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Chapter 1

Introduction

This textbook is for the CS5600 class in the Northeastern College of

Computer and Information Science, based on the design of CS5600 start-

ing in Fall of 2008. The goal of this class is not to teach you how to

write an operating system—that is an obscure skill, practiced by far fewer

people than you might think. Nor is it to learn how to use an operating

system—depending on the type of use, that would be system administra-

tion, programming, or just using a computer. Instead the goal is to teach

you how computers work, by describing the interacting parts underneath

the user and programming interfaces.

Figure 1.1: Linux text console with simple command.

For an example of what this means, consider running a simple command

such as ls on a Linux system. In Figure 1.1 we see the screen of a system

booted in text mode, using the simple character display that the BIOS uses.

In responding to the keystrokes typed by the user, we can identify not only

the basic actions being performed (“run the ls -l command with output

1



2 CHAPTER 1. INTRODUCTION

to the console”) but a large number of interacting actions and components

as well:

• the keyboard control hardware (assuming an old-fashioned PS/2

keyboard) interrupts the processor, causing it to run a portion of the

keyboard input driver.

• The driver reads data from the keyboard and calls scheduling func-

tions to wake the shell process, which was sleeping waiting for

input.

• the shell process spawns a copy of itself, by invoking a system call

which copies some of the shell process state and shares other parts of

it between the parent and child processes using the virtual memory

system.

• The new process invokes the exec system call, causing the operating

system to map the /bin/ls binary into the process address space.

• As ls starts up, the dynamic loader loads additional shared libraries

into the process address space; these as well as the ls code itself is

loaded into memory on demand as the CPU accesses them.

• ls invokes system calls to read the list of files in the current direc-

tory.

• The file system code receives requests to read files containing the

executable and libraries, as well as the directory listing request from

the ls program itself, and in turn requests data from the disk (via

the block device system) to fulfill these requests.

• Since the example was actually running in a virtual machine, not a

physical machine1 the hardware interactions described above were

actually emulated by another software system (i.e. VirtualBox)

which translated them into requests to the underlying operating

system, which in turn interacted with the real keyboard and screen.

The remainder of this book, and the corresponding class, is concerned

with the detailed analysis of the interactions involved in performing this

simple operation. The major sections of this text concern:

OS organization: Memory organization and OS interface to decouple

applications from hardware and OS details, context switching, and

system calls. This section describes and uses a simple computer,

described more fully in the appendices.

Synchronization: Beginning with practical problems arising from mul-

tiple simultaneous actions, we describe methods such as semaphores

and monitors to control simultaneous actions, as well as methods to

reason about the operation and performance of parallel operations.

1It makes screenshots far easier.
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Virtual memory: At the hardware level, how is address translation

implemented via the MMU, TLB, and page table? In the OS, how

are page faults used to implement copy-on-write, demand loading,

and paged virtual memory?

Block devices: These are devices such as disks, RAID arrays, and SSDs,

used for storing files and similar information. Topics covered include

performance and interfaces, I/O operation at a hardware level, and

methods of structuring I/O systems for reliability (RAID), manage-

ability (logical volume management) and efficiency (deduplication).

File systems: What is a file system and what are its operations? How

do we implement these, and how do we lay files out on disk?

Security: What are the goals of security mechanisms in an operating

system? How can we specify and implement policies to control

access and operations?

The objective of the class is to be able to identify the steps involved in this

and other computer operations. In learning this we will touch on hardware,

device drivers, scheduling, virtual memory, and networking. We focus

on behavior—i.e. the sequence of events which occurs in response to

an input, and results in an output. This behavior cuts across layers and

subsystems, as an event at the hardware level may trigger actions within

a device driver, then in the core of the operating system, within a user

process, etc. Rather than looking at the operating system in a structured

way we are going to follow these sequences of behavior and see where

they lead.





Chapter 2

Program and OS Organization

This chapter begins by defining a very simple computer, with assembly

language instructions, a 16-bit address space, and memory-mapped pe-

ripherals.1 We will use this computer as an example as we talk about the

simplest operating systems.

We then examine simple methods of organizing and running a program on

this computer. We extend these methods to hide hardware dependencies,

insulate against changes in operating system details, and allow for program

loading and execution—at this point we have achieved a simple single-user

OS, similar in many ways to MSDOS 1.0.

After this we examine multi-processing and context switching, allowing

multiple programs to be running simultaneously. Finally we examine

what additional features are needed to protect the operating system from

the user, and users from each other. At this point we have achieved a

simplified version of a modern operating system; we compare it to Linux

and Windows.

1In other words, CPU operations only read or write internal registers and external (to

the CPU) memory. The memory address space is partitioned between normal random-access

memory and a section devoted to I/O devices, which respond to read and write requests to

particular addresses.

5



6 CHAPTER 2. PROGRAM AND OS ORGANIZATION

Figure 2.1: Simple computer system architecture

2.1 A Simple Computer

We use a fictional 16-bit computer, shown in Figure 2.1. It has 8 general-

purpose registers, R0-R7, holding 16 bits each, as well as a stack pointer

(SP) and program counter (PC), and 64 KB (216) of memory which may

be accessed as 8-bit bytes or 16-bit words.

The examples below use the following instructions:

1. LOAD.B, LOAD.W - load a byte or a word from the indicated ad-

dress, which may be an absolute address (i.e. a number) or contained

in a register.

2. LOAD.I - load a constant value into a register. (called an “immediate”

value for unknown reasons)

3. STORE.B, STORE.W - store a byte or word from a register into

memory.

4. MOV - copy the contents of one register to another.

5. ADD, SUB - add or subtract one register (or a constant value) to or

from another register. Sets the Z flag if the result is zero.

6. CMP - compare a register to another register or a constant value.

Subtracts the second value from the register, sets the Z flag appro-

priately, and then throws away the result.

7. JMP - jump to the indicated address.

8. JMP_Z, JMP_NZ - jump if the Z flag is set (Z) or not set (NZ)

9. PUSH - push the 16-bit value in the indicated register onto the stack

10. POP - pop the 16-bit value top of the stack and place in the indicated
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Figure 2.2: Frame buffer
Figure 2.3: Keyboard

controller

register.

11. CALL - call a subroutine by pushing the return address (i.e. the

address of the next instruction) onto the stack and jumping to the

indicated address.

12. RET - return from subroutine by popping the return address from

the top of the stack and jumping to it.

In addition there are several input/output devices which are memory-

mapped—particular memory addresses correspond to registers in these

devices, rather than normal memory, and reads or writes to these addresses

are used to operate the device. These devices include:

1. frame buffer: A region of 1920 bytes, corresponding to 24 lines of

80 characters displayed on a video display. Writing a byte to one of

these locations causes the indicated character to be displayed at the

corresponding location on the screen, as shown in Figure 2.2.

2. keyboard controller: Two registers, one indicating whether a key

has been pressed, and the other the character corresponding to that

key, as shown in Figure 2.3.

This description is enough for our first examples; a full specification is

found in Appendix A.

Review Questions

2.1.1. I/O devices are pieces of software that are part of the operating

system: yes / no / sort of

2.1.2. I/O devices are part of memory: yes / no / sort of
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;; note - frame buffer starts at 0xF000

str: "Hello World"

begin: LOAD.I R1 ← &str

LOAD.I R2 ← 11

LOAD.I R3 ← 0xF000

loop: LOAD.B R4 ← *(R1++)

STORE.B R4 → *(R3++)

SUB R2-1 → R2

JMP_NZ loop

done: JMP done

Figure 2.4: Simple ’Hello World’ program. LOAD.I loads an immediate (i.e.

constant) value, LOAD/STORE.B operates on a single byte instead of a 16-bit

word.

;; keyboard status = 0xF800, keycode = 0xF801

begin: LOAD.I R1 ← 0xF000 ;; frame buffer

loop: LOAD.B R2 ← *(0xF800)

TEST R2

JMP_Z loop

LOAD.B R2 ← *(0xF801) ;; get keystroke

STOR.B R2 → *(R1++) ;; copy to frame buffer

JMP loop

Figure 2.5: Copy keystrokes to screen

2.2 Program Organization

Our first program is seen in Figure 2.4. It performs a very simple task,

copying bytes from a compiled-in string to the frame buffer to display (of

course) “Hello World” and then finishing in a loop which does nothing.

(Although the reader is not expected to write programs in assembly lan-

guage, we assume that given the computer definition you should be able

to decipher simple examples such as this.)

In Figure 2.5 we see another simple program, which performs input as

well as output. In the three lines starting at the label loop it polls the

keyboard status register, waiting for a key to be pressed. It then reads the

keystroke value into R4 and stores it into the frame buffer. (Well, at least

for the first 1920 keystrokes. It will advance through the frame buffer line
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by line, ignoring carriage returns, and eventually “fall off” the end and

start scribbling over the rest of the I/O space. It is a very simple program.)

These two programs illustrate the simplest sort of software organization,

consisting only of the program itself, which handles every detail including

the hardware interface—not a difficult task for such a simple case. All

there is here is a program and some hardware, with nothing that we can

identify as an operating system; this approach might be appropriate for

the smallest microcontrollers. (i.e. with a few hundred bytes of program

memory and even less data memory)

2.3 A Simple Operating System Interface

Operating system - software that isn’t the program itself,

especially that required by a user or program to interact

with (i.e. operate) the computer.

For even slightly complex programs we are going to want to factor out

the hardware interface functionality. This would e.g. allow us to use a

single function for output to the frame buffer, which could be called from

different places in the program. Our next program, in Figure 2.6, copies

keystrokes from the keyboard to the frame buffer just like our previous

one. However, in this case we have separated out the keyboard and display

interface functions. With this we start to see the beginnings of an operating

system.

One goal of an operating system is to provide an abstract interface to the

hardware, serving several purposes. First, it allows a program developed

for one computer to be used on another one without extensive modification,

even if the hardware is not exactly the same. In addition, by separating

program-specific and hardware-specific code, it makes it easier for each

to be developed by someone who is expert in the corresponding area.2

Figure 2.6 might be termed a library operating system—it consists of

a series of functions which are linked with the application, creating a

single program which is loaded onto the hardware, frequently by being

programmed into read-only-memory and thus being present when the

computer is first turned on.

2Multiple levels of such separation are seen in modern computers, where BIOS and

hardware drivers are written by different organizations, each knowledgeable about their

own hardware, and hiding the details and complications of these devices behind an abstract

interface.
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Although this approach is useful for single-purpose devices, it has a key

shortcoming for general-purpose computers, in that changing the program

requires changing the entire contents of memory, requiring a mechanism

outside of the OS and program we have described so far. In some cases, in

fact, the only way to replace the program is to buy a new device—this may

in fact be reasonable for sufficiently “dumb” devices (e.g. a microwave

oven) but is clearly not going to be a popular way to get a new program

onto a computer.

2.4 Program Loading

Figure 2.7: Simple disk controller

In order to load programs we need a

device to load them from—in this case

a disk drive, which (unlike memory)

maintains its data while powered off,

and is typically much larger than mem-

ory, allowing it to hold multiple pro-

grams. Data on a disk drive is orga-

nized in 512-byte blocks, which are identified by block number, starting

with 0. In Figure 2.7 we see an extremely simple disk controller, which

allows a single block to be read from or written to the disk3. Operation is

loop: CALL getkey ;; return value in R0

PUSH R0 ;; push argument

CALL putchar

POP R0 ;; to balance stack

JMP loop

getkey: LOAD.B R4 ← *(0xF800) ;; key ready reg.

CMP R4, 0

JMP_Z getkey

LOAD.B R0 ← *(0xF801) ;; key code reg.

RET

putchar: LOAD.B R0 ← *(SP+2) ;; fetch arg into R0

LOAD.W R1 ← *(bufptr)

STOR.B R0 → *(R1) ;; *bufptr = R0

ADD R1+1 → R1

STOR.W R1 → bufptr ;; bufptr++

RET

bufptr: word 0xF000 ;; frame buffer pointer

Figure 2.6: Copy keystrokes with factored input/output

3For more information on disk drives, see Section 5.3 in Chapter 5.
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as follows:

To write 512 bytes to block B:

1. Write 256 16-byte words (e.g. copying from a buffer), one word at

a time, to the disk controller data register (0xF824)

2. Write block address (B) to block address register (0xF822)

3. Write command byte (2=WRITE) to cmd/status register (address

0xF820)

4. Poll cmd/status register; its value will change from 2 to 0 to indicate

transfer is complete.

To read from block B:

1. Write block address (B) to block address register (0xF822)

2. Write command byte (1=READ) to cmd/status register (0xF820)

3. Poll cmd/status register; value changes from 1 to 0 to indicate data

is ready to read

4. Read 256 16-bit words from data register (0xF824), typically into a

buffer in memory.

Figure 2.8: Split OS/program mem-

ory map

Now that we have a device to load pro-

grams from, the next step is to reserve

separate portions of the address space

for the OS and program, as shown in

Figure 2.8, so that we have a place in

memory to load those programs into.

The program links against the OS as

before, but this time the OS is located

in a separate memory region, so dif-

ferent programs (each compiled and

linked against this same instance of the

OS) may be loaded and run at different

times.

In Figure 2.9 we see pseudo-code4 for a

simple and user-hostile command-line

interface for this OS. The user specifies

a disk address and length; the OS loads

a program from the specified disk loca-

tion into a standard address in memory and transfers control to that address.

When the program is finished it returns control to the OS command line

loop, which is then able to load and run a different program.

4A generic term for anything that isn’t real program code, but which you are supposed

to understand anyway.
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CMD_LOOP:

line = GET_LINE()

if line starts with "load":

blk,count = parse(line)

load_disk_sectors(_PROGRAM_BASE, blk, count)

if line starts with "go":

call _PROGRAM_BASE

jmp CMD_LOOP

Figure 2.9: Simple command line and program loader. Commands are

“load <start blk#> <count>” and “go”

There are a number of limitations to this operating system:

1. It’s not robust: if it doesn’t find the program you specified, it crashes.

2. If the program crashes, the entire system has to be reset (or power

cycled) before another program can be loaded.

3. The program may not run on another machine, or on the same

machine after an OS upgrade.

Problem 1 can be fixed fairly easily; for instance if we have a simple file

system, and specify the file by name, then if the file isn’t found the OS can

print an error message and ask for another command. Problem 2 may be

annoying, but it didn’t prevent MS-DOS from being the most widely-used

operating system for many years5. Problem 3 is an issue, though, although

first we have to describe why it is the case.

In particular, this operating system requires a certain amount of coordi-

nation between the OS and the program: (a) The OS must know at what

address the program expects to begin execution—e.g. the main() function

in a C program or its equivalent. This isn’t too much of an issue, as the

OS authors can just tell the application (and compiler) writers what to do.

(e.g. in our case execution begins at the very beginning of the program in

memory) And (b) the program, in turn, must have the correct addresses

for any of the OS functions (e.g. getkey in 2.6) which it invokes.

This is where the problem lies. The location of these entry points may

vary from machine to machine due to e.g. different memory sizes, and

will almost certainly change across versions of the OS as code is added

(or occasionally removed) from some of its functions.

To work around this we typically define a standard set of entry points

into the OS, or system calls, access these entry points via a table which

5In that case it typically wasn’t necessary to turn off the power - the low-level keyboard

driver would reset the machine when it saw CTL-ALT-DEL pressed at the same time.
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is placed in a fixed location in memory (e.g. at address 0), and give each

system call a specific place in this table.

One way of implementing this is for the program to access this table

directly; thus if getkey is entry 2, programs could invoke it via the call

syscall_table[2](args). Alternately, many CPUs define a TRAP or

INT6 instruction which may be used for this purpose. In this case, the

table will be located in a location known to the CPU (either fixed, as in

the original 8088 where the table began at address 0, or identified by a

control register) and TRAP N will cause the CPU to perform a function

call to the N th entry of this table.

We now have an interface which allows the OS to provide services to a

program via a fixed interface, allowing for binary compatibility across dif-

ferent hardware platforms and OS versions. If we use a TRAP instruction

for this interface, we have a system similar to MS-DOS, where OS and

application were each given separate parts of a single address space, and

access to generic as well as hardware-specific OS functions was performed

via the x86 INT instruction.

Review Questions

2.4.1. Does an operating system handle hardware details for a program?

yes/no/maybe

2.4.2. Does an operating system have a graphical user interface?

yes / no / maybe

2.4.3. Does an operating system allow the user to load and run programs?

yes / no / maybe

2.4.4. Does the system call table change every time a program is compiled?

yes / no

6the x86 “interrupt” instruction.
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Comparison to MS-DOS 1.0

Figure 2.10: MS-DOS layout

This simple OS is very similar to the

first version of MS-DOS. In MS-DOS

1.0, as seen in Figure 2.10, the operating

system is split into 4 parts: a hardware-

specific I/O system (BIOS), MS-DOS

itself, the resident part of the command

line interpreter, and additional “tran-

sient” parts of the command interpreter

which could be over-written by larger

programs (especially on machines with

16KB RAM) and re-loaded from floppy

disk after the program exited.

