
// Prints: 14

The above code defines a function referenceValue(_) with a
parameter x and a nested function innerFunction(y). The nested
function has access to x, because is in the lexical scope of x (note that x
is not local to this function). The function referenceValue(_)
returns a closure containing:

1. the inner innerFunction(y) function, which adds the y value to
the x (reference) value;

2. and a reference to the variable x from this invocation of
referenceValue(_), so inner function will know where to find it
when invoked.

Note that referenceValue(_) returns a function. This means that
both moveFrom3By and moveFrom5By are of function type, so you can
invoke moveFrom3By(7) and moveFrom5By(9). Interesting is that

7 6

while moveFrom3By and moveFrom5By refer to the same anonymous
function, the associated environments differ, and invoking the closures
will bind the name x to two distinct variables with different values (3
and 5) in the two invocations, thus evaluating the function to different
results (10 and 14).

BASIC USAGE

General closure expression syntax has the following form:

{(parameters) -> returnType in
 expressions
}

This syntax is very close to function syntax but without name (for this
reason we say about anonymous functions). The parameters can be in-
out, named variadic parameter and tuples. We cannot use default values
for them.
Having previously defined doSomethingWithTwoInts(_:_:)
function you can use it as follow:

doSomethingWithTwoInts(
 5,
 7,
 {(a: Int, b: Int) -> Int in return a + b}
)
// Prints: 12

In this example the third parameter is an inline closure expression:

{(a: Int, b: Int) -> Int in
 return a + b
}

Because it is always possible to infer the parameter and return type
when passing a closure to a function or method as an inline closure
expression, so you never need to write an inline closure in its full form
when the closure is used as a function or method argument. In
consequence you can write the above in a short form as:

7 7

doSomethingWithTwoInts(5, 7, {a, b in return a + b})
What is more, single expression closure can implicitly return the result
by omitting the return keyword from declaration (as you do for
"normal" functions):

doSomethingWithTwoInts(5, 7, {a, b in a + b})

This is not the end, because even this short expression can be
shorthanded! In Swift a shorthand argument names $0, $1 and so on
can be used to refer to the values of the closure's first, second and so on
arguments. If the argument is a tuple $0.0 is a key, and $0.1 is a value
of the closure's first argument.

doSomethingWithTwoInts(5, 7, {$0 + $1})

If you think that there is no option to write shorter expression, you are
wrong. You can use operator methods. From their definition Swift can
infer the number and the types of arguments and return value:

doSomethingWithTwoInts(5, 7, +)

If the closure is a final argument of a function you are going to use, and
the closure expression is long, you can write it as a trailing closure. A
trailing closure is a closure which is written after the function call's
parentheses (but it is still an argument to the function):

doSomethingWithTwoInts(5, 7){a, b in
 a + b
}

or

doSomethingWithTwoInts(5, 7){$0 + $1}

If the closure expression is provided as the function's or method's only
argument and you provide that expression as a trailing closure, then you

7 8

don't need to write a parentheses after the function's or method's name
when you call it.

In the example below you will see very basic but useful example of
closure usage. Please have in mind that in the code below you will create
two constants, which in some sense will behaves like variables. This is
because functions and closures are reference types. So event if we define
a constant related with a closure this relation is constant (doesn't
change) but the closure this constant refers to is still able to change
some captured variables.

func getIncrementer(incrementBy value: Int) -> (() -> Int) {
 var incrementerValue = 0;

 func incrementer() -> Int {
 incrementerValue += value
 return incrementerValue
 }

 return incrementer
}

let incrementerBy_plus_2 = getIncrementer(incrementBy: 2)
let incrementerBy_minus_2 = getIncrementer(incrementBy: -2)

print(incrementerBy_plus_2())
// Prints: 2
print(incrementerBy_minus_2())
// Prints: -2
print(incrementerBy_plus_2())
// Prints: 4
print(incrementerBy_minus_2())
// Prints: -4
print(incrementerBy_plus_2())
// Prints: 6
print(incrementerBy_minus_2())
// Prints: -6

MULTIPLE CLOSURES

It is perfectly legal for a function to take more than one closure:

func doSomethingWithTwoInts(
 _ int1: Int,
 _ int2: Int,

7 9

 _ action: (Int, Int) -> Int?,
 onSuccess: ((Int) -> Void)?,
 onFailure: ((Int, Int) -> Void)?
) -> Int? {
 if let result = action(int1, int2) {
 if let onSuccess = onSuccess {
 onSuccess(result)
 }
 return result
 } else {
 if let onFailure = onFailure {
 onFailure(int1, int2)
 }
 return nil
 }
}

In this case you don't want to only execute some action on two integers
but also allow user to make an action in case of success or (what is more
important) any problems. When your function takes multiple closures,
you omit the argument label for the first trailing closure and you label
the remaining trailing closures. For example, if you implement divide
function:

func divide (x: Int, y: Int) -> Int? {
 if y != 0 {
 return x/y
 }
 return nil
}

you may try to use it as an action in
doSomethingWithTwoInts(_:_:_:onSuccess:onFailure:)
function along with some additional actions specific to division:

var statusDescription = ""

var result = doSomethingWithTwoInts(15, 0, divide){_ in
 statusDescription = "Action completed"
}
onFailure: {int1, int2 in
 statusDescription =
 """
 It's impossible to divide \(int1) by \(int2)
 You can try to divide \(int2) by \(int1)

8 0

 """
}

if let result = result {
 // Result is correct
 // Do something with it
 print(result)
} else {
 print(statusDescription)
}

In this case additional action is justified as division is not always
possible to be performed:

It's impossible to divide 15 by 0
You can try to divide 0 by 15

On the other hand, addition of two integers is always possible, so there
is no need to perform any additional actions in case of failure:

result = doSomethingWithTwoInts(
 15,
 0,
 add,
 onSuccess: nil,
 onFailure: nil
)

print(result!)
// Prints:
// 15

ESCAPING CLOSURES

A closure is said to escape a function when the closure is passed as an
argument to the function, but is called after the function returns. By
prefix any closure argument with @escaping, you convey the message
to the caller of a function that this closure can outlive (escape) the
function call scope. By default a closure is non-escaping, and its lifecycle
end along with function scope.

The following is an example of a non-escaping closure:

8 1

func processWaitForResult(
 data: ProcessingData,
 action: (ProcessingData) -> ResultData
) -> ResultData {
 let result = action(data)
 return result
}

The closure passed to this function is executed immediately before a
result is returned. Other words, function waits for a result to be able to
return it and ends its (function) execution. Because the closure is
executed within function scope and before function ends, you know that
nothing you do inside of the closure can leak or outlive the scope of the
function.

If you define ProcessingData, ResultData and some functions
possible to call:

class ProcessingData {
 // Some code goes here
 var data = 0
}

class ResultData {
 // Some code goes here
 var data = 0
}

func process1(_ data: ProcessingData) -> ResultData {
 let result = ResultData()
 result.data = data.data + 1
 return result
}

func process2(_ data: ProcessingData) -> ResultData {
 let result = ResultData()
 result.data = data.data * 2
 return result
}

func process3(_ data: ProcessingData) -> ResultData {
 let result = ResultData()
 result.data = data.data * data.data
 return result
}

8 2

you may execute processWaitForResult(data:action:) as:

let data = ProcessingData()
data.data = 3
let result = processWaitForResult(data: data, action: process3)
print(result.data)
// Prints:
// 9

The question is: When closure escapes? One of the simples way that a
closure can escapes is by being stored from a function in a variable
that’s defined outside the function (batchQueue):

var batchQueue = [(ProcessingData) -> ResultData]()

func addProcessingStep(
 action: @escaping (ProcessingData) -> ResultData
) {
 batchQueue.append(action)
}

In this case you have to add @escaping keyword to avoid a compile-
time error: Converting non-escaping parameter 'closure'
to generic parameter 'Element' may allow it to
escape. and to clearly indicate your intention. You use the variable
batchQueue to allow closures survive when function ends.

Now you may define a method executing function stored in
batchQueue in provided order:

func batchProcessing(data: ProcessingData) -> ResultData? {
 // Guard (safety check)
 if batchQueue.count == 0 {
 return nil
 }

 var result = batchQueue[0](data)

 for i in 1..<batchQueue.count {
 let data = convertResultToData(result)
 result = batchQueue[i](data)
 }
 return result
}

8 3

// Result of the processing in one step may be used as
// the input data for the next processing step
func convertResultToData(
 _ result: ResultData
) -> ProcessingData {
 // Do some conversion here
 let data = ProcessingData()
 data.data = result.data
 return data
 }

You may execute batchProcessing(data:) as:

addProcessingStep(action: process1)
addProcessingStep(action: process2)
addProcessingStep(action: process3)

result = batchProcessing(data: data)!
print(result.data)
// Prints:
// 64

NOTE

Note 1: It's very common to use escaped closures as a completion

handler during asynchronous operations. In this case the function

returns after it starts the operation, but the closure isn’t called until the

operation is completed. The closure needs to escape, to be called

later.

Note 2: An escaping closure that refers to self needs special

consideration every time self refers to an instance of a class.

Capturing self in an escaping closure makes it easy to accidentally

create a strong reference cycle. This is related to Automatic Reference

Counting which is out of the scope of this book.  

8 4

Code changes summary

At this moment you have a "stub" or skeleton of a Board class with two
constants and one variable inside. Apart of that, if both variable and
constants are uncommented, you also have two errors:

• Class 'Board' has no initializers

• Cannot find type 'CellType' in scope

Happily, having the knowledge from the current chapter, extended with
information from the next one, you will easily fix this.

8 5

8 6

CHAPTER 3

Arrays and enumerations

You will do:

In this part you will create a very basic classes with properties,

initializers and methods. One of them you will use to represent game

board and another one to be an entry point to the whole game logic.

You will learn:

• How to create and use arrays.

• How to define enumeration.

• What range operators are.  

8 8

SECTION 1

Arrays

The array stores values of the same type in an indexed order.
Every value is uniquely indicated by an index determining its position.
The same value can appear in an array multiple times at different
positions.

One-dimensional arrays

You declare or define one-dimensional array this way:

// Declare an array
var mutableArrayDeclaration: [String]
let immutableArrayDeclaration: [String]

// Define an empty array
var mutableArray1 = [String]()
var mutableArray2 = Array<String>()
let immutableArray = [String]()

With declaration you only say: One day this would be an array. With
definition you say: This is an array. If your array is defined, it exists,
you can add something to it:

// You can do
mutableArray1.append("Zero")
mutableArray1.append("One")
mutableArray1.append("Two")
// or
mutableArray2 = ["zero", "one", "two"]
// but can't do
//mutableArrayDeclaration.append("Zero")

8 9

// or
//immutableArray.append("Zero")

print(mutableArray1)
// Prints: ["Zero", "One", "Two"]
print(mutableArray2)
// Prints: ["zero", "one", "two"]
mutableArray1[1] = "NEW"
print(mutableArray1)
// Prints: ["Zero", "NEW", "Two"]

Great! – you may think. It seems to be dynamic structure as I haven't
declared any array size but was able to add (append) elements. You will
be disappointed if you try to get an access to any array's element you
want. The following code is perfectly legal in PHP:

<?php
$array = array();
$array[5] = 3;

print_r($array);
/* Prints:
Array
(
 [5] => 3
)
*/
?>

In Swift, if you try this code:

mutableArray1[5] = "NEW"
print(mutableArray1)

you will get a run time error: Fatal error: Index out of range.
If you remember what I said in the Chapter 2: Variables and functions,
Section 1: Variables about variables, you shouldn't be surprised: in Swift
every object must have a type and value. So initially mutableArray1
exists (is not nil) but has no values – is declared as an array of size 0.
When you append something, behind a scene, Swift creates new array
with size extended to be able to append new elements. In this sense it is

9 0

dynamic. But all the time it has strictly defined number of elements so
you cannot freely get access at any index you want; otherwise you will
"jump" out of the range of possible indices.

ARRAY WITH PREDEFINED SIZE

In Swift, differently than in C, we can't create an array that has pre-
allocated memory but does not contain elements. The following C code
compiles and executes without any problems:

#include <stdio.h>

int main() {
 int x[10];
 x[5] = 4;
 printf("%d\t%d", x[5], x[2]);
 // Prints: 4 0

 return 0;
}

You can't create an empty array of fixed, predefined size; instead you
can create an array of predefined size filled with specified element –
remember: in Swift every object must have a type and value:

var mutableArray3 = [String](repeating: "", count: 5)
print(mutableArray3)
// Prints: ["", "", "", "", ""]

mutableArray3[3] = "THREE"
print(mutableArray3)
// Prints: ["", "", "", "THREE", ""]

ARRAYS CONCATENATION AND RANGES USAGE

A good news is that you can easily concatenate arrays:

mutableArrayDeclaration = mutableArray2 + mutableArray3

print(mutableArrayDeclaration)
// Prints:
// ["zero", "one", "two", "", "", "", "THREE", ""]

9 1

mutableArrayDeclaration += ["FIVE", "SIX"]

print(mutableArrayDeclaration)
// Prints:
// ["zero", "one", "two", "", "", "", "THREE", "", "FIVE",
"SIX"]

You can do even more – with subscript syntax you can change a range of
values at once, even it the replacement set of values has a different
length than the range we are replacing. The number of indices defined
by a range may be lower than number of elements you want to use:

mutableArrayDeclaration[1...2] = ["ONE", "TWO", "THREE"]
print(mutableArrayDeclaration)
// Prints:
// ["zero", "ONE", "TWO", "THREE", "", "", "", "THREE", "",
"FIVE", "SIX"]

In this case index range 1..2 define two indices: 1 and 2, while you try
to use array with three elements. In such a case Swift starts at first index
given by your range and, if necessary, extends array to put all new
values to a new array (previous array had 10 elements, while current has
11 – two elements was replaced by three, so there is one element more).
Opposite, the number of indices defined by a range may be greater than
number of elements you want to use:

mutableArrayDeclaration[4...6] = ["***"]
print(mutableArrayDeclaration)
// Prints:
// ["zero", "ONE", "TWO", "THREE", "***", "THREE", "", "FIVE",
"SIX"]

In this case index range 4...6 define three indices: 4, 5 and 6, while
you try to use array with only one element. In such a case Swift starts at
first index and replace all subsequent elements as long as there are
values in replacement array. Next all elements without defined
replacement are removed (previous array had 11 elements, while current
has 9 – three elements was replaced by one element, so there are two
elements less).

9 2

Removing element is straightforward:

mutableArrayDeclaration.remove(at: 4)
print(mutableArrayDeclaration)
// Prints:
// ["zero", "ONE", "TWO", "THREE", "THREE", "", "FIVE", "SIX"]

ITERATING OVER AN ARRAY

Random access to array is great but sometimes you want to iterate over
every element in you array. For this purpose, you can use for loop:

for item in mutableArrayDeclaration {
 print("value: \(item)")
}
/*
 value: zero
 value: ONE
 value: TWO
 value: THREE
 value: THREE
 value:
 value: FIVE
 value: SIX
 */

for (index, value) in mutableArrayDeclaration.enumerated() {
 print("at index: \(index) value: \(value)")
}
/*
 at index: 0 value: zero
 at index: 1 value: ONE
 at index: 2 value: TWO
 at index: 3 value: THREE
 at index: 4 value: THREE
 at index: 5 value:
 at index: 6 value: FIVE
 at index: 7 value: SIX
 */

9 3

Two dimensional arrays

In Swift, as in many other programming languages, two-dimensional
array of objects is a one-dimensional array of one-dimensional-arrays of
objects. And n-dimensional array of objects is a one-dimensional array
of one-dimensional-arrays of... etc. To creating a multi-dimensional
array you have to add another set(s) of square brackets [and]. For
example, to turn one-dimensional array of integers [Int] into a two-
dimensional array (array of arrays), you should just write [[Int]]:

var array2DEx1 = [[Int]]()

Now you can create three simple 1D arrays of integers:

var row1 = [11, 12, 13, 14]
var row2 = [21, 22, 23]
var row3 = [31, 32]

Next, you can add them all to the "main" array:

array2DEx1.append(row1)
array2DEx1.append(row2)
array2DEx1.append(row3)
print(array2DEx1)
// Prints:
// [[11, 12, 13, 14], [21, 22, 23], [31, 32]]

This allows you to operate on existing elements:

array2DEx1[1].append(24)
print(array2DEx1)
// Prints:
// [[11, 12, 13, 14], [21, 22, 23, 24], [31, 32]]

array2DEx1[1][1] = 0
print(array2DEx1)
// Prints:
// [[11, 12, 13, 14], [21, 0, 23, 24], [31, 32]]

9 4

ARRAY WITH PREDEFINED SIZE

To create multi-dimensional array with predefined size, you simply
embed required number of time array's initializer init(repeating:
Element, count: Int):

var array2DEx2: [[Int]] = []
array2DEx2 = Array(repeating: Array(repeating: 0,
 count: 2),
 count: 3)
// or
//var array2DEx2: [[Int]] = Array(repeating:Array(repeating: 0,
// count: 10),
// count: 10)
// or
//var array2DEx2 = Array(repeating: Array(repeating: 0,
// count: 10),
// count: 10)
print(array2DEx2)
// Prints:
// [[0, 0], [0, 0], [0, 0]]

array2DEx2[1][1] = 1
print(array2DEx2)
// Prints:
// [[0, 0], [0, 1], [0, 0]]

var array2DEx3 : [[Int]] = [[1, 2, 3], [4, 5, 6]]
print(array2DEx3)
// Prints:
// [[1, 2, 3], [4, 5, 6]]

Array is a value type

Array in Swift is a value type. It means that each array instance
keeps a unique copy of its data. Swift creates a copy of an array
whenever you define a variable based on some existing array:

var array = [1, 2, 3, 4, 5] // 1
var arrayCopy = array // 2
array[0] = 0 // 3
print(array) // 4
// Prints "[0, 2, 3, 4, 5]"

9 5

print(arrayCopy) // 5
// Prints "[1, 2, 3, 4, 5]"

Below I explain all the steps:

• In the first line (line marked as 1) you define array of integers with five
elements.

• In the second line you define new variable arrayCopy based on
previously defined array. Now arrayCopy is a copy of array. In
consequence, integer 1 at index 0 in arrayCopy is a different object
than integer 1 at index 0 in array – as a copy, it occupies different
memory area but in this area stores the same binary sequence
(sequence coding integer of value 1).

• You prove it in line number three where you change value of array at
index 0.

• Now when you print array (line number four) you see [0, 2, 3,
4, 5], while printing arrayCopy (line number five) you see "initial"
values: [1, 2, 3, 4, 5].

In the second example I use a reference type to fill array with values:

class referenceType {
 var value = 1
}
var array = [referenceType(), referenceType()]
var arrayCopy = array

Also in this case, as for integers above, arrayCopy is a copy of array.
Now again referenceType at index 0 in arrayCopy is a different
object than referenceType at index 0 in array – as a copy, it
occupies different memory area but in this area stores the same binary
sequence (sequence coding pointer to referenceType). Both objects
are different, but because both are reference type, in consequence both

9 6

point the same object. Modifications to an instance (an element of
array) are visible from either array:

array[0].value = 0
print(array[0].value)
// Prints: 0
print(arrayCopy[0].value)
// Prints: 0

Modifications to an array are again visible only in the modified array:

array[0] = referenceType()
print(array[0].value)
// Prints "0"
print(arrayCopy[0].value)
// Prints "1"

Remember, Swift also makes a copy of an array every time you pass an
array as an argument of a function. This is something totally different
than you may know from for example C programming language. The
following code compiles and executes without any problems:

#include <stdio.h>

void display(int array[]) {
 array[0] = 0;
}

int main() {
 int array[] = {1, 2, 3, 4, 5};

 printf("%d\t", array[0]);
 // Prints: 1

 display(array);

 printf("%d", array[0]);
 // Prints: 0
 return 0;
}

Notice that contents of an array has changed as a result of call to
display function.

9 7

If you try to write similar code in Swift:

func display(_ array: [Int]) {
 array[0] = 0;
}

var array = [1, 2, 3, 4, 5]
print(array[0]);
// Prints: ?
display(array);
print(array[0]);
// Prints: ?

you will get an error Cannot assign through subscript:
'array' is a 'let' constant and it will not even compile. If
array inside a function is a let constant it must be a copy of original
array (defined outside of display function) which is a var variable.

In reality, for performance reasons, the Swift compiler tries to avoid
unnecessary copying whenever possible – this is a common sense
approach, as arrays may have a lot of elements and making a real copy is
a resource (time and memory) consuming process. Even if it says that
an array is officially copied, it doesn't mean that it is really copied.
Arrays, like all other collections of variable size, use copy-on-write
optimization. Multiple copies of an array share the same storage until
you modify one of the copies. When that happens, the array being
modified replaces its storage with a uniquely owned copy of itself, which
is then modified in place.

This means that if an array is sharing storage with other copies, the
first mutating operation on that array incurs the cost of
copying the array. An array that is the sole owner of its storage can
perform mutating operations in place.

9 8

9 9

1 0 0

SECTION 2

Enumerations

In Swift enumerations are much like Java's enumerations. They
incorporate many features usually supported by classes, such as (we will
show all of them in class section of Swift tutorial)

Enumeration (or simply enum) is a user defined data type, mainly used
to assign names to integer constants. The idea behind enums is to
replace all "magic numbers" – meaningless numbers, with descriptive
names. The names used in place of numbers make a program easy to
read and maintain, enables you to work with those values in a type-safe
way within your code.

In Swift enumerations are much like Java's than C enumerations. They
incorporate many features usually supported by classes, such as:

• computed properties (see Chapter 6: Properties, dictionaries and sets,
Section 1: Property types, Subsection: Computed properties) to
provide some additional informations about the current value of
enumeration;

• instance methods to provide functionality related to the values the
enumeration represents;

• initializers;

• can be extended;

1 0 1

• can conform to protocols.

At the introductory level of this book, I will jump over all enumeration's
advanced features and will show you the most basic usage – as a
"mapper" from name to integer.