Similarities with the simple OS include:

1. separate OS and program memory regions

2. a system call table accessed via INT instruction

3. a command line which is part of the OS

4. a keyboard controller, frame buffer, and disk controller which are

much like the CPU-5600 versions

2.5 Device Virtualization

The GET_LINE and getkey operations just discussed are simple examples

of a powerful operating system concept—device virtualization. Rather

than requiring the programmer to write code specific to a particular hard-

ware implementation of a keyboard controller, the operating system pro-

vides simple “virtual devices” to the program, while the hardware details

are handled within the operating system. In particular, if these virtual

devices are sufficiently generic (e.g. supporting only read and write

operations) then the same program can read from the physical keyboard,

from a window system which sends keyboard data to the currently active

window, from a file, or from a network connection like ssh.

Implementing a generic I/O system like this is fairly straightforward, as

the set of I/O operations (open, close, read, write, etc.) is basically an

interface, while each particular device (e.g. keyboard, disk file, etc.) can

be thought of as a class implementing that interface. In practice this is

done by providing the program with a handle or descriptor which maps to

the actual I/O object within the OS, and then implementing system calls
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struct f_op {

size_t (*read) (struct file *, char *, size_t);

size_t (*write) (struct file *, char *, size_t);

...

};

/* ’current’ points to current process structure

*/

size_t sys_read(int fd, char *buf, size_t count) {

struct file *file = current->files[fd];

return file->f_op->read(file, buf, count);

}

Figure 2.11: Simplified code for read system call in Linux

such as read and write by mapping the handle to the object, and then

invoking the appropriate method.

In Linux a file descriptor is an integer, used to index into a table of files

opened by the current process; a simplified version of the read system call

is seen in the example in Listing 2.11.7 The listing is somewhat simplified—

the actual code performs a few levels of indirection, some locking, and

a bounds check while looking up the ’struct file’ corresponding to ’fd’,

and also handles the offset within the file. The actual code is not that

complex, however, as the complicated parts are all in the file system or

device-specific read methods.

2.6 Address Space and Program Loading

Typically program address space is divided into the following parts: code

or machine-language instructions (for some reason typically called “text”),

initialized data, consisting of read-only and read-write initialized data,

initialized-zero data, called “BSS” for obscure historical reasons, heap or

dynamically allocated memory, and stack.

In Figure 2.12 we see the address space organization which has evolved

for arranging these areas for CPUs on which the stack grows “down”—i.e.

more recently pushed data is stored in lower-numbered addresses. (this

is by far the most common arrangement) In this arrangement the fixed-

sized portions of the address space are at the bottom, and the heap grows

“up” from there, while the stack grows “down” from the highest available

7 Like many other operating systems, Linux is written in C, which lacks direct support for

abstract interfaces and data types; the actual implementation relies on a system of structures

of function pointers which is similar to how the compiler implements virtual methods in

C++.
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Figure 2.12: Typical process memory

map: code, data, and heap at bottom;

stack at top.

Figure 2.13: Awkward process mem-

ory map, with fixed-sized stack alloca-

tion.

address. Assuming that the memory available is contiguous, this gives

the program maximum flexibility—it can use most of the memory for

dynamically-allocated heap, or for the stack, as it chooses. In contrast, an

organization such as Figure 2.13 would require a fixed allocation of the

two regions to be made when the program is loaded by the OS, adding

complexity while reducing flexibility. (Note that since the heap is software-

managed it can grow in whatever direction we want; however on most

CPUs the direction of stack growth is fixed.)

An additional goal of an address layout is to be able to accomodate different

amounts of available memory. As an example, early microcomputers like

the first IBM PCs might have between 16 KB and 64 KB of memory; we

would like the same program to be able to run on machines with more or

less memory, with the additional memory on the larger machine available

for heap or stack. This was typically done by starting memory at address

0, so that a 16 KB machine would have available memory address 0x0000

through 0x3FFF, while a 32 K machine would be able to use 0x0000

through 0x7FFF. Code and fixed data would be located starting at a pre-

defined offset near address 0, with stack and heap located above these

sections, at addresses which might vary from machine to machine and

program to program. This would ensure that small programs would be

placed in low addresses, so that they would be guaranteed to run on low-

memory machines, while the variability of stack and heap addresses was

not a significant issue because the compiler does not need to generate
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Index Description DOS name

0 divide by zero

1 single step

2 non-maskable

3 debug break

4 debug break on overflow

5 -unused-

6 invalid instr.

7 -unused-

8 system timer IRQ0

9 keyboard input IRQ1

10 line printer 2 IRQ2, LPT2

11 serial port 2 IRQ3, COM2

12 serial port 1 IRQ4, COM1

13 hard disk IRQ5

14 floppy disk IRQ6

15 line printer 1 IRQ7, LPT1

16- software-defined

255 interrupts

Table 21: 8086/8088 interrupts as defined by the IBM PC hardware.

direct references to them.

2.7 Interrupts

So far all the code that we have looked at has been synchronous, proceeding

as a series of function calls reachable from some original point at which

execution started. This is a good model for programs, but not always for

operating systems, which may need to react to arbitrary asynchronous

events. (Consider for instance trying to stop a program with control-C, if

this only took effect when the program stopped and checked for it.)

To handle asynchronous I/O events, CPUs provide an interrupt mechanism.

In response to a signal from an I/O device the CPU executes an interrupt

handler function, returning to its current execution when the handler is

done. The CPU essentially performs a forced function call, saving the

address of the next instruction on the stack and jumping to the interrupt

handler; the difference is that instead of doing this in response to a CALL

instruction, it does it at some arbitrary time (but between two instructions)

when the interrupt signal is asserted8.

8This makes programming interrupt handlers quite tricky. Normally the compiler saves

many register values before calling a function, and restores them afterwards; however an

interrupt can occur anytime, and if it accidentally forgets to save a register and then modifies

it, it will appear to the main program as if the register value changed spontaneously. This

isn’t good.
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Most CPUs have several interrupt inputs; these correspond to an interrupt

vector table in memory, either at a fixed location or identified by a special

register, giving the addresses of the corresponding interrupt handlers.

As an example, in Table 21 we see the corresponding table for an 8088

CPU as found in the original IBM PC, which provides handler addresses

for external hardware interrupts as well as exceptions which halt normal

program execution, such as dividing by zero or attempting to execute an

illegal instruction.

The simplest interrupt-generating device is a timer, which does nothing

except generate an interrupt at a periodic interval. In Listing 2.14 we see

why it is called a timer—one of its most common uses is to keep track of

time.

extern int time_in_ticks;

timer_interrupt_handler() {

time_in_ticks++;

}

Figure 2.14: Simple timer interrupt handler

Another simple use for interrupts is for notification of keyboard input.

Besides being useful for a “cancel” command like control-C, this is also

very useful for type-ahead. On slower computers (e.g. the original IBM

PC executed less than half a million instructions per second) a fast typist

can hit multiple keys while a program is busy. A simple keyboard interface

only holds one keystroke, causing additional ones to be lost. By using the

keyboard interrupt, as shown in Figure 2.15, the operating system can read

these keystrokes and save them, making them available to the program the

next time it checks for input.

Review Questions

2.7.1. Hardware interrupts occur when particular instructions are exe-

cuted: yes / no

A question for the reader - how would you change the one-key type-

ahead buffer in Figure 2.15 to buffer a larger number of keystrokes?
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int lastkey = -1; /* invalid keystroke */

kbd_interrupt() {

lastkey = kbd_code;

}

int getkey() {

while (lastkey == -1) {

/* loop */

}

int tmp = lastkey;

lastkey = -1;

return tmp;

}

Figure 2.15: Single-key keyboard type-ahead buffer

2.7.2. A device (e.g. the keyboard controller) uses interrupts to send data

to the CPU: yes / no

2.7.3. Interrupts allow a program to do multiple things at once: yes / sort

of / no

2.8 Context Switching

Interrupt-driven type-ahead, as described above, represents a simple form

of multi-processing, or handling multiple parallel operations on the same

CPU. Full multi-processing, however, as found on modern operating sys-

tems, involves parallel execution of full programs, rather than merely

interleaving a single program with specific bits of operating system func-

tionality.

Our simple OS cannot do this, nor can MS-DOS (which it closely re-

sembles), but it is a straightforward extension to do so even on limited

hardware. To do this on a single CPU machine we need a mechanism for

saving the state of a process—a running program—and restoring it after

another process has taken its turn.

To do this we take advantage of the way in which program state is stored on

the stack. This may be seen in Figure 2.16, where we see the stack frame

generated by a call to function g() with arguments and local variables.

By holding arguments, return addresses, and local variables, the stack

essentially captures all the private state of a running computation. If we

were to save the stack of a running process, go off and do something

else—taking care to use a different stack—and then switch stacks again to

return to the first process, no one would be the wiser except for any delay

incurred.
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f() {

g(4, 5);

}

g(int n, m) {

int a = 10;

...

}

SP→

5 (m)

4 (n)

return addr

10 (a)

Figure 2.16: Subroutine call stack shown when in g(), called from f(), showing

relationship between arguments, return address, and local variables.

sleep(time_t t) {

end = now() + t;

while (now() < end)

do nothing;

}

sleep(time_t t) {

... switch() →

... return ←

}

[process A]

→

do something else

... for t seconds

← then return

[process B]

Figure 2.17: Alternate methods of implementing sleep().

In fact, in Figure 2.17 we see two implementations of the sleep() func-

tion; the first busy-waits until the specified time has passed, while the

second uses some mechanism to switch to another program for a while,

and then returns when the interval is up. The particular mechanism used

to switch from one process to another is simple but subtle: we save the

processor registers by pushing them to the stack, and then save the value

of the stack pointer into another location in memory. (This is commonly a

location in a process control block, an object which represents the state of

a process when another one is executing, and can be put on wait lists and

otherwise manipulated.) We can then switch to another process by loading

the stack pointer value for that second process (e.g. from its location in its

process control block), restoring registers from the stack, and returning.

The flow of control involved in such a context switch is difficult to get

used to, because the context switch itself looks like a simple function call,

but behaves in a radically different way. In your previous classes you will

have learned to think about functions as abstract operations, returning by

definition to the same place where they were invoked. In a context switch,

however, control enters the function from one location, and after a few

simple instructions returns to an entirely different location.

We see different representations of this in Figures 2.18 and 2.19. The
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context switch code is shown first: it saves registers to process 1’s stack

and saves the value of the stack pointer, then loads process 2’s stack pointer,

pops saved registers, and returns. Note that the second half of the function

is referring to an entirely different stack than the first half, so the registers

and return address popped from the stack are different from the ones saved

in the first half of the function.

A context switch enters a process or

thread by returning from a

function call, and leaves the process

by calling into the switch

function.

In addition we see two different

visualizations of the flow of con-

trol during context switch. In each

case control enters switch via a

call from one process (or thread of

control) but exits by returning to a

different process.

This is a curious property of con-

text switching: we can only switch to a process if we have switched from

it at some point in the past. This results in a chicken-and-egg9 sort of

problem—how do we start a process in the first place? This is done via

manipulating the stack “by hand” in the process creation code, making

it look like a previous call was made to switch, with a return address

pointing to the beginning of the code to be executed, forming what is

called a trampoline which “bounces” back to the desired location.

In Figure 2.21 we see a thread being started so that it begins execution

with the first instruction of function main(). Imagine that just before the

beginning of main() there had been a call to context_switch; when

that call returns execution will begin at address main. To start a thread

switch_1_2:

PUSH R0 # save registers

PUSH R1

...

STOR SP -> proc1_sp

LOAD SP <- proc2_sp

...

POP R1

POP R0 # restore them

RET

thread 1

switch()

thread 2

call

return

return

call

Figure 2.18: Different ways of looking at a context switch from Process 1 to

Process 2.

9An English idiom referring to the rhetorical question “Which came first, the chicken or

the egg?”

switch
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process

  1

process

2

process

3   

process

4   

call return context
switch _start() {

/* prepare argc, argv */

int val = main(argc, argv);

exit(val);

/* Not reached */

}

Figure 2.19: Another way of looking at

context switch control flow—processes

call into switch which then returns to

another process.

Figure 2.20: Simplified C run-time li-

brary (crt0.o) - invoke main, and then

call exit to terminate process, guaran-

teeing no return from the true start func-

tion.

which will begin at main, then, we just fake this call stack; when we switch

to the thread the first time, context_switch will then return to location

main, where execution will begin.

return addr

main()

{

  ….

}

saved stack 

pointer

return addr

main()

{

  ….

}

saved stack 

pointer

Figure 2.21: “Trampoline” return stack

pointing to the beginning of the function

to be executed (main)

A function is entered via CALL and

exited via RET; similarly since we

enter a process via RET, we exit it

via CALL. In particular, we define a

function (typically called exit())

which makes sure that the process

will never be switched to again.

(e.g. it is removed from any lists of

processes to be run, its resources

are freed, etc.) Note that some pro-

gramming languages (e.g. C) al-

low process execution to be termi-

nated by returning from the main

function; this is done by calling main from the “real” start function, as

shown in Figure 2.20.

Review Questions

2.8.1. Which of the following are stored on the stack?

a) Function arguments
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b) Return addresses

c) Global variables

d) Local variables

2.8.2. The RET (return) instruction: a) Returns to the instruction immedi-

ately after CALL b) Returns to the address on the top of the stack.

2.8.3. When context switching from process A to process B, what CPU

instruction actually jumps to code in B? (i.e. sets the PC to an

address that is part of B’s execution) : CALL / JMP / RET

2.9 Advanced Context Switching

Figure 2.22: Simple memory-mapped 4-

port serial interface

So far we have considered the

case where switching between

processes is initiated by an ex-

plicit call into the OS from the

currently running process. But

an interrupt is essentially a func-

tion call from the current pro-

cess into a part of the operating

system—the interrupt handler—

and we can in fact context switch

to another process from within

the interrupt handler function.10 A simple example is the case of the timer

interrupt, which can easily be used to implement time slicing between

multiple processes. If the timer device was set to interrupt every e.g.

20 ms, and its interrupt handler did nothing except context switch to the

next in a circular list of processes, then these processes would share the

CPU in 20 ms slices.

Scheduling

Context switching is the mechanism used by the operating system to switch

from one running process to another; scheduling refers to the decision

the operating system must make as to which process to switch to next.

Scheduling is not covered in much detail in this version of the text.
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Figure 2.23: Old (c. 1975?) multi-user

computer system with 4 serial termi-

nals.

Figure 2.24: Possible memory address

layout for 4 processes plus operating

system.

Multi-User Computer System

We now have all the software mechanisms needed to construct a multi-

user computer system.Instead of a keyboard and video display we will

use serial ports connected to external terminals; the system is shown in

Figure 2.23 and the details of the memory-mapped interface to the serial

ports are shown in Figure 2.22. When the user types a character on their

terminal it will be transmitted over the serial line and received by the serial

port, which will set the input status to 1 and put the received character in

the input register. (just like the keyboard controller)11

To output data to the user a character is written to the output register,

which is then transmitted over the serial line and displayed to the user by

10Depending on the CPU there may be a few differences in stack layout between an

interrupt and a function call, but these can be patched up in software.
11It may seem to a modern reader that such a terminal would be as complex as a computer;

however the earliest terminals (“teletypewriters”) were almost entirely mechanical.
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the terminal. It takes some amount of time to transmit a character; during

this time the output status register is set to 1, and a new character should

not be written until it returns to zero. Again similar to the keyboard con-

troller we can also perform interrupt-driven I/O; in this case one interrupt

indicates when a character has been received, while a second indicates

that a character has finished being transmitted and we may send the next

character.

Review Questions

2.9.1. Multiple copies of the same program:

1 Can share their entire memory space, since they have the same

code and variables: yes/no

2 Can share their program code, but not the data memory holding

their variables: yes/no

3 Can’t share their code memory, because the two processes would

interfere with each other as they try to execute the same instruc-

tions: yes/no

I/O-driven Context Switching

Now we know how to switch between programs, but when should we do

it? We see one possible answer in Figure 2.25—switching on user input.

Many simple programs (e.g. the shell, editors, etc.) consist of a user input

loop: the program waits for input from the user, processes it, displays any

resulting output, and then waits for user input again. Most of the time the

program is idle, waiting for input; we take advantage of this by modifying

the OS input routine to switch to another process when there is no input

ready.

The code in Figure 2.25 will not switch to another process until the current

process explicitly requests more input. For input which requires very little

processing (e.g. an editor updating the screen) this is fine. However, if the

program were to perform large amounts of computation before its next

input request, then the other users might not be able to get a response

for a long period of time. We can address this problem using interrupts:

(1) When data is received for a program which is waiting for input, we

switch to that program, allowing it to respond immediately. (2) When

the timer interrupt fires we switch from the currently running process to

another running process. (A “running” process is one that is not waiting

for input—i.e. one that was previously suspended by a timer interrupt.)
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2.10 Address Spaces for Multiple Processes

In Figure 2.24 we see a possible address space layout for our 4-user system,

with four programs—one per terminal—each receiving about a quarter of

the available memory. There is one significant problem, though: How do

we get programs to run in these different memory regions?

As mentioned earlier in this chapter, the location at which a program is

placed in memory is important, because there are many locations in a

typical program where the address of a portion of the program is needed

as part of an instruction. (e.g. for a subroutine call: on many CPUs,

a function call f() would be compiled to the instruction CALL f, with

the address of f forming part of the instruction.) If a program has been

compiled to start at a specific location in memory12 then it typically will

not work if loaded into a different location.

There are a number of different ways to handle this problem:

• fixed-address compilation: each program to be run on the system

could be compiled multiple times, once for each possible starting

point, and then the appropriate one loaded when a user runs a

terminal is {

queue unclaimed_keystrokes;

process *waiting_process;

...

};

process *current;

queue of (process*) active;

GETKEY(terminal *term):

if (term->unclaimed_input is empty)

term->waiting_process = current

switch_to(active.pop_head())

return term->unclaimed_input.pop_head()

interrupt:

term->unclaimed_input.push_tail(key)

if (term->waiting_process)

active.push_tail(term->waiting_process)

term->waiting_process = NULL

Figure 2.25: Context switching on GETKEY—while a process is waiting for input

we take it off of the list of active processes; when input is received we wake the

process waiting for it.

12E.g. 32-bit Linux programs are typically compiled to start at address 0x8048000.
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200 CALL 500

...

500 ...

(a)

200 CALL PC+300

...

500 ...

(b)

Figure 2.26: Example of absolute and PC-relative addressing, both loaded at

address 200

program. This seems like a bad idea, as it is inflexible and complex

in many different ways. (e.g. it fixes the locations of the partitions,

regardless of the total system memory size, or the size of a program,

or how many programs we might wish to run at once) The only

place I’ve seen this approach used is in certain embedded systems,

where you may have multiple separate programs running at once but

they are all compiled together as part of a single firmware version.

• position-independent code: here we ensure that programs are com-

piled in a way that makes them insensitive to their starting address,

by using what is called PC-relative addressing. This is illustrated in

Figure 2.26: rather than using an absolute address (e.g. 500 in the

figure) for a function call, we use an alternate instruction which indi-

cates an offset from the current PC. Unfortunately this is frequently

inefficient; for instance 32-bit Intel architecture CPUs are able to

efficiently perform PC-relative CALL and JMP instructions, but

require multiple instructions to perform a PC-relative data access.

(this was fixed in the 64-bit extensions)

• load-time fixup: Here we defer the final determination of addresses

until the program is actually loaded into memory. The program file,

or executable, will thus contain not only the code and data to be

loaded into memory, but a list of locations which must be modified

according to the address at which the program is placed in memory.

Thus in Figure 2.26, this list would indicate how the target of the

CALL instruction should be calculated.13

• hardware support: By far the most popular way of sharing system

memory between multiple running programs is by the use of hard-

ware address translation; such hardware support is required to run

modern general-purpose operating systems such as Linux, Mac OS

X, or Windows. The basic idea is illustrated in Figure 2.27: the

CPU uses virtual addresses for instruction fetches or data loads and

stores, which are then translated by an MMU (Memory Manage-

13This approach is used on uClinux, a modified version of Linux which runs on low-end

microcontrollers lacking virtual memory hardware.
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             CPU

R7                          

R0                         

Z

SP                         

PC                           

Virtual
Address

M
M
U

Physical
Address

Memory

Figure 2.27: Virtual-to-physical address translation. All addresses in the CPU are

virtual, and are translated to physical addresses by the MMU (Memory Manage-

ment Unit) before being used to access physical memory.

ment Unit) to physical addresses (i.e. the actual address of a byte

within a specific memory chip) for each memory operation.

2.11 Memory Protection and Translation

Hardware-supported address translation and memory protection (e.g. see

Figure 2.27) is used on all well-known general-purpose operating systems

today (e.g. Linux, OSX, Windows, and various server operating systems)

as well as many others (e.g. the OSes used on most cell phones)14. Address

translation is used for the following reasons:

• Flexible sharing of memory between processes. As seen above,

sharing a single physical address space between a set of processes

that changes over time is complicated without hardware support.

Address translation allows programs to be compiled against a stan-

dard virtual address space layout, which is then mapped to available

memory when the program is loaded into memory.

• Security. On a multi-user computer there are obvious reasons for

preventing one user from accessing another’s data; to accomplish

this it is necessary to prevent “normal” processes from directly

accessing memory used by another process or by the operating

system. (even if the system is only used by one user at at time, the

operating system must be protected if it is to be relied on to prevent

access by one user to another user’s files.)

• Robustness. If a program is allowed to write to any address in the

system, then a bug in that program may cause the entire system to

14Address translation costs both money and power to add to a CPU; thus for instance the

iPod Touch has a CPU with address translation, while the iPod Nano doesn’t.
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crash, e.g. by corrupting the operating system.15 If a process is

constrained to only modifying memory that it has been allocated,

then the same bug would cause only that process to crash, after

which it may be restarted.

It is possible to ensure this degree of protection with software mechanisms

under certain very limited circumstances, by e.g. restricting user processes

to only use Java bytecodes rather than direct program execution.16 In the

normal case however, where an application is allowed to directly execute

most CPU instructions at full speed, hardware support is needed to prevent

a process from making unauthorized memory reads and writes. This

mechanism needs to be reconfigured by the operating system on every

context switch, to apply the correct set of permissions to the running

process, yet programs themselves must be prevented from modifying the

configuration to bypass permission checking.

How can we allow the OS to modify memory protection, while preventing

user programs from doing so and subverting memory protection? This

is done by introducing a processor state: when the processor is running

in user mode it is not allowed to modify memory mapping configuration,

while when running in supervisor (also called kernel) mode it may do so.

The code of a normal application executes in user mode, while the operat-

ing system kernel17 runs in supervisor mode. We next need a mechanism

for safely entering supervisor mode when either (a) an application invokes

a system call, or (b) a hardware interrupt occurs, and then switching back

to user mode when returning.

A question for the reader - what

might happen if unprivileged

programs were able to modify the

exception table?

This is typically done via the in-

terrupt or exception mechanism,

which (as described earlier in this

chapter) causes a forced function

call in response to certain events,to

an address specified in a exception

vector or exception table. If we

use an exception for invoking system calls, and the CPU always switches

to supervisor mode when handling exceptions, then all operating system

code will run in supervisor mode, and a special instruction may be used

to return back to user mode when a system operation is complete. As

long as the exception table is protected from user-space modification, this

15This happened frequently in MS-DOS, which had no memory protection.
16For instance, this approach is used by the Inferno operating system from Bell Labs, as

well as several Java-based research operating systems.
17The core of the operating system, which does not run as a process—i.e. ignoring

system services which run as normal processes.
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Figure 2.28: Base and bounds address translation, depicting address calculation

(left) and virtual to physical memory map correspondence (right).

hardware mechanism provides the a basis on which a secure operating

system may be built.

The simplest such address translation mechanism is known as base and

bounds registers, as illustrated in Figure 2.28a. A virtual address is first

checked to ensure that it lies between 0 and a limit specified in the bounds

register; if this check fails, an exception is raised and the operating system

can terminate the process. Otherwise an offset (from the base register) is

added to the virtual address, giving the resulting physical address. In this

way a standard virtual address space (addresses 0 through the process size)

is mapped onto an arbitrary (but contiguous) range of physical memory,

as shown in Figure 2.28b.

There are a few complications in getting this to work with supervisor mode,

as it needs to be able to access OS data structures which are (a) inaccessible

to user-space code, and (b) at the same location in memory no matter which

user-space base register value is currently being used. Although several

techniques have been used, the simplest one is to ignore base and bounds

registers in supervisor mode, so that the operating system uses physical

addresses, giving access to all of memory, while user processes execute in

separate translated address spaces18.

The switch from user to supervisor memory space (e.g. switching from

translating via the base+bounds registers to using direct addressing) is

18This also makes it easier for the OS to change base+bounds registers when switching

between processes, as it will have no effect on supervisor-mode address translation. Chang-

ing the mapping of the memory region being currently executed—something which most

operating systems have to do very early in the boot process—is a very tricky thing.
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done automatically by the hardware on any trap or interrupt. The operating

system is then free to change the values in the (user) base and bounds

registers to reflect the address space of the process it is switching to.
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2.12 Putting it all together

In the introduction we saw the example of a simple command (ls) being

executed in Linux. Many of the details of its operation were covered in

this chapter.

Hardware: In our example, the keyboard controller was for an old-

fashioned PS/2 keyboard, and the text display used was the simplest text

mode supported by PC hardware, normally only used by some BIOSes.

These are almost identical to the corresponding I/O devices in our hypo-

thetical computer—they’re located at different addresses, and support a

few extra functions (e.g. flashing letters, key-up and key-down events, and

keyboard output to e.g. turn on the caps-lock light), but otherwise are the

same.

Code: To explain the operating system code we’ll use the 64-bit Linux

kernel version 4.6.0, because that’s what I have handy. (you can browse

and search the source code at http://elixir.free-electrons.com/

linux/v4.6/source) If I use the kernel debugger to put a breakpoint

on the actual TTY read function (n_tty_read) we get the following

backtrace, which we will refer to in explaining input operation:

(gdb) backtrace
#0 n_tty_read (tty=0xffff88003a99fc00, file=0xffff880036b3e900,

buf=0x7ffcff243a77 "", nr=1) at drivers/tty/n_tty.c:2123
#1 0xffffffff814d2792 in tty_read (file=0xffff880036b3e900, buf=<optimized

out>, count=1, ppos=<optimized out>) at drivers/tty/tty_io.c:1082
#2 0xffffffff8121a197 in __vfs_read (file=0xffff88003a99fc00, buf=<optimized

out>, count=<optimized out>, pos=0xffff88003b60bf18) at fs/read_write.c:473
#3 0xffffffff8121b236 in vfs_read (file=0xffff880036b3e900, buf=0x7ffcff243a77

"", count=<optimized out>, pos=0xffff88003b60bf18) at fs/read_write.c:495
#4 0xffffffff8121c725 in SYSC_read (count=<optimized out>, buf=<optimized out>,

fd=<optimized out>) at fs/read_write.c:610
#5 SyS_read (fd=<optimized out>, buf=140724589050487, count=1) at

fs/read_write.c:603
#6 0xffffffff81798a76 in entry_SYSCALL_64 () at arch/x86/entry/entry_64.S:207
#7 0x0000000000000001 in irq_stack_union ()
#8 0x0000000000000000 in ?? ()

System calls: The Linux command line is a separate program, the shell,

running in its own process, which invokes the read system call by exe-

cuting the INT0x80 instructure with the system call number (SYS_READ

= 3) in the EAX register, the file descriptor (stdin = 0) in EBX, a buffer

pointer in ECX, and the buffer length in EDX - see ’man 2 read’ for a full

description of the system call semantics. (note that this is how it works

for 32-bit mode; it’s slightly different and more complicated for 64-bit.)

The entry_SYSCALL_64 function is the trap handler; it saves all sorts of

registers, checks that it’s a legal system call number, and then calls the

http://elixir.free-electrons.com/linux/v4.6/source
http://elixir.free-electrons.com/linux/v4.6/source
n_tty_read
INT 0x80
SYS_READ
EAX
entry_SYSCALL_64


2.12. PUTTING IT ALL TOGETHER 33

appropriate entry in the system call table. (since it needs to save registers

and perform other machine-level functions it is one of the few kernel

functions written in machine language)

#6 0xffffffff81798a76 in entry_SYSCALL_64 () at arch/x86/entry/entry_64.S:207
207 call *sys_call_table(, %rax, 8)

Note that the operating system

kernel is almost entirely composed

of exception handlers, which run in

response to deliberate traps from

user applications (system calls) or

accidental ones (e.g. memory

access faults), as well as interrupts

from I/O devices and timers. This

means that when a system is idle it

is not actually executing code in the

operating system kernel itself;

instead a special idle process with

lowest priority executes when no

other work is available.

I/O virtualization: Linux file de-

scriptors are small integers which

index into a per-process array of

pointers to internal kernel file

structures. File descriptor 0 is stan-

dard input, and 1 is standard out-

put. The pointer to the current

process structure is called (unsur-

prisingly) current; we can look

into its file table and see that en-

tries 0 and 1 point to the same file

structure (ending in 3e900) passed

to n_tty_read in the stack trace

above:

(gdb) p current->files.fdtab.fd[0]@2
$9 = {0xffff880036b3e900, 0xffff880036b3e900}

The SYSC_read function looks up this structure (returning an error for

bad file descriptor numbers); vfs_read does a few more checks, and

then calls __vfs_read which forwards to the "read" method from the file

operations table in the file structure:

#2 0xffffffff8121a197 in __vfs_read (file=0xffff88003a99fc00, buf=<optimized
out>, count=<optimized out>, pos=0xffff88003b60bf18) at fs/read_write.c:473

473 return file->f_op->read(file, buf, count, pos);

When the file was originally opened, this operations table was set to point

to the read and write operations for the TTY driver, which is responsible

for keyboard input and text-mode screen output:

(gdb) p file->f_op
$13 = (const struct file_operations *) 0xffffffff81872fa0 <tty_fops>
(gdb) p *file->f_op
$14 = {owner = 0x0, llseek = 0xffffffff81219ff0 <no_llseek>,
read = 0xffffffff814d2700 <tty_read>, write = 0xffffffff814d27f0 <tty_write>,
...

Context switching: In n_tty_read it adds the current process to a wait

queue, then checks to see if there is any input (or error conditions or lots

of other reasons why it might return early) and if none, it goes to sleep:

current
n_tty_read
SYSC_read
vfs_read
__vfs_read
n_tty_read
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2166 add_wait_queue(&tty->read_wait, &wait);
...

2188 if (!input_available_p(tty, 0)) {
...

2207 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE,
2208 timeout);

Here wait_woken sets a few things and then calls schedule_timeout,

which sets a timer and then calls schedule, the central context switch

function, which picks the next runnable process and switches to it.

The interrupt which wakes it up is much more convoluted, as the actual

interrupt handler schedules a “deferred work” callback which does the

real work. (why? For several reasons, one of which is that you can block

in a deferred work handler while interrupts have to return immediately.)

Here are selected lines from the interrupt backtrace:

#0 tty_schedule_flip (port=<optimized out>) at drivers/tty/tty_buffer.c:406
#1 tty_flip_buffer_push (port=0xffff88003e088000)

at drivers/tty/tty_buffer.c:558
#2 0xffffffff814dc8ae in tty_schedule_flip () at drivers/tty/tty_buffer.c:559
#3 0xffffffff814e490e in put_queue (ch=<optimized out>, vc=<optimized out>)

at drivers/tty/vt/keyboard.c:306
...
#8 0xffffffff814e5c11 in kbd_keycode (hw_raw=<optimized out>, down=<optimized

out>, keycode=<optimized out>) at drivers/tty/vt/keyboard.c:1457
#9 kbd_event (handle=<optimized out>, event_type=<optimized out>,

event_code=<optimized out>, value=2) at drivers/tty/vt/keyboard.c:1475
...
#16 atkbd_interrupt (serio=0xffff88003684e800, data=<optimized out>,

flags=<optimized out>) at drivers/input/keyboard/atkbd.c:512
#17 0xffffffff8162fdc6 in serio_interrupt (serio=0xffff88003684e800,

data=57 ’9’, dfl=0) at drivers/input/serio/serio.c:1006
#18 0xffffffff81630e72 in i8042_interrupt (irq=<optimized out>,

dev_id=<optimized out>) at drivers/input/serio/i8042.c:548
...
#23 handle_irq (desc=<optimized out>, regs=<optimized out>)

at arch/x86/kernel/irq_64.c:78
#24 0xffffffff8179b22b in do_IRQ (regs=0xffffffff81c03df8

<init_thread_union+15864>) at arch/x86/kernel/irq.c:240

which schedules the deferred work:

#1 tty_schedule_flip (port=<optimized out>) at drivers/tty/tty_buffer.c:406
400 struct tty_bufhead *buf = &port->buf;
...
406 queue_work(system_unbound_wq, &buf->work);
(gdb) p *buf->work
$41 = {data = {counter = 64}, entry = {next = 0xffff88003e088010,
prev = 0xffff88003e088010}, func = 0xffffffff814dcd00 <flush_to_ldisc>}

If we put a breakpoint on flush_to_ldisc and step through it, you

eventually get to the following lines:

wait_woken
schedule_timeout
schedule
flush_to_ldisc
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1628 if (read_cnt(ldata)) {
...

1630 wake_up_interruptible_poll(&tty->read_wait, POLLIN);

which wake up the shell process that was sleeping on tty->read_wait,

by removing it from the queue associated with read_wait and reinserting

it into the list of runnable processes.