After declaring enumeration:

enum Planet {
 case Mercury, Venus, Earth, Mars,
 Jupiter,Saturn, Uranus, Neptune
}

you can use it to declare or define variables or constants:

var currentPlanet: Planet
var selectedPlanet = Planet.Earth

The type of selectedPlanet, as for all other types, is inferred while it
is initialized. Once a variable is declared as type of Planet, you can set
it to a different Planet value:

selectedPlanet = .Mars

switch selectedPlanet {
case .Earth:
 print("You can live here")
case .Mars:
 print("Maybe one day you can live here")
default:
 print("No chance to live here")
}
// Prints:
// Maybe one day you can live here

By default first case item from enum corresponds to 0, second item
corresponds to 1 and so on. If necessary, you can change default values
of enum elements during declaration:

enum Planet2: Int {
 case Mercury = -2, Venus, Earth, Mars,

1 0 2

 Jupiter, Saturn = 12, Uranus, Neptune
}

let earthsOrder = Planet2.Earth.rawValue
print(earthsOrder)
// Prints: 0
print(Planet2.Uranus.rawValue)
// Prints: 13

// Initializing from a raw value
var currentPlanet2 = Planet2(rawValue: 1)

print("\(currentPlanet2 ?? Planet2.Earth) is selected")
// Prints:
// Mars is selected

With enum associated values you can add additional details to your
enumeration:

enum Action {
 case turnLeftDegree (Double),
 turnRightDegree (Double),
 makeForwardSteps (Int),
 makeBackwardSteps (Int),
 saySomething (String)
}

With this you can for example specify not only that you are going
forward, but also how many steps (Chapter 5: Tuples, switch and
extensions, Section 2: switch - case statement for more details about
switch-case):

var currentAction = Action.makeForwardSteps(10)

switch currentAction {
case .turnLeftDegree(let degree):
 print("Turn left by \(degree) degree")
case let .turnRightDegree(degree):
 print("Turn right by \(degree) degree")
case .makeForwardSteps(let steps):
 print("Make \(steps) step(s) forward")
case let .makeBackwardSteps(steps):
 print("Make \(steps) step(s) backward")
case let .saySomething(text):
 print("Say: \(text)")
}

1 0 3

// Prints: Make 10 step(s) forward

You may extract each associated value as a constant (with the let
prefix) or a variable (with the var prefix) for use within the switch
case’s body. If you look carefully into above code, you will notice that I
put let in two different places. If you have more than one associated
value, then some of them may be extracted as constants while other as
variables. In such a case you have to put var or let prefixes before
corresponding name (in brackets):

case .turnLeftDegree(let degree):

If all of the associated values for an enumeration case are extracted as
constants, or if all are extracted as variables, you can place a single var
or let annotation before the case name, for brevity:

case let .turnRightDegree(degree):

In this simple example both forms have the same effect.

1 0 4

1 0 5

1 0 6

SECTION 3

Range operators

Swift introduces very handy range operators. You have seen an
example of ranges in Arrays concatenation and ranges usage part of
this chapter's Section 1: Arrays. Swift provides two range operators as
a shortcut for expressing a range of values.

• The closed range operator a...b defines a range that runs from a
to b, including both values. The value of a must not be greater than
b.

• The half-open range operator a..<b defines a range that runs from
a to b, but does not include b. The value of a must not be greater
than b. If the value of a is equal to b, then the resulting range will be
empty.

• Starting from Swift 4 we can omit the upper or lower bound of a
range specification to create a one-sided range.

let someArray = ["one", "two", "three", "four", "five"]
print(someArray[3...])
// Prints: ["four", "five"]

print(someArray[...2])
// Prints: ["one", "two", "three"]

print(someArray[..<2])
// Prints: ["one", "two"]

print(someArray[2..<4])
// Prints: ["three", "four"]

// It's not correct

1 0 7

//print(someArray[2<..4])

1 0 8

SECTION 4

Game code – add
initializer

Complete initialization of Board class

At this moment you have a "stub" or skeleton of a Board class with two
constants and one variable inside:

class Board {
 private let rows, cols: Int
 private var board: [[CellType]]
}

If you have both lines uncommented, you will see two errors:

• Class 'Board' has no initializers

• Cannot find type 'CellType' in scope

Now, you are ready to fix them.

Add at the end of class, before closing curly bracket }, enum type:

enum CellType {
 case none, empty, hit, notAllowed, rescue, ship, shot
}

1 0 9

You define a new type CellType "hiding" under the names none,
empty, hit, etc integer values. Saying the truth you pay greater
attention to names than values.

The meaning of each case is as follows:

• none – nothing, none cell should have this value; use to signal
unexpected problems;

• empty – empty cell; cell where you can put a ship or you can shot;

• hit – cell where you have already shot and hit;

• notAllowed – cell you can't put a ship or shot;

• rescue – cell around sunken ship;

• ship – part of a ship;

• shot – cell where you have already shot but miss.

Now you will add initializer where you will give values to all properties
in your class (both constants and variables). Initializer is a class method
with reserved name init (you can put this method just after enum
CellType):

init(rows: Int = 10, cols: Int = 10) {
 self.rows = rows
 self.cols = cols

 board = Array(repeating: Array(repeating: .none,
 count: cols+2),
 count: rows+2)

 prepareBoard()
}

Notice:

1 1 0

• You use default values for rows nad cols.

• Defining board you add 2 to cols and rows – this is because a frame
enclosing all game fields (see Chapter 1: Initial steps, Section 1:
Battleship game).

• To have code clean, all other steps needed to initialize game board you
"delegate" to prepareBoard method which you should implement as
next to avoid this error: Cannot find 'prepareBoard' in
scope.

• You have to use self keyword to differentiate property names
(self.rows) and arguments (rows).

Every instance of a type has an implicit property called self, which is
exactly equivalent to the instance itself. You use the self property to
refer to the current instance within its own instance methods. It is the
same as this in Java or C++. In practice, you don’t need to write
self in your code very often. If you don’t explicitly write self, Swift
assumes that you are referring to a property or method of the current
instance whenever you use a known property or method name within
a method. The main exception to this rule occurs when a parameter
name for an instance method has the same name as a property of that
instance. In this situation, the parameter name takes precedence, and
it becomes necessary to refer to the property in a more qualified way.
And that's why you use the self property to distinguish between the
parameter name and the property name. See [SELF] for more details.

prepareBoard is quite self descriptive (put this method after init
method):

func prepareBoard() {
 for i in 0...rows+1 {
 board[i][0] = .notAllowed
 board[i][cols+1] = .notAllowed
 }

1 1 1

 for i in 0...cols+1 {
 board[0][i] = .notAllowed
 board[rows+1][i] = .notAllowed
 }

 for r in 1...rows {
 for c in 1...cols {
 board[r][c] = .empty
 }
 }
}

At this step all errors are gone but nothing happens because you haven't
instantiated Board class – there is no variables of Board type.

Just after prepareBoard add printBoard method intended to
display game board (you will start implementing this method in next
chapter):

func printBoard() {

}

Create Engine class

You don't want to manually managed all game object. Instead you will
create a class which you will use as an entry point to the game. All
interaction with a game is only through this class.

Create new file, name it Engine.swift, and paste the following code:

import Foundation

class Engine {
 private var boardPlayer: Board
 private var boardOpponent: Board

 init(rows: Int = 10, cols: Int = 10) {
 self.boardPlayer = Board(rows: rows, cols: cols)
 self.boardOpponent = Board(rows: rows, cols: cols)
 }

 func printBoards() {

1 1 2

 print("PLAYER")
 boardPlayer.printBoard()
 print("OPPONENT")
 boardOpponent.printBoard()
 }
}

There is nothing new to comment here.

Final step

The final step is to create Engine object and call its printBoards
method. Paste the following code to main.swift file (comment all
other code, being an effect of previous tests and experiments, you may
have in this file):

import Foundation

let game = Engine(rows: 12, cols: 15)
game.printBoards()

You may now safely compile and run your code. You will see:

PLAYER
OPPONENT
Program ended with exit code: 0

which is not very spectacular result but, what is most important, fully
correct result.

Code changes summary

Now class Board is fully initialized. You have also an initial version of
Engine class.

1 1 3

1 1 4

CHAPTER 4

Type methods, guards and
string interpolation

You will do:

In this part you will start implement method printing game board.

You will learn:

• What type methods are.

• For what and how you can use guards.

• What a string interpolation is.

1 1 6

SECTION 1

Type methods

In Chapter 1: Initial steps, Section 1: Game battleship I presented some
assumptions related to game you will implement – among others the
way you will present game board to the player. To remind you game
board, for example in case of 12 rows and 15 columns, should be printed
as:

 111111
 123456789012345
 +++++++++++++++++
 1+...............+
 2+...............+
 3+...............+
 4+...............+
 5+...............+
 6+...............+
 7+...............+
 8+...............+
 9+...............+
10+...............+
11+...............+
12+...............+
 +++++++++++++++++

where + represents notAllowed field and . empty field. What seems to
be crucial for this printing is the way you align columns: you have to add
a proper number of spaces before some text (I marked spaces with
character s for aligning numbers, # to compensate frame existence and
* to replace nonexistent digits at some positions):

ss#*********111111 12 spaces
ss#123456789012345 3 spaces
ss+++++++++++++++++ 2 spaces

1 1 7

s1+...............+ 1 space
s2+...............+ 1 space
s3+...............+ 1 space
s4+...............+ 1 space
s5+...............+ 1 space
s6+...............+ 1 space
s7+...............+ 1 space
s8+...............+ 1 space
s9+...............+ 1 space
10+...............+ 0 spaces
11+...............+ 0 spaces
12+...............+ 0 spaces
 +++++++++++++++++

To make it, you need a method determining the number of digits needed
to print the largest row number so you could correctly compute the
number of spaces printed in the place of s characters. Such a method,
you may name it determineNumberOfDigits, is not a strict method
of Board class – it is rather universal method which may be used by
many other classes or methods. This is why you will put its code in
separate class where you will "collect" all helper or useful method which
don't belong to only one class. Create the Utils class with the frame of
our method

class Utils {
 class func determineNumberOfDigits(number: Int) -> Int {
 [... PUT METHOD CODE HERE ...]
 }
}

This code looks almost familiar except class keyword proceedings
function (method). All functions you implemented so far were an
examples of instance methods. Instance, because to use them, you need
an instance of a class. You have to create an object and then call an
(instance) method on this object. Other words, this kind of methods
need object because they operate directly on the objects. With class
keyword proceedings function you define type methods that is a method
which "belongs" rather to a whole type of objects than particular object
(see also [TM:1]). In consequence, no object of this type is needed to use
this method. The need to determine the number of digits may occur in

1 1 8

many different types and is not something typical for board, ship or any
other battleship game object but rather for integer numbers, no matter
where they are used. That is why separating code of this method in a
versatile class collecting different utility methods seems to be
reasonable.

Before you implement this method, analyze the following example
where I try to justify existence of type methods. Transformer class is
dedicated to preserve some values (in this case only one integer) and do
some transformation on them (in this case only one, named
calculateDoubleValue):

class Transformer {
 var x = 5

 func calculateDoubleValue() -> Int{
 return x * 2
 }
}

To use it, you simply have to create its instance and then call a method
on this instance:

var transformer = Transformer()
print(transformer.x)
print(transformer.calculateDoubleValue())

You may want to make this class more versatile, so you add another
method:

func calculateDoubleValue(ofNumber: Int) -> Int {
 return ofNumber * 2
}

You can use it specifying any integer as:

print(transformer.calculateDoubleValue(ofNumber: 7))

1 1 9

It's not bad but a bit weird. To transform number 7 you have to create
an object storing other values. You do this (create an object) only to be
able to call method; you don't need any value stored in this object! As
you can see, such a method of proceeding is not the most appropriate. It
would be nice to have a method you can use without need of
instantiating it. Happily this is what you have in Swift – you can use
type method prepending your method with class keyword:

class func calculateDoubleValue(ofNumber: Int) -> Int {
 return ofNumber * 2
}

Now you can call it as:

print(Transformer.calculateDoubleValue(ofNumber: 7))

Note that it looks similarly, but now you use class name (starting with
capital letter t) in front of calculateDoubleValue(ofNumber:)
method.

Going back to our game code, at the first attempt you may implement
determineNumberOfDigits(number:) method as:

class func determineNumberOfDigits(number: Int) -> Int {
 var value = 10

 if number > 0 {
 for digits in 1...10 {
 if (value > number) {
 return digits
 }
 value *= 10
 }
 }
 return 0
}

This is not bad but also not in Swift style. You will change it in next
section. Going bac to the main topic of this section: if you have

1 2 0

determineNumberOfDigits implemented as a type method you can
call it this way (you may paste this snippet at the end of main.swift
file; remember to delete it when you finish your test):

let d = Utils.determineNumberOfDigits(number: 54312)
print(d)
// Prints: 5

You simply put method name and specify "namespace" it belong to –
a class name. It is much more natural then creating an object without
intention to use it – only to be able to call method which do nothing
with object:

let utils = Utils()
let leadingPadding = utils.determineNumberOfDigits(number:
rows)
// You don't need 'utils' any more but it will exist as long as
// this method will not finish

Code changes summary

You should have Utils class with determineNumberOfDigits type
method inside. This method is almost done – you will do slight but
important change in next section.

1 2 1

1 2 2

SECTION 2

Guards

You may notice in determineNumberOfDigits method that the
whole block of code:

for digits in 1...10 {
 if (value > number) {
 return digits
 }
 value *= 10
}

is embraced within if only to prevent them being executed in case of
required conditions are not fulfilled. Being more accurate: you don't
want to prevent some code being executed but rather prevent the rest of
method being executed. This is an important difference. With code:

func myFunction() {
 // CODE PRECEDING CONDITION

 if condition {
 // SOME CONDITIONAL CODE
 }

 // CODE FOLLOWING CONDITION
}

you will execute CODE PRECEDING CONDITION, possibly execute
SOME CONDITIONAL CODE and for sure execute CODE FOLLOWING
CONDITION. It may happen that both SOME CONDITIONAL CODE and
CODE FOLLOWING CONDITION require some other condition to be

1 2 3

met and it makes no sense to execute any of them in case of
breaking this condition:

func myFunction() {
 // CODE PRECEDING CONDITION

 if importantCondition {
 if condition {
 // SOME CONDITIONAL CODE
 }

 // CODE FOLLOWING CONDITION
 }
}

In this short snippet it looks acceptable but for longer code, maybe with
more nested conditions of this type, you will get few level of code
indentation and set of closing curly brackets which may make the code
less readable. The main idea of if, similar to "outer" condition in above
code, is to check if some, strictly required, conditions are met. If not,
you should immediately escape this function as it may not be
possible to execute subsequent statements. That is so important that we
clearly "mark" such an important places in our code that in Swift you
have special guard statement dedicated to check all necessary
conditions and to be used in place of ifs. With guard code looks more
natural and let you keep the code that handles a violated requirement
next to the requirement.

func myFunction() {
 // CODE PRECEDING CONDITION

 guard importantCondition else {ESCAPE}

 if condition {
 // SOME CONDITIONAL CODE
 }

 // CODE FOLLOWING CONDITION
}

1 2 4

guard, unlike conditional statement if, always is used with else part
because Swift always needs to know what to do in case of condition
failure. This action, denoted as ESCAPE in the above code, must
transfer control to exit the code block in which the guard
statement appears. If you want to make some action and further
proceed with executing your function, you will get an error. Look into
this code, where only print statement is used in case of condition
failure:

func myFunction(x: Int) {
 // CODE PRECEDING CONDITION
 let y = 2 * x

 guard x > 2 else {print("Aaaa!!!")}

 if y < 6 {
 // SOME CONDITIONAL CODE
 }

 // CODE FOLLOWING CONDITION
}

You can't compile this code because Swift complains: 'guard' body
must not fall through, consider using a 'return' or
'throw' to exit the scope. So you must exit the scope, and
ESCAPE must be a set of statements exiting your function. In most cases
it is simply return, but you may put something more "elaborated":

func myFunction(x: Int) {
 // CODE PRECEDING CONDITION
 let y = 2 * x

 guard x > 2 else {
 print("Aaaa")
 return
 }

 if y < 6 {
 // SOME CONDITIONAL CODE
 }

 // CODE FOLLOWING CONDITION
}

1 2 5

Of course you may live without guard and replace it with if:

func myFunction(x: Int) {
 // CODE PRECEDING CONDITION
 let y = 2 * x

 if !(x > 2) {print("Aaaa"); return}

 if y < 6 {
 // SOME CONDITIONAL CODE
 }

 // CODE FOLLOWING CONDITION
}

Natural question is: Do I really need 'guards' statement? Is this not
some fanciful whim? What can I say? Imagine a long code, with lots of
ifs. Most of them a "typical" conditional statements branching your
code – this is for what we use them. Some of them, maybe one or two, a
crucial for execution – they check some strictly required condition. At
the first sight it's hard to say which of them. You have to look into the
code, check all blocks etc. So we use guards to clearly mark those
important conditions. Using a guard statement for requirements
improves the readability of your code, compared to doing the
same check with an if statement. It lets you write the code that’s
typically executed without wrapping it in an else block. And, what was
mentioned earlier, it lets you keep the code that handles a violated
requirement next to the requirement.

1 2 6

Code changes summary

When you know what guard is, you can modify
determineNumberOfDigits type method located in Utils class:

class func determineNumberOfDigits(number: Int) -> Int {
 var value = 10

 guard number > 0 else {return 0}

 for digits in 1...10 {
 if (value > number) {
 return digits
 }
 value *= 10
 }

 return 0
}

Modification is slight (if is replaced by guard) but makes the code
closer to Swift style.

1 2 7

1 2 8

SECTION 3

String interpolation

If you have a variable or constant of String type you can simply print
it:

var message = "Hello World!"
print(message)
// Prints: Hello World!

Similarly, you can print an Int variable:

var x = 5
print(x)
// Prints: 5

Now you may ask, how to put together both String and Int so it could
be printed? Assume, that your goal is to print:

Variable x has value 5

One possible solution is given below:

message = "Variable x has value " + String(5)

You have to build this string manually, concatenating string with integer
previously "transformed" into string. If you want to create string with
more part this could be troublesome and in special cases extremely
unreadable.

1 2 9

You may dream to have possibility to write:

message = "Variable x has value x"

Notice that your intention is to trat first x as a character but second
should be replaced by value stored in variable x. Of course in this case
there is no way to distinguish when x should be x and when should be
substituted. To indicate some part of a string as a placeholder (the part
which should be replaced with the current value of constant or variable)
Swift uses string interpolation. Wrap the name in parentheses (and)
and escape it with a backslash \ before the opening parenthesis:

message = "Variable x has value \(x)"
print(message)
// Prints: Variable x has value 5

String interpolation is a way to construct a new String value from a
mix of constants, variables, literals, and expressions by including their
values inside a string literal:

let age = 12
message = "If you are \(age), you are \(age < 30 ? "young" :
"middle-aged")"
print(message)
// Prints: If you are 12, you are young

In the example above, the value of age variable (number 12) is inserted
into a string literal in place of \(age). The value of age is also part of a
compound expression later in the string where ternary conditional
operator is used.

The ternary conditional operator is a special operator with three parts,
which takes the form condition ? met : unmet. It’s a shortcut for
evaluating one of two expressions based on whether condition is true
or false. If condition is true, it evaluates met and returns its value;
otherwise, it evaluates unmet and returns its value. Expression used in

1 3 0

message string returns either young or middle-aged string
depending on age variable value. The ternary conditional operator is
shorthand for the code below:

if condition {
 // CONDITION MET
} else {
 // CONDITION UNMET
}

Main difference between ternary conditional operator and if
conditional statement is that the first returns value and can be used as a
part of complex statement as it is given in the example with age. It is
possible to write:

let category = age < 30 ? "young" : "middle-aged"

but you can't write:

let category = if condition {
 // CONDITION MET
} else {
 // CONDITION UNMET
}

Code changes summary

No changes in code – you will use knowledge presented here in
subsequent sections.

1 3 1

1 3 2

SECTION 4

Game code

PRINTING FIRST LINE

Equipped with determineNumberOfDigits(number:) function,
you may start implement printBoard method:

func printBoard() {
 let leadingPadding = Utils.determineNumberOfDigits(number:
rows)
 var leadingPaddingString = ""
 var line = ""
 var number = 0

 for _ in 1...leadingPadding {
 leadingPaddingString += "s" // Replace with space
 }

 // BEGIN Print first line
 line = leadingPaddingString + "#" // Replace with space

 // Print tens digits
 for c in 1...cols {
 number = c/10
 if number == 0 {
 line += "*" // Replace with space
 } else {
 line += "\(number)"
 }
 }

 print(line)
 // END Print first line
}

At the beginning you define three variables and one constant:

1 3 3

• leadingPadding is the number of digits for the biggest row number.

• leadingPaddingString is a string of spaces repeated
leadingPadding times.

• line you will use to build each line you want to print.

• number is a variable yo will use to print columns and rows numbers.

Some places in the code are marked as:

// Replace with space

When you complete implementing this method remember to replace all
mock characters (s, #, *) with space. Now you use all of them to make
clear how many spaces you have and which part of your code is
responsible for generating them. When executed, this code will print:

PLAYER
ss#*********111111
OPPONENT
ss#*********111111

You can compare this result with example given in Section 1 of this
chapter. As you can see, output:

ss#*********111111

agrees with a first line of an example shown there.

1 3 4

PRINTING SECOND LINE

Very similar code prints second line with unity digits. Paste the
following code at the end of printBoard method:

// BEGIN Print second line
line = leadingPaddingString + "#" // Replace with space

// Print unity digits
for c in 1...cols {
 number = c%10
 line += "\(number)"
}

print(line)
// END Print second line

For a game board with 12 rows and 15 columns this will print:

ss#*********111111
ss#123456789012345

To save space I show only a part of output related to one game board
(board both for player and opponent are printed identically).

Code changes summary

In this chapter you started to implement printBoard method. It is not
complete yet, but you should see columns numbers printed correctly.
You will complete it in next chapter.

1 3 5

1 3 6

CHAPTER 5

Tuples, switch and
extensions

You will do:

In this part you will finish implementing printing game board method.

You will also create a class related to ships and implement one method

to use with this type.

You will learn:

• What tuple is.

• How Swift turn switch-case statement into handy tool.

• How to separate your code with extensions.