Process creation: The shell process executes the ls command by invoking

fork, to create a subprocess, and then invoking wait to wait until the

subprocess has finished. Within the subprocess the exec system call is

used to load and execute the ls program itself; when it is done the exit

system call frees the subprocess and causes the wait in the parent process

to return. (process creation will be covered in more depth when we look

at virtual memory)

Output: The shell and the ls processes send output to the screen by

using the write system call; the text console driver is responsible for

determining where the next character should be placed on the screen,

handling end-of-line, and copying data to scroll displayed text upwards

when it reaches the end of the buffer. (this way both processes can output

to the same screen without over-writing each other)

In particular, tty_write eventually calls do_con_write in

drivers/tty/vt/vt.c, which has a bunch of convoluted logic

to handle line wrap, scrolling, cursor control commands, etc., but for

the simplest case just adds on 8 bits to set the right background and

foreground color, and writes into the screen buffer via a pointer:

#define scr_writew(val, addr) (*(addr) = (val))
...
2384 scr_writew((vc_attr << 8) + tc,

(u16 *) vc->vc_pos);

tty->read_wait
read_wait
tty_write
do_con_write
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Answers to Review Questions

2.1.1 yes/no/sort of : “no”. I/O devices are pieces of hardware separate

from the memory and the CPU, e.g., a card that plugs into the PCI

bus. Software, whether part of the operating system or a program,

consists of instructions in memory that are executed by the CPU.

2.1.2 yes/no/sort of : “sort of”. The CPU interacts with most I/O devices

as if they were normal memory locations, using load and store in-

structions to memory addresses. However, unlike normal RAM,

which just stores the value written and returns it when read, the de-

vice takes various actions when the CPU reads or writes its memory

locations.

2.4.1 “yes”. Although programs may occasionally interact directly with

specific pieces of hardware, a primary purpose of the operating

system is to provide simple and consistent interfaces to complex

and varying hardware devices.

2.4.2 “maybe”. Some systems don’t have a display. On a system with

a display, the operating system may manage that display for user

programs, as it does the keyboard (e.g., in Windows). On other

systems (e.g., Linux), a separate program may be responsible for

the interface.

2.4.3 “maybe”. The simplest operating systems support a single, pre-

loaded program, while the whole point of general-purpose operating

systems like Windows or Linux is to allow the user to load their

own programs.

2.4.4 “no”. That’s the whole point of a system call table. The addresses

of functions in a program or the operating system may change if the

code is modified and recompiled, but the system call table remains

constant.

2.7.1 No. Hardware interrupts are external asynchronous events, and can

occur at any point during program execution. (well, almost any

point. It’s possible to disable interrupts while executing code which

can’t be interrupted.)

2.7.2 No. An interrupt tells the CPU that something happened (or one of

several possible somethings, if an interrupt line is shared), but that’s

all. It’s the job of the interrupt handler to figure out what happened

and handle it (hence the name) by e.g. reading in newly available

data.

2.7.3 Sort of. Interrupts can easily be used to perform brief tasks —

examples include buffering a keystroke in response to the keyboard

interrupt, or flashing a cursor in the timer interrupt. Implementing

the equivalent of a full program in interrupt handlers would be
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horribly complicated, however.

2.8.1 The stack holds: Function arguments, return addresses : yes, they

are pushed onto the stack before calling a function. Global variables

: no, there is only one copy of each global variable, so they are

allocated fixed locations in memory. Local variables : yes, this

way there is a separate copy of each local variable each time a

function is called, even if it is called recursively, and the memory is

automatically freed when the function returns.

2.8.2 the return instruction doesn’t know anything about the correspond-

ing CALL — it just uses the address on the top of the stack. It is

the responsibility of the CALL instruction to put the return address

there, and of the code in the function to make sure that address is

not corrupted.

2.8.3 RET. Process A uses CALL to invoke the switch function, but it is the

RET at the end of switch, after B’s saved stack pointer is restored,

that actually results in resuming execution of B’s code.

2.9.1 1 (share entire memory space) No, in this case each process would

see its variables change unexpectedly as the other processes up-

dated them.

2 (share code, not data) Yes, it might be simpler to give each

process a separate copy of its program code, but it’s not necessary.

Writable data (and stack) must be separate, however.

3 (cannot share code) No, the CPU is only executing one instruction

at a time, and really doesn’t care what another process might do

sometime in the future after a context switch.





Chapter 3

Synchronization – Safety &

Sequencing

3.1 Problem Introduction

One of the key responsibilities of an operating system is that of

synchronization—handling nearly simultaneous events in a reasonable

way, and providing mechanisms for user applications to do so as well.

In Figure 3.1 we see a simplified example of a program to maintain a

bank account balance at the Bank of Lost Funds. When running on a

single CPU, the deposit function is trivially correct: after it completes

execution, the value of balance will be sum greater than it was before

the function was invoked.

In Figure 3.1, however, we see one possible result when this function is

invoked by two threads nearly simultaneously. In this case thread 1 is

interrupted after it has read the current value of balance, but before it

could store the new value back to memory. The result is that the update

performed by thread 2 is lost, being over-written by thread 1’s computation,

and after depositing a total of $150 to the account we have a final balance

of $50.

money_t balance;

function deposit(money_t sum) {

balance = balance + sum;

}

Listing 3.1: Simple bank account example

39
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Figure 3.1: Incorrect operation of banking example. An interrupt causes a thread

switch after thread 1 has loaded balance into R1 and before it writes the updated

value back into balance, so thread 2’s update is lost.

3.2 Race Conditions and Mutual Exclusion

Such errors are referred to as race conditions, because the result depends

on a “race” between threads, where it is unknown which will execute some

piece of code first.

Another example of such a race condition is shown in Figure 3.2(a) and

Figure 3.2: Linked list corruption. (a) code for push and pop, (b) starting data

structure, (c) interleaving of pop and push, (d) final state. Items 2 and 3 are no

longer on the list, and item 1 is both on the list and the return value from pop
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mutex_t n = mutex_create()

mutex_lock(n)

mutex_unlock(n)

mutex_destroy(n)

Listing 3.2: Hypothetical operating system interface to

create, use, and destroy mutexes.

(b), which shows a simple linked list, along with the code to use it as a

push-down stack by pushing and popping elements. In Figure 3.2(c) and

(d) we see what happens when a push and a pop conflict with each other,

causing the list to become disconnected; in this case the right-hand side

of the list is effectively “lost”, with potentially disastrous consequences.

The most insidious aspect of each of these race conditions is that they

occur in otherwise bug-free code; in particular, there is no amount of

testing which is guaranteed to find them.

In classic operating systems

textbooks this is referred to as the

critical section problem, defined as

the case where there is a critical

section of code which must be

guarded against simultaneous

execution. This is unfortunately a

misleading term, as it should be

obvious that it is the data that must

be protected, not the code. For

instance, in an object-oriented

program a class may have two (or

more) methods which can interfere

with each other, even though

different sections of code are being

executed; conversely no

interference will occur if any of

these methods are invoked

simultaneously on separate object

instances.

The solution to race conditions

is fairly obvious, although not al-

ways simple: we identify all the

cases where data must be protected

against simultaneous modification

or access, and prevent this from

occuring1. To do this we create

an object called a mutex (see Fig-

ure 3.2) which has the ability to

guard against simultaneous access.

This object has two methods, lock

and unlock, and the following

properties:

• Given a mutex m, once

some thread T1 returns

from m.lock(), no other

thread T2 will return from

m.lock() until T1 enters

m.unlock().

• If thread T1 is holding mu-

tex m (i.e. it has entered and returned from m.lock and T2 is waiting

for m (it has entered but not returned from m.lock()), then when

1The simplest way to do this is to only allow single-threaded programs. This was the

case for almost all operating systems until the mid-90s; multi-threading and locking were

obscure concerns which only kernel programmers had to worry about

m
m.lock
m
m.lock()
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object account is:

mutex m

int balance

method deposit(int amount):

m.lock()

balance = balance + amount

m.unlock()

method get_balance():

return balance

Listing 3.3: Safe bank account object. Note that other actions

which modify the balance, such as withdraw(), must lock

mutex m as well.

T1 enters m.ulock(), T2 (or some other thread blocked on m) will

“promptly” return from m.lock().

(these properties are also termed mutual exclusion—hence the name

mutex—and progress, and are two of the three formal requirements for a

solution to the critical section problem.)

When thread T1 returns from m.lock(), we often say that T1 has acquired

the mutex m, or that it is holding it; when T1 invokes m.unlock() it

releases the mutex. Note that other threads are free to call the lock method

on m while m is held by T1; however none of those threads will return

from the call until the mutex is released. If T1 were to hold the mutex for

a long time, this would delay the other threads; if it fails to ever release

the mutex (e.g. due to raising an exception before the call to unlock())

it would be a serious bug, typically causing the program to freeze.

We can now write a thread-safe version of our bank account object, as seen

in Figure 3.3. It avoids the race condition described in the beginning of the

chapter by using a per-instance mutex to guard operations which modify

the balance. By doing this we have made the modification of the balance

atomic2, at least with respect to any other code which properly locks the

mutex—i.e. it appears to happen as a single operation, with any other

modification happening either before or after, but not simultaneously.

In Figure 3.3 we can (on most computers) safely read the balance without

locking the mutex, because the hardware can usually be trusted to perform

a read of a single integer atomically. Another way to state this is that the

2The name atom derives from the ancient Greek word for indivisible, and so is something

that can’t be cut or divided. (or at least couldn’t be until the physicists got to work on it) An

atomic operation cannot be divided into parts by another operation.

m.ulock()
m
m.lock()
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object account is:

mutex m

int balance_dollars

int balance_cents

method deposit(int dollars, int cents):

m.lock()

balance_cents = balance_cents + cents

if balance_cents >= 100:

balance_dollars = balance_dollars + 1

balance_cents = balance_cents - 100

balance_dollars = balance_dollars + dollars

m.unlock()

method get_balance(out &d, out &c): // d,c are outputs

m.lock()

d = balance_dollars

c = balance_cents

m.unlock()

Listing 3.4: Bank account object with more complex state. To avoid

observing invalid state (e.g. a cents value greater than 99) we must lock

the mutex when reading as well as writing.

object is in a safe state at all times—it changes atomically from one safe

state to another. In Figure 3.4 we see a bank account object with a slightly

more complex state, representing integer dollars and cents separately;

in this case reading the object state in the middle of an update could

give incorrect results, e.g. showing balance_cents > 99. (more serious

problems such as null pointer errors can occur when accessing complex

data structures such as linked lists or trees during an update) To prevent

this, the code in Figure 3.4 locks the object when observing its state, so that

it only sees the consistent state found after an update has fully completed.
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Review Questions

3.2.1. Race conditions can be detected by exhaustively testing all the

possible orders in which inputs may be sent to your program:

True / False

3.2.2. You have just been asked to write the withdraw() method for our

bank account object. Which of these locking options will ensure

that it works correctly?

a) Add a second mutex (i.e., m2) to the object, and lock/unlock

this second mutex when making a withdrawal.

b) Lock mutex m at the beginning of the withdrawal method, and

unlock it at the end.

c) There’s no need to use a lock here, because the value of the

balance is being decreased instead of increased.

3.3 Implementing Mutexes

So mutexes are great, but how do they actually work? In Figure 3.2 we

saw a hypothetical system call interface which allows us to create, destroy,

lock and unlock mutexes. Internal to the OS we can assume that each

mutex has a state—locked or unlocked—and a list of threads waiting for

the mutex. If a process calls mutex_lock on an unlocked mutex, the

mutex is marked as locked and mutex_lock returns immediately. If the

mutex is locked, then the call is treated almost exactly like waiting for I/O:

the OS puts the thread on the mutex wait queue, and then switches to the

next active thread. When mutex_unlock is called, the OS takes the first

thread (if any) off the queue and puts it back on the active list.

So now that we know exactly how our mutex system calls are supposed

to behave, how do we implement them? In addition, how does the op-

erating system protect its own data structures, which (in e.g. Linux and

Windows) reside in a single address space and are accessed from not only

multiple user processes (via system calls) and kernel threads, but also

from exception handlers for e.g. page faults and hardware interrupts?

On a single-processor system this is fairly straightforward. Code runs in a

straight line unless it is interrupted by a hardware interrupt or an exception

such as a page fault, so all we need to do is to (a) disable interrupts, and

(b) ensure that the operating system code and data (or at least the code

and data needed for mutexes) is always mapped into physical memory, to

avoid page faults.

mutex_lock
mutex_lock
mutex_unlock
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structure mutex:

bool locked = False // guarded by IRQ disable

queue waitlist // waiting threads (also guarded)

mutex_lock(mutex m):

disable_interrupts()

if not m.locked

m.locked = True

enable_interrupts()

else:

pause(current_process) // remove it from active list

m.waitlist.add(current_process)

enable_interrupts()

sleep() // wake here when mutex acquired

mutex_unlock(mutex m):

disable_interrupts()

if waitlist is empty:

m.locked = False

enable_interrupts()

else

local next_thread = m.waitlist.pop_from_head()

enable_interrupts()

wake(next_thread) // add it to the active list

Listing 3.5: Simple single-CPU kernel mutex. The “locked” flag and

list of waiting processes are guarded by disabling interrupts

(Note that user-level code is not allowed to disable interrupts, as doing so

for more than a brief period is likely to crash the machine.)

In Figure 3.5 we see a mutex implementation based on this. We assume

the same context-switching structure used in Figure 2.25 in the previous

chapter, with a thread control structure containing fields such as the saved

stack pointer as well as links for creating lists:

• current points to the currently running thread

• active is a list of other threads ready to run

• sleep pops the next runnable thread from active, assigns it to

current, and switches to it3.

• wake appends a thread to the active list so that it can run again.

On a single-CPU system the fields of the mutex structure are protected

from race conditions, as no interrupts will occur during modifications. We

can see that our mutex requirements will be met, by noting that:

3As opposed to yield, which adds the current thread to the end of the active queue

before performing the same steps.

current
active
sleep
active
current
wake
yield
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typedef int spinlock_t

spin_lock(spinlock_t *lock_addr):

register r = 1

while r == 1:

SWAP r, lock_addr

spin_unlock(spinlock_t *lock_addr):

*lock_addr = 0

Listing 3.6: Spinlock implementation. If the lock contains 0, it is

unlocked; if 1, then it is locked, in which case a second thread (or

CPU) trying to acquire it will “spin” (i.e. loop) until it is released.

• the first thread to call lock(m) will set m.locked to true and return

immediately.

• if another thread calls lock(m) before the mutex is unlocked, it will

queue itself on m.waitq and sleep.

• when unlock(m) is called, if there are any threads waiting then

the first one will be woken up (and thus continue from its sleep

call and return from lock(m) the next time it is scheduled), and the

mutex will remain locked;

• if no threads are waiting the mutex will be unlocked.

An exercise for the reader - many

textbooks describe Dekker’s and

Peterson’s algorithms for mutual

exclusion, which use normal

memory load and store instructions

to provide mutual exclusion. Try

implementing Peterson’s algorithm

as described in Wikipedia, with two

threads each looping N times, each

time (a) entering the critical section,

(b) incrementing a counter, and (c)

leaving the critical section. For

large N (e.g. 107) does the counter

always get incremented 2N times?

Why not? (feel free to ask in class if

you don’t find the answer)

On a multi-core system the prob-

lem is more complicated, however,

as the CPU cores are all execut-

ing simultaneously, accessing the

same memory, whether interrupts

are enabled or not. Implement-

ing a mutex on a multi-core sys-

tem requires coordinating via the

memory system shared between all

the CPUs, using special instruc-

tions which are guaranteed to exe-

cute uninterrupted by instructions

running on any of the other CPU

cores.

There are a number of specialized

CPU instructions which are typi-

cally provided to implement mutual exclusion; we will consider one of

them, the atomic SWAP instruction4:

4Another such instruction is Compare And Swap (e.g. the Intel CMPXCHG instruction),

which only performs the swap if the value in memory matches an expected value.

lock(m)
m.locked
lock(m)
m.waitq
unlock(m)
sleep
lock(m)
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Spinlock
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locked
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Figure 3.3: Spinlock operation. Here we see CPU 1 acquire the lock, after which

CPU 2 and then CPU 0 attempt to acquire it. After CPU 1 releases the lock (by

writing 0) one of the waiting CPUs (in this case 0) is then able to acquire it.

• SWAP register, address

This instruction swaps the contents of a register with the data in a specified

memory location, and unlike normal instructions it is guaranteed to do so

atomically. In other words, no matter how many CPU cores are trying to

swap with the same memory location simultaneously, one of them will do

so first, another second, and so on, and every CPU will see the location

change values in the same order.

This is in contrast to normal load/store instructions, where different CPU

cores may see differences in the order in which changes occur. This is

not surprising when you consider that each CPU is handling multiple

instructions at once, possibly out of order, and writing into cache lines

which are only later flushed to main memory. For instance, if CPU 1 writes

to cache line A and then to cache line B, they could conceivably be flushed

to memory in the opposite order, so while CPU 1 sees A written before

B, other CPUs see B written before A. Although it’s possible to achieve

consistent ordering—that’s what atomic instructions do—it’s much slower.