1 3 8

SECTION 1

Tuples

Tuple (pronounced /tapel/, /tupel/ or sometimes /tjupel/)is a
well known concept from script programming languages and something
I always want to have in C. Of course you can live without it and mimic
with for example arrays or dictionaries but tuple is more natural. Tuple
group multiple values into a single compound value. The values within a
tuple can be of any type and do not have to be of the same type as each
other. Below you have an example of a simple tuple (pair in this case) of
type (Int, String) – first element of this tuple is an integer while
second is a string:

// Tuple of type (Int, String)
let warning = (123, "This is a critical warning")
var (currentMessageCode, currentMessageText) = warning

print ("Message text: " + currentMessageText)
// Prints: Message text: This is a critical warning
print ("Message text: \(currentMessageText)")
// Prints: This is a critical warning

As in many cases before, if you don't care about some element of a tuple,
you can use underscore character in place of variables corresponding to
tuple's element:

(_, currentMessageText) = warning

This is especially useful in case of complex tuples:

let x = (1, 2, 3, 4, 5, "a", "b", "c", (1, 2))
let (_, _, _, _, _, letter, _, _, _) = x

1 3 9

print(letter)
// Prints: a

You can also use index numbers starting at zero to get tuple's element:

print (x.5)
// Prints: a

To make your code more readable, you can name the individual
elements in a tuple when the tuple is defined:

let alert = (messageCode: 456,
 messageText: "This is an alert")

print ("Message text: " + alert.messageText)
// Print: Message text: This is an alert

But you don't have to provide name for every individual elements:

let y = (1, 2, 3, compoundElement: (4, second: 5), 6, 7, 8)

print(y.3.1)
// Prints: 5

print(y.compoundElement.1)
// Prints: 5

print(y.compoundElement.second)
// Prints: 5

print(y.3.second)
// Prints: 5

Tuples are great for temporary usage. They are not suited to being use
as a complex data structure persisting for a long time. In such a case
structures and classes are better choice. You may find them useful when
you want to return more than one value from a function:

1 4 0

func doSomething(
 withInteger int: Int
) -> (square: Int, double: Int) {
 let square = int * int
 let double = int + int

 return (square: square, double: double)
}

let x = doSomething(withInteger: 3)
print(x.0) // Prints: 9
print(x.1) // Prints: 6

print(x.square) // Prints: 9
print(x.double) // Prints: 6

1 4 1

1 4 2

SECTION 2

switch - case statement

NO IMPLICIT FALL THROUGH

I'm not going to explain the general idea behind switch - case
statement (in short: switch statement or simply switch) as I suppose
you have ever heard about it. Instead I want to show how Swift turn
good old-fashion switch into very handy tool. Below there is Swift's
switch:

let text = "one"

switch text {
case "one", "One":
 print("Case ONE")
case "two", "Two":
 print("Case TWO")
default:
 print("Default")
}
// Prints: Case ONE

What may catch your eye is lack of breaks which are needed in most
programming languages to prevent from fall into next case. In Swift, if
you fall into case, then only this case's code is executed. If you want to
use C-style fall through behavior a fallthrought keyword must be
used. The fallthrough keyword causes code execution to move to the
next case or default block on a case-by-case basis. Other words, this
is not "global" behavior for all cases within a given switch but
concerns only the case inside which fallthrought is used:

switch text {

1 4 3

case "one", "One":
 print("Case ONE")
 fallthrough
case "two", "Two":
 print("Case TWO")
default:
 print("Default")
}
// Prints:
// Case ONE
// Case TWO

Remember that doing that, the fallthrought does not check the case
condition for the switch case that it causes execution to fall into. The
fallthrough keyword simply causes code execution to move directly
to the statements inside the next case (or default case) block without
any case matching, as it is done in C:

var number = 2
switch number {
case 1, 2:
 print("1 or 2")
 fallthrough
case 3, 4:
 print("3 or 4")
default:
 print("all other options")
}
// Prints:
// 1 or 2
// 3 or 4

NO EMPTY CASES

As you saw, you can specify multiple values to match in one case:

case "one", "One":

and in Swift you can't leave empty case – a case without any
instruction (which is typical for C-like code):

case "one":
case "One":
 print("Case ONE")

1 4 4

If you try to do this, you will see an error: 'case' label in a
'switch' should have at least one executable
statement.

INTERVAL MATCHING

Another improvement in Swift is an ability of switch's cases to check if
their values are included in an interval:

let number = 12
switch number {
case 1...10:
 print("Range one")
case 11..<15:
 print("Range two")
case 15:
 print("Range three")
default:
 print("Out of range")
}
// Prints: Range two

TUPLE MATCHING

Also tuples can be tested by case statement which can be very handy
and allows to simplify your code:

var point2D: (Double, Double)
point2D = (2.5, 2)
switch point2D {
case (0, 0):
 print("Origin")
case (_, 0):
 print("Point is on the OX axis")
case (0, _):
 print("Point is on the OY axis")
case (1..<2, 1..<2), (2...3, 2...3):
 print("Point is inside the restricted area")
default:
 print("Free 2D point")
}
// Prints: Point is inside the restricted area

1 4 5

BIND VALUE TO CONSTANTS OR VARIABLES

Other things which may be useful is the ability to bind the value a
switch matches to temporary constants or variables, to be used in the
body of the case:

point2D = (0, 5)
switch point2D {
case (0, 0):
 print("Origin")
case (let x, 0):
 print("Point (\(x),0) is on the OX axis")
case (0, let y):
 print("Point (0, \(y)) is on the OY axis")
case let (x, y):
 print("Free 2D point (\(x), \(y))")
}
// Prints: Point (0, 5.0) is on the OY axis

As it was mentioned in case of enumerations in Chapter 3: Arrays and
enumerations, Section 2: Enumerations you may put let or var in two
different places. If you have more than one value, you may bind them to
constants or variables. In such a case you have to put var or let
prefixes before corresponding name:

case (let x, 0):

If all of the values for a case are binded as constants, or if all are
binded as variables, you can place a single var or let annotation before
the case name, for brevity:

case let (x, 0):
In this simple example both forms have the same effect.

COMPLEX MATCHING CONDITIONS

A switch case can use a where clause to express complex matching
conditions:

point2D = (2, 3)
switch point2D {

1 4 6

case (0, 0):
 print("Origin")
case (let x, 0):
 print("Point (\(x),0) is on the OX axis")
case (0, let y):
 print("Point (0, \(y)) is on the OY axis")
case let (x, y) where x > y:
 print("Point (\(x), \(y)) from a 2D subspace")
default:
 print("Eeee...")
}
// Prints: Eeee...

1 4 7

1 4 8

SECTION 3

Extensions

Using type method like determineNumberOfDigits(number:)
(see: Chapter 4: Type methods, guards and string interpolation, Section
1: Type methods) to separate common code which "belongs" rather to a
whole type of objects than particular object is one possible option how
you can solve this issue. If we pay a lot more attention to it, we discover
that in this example determining a number of digits is something we do
on particular integer object; it is something typical to integers. Saying
the truth we made it as a type method for didactic reasons to describe
what a type method is. Now we will show how this type on problems
could be accomplish in more swifty style with extensions.

Extension add new functionality to an existing class, structure,
enumeration, or protocol type. What is very important, this includes the
ability to extend types for which we do not have access to the original
source code. Extensions are declared with the extension keyword:

extension TypeYouExtend {
 // New functionality to add to TypeYouExtend goes here
}

Consider simple functionality related to integer numbers: you may want
to have function constraining integer value to be within a given range.
Such a function (constrain(value, lowerEnd, upperEnd)) is
something very common to use in combination with map(value,
fromLow, fromHigh, toLow, toHigh) while working with
microcontrollers [ARD:1,2]. This is how you can implement it in Swift:

1 4 9

extension Int {
 func constrain(toRangeFrom min: Int, to max: Int) -> Int {
 if self > max {
 return max
 } else if self < min {
 return min
 }
 return self
 }
}

This way you add new method to an existing Int type. This method
behaves as any other method made by Int class creators. Particularly,
self represents the current instance of a given type – it is an object on
which you call this method (for more informations about self see:
Chapter 3: Arrays and enumerations, Section 4: Implementing
initializers). Now you can call it:

var x = 12
x = x.constrain(toRangeFrom: 5, to: 10)
print(x)
// Prints: 10

With self and extension you can do even more. The following code
is intended to calculate square of an integer:

extension Int {
 func square() -> Int {
 return self * self
 }
}

let x = 3
var y = x.square()

print(x)
// Prints: 3

print(y)
// Prints: 9

You can turn this code to mutate (change in-place) given integer
calculating its square:

1 5 0

extension Int {
 func square() -> Int {
 return self * self
 }

 mutating func squareMe() {
 self = self * self
 }
}

let x = 3
var y = x.square()
print(x)
// Prints: 3

print(y)
// Prints: 9

y.squareMe()
print(y)
// Prints: 81

Now you can use this concept to implement another helpful method.
This method should enlarge specified string to a given length left
padding it with spaces by default or any other character if specified. For
example, if string 12 should be transformed into four-character string,
this method should return ..12 where dots . are used in a place of
spaces to make it visible. Create the Extensions.swift file and put
inside the following code:

extension String {
 func leftPadding(
 toLength: Int,
 withPad: String = " "
) -> String {
 guard toLength > self.count else {return self}

 let padding = String(repeating: withPad,
 count: toLength - self.count)

 return padding + self
 }

1 5 1

}

You can test this extension placing for a while the following code in
main.swift file:

let x = 12
let s1 = String(x).leftPadding(toLength: 4, withPad: "*")
let s2 = "\(x)".leftPadding(toLength: 4, withPad: "#")

print(s1)
// Prints: **12

print(s2)
// Prints: ##12

Notice how you create padding string. In printBoard function a
variable leadingPaddingString is created as leadingPadding
spaces concatenated together in for loop:

for _ in 1...leadingPadding {
 leadingPaddingString += " "
}

More swifty way is to use initializator with repeating argument. You
have seen this in previous chapter in Board initializer where two-
dimensional array was created:

board = Array(repeating: Array(repeating: .none,
 count: cols+2),
 count: rows+2)

Because we extend functionality of String class, self refers to a given
string object. So self.count is about the number of characters in it,
while padding + self is a concatenation of sequence of spaces (or
other character specified as withPad argument) and string itself
(padding and self part respectively).

1 5 2

Complete game board printing method

Now you are ready to complete last part of a game board printing
method. The rest of the printBoard method code shouldn't be difficult
to understand (paste this code at the end of printBoard before closing
curly bracket }):

// BEGIN Print all gameboard rows
for r in 0...rows+1 {
 line = ""

 if r == 0 || r == rows+1 {
 line += leadingPaddingString
 } else {
 line += String(r).leftPadding(toLength: leadingPadding,
 withPad: "s")
 // Replace with space
 }

 for c in 0...cols+1 {
 switch board[r][c] {
 case .empty:
 line += "."
 case .hit:
 line += "!"
 case .ship:
 line += "X"
 case .shot:
 line += "*"
 case .none:
 line += "?"
 case .notAllowed:
 line += "+"
 case .rescue:
 line += "O"
 }
 }

 print(line)
}
// END Print all game board rows

1 5 3

For a game board with 12 rows and 15 columns this will print:

ss#*********111111
ss#123456789012345
ss+++++++++++++++++
s1+...............+
s2+...............+
s3+...............+
s4+...............+
s5+...............+
s6+...............+
s7+...............+
s8+...............+
s9+...............+
10+...............+
11+...............+
12+...............+
ss+++++++++++++++++

To save space I show only a part of output related to one game board
(board both for player and opponent are printed identically).

Finally you can search for every places marked in your code as Replace
with space and replace s, # and * with space character to get final
result:

 111111
 123456789012345
 +++++++++++++++++
 1+...............+
 2+...............+
 3+...............+
 4+...............+
 5+...............+
 6+...............+
 7+...............+
 8+...............+
 9+...............+
10+...............+
11+...............+
12+...............+
 +++++++++++++++++

1 5 4

1 5 5

1 5 6

SECTION 4

Game code

Add Ship class

Three elements are needed to place a ship:

• size so you know how many successive cells the ship occupies;

• coordinates of the first element so you know when it starts (I will
use anchor or reference point for this);

• direction so you know how the ship is oriented: upwards,
downwards, leftwards or rightwards.

For the ship of size 3 you have:

 start column
 |
 |
.........
....u....
....u....
..llXrr..---start row
....d....
....d....
.........

where

• X – first element; it has (start row, start column)
coordinates;

1 5 7

• u – successive cells the ship occupies if it is directed upwards;

• d – successive cells the ship occupies if it is directed downwards;

• l – successive cells the ship occupies if it is directed leftwards;

• r – successive cells the ship occupies if it is directed rightwards.

Create a new class, as you did it before, and name it Ship. As for now,
this class will have only one component: Direction enumeration used
to uniquely identify or position a ship on a game board:

class Ship {
 enum Direction {
 case up, down, left, right
 }
}

mayPlaceShip function, part 1 of 2

mayPlaceShip function is intended to check if it is possible to put a
ship of a given size, starting a anchor position and directed towards
direction. Put the following code at the end of Board class:

func mayPlaceShip(
 size: Int,
 anchor: (row: Int, col: Int),
 direction: Ship.Direction
) -> Bool {
 var modifier = (forRow: 0, forCol: 0)
 var r = 0
 var c = 0

 switch direction {
 case .up:
 modifier = (forRow: -1, forCol: 0)
 case .down:
 modifier = (forRow: +1, forCol: 0)
 case .left:
 modifier = (forRow: 0, forCol: -1)
 case .right:
 modifier = (forRow: 0, forCol: +1)

1 5 8

 }

 for i in 0...size-1 {
 r = anchor.row + i * modifier.forRow
 c = anchor.col + i * modifier.forCol

 guard r>0, r<rows+1 else {return false}
 guard c>0, c<cols+1 else {return false}

 if board[r][c] != .empty {
 return false
 }
 }

 return true
}

This is not a final version of this method; you will update it soon. In this
form you should have no problems to understand how it works.

Create Test class

Create Test class with the following testMayPlaceShip type
method:

class Test {
 // For 10 x 10 game board should prints:
 // possible, impossible, possible, impossible
 class func testMayPlaceShip(board: Board) {
 var x = board.mayPlaceShip(size: 4,
 anchor: (row: 2, col: 2),
 direction: .down)

 print(x ? "possible" : "impossible")

 x = board.mayPlaceShip(size: 4,
 anchor: (row: 9, col: 2),
 direction: .down)

 print(x ? "possible" : "impossible")

 x = board.mayPlaceShip(size: 4,
 anchor: (row: 5, col: 7),
 direction: .right)

 print(x ? "possible" : "impossible")

1 5 9

 x = board.mayPlaceShip(size: 4,
 anchor: (row: 5, col: 8),
 direction: .right)

 print(x ? "possible" : "impossible")
 }
}

Depending on your game board size this method prints different results;
for 10 by 10 game board you will see: possible, impossible,
possible, impossible.

Next add this test method at the end of Engine class:

func test() {
 Test.testMayPlaceShip(board: boardPlayer)
}

Finally add this line at the end of main.swift file and run your code:

game.test()

Be sure to have 10 by 10 game board – you should have only the
following code in main.swift file:

import Foundation

let game = Engine(rows: 10, cols: 10)
game.printBoards()
game.test()

In Console window you will see:

PLAYER
 1
 1234567890
 ++++++++++++
 1+..........+
 2+..........+
 3+..........+
 4+..........+
 5+..........+
 6+..........+

1 6 0

 7+..........+
 8+..........+
 9+..........+
10+..........+
 ++++++++++++
OPPONENT
 1
 1234567890
 ++++++++++++
 1+..........+
 2+..........+
 3+..........+
 4+..........+
 5+..........+
 6+..........+
 7+..........+
 8+..........+
 9+..........+
10+..........+
 ++++++++++++
possible
impossible
possible
impossible
Program ended with exit code: 0

Last four lines (excluding exit status code line) are result of your test
method – you will see there: possible, impossible, possible,
impossible.

Code changes summary

In this chapter you:

• add an Extensions class with an extension for strings
(leftPadding function);

• finished printBoard from Board class;

• created Ship class;

1 6 1

• add mayPlaceShip method to Board class (you will complete this
method soon);

• add Test class to keep together all test methods.

Now you can print game board and check if some location is a good
place to put there a ship.

1 6 2

1 6 3

1 6 4

CHAPTER 6

Properties, dictionaries
and sets

You will do:

In this part you will finish implementing printing game board method.

You will also create a class related to ships and implement one method

to use with this type.

You will learn:

• Various property types.

• How to create and use dictionaries.

• How to create and use sets.

1 6 6

SECTION 1

Property types

Variables or constants present inside a class are called properties of this
class. Being more precisely, properties of objects which are instances of
this class. In Swift, besides "normal" properties, called stored
properties, you have worked so far, there are also few other types of
properties.

Computed properties

Classes, structures and enumerations can define computed properties.
This type of properties do not actually store a value. Instead, they
provide a getter (programmers jargon term for get method) and an
optional setter (programmers jargon term for set method) to retrieve
and set this and other properties indirectly. So computed properties, in
contrast to stored properties, calculate rather than store value. Simply
speaking, sometimes you don't need to store explicitly (permanently)
some value – for example it may be to expensive (taking into
consideration memory usage) or this value may be computed based on
other values.

To define computed property you use get and set keyword. In case
you want to have a read only computed property you can skip the get
keyword (and of course there must be no set because this is read only
property) or even return if the entire body of the function is a single
expression (see also Chapter 2: Variables and functions, Section 3:
Functions, subsection: Function with an implicit return).

1 6 7

To justify existence of computed properties consider a following
example of Square class:

class Square {
 var edge = 2.0

 func getArea() -> Double {
 return edge * edge
 }
}

var s = Square()
print("\(s.edge) \(s.getArea())")
// Prints:
// 2.0 4.0
s.edge = 5
print("\(s.edge) \(s.getArea())")
// Prints:
// 5.0 25.0

This is a quite simple class representing a square. It has only one
property: edge, and one method: getArea(). Defining square by its
edge is one of possible options. Other is providing area and then
calculate edge length:

class Square {
 var area = 4.0

 func getEdge() -> Double {
 area.squareRoot()
 }
}

var s = Square()
print("\(s.getEdge()) \(s.area)")
// Prints:
// 2.0 4.0

s.area = 25
print("\(s.getEdge()) \(s.area)")
// Prints:
// 5.0 25.0

1 6 8

As you can see, it's quite natural to consider both edge and area as a
property of a square; it's quite natural to have an access of the form:
s.edge and s.area. So another approach to implement this might
take a form:

class Square {
 var edge: Double
 var area: Double

 init(edge: Double) {
 self.edge = edge
 area = edge * edge
 }
}

This looks good as long as you only use values from instantiated square:

var s = Square(edge: 2)
print("\(s.edge) \(s.area)")
// Prints:
// 2.0 4.0

Unfortunately it will fail if you try to change some of square's
properties:

s.edge = 5
print("\(s.edge) \(s.area)")
// Prints:
// 5.0 4.0

It would be nice to combine property with method and have computable
property:

class Square {
 var edge = 2.0
 var area: Double {
 edge * edge
 }
}

var s = Square()
print("\(s.edge) \(s.area)")
// Prints:

1 6 9

// 2.0 4.0

s.edge = 5
print("\(s.edge) \(s.area)")
// Prints:
// 5.0 25.0

This fixes Square class in "one direction" – get direction, because if you
try to set properties' values, you will get an error:

// Error:
// Cannot assign to property: 'area' is a get-only property
s.area = 36

The final version is given below:

class Square {
 var edge = 2.0
 var area: Double {
 get {
 edge * edge
 }
 set (newValue) {
 edge = newValue.squareRoot()
 }
 }
}

var s = Square()
print("\(s.edge) \(s.area)")
// Prints:
// 2.0 4.0

s.edge = 5
print("\(s.edge) \(s.area)")
// Prints:
// 5.0 25.0

s.area = 36
print("\(s.edge) \(s.area)")
// Prints:
// 6.0 36.0

It was just a kind of mental experiment and I hope it has convinced you
that computed properties might be useful. Of course, you can live
without them, but their existence simplifies code and make it more

1 7 0

natural. Without them you would be forced to close an access to
properties with private keyword in front of them and use only
accessors methods, getters and setters. This is a typical pattern in Java:
keep all properties hidden and use methods to have an access. For me,
this is really annoying.

At the end of this section, one more example:

class ComputedPropertyTest {
 var simpleProperty = 3
 var computedProperty: Int {
 get {
 return simpleProperty * 2
 }

 set (newValue) {
 simpleProperty = newValue / 2
 }
 }
 var readOnlyComputedProperty: Int {
 simpleProperty * 3
 }
}

var cpt = ComputedPropertyTest()
var test = (sp: cpt.simpleProperty,
 cp: cpt.computedProperty,
 rocp: cpt.readOnlyComputedProperty)
print("\(test.sp) \(test.cp) \(test.rocp)")
// Prints: 3 6 9

cpt.computedProperty = 8
test = (sp: cpt.simpleProperty,
 cp: cpt.computedProperty,
 rocp: cpt.readOnlyComputedProperty)
print("\(test.sp) \(test.cp) \(test.rocp)")
// Prints: 4 8 12

Lazy stored properties

Another great concept in Swift is a lazy stored property. A lazy stored
property is a property whose initial value is not calculated until
the first time it is used. Lazy properties may be useful when the

1 7 1

initial value for a property is not known until after an instance's
initialization is complete, for example we may use it for time consuming
initialization process. Lazy property must always be declared as a
variable (constant properties must always have a value before
initialization completes).

class Action {
 init() {
 print("Init Action class") // 1
 }

 func doSomething(){
 print("Do something for Action instance") // 2
 }
}

class LazyAction {
 init() {
 print("Init LazyAction class") // 3
 }

 func doSomething(){
 print("Do something for LazyAction instance") // 4
 }
}

class ActionExecutor {
 var action = Action()
 lazy var lazyAction = LazyAction()

 func executeAction(){
 action.doSomething() // 5
 lazyAction.doSomething() // 6
 }
}

let ae = ActionExecutor() // 7
ae.executeAction() // 8

Here is what happens when you execute this code:

1. Statement marked with comment // 7 is executed. In effect, a new
instance of ActionExecutor will be created and reference to this
object saved in ae variable.

1 7 2

2. In consequence you will see:

Init Action class

which is an effect of print function executed in Action's initializer
marked with // 1 comment. Notice that LazyAction's initializer
wasn't executed as there is no message Init LazyAction class
printed on screen. So now object referenced by ae is ready to use
but lazy lazyAction property initialization was deferred to the
moment you first time decide to use it (step 5 below).

3. Next, in line marked with comment // 8 you call
executeAction() method on ae object.

4. In the body of executeAction() first you call doSomething()
function on action object (line marked with // 5 comment).
Actions's doSomething() function prints a message (line
marked with // 2 comment):

Do something for Action instance

5. Next you call doSomething() function on lazyAction object
(line marked with // 6 comment). Saying the truth, you only try to
make this call as object referenced by lazyAction doesn't exist yet.
So before call will take effect, first an instance of LazyAction must
be created. And this is why now you will see:

Init LazyAction class

which is an effect of print function marked by // 3 comment in
LazyAction's initializer.

6. Finally, because now lazyAction object exist, function
doSomething() can be executed resulting with output (line
marked with // 4 comment):

1 7 3

Do something for LazyAction instance

I intentionally use LazyAction as a name for a class to attract your
attention. Please remember: what is lazy is property, not class.

NOTE

If a property marked as a lazy is accessed by multiple threads

simultaneously and the property has not yet been initialized, there is no

guarantee that the property will be initialized only once.

Property observers

Property observers are really great things. They monitor to any changes
in a property's value. Every time a property's value is set, even if the new
value is not really new, observer is called. You can add property
observer to any stored properties, except for lazy properties.

There are two observers:

• willSet is called just before the value is stored. This observer gets
new property value as a constant parameter with a default name of
newValue. You can specify your own name if you don't like this one.

• didSet is called just after the new value is stored. This observer gets
old (previous)) property value as a constant parameter with a default
name of oldValue. You can specify your own name if you don't like
this one.

1 7 4

In example below observers for secondPropertyToObserve defines
their own names: newValueToBeSet and oldValueToBeReplaced
instead of default newValue and oldValue used in
firstPropertyToObserve:

class ClassWithPropertyObservers {
 var firstPropertyToObserve:Int = 3 {
 willSet{
 print("firstPropertyToObserve is going to get new value
of: \(newValue)")
 }
 didSet{
 print("An old value of firstPropertyToObserve (\
(oldValue)) has just been replaced by a new one")
 }
 }

 var secondPropertyToObserve:Int = 7 {
 willSet(newValueToBeSet){
 print("secondPropertyToObserve is going to get new value
of: \(newValueToBeSet)")
 }
 didSet(oldValueToBeReplaced){
 print("An old value of secondPropertyToObserve (\
(oldValueToBeReplaced)) has just been replaced by a new one")
 }
 }
}

var cwpo = ClassWithPropertyObservers()
cwpo.firstPropertyToObserve = 5
// Prints:
// firstPropertyToObserve is going to get new value of: 5
// An old value of firstPropertyToObserve (3) has just been
// replaced by a new one

cwpo.secondPropertyToObserve = 9
// Prints:
// secondPropertyToObserve is going to get new value of: 9
// An old value of secondPropertyToObserve (7) has just been
// replaced by a new one

NOTE

1 7 5

When a default value is assigned to a stored property, or its initial value

is set with an initializer, the value of that property is set directly, without

calling any property observers.

Type properties

Type properties are properties related with particular type rather than
particular instance of that type. They are like static variables or
constants in C or Java.

class ClassWithTypeProperty {
 static var storedTypeProperty = 22
 var computedProperty: Int {
 return ClassWithTypeProperty.storedTypeProperty * 3
 }
}

print("\(ClassWithTypeProperty.storedTypeProperty)")
// Prints: 22

ClassWithTypeProperty.storedTypeProperty = 222

print("\(ClassWithTypeProperty.storedTypeProperty)")
// Prints: 222

let obj1 = ClassWithTypeProperty()
let obj2 = ClassWithTypeProperty()

print("\(obj1.computedProperty), \(obj2.computedProperty)")
// Prints: 666, 666

Frequently type properties are used as a "counters" or "singletons" for
all instances of a given class:

class A {
 var v = 0 {
 willSet {
 A.sum += newValue
 }
 }

1 7 6

 static var sum = 0
}

var obj1 = A()
var obj2 = A()
var obj3 = A()

// Error:
// Static member 'sum' cannot be used on instance of type 'A'
//print("\(obj1.v) \(obj2.v) \(obj3.v) \(A.sum)")

print("\(obj1.v) \(obj2.v) \(obj3.v) \(A.sum)")
// Prints:
// 0 0 0 0

obj1.v = 5
obj2.v = 7
obj3.v = -4
obj2.v = 2

print("\(obj1.v) \(obj2.v) \(obj3.v) \(A.sum)")
// Prints:
// 5 2 -4 10

Property wrappers

Discussing this topic is beyond the scope of this book. If you are curious,
please read for example [SD:1, SD:2].

1 7 7

1 7 8

SECTION 2

Dictionaries

A dictionary stores associations between keys (all of the same type) and
values (all of the same but possible different than keys type) with no
defined order. As a key you can use any hashable type

You define dictionary quite similar as you do for arrays:

var dictionary1 = [String:String]() // shorthand form
var dictionary2 = Dictionary<String, String>() // full form
var dictionary3 = ["digit0": "zero",
 "digit1": "one",
 "digit2": "two"]

print(dictionary1)
// Prints: [:]
print(dictionary2)
// Prints: [:]
print(dictionary3)
// Prints:
// ["digit2": "two", "digit0": "zero", "digit1": "one"]

You can create dictionaries from a sequence of key-value pairs:

let streamOfTuples = [(1, "one"),
 (2, "two"),
 (3, "three"),
 (4, "four")]
let dict01 = Dictionary(
 uniqueKeysWithValues: streamOfTuples)
print(dict01)
// Prints:
// [3: "three", 4: "four", 1: "one", 2: "two"]

This can be completed even faster with zip(_:_:) function:

1 7 9

let words = ["one", "two", "three", "four"]
let dict02 = Dictionary(uniqueKeysWithValues: zip(
 1...,
 words)
)
print(dict02)
// Prints:
// [1: "one", 3: "three", 4: "four", 2: "two"]

You can easily combine two dictionaries into one. This is almost as easy
as for arrays but you cannot use simply + operator because you must
resolve somehow conflicts caused by duplicate keys. Instead use
merge(_:uniquingKeysWith:) method where you specify a closure
to deal with conflicts:

var d1 = [1: "1a", 2: "1b", 3: "1c"]
let d2 = [2: "2b", 3: "2c", 4: "2d"]

d1.merge(d2){(v1, v2) in v2}
print(d1)
// Prints:
// [4: "2d", 3: "2c", 1: "1a", 2: "2b"]

Dictionaries have a fancy initializer Dictionary(grouping:by:),
and its job is to convert a sequence into a dictionary based on any
grouping you want:

let words = ["aa", "ab", "ac", "ba", "bb", "bc"]
let d = Dictionary(grouping: words){ $0.first! }
print(d)
// Prints:
// ["b": ["ba", "bb", "bc"], "a": ["aa", "ab", "ac"]]

Dictionary usage is not much different from array usage:

var dictionary3 = ["digit0": "zero", "digit1": "one", "digit2":
"two"]
dictionary3["digit2"] = "TwO"

print(dictionary3)
// Prints:
// ["digit2": "TwO", "digit0": "zero", "digit1": "one"]
var oldValue = dictionary3.updateValue("TWO", forKey: "digit2")
print(dictionary3)

1 8 0

// Prints:
// ["digit2": "TWO", "digit0": "zero", "digit1": "one"]
print("Old value: \(oldValue ?? "no value")")
// Prints: Old value: TwO

dictionary3["digit3"] = "three"
print(dictionary3)
// Prints:
// ["digit3": "three", "digit2": "TWO", "digit0": "zero",
"digit1": "one"]

for (key, value) in dictionary3 {
 print("key: \(key) value: \(value)")
}
// Prints:
// key: digit3 value: three
// key: digit2 value: TWO
// key: digit0 value: zero
// key: digit1 value: one

for key in dictionary3.keys {
 print("key: \(key)")
}
// Prints:
// key: digit3
// key: digit2
// key: digit0
// key: digit1

for value in dictionary3.values {
 print("value: \(value)")
}
// Prints:
// value: three
// value: TWO
// value: zero
// value: one

You can easily pick-up elements according to filter criteria. You provide
a closure taking the key and value for each element, and any dictionary
key-value pair you return true for is included in a resulting dictionary:

let all = [1: 2, 2: 4, 3: 3, 4: 5]
let filtered = all.filter {
 key, value in
 return (key + value) % 2 == 0
}
print(filtered)
// Prints:

1 8 1

// [3: 3, 2: 4]

.

1 8 2

1 8 3

1 8 4

SECTION 3

Sets

A set stores distinct values of the same type in a collection with no
defined ordering. You can use a set instead of an array when the order
of elements is not relevant, or when you need to ensure that an element
appears only once. A type of objects stored in a set must be hashable.

var setOfDigitsNames1 = Set<String>()
setOfDigitsNames1.insert("one")
setOfDigitsNames1.insert("two")

var setOfDigitsNames2: Set<String> = ["one", "two"]
var setOfDigitsNames3: Set = ["one", "two"]

print(setOfDigitsNames1)
// Prints: ["one", "two"]
print(setOfDigitsNames2)
// Prints: ["one", "two"]
print(setOfDigitsNames3)
// Prints: ["one", "two"]

Actions you can perform on sets are typical for sets: you can check if
elements is in set, find an intersection of two sets (elements which
belong to both sets), their union ("sum" – which is a result of combining
both sets and removing duplicates) etc.:

if !setOfDigitsNames3.isEmpty {
 if setOfDigitsNames3.contains("two") {
 setOfDigitsNames3.remove("two")
 }
 if !setOfDigitsNames3.contains("three") {
 setOfDigitsNames3.insert("three")
 }
}

1 8 5

print(setOfDigitsNames3)
// Prints: ["one", "three"]

var setOfInts1: Set = [1, 2, 3, 4]
var setOfInts2: Set = [3, 4, 5, 6]

print(setOfInts1)
// Prints: [1, 4, 2, 3]
print(setOfInts2)
// Prints: [3, 4, 6, 5]

print(setOfInts1.union(setOfInts2))
// Prints: [1, 4, 6, 5, 2, 3]
print(setOfInts1.intersection(setOfInts2))
// Prints: [3, 4]
print(setOfInts1.subtracting(setOfInts2))
// Prints: [1, 2]
print(setOfInts1.symmetricDifference(setOfInts2))
// Prints:[1, 5, 2, 6]

There are few methods you can use to test set membership or equality:

1. To test if two sets contain exactly the same values, you use ==
operator.

2. To test if all of the values of a set are contained in the specified set,
you use isSubset(of:) method. You use
isStrictSubset(of:) if you want to exclude equality of both
sets.

3. To test if a set contains all of the values from a specified set, you use
isSuperset(of:) method. You use isStrictSuperset(of:)
if you want to exclude equality of both sets.

4. To test if both sets have no common values, you use
isDisjoint(with:) method.

Sets are not so widely used as arrays or dictionaries. Personally I use
sets to simplify ifs syntax. Imagine you have an enumeration to mark
system messages as warnings, errors or simply informations:

1 8 6

enum Message {
 case warning, error, info
}

var msg = Message.warning

Now you may filter messages according to some rules:

if msg == .warning || msg == .error {
 print("!!!")
}
// Prints:
// !!!

Instead of listing all of them in condition, which may results a clumsy
and messy statement I use set as it is showed below:

// You can write:
// let importantMessages: Set = [Message.warning,
Message.error]
// or use shorter form:
let importantMessages: Set<Message> = [.warning, .error]

if importantMessages.contains(msg) {
 print("!!!")
}
// Prints:
// !!!

As you can see with set condition simplifies to:

importantMessages.contains(msg)

1 8 7

1 8 8

SECTION 4

Game code

Code changes related to Ship class

Extend previously created Ship class with new enumeration type (put
this code before class's closing curly bracket }):

enum Status {
 case damaged, destroyed, ready
}

Status means:

• ready – ready to use, fully operational part of a ship.

• damaged – damaged part of a ship. In our implementation you will
set ship segment's state to this value after it is hit. Potentially this
state is reversible – you may implement method to recover it's state to
fully operational. If all ship's segments are marked as damaged then
ship is considered as destroyed and immediately all segments takes
state destroyed.

• destroyed – is used in case of critical, not recoverable damages.

Add also to this class a set of properties along with initializer:

private let size: Int
private var readyLevel: Int
var position: [(row: Int, col: Int, status: Status)]

1 8 9

var isDestroyed: Bool {
 return readyLevel == 0 ? true : false
}

init(size: Int,
 position: [(row: Int, col: Int, status: Status)]
) {
 self.size = size
 self.position = position
 self.readyLevel = size
}

• size is a size of a ship in terms of cells (segments) occupied by this
ship (we allow only "straight" or "line aligned" ships where all ship's
segments are in one line; bends are not allowed).

• position is an array of tuples describing each ship's segment: its
location (row and column) and condition (status).

• readyLevel describe combat readiness and as for now will expressed
the number of ship's ready segments.

• isDestroyed is true if the ship is destroyed (all segments marked as
damaged and in consequence as destroyed) and may not longer
take part in the fight. This property is an example of computed
property.

Next add new methods:

func isLocatedAt(row: Int, col: Int) -> Bool {
 for coordinate in position {
 if coordinate.row == row &&
 coordinate.col == col {
 return true
 }
 }

 return false
}

func hitAt(row: Int, col: Int) {
 for (index, coordinate) in position.enumerated() {

1 9 0

 if coordinate.row == row &&
 coordinate.col == col {
 position[index].status = .damaged
 readyLevel -= 1
 break
 }
 }
}

hitAt(row:col) is intended to set state of ship segment and decrease
its readiness, while isLocatedAt(row:col) checks if among ship
segments exists one of coordinates (row, col).

Add Ships class

Ships class collects informations about all ships belonging to one of the
players. To do so, you create a class with the needed fields:

class Ships {
 var ships = [String: Ship]()
 var shipsAtCommand: Int {
 var shipsNumber = ships.count

 for (_, ship) in ships {
 if ship.isDestroyed {
 shipsNumber -= 1
 }
 }

 return shipsNumber
 }
}

As you can see, variable ships is defined as a dictionary. Iterating over
this set returns a tuple (in our case) of the form:

(key: String, value: Ship)

In consequence, you may write the iteration code either in the form:

for element in ships {
 if element.value.isDestroyed {

1 9 1

 shipsNumber -= 1
 }
}

or, as you did, in the form:

for (key, value) in ships {
 if value.isDestroyed {
 shipsNumber -= 1
 }
}

Because in your case you know that value is a Ship object, so you use
name ship instead to make code more readable. The first tuple's
element, key is not needed in your code, what is singled by Xcode with
the message Immutable value 'key' was never used;
consider replacing with '_' or removing it. To silent this
warning, key is finally replaced by underscore character _ which is the
way you say to Swift: Swift, I know that there is something here, but I
don't need it and so I don't care about it.

Modifications in Board class

To keep relation between board and ships on that board introduce at the
top of Board class new property:

var ships: Ships

This change require to modify an initializer. Add this line to init()
before prepareBoard() call:

ships = Ships()

Based on previously created method
mayPlaceShip(size:anchor:direction:) add a new method:

func placeShip(

1 9 2

 size: Int,
 anchor: (row: Int, col: Int),
 direction: Ship.Direction
) {
 var modifier = (forRow: 0, forCol: 0)
 var r = 0
 var c = 0
 var position = [(row: Int, col: Int, status: Ship.Status)]()

 switch direction {
 case .up:
 modifier = (forRow: -1, forCol: 0)
 case .down:
 modifier = (forRow: +1, forCol: 0)
 case .left:
 modifier = (forRow: 0, forCol: -1)
 case .right:
 modifier = (forRow: 0, forCol: +1)
 }

 for i in 0...size-1 {
 r = anchor.row + i*modifier.forRow
 c = anchor.col + i*modifier.forCol

 board[r][c] = CellType.ship
 position.append((row: r,
 col: c,
 status: Ship.Status.ready))
 }

 ships.ships["\(anchor)"] =
 Ship(size: size, position: position)
}

This code doesn't introduce any new elements. Variable position
consist of iteratively added ship's parts which is done in:

for i in 0...size-1 {
 ...
 position.append((row: r,
 col: c,
 status: Ship.Status.ready))
}

You may stop for a while on the line:

ships.ships["\(anchor)"] = ship

1 9 3

ships is a dictionary with keys of the String type and Ship as a value
type. Key should uniquely identify every ship. Combining each ship
anchor coordinates (its first cell's row and column coordinate) you get a
unique ship key because no more than one ship can start in a given cell
(anchor). Such a string may be simply accomplish with "\(anchor)"
phrase.

This method assumes that ship placement is possible, so remember to
call mayPlaceShip(size:anchor:direction:) before.

There is one simplification, still also present in both methods: you don't
care about cells surrounding the ship. Thus, as for now, two ships may
be placed so they "touch" – this will be fixed in next chapter.

Modifications in Engine class

In Engine class add enumeration type to distinguish current player:

enum Who {
 case player, opponent
}

On of them is called player and the other is called (his/her) opponent.
In practice, player can be identified with human player, while
opponent with a computer player.

Having two different boards, you need a method to easily "switch"
between them (or select correctly those related to a given player):

func getWhoBoard(who: Who) -> Board {
 if who == Who.player {
 return boardPlayer
 }

 return boardOpponent
}

1 9 4

Finally, add two "boilerplate" methods which main purpose is to call,
previously created in Board class, methods with correct arguments
(that is board and ships dedicated to given player):

func mayPlaceShip(
 who: Who,
 size: Int,
 anchorRow: Int,
 anchorCol: Int,
 direction: Ship.Direction
) -> Bool {

 let anchor = (row: anchorRow, col: anchorCol)
 let boardWho = getWhoBoard(who: who)
 return boardWho.mayPlaceShip(size: size,
 anchor: anchor,
 direction: direction)
}

func placeShip(
 who: Who,
 size: Int,
 anchorRow: Int,
 anchorCol: Int,
 direction: Ship.Direction
) {

 let anchor = (row: anchorRow, col: anchorCol)
 let boardWho = getWhoBoard(who: who)
 boardWho.placeShip(size: size,
 anchor: anchor,
 direction: direction)
}

Add new type method to Test class

Add this code to test what you have just implemented:

class func testPlaceShip(engine: Engine) {
 func placeShipIfPossible(who: Engine.Who,
 size: Int,
 anchorRow: Int,
 anchorCol: Int,
 direction: Ship.Direction
) -> Bool {

1 9 5

 let x = engine.mayPlaceShip(who: who,
 size: size,
 anchorRow: anchorRow,
 anchorCol: anchorCol,
 direction: direction)

 if x {
 engine.placeShip(who: who,
 size: size,
 anchorRow: anchorRow,
 anchorCol: anchorCol,
 direction: direction)

 return true
 }

 return false
 }

 let player = Engine.Who.player
 let opponent = Engine.Who.opponent

 let shipsParams = [(who: player,
 size: 4,
 row: 3, col: 4,
 direction: Ship.Direction.down),
 (who: player,
 size: 4,
 row: 5, col: 6,
 direction: Ship.Direction.left),
 (who: opponent,
 size: 4,
 row: 3, col: 2,
 direction: Ship.Direction.left),
 (who: opponent,
 size: 4,
 row: 5, col: 6,
 direction: Ship.Direction.up)]

 for param in shipsParams {
 let result = placeShipIfPossible(
 who: param.who,
 size: param.size,
 anchorRow: param.row,
 anchorCol: param.col,
 direction: param.direction)

 print(result ? "OK" : "ERROR")
 }
}

1 9 6

This method simply calls the mayPlaceShip(size:
anchor:direction:) metod from Board class. If there may be
placed a ship of the size size starting at row row and column col,
directed to direction direction then you physically put it on the board
with the method placeShip(size: anchor:direction:) from
Board class. Having this method, you may implement a loop to make
sequence of tests (four in this case).

Modify main.swift file to do test

Replace code existing in main.swift file with the code below:

let game = Engine(rows: 10, cols: 10)
game.printBoards()
//game.test()
Test.testPlaceShip(engine: game)
game.printBoards()

After so many changes you may test if your code works as it is expected:

PLAYER
 1
 1234567890
 ++++++++++++
 1+..........+
 2+..........+
 3+..........+
 4+..........+
 5+..........+
 6+..........+
 7+..........+
 8+..........+
 9+..........+
10+..........+
 ++++++++++++
OPPONENT
 1
 1234567890
 ++++++++++++
 1+..........+
 2+..........+
 3+..........+
 4+..........+

1 9 7

 5+..........+
 6+..........+
 7+..........+
 8+..........+
 9+..........+
10+..........+
 ++++++++++++
OK
ERROR
ERROR
OK
PLAYER
 1
 1234567890
 ++++++++++++
 1+..........+
 2+..........+
 3+...X......+
 4+...X......+
 5+...X......+
 6+...X......+
 7+..........+
 8+..........+
 9+..........+
10+..........+
 ++++++++++++
OPPONENT
 1
 1234567890
 ++++++++++++
 1+..........+
 2+.....X....+
 3+.....X....+
 4+.....X....+
 5+.....X....+
 6+..........+
 7+..........+
 8+..........+
 9+..........+
10+..........+
 ++++++++++++
Program ended with exit code: 0

1 9 8

Code summary

In this chapter you made a lot of changes in different files. In reward
you can now populate game board with ships.

1 9 9

2 0 0

CHAPTER 7

Code completion

You will do:

In this part you will try to verify your knowledge and understanding of

Swift you acquire so far. I will formulate a tasks for you, and you can try

to implement them and next compare your solution with mine.

2 0 2

SECTION 1

Tasks to complete, part 1

Now you have a knowledge which is sufficient to try your hand at
implementing some functionalities. In this section I will formulate a
tasks for you. In the next section you will find code you may use to test
your solutions while in the third section you can find my solutions.

Task 1

According to assumptions from Chapter 1: Initial steps,Section 1:
Battleship game, no ship can "touch" other ship. Your task is to modify
placeShip(size:anchor:direction:) function from Board class
in such a way that all cells directly surrounding ship are of
Board.CellType.notAllowed type to prevent other ships to be
placed too close (see figure below).

 NOW SHOULD BE

 1 1
 1234567890 1234567890
 ++++++++++++ ++++++++++++
 1+..........+ 1+..........+
 2+..........+ 2+..........+
 3+..........+ 3+..+++.....+
 4+...X......+ 4+..+X+.....+
 5+...X......+ 5+..+X+.....+
 6+..........+ 6+..+++.....+
 7+..........+ 7+..........+
 8+..........+ 8+..........+
 9+..........+ 9+..........+
10+..........+ 10+..........+
 ++++++++++++ ++++++++++++

2 0 3

Task 2

When ship is totally destroyed (sunken) all its surrounding cells should
be marked as it is showed at the figure below:

 1 1 1
 1234567890 1234567890 1234567890
 ++++++++++++ ++++++++++++ ++++++++++++
 1+..........+ 1+..........+ 1+..........+
 2+..........+ 2+..........+ 2+..........+
 3+..........+ 3+..........+ 3+..OOO.....+
 4+...X......+ 4+...!......+ 4+..O!O.....+
 5+...X......+ ===> 5+...X......+ ===> 5+..O!O.....+
 6+..........+ hit at 6+..........+ hit at 6+..OOO.....+
 7+..........+ (4, 4) 7+..........+ (5, 4) 7+..........+
 8+..........+ 8+..........+ 8+..........+
 9+..........+ 9+..........+ 9+..........+
10+..........+ 10+..........+ 10+..........+
 ++++++++++++ ++++++++++++ ++++++++++++

This operation is safe because of assumption that no ship can "touch"
other ship. Your task is to add to Board class method implementing
this. Signature of this method is given below:

private func markWhenShipDestroyed(ship: Ship) {
 // Mark all cells surrounding ship as ".rescue".
}

Surrounding cells should be of Board.CellType.rescue type.
Because this is a helper method called only from the body of its class,
you prefix it with a private keyword.

Task 3

Implement a set of "shootting" methods:

2 0 4

1. In Board class implement mayShot(row:col:) -> Bool
method to check if shot at coordinates (row, col) is possible.

2. In Board class implement shot(row:col:) method to make a
shot at coordinates (row, col). For successful shot, call
afterHitAction(row:col:) method (see next point).

3. In Board class implement afterHitAction(row:col:) private
method. This method, if ship is destroyed, should call
markWhenShipDestroyed(ship:) method.