The SWAP instruction allows us to implement what is called a spinlock, as

shown in Figure 3.6. An example of its operation is shown in Figure 3.3: in

effect the 0 value is treated as a token that is passed between waiting CPUs
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structure mutex:

int spinlock

bool free = True // guarded by spinlock

queue waitlist // waiting threads, guarded by spinlock

mutex_lock(mutex m):

disable_interrupts()

spin_lock(&m.spinlock)

if m.free

m.free = False

spin_unlock(&m.spinlock)

enable_interrupts()

else:

pause(current_process) // remove it from active list

m.waitlist.add(current_process)

spin_unlock(&m.spinlock)

enable_interrupts()

sleep() // wake here when mutex acquired

mutex_unlock(mutex m):

disable_interrupts()

spin_lock(&m.spinlock)

if waitlist is empty:

m.free = True

spin_unlock(&m.spinlock)

enable_interrupts()

else

local next_thread = m.waitlist.pop_from_head()

spin_unlock(&m.spinlock)

enable_interrupts()

wake(next_thread) // add it to the active list

Listing 3.7: Multi-core-safe implementation of the mutex from Fig-

ure 3.5, with spinlock for additional protection

(or threads) and the lock memory location. This lock is extremely simple,

and by making use of the hardware-provided atomic SWAP instruction, it

guarantees mutual exclusion. However as we see in the figure it can be

(a) unfair, as it does not respect the order in which CPUs begin to wait

for the lock, and (b) inefficient, as CPUs 2 and 0 are unable to perform

any work while waiting. We therefore use spinlocks to guard very short

pieces of code, and then use these pieces of code to construct efficient and

well-behaved primitives for applications to use.

A spinlock-enhanced version of the mutex in Figure 3.5 is shown in Fig-

ure 3.7; it is identical except for the addition of a spinlock, which is used in

addition to disabling interrupts to guard the locked flag and wait queue.

This implementation retains almost all the efficiency of the single-CPU

locked
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Figure 3.4: Scenario for question 3.3.1

version, as the spinlock is never held for more than a few instructions,

limiting the length of time that other CPUs are stuck busy-waiting5. Unlike

the basic spinlock, this mutex is also fair, as waiting threads will be queued

and acquire the mutex in FIFO order. (at most, any unfairness in the

underlying spinlock mechanism will effect the order in which threads go

onto the list, not how many turns they get holding the mutex.)

A question for the reader - why is it

important to unlock the spinlock

and enable interrupts before calling

sleep() in mutex_lock?

More formally, what we mean

by “fair” in this case is bounded

waiting—i.e. no thread can be

“starved” while other threads re-

peatedly acquire and release the

mutex. (this is the third require-

ment for solutions to the critical section problem)

In particular, if thread A is waiting for the mutex, bounded waiting means

that another thread B cannot acquire and then release it many times while

A is still waiting. (note that spinlocks cannot guarantee this property, as

any waiting thread can acquire the lock, regardless of how long it has been

waiting.) If multiple threads (on separate CPUs) call mutex_lock at once,

the spinlock will determine what order they will be added on the queue,

but the FIFO ordering of the queue ensures that if a thread acquires the

mutex and releases it, when it tries to lock the mutex again it will go to

the tail of the line.

Review Questions

3.3.1. In the example in Figure 3.4, two CPUs execute SWAP instructions

with the same location in memory. CPUs 1 and 2 start with the

values 1 and 2 in their registers, and the initial memory location is

5Sort of. On massively multi-core machines—e.g. 72 cores is a common number

nowadays—highly contented locks are still inefficient, as waiting for 71 other CPUs to do a

few instructions each can take a while.

mutex_lock
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zero. Which of these is a valid result after both SWAP instructions

have completed?

a) CPU 1: R1=2, CPU 2: R1=1, memory: 2

b) CPU 1: R1=2, CPU 2: R1=1, memory: 0

c) CPU 1: R1=2, CPU 2: R1=0, memory: 1

3.3.2. A mutex is: a) A type of spinlock b) An application-defined class

c) An OS-defined lock object

3.4 The Bounded Buffer Problem and Semaphores

Mutexes can be used to prevent certain orders of execution—e.g. multiple

threads executing certain operations at the same time—but what if we

want to cause a certain order of execution? (for instance, waking a thread

which is waiting for keystroke input.) We refer to this as synchronization,

and to the primitives which are used for this purpose as synchronization

primitives.

To begin we’ll examine a “classic” or pedagogical6 synchronization prob-

lem frequently used as an example of multi-threaded programming: the

Bounded Buffer Problem, which may be defined as follows:

1. An object buffer has methods put and get.

2. Successive calls to buffer.put(item) insert items into the buffer.

3. Successive calls to item = buffer.get() remove items from the

buffer in the same order as they were inserted.

4. If the buffer contains no items, buffer.get() will block until an

item is inserted.

5. If the buffer contains N items, buffer.put() will block until an

item is removed.

We can start with a single-threaded version of the bounded buffer. In this

case parts 3 and 4 of the definition must be modified, as no other thread

will arrive to insert or remove an item; instead we will return NULL if no

item is available, and ERROR if the buffer is full, as seen in Figure 3.5.

By adding a mutex we can safely handle multiple threads, as seen in

Figure 3.6.7

However we still don’t have a full solution to the bounded buffer

problem—we need to not only protect the threads from each other,

6which means “for teaching purposes only”, i.e. not necessarily practical.
7Note how locks complicate control flow—you have to make sure that all locks are

released, even in failure cases.
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list buffer

put(item):

if len(buffer) >= N

return ERROR

else

buffer.add_tail(item)

return OK

get(item):

if len(buffer) == 0

return NULL

else

return buffer.remove_head()

Figure 3.5: Simple bounded buffer

The two operations on a semaphore

were originally given Dutch

abbreviations P and V by their

inventor, Edsger Dijkstra. Since

then they have also been called

down and up, acquire and release,

wait and signal, await and notify,

etc. We will call them wait and

signal.

but to coordinate or synchronize

them, so that e.g. one thread sleeps

in get() until another thread in-

vokes put(). We haven’t seen

how to use a mutex for this pur-

pose, and in fact many real-world

mutex implementations cannot be

used to do this8.

Instead we introduce a new ob-

ject called the counting semaphore,

which is deliberately designed for synchronizing the actions of multiple

threads. Like a mutex, a semaphore is an OS-provided object; however an

initial count N is specified when it is created. It has two methods, wait()

and signal(), with the following behavior:

• For semaphore S with initial count N , if Nw is the total number of

mutex m

list buffer

put(item):

m.lock()

if len(buffer) >= N

result = ERROR

else

buffer.add_tail(item)

result = OK

m.unlock()

return result

get(item):

m.lock()

if len(buffer) == 0

result = NULL

else

result = buffer.remove_head()

m.unlock()

return result

Figure 3.6: Thread-safe bounded buffer

8In particular, for debugging purposes many implementations (such as the POSIX

threads implementation in Linux) require that a mutex be unlocked by the same thread that

locked it.
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mutex m

list buffer

semaphore space = semaphore(N)

semaphore items = semaphore(0)

put(item):

space.wait()

m.lock()

buffer.add_tail(item)

m.unlock()

items.signal()

get(item):

items.wait()

m.lock()

result = buffer.remove_head()

m.unlock()

space.signal()

return result

Figure 3.7: Semaphore-based bounded buffer

times any thread has returned from S.wait(), andNs is the number

of times any thread has entered S.signal(), then Nw −Ns ≤ N .

Intuitively a semaphore may be understood by assuming that it maintains

a count initialized to N . When wait is called it (a) waits until the count

is greater than zero, then (b) decrements the count and returns. Calling

signal increments the count, possibly waking up one of the threads waiting

for count > 0. In practice this is done by maintaining a list of waiting

threads; if there are threads waiting on this list then signal wakes the first

one rather than incrementing the count.

A question for the reader - if you

are given a function

NewSemaphore0() which creates

a new counting semaphore with its

count initialized to 0, how would

you write a function

NewSemaphore(N) which returns

a semaphore initialized to an

arbitrary positive count N?.

A binary semaphore is a

semaphore which can only take

on the values 0 and 1, and is the

same thing as a mutex. (well,

disregarding implementation

details of many mutexes, such as

ownership checks.) Note that this

behaves slightly differently from

a counting semaphore initialized

to 1, specifically in the case where

signal() is called multiple times without intervening calls to wait9.

Note that the behavior of the wait and signal methods of a counting

semaphore are almost exactly the same behaviors as those we want for the

put and get methods in our bounded buffer, keeping track of a count and

blocking when that count reaches a limit. Using one semaphore to track

the number of items in the buffer, and another to track the number of free

spaces, we have the implementation in Figure 3.7.

9Not that it really matters, as a well-behaved program probably wouldn’t do this.
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Figure 3.8: Operation of bounded buffer from Figure 3.7, limit=2

Note that we still need a mutex to protect the linked list, as although

the semaphore limits the number of threads which can be modifying the

list simultaneously, that limit is greater than 1. (alternately we could

implement a “thread-safe linked list” class which included a mutex, thus

simplifying any threaded code which used it.)

In Figure 3.8 we see this in operation. With a limit of 2 items, the first

two calls to put return immediately; however the third one blocks as the

“space” semaphore has dropped to zero. When a call to get from thread 4

increments the “space” semaphore again, thread 3 is able to return from

space.wait(), decrementing its value to zero again, and can then insert

its item into the list.

Review Questions

3.4.1. The bounded buffer solution with mutexes shown in Figure 3.6 is

not a full solution to the bounded buffer problem because:

a) It doesn’t block in put() or get() when the buffer is full or

empty.

b) It sometimes loses items.

c) It doesn’t maintain the items in order.
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(a) (b) (c)

Figure 3.9: Three possible interleavings of foo() and bar().

3.5 Deadlock

Consider the ways that the following code can execute, with thread 1

executing foo(), and thread 2 executes bar():

mutex A, B;

foo:

lock A

lock B

...

unlock B

unlock A

bar:

lock B

lock A

...

unlock A

unlock B

• If thread 1 starts early enough, we may see the result in Figure 3.9(a),

where thread 1 or alternately thread 2) finishes completely before

thread 2 starts.

• Or, if they start close enough in time, they may overlap somewhat

but still complete successfully, as in Figure 3.9(b).

• But if they start at about the same time, there is a chance of getting

the situation in Figure 3.9(c), where both threads are blocking on

their second lock operation.

This is a deadlock, where two threads are each waiting for a lock held by

the other thread. As you can see, it can halt program execution just as

completely as a program crash or infinite loop, and typically requires the

application to be killed and restarted.



3.5. DEADLOCK 55

Classic Conditions for Deadlock

Intuitively a deadlock is when multiple processes (or threads) are waiting

for locks held by other processes in the group, each unable to give up the

locks it is holding before it acquires the lock that it is waiting for. More

generally, deadlocks can occur when acquiring not just locks, but other

sorts of resources: e.g. each process might be trying to allocate N buffers

out of a fixed-sized pool.

Phrased more formally, there are four classic conditions for deadlock

among multiple processes contending for resources:

1. Mutual exclusion: A deadlock requires resources (like mutexes)

that can only be held by one process

2. Hold and wait: A process holds one or more acquired resources

and then blocks waiting to acquire another resource

3. No preemption: Resources are only released when a process is

done with them and calls the release function (like unlock). One

process cannot force another to release a resource.

4. Circular wait: Given the three prior conditions, if there is a circular

wait then there is a deadlock

The processes that deadlock can be any form of concurrent activity:

threads, processes, or interrupts vs. a foreground process. There can

be any number of processes, and in some cases a process can even dead-

lock with itself. Finally, the resources being acquired can be anything

which has both the mutual exclusion and hold and wait properties. These

resources aren’t just mutexes and semaphores, but things like memory

buffers or the process of obtaining exclusive access to a file.

Finally, there is a deadlock case not quite covered by these conditions—the

one where the programmer forgot to release a lock. Try not to do that.

Avoiding Deadlock: Lock Ranking

Figure 3.10: Lock ranking

If any one of these four conditions can

be avoided, deadlock cannot occur. If

locks are always acquired in the same

order, no matter what thread is acquir-

ing them via which code path, then

there will be no circular wait and thus

no deadlock, as you can see in Fig-

ure 3.10.
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Using lock ranking requires three steps:

1. Find all locks in a program.

2. Number them in the order (“rank”) in which they should be acquired

3. Verify that no lock is acquired out of order, via e.g. the use of debug

assertions and extensive testing.

This technique is difficult to implement, and cannot be used in every case.

An example of its use is in the VMware virtualization product, where

several hundred (as of when I worked there in 2007) locks are ranked

in order, and beta builds will assert and crash if a lower-priority lock is

acquired while holding a higher-priority one.

Review Questions

3.5.1. Given a set of processes, deadlock occurs when:

a) Each process in the set is blocked waiting for a resource (i.e.

lock) held by another process in the set

b) Each process is waiting on the same resource, and that resource

is held by a process not in the set

c) One of the processes terminates

3.5.2. Deadlock can be prevented by ensuring that processes always ac-

quire locks in the same order: true / false

3.5.3. Deadlock can be prevented by ensuring that a process only holds

one lock at a time: True / False
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3.6 Monitors

Semaphores do a good job of solving simple problems like the bounded

buffer, and in theory are sufficient to solve any synchronization problem10,

but become quite complicated to use when a problem can’t be solved by

simple counting. As an example, we’ll look at what we’ll call the Weighted

Bounded Buffer Problem, which differs from the bounded buffer problem

in these ways:

1. Each item has a weight, item.weight

2. The total weight of the items in the buffer cannot exceed N. If

buffer.put() would cause this limit to be exceeded, then it will

block until enough space is available.

At first it seems like it would be sufficient for put and get to call signal

and wait W times if W is the weight of the item being added or removed;

however this could cause problems if two threads called put or get simul-

taneously, and is not possible at all if weight is a continuous (i.e. floating

point) value. Unlike the simple case, we’re going to have to write our own

code to maintain counts and make decisions about when to sleep, and if

we do this with semaphores it’s going to be quite ugly.

Instead we introduce a programming language feature for synchronization

called a monitor. Unlike mutexes and semaphores, which are operating

system-defined types, a monitor is a special type of user-defined object or

class, where the language provides support for constructing user-defined

synchronization behavior.

In particular, a monitor has (a) special instance variables called conditions,

which support the methods wait, signal, and broadcast, and (b) a

per-instance implicit mutex, which ensures that only one thread is in the

monitor (instance) at any one time, executing method code. More precisely,

what we mean by this is:

• A thread enters the monitor by entering one of its methods. Any

number of threads can try to invoke methods on the same instance

at once, but only one will get through and begin to execute method

code.

• A thread leaves the monitor when it returns from a method. This is

pretty obvious.

• A thread also leaves the monitor when it calls wait on any of the

instance condition variables. This is less obvious, but important,

as otherwise no other thread would be able to enter the monitor to

wake it up.

10Or at least any that can be solved by other techniques described in this text.
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monitor weighted_bb:
condition C_put, C_space, C_get
total = 0
space_needed = 0
buffer

method put(item):
1 while space_needed > 0
1 wait(C_put)

space_needed = item.weight
2 while item.weight + total > max
2 wait(C_space)

buffer.add_tail(item)

total = total + item.weight
4 signal(C_get)
1 space_needed = 0
1 signal(C_put)

method get():
3 while total == 0
3 wait(C_get)

item = buffer.remove_head()
total = total - item.weight

2 if total + space_needed <= max
2 signal(C_space)

return item

Figure 3.11: Monitor implementation of weighted bounded buffer

• A thread then enters the monitor again when it returns from wait.

Note that this can’t actually happen until after the thread which is

currently in the monitor—usually the one that called notify—leaves

the monitor.

When a thread calls wait(C) it goes to sleep, and must be woken by a

future call to notify or broadcast. When a thread calls signal(C), a

thread waiting on C is made eligible to return from wait(), and will do

so as soon as it gets a chance to re-enter the monitor. On most systems

threads waiting on C are picked in FIFO order, but this is not guaranteed.

Finally, when a thread calls broadcast(C), all threads waiting on C are

made eligible to return from wait(), and again will do so as soon as they

are able to. If either notify or broadcast are called on a condition with

no waiting threads, nothing will happen and no error will occur. Unlike

calling signal on a semaphore with a positive count, the call won’t be

“saved up” for future calls to wait. And unlike unlocking a free mutex, it

won’t result in an error.

Here we see a monitor implementation of the weighted bounded buffer.

Despite the increased complexity of the problem, this solution is only

slightly longer than the semaphore solution to the simpler problem. A

more detailed description of its operation:

(1) The lines marked 1 serve as “gatekeepers”: only one thread at a time

can be executing the lines in the middle, including the wait(C_space)

call. After leaving this section of code we signal the next waiting thread,

if any.

(2) Here a thread calling put() waits for space, and get() wakes it up if

it has created enough space by removing an object.

(3) Here a thread calling get() waits for an item if the buffer is empty,
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and is signalled by a thread at (4) calling put(). Note that this interaction

is simpler, because (as in the simple bounded-buffer case) there is a one-

to-one relationship between items and calls to get().

3.7 Using Conditions

Like many programming features, there are different ways to use condition

variables, and some of them are “better” than others, being easier to

understand, write correctly, and debug. In this class we teach the following

rule for using them:

• Each condition C is associated with a boolean predicate P , and

that condition is used in “guards” of the form while (not P)

wait(C), so that after the guard has been executed the invariant P
is true.

In the example above, for instance, C_space is associated with the predi-

cate item.weight+ total ≤ max, or in other words that there is enough

room for the item. If there isn’t then we wait; immediately after passing

these two lines (marked 2 in the listing) we can be sure that there is indeed

enough room.

How can we be sure? If the predicate is true, and we don’t have to wait,

the answer is trivial. In the other case, we need to make sure that every

piece of code which might make the predicate become true checks it, and

if the predicate actually has become true it signals the associated condition

variable.