Task 4

In Board class implement a method to automatically position all ships
of a defined sizes. Signature of this method is given below:

func shipsAutoSetup(
 shipsSize: [Int],
 maxTriesPerShip: Int
) -> Int {
 // Try to position all ships
}

For every number defined in shipSize array you try at most
maxTriesPerShip times to place ship of that size on a board. For
every try you randomly select its anchor's row and column as well as
direction. If it is possible to put the ship (this is checked with
mayPlaceShip(size:anchor:direction:) method call) you place
it (with placeShip(size:anchor:direction:) method call). As a
result you return the number of ships which were successfully
positioned on the board. If this number is equal to shipSize array it
means that all ships were positioned successfully. To increase the
chances of success in calling this method it is important to put bigger
ships as first in shipSize array and smaller at the end.

2 0 5

To be able to position ships you may need a method returning an
integer from given range (including both range ends) and such that is
not contained in a set of excluded values to prevent from selecting
occupied cells. This method is implemented for you below. It returns
nil in case of failure or integer if it has been found. Add this method to
Utils class.

class func getRandomInt(
 from: Int,
 to: Int,
 excluding: Set<Int>? = nil
) -> Int? {
 let maxTries = 10
 var candidate = -1

 guard from <= to else {return nil}

 if from == to {
 return from
 }

 for _ in 0 ..< maxTries {
 candidate = Int.random(in: from ... to)

 if let ex = excluding {
 if ex.contains(candidate) {
 return candidate
 }
 } else {
 return candidate
 }
 }

 return nil
}

2 0 6

2 0 7

2 0 8

SECTION 2

Tests for part 1

When you complete all your tasks you should somehow verify them.
Add to Test class the following code:

class func testShootingMethods(engine: Engine) {
 let player = Engine.Who.player

 var r = engine.mayPlaceShip(who: player,
 size: 2,
 anchorRow: 2,
 anchorCol: 4,
 direction: .down)

 if r {
 engine.placeShip(who: player,
 size: 2,
 anchorRow: 2,
 anchorCol: 4,
 direction: .down)

 r = engine.boardPlayer.mayShot(row: 3, col: 4)

 if r {
 engine.boardPlayer.shot(row: 3, col: 4)
 } else {
 print("Shot is not possible")
 }

 engine.printBoards()

 r = engine.boardPlayer.mayShot(row: 2, col: 4)

 if r {
 engine.boardPlayer.shot(row: 2, col: 4)
 } else {
 print("Shot is not possible")
 }

2 0 9

 engine.printBoards()

 } else {
 print("Ship may not be placed")
 }
}

Then modify main.swift file to have the contents:

import Foundation

let game = Engine(rows: 10, cols: 10)
Test.testShootingMethods(engine: game)

If you run your code, you should see in console:

PLAYER
 1
 1234567890
 ++++++++++++
 1+..........+
 2+...X......+
 3+...!......+
 4+..........+
 5+..........+
 6+..........+
 7+..........+
 8+..........+
 9+..........+
10+..........+
 ++++++++++++
OPPONENT
 1
 1234567890
 ++++++++++++
 1+..........+
 2+..........+
 3+..........+
 4+..........+
 5+..........+
 6+..........+
 7+..........+
 8+..........+
 9+..........+
10+..........+
 ++++++++++++
PLAYER
 1

2 1 0

 1234567890
 ++++++++++++
 1+..OOO.....+
 2+..O!O.....+
 3+..O!O.....+
 4+..OOO.....+
 5+..........+
 6+..........+
 7+..........+
 8+..........+
 9+..........+
10+..........+
 ++++++++++++
OPPONENT
 1
 1234567890
 ++++++++++++
 1+..........+
 2+..........+
 3+..........+
 4+..........+
 5+..........+
 6+..........+
 7+..........+
 8+..........+
 9+..........+
10+..........+
 ++++++++++++
Program ended with exit code: 0

Next add to Test class another one type method:

class func testShipsAutoSetup(engine: Engine) {
 _ = engine.boardPlayer.shipsAutoSetup(
 shipsSize: [4,3,3,2,2,2,1,1,1,1],
 maxTriesPerShip: 10
)
 engine.printBoards()
}

In this method you try to put 10 ships: one of size 4, two of size 3, three
of size 2 and four of size 1. All of them in a random locations and in a
random direction.

Modify main.swif file to have the contents:

import Foundation

2 1 1

let game = Engine(rows: 10, cols: 10)
Test.testShipsAutoSetup(engine: game)

If you run your code, you should see result similar to the following (auto
setup is a random process, so result after every run will be different):

PLAYER
 1
 1234567890
 ++++++++++++
 1++X+.....+++
 2++++.....+X+
 3+X+....+++X+
 4+++.++++X+X+
 5+X+.+XX+X+++
 6+++.++++++X+
 7++++.+++++++
 8++X+.+XXXX++
 9++X+.+++++++
10++X+.+XX+..+
 ++++++++++++
OPPONENT
 1
 1234567890
 ++++++++++++
 1+..........+
 2+..........+
 3+..........+
 4+..........+
 5+..........+
 6+..........+
 7+..........+
 8+..........+
 9+..........+
10+..........+
 ++++++++++++
Program ended with exit code: 0

2 1 2

2 1 3

2 1 4

SECTION 3

Tasks solutions, part 1

Task 1

func placeShip(
 size: Int,
 anchor: (row: Int, col: Int),
 direction: Ship.Direction
) {
 var modifier: (forRow: Int, forCol: Int)!
 var r: Int!
 var c: Int!
 var position = [(row: Int, col: Int, status: Ship.Status)]()

 switch direction {
 case .up:
 modifier = (forRow: -1, forCol: 0)
 case .down:
 modifier = (forRow: +1, forCol: 0)
 case .left:
 modifier = (forRow: 0, forCol: -1)
 case .right:
 modifier = (forRow: 0, forCol: +1)
 }

 for i in 0...size-1 {
 r = anchor.row + i*modifier.forRow
 c = anchor.col + i*modifier.forCol

 board[r][c] = CellType.ship
 position.append((row: r,
 col: c,
 status: .ready))

 // BEGIN: To add border along ship
 r = anchor.row+(modifier.forCol) + i*modifier.forRow
 c = anchor.col+(modifier.forRow) + i*modifier.forCol
 board[r][c] = .notAllowed

2 1 5

 r = anchor.row-(modifier.forCol) + i*modifier.forRow
 c = anchor.col-(modifier.forRow) + i*modifier.forCol
 board[r][c] = .notAllowed
 // END: To add border along ship
 }

 // BEGIN: To add borders at the ends of ship
 // Next to anchor
 r = anchor.row + (-1)*modifier.forRow
 c = anchor.col + (-1)*modifier.forCol
 board[r][c] = .notAllowed

 r = anchor.row+(modifier.forCol) + (-1)*modifier.forRow
 c = anchor.col+(modifier.forRow) + (-1)*modifier.forCol
 board[r][c] = .notAllowed

 r = anchor.row-(modifier.forCol) + (-1)*modifier.forRow
 c = anchor.col-(modifier.forRow) + (-1)*modifier.forCol
 board[r][c] = .notAllowed

 // Next to anchor oposit end
 r = anchor.row + (size)*modifier.forRow
 c = anchor.col + (size)*modifier.forCol
 board[r][c] = .notAllowed

 r = anchor.row+(modifier.forCol) + (size)*modifier.forRow
 c = anchor.col+(modifier.forRow) + (size)*modifier.forCol
 board[r][c] = .notAllowed

 r = anchor.row-(modifier.forCol) + (size)*modifier.forRow
 c = anchor.col-(modifier.forRow) + (size)*modifier.forCol
 board[r][c] = .notAllowed
 // END: To add borders at the ends of ship

 ships.ships["\(anchor)"] = Ship(
 size: size,
 position: position)
}

Task 2

private func markWhenShipDestroyed(ship: Ship) {
 let allCellsArround = [
 (rowModifier: -1, colModifier: 0),// top
 (rowModifier: -1, colModifier: +1),// top-right
 (rowModifier: 0, colModifier: +1),// right
 (rowModifier: +1, colModifier: +1),// bottom-right
 (rowModifier: +1, colModifier: 0),// bottom
 (rowModifier: +1, colModifier: -1),// bottom-left
 (rowModifier: 0, colModifier: -1),// left

2 1 6

 (rowModifier: -1, colModifier: -1)// top-left
]

 var row, col: Int

 for (r, c, _) in ship.position {
 for modifier in allCellsArround {
 row = r + modifier.rowModifier
 col = c + modifier.colModifier

 if board[row][col] == Board.CellType.empty ||
 board[row][col] == Board.CellType.shot ||
 board[row][col] == Board.CellType.notAllowed {
 board[row][col] = Board.CellType.rescue
 }
 }
 }
}

Task 3

func mayShot(row: Int, col: Int) -> Bool {
 let yes: Set<Board.CellType> = [.empty,
 .ship,
 .notAllowed]

 if yes.contains(board[row][col]) {
 return true
 }

 let no: Set<Board.CellType> = [.hit,
 .rescue,
 .shot]

 if no.contains(board[row][col]) {
 return false
 }

 return false
}

func shot(row: Int, col: Int) {
 if board[row][col] == .empty ||
 board[row][col] == .notAllowed {
 board[row][col] = .shot
 } else if board[row][col] == .ship {
 board[row][col] = .hit
 afterHitAction(row: row, col: col)
 }
}

2 1 7

private func afterHitAction(row: Int, col: Int) {
 for (_, ship) in ships.ships {
 if ship.isLocatedAt(row: row, col: col) {
 ship.hitAt(row: row, col: col)
 if ship.isDestroyed {
 markWhenShipDestroyed(ship: ship)
 }
 }
 }
}

Task 4

func shipsAutoSetup(
 shipsSize: [Int],
 maxTriesPerShip: Int
) -> Int {
 var shipDirection = Ship.Direction.up
 var possible = true
 var success: Bool
 var positioned = 0
 var anchor: (row: Int, col: Int)

 for size in shipsSize {
 success = false
 for _ in 1...maxTriesPerShip {
 if let r = Utils.getRandomInt(from: 1, to: rows),
 let c = Utils.getRandomInt(from: 1, to: cols) {
 anchor = (row: r, col: c)

 if let direction = Utils.getRandomInt(from: 1, to: 4) {
 switch direction {
 case 1: shipDirection = .up
 case 2: shipDirection = .right
 case 3: shipDirection = .down
 default: shipDirection = .left
 }
 possible = mayPlaceShip(
 size: size,
 anchor: anchor,
 direction: shipDirection)

 if possible {
 placeShip(
 size: size,
 anchor: anchor,
 direction: shipDirection)
 positioned += 1

2 1 8

 success = true
 break
 }
 }
 }
 }
 if !success {
 return positioned
 }
 }

 return positioned
}

2 1 9

2 2 0

SECTION 4

Tasks to complete, part 2

In this section you will implement methods checking win conditions.
After implementing whole game logic, finally you will be able to play the
game.

Engine class modification

Add to Engine class three private properties to keep information about
board dimension and sizes of ships used during the game (put them at
the top of the file, just after enumerations):

private var shipsSize: [Int]
private var rows, cols: Int

and modify accordingly initializer:

init(rows: Int = 10, cols: Int = 10, shipsSize: [Int]) {
 self.boardPlayer = Board(rows: rows, cols: cols)
 self.boardOpponent = Board(rows: rows, cols: cols)

 self.shipsSize = shipsSize

 self.rows = rows
 self.cols = cols
}

Next add getWhoTarget(who:) method:

private func getWhoTarget(who: Who) -> Who {
 if who == Who.player {

2 2 1

 return Who.opponent
 }
 return Who.player
}

This method returns an opposite player.

Because previously implemented method mayShot(row:col:) is
defined in Board class, you need a boilerplate method to call it:

func mayShot(who: Who, row: Int, col: Int) -> Bool {
 let boardWho = getWhoBoard(who: getWhoTarget(who: who))
 return boardWho.mayShot(row: row, col: col)
}

If you know that shot is possible, you can shoot:

func shot(who: Who, row: Int, col: Int) {
 let boardWho = getWhoBoard(who: getWhoTarget(who: who))
 boardWho.shot(row: row, col: col)
}

Last boilerplate method left to implemented calls ship auto-layout
metod from Board class:

func shipsAutoSetup(
 shipsSize: [Int],
 maxTriesPerShip: Int,
 who: Who
) -> Bool {
 let boardWho = getWhoBoard(who: who)
 let number = boardWho.shipsAutoSetup(
 shipsSize: shipsSize,
 maxTriesPerShip: maxTriesPerShip
)

 if shipsSize.count == number {
 return true
 }

 return false
}

2 2 2

Task 5

To make playing game possible you need a method used to check if
there is a winner and, if the answer is yes, who is this. This method
should have a following signature:

func checkWhoWins() -> Who? {

}

Add this method to Engine class.

Task 6

Implement a very simple shooting method. In this case you try at most
maxTries times to find randomly an acceptable cell (that is a cell you
are allowed to shoot on). If you fail, you systematically, row by row and
column by column, search until you find acceptable cell. Signature of
this method is given below:

func getShotCoordinatesForOpponent(
 maxTries: Int
) -> (row: Int, col: Int)? {

}

To get random values you may use
getRandomInt(from:to:excluding:) method from Utils class.
Add this method to Engine class.

Task 7

Delete all the contents from main.swift file leaving only import
Foundation. Next add to this file function with the following
signature:

2 2 3

func getIntFromCommandLine(
 message: String,
 rangeMin: Int,
 rangeMax: Int
) -> Int {

}

This function should print a message and then ask a (human) player to
provide integer laying in closed interval [rangeMin, rangeMax]. It
should keep asking as long as number entered by a player is outside a
given range.

Task 8

Based on function from Task 7 define in main.swift file a function
getting shot coordinates from human player. This function should have
a following signature:

func getShotCoordinatesForPlayer(
 engine: Engine,
 maxRows: Int,
 maxCols: Int
) -> (row: Int, col: Int)? {

}

main.swift file modification

To main.swift file, just after methods from Task 7 and Task 8 add a set
of variables:

• Array with sizes of the ships

let shipsSize = [4, 3, 3, 2, 2, 2, 1, 1, 1, 1]

2 2 4

• An instance of game engine:

let game = Engine(shipsSize: shipsSize)

• Weather ships auto-layout for an opponent (computer) succeeded:

let opponentReady = game.shipsAutoSetup(
 shipsSize: shipsSize,
 maxTriesPerShip: 20,
 who: .opponent
)

• Weather ships auto-layout for a player (human) succeeded:

let playerReady = game.shipsAutoSetup(
 shipsSize: shipsSize,
 maxTriesPerShip: 20,
 who: .player
)

• Indicating whose turn is currently:

var whoseTurn = Engine.Who.player

• Player's or opponent's shot coordinates:

var coordinates: (row: Int, col: Int)?

Now you are ready to implement final part of code – a main game loop:

if opponentReady, playerReady {
 game.printBoards()
 while(true){
 print("\n\n\n TURN")
 print(whoseTurn)

 if whoseTurn == Engine.Who.player {
 coordinates = getShotCoordinatesForPlayer(
 engine: game,
 maxRows: 10,
 maxCols: 10
)

2 2 5

 if coordinates == nil {
 print("Player can't shoot")
 break
 } else {
 print("Shot at row \(coordinates!.row) and column \
(coordinates!.col)")
 }

 game.shot(
 who: whoseTurn,
 row: coordinates!.row,
 col: coordinates!.col
)
 whoseTurn = Engine.Who.opponent
 } else {
 coordinates = game.getShotCoordinatesForOpponent(
 maxTries: 100
)
 if coordinates == nil {
 print("Opponent can't shoot")
 break
 } else {
 print("Shot at row \(coordinates!.row) and column \
(coordinates!.col)")
 }

 game.shot(
 who: whoseTurn,
 row: coordinates!.row,
 col: coordinates!.col
)
 whoseTurn = Engine.Who.player
 }

 game.printBoards()
 if let who = game.checkWhoWins() {
 print("The winner is \(who)")
 break
 }
 }
} else {
 print("Can't position all ships")
}

Now you can run your code. Ships for player (human player) and his
opponent (computer player) should be automatically positioned on
game boards. Both players should have 10 ships. To make debug
possible, both boards are printed on the screen. Happy playing!

2 2 6

2 2 7

2 2 8

SECTION 5

Tasks solutions, part 2

Task 5

func checkWhoWins() -> Who? {
 if boardPlayer.ships.shipsAtCommand == 0 {
 return Who.opponent
 } else if boardOpponent.ships.shipsAtCommand == 0 {
 return Who.player
 }

 return nil
}

Task 6

func getShotCoordinatesForOpponent(
 maxTries: Int
) -> (row: Int, col: Int)? {
 var row, col: Int?

 // Use random approach
 for _ in 1...maxTries {
 row = Utils.getRandomInt(from: 1, to: rows)
 col = Utils.getRandomInt(from: 1, to: cols)

 if let r = row, let c = col {
 if mayShot(who: Who.opponent, row: r, col: c) {
 return (row: r, col: c)
 }
 }
 }

 // If previous failed, use systematic search approach
 for r in 0...rows+1 {
 for c in 0...cols+1 {

2 2 9

 if mayShot(who: Who.opponent, row: r, col: c) {
 return (row: r, col: c)
 }
 }
 }

 return nil
}

Task 7

func getIntFromCommandLine(
 message: String,
 rangeMin: Int,
 rangeMax: Int
) -> Int {
 print(message)
 while(true) {
 if let input = readLine() {
 if let int = Int(input) {
 if int >= rangeMin && int <= rangeMax {
 return int
 } else {
 ("\(input) is not in range [\(rangeMin)-\(rangeMax)].
Please try again")
 }
 } else{
 print("\(input) is not a valid integer. Please try
again")
 }
 }
 }
}

Task 8

func getShotCoordinatesForPlayer(
 engine: Engine,
 maxRows: Int,
 maxCols: Int
) -> (row: Int, col: Int)? {
 while(true) {
 let row = getIntFromCommandLine(
 message: "Enter row",
 rangeMin: 1,
 rangeMax: maxRows)

2 3 0

 let col = getIntFromCommandLine(
 message: "Enter column",
 rangeMin: 1,
 rangeMax: maxCols)

 if engine.mayShot(who: .player, row: row, col: col) {
 return (row: row, col: col)
 }
 }
}

2 3 1

2 3 2

CHAPTER 8

Structures, inheritance
and errors handling

You will do:

In this part you will extend your knowledge with information on more

advanced topics.

You will learn:

• What a structure is and how it differs from class.

• Inheritance with type checking and access control.

• How to handle exceptional situation.

2 3 4

SECTION 1

Structures

Structures are very similar to classes. Both are general-purpose, flexible
constructs that become the building blocks of your program’s code. As
you have seen so far, you define properties and methods to add
functionality to your classes using the same syntax you use to define
constants, variables, and functions; the same you do in case of
structures. With structures and classes in Swift you can

• define properties to store values;

• define functions to provide functionality;

• define initializers to set up their initial state;

• be extended to expand their functionality beyond a default
implementation;

• conform to protocols to provide standard functionality of a certain
kind;

• define subscripts to provide access to their values using subscript
syntax.

Moreover, classes have some additional capabilities that
structures do not:

• inheritance enabling one class to inherit the characteristics of another;

2 3 5

• you can check and interpret the type of a class instance at runtime;

• reference counting allows more than one reference to a class instance;

• deinitializers enable an instance of a class to free up any resources it
has assigned.

Another worth mention difference is that structures ale always
copied when they are passed around in the code and to not use
reference counting. Structure instances are always passed by
value, and class instances are always passed by reference.

The additional capabilities that classes support come at the cost of
increased complexity. As a general guideline, prefer structures because
they’re easier to reason about, and use classes when they’re appropriate
or necessary. In practice, this means most of the custom data types you
define will be structures and enumerations.

As you know, for classes you cannot leave properties uninitialized – you
have to:

• set their values explicitly,

• or define them as optional,

• or provide initializer to set their values.

class ClassOption1 {
 var property = 0
}

class ClassOption2 {
 var property: Int?
}

class ClassOption3 {
 var property: Int

 init(property: Int) {
 self.property = property

2 3 6

 }
}

// Cause an error:
// Class 'ClassOption4' has no initializers
class ClassOption4 {
 var property: Int
}

var ico1 = ClassOption1()
var ico2 = ClassOption2()
var ico3 = ClassOption3(property: 13)

The same rules are applied to structures but in this case you have also
another one option: automatically generated memberwise initializers.

struct StructOption1 {
 var property = 0
}

struct StructOption2 {
 var property: Int?
}

struct StructOption3 {
 var property: Int

 init(property: Int) {
 self.property = property
 }
}

// Cause NO error:
struct StructOption4 {
 var property: Int
}

var iso1 = StructOption1()
var iso2 = StructOption2()
var iso3 = StructOption3(property: 23)
var iso4 = StructOption4(property: 24)

You can use automatically generated memberwise initializer in case of
implicitly initialized structure:

iso1 = StructOption1(property: 21)

2 3 7

Of course, if initializer is required, you many not skip it:

// Missing argument for parameter 'property' in call
var iso5 = StructOption4()

If class or struct is declared with var you can modify its properties:

ico1.property = 11
iso1.property = 21

If class or struct is declared with let situation is a little bit different:
you are not allowed to modify its properties:

let c = ClassOption1()
let s = StructOption1()

c.property = 11

// Cause an error:
// Cannot assign to property: 's' is a 'let' constant
s.property = 21

Mutating methods

For structures (and also enumeration) you can implement mutating
methods allowing to modify the properties of value type (structures and
enumerations but not classes which are reference type) from within its
instance methods. By default, the properties of a value type
cannot be modified from within its instance methods. You have
to use a special mutating keyword to implement such a method:

struct Item {
 var item: String

 func nonMutate() -> String {
 return item
 }

 mutating func mutate(_ value: String) {
 item = value
 }

2 3 8

 // Invalid mutating function
 //func mutateInvalid(_ value: String) {
 // item = value
 //}
}

var i = Item(item: "Test string")
print("Item \(i.item)")
// Prints:
// Item Test string

i.item = "Another text"
print(i.nonMutate())
// Prints:
// Another text

print(i.item)
// Prints:
// Another text

i.mutate("Again new text")
print(i.nonMutate())
// Prints:
// Again new text

print(i.item)
// Prints:
// Again new text

If you try to skip mutating modifier in mutate(_:) method, you will
get an error:

Cannot assign to property: 'self' is immutable

So you can modify properties from outside of structure with statement
like that:

i.item = "Another text"

but you are not allowed to do this via function call:

i.mutateInvalid("Try it")

2 3 9

if this function is not marked with mutating keyword.

2 4 0

2 4 1

2 4 2

SECTION 2

Inheritance

I hope that you have an understanding what an inheritance is, so I'll
give only basic syntax information. In Swift subclass definition is of the
form:

class Subclass: Superclass {
 // Subclass definition goes here
}

Have in mind that multiple inheritance is not allowed in Swift:

class A {
 var a = 1
}

class B {
 var b = 2
}

class C: A {
 var c = 3
}

// Cause an error:
// Multiple inheritance from classes 'A' and 'B'
class D: A, B {
 var d = 4
}

var a = A()
var c = C()

a.a = 5

// Proof that inside class C there are all "things"
// from class A

2 4 3

c.c = 7
c.a = 9

You use override keyword to mark method, property or subscript as
overriden. Superclass's method, property or subscript is accessed with
super keyword. To prevent method, property or subscript from being
overriden you mark it with final modifier. You can mark entire class
as final preventing them to be subclassing.

class BaseClass {
 var somePropertyInt: Int
 init (){
 somePropertyInt = 5
 print("BC: init complete");
 }

 func doSomething(){
 print("BC: doSomething")
 }

 final func notForSubclassing(){
 print("BC: notForSubclassing")
 }

 func anotherOneFunction(){
 print("BC: anotherOneFunction")
 }
}

class SubClass: baseClass {
 var somePropertyString: String
 override init (){
 somePropertyString = "text"
 print("SC: init complete");
 }

 override func doSomething(){
 print("SC: doSomething")
 }

 func callMethodFromSuperClass() {
 print("SC: callMethodFromSuperClass")
 super.notForSubclassing()
 }
}

var sc = SubClass()
// Prints:

2 4 4

// SC: init complete
// BC: init complete

sc.doSomething()
// Prints:
// SC: doSomething

sc.notForSubclassing()
// Prints:
// BC: notForSubclassing

sc.anotherOneFunction()
// Prints:
// BC: anotherOneFunction

print("\(sc.somePropertyInt) \(sc.somePropertyString)")
// Prints:
// 5 text

sc.callMethodFromSuperClass()
// Prints:
// SC: callMethodFromSuperClass
// BC: notForSubclassing

In the above example, if you change SubClass's initializer to the form:

override init (){
 somePropertyString = "text"
 super.init()
 print("subClass: init complete");
}

then creating sc variable will result with:

var sc = subClass()
// Prints:
// baseClass: init complete
// subClass: init complete

Note that before you call in initializer self.init() you should
initialize all properties. If you try to type:

override init (){
 super.init()
 somePropertyString = "text"

2 4 5

 print("subClass: init complete");
}

you will get an error:

Property 'self.somePropertyString' not initialized at
super.init call
As you know from previous section, inheritance only applies to classes.
However it is possible to get inheritance-like behavior also for
structures if you use protocols – see Chapter 9: Protocols and generics,
Section 2: Structs and inheritance.

2 4 6

2 4 7

2 4 8

SECTION 3

Type checking and casting

In Swift we have two special types for working with indefinite, or better
say: any type:

• Any which can represent an instance of any type at all (including
function types);

• AnyObject which can represent an instance of any class type.

The most basic example of Any usage is an array to store items of any
type:

var arrayOfAnyInstances = [Any]()

arrayOfAnyInstances.append(5)
arrayOfAnyInstances.append(1.23)
arrayOfAnyInstances.append("test")
arrayOfAnyInstances.append(
 {(arg: String) -> String in
 "Echo: \(arg)"
 })

print(arrayOfAnyInstances)
// Prints: [5, 1.23, "test", (Function)]

The Any type represents values of any type, including optional types.
Swift gives you a warning if you use an optional value where a value of
type Any is expected. If you really do need to use an optional value as an
Any value, you can use the as operator to explicitly cast the optional to
Any:

2 4 9

let optionalNumber: Int? = 5
arrayOfAnyInstances.append(optionalNumber)
// Warning:
// Expression implicitly coerced from 'Int?' to 'Any'
arrayOfAnyInstances.append(optionalNumber as Any)

To check whether an instance is of a certain subclass type, use the type
check operator: is. This operator returns true if the instance is of that
subclass type and false if it is not.

for item in arrayOfAnyInstances {
 if item is Int {
 print("\(item) is of Int type");
 } else if item is String {
 print("\(item) is of String type");
 }else {
 print("\(item) is of \(type(of: item)) type");
 }
}
// Prints:
// 5 is of Int type
// 1.23 is of Double type
// test is of String type
// (Function) is of (String) -> String type
// Optional(5) is of Int type
// Optional(5) is of Int type

A constant or variable of a certain class type may actually refer to an
instance of a subclass. Other words, a constant or variable of a
certain class type may point to any class down the hierarchy;
pointer dedicated to use for certain class may point to any
child of this class (to any subclass):

class A {}

class B: A {}

class C: B {}

var iA = A()
var iB = B()
var iC = C()

var pointer: B

pointer = iB

2 5 0

// Error:
// // Cannot assign value of type 'A' to type 'B'
pointer = iA
pointer = iC

You can try to downcast to the subclass type with a type cast operator:

• in the conditional form as? when returns an optional value of the type
you try to downcast to;

• in the forced form as! to attempt the downcast and force unwraps the
result as a single compound action.

Conditional cast to the superclass (upcast) always succeeds.

With pointers and casting you can treat an object being and instance of
a given class as an object of different class which is its ancestor. In
programming languages the existence of a single interface to entities of
different types or the use of a single symbol to represent multiple
different types is called polymorphism. This is one of the fundamental
building block of every object-oriented programming language. With
polymorphism your code can be agnostic as to which class in the
supported hierarchy (family of objects) it is operating on – the parent
class or one of its descendants.

See examples below (the name Test preceding class name in Test.B
and similar statements is the name of my project where I put this code):
if you think the first is to synthetic don't hesitate and jump to the second
which I hope is much more clear.

Example 1:

// Part 1
var b = B()
print("1: \(b) is of \(type(of: b)) type");
// Prints:
// 1: Test.B is of B type

// Part 2.1

2 5 1

var x = B() as? A
// Warning:
// Conditional cast from 'B' to 'A' always succeeds

print("2: \(x ?? A()) is of \(type(of: x)) type");
// Prints:
// 2: test.B is of Optional<A> type
// Default value is provided to avoid warning:
// String interpolation produces a debug description for an
optional value; did you mean to make this explicit?

if let c = x {
 print("3: \(c) is of \(type(of: c)) type");
} else {
 print("3: Casting problems")
}
// Prints:
// 3: Test.B is of B type

// Part 2.2
// Because conditional cast to the superclass always succeeds,
// you can use 'as'
var xForced = B() as A
print("4: \(xForced) is of \(type(of: xForced)) type");
// Prints:
// 4: Test.B is of B type

// Warning:
// 'is' test is always true
if xForced is A {
 print("5: Is A class")
}

if xForced is B {
 print("6: Is B class")
}

if xForced is C {
 print("7: Is C class")
}
// Prints:
// 5: Is A class
// 6: Is B class

// Part 3
var y = B() as? C
print("8: \(y ?? C()) is of \(type(of: y)) type");
// Prints:
// 8: Test.C is of Optional<C> type

if let c = y {
 print("9: \(c) is of \(type(of: c)) type");

2 5 2

} else {
 print("9: Casting problems")
}
// Prints:
// 9: Casting problems

// Part 4
var pA: A
pA = iB
var t1 = pA as? B
if let c = t1 {
 print("10: \(c) is of \(type(of: c)) type");
} else {
 print("10: Casting problems")
}
// Prints:
// 10: Test.B is of B type

var t2 = pA as? C
if let c = t2 {
 print("11: \(c) is of \(type(of: c)) type");
} else {
 print("11: Casting problems")
}
// Prints:
// 11: Casting problems

Example 2:

Imagine that you have a secret keeping application you store your
passwords, credit cards data, various access code, etc. Consider a
following hierarchy of objects:

class Secret {
 var name: String

 init(name: String) {
 self.name = name
 }
}

class Email: Secret {
 var email: String
 var password: String

 init(name: String, email: String, password: String) {
 self.email = email

2 5 3

 self.password = password

 super.init(name: name)
 }

 func printEmail() {
 print("email: \(email)\npassword: \(password)")
 }
}

class CreditCard: Secret {
 var number: String
 var cvvCode: String

 init(name: String, number: String, cvvCode: String) {
 self.number = number
 self.cvvCode = cvvCode

 super.init(name: name)
 }

 func printCreditCard() {
 print("number: \(number)\ncvvCode: \(cvvCode)")
 }
}

Having this you can create an array to keep some of your secrets and fill
it with mock data:

var allMySecrets = [Secret]()

allMySecrets.append(Email(name: "Private email",
 email: "private@domain.com",
 password: "123abc"))
allMySecrets.append(CreditCard(name: "Bank 1",
 number: "1234-5678",
 cvvCode: "123"))
allMySecrets.append(Email(name: "Job email",
 email: "my.job@email.server.com",
 password: "123abc"))
allMySecrets.append(CreditCard(name: "Bank 2",
 number: "9876-5432",
 cvvCode: "321"))

Now you can create a pointer and set it to point to one of your secrets:

var currentSecret: Secret
currentSecret = allMySecrets[2]

2 5 4

Which secret is now pointed by currentSecret? It hard to guess. You
have to check it. You may try to downcast to one of possible subclasses:

var t = currentSecret as? Email

If the result is not nil, then downcasting was successful and you may
treat your object as an instance of a given type:

if let e = t {
 print("This is an email")
 e.printEmail()
} else {
 print("This is NOT an email")
}
// Prints:
// This is an email
// email: my.job@email.server.com
// password: 123abc

If you want, you cant print them all:

print("=== All my secrets ===")

for s in allMySecrets {
 switch s {
 case is Email:
 let e = s as! Email
 e.printEmail()
 case is CreditCard:
 let cc = s as! CreditCard
 cc.printCreditCard()
 default:
 print("Unknown secret")
 }
}

In this case you will see:

=== All my secrets ===
This is an email
email: private@domain.com
password: 123abc

2 5 5

This is a credit card
number: 1234-5678
cvcCode: 123
This is an email
email: my.job@email.server.com
password: 123abc
This is a credit card
number: 9876-5432
cvcCode: 321

2 5 6

2 5 7

2 5 8

SECTION 4

Access control

Access control restricts access to/from parts of your code. With this
feature you can hide the implementation details, and enable access to it
with a preferred interface through which that code can be used. Swift
provides five different access levels. These access levels are relative to
the source file in which an entity is defined, and also relative to the
module that source file belongs to.

• Open access (open keyword) and public access (public) enable
entities to be used within any source file from their defining module,
as well as in a source file from another module that imports the
defining module. See below for difference between open and public
access.

• Internal access (internal) enables entities to be used within any
source file from their defining module, but not in any source file
outside of that module. This is default access specifier in Swift.

• File-private access (fileprivate) restricts the use of an entity to its
own defining source file.

• Private access (private) restricts the use of an entity to the
enclosing declaration.

Open access differs from public access as follows:

• Open access applies only to classes and class members.

2 5 9

• Classes with public access, or any more restrictive access level, can be
subclassed only within the module where they’re defined.

• Class members with public access, or any more restrictive access level,
can be overridden by subclasses only within the module where they’re
defined.

• Open classes can be subclassed within the module where they’re
defined, and within any module that imports the module where
they’re defined.

• Open class members can be overridden by subclasses within the
module where they’re defined, and within any module that imports
the module where they’re defined.

More important rules restricting access:

• Rule 1 Almost all entities in your code, if we do not specify an explicit
access level itself, have a default access level of internal.

• Rule 2 The access control level of a type also affects the default access
level of that type’s members: properties, methods, initializers, and
subscripts. For example, having defined type with a private access
level, the default access level of its members will also be private.

• Rule 3 A public type defaults for its members is internal. This
ensures that the open to the public API for a type is something you
agree to publishing, and avoids presenting the internal workings
details of a type as public API by mistake.

• Rule 4 A tuple type’s access level is deduced automatically when the
tuple type is used, and can’t be specified explicitly.

• Rule 5 The access level for a function type is calculated as the most
restrictive access level of the function’s parameter types and return
type. You must specify the access level explicitly as part of the

2 6 0

function’s definition if the function’s calculated access level doesn’t
match the contextual default.

• Rule 6 Nested types defined within a private (or file-private) type
have an automatic access level of private (or file-private). Nested
types defined within a public type or an internal type have an
automatic access level of internal.

• Rule 7 A subclass can’t have a less restrictive access level than its
superclass. For example, we can’t write a public subclass of an
internal superclass.

• Rule 8 An override can make an inherited class member more
accessible than its superclass version.

• Rule 9 A constant, variable, or property can’t be more public than its
type. For example it’s not valid to have a public property with a
private type.

As a general rule in Swift we have that no entity can be defined in terms
of another entity that has a less restrictive access level. For example, a
public variable cannot be defined as having an internal private type,
because that private type might not be available everywhere that the
public variable.

// Compile Error:
// Only classes and overridable class members can be declared
'open'; use 'public'
open var variableOpen = 0
public var variablePublic = 0
// Implicitly internal
var variableInternal = 0
fileprivate var variableFilePrivate = 0
private var variablePrivate = 0

open class classOpen{}

// Explicitly public class
public class classPublic {
 // Explicitly public class member
 public var propertyPublic = 0

2 6 1

 // By default internal (Rule 3)
 var propertyInternal = 0
 // Explicitly file private class member
 fileprivate func methodFilePrivate() {}
 // Explicitly private class member
 private var propertyPrivate = 0
}

// By default internal (Rule 1)
class classInternal {
 // By default internal (Rule 2)
 var propertyInternal = 0
 // Explicitly file private class member
 fileprivate func methodFilePrivate() {}
 // Explicitly private class member
 private var propertyPrivate = 0
}

// Explicitly file private class
fileprivate class classFilePrivate {
 // By default file private (Rule 2)
 func methodFilePrivate() {}
 // Explicitly private class member
 private var propertyPrivate = 0
}

// Explicitly private class
private class classPrivate {
 // By default private (Rule 2)
 var variable = 0
 private var variableExplicitlyPrivate = 0

 // Rule 6 - this nested type has an automatic
 // access level of private; see below
 class classPrivateNestedType {}
 var xx = classPrivateNestedType()
}

// Rule 9
private var xx = classPrivate()
// Without private:
// Compile Error: Variable must be declared private
// or fileprivate because its type
// 'classPrivate.classPrivateNestedType' uses a private type
private var yy = xx.xx
// Compile Error: 'variableExplicitlyPrivate' is inaccessible
// due to 'private' protection level
//var ww = xx.variableExplicitlyPrivate

// ??? According to Rule 2 variable should be private
// but it is not. Why? ???

2 6 2

var zz = xx.variable

// Without private:
// Compile Error: Function must be declared private
// or fileprivate because its results uses a private type
// Rule 4 and 5
private func someFunction() -> (classPublic, classPrivate)
{ ... }

// Rule 7
// Compile Error: Class cannot be declared public
// because its superclass is private
public class classPublicWithPrivateSuperclass: classPrivate {
 fileprivate func someMethod() {}
}

// Rule 8
internal class classInternalOverrides: classPublic {
 override internal func methodFilePrivate() {
 super.methodFilePrivate()
 }
}

2 6 3

2 6 4

SECTION 5

Errors handling

In Swift, errors are represented by values of types that conform to the
Error protocol. This empty protocol indicates that a type can be used
for error handling. A good choice to represent a group of related error
types are enumerations. A throw keyword is used to bring to life an
error.

enum ErrorColection: Error {
 case errorType0
 case errorType1
 case errorType2
}

throw ErrorColection.errorType1

When an error is thrown, some piece of code must be responsible for
handling it. There are four ways to handle errors in Swift.

• Error can be propagated from a function to the code that calls that
function.

• Error can be handled with do-catch statement.

• Error can be handled as an optional value.

• Error propagation can be disabled and its call wrapped in a runtime
assertion that no error will be thrown.

2 6 5

ERROR PROPAGATION

You use the throws keyword to indicate that a function, method, or
initializer can throw an error. A function marked this way is called a
throwing function. Only throwing functions can propagate errors. Any
errors thrown inside a nonthrowing function must be handled inside
that function.

class classThrowingErrors {
 func functionThrowingErrors(
 forNumber number: Int
) throws -> Int {
 if (number == 0) {
 throw ErrorColection.errorType0
 }
 print("number: \(number)")
 }
}

ERROR HANDLING WITH do-catch

do-catch has the following general form:

do {
 try expression
 // statements
} catch pattern_1 {
 // statements
} catch pattern_2 where condition {
 // statements
}

Example below shows very basic example how it can be used:

class classThrowingErrors {
 func functionThrowingErrors(
 forNumber number: Int
) throws -> Int {
 if (number == 0) {
 throw ErrorColection.errorType0
 }
 print("number: \(number)")
 return number
 }

 func functionNoThrowingErrors(forNumber number: Int) {

2 6 6

 do {
 let x = try functionThrowingErrors(forNumber: 0)
 print("No errors, result is \(x)")
 } catch ErrorColection.errorType0 {
 print("Error type 0")
 } catch ErrorColection.errorType1 {
 print("Error type 1")
 } catch ErrorColection.errorType2 where number > 4 {
 print("Error type 2")
 } catch let error {
 // Who knows, maybe there are more errors possible?
 // We have to catch all of them.
 print(error.localizedDescription)
 }
 }
}

var c = classThrowingErrors()
c.functionNoThrowingErrors(forNumber: 0)

This code prints the message:

Error type 0

ERROR HANDLING WITH OPTIONALS

You use try? to handle an error by converting it to an optional value. If
an error is thrown while evaluating the try? expression, the value of
the expression is nil.

var e = try? c.functionThrowingErrors(forNumber: 0)

DISABLE ERROR PROPAGATION

When you are sure that throwing function or method will not throw an
error at runtime you can write try! to disable error propagation and
wrap the call in a runtime assertion that no error will be thrown. Note
that if an error actually occurs and is thrown, you will get a runtime
error and your application will be terminated immediately.

var t = try! c.functionThrowingErrors(forNumber: 1)

2 6 7

ERROR CLEANING

In Java very common statements sequence is try-catch-finally.
The finally block always executes when the try block exits. This
ensures that the finally block is executed even if an unexpected
exception occurs. But finally is useful for more than just exception
handling — it allows the programmer to avoid having cleanup code
accidentally bypassed by a return, continue, or break. Putting
cleanup code in a finally block is always a good practice, even when
no exceptions are anticipated. [JAVADOC:1]

In Swift there is very similar statement: defer. It is used to execute a
set of statements just before code execution leaves the current block of
code. As in Java with this statement you can do any necessary cleanup
that will be performed regardless of how execution leaves the current
block of code – whether it leaves because an error was thrown or
because of a statement such as return or break or even quite natural
without any errors or jumps. The most basic example given in all
tutorials is when you want to ensure that file descriptors are closed or
manually allocated memory is freed.

A defer statement defers execution until the current scope is exited.
The deferred statements may not contain any code that would transfer
control out of the statements, such as a break or a return statement,
or by throwing an error. Deferred actions are executed in the reverse of
the order that they’re written in your source code. That is, the code in
the first defer statement executes last, the code in the second defer
statement executes second to last, and so on. The last defer statement in
source code order executes first.

Analyze carefully the following example:

func doSomethingWithResources() throws {
 print("1")
 defer {
 print("3")
 }

2 6 8

 defer {
 print("5")
 }
 print("2")
 throw ErrorColection.errorType0
 // Warning:
 // Code after 'throw' will never be executed
 print("6")
 // Warning:
 // 'defer' statement at end of scope always executes
 // immediately; replace with 'do' statement to silence
 // this warning
 defer {
 print("4")
 }
}

defer {
 print("9")
}
do {
 try doSomethingWithResources()
} catch {
 print("7")
 throw ErrorColection.errorType0
}
defer {
 print("8")
}

You will see the following output:

1
2
5
3
7
9
Fatal error: Error raised at top level:
[...]

2 6 9

2 7 0

CHAPTER 9

Protocols and generics

You will do:

In this part you will continue extending your knowledge with

information on more advanced topics.

You will learn:

• For what and how you can use protocols.

• How you can write general purpose code with generics.

2 7 2

SECTION 1

Protocols

A protocol is a group of related properties and methods that can be
implemented by any class. With protocols you can define a one single
API and use it (after implementation) in hierarchically unrelated
classes. This way you can represent horizontal relationships on top of
an existing tree-like class hierarchy:

In this sense protocols are like Java interfaces. A syntax of protocol is
shown below:

protocol ProtocolName {
 // Protocol definition goes here
}

2 7 3

class A

class B:A

class E

class D:B, P1

class F:E, P1, P2 class G:E, P1class C:A, P2

Here is a more complicated syntax for class ClassName having a
superclass SuperclassName conforming to protocol ProtocolName1
as well as ProtocolName2:

class ClassName: SuperclassName, ProtocolName1, ProtocolName2 {
 // Protocol definition goes here
}

As you can see, every class may have at most one superclass but may
implement many protocols.

A protocol can require any conforming type to provide an instance
property or type property with a particular name and type. The protocol
doesn’t specify whether the property should be a stored property or a
computed property. The protocol also specifies whether each property
must be gettable or gettable and settable.

Protocols can require specific instance methods and type methods to be
implemented. These methods are written as part of the protocol’s
definition in exactly the same way as for normal instance and type
methods, but without curly braces or a method body. Variadic
parameters are allowed, subject to the same rules as for normal
methods. Default values, however, can’t be specified for method
parameters within a protocol’s definition.

It’s sometimes necessary for a method to modify (or mutate) the
instance it belongs to. In such a case, if you have a structure or
enumerations, you place the mutating keyword before a method’s
func keyword to indicate that the method is allowed to modify the
instance it belongs to and any properties of that instance. If you mark a
protocol instance method requirement as mutating, you don’t need to
write the mutating keyword when writing an implementation of that
method for a class.

2 7 4

Protocols can require specific initializers to be implemented. We write
these initializers as part of the protocol’s definition in exactly the same
way as for normal initializers, but without curly braces or an initializer
body. When implemented, a protocol initializer must be marked with
the required keyword.