Note that this association only exists in the mind of the programmer, and

is not enforced in any way by the programming language. Multithreaded

programming would be much easier if we could just wait on the boolean

predicate itself, but no one has yet invented a way to do this efficiently.

Instead the programmer is responsible for the job of identifying what other

pieces of code might make the predicate become true, with the resulting

bugs if you miss any cases.

while (condition) vs if (condition): In Figure 3.11 it would be

nice if we could just call wait(C_put) or wait(C_space) and assume

that the associated predicate is true after returning from wait. Unfortu-

nately, it’s not really possible, or at least not efficiently—even if mutexes

and condition variables preserve FIFO ordering, there’s often a window be-

tween when a thread calls signal(C) and the thread blocked in wait(C)

returns, where a third thread can call the monitor method and grab the

monitor mutex before the second thread is able to acquire it while returning

from wait(C).

wait(C_put)
wait(C_space)
signal(C)
wait(C)
wait(C)
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To handle this race condition we loop checking the predicate and waiting

on the condition variable. In the (very rare) case where another thread

entered the monitor while we were waking up, and e.g. grabbed whatever

thing or resource we were waiting for, we go back to sleep and wait for

another one.

Review Questions

3.7.1. A monitor is different from a semaphore in which of these ways:

a) It is a user-defined type, rather than OS-defined

b) It can have multiple queues of waiting threads

c) Both of the above

3.7.2. A thread “leaves” the monitor when:

a) It returns from a method

b) It calls wait()

c) It calls signal()

d) Answers 1 and 2

e) All of the above.

3.7.3. A condition variable contains a boolean predicate, and a thread

waiting on it blocks until that predicate becomes true: true / false
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Implementing Monitors

So far we’ve described monitors as a language feature, but if you look

at the languages in use today you won’t find the ’monitor’ keyword any-

where. Java has very limited direct support for monitors—a synchronized

class is essentially a monitor with a single condition variable, accessed

implicitly via acquire() and release(). In general, however, you have

to implement monitors yourself, using some sort of condition variable

object supplied by the operating system or thread library.

POSIX threads11: This threading package, provided on Unix-like systems

such as Linux and OSX, provides the following types and functions we

can use:

pthread_mutex_t mutex

pthread_mutex_lock(mutex)

pthread_mutex_unlock(mutex)

pthread_cond_t cond

pthread_cond_wait(cond, mutex)

pthread_cond_signal(cond)

pthread_cond_broadcast(cond)

Since the language doesn’t provide an implicit monitor mutex, we allocate

an explicit per-object mutex, locking it on entry to each method and

unlocking before returning from the method. Condition variables are also

provided directly, e.g. by the pthread_cond_create function; however the

thread library cannot know what object instance and mutex a condition

variable is associated with, and so we have to pass the mutex explicitly

when we wait on a condition. More precisely, the translation (as shown in

Figure 3.12) is:

1. (implicit mutex) : create a per-instance mutex m which is locked

on entry to each method and unlocked on exit. (being careful with

multiple exits, or worse yet exceptions)

2. condition variables : translate each to an instance variable of type

pthread_cond_t

3. signal(C), broadcast(C) : pthread_cond_signal(C) and

pthread_cond_broadcast(C)

4. wait(C) : pthread_cond_wait(C, m) where m is the

per-instance mutex.

Note that for programming exercises in this class we may implement

singleton objects in C, in which case we can simplify our implementation

somewhat:

11The same threading model is available in C11, with slightly different names—e.g.

mutexes are of type mtx_t, with functions mtx_lock and mtx_unlock

mtx_t
mtx_lock
mtx_unlock
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monitor myclass:

condition C1, C2

method m1():

C1.wait()

C2.signal()

return

class myclass {

private:

pthread_mutex_t m;

pthread_cond_t C1, C2;

public:

void m1(void) {

pthread_mutex_lock(&m);

pthread_cond_wait(&C1, &m);

pthread_cond_signal(&C2);

pthread_mutex_unlock(&m);

}

Figure 3.12: Implementation of monitor in Posix threads.

• Methods become functions, as there is no need to specify which

object instance to apply a method to.

• Instance variables become global variables, because we only need

one copy of them, but they must be shared between methods.

pthread_mutex_t m;

pthread_cond_t C1, C2;

void m1() {

pthread_mutex_lock(&m);

pthread_cond_wait(&C1, &m);

pthread_cond_signal(&C2);

pthread_mutex_unlock(&m);

}

Listing 3.8: Singleton monitor implementation in C.

Java: In this case we use an instance of ReentrantLock (in

java.util.concurrent.locks) as our mutex, with methods lock and unlock.

Condition variables are associated with a ReentrantLock (i.e. mutex), so

given a ReentrantLock m created to be the per-object mutex, for each

condition variable C in the original monitor we create a Condition via

m.newCondition(); operations on these conditions are wait, notify, and

notifyAll.
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import ReentrantLock from java.util.concurrent.locks;

class myclass {

ReentrantLock m = new ReentrantLock();

Condition C1 = m.newCondition(), C2 = m.newCondition();

void m1() {

m.lock();

C1.wait();

C2.notify();

m.unlock();

}

Listing 3.9: Monitor implementation in Java

Python: The module threading implements two classes, Lock and

Condition, which we use as above. (note that the methods for

threading.Lock are acquire and release) Like Java, conditions are

associated with locks at the time of creation, so there is no need to remem-

ber to pass the mutex in the wait() function.

Review Questions

3.7.1. When implementing a monitor in POSIX threads, you need a sepa-

rate mutex for each condition variable: true / false

3.7.2. Race conditions can occur in monitors because:

a) Multiple threads can be executing methods at the same time

b) The order in which threads enter the monitor may differ

c) Both of the above

import threading

class myclass:

def __init__(self):

self.m = threading.Lock()

self.C1 = threading.Condition(self.m)

self.C2 = threading.Condition(self.m)

def m1(self):

self.m.acquire()

self.C1.wait()

self.C2.notify()

self.m.release()

Listing 3.10: Monitor implementation in Python



64 CHAPTER 3. SYNCHRONIZATION – SAFETY & SEQUENCING

P?
no

yes

(a) (b) (c) (d)

Figure 3.13: Elements of the graphical language: (a) method, (b) choice (if/then

statement), (c) condition, and (d) signalling a condition.

sn > 0?

w+t > M?

(a)

yes

no

yes

no

put(item)

t = 0?
yes

no

get()

(b)

(a) total = total + item.weight

    space_needed = 0

(b) total = total - item.weight

w+t ≤ M?

sn = space_needed

t = total

w = item.weight

M = max

yes

no

Figure 3.14: Graphical representation for weighted bounded buffer solution shown

in Figure 3.11

3.8 Graphical Notation

Reasoning about multi-threaded programs is harder than single-threaded

ones. For single-threaded programs most people can visualize how pro-

gram execution moves from one line of code to another; however in the

multi-threaded case you have to be aware of many possible copies of the

same code, each possibly executing a different line.

In Figure 3.13 we see the elements of a graphical representation for a

monitor, which allows us to see more directly how different threads interact

in the execution of a multi-threaded program. Each method is represented

by a path (a), which may involve decisions (b), waiting on conditions (c),

and signalling those conditions (d).
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(a)

sn > 0?

w+t > M?

(a)

yes

no

yes

no

put(item)

t = 0?
yes

no

get()

(b)

w+t ≤ M?
yes

no

(b)

sn > 0?

w+t > M?

(a)

yes

no

yes

no

put(item)

t = 0?
yes

no

get()

(b)

w+t ≤ M?
yes

no

(c)

sn > 0?

w+t > M?

(a)

yes

no

yes

no

put(item)

t = 0?
yes

no

get()

(b)

w+t ≤ M?
yes

no

(d)

sn > 0?

w+t > M?

(a)

yes

no

yes

no

put(item)

t = 0?
yes

no

get()

(b)

w+t ≤ M?
yes

no

Figure 3.15: Multiple threads shown as black dots moving through the monitor

code.
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In Figure 3.14 we see the weighted bounded buffer solution from Fig-

ure 3.11 represented in this graphical notation, and in Figure 3.15 we see

multiple threads moving through this representation.

(Note that the figures have been simplified slightly by using if (!P)

wait(C); instead of while (!P) wait(C).)
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3.9 Putting it all together

Most of the synchronization techniques discussed in this chapter are ap-

plicable to multi-threaded application programs, rather than operating

systems themselves; however synchronization and the prevention of race

conditions are still key techniques within an OS.

Condition variables and signal(): The I/O wait mechanism is an example

of this. When the shell invokes the read system call to read characters

from the keyboard, the process is removed from the active list and placed

on a wait queue in the kernel; the keyboard interrupt handler then wakes a

process waiting on this queue when a character is received. The semantics

of this I/O wait queue and the operation to wake a process from it are

identical to those of a condition variable with wait and signal. (the

design choices are similar, too. Simple operating systems may use the

equivalent of broadcast, waking all processes waiting on any sort of

I/O and having each of them re-check the condition they are waiting on

before going to sleep, while for highest performance more complete OSes

have separate wait queues per I/O source, and when data arrives a single

waiting process will be woken.)

Mutexes: An operating system is full of potential race conditions, and

heavy use is made of locking mechanisms to prevent errors or crashes.

Asynchronous events can occur due to timer or I/O interrupts, and on a

multi-core CPU there can be OS code running on multiple cores at the

same time. In either case it is essential to protect key OS data structures,

such as the list of active processes, which is typically implemented as a

singly- or doubly-linked list.

Data structures such as this will typically be protected by a combination of

spinlocks and disabling interrupts—e.g. to modify the active process list,

OS code will (1) disable interrupts, (2) acquire a spinlock which guards

that list, (3) perform the modifications, (4) release the spinlock and (5)

re-enable interrupts. (Interrupts are typically disabled while an interrupt

handler executes, so when accessing these data structures from an interrupt

handler it is sufficient to acquire the spinlock.)

When switching to the next runnable process, it’s necessary to protect

not only the active process list, so that it doesn’t get corrupted, but to

also protect the variable identifying the current process on each CPU,

to prevent two processes from being assigned to the same CPU at the

same time. A simple way of doing this is to have a schedule() function

which is called under a lock, and which pops the next runnable process

off the active list, makes it the current process, and switches to it; e.g. an

implementation using simple round-robin scheduling might be as shown
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[e.g. yield:]

...

lock(plist_lock);

schedule();

unlock(plist_lock);

...

schedule() {

active_tail->next = current;

active_tail = current;

current = active_head;

active_head = active_head->next;

switch_to(current);

}

Figure 3.16: Simple round-robin thread scheduler

in Figure 3.16.

Note that the lock can’t be “encapsulated” within schedule and hid-

den from other code, because special handling is required when creating

processes—when a new process begins it will execute a “trampoline” func-

tion, rather than the second half of the schedule function, and must drop

the lock that was acquired when switching to it.

Finally, deadlocks are a risk when implementing an operating system. In

many cases the objects of contention are not mutexes themselves, but

resources such as pages of memory E.g. consider the case12 where a

process tries to allocate a page of memory when (almost) all pages are in

use. The OS finds a page it can “steal” from another process after writing

its contents to disk; however if that page is associated with a network file,

the OS may need to temporarily allocate another page of memory in order

to send the network message to write it back.

The solution to this is to reserve the last few blocks of memory to various

high-priority uses. This works in much the same way as lock ranking,

because the original request is made at low priority (i.e. by the process)

and thus can’t acquire and hold the resources which would be needed by

the higher-priority page-out and networking tasks.

12Yes, I know we haven’t covered some of the parts of this yet, but we’ll get to them in

the next chapter...
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Answers to Review Questions

3.2.1 (race conditions can be detected by exhaustive testing) False. The

outcome of a race condition is determined by the internal order in

which threads execute instructions within a program. This internal

ordering will be affected by the order in which inputs are received,

but it will also depend on uncontrollable events such as interrupts,

cache behavior, etc.

3.2.2 (implementing withdraw method) (2), lock mutex m. Both deposit

and withdrawal modify the same account balance, and so no combi-

nation of the two may be allowed to execute simultaneously.13

3.3.1 (3), “CPU 1: R1=2, CPU 2: R1=0, memory: 1”. In this case CPU

2 executes the SWAP instruction before CPU 1.

3.3.2 (3), an OS-defined lock object. (note that although spinlocks are a

simple kind of mutex, they are not the only kind)

3.4.1 (1) There is no coordination between one thread making room (or

adding an item to an empty buffer) and another thread waiting for

room or a new item, so the only thing it can do is return EMPTY or

FULL.

3.5.1 (1), each process is blocked waiting for a resource held by another

process in the set.

3.5.2 True. Ranking locks in order prevents the formation of a circular

wait.

3.5.3 True. If a process never acquires more than one lock, then it never

holds a lock while waiting for another one.

3.7.1 (3), both of the above. Monitors are user-defined classes, and each

condition variable in a monitor is a separate queue that threads can

wait on.

3.7.2 (4), it leaves the monitor both when returning from a method and

when calling wait. It does not leave the monitor when calling

signal.

3.7.3 False. A condition variable has no value, and a thread waiting on it

will only wake when another thread calls signal or broadcast.

3.7.1 False. A single mutex is used to guard the instance variables of the

monitor, and is passed in pthread_cond_wait when waiting on

any of the condition variables of that instance.

3.7.2 (2), the order in which threads enter the monitor may differ. (since

two threads cannot execute code in the same monitor at the same

time)

13Note that your customers may appreciate the lock-less version, as it will occasionally

forget that a withdrawal was made.





Chapter 4

Virtual Memory

In chapter 2 we discussed operating systems basics such as I/O, program

loading, and context switching primarily for a simple computer with a

single physical address space. By this we mean that the bits in an address

register—for instance the program counter—are the same bits that go out

over wires on the motherboard to DIMM sockets and select a particular

location in a memory chip, so that no matter what process is executing, the

same address (e.g. 0x1000) always refers to the same memory location.

4.1 Base and Bounds translation

Figure 4.1: Base and bounds translation

We first looked at direct phys-

ical addressing, where no

matter which process is exe-

cuting, the same address (e.g.

0x1000) refers to the same

memory location. In addition

we reviewed a very simple

form of address translation,

shown here in Figure 4.1,

where base and bounds reg-

isters are used to relocate a

section of the virtual address

space—the addresses seen by the program, corresponding to values in

the CPU registers—to somewhere else in the physical address space. By

changing these translations the operating system can create multiple virtual

address spaces, one per process; however there is still only one physical

address space, uniquely identifying each byte in each memory chip. In this

chapter we introduce paged address translation, a more complex address

71
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Start: 32 locations, all free

Step 1, 2: a = alloc(10), b = alloc(1)

Step 3, 4, 5: c = alloc(10), d = alloc(1), e = alloc(10)

Step 6, 7, 8: free(a), free(c), free(e)

Figure 4.2: Memory fragmentation example - after step 8 there are 30 free locations,

but the largest range that can be allocated is 10.

translation mechanism used by most modern CPUs, and present the 32-bit

Intel implementation as an example.

Limitations of base+bound translation: Modern hardware and oper-

ating systems provide a very similar process address space model, but

no longer use base and bounds registers for address translation1, despite

it being simple, cheap, and quite possibly faster than alternate methods.

There are a number of reasons why base and bounds translation is no

longer used, but the fundamental reason is memory fragmentation.

Base and bounds address translation requires a contiguous memory region

for each process. If memory is allocated and de-allocated in chunks of

different sizes and at different times, then it can become fragmented so

that even if large amounts of memory are free, it will be divided into

smaller fragments, separated by longer-lived small allocations, as seen in

Figure 4.2.

In the last line, you can see that only 2 units of memory (out of 32) remain

allocated, but the largest amount that can be allocated at one time is 10

units. If all allocation requests are small, this might not be a problem;

however, in an operating system it is common to have one or two very

large processes (e.g., a web browser and word processing software), and

many small, long-running processes (e.g., the on-screen battery display

or wifi signal strength indicator). In this case, large memory allocations

may fail, even when there is enough total memory free, because long-lived

small allocations fragment the available contiguous memory into smaller

pieces.

1Not even on Intel CPUs, which support base+bounds translation using segment registers.

Nearly every operating system running on these CPUs sets base=0 and bound=max as one

of the very first steps in hardware initialization.
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4.2 Paging - Avoiding Fragmentation

The fragmentation in Figure 4.2 is termed external fragmentation, because

the memory wasted is external to the regions allocated. This situation can

be avoided by compacting memory—moving existing allocations around,

thereby consolidating multiple blocks of free memory into a single large

chunk. This is a slow process, requiring processes to be paused, large

amounts of memory to be copied, and base+bounds registers modified to

point to new locations2.

Figure 4.3: Paged memory allocation

Instead, modern CPUs use

paged address translation,

which divides the physical

and virtual memory spaces

into fixed-sized pages, typ-

ically 4KB, and provides a

flexible mapping between vir-

tual and physical pages, as

shown in Figure 4.3. The op-

erating system can then main-

tain a list of free physical pages, and allocate them as needed. Because

any combination of physical pages may be used for an allocation request,

there is no external fragmentation, and a request will not fail as long as

there are enough free physical pages to fulfill it.