That was a lot of theory, so now see how it works in the following
example:

protocol ProtocolForClass {
 var mustBeSettable: Int { get set }
 var mayBeSettable: Int { get }

 func methodName() -> Int

 func iAmAllowedToModifyThisInstance(withValue value:Int)

 init(someParameter value: Int)
}

protocol ProtocolForStructure {
 var mustBeSettable: Int { get set }
 var mayBeSettable: Int { get }

 func methodName() -> Int

 // We need mutating to work with structures and enumerations
 // We can use it also for classes
 mutating func iAmAllowedToModifyThisInstance(withValue
value:Int)

 init(someParameter value: Int)
}

class ClassImplementingProtocol: ProtocolForClass {
 // The following is perfectly legal
 var mustBeSettable: Int = 0

 // This is also correct
// private var accumulator: Int = 0
// var mustBeSettable: Int {
// get {
// acumulator
// }
//
// set {
// acumulator = newValue
// }

2 7 5

// }

 // This is NOT correct
 // Error
 // Type 'ClassImplementingProtocol' does not conform
 //to protocol 'ProtocolForClass'
// private var accumulator: Int = 0
// var mustBeSettable: Int {
// get {
// acumulator
// }
// }
 var mayBeSettable: Int = 0

 func methodName() -> Int {
 return mustBeSettable + mayBeSettable
 }

 func iAmAllowedToModifyThisInstance(withValue value: Int) {
 mustBeSettable = value
 mayBeSettable = value * 2
 }

 // Error without required
 // Initializer requirement 'init(someParameter:)' can only
 // be satisfied by a 'required' initializer in non-final
 // class 'ClassImplementingProtocol'
 required init(someParameter value: Int) {
 mustBeSettable = value
 mayBeSettable = value * 2
 }
}

struct StructureImplementingProtocol: ProtocolForStructure {
 var mustBeSettable: Int = 0
 var mayBeSettable: Int = 0

 func methodName() -> Int {
 return mustBeSettable + mayBeSettable
 }

 mutating func iAmAllowedToModifyThisInstance(
 withValue value: Int
) {
 mustBeSettable = value
 mayBeSettable = value * 2
 }

 init(someParameter value: Int) {
 mustBeSettable = value
 mayBeSettable = value * 2
 }

2 7 6

}

var c = ClassImplementingProtocol(someParameter: 2)
print(c.methodName()) // Prints: 6
c.iAmAllowedToModifyThisInstance(withValue: 3)
print(c.methodName()) // Prints: 9

var s = StructureImplementingProtocol(someParameter: 2)
print(s.methodName()) // Prints: 6
s.iAmAllowedToModifyThisInstance(withValue: 3)
print(s.methodName()) // Prints: 9

Above example is very dry and mostly shows syntax. Examples in
subsection Benefits of using protocols – horizontal relationship of this
chapter allows you to feel what protocols are for.

A matter of initializer

As you know, implementing a protocol initializer on a conforming class,
you must mark the initializer implementation with the required
modifier. You may wonder what to do if a subclass overrides a
designated initializer from a superclass, and also implements a
matching initializer requirement from a protocol? In such a case mark
the initializer implementation with both the required and override
modifiers:

protocol SomeProtocol {
 init()
}

class SomeSuperClass {
 init() {
 // Initializer implementation goes here
 }
}

class SomeSubClass: SomeSuperClass, SomeProtocol {
 // "required" from SomeProtocol conformance
 // "override" from SomeSuperClass
 required override init() {
 // Initializer implementation goes here

2 7 7

 }
}

Protocols as types

Although protocols don’t provide any real functionality themselves, they
are a fully-fledged type you can use in your code. In consequence, you
can use protocols in many places where other types are
allowed:

• you can use protocols as a parameter type or return type in a function,
method, or initializer;

• you can use protocols as the type of a constant, variable, or property;

• you can use protocols as the type of items in an array, dictionary, or
other container.

You can use the is and as operators to check for protocol conformance,
and to cast to a specific protocol. Doing this follows the same, well
known, syntax as for type:

• The is operator returns true if an instance conforms to a protocol and
returns false if it doesn’t.

• The as? version of the downcast operator returns an optional value of
the protocol’s type, and this value is nil if the instance doesn’t
conform to that protocol.

• The as! version of the downcast operator forces the downcast to the
protocol type and triggers a runtime error if the downcast doesn’t
succeed.

2 7 8

protocol SimpleProtocol1 {
 var property1: Int { get }
}

protocol SimpleProtocol2 {
 var property2: Int { get }
}

class TestClass1: SimpleProtocol1 {
 var property1 = 1
}

class TestClass2: SimpleProtocol2 {
 var property2 = 2
 // You can use protocols as the type of a constant,
 // variable, or property
 var property22: SimpleProtocol1?
}

class TestClass1_2: SimpleProtocol1, SimpleProtocol2 {
 var property1 = 1
 var property2 = 2
}

// You can use protocols as a parameter type
// or return type in a function.
func someFunction(
 object obj: SimpleProtocol1
) -> SimpleProtocol2 {
 let o = TestClass2();
 o.property2 = obj.property1
 o.property22 = obj
 return o
}

let o1 = TestClass1()
let o2 = TestClass1_2()
let x: Any = o1

if (x is SimpleProtocol1){
 let o = someFunction(object: x as! SimpleProtocol1)

 print(o.property2)
 // Prints:
 // 1
 print((o as! TestClass2).property22?.property1 ?? "default")
 // Prints:
 // 1
}

// You can use protocols as the type of items in an array,
// dictionary, or other container.

2 7 9

var arr = [SimpleProtocol1]()
arr.append(o1)
arr.append(o2)

print(arr)
// Prints:
// [test.TestClass1, test.TestClass1_2]

Benefits of using protocols – horizontal relationship

This subsection is the essence of protocols existence depicted
on the image at the beginning of this section.

In the Section 3: Type checking and casting of Chapter 8: Structures,
inheritance and errors handling I've discussed a polymorphism topic: a
situation when you can treat an object being and instance of a given
class as an object of different class class which is its ancestor.

EXAMPLE 1

Consider the following hierarchy of objects:

class A {}
class B: A {}
class C: A {}
class D: B {}

class E {}
class F: E {}
class G: E {}

Now you can create a data structure (array) to store instances of every
class from selected family, for example A:

var familyA = [A]()

familyA.append(A())
familyA.append(B())
familyA.append(C())
familyA.append(D())

2 8 0

or pass to a function:

func doSomething(on: A) {}

doSomething(on: A())
doSomething(on: B())
doSomething(on: C())
doSomething(on: D())

If you try to use object from different family you will get an errors:

// Error:
// No exact matches in call to instance method 'append'
familyA.append(E())

// Error:
// Cannot convert value of type 'E' to expected argument type
'A'
doSomething(on: E())

With protocols you can define relationships among families. Or maybe
better: inheritance defines families, while protocol defines friendship.

protocol P1 {}
protocol P2 {}

class A {}
class B: A {}
class C: A, P2 {}
class D: B, P1 {}

class E {}
class F: E, P1, P2 {}
class G: E, P1 {}

Now you can create a data structure (array) to store instances of every
class from any family – the only requirement is to conform selected
protocol, for example P1:

var friends = [P1]()

friends.append(D()) // D from family A
friends.append(F()) // F from family E
friends.append(G()) // G from family E

2 8 1

func doSomething(on: P2) {}

doSomething(on: C()) // C from family A
doSomething(on: F()) // F from family E

If you try to use object which doesn't conform specified protocol, you
will get an errors:

// Error:
// No exact matches in call to instance method 'append'
friends.append(C())

// Error:
// Argument type 'E' does not conform to expected type 'P2'
doSomething(on: E())

EXAMPLE 2

This example is less abstract and is for you to feel what protocols are for.

Imagine that you have two families of classes, similarly to a case
depicted at the beginning of this chapter, where blue and orange family
is showed. Let the first family represents things:

class Thing {

}

class Book: Thing {
 var title: String
 var commonlyUsedTitle: String

 init (title: String, commonlyUsedTitle: String) {
 self.title = title
 self.commonlyUsedTitle = commonlyUsedTitle
 }
}

The second family is totally different and represents living beings:

class LivingObject {

2 8 2

}

class Human: LivingObject {
 var firstName: String
 var secondName: String

 init (firstName: String, secondName: String) {
 self.firstName = firstName
 self.secondName = secondName
 }
}

Things and living beings have not too much in common, but every
object of these types can be shortly characterize – you can say, it can
shortly "introduce itself" saying what kind of object it is. This is a
common feature (and very possibly the only one feature) shared among
all objects belonging either to inanimate or to living family. Now you
can introduce a new class, name it Common, and make it a parent for
Thing and LivingObject only to be able to give the ability to
introduce to all classes. Making this you admit that Thing and
LivingObject belongs to one super family, which probably is not
what you want.

Protocols offer different approach, allowing Thing and LivingObject
preserve their independence. You can think about protocols as an
agreement: every class, no matter what family it belongs to, conforming
to this protocols agrees to have "inside" all properties and functions
defined by protocol. In this example you can define protocol
Introduceable:

protocol Introducable {
 var fullName: String { get }
 var shortName: String { get }
 func introduceYourself() -> String
}

Now you may change your classes to conform to this protocol:

class Book: Thing, Introduceable {
 var title: String

2 8 3

 var commonlyUsedTitle: String

 var fullName: String {
 get {
 title
 }

 set(newValue) {
 title = newValue
 }
 }

 var shortName: String {
 get {
 commonlyUsedTitle
 }

 set(newValue) {
 commonlyUsedTitle = newValue
 }
 }

 func introduceYourself() -> String {
 """
 Hello, I'm a book.
 My title is "\(fullName)",
 but you can call me "\(shortName)".
 """
 }

 init (title: String, commonlyUsedTitle: String) {
 self.title = title
 self.commonlyUsedTitle = commonlyUsedTitle
 }
}

class Human: LivingObject, Introduceable {
 var firstName: String
 var secondName: String

 var fullName: String {
 get {
 firstName + " " + secondName
 }
 }

 var shortName: String {
 get {
 String(secondName.prefix(6))
 .lowercased()
 .folding(options: .diacriticInsensitive,
locale: .current)

2 8 4

 }
 }

 func introduceYourself() -> String {
 """
 Hello, I'm a human.
 My full name is "\(fullName)",
 but you can call me "\(shortName)".
 """
 }

 init (firstName: String, secondName: String) {
 self.firstName = firstName
 self.secondName = secondName
 }
}

At this moment your situation is different. Book and Human are
unrelated classes but thanks to conforming Introduceable protocol
you can be sure that you can safely call introduceYourself()
method on every instance of one of these classes. If so, now you can
without a problem perform the following code:

func introduceObject(object: Introduceable) {
 print(object.introduceYourself())
}

on some Book and Human instances:

var b = Book(title: "The C Programming Language",
commonlyUsedTitle: "ANSI C")
var h = Human(firstName: "Piotr", secondName: "Fulmański")

introduceObject(object: b)
introduceObject(object: h)

You will see the following output:

Hello, I'm a book.
My title is "The C Programming Language",
but you can call me "ANSI C".
Hello, I'm a human.
My full name is "Piotr Fulmański",
but you can call me "fulman".

2 8 5

Swift protocol composition

From previous subsection you know that you can specify type of objects
allowed to be used based on the protocol adopted by class or structure.
But what with a situation, when you want to specify that admissible
objects must conform to more than one protocol? In that case, you can:

• create an intermediate, temporary type to combine various
requirements;

• use protocol composition;

• use protocol inheritance (see next subsection).

Protocol composition, as it name states, is the process to combine
multiple protocols into a single protocol. You can think about this like
defining a temporary protocol that has the combined requirements of all
the protocols in the composition (something you can do on your own
with protocol inheritance).

Defining protocol composition, you can list as many protocols as you
want, separating them using the ampersand & character. Additionally,
you can specify one class type, which allows you to specify a superclass.

protocol P1 {}
protocol P2 {}

class A {}

class B: A {}
class C: A, P1 {}
class D: A, P2 {}
class E: P1, P2 {}
class F: A, P1, P2 {}

func doSomething(on: A & P1 & P2) {}

// Error:
// Argument type 'B' does not conform to expected type 'P1'
//doSomething(on: B())

2 8 6

// Error:
// Argument type 'C' does not conform to expected type 'P2'
//doSomething(on: C())
// Error:
// Argument type 'D' does not conform to expected type 'P1'
//doSomething(on: D())
// Error:
// Cannot convert value of type 'E' to expected argument type
'A'
//doSomething(on: E())
doSomething(on: F())

var container = [A & P1 & P2]()

// Error:
// No exact matches in call to instance method 'append'
//container.append(B())
//container.append(C())
//container.append(D())
//container.append(E())
container.append(F())

You can achieved the same result with intermediate type. The following
code is almost identical with the above except four places marked with
left arrow <-- and bolded font:

protocol P1 {}
protocol P2 {}

class A {}

class Composition: A, P1, P2 {} // <---

class B: A {}
class C: A, P1 {}
class D: A, P2 {}
class E: P1, P2 {}
class F: Composition {} // <---

func doSomething(on: Composition) {} // <---

// Error:
// Cannot convert value of type 'B' to expected argument
// type 'Composition'
//doSomething(on: B())
doSomething(on: F())

var container = [Composition]() // <---

2 8 7

// Error:
// No exact matches in call to instance method 'append'
//container.append(B())
container.append(F())

Protocols inheritance

A protocol can inherit one or more other protocols and can add further
requirements on top of the requirements it inherits. The syntax for
protocol inheritance is similar to the syntax for class inheritance, but
with the option to list multiple inherited protocols, separated by
commas:

protocol ProtocolCommon {
 var mustBeSettable: Int { get set }
 var mayBeSettable: Int { get }

 func methodName() -> Int

 init(someParameter value: Int)
}

protocol ProtocolForClass2: ProtocolCommon {
 func iAmAllowedToModifyThisInstance(withValue value:Int)
}

protocol ProtocolForStructure2: ProtocolCommon {
 mutating func iAmAllowedToModifyThisInstance(withValue
value:Int)
}

class ClassImplementingProtocol2: ProtocolForClass2 {
 var mustBeSettable: Int = 0
 var mayBeSettable: Int = 0

 func methodName() -> Int {
 return mustBeSettable + mayBeSettable
 }

 func iAmAllowedToModifyThisInstance(
 withValue value: Int
) {
 mustBeSettable = value
 mayBeSettable = value * 2
 }

 required init(someParameter value: Int) {

2 8 8

 mustBeSettable = value
 mayBeSettable = value * 2
 }
}

struct StructureImplementingProtocol2: ProtocolForStructure2 {
 var mustBeSettable: Int = 0
 var mayBeSettable: Int = 0

 func methodName() -> Int {
 return mustBeSettable + mayBeSettable
 }

 func iAmAllowedToModifyThisInstance(
 withValue value: Int
) {
 mustBeSettable = value
 mayBeSettable = value * 2
 }

 init(someParameter value: Int) {
 mustBeSettable = value
 mayBeSettable = value * 2
 }
}

var c2 = ClassImplementingProtocol2(someParameter: 2)
print(c2.methodName())
// Prints: 6
c2.iAmAllowedToModifyThisInstance(withValue: 3)
print(c2.methodName())
// Prints: 9

var s2 = StructureImplementingProtocol2(someParameter: 2)
print(s2.methodName())
// Prints: 6
s2.iAmAllowedToModifyThisInstance(withValue: 3)
print(s2.methodName())
// Prints: 9

You can use protocol inheritance instead of protocol composition. The
following code is similar to the composition code presented in preceding
subsection except four places marked with left arrow <-- and bolded
font:

protocol P1 {}
protocol P2 {}

class A {}

2 8 9

protocol Composition: A, P1, P2 {} // <---

class B: A {}
class C: A, P1 {}
class D: A, P2 {}
class E: P1, P2 {}
class F: A, Composition {} // <---

func doSomething(on: Composition) {} // <---
doSomething(on: F())

var container = [Composition]() // <---
container.append(F())

Default protocol implementation

Protocols can be extended. This way you provide method, initializer,
subscript, and computed property implementations to conforming
types.

For example, if you know that protocol require some method
(toString below), then you can extend it to provide a method
(preetyPrint below) which uses the result of the required method:

protocol P {
 func toString() -> String
}

extension P {
 func preetyPrint() -> String {
 return "*** \(toString()) ***"
 }
}

class A: P {
 var v: Int?

 func toString() -> String {
 guard v != nil else {return "UNDEFINED"}
 return "\(v!)"
 }
}

var x = A()

2 9 0

print(x.preetyPrint())
// Prints:
// *** UNDEFINED ***

x.v = 5
print(x.preetyPrint())
// Prints:
// *** 5 ***

As you can see, by creating an extension on the protocol, all conforming
types automatically gain this method implementation without any
additional modification.

If you look at the above code carefully, you will notice that function
provided in extension doesn't have to use protocol's required method. It
can be any function you want and by implementing it you provide it to
any conforming type. Among others, this can be used to provide a
default implementation to any method or computed property
requirement of that protocol. If a conforming type provides its own
implementation of a required method or property, that implementation
will be used instead of the one provided by the extension.

protocol P {
 func important()
}

extension P {
 func important() {
 print("Default implementation")
 }
}

class A: P {}

class B: P {
 func important() {
 print("Improved implementation")
 }
}

var x = A()
x.important()
// Prints:
// Default implementation

2 9 1

var y = B()
y.important()
// Prints:
// Improved implementation

2 9 2

2 9 3

2 9 4

SECTION 2

Structs and inheritance

As you know from previous chapter, inheritance only applies to classes.
However it is possible to get inheritance-like behavior also for
structures if you use protocols.

BASE SOLUTION WITH CLASSES

First, consider very basic hierarchy of classes:

class RightPyramid {
 let volume: Double
 let height: Double

 init(params: [String:AnyObject]) {
 height = params["height"] as! Double
 let baseArea = params["baseArea"] as! Double
 volume = 1.0 / 3.0 * baseArea * height
 }
}

class RightSquarePyramid: RightPyramid {
 let edgeB: Double

 override init(params: [String:AnyObject]) {
 edgeB = params["edgeB"] as! Double
 let area = edgeB * edgeB
 var extendedParams = params
 extendedParams["baseArea"] = area as AnyObject
 super.init(params: extendedParams)
 }
}

class RightTrianglePyramid: RightPyramid {
 let baseB: Double
 let heightB: Double

 override init(params: [String:AnyObject]) {

2 9 5

 baseB = params["baseB"] as! Double
 heightB = params["heightB"] as! Double
 let area = 0.5 * baseB * heightB
 var extendedParams = params
 extendedParams["baseArea"] = area as AnyObject
 super.init(params: extendedParams)
 }
}

func printInfo(pyramid: RightPyramid) {
 print("This is:")
 if let p = pyramid as? RightSquarePyramid {
 print("a right square pyramid:")
 print("base edge length=\(p.edgeB)")
 } else if let p = pyramid as? RightTrianglePyramid {
 print("a right triangle pyramid:")
 print("base triangle base=\(p.baseB)")
 print("base triangle height=\(p.heightB)")
 }
 print("height=\(pyramid.height)\nvolume=\(pyramid.volume)")
}

var params = ["baseB": 10.0,
 "heightB": 5.0,
 "height": 2.0]
 as [String : AnyObject]
let pyramid = RightTrianglePyramid(params: params)
printInfo(pyramid: pyramid)
// Prints:
// This is:
// a right triangle pyramid:
// base triangle base=10.0
// base triangle height=5.0
// height=2.0
// volume=16.666666666666664

Now you may ask if there is possibility to implement this hierarchy but
using structures. Answer is positive, although no solution is perfect.

SOLUTION 1

In this approach you use composition of value types.

struct RightPyramid {
 let volume: Double
 let height: Double

 init(params: [String:AnyObject]) {
 height = params["height"] as! Double

2 9 6

 let baseArea = params["baseArea"] as! Double
 volume = 1.0 / 3.0 * baseArea * height
 }
}

struct RightSquarePyramid {
 let rightPyramid: RightPyramid
 let edgeB: Double

 init(params: [String:AnyObject]) {
 edgeB = params["edgeB"] as! Double
 let area = edgeB * edgeB
 var extendedParams = params
 extendedParams["baseArea"] = area as AnyObject
 rightPyramid = RightPyramid(params: extendedParams)
 }
}

struct RightTrianglePyramid {
 let rightPyramid: RightPyramid
 let baseB: Double
 let heightB: Double

 init(params: [String:AnyObject]) {
 baseB = params["baseB"] as! Double
 heightB = params["heightB"] as! Double
 let area = 0.5 * baseB * heightB
 var extendedParams = params
 extendedParams["baseArea"] = area as AnyObject
 rightPyramid = RightPyramid(params: extendedParams)
 }
}

func printInfo(pyramid: Any) {
 func printCommonInfo(pyramid: RightPyramid) {
 print("height=\(pyramid.height)\nvolume=\(pyramid.volume)")
 }
 print("This is:")
 if type(of: pyramid) == RightSquarePyramid.self {
 if let p = pyramid as? RightSquarePyramid {
 print("a right square pyramid:")
 print("base edge length=\(p.edgeB)")
 printCommonInfo(pyramid: p.rightPyramid)
 }
 } else if type(of: pyramid) == RightTrianglePyramid.self {
 if let p = pyramid as? RightTrianglePyramid {
 print("a right triangle pyramid:")
 print("base triangle base=\(p.baseB)")
 print("base triangle height=\(p.heightB)")
 printCommonInfo(pyramid: p.rightPyramid)
 }
 }

2 9 7

}

var params = ["baseB": 10.0,
 "heightB": 5.0,
 "height": 2.0]
 as [String : AnyObject]
let pyramid = RightTrianglePyramid(params: params)
printInfo(pyramid: pyramid)
// Prints:
// This is:
// a right triangle pyramid:
// base triangle base=10.0
// base triangle height=5.0
// height=2.0
// volume=16.666666666666664

Drawback of this solution is that you violate the encapsulation
principle, exposing the internal composition to the outside world.
RightPyramid becomes a property of compound type
(RightSquarePyramid and RightTrianglePyramid):

struct RightSquarePyramid {
 let rightPyramid: RightPyramid
 // Some code goes here
}

struct RightTrianglePyramid {
 let rightPyramid: RightPyramid
 // Some code goes here
}

Although you have RightSquarePyramid type you don't treat it as a
type but rather as a composition of other types because to get an access
to volume and height you have to "manually" extract them from
property of RightPyramid type.