Internal Fragmentation

Paging solves the problem of external fragmentation, but it suffers from

another issue, internal fragmentation, because space may be wasted inside

the allocated pages. E.g. if 10 KB of memory is allocated in 4KB pages,

3 pages (a total of 12 KB) are allocated, and 2KB is wasted. To allocate

hundreds of KB in pages of 4KB this is a minor overhead: about 1

2
a page,

or 2 KB, wasted per allocation. But internal fragmentation makes this

approach inefficient for very small allocations (e.g. the new operator in

C++), as shown in Figure 4.4. (It is also one reason why even though

most CPUs support multi-megabyte or even multi-gigabyte “huge” pages,

which are slightly more efficient than 4 KB pages, they are rarely used.)

2This is similar to garbage collection in Java and other languages; however in that case

pointers to the garbage-collected memory must be changed to point to the new locations.
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Allocation 1: 30 bytes Allocation 2: 200 bytes Allocation 3: 50 bytes

30 4066 200 3896 50 4046

Allocation 1: 30 bytes Allocation 2: 200 bytes Allocation 3: 50 bytes

30 4066 200 3896 50 4046

Figure 4.4: Internal fragmentation for very small allocations—total allocated

memory is 30+200+50=280 bytes, overhead is 12008 bytes.

bit number
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bit number

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

20-bit page number 12-bit offset
 

Figure 4.6: Page number and offset in 32-bit paged translation with 4KB pages

4.3 Paged Address Translation

We examine a single model of address translation in detail: the one used

by the original Pentium, and by any Intel-compatible CPU running in

32-bit mode. It uses 32-bit virtual addresses, 32-bit physical addresses,

and a page size of 4096 bytes. Since pages are 212 bytes each, addresses

can be divided into 20-bit page numbers and 12-bit offsets within each

page, as shown in Figure 4.6

20-bit page number 12-bit offset 

20-bit page number 12-bit offset 

map 

Figure 4.5: 32-bit paged address translation

The Memory Management

Unit (MMU) maps a 20-bit

virtual page number to a 20-

bit physical page number; the

offset can pass through un-

changed, as shown in Fig-

ure 4.5, giving the physical ad-

dress the CPU should access.

Although paged address translation is far more flexible than base and

bounds registers, it requires much more information. Base and bounds

translation only requires two values, which can easily be held in registers in

the MMU. In contrast, paged translation must be able to handle a separate

mapping value for each of over a million virtual pages. (although most

programs will only map a fraction of those pages) The only possible place

to store the amount of information required by paged address translation

is in memory itself, so the MMU uses page tables in memory to specify

virtual-to-physical mappings.
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present? physical page # 

present? physical page # 

... 1048574 more... 

CR3 
one Page Table Entry (PTE) 

Figure 4.7: Single-level 32-bit page table

PA = translate(VA):

VPN, offset = split[20 bits, 12 bits](VA)

PTE = physical_read(CR3 + VPN*sizeof(PTE), sizeof(PTE))

if not PTE.present:

fault

return PTE.PPN + offset

Listing 4.1: Address translation pseudo-code for single-level page table.

Single-level Page Table

One of the simplest ways to structure a page table for mapping 20-bit page

numbers is as a simple array with 220 entries. With this configuration, each

virtual page has an entry, and the value in that entry is the corresponding

physical page number, as seen in Figure 4.7. This single-level table is

located in physical memory, and the MMU is given a pointer to this table,

which is stored in an MMU register. (On Intel-compatible CPUs, the page

table pointer is Control Register 3, or CR3.) This is shown in Figure 4.7,

where we see the first two entries in a 220 or 1048576-entry mapping table.

In addition to the translated page number, each entry contains a P bit to

indicate whether or not the entry is “present,” i.e., valid. Unlike in C or

Java we can’t use a special null pointer, because 0 is a perfectly valid page

number3.

In Figure 4.1 we see pseudo-code for the translation algorithm imple-

mented in an MMU using a single-level table; VA and PA stand for virtual

and physical addresses, and VPN and PPN are the virtual and physical

page numbers.

Note that this means that every memory operation performed by the CPU

now requires two physical memory operations: one to translate the vir-

tual address, and a second one to perform the actual operation. If this

seems inefficient, it is, and it will get worse. However, in a page or two

we’ll discuss the translation lookaside buffer or TLB, which caches these

translations to eliminate most of the overhead.

3Besides, the hardware designers would rather check the value of a single wire than

compare a whole bunch of bits at once.
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P physical page # 

... 1021 more... 

CR3 P physical page # 

... 1022 more... 

P physical page # 

P physical page # 

... 1023 more... 

P=0 

P physical page # 

Figure 4.8: Two-level page table for 32-bit addresses and 4 KB pages

The single-level page table handles the problem of encoding the virtual-to-

physical page map, but causes another: it uses 4 MB of memory per map.

Years ago (e.g. in the mid-80s when the first Intel CPUs using this paging

structure were introduced) this was entirely out of the question, as a single

computer might have a total of 4 MB of memory or less. Even today, it

remains problematic. As an example, when these notes were first written

(2013), the most heavily-used machine in the CCIS lab (login.ccs.neu.edu)

had 4 GB of memory, and when I checked it had 640 running processes.

With 4 MB page tables and one table per process, this would require 2.5GB

of memory just for page tables, or most of the machine’s memory. Worse

yet, each table would require a contiguous 4MB region of memory, run-

ning into the same problem of external fragmentation that paged address

translation was supposed to solve.

2-level Page Tables

To fix this, almost all 32-bit processors (e.g. Intel, ARM) use a 2-level

page table, structured as a tree, as seen in Figure 4.8.

The top ten bits of the virtual page number index into the top-level table

(sometimes called the page directory), which holds a pointer to a second-

level table. The bottom ten bits of the virtual page number are used as

an index into this second-level table, giving the location where the actual

physical address will be found. At first glance, it appears that this structure

takes just as much space as a single-level table. To map a full 4 GB of

memory, it still requires 4 MB (plus 1 additional page) for page tables.

But if a process only needs a small amount of memory, most of the entries

in the top-level directory will be empty (shown here as P=0), and only

a small number of second-level tables will be needed; small-memory

processes will thus have small page tables. And since the table is made out

of individual pages, we can use whatever set of 4 KB pages are available,

instead of needing a contiguous 4 MB block.

Note that this is a key characteristic of almost every page table imple-

mentation: a page table is made up of pages, allowing the same pool of

free pages to be used for both user memory allocation and for page tables
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themselves. In addition it means that each sub-table starts at the beginning

of a page and fits within that page, which simplifies array lookups when

translating a page number.

2-Level Page Table Operation

In Figure 4.9 we see a page table constructed of 3 pages: physical pages

00000 (the root directory), 00001, and 00003. Two data pages are mapped:

00002 and 00004. Any entries not shown are assumed to be null, i.e., the

present bit is set to 0. As an example we use this page table to translate a

read from virtual address 0x0040102C.

CR3 
00000 

00000: 

0 - 

... 

1 00001 

0 - 

1 00003 ... 

0 - 

1 00002 

00001: 

1 00004 

... 

Data pages: 

00002 00004 

00003: 

Second-level 
tables 

Figure 4.9: 2-level Page Table Example

The steps involved in translating this address are:

1) Split the address into page number and

offset

00401 02C 

2) Split the page number into top and bottom

10 bits, giving 0x001 and 0x001. (in the

figure the top row is hex, the middle two rows

are binary, and the bottom is hex again.)

00401

0000 0000 0100 00010000

00 0000 0001 00 0000 0001

001 001

00401

0000 0000 0100 00010000

00 0000 0001 00 0000 0001

001 001

3) Read entry [001] from the top-level page directory (physical page

00000) (note sizeof(entry) is 4 bytes):

address = start [00000000] + index [001] * sizeof(entry)

read 4 bytes from physical address 00000004 (page 00000, offset 004)

result = [p=1, pgnum = 00001]

4) Read entry [001] from the page table in physical page 00001:

address = 00001000 + 001*4 = 00001004

read 4 bytes from physical address 00001004

:result = [p=1, pgnum = 00002]
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CR3 
00000 

00000: 

0 - 

... 

1 00001 

0 - 

1 00003 ... 

0 - 

1 00002 

00001: 

1 00004 

... 

Data pages: 

00002 00004 

00003: 

Second-level 
tables 

Figure 4.10: Reference page table for review questions

This means that the translated physical page number is 00002. The offset

in the original virtual address is 02C, so combining the two we get the

final physical address, 0000202C.

Review questions

4.3.1. (all numbers are in hex) When translating the address 0x00C001C0,

the virtual page number is: a) 0x00C00 b) 0x1C0 c) 0x008

4.3.2. Referring to the image in Figure 4.10, to translate the address

00C001C0, splitting 00C00 into its top and bottom 10 bits gives

003, 000. Which page table entry is read from the top-level page

directory?

a) P=0, PPN=null

b) P=1, PPN=00001

c) P=1, PPN=00003

4.4 Translation Look-aside Buffers (TLBs)

A famous computer science quote

attributed to David Wheeler is: “All

problems in computer science can

be solved by another level of

indirection,” to which some add

“except the performance problems

caused by indirection.” A corollary

to this is that most performance

problems can be solved by adding

caching. How are these quotes

applicable to paged address

translation?

The 2-level table address trans-

lation processes you just learned

about is highly inefficient, even

more so than the single-level table.

Even if MMU accesses to memory

can be satisfied from the L1 cache,

this will still slow down the CPU

by a factor of three or more. To

reduce this inefficiency, a special-

purpose cache called the Trans-

lation Look-Aside Buffer (TLB)

is introduced. Instead of holding

memory values, like the L1 and L2
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caches, the TLB holds virtual page number to physical page number map-

pings. The TLB is typically very small: examining the machines I have

readily available, I see a TLB size ranging from 64 mappings (on certain

Intel Atom CPUs) to 640 mappings on Core i7 and Xeon E7 CPUs. One

reason for this small size is because the TLB has to be very fast—they are

needed for every memory operation before the CPU can look in its cache

for a value.

Using the TLB, the translation process now looks like this:

translate VA -> PA:

(VPN, offset) = split([20,12],VA)

if VPN is in TLB:

return TLB[VPN] + offset

(top10, bottom10) = split([10,10],VPN)

PDE = phys_read(CR3 + top10*4)

PTE = phys_read(PDE.pg<<12 + bottom10*4)

PPN = PTE.pg

add (VPN->PPN) to TLB, evicting another entry

return PPN + offset

Listing 4.2: Paged address translation with TLB

where PDE is the page directory (i.e. top-level) entry, PTE is the page

table (second-level) entry, and VPN, PPN are virtual and physical page

numbers as before.

How well does this perform? If all of the code and data fits into 640 pages

(about 2.5MB) on a high-end machine, all translations will come out of

the TLB and there will be no additional overhead for address translation.

If the working set (the memory in active use) is larger than this then some

accesses will miss in the TLB and require page-table lookup in memory;

however in most cases the translated mapping will be used many times

before being evicted from the TLB, and the overhead of accessing in-

memory page tables will be modest. (In addition, note that MMU accesses

to the page table go through the cache, further speeding up the translation

process)

4.5 TLB Consistency

Like any other cache, a TLB only functions correctly if it is consistent,

i.e. the entries in the TLB accurately reflect the in-memory values (i.e.

page tables) which they are caching. Since the values loaded into the TLB

come from a page table in memory at the address identified by CR3, the

values may become invalid if either (a) the page table values in memory
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change (due to CPU writes) or (b) CR3 is modified, so that it points to a

different page table. In other words, inconsistencies can arise due to:

Individual Entry Modifications: Sometimes the OS must modify the

address space of a running program, e.g. during demand paging (covered

below), where the OS maps in new pages and un-maps others. When

changing the page table in memory, the OS must ensure that the TLB is

not caching a copy of the old entry.

Context switches: The OS provides each process with a separate virtual

address space, or set of virtual to physical mappings; the same virtual

address may be mapped to a different physical memory location in each

process. (i.e. to a memory location “owned” by that process.) When

switching between processes the OS changes CR3 to point to the address

space of the new process, and it’s clearly important for both security and

correctness to ensure that the MMU uses these mappings, not the old ones.

Preventing TLB Inconsistencies

The issue of modifications can be solved in a fairly straightforward way: the

MMU provides one instruction to flush the TLB entry for a particular page,

and another to flush the entire TLB (e.g. if a large number of mappings are

modified). When entries are flushed from the TLB, there is almost always

a performance impact, because of the extra memory accesses needed to

reload those entries the next time they are required. In this case, this

overhead is not that significant, because (a) the OS is already spending a

lot of time modifying the page table, and (b) it doesn’t do this very often,

anyway.

However, the issue with context switches is harder to solve. The easy

solution is to ignore the performance overhead and flush the entire TLB

on every context switch, as is done on most Intel-compatible CPUs.

Note that measuring the “cost” of

an OS operation is often

problematic. In a case like this, the

operation may complete quickly,

but cause other operations to slow

down.

With a 500-entry TLB and a 4-

level page table4, this results in

throwing away 2000 memory ac-

cesses worth of work on each con-

text switch. Another solution is

to tag each TLB entry with an

identifier (an Address Space ID or

ASID) identifying the context in

which it is valid, allowing entries

from multiple contexts to remain in the TLB at once. A special MMU

register specifies the ASID of the current process, and entries tagged with

4Both values typical of 64-bit desktop CPUs.
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physical page number
(20 bits)

unused
(4 bits)
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The PPN is the physical page number of 
another page, either for the next level 
page table (assuming this is the Page 
Directory) or the actual data page.

Monitoring bits, which are used by the OS 
virtual memory mechanism, which is 
covered in the next module. The D bit tells 
it if a page has been modified and needs 
to be written back to disk, while the A bit 
detects pages that are not being used and 
can be put to better use.

Permission bits, which must be 
kept in the TLB along with the 
mapping, to check future access.

Ignored by MMU

Advanced functions

“Dirty.” If a write is made via 
an entry that has D = 0, D is 
set to 1 and the PTE is written 
back to the page table.

“Accessed.” If a read or write 
is made via an entry with A = 
0, A is set to 1 and the PTE is 
written back to the page table.

Advanced 
functions

“User-accessible.” In 
user mode, an access 
to a page mapped with 
U = 0 will cause a fault

"Writable.” If set to 0, then 
any attempt to write to this 
page results in a fault.

“Present” If P = 0, then 
any access will fault.
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The PPN is the physical page number of 
another page, either for the next level 
page table (assuming this is the Page 
Directory) or the actual data page.

Monitoring bits, which are used by the OS 
virtual memory mechanism, which is 
covered in the next module. The D bit tells 
it if a page has been modified and needs 
to be written back to disk, while the A bit 
detects pages that are not being used and 
can be put to better use.

Permission bits, which must be 
kept in the TLB along with the 
mapping, to check future access.

Ignored by MMU

Advanced functions

“Dirty.” If a write is made via 
an entry that has D = 0, D is 
set to 1 and the PTE is written 
back to the page table.

“Accessed.” If a read or write 
is made via an entry with A = 
0, A is set to 1 and the PTE is 
written back to the page table.

Advanced 
functions

“User-accessible.” In 
user mode, an access 
to a page mapped with 
U = 0 will cause a fault

"Writable.” If set to 0, then 
any attempt to write to this 
page results in a fault.

“Present” If P = 0, then 
any access will fault.

Figure 4.11: 32-bit Intel page table entry (PTE).

other ASIDs are ignored. If a process is interrupted for a short time, most

of its TLB entries will remain cached, while the ASID field will prevent

them from being mistakenly used by another process5.

Page Table Entries

The components of a 32-bit Intel page table entry are shown in Figure 4.11;

for more information you may wish to refer to http://wiki.osdev.

org/Paging.

Page Permissions - P, W, and U bits

Page tables allow different permissions to be applied to memory at a

per-page level of granularity.

P=0/1 - If the present bit is zero, the entry is ignored entirely by the MMU,

thus preventing any form of access to the corresponding virtual page.

W = 0/1 - Write permission. If the W bit is zero, then read accesses to

this page will be allowed, but any attempt to write will cause a fault. By

5ASIDs are supported in most modern x86 processors as part of hardware virtualization

extensions, which are discussed (in not very much detail) later in this book.

http://wiki.osdev.org/Paging
http://wiki.osdev.org/Paging
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setting the W bit to zero, pages that should not be modified (i.e., program

instructions) can be protected. Since correctly-functioning programs in

most languages do not change the code generated by the compiler, any

attempt to write to such a page must be a bug, and stopping the program

earlier rather than later may reduce the amount of damage caused.

U = 0/1 - User permission. If the U bit is zero, then accesses to this page

will fail unless the CPU is running in supervisor mode. Typically the OS

kernel will “live” in a portion of the same address space as the current

process, but will hide its code and data structures from access by user

processes by setting U=0 on the OS-only mappings.

Page Sharing

What happens if a single physical memory page is mapped

into two different process address spaces? It works just fine.

A question for the reader - why

doesn’t sharing read-only pages

violate the security principle of

preventing access from one process

to another’s memory space?