SOLUTION 2

In this approach you use a protocol and one intermediate structure
(RightPyramidData):

protocol RightPyramid {
 // Error:
 // Protocols cannot require properties to be immutable;

2 9 8

 // declare read-only properties by using 'var' with
 // a '{ get }' specifier
 // let volume: Double
 var volume: Double { get }
 var height: Double { get }
}

private struct RightPyramidData: RightPyramid {
 let volume: Double
 let height: Double

 init(params: [String:AnyObject]) {
 height = params["height"] as! Double
 let baseArea = params["baseArea"] as! Double
 volume = 1.0 / 3.0 * baseArea * height
 }
}

struct RightSquarePyramid: RightPyramid {
 // BEGIN: To conform protocol
 let volume: Double
 let height: Double
 // END: To conform protocol
 let edgeB: Double

 init(params: [String:AnyObject]) {
 edgeB = params["edgeB"] as! Double
 let area = edgeB * edgeB
 var extendedParams = params
 extendedParams["baseArea"] = area as AnyObject
 let rightPyramidData = RightPyramidData(
 params: extendedParams
)
 volume = rightPyramidData.volume
 height = rightPyramidData.height
 }
}

struct RightTrianglePyramid: RightPyramid {
 // BEGIN: To conform protocol
 let volume: Double
 let height: Double
 // END: To conform protocol
 let baseB: Double
 let heightB: Double

 init(params: [String:AnyObject]) {
 baseB = params["baseB"] as! Double
 heightB = params["heightB"] as! Double
 let area = 0.5 * baseB * heightB
 var extendedParams = params
 extendedParams["baseArea"] = area as AnyObject

2 9 9

 let rightPyramidData = RightPyramidData(
 params: extendedParams
)
 volume = rightPyramidData.volume
 height = rightPyramidData.height
 }
}

func printInfo(pyramid: RightPyramid) {
 print("This is:")
 if let p = pyramid as? RightSquarePyramid {
 print("a right square pyramid:")
 print("base edge length=\(p.edgeB)")
 } else if let p = pyramid as? RightTrianglePyramid {
 print("a right triangle pyramid:")
 print("base triangle base=\(p.baseB)")
 print("base triangle height=\(p.heightB)")
 }
 print("height=\(pyramid.height)\nvolume=\(pyramid.volume)")
}

var params = ["baseB": 10.0,
 "heightB": 5.0,
 "height": 2.0]
 as [String : AnyObject]
let pyramid = RightTrianglePyramid(params: params)
printInfo(pyramid: pyramid)
// Prints:
// This is:
// a right triangle pyramid:
// base triangle base=10.0
// base triangle height=5.0
// height=2.0
// volume=16.666666666666664

Notice that with this approach both printInfo(pyramid:) and code
following it is exactly of the same shape as it is given in Base solution
with classes. Drawback is that it results in code verbosity (notice
existence of intermediate RightPyramidData structure) and manual
property manipulation at lines:

let rightPyramidData = RightPyramidData(
 params: extendedParams
)
volume = rightPyramidData.volume
height = rightPyramidData.height

3 0 0

SOLUTION 3

This solution shows how you can get rid of intermediate structure using
protocol extension to provide default data extracting implementation.

protocol RightPyramid {
 var volume: Double { get }
 var height: Double { get }
}

extension RightPyramid {
 static func parseFields(
 params: [String:AnyObject]
) -> (Double, Double) {
 let height = params["height"] as! Double
 let baseArea = params["baseArea"] as! Double
 let volume = 1.0 / 3.0 * baseArea * height

 return (volume, height)
 }
}

struct RightSquarePyramid: RightPyramid {
 // BEGIN: To conform protocol
 let volume: Double
 let height: Double
 // END: To conform protocol
 let edgeB: Double

 init(params: [String:AnyObject]) {
 edgeB = params["edgeB"] as! Double
 let area = edgeB * edgeB
 var extendedParams = params
 extendedParams["baseArea"] = area as AnyObject
 (volume, height) = RightSquarePyramid.parseFields(
 params: extendedParams
)
 }
}

struct RightTrianglePyramid: RightPyramid {
 // BEGIN: To conform protocol
 let volume: Double
 let height: Double
 // END: To conform protocol
 let baseB: Double
 let heightB: Double

 init(params: [String:AnyObject]) {
 baseB = params["baseB"] as! Double
 heightB = params["heightB"] as! Double

3 0 1

 let area = 0.5 * baseB * heightB
 var extendedParams = params
 extendedParams["baseArea"] = area as AnyObject
 (volume, height) = RightSquarePyramid.parseFields(
 params: extendedParams
)
 }
}

func printInfo(pyramid: RightPyramid) {
 print("This is:")
 if let p = pyramid as? RightSquarePyramid {
 print("a right square pyramid:")
 print("base edge length=\(p.edgeB)")
 } else if let p = pyramid as? RightTrianglePyramid {
 print("a right triangle pyramid:")
 print("base triangle base=\(p.baseB)")
 print("base triangle height=\(p.heightB)")
 }
 print("height=\(pyramid.height)\nvolume=\(pyramid.volume)")
}

var params = ["baseB": 10.0,
 "heightB": 5.0,
 "height": 2.0]
 as [String : AnyObject]
let pyramid = RightTrianglePyramid(params: params)
printInfo(pyramid: pyramid)
// Prints:
// This is:
// a right triangle pyramid:
// base triangle base=10.0
// base triangle height=5.0
// height=2.0
// volume=16.666666666666664

As you can see, RightPyramidData structure is not needed any more
and manual property manipulation is replaced by on-line call:

(volume, height) = RightSquarePyramid.parseFields(
 params: extendedParams
)

3 0 2

3 0 3

3 0 4

SECTION 3

Generics

With generics you can write very flexible and reusable code without
duplicating it only because you want it to work with different type(s). In
simple words, generic is an adjustable stamp or template you can use to
generate identical code with some minor type changes. Generics help
you to stop repeating yourself.

Generic functions

Generic functions can work with any type. Any time you have a
functionality common for different types you can write a universal
(generic) code where instead of real type a placeholder type is used. In
Swift a placeholder type, known as a type parameter, specify its name,
and is written immediately after the function’s name, between a pair of
matching angle brackets (such as <T> for T type parameter). The
generic version of the function uses a placeholder type name (T, in this
case) instead of an actual type name (such as Int, or String). The
actual type to use in place of T is determined every time a function is
used.

func arrayReverse<T>(_ array: inout [T]){
 let count = array.count
 var temp: T
 for i in 0..<count/2 {
 temp = array[i]
 array[i] = array[count - 1 - i]
 array[count - 1 - i] = temp
 }
}

3 0 5

This generic code, when called with an array of Strings:

var arrayString = ["one", "two", "three", "four", "five"]
print(arrayString)
// Prints:
// ["one", "two", "three", "four", "five"]

arrayReverse(&arrayString)

behind a scene will result with the following autogenerated code:

func arrayReverse(_ array: inout [String]) { // Here is a
 // change 1 of 2
 let count = array.count
 var temp: String // Here is a change 2 of 2

 for i in 0..<count/2 {
 temp = array[i]
 array[i] = array[count - 1 - i]
 array[count - 1 - i] = temp
 }
}

which will do the job:

print(arrayString)
// Prints:
// ["five", "four", "three", "two", "one"]

On the other hand, when called with array of Ints:

var arrayInt = [1, 2, 3, 4, 5]
print(arrayInt)
// Prints:
// [1, 2, 3, 4, 5]

arrayReverse(&arrayInt)

behind a scene will result with the following autogenerated code:

func arrayReverse(_ array: inout [Int]) { // Here is a
 // change 1 of 2

3 0 6

 let count = array.count
 var temp: Int // Here is a change 2 of 2

 for i in 0..<count/2 {
 temp = array[i]
 array[i] = array[count - 1 - i]
 array[count - 1 - i] = temp
 }
}

which will do the job for Ints this time:

print(arrayInt)
// Prints:
// [5, 4, 3, 2, 1]

Type constraints in generic functions

Although generics functions can work with any type, it’s sometimes
useful to enforce certain type constraints on the types that can be used.
Type constraints specify that a type parameter must inherit from a
specific class, or conform to a particular protocol or protocol
composition. Type constraints concerns generic functions as well as
generic types (see next subsection).

func functionName<T: className, U: protocolName>(
 argT: T, argU: U
) {
 // Function body goes here
}

In the code below it is safe to call toString function on object
because you can be sure that Type conforms to P protocol requiring this
function:

protocol P {
 func toString() -> String
}

struct A: P {
 var v: Int

3 0 7

 func toString() -> String {
 "\(v)"
 }
}

struct B {
 var v: Int
}

// It is safe to call toString on object because
// you can be sure that Type conforms to P protocol
func preetyPrint<Type: P>(object: Type) {
 print("*** \(object.toString()) ***")
}

var x = A(v: 5)
preetyPrint(object: x)

var y = B(v: 5)
// Error:
// Global function 'preetyPrint(object:)' requires that 'B'
conform to 'P'
//preetyPrint(object: y)

Generic types

Generic types are maybe even more often used than generic functions.
The most basic examples are quite natural: basic data structures like
arrays, dictionaries, stacks or queues. As an example, take a look at a
very basic implementation of a priority queue:

struct PriorityQueue<T> {
 struct Item<T> {
 var item: T
 var priority: Int
 }

 var items = [Item<T>]()

 mutating func push(_ item: T, withPriority priority: Int) {
 items.append(Item(item: item, priority: priority))
 }

 mutating func pop() -> T? {
 guard items.count > 0 else {
 return nil

3 0 8

 }

 var highestPriorityIndex = 0
 var highestPriorityValue = items[0].priority

 for index in 1..<items.count {
 if(items[index].priority < highestPriorityValue){
 highestPriorityIndex = index
 highestPriorityValue = items[index].priority
 }
 }

 //let removed = items.remove(at: highestPriorityIndex)
 //return removed.item

 // One-line statement equivalent to above commented lines
 return items.remove(at: highestPriorityIndex).item
 }
}

var pqS = PriorityQueue<String>()

pqS.push("five", withPriority: 5)
pqS.push("two", withPriority: 2)
pqS.push("one", withPriority: 1)
pqS.push("four", withPriority: 4)
pqS.push("three", withPriority: 3)

print(pqS.pop() ?? "undefined")
print(pqS.pop() ?? "undefined")
print(pqS.pop() ?? "undefined")
print(pqS.pop() ?? "undefined")
print(pqS.pop() ?? "undefined")
print(pqS.pop() ?? "undefined")

If you run it, you will see:

one
two
three
four
five
undefined

On the other hand the following code:

var pqI = PriorityQueue<Int>()

pqI.push(55, withPriority: 5)

3 0 9

pqI.push(22, withPriority: 2)
pqI.push(11, withPriority: 1)
pqI.push(44, withPriority: 4)
pqI.push(33, withPriority: 3)

print(pqI.pop() ?? "undefined")
print(pqI.pop() ?? "undefined")
print(pqI.pop() ?? "undefined")
print(pqI.pop() ?? "undefined")
print(pqI.pop() ?? "undefined")
print(pqI.pop() ?? "undefined")

will print:

55
44
33
22
11
undefined

Extending a generic types

When extending a generic type, you don’t provide a type parameter list
as part of the extension’s definition. Instead, the type parameter list
from the original type definition is available within the body of the
extension, and the original type parameter names are used to refer to
the type parameters from the original definition.

Based on the previous code, you can add an extension to it:

extension PriorityQueue {
 var itemWithHighestPriority: T? {
 guard items.count > 0 else {
 return nil
 }

 var highestPriorityIndex = 0;
 var highestPriorityValue = items[0].priority;

 for index in 1..<items.count {
 if(items[index].priority < highestPriorityValue){
 highestPriorityIndex = index;
 highestPriorityValue = items[index].priority;

3 1 0

 }
 }

 return items[highestPriorityIndex].item
 }
}

pq.push("five", withPriority: 5)
pq.push("two", withPriority: 2)
pq.push("one", withPriority: 1)

print(pq.itemWithHighestPriority ?? "undefined")

If you run it, you will see:

one

Generic protocols: associated types

When defining a protocol, it’s sometimes useful to declare one or more
associated types as part of the protocol’s definition. This is a way you
make generic protocols. An associated type gives a placeholder name to
a type that is used as part of the protocol. The actual type to use for that
associated type isn’t specified until the protocol is adopted. Associated
types are specified with the associatedtype keyword.

protocol Resetable {
 associatedtype ItemType
 mutating func reset(
 toValue value: ItemType, withPriority priority: Int
)
}

Now you can use the extended protocol either in nongeneric way:

struct PriorityQueueString: Resetable {
 struct Item {
 var item: String
 var priority: Int
 }

 var items = [Item]()

3 1 1

 mutating func push(
 _ item: String,
 withPriority priority: Int
) {
 items.append(Item(item: item, priority: priority))
 }

 mutating func pop() -> String? {
 guard items.count > 0 else {
 return nil
 }

 var bestPriorityIndex = 0;
 var bestPriorityValue = items[0].priority;

 for index in 1..<items.count {
 if(items[index].priority < bestPriorityValue){
 bestPriorityIndex = index;
 bestPriorityValue = items[index].priority;
 }
 }

 return items.remove(at: bestPriorityIndex).item
 }

 // BEGIN Protocol conformance part
 typealias ItemType = String
 mutating func reset(
 toValue value: String,
 withPriority priority: Int
) {
 for index in 0..<items.count {
 if(items[index].priority == priority){
 items[index].item = value
 }
 }
 }
 // END
}

var pqs = PriorityQueueString()
pqs.push("one", withPriority: 1)
pqs.push("two", withPriority: 2)
pqs.push("one", withPriority: 1)
pqs.reset(toValue: "none", withPriority: 1)
print(pqs.pop() ?? "undefined")
// Prints: none

print(pqs.pop() ?? "undefined")
// Prints: none

3 1 2

print(pqs.pop() ?? "undefined")
// Prints: two

or in generic way:

struct PriorityQueueConformingToProtocols<T>: Resetable {
 struct Item<T> {
 var item: T
 var priority: Int
 }

 var items = [Item<T>]()

 mutating func push(_ item: T, withPriority priority: Int) {
 items.append(Item(item: item, priority: priority))
 }

 mutating func pop() -> T? {
 guard items.count > 0 else {
 return nil
 }

 var highesPriorityIndex = 0;
 var highesPriorityValue = items[0].priority;

 for index in 1..<items.count {
 if(items[index].priority < highesPriorityValue){
 highesPriorityIndex = index;
 highesPriorityValue = items[index].priority;
 }
 }

 return items.remove(at: highesPriorityIndex).item
 }

 mutating func reset(
 toValue value: T,
 withPriority priority: Int
) {
 for index in 0..<items.count {
 if(items[index].priority == priority){
 items[index].item = value
 }
 }
 }
}

var pqp = PriorityQueueConformingToProtocols<String>()
pqp.push("one", withPriority: 1)
pqp.push("two", withPriority: 2)
pqp.push("one", withPriority: 1)

3 1 3

pqp.reset(toValue: "none", withPriority: 1)
print(pqp.pop() ?? "undefined")
// Prints: none

print(pqp.pop() ?? "undefined")
// Prints: none

print(pqp.pop() ?? "undefined")
// Prints: two

Note, that in generic case we don't have to use typealias keyword.

3 1 4

3 1 5

3 1 6

CHAPTER 10

Miscellaneous topics

You will learn:

• How to use pattern matching with case-let.

3 1 8

SECTION 1

This is not the end

This is the end of this book but I hope not your last adventure with
Swift. Reading and practicing knowledge you have gained so far, you
will have understanding of most basic Swift's "building blocks". Starting
from variables, through extensions and ending on protocols and
generics, now you are ready to try to make a code on your own or try
something else like making app for iOS.

You know a lot but there is still even more to discover. In this chapter I
will show you few concepts which you don't have to know at this
moment but which show how broad Swift is. It is simply to stimulate
your curiosity and encourage you to get to know it on your own
discovering new features and areas of application.

3 1 9

3 2 0

SECTION 2

case-let pattern

The keyword case used in other than switch statements looks at first
sight strange and awkward. However, once you get used to it, you will
never want to throw it away. The key to accept case-let is to stop
thinking that case is inseparable linked with switch. Rather, see it as
a situation where case is used by switch. If so, why other statements,
like if, guard or for, may not use it as well?

To make this chapter's contents clear you may find helpful quick
refreshment of Section 2: switch - case statement from Chapter 5:
Tuples, switch and extensions, where the following complex pattern
matching example summarizes switch-case syntax:

var point2D: (Double, Double)

point2D = (2.5, 2)

switch point2D {
case (0, 0):
 print("Origin")
case (let x, 0):
 print("Point (\(x),0) is on the OX axis")
case (0, let y):
 print("Point (0, \(y)) is on the OY axis")
case let (x, y) where x > y:
 print("Point (\(x), \(y)) from a 2D subspace")
default:
 print("Eeee...")
}
// Prints:
// Point (2.5, 2.0) from a 2D subspace

3 2 1

As you can see, inside switch-case you can bind values to constants
or variables (with let or var keyword). You can also specify additional
condition with where keyword.

Frequently switch-case is used with enum types (Chapter 3: Arrays
and enumerations, Section: 2 Enumerations):

enum Action {
 case turnLeftDegree (Double),
 turnRightDegree (Double),
 makeForwardSteps (Int),
 makeBackwardSteps (Int),
 saySomething (String)
}

var currentAction = Action.makeForwardSteps(10)

switch currentAction {
case .turnLeftDegree(let degree):
 print("Turn left by \(degree) degree")
case let .turnRightDegree(degree):
 print("Turn right by \(degree) degree")
case .makeForwardSteps(let steps):
 print("Make \(steps) step(s) forward")
case let .makeBackwardSteps(steps):
 print("Make \(steps) step(s) backward")
case let .saySomething(text):
 print("Say: \(text)")
}
// Prints:
// Make 10 step(s) forward

The ability to pattern matching in some sense redefines switch-case
statements and transforms it into really very handy tool. This is so
attractive that introducing pattern matching ability in other condition-
like statements shouldn't surprise you.

Generally speaking, the case let x = y pattern, wether is used as a
part of if, guard or even for, allows you to check if y does match the
pattern x. If you remember this, syntax will not scare you.

3 2 2

IF-CASE-LET

if case let .makeForwardSteps(steps) = currentAction {
 print("Current action matches moving forward with \(steps)
steps")
}
// Prints:
// Current action matches moving forward with 10 steps

An alternate form:

if case .makeForwardSteps(let steps) = currentAction {
 print("Current action matches moving forward with \(steps)
steps")
}
// Prints:
// Current action matches moving forward with 10 steps

IF-CASE-LET-WHERE

You can combine the if-case-let with a condition separating them
with a comma (,):

if case let .makeForwardSteps(steps) = currentAction,
 steps > 20 {
 print("Current action matches moving forward with more than
20 steps (with \(steps) steps)")
} else {
 print("No match or fail at condition check")
}
// Prints:
// No match or fail at condition check

You can specify more than one condition:

if case let .makeForwardSteps(steps) = currentAction,
 steps > 5, steps < 30 {
 print("Current action matches moving forward with \(steps)
steps, and this is the value in the expected range (5, 30)")
} else {
 print("No match or fail at condition check")
}
// Prints:
// Current action matches moving forward with 10 steps,
// and this is the value in the expected range (5, 30)

3 2 3

GUARD-CASE-LET[-WHERE]

guard case let .makeForwardSteps(steps) = currentAction,
 steps > 10 else {
 print("No match or fail at condition check")
 return
}

print("Proceed with action matches moving forward with \(steps)
steps")

// Prints:
// No match or fail at condition check

FOR-CASE-LET[-WHERE]

Combining for and case can also let you iterate on a collection
conditionally. Using for-case-let is semantically similar to using a
for loop and wrapping its whole body in an if-case block: in result it
will only iterate and process the elements that match the pattern.

var actions = [Action]()
actions.append(.makeForwardSteps(2))
actions.append(.turnLeftDegree(5))
actions.append(.makeForwardSteps(50))
actions.append(.turnLeftDegree(2))
actions.append(.makeForwardSteps(100))
actions.append(.makeForwardSteps(10))

for case let Action.makeForwardSteps(steps) in
 actions
where
 steps > 45
{
 print("Long step ahead: \(steps) steps")
}

// Prints:
// Long step ahead: 50 steps
// Long step ahead: 100 steps

FOR-WHERE

3 2 4

Note that for without the case pattern matching part but preserving
where part is also a valid Swift syntax:

for number in [1, 2, 3, 4, 5]
where
 number % 2 == 0
{
 print("\(number), ", terminator: "")
}
// Prints:
// 2, 4,

3 2 5

3 2 6

Bibliography

3 2 8

Bibliography

[ARD] Arduino

1. constrain(), retrieved 2021-03-30,
https://www.arduino.cc/reference/en/language/functions/math/
constrain/

2. map(), retrieved 2021-03-30,
https://www.arduino.cc/reference/en/language/functions/math/
map/

[IUO] Implicitly Unwrapped Optional

1. Abolish ImplicitlyUnwrappedOptional type, retrieved 2021-03-17,
https://github.com/apple/swift-evolution/blob/master/
proposals/0054-abolish-iuo.md

2. Reimplementation of Implicitly Unwrapped Optionals, retrieved
2021-03-17,
https://swift.org/blog/iuo/

[JAVADOC] Java documentation

1. The finally Block, retrieved 2021-04-20,
https://docs.oracle.com/javase/tutorial/essential/
exceptions/finally.html

[SD] Swift documentation

1. Property Wrappers section in Properties, retrieved 2021-04-08,
https://docs.swift.org/swift-book/LanguageGuide/
Properties.html

3 2 9

https://www.arduino.cc/reference/en/language/functions/math/constrain/
https://www.arduino.cc/reference/en/language/functions/math/map/
https://github.com/apple/swift-evolution/blob/master/proposals/0054-abolish-iuo.md
https://swift.org/blog/iuo/
https://docs.oracle.com/javase/tutorial/essential/exceptions/finally.html
https://docs.swift.org/swift-book/LanguageGuide/Properties.html

2. Audrey Tam, SwiftUI Property Wrappers, retrieved 2021-05-21,
https://www.raywenderlich.com/21522453-swiftui-property-
wrappers

[SELF] Self and self

1. Self and self in Swift, retrieved 2021-03-30,
https://learnappmaking.com/self-swift-how-to/

2. Self vs self - what's the difference?, retrieved 2021-03-30,
https://www.hackingwithswift.com/example-code/language/self-
vs-self-whats-the-difference

[TM] Value type

1. Reference vs. Value Types in Swift, retrieved 2021-04-01, https://
www.raywenderlich.com/9481-reference-vs-value-types-in-swift

3 3 0

https://www.raywenderlich.com/21522453-swiftui-property-wrappers
https://learnappmaking.com/self-swift-how-to/
https://www.hackingwithswift.com/example-code/language/self-vs-self-whats-the-difference
https://www.raywenderlich.com/9481-reference-vs-value-types-in-swift

3 3 1

	Learn Swift by examples
	Beginner level
	Early Access Version Edition 1.0, June 2021
	Initial steps
	Battleship game
	Create project

	Variables and functions
	Variables
	Optionals
	Functions
	More about functions – closures

	Arrays and enumerations
	Arrays
	Enumerations
	Range operators
	Game code – add initializer

	Type methods, guards and string interpolation
	Type methods
	Guards
	String interpolation
	Game code

	Tuples, switch and extensions
	Tuples
	switch - case statement
	Extensions
	Game code

	Properties, dictionaries and sets
	Property types
	Dictionaries
	Sets
	Game code

	Code completion
	Tasks to complete, part 1
	Tests for part 1
	Tasks solutions, part 1
	Tasks to complete, part 2
	Tasks solutions, part 2

	Structures, inheritance and errors handling
	Structures
	Inheritance
	Type checking and casting
	Access control
	Errors handling

	Protocols and generics
	Protocols
	Structs and inheritance
	Generics

	Miscellaneous topics
	This is not the end
	case-let pattern

	Bibliography