Each process is able to read from

the page, and any modifications it

makes are visible to the other pro-

cess, as well. In particular, note

that the MMU only sees one page

table at a time, and doesn’t care

how a page is mapped in a page

table that might be used at some

point in the future. If the two processes are running on different CPU

cores, then each core has a separate MMU and will not know or care what

translations the other cores are using6.

Address
space 2

Address
space 1

shared 
pages

Address
space 2

Address
space 1

shared 
pages

Figure 4.12: Page sharing between two process address spaces

There are two ways in which page sharing can be used:

6Conversely, if two threads from the same process are running on different cores, then

the MMU for each core will be pointing at the same page table and thus use the same

mappings.
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512 
... 
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512 
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Figure 4.13: 4-level page table for 64-bit mode.

Information sharing: Some databases and other large programs use

memory segments shared between processes to efficiently pass information

between those processes.

Memory saving: Most processes use the same set of libraries to commu-

nicate with the OS, the graphical interface, etc., and these libraries must be

mapped into the address space of each process. But most of the memory

used by these libraries (program code, strings and other constant data)

is read-only, and so a single copy can be safely mapped into the address

space of each process using the library.

4.6 Page Size, Address Space Size, and 64 Bits

The page size of a processor plays a large role in determining how much

address space can be addressed. In particular, assuming that the page table

tree is built out of single pages, a 2-level page table can map N2 pages,

where N is the number of page table entries that fit in a single page. Thus,

if the address space is about 32 bits, so that a page table entry (physical

page number plus some extra bits) can fit in 4 bytes, the maximum virtual

memory that can be mapped with a 2-level page table is:

2K pages: 512 (29) entries per page = virtual address space of 218 pages

of 211 bytes each = 229 bytes (0.5 GB)

4K pages: 1024 (210) entries per page = virtual address space of 220

pages of 212 bytes each = 232 bytes (4GB)

8K pages: 2048 (211) entries per page = virtual address space of 222

pages of 235 bytes each = 235 bytes (32GB)

In other words, 2K pages are too small for a 32-bit virtual address space

unless the process moves to a deeper page table, while 8K pages are bigger

than necessary. (The SPARC and Alpha CPUs, early 64-bit processors,

used 8KB pages.)

64-bit Intel-compatible CPUs use 4K pages for compatibility, and 8-byte
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char hello[] = ‘‘hello world\n’’;

void _start(void)

{

syscall(4, 1, hello, 12); /* syscall 4 = write(fd,buf,len) */

syscall(1); /* syscall 1 = exit() */

}

Listing 4.3: Simple program described in section 4.7

page table entries, because four bytes is too small to hold large physical

page numbers. This requires a 4-level page table, as shown in Figure 4.13.

Since each of the 4 levels maps 9 bits of address, for a total of 36 bits

mapped, and the offset is 12 bits, the total virtual address space is 48

bits—not the full 64 bits, but still huge (256 TB). Clearly the penalty

for TLB misses is higher in this case than for 32-bit mode, as there are

four memory accesses to the page table for a single translation instead

of two. To support virtual address spaces greater than 256 TB, it will be

necessary to go to a deeper page table, or larger pages, or perhaps another

organization entirely.

4.7 Creating a Page Table

To see how a page table is created, we start by examining the virtual

memory map of perhaps the simplest possible Linux program, shown in

Figure 4.3. This program doesn’t use any libraries, but rather uses direct

system calls to write to standard output (always file descriptor 1 in Unix)

and to exit. In Linux, _start is the point at which execution of a program

begins; normally the _start function is part of the standard library, which

performs initialization before calling main.

When this program runs and its memory map is examined (using the

pmap command) you see the following:

00110000 4K r-x-- [ anon ] <- file header - used by OS

08048000 4K r-x-- /tmp/hello <- .text segment (code)

08049000 4K rwx-- /tmp/hello <- .data segment

bffdf000 128K rwx-- [ stack ]

The address space is constructed of a series of contiguous segments, each

a multiple of the 4 KB page size (although most are the minimum 4 KB

here), with different permissions for each. (realistic programs will have

many more segments; as an example, the address space for the Nautilus
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VPN 00110 = 0000 0000 00 01 0001 0000

top10 = 000 bottom10 = 110

VPN 08048 = 0000 1000 00 00 0100 1000

top10 = 020 bottom10 = 048

VPN 08049 = 0000 1000 00 00 0100 1001

top10 = 020 bottom10 = 049

VPN BFFDF = 1011 1111 11 11 1101 1111

top10 = 2FF bottom10 = 3DF

Listing 4.4: Virtual page numbers from the simple 4-segment program

file manager process on my Ubuntu 15.10 system has more than 800

segments.) To create a page table for this program, the first step is splitting

the page numbers into top and bottom halves (all numbers given in hex or

binary), as shown in Figure 4.4.

The first three segments are one page long; note that the last segment is

32 pages (128 KB), so it uses entries 0x3DF to 0x3FF in the second-level

page table.

The program needs four physical pages for the table; assume that pages

0000, 0001, 0002, and 0003 are used for the table, and pages 00004 and

up for data/code pages. The actual page table may be seen in Figure 4.14.

(note that the choice of physical pages is arbitrary; the page numbers

within the page directory and page table entries would of course change if

different physical pages were used.)

Review questions

4.7.1. Translating 08049448 in the page table shown in Figure 4.14 re-

quires reading the following physical addresses:

a) 00000080, 00002124

b) 00000020, 00002049

c) 00000080, 00001440

d) 00002080, 00006124

4.8 Page Faulting

In the previous section you saw how the MMU in a Pentium-like CPU

determines whether a memory access will succeed:

if the top-level entry has P=1

and is(read) or W=1

and is(supervisor) or U=1:
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Figure 4.14: Page table corresponding to memory map for Figure 4.3, also used

for review questions.

if the 2nd-level entry has P=1

and is(read) or W=1

and is(supervisor) or U=1:

use translated address.

If translation fails at any one of the six possible points above (P, W, or U

at each level) then a page fault is generated.

Page Faults

A page fault is a special form of exception that has the following two

characteristics: first, it is generated when an address translation fails, and

second, it occurs in the middle of an instruction, not after it is done, so that

the instruction can be continued after fixing the problem which caused

the page fault. Typical information that the MMU passes to the page fault

handler is:

1. The instruction address when the page fault occurred. (this is the

return address pushed on the stack as part of the exception handling

process)

2. The address that caused the page fault

3. Whether the access attempt was a read or a write
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4. Whether the access was attempted in user or supervisor mode

After the page fault handler returns, the instruction that caused the fault

resumes, and it retries the memory access that caused the fault in the first

place.

Many of the examples in this

section are illustrated using Linux,

as the source code is readily

available, but same principles

(although not details) hold true for

other modern OSes such as

Windows, Mac OS X, or Solaris.

In addition, keep in mind that the

virtual memory map for a process is

a software concept, and will almost

certainly differ between two

unrelated operating systems. In

contrast, the page table structure is

defined by the CPU itself, and must

be used in that form by any

operating system running on that

CPU.

A single instruction can cause

multiple, different page faults, of

which there are two different types:

• Instruction fetch: A fault

can occur when the CPU

tries to fetch the instruction

at a particular address. If

the instruction "straddles"

a page boundary (i.e., a 6-

byte instruction that starts

2 bytes before the end of

a page) then you could (in

the worst case) get two page

faults while trying to fetch

an instruction.

• Memory access: Once the instruction has been fetched and de-

coded, it may require one or more memory accesses that result

in page faults. These memory accesses include those to the stack

(e.g., for CALL and RET instructions) in addition to load and store

instructions. As before, accessing memory that straddles a page

boundary will result in additional faults.

Handling Page Faults

Operating systems use two primary strategies in handling page faults:

Kill the program. If the access is in fact an error, the default action is to

kill the process, so that the page fault handler never returns.7

Resolve the fault. The OS modifies the page tables to establish a valid

mapping for the failing address, and then returns from the page fault

handler. The CPU retries the memory access, which should succeed (or at

least continue farther) this time.

In fact, a single instruction can in the worst case result in quite a large

number of page faults:

7You are no doubt familiar with this process from debugging C programs.
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• On an Intel or similar CPU, multi-byte instructions and data may

cross page boundaries; e.g. reading a 4-byte integer at address

0x1FFE (occupying bytes 0x1FFE, 1FFF, 2000, and 2001) could

trigger page faults on both page 0x1000 and 0x2000.

• Every instruction can fault on instruction fetch; memory instructions

like LOAD and STORE can also fault on data access.

• Finally, remember that the stack is in memory, too, so that CALL,

PUSH, POP, and RET can all fault if the operation causes an access

to a non-mapped stack address.

If the page fault handler updates the page table (to point to an appropriately

initialized page of memory) and then returns promptly, the whole page

fault process is invisible to the user or programmer.

The page fault handler for an operating system typically only uses the

four responses described above—crash, demand-allocate, demand-page,

and copy-on-write. More complex page fault mechanisms are used in

hardware virtualization, to support virtual machines; those mechanisms

will be described later in this book.

Review questions

4.8.1. One instruction can only result in one page fault: true / false

4.8.2. Assume a Pentium-like CPU which can (a) load 4-byte words from

unaligned (non-multiple-of-4) addresses, and (b) execute unaligned

instructions - in particular, this means that an instruction or a data

word may cross over a page boundary. In addition, assume (unlike

a Pentium) that each instruction can do only one memory load or

store in addition to the instruction fetch. What is the maximum

number of page faults that could occur for a single instruction?

4.8.3. When accessing memory, virtual addresses are translated to phys-

ical addresses (a) by the page fault handler, or (b) by the MMU

(memory management unit).

Process Address Space, Revisited

How does the OS know how to handle a page fault? By examining its

internal memory map for a process. We’ve talked briefly about process

memory maps earlier, but now we will look in more detail at a specific

one, from a fairly recent (kernel 2.6 or 3.0) 32-bit Linux system. A more

thorough description of the Linux memory layout can be found at

http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory

http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory
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Figure 4.15: Linux 32-bit user/ ker-

nel memory split

In earlier chapters we saw how simple

operating systems may use separate por-

tions of the address space for programs

and for the operating system. The same

approach is often used in dividing up

the virtual address space in more com-

plex operating systems, as seen in the 32-

bit Linux memory map in Figure 4.15.

In recent Linux versions running on 32-

bit Intel-compatible CPUs, the kernel

"owns" the top 1GB, from virtual ad-

dress 0xC0000000 to 0xFFFFFFFF, and

all kernel code, data structures, and temporary mappings go in this range.

The kernel must be part of every address space, so that when exceptions like

system calls and page faults change execution from user mode to supervisor

mode, all the kernel code and data needed to execute the system call or

page fault handler are already available in the current virtual memory

map8 This is the primary use for the U bit in the page table—by setting

the U bit to zero in any mappings for operating system code and data, user

processes are prevented from modifying the OS or viewing protected data.

Here is the memory map of a very simple process9, as reported in

/proc/<pid>/maps:

08048000-08049000 r-xp 00000000 08:03 4072226 /tmp/a.out

08049000-0804a000 rw-p 00000000 08:03 4072226 /tmp/a.out

0804a000-0804b000 rw-p 00000000 00:00 0 [anon]

bffd5000-bfff6000 rw-p 00000000 00:00 0 [stack]

The memory space has four segments:

08048000 (one page) - read-only, executable, mapped from file a.out

08049000 (one page) - read/write, mapped from file a.out

0804a000 (one page) - read/write, “anonymous”

bffd5000-bfff6000 (33 4KB pages) - read/write, “stack”

Where does this map come from? When the OS creates the new address

space in the exec() system call, it knows it needs to create a stack, but

the rest of the information comes from the executable file itself:

$ objdump -h a.out

8In fact the x86 has a way of telling the CPU to switch page tables when an exception

occurs, but it’s slow. It was used by early Linux versions, but replaced in 1997 or so.
9 Similar to the program in Figure 4.3, but not exactly the same. I’ve completely

forgotten what program it was, actually.
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a.out: file format elf32-i386

Idx Name Size VMA LMA File off Algn

0 .text 00000072 08048094 08048094 00000094 2**2

CONTENTS, ALLOC, LOAD, READONLY, CODE

1 .rodata 000006bd 08048108 08048108 00000108 2**2

CONTENTS, ALLOC, LOAD, READONLY, DATA

2 .data 00000030 080497c8 080497c8 000007c8 2**2

CONTENTS, ALLOC, LOAD, DATA

3 .bss 00001000 08049800 08049800 000007f8 2**5

ALLOC

$

Executable files on Linux are stored in the ELF format (Executable and

Linking Format), and include a header that describes the file to the OS;

the information above came from this header. Looking at the file, the

following sections can be seen:

0 ... x93 various header information

00000094 - 00000107 “.text” program code

00000108 - 000007c7 “.rodata” read/only data (mostly strings)

000007c8 - 000007e7 “.data”’ initialized writable data

(no data) “.bss”’ zero-initialized data

The BSS section10corresponds to global variables initialized to zero; since

the BSS section is initialized to all zeros, there is no need to store its initial

contents in the executable file.

Executable file and process address space

Here you can see the relationship between the structure of the executable

file and the process address space created by the kernel when it runs this

executable. One page (08048xxx) is used for read-only code and data,

while two pages (08049xxx and 0804Axxx) are used for writable data.

Review questions

4.8.1. Layout of the per-process address space in operating systems such

as Linux is:

a) Determined by the CPU hardware

10In most compiled languages (e.g. C, C++) global variables which aren’t explicitly

initialized have their values set to zero. The compiler and linker lump these values together

into a single section, called BSS for an ancient IBM assembly language command that is

an abbreviation for something that no one remembers. Since the entire section is going to

contain all zero bytes, there is no need to store its contents - just its starting address and

length.
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Figure 4.16: Relationship of executable file header to memory map structure

b) Specified in the executable file header

c) Determined by command-line arguments to the program

4.8.2. When a page fault occurs on an Intel-compatible CPU, the CPU

switches from the process address space to the kernel address space:

True / False

4.8.3. When a page fault occurs on an Intel-compatible CPU, if more than

one page fault occurs at the same instruction location the CPU will

crash: True / False

4.9 Page Fault Handling

In the Linux kernel, the memory map is represented as a list of

vm_area_struct objects, each corresponding to a separate segment,

and each containing the following information:

• Start address

• End+1 address

• Permissions: read/write/execute

• Flags: various details on how to handle this segment

• File, offset (if mapped from a file)

Unlike the page table, which is a simple structure defined by the CPU

hardware, the virtual memory map in the OS is a purely software data

structure, and can be as simple or complex as the OS writers decide.

With the map from Figure 4.16, the possibilities when the page fault

handler looks up a faulting address are:
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• No match: This is an access to an undefined address. It’s a bug, and

the OS terminates the process with a "segmentation fault" error.

• Any page in bff08000-bff29000: These are demand-allocate stack

pages. The page fault handler allocates a physical memory page,

zeros it (for safety), puts it into the page table, and returns.

• Page 08048000: This page is mapped read-only from the executable

file ’a.out,’ so the page fault handler allocates a page, reads the

first 4KB from ’a.out’ into it, inserts it into the page table (marked

read-only), and returns.

• Page 08049000: This page is mapped read/write from the executable

file. Just like page 08048000, the page fault handler allocates a page,

reads its contents from the executable, maps the page in the page

table (read/write this time) and returns.

• Page 0804a000: Like the stack, this is demand-allocated and zero-

filled, and is handled the same way.

Page Faults in the Kernel

Although common in the past,

modern Windows and Linux

systems rarely seem to crash due to

driver problems. (Although my

Mac panics every month or two.) If

you ever develop kernel drivers,

however, you will become very

familiar with them.

What happens if there is a page

fault while the CPU is running ker-

nel code in supervisor mode? It

depends.

If the error is due to a bug in kernel-

mode code, then in most operating

systems the kernel is unable to han-

dle it. In Linux the system will dis-

play an “Oops” message, as shown

in Figure 4.5, while in Windows the result is typically a “kernel panic”,

which used to be called a Blue Screen of Death. Most of the time in Linux

the process executing when this happens will be terminated, but the rest

of the system remains running with possibly reduced functionality.

But what about addresses passed by the user in a system call? For example,

what if the memory address passed to a read system call has been paged

out, or not instantiated yet? It turns out that the same page faulting logic

can be used in the kernel, as well—the first access to an unmapped page

will result in a fault, the process will be interrupted (in the kernel this time,

rather than in user-space code), and then execution will resume after the

page fault is handled.

But what if the user passes a bad address? We can’t just kill the process

partway through the system call, because that would risk leaving internal

operating system data structures in an inconsistent state. (Not only that,

read
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[ 397.864759] BUG: unable to handle kernel NULL pointer dereference at
0000000000000004

[ 397.865725] IP: [<ffffffffc01d1027>] track2lba+0x27/0x3f [dm_vguard]
[ 397.866619] PGD 0
[ 397.866929] Oops: 0000 [#1] SMP
[ 397.867395] Modules linked in: [...]
[ 397.872730] CPU: 0 PID: 1335 Comm: dmsetup Tainted: G OE 4.6.0 #3
[ 397.873419] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS ...
[ 397.874487] task: ffff88003cd10e40 ti: ffff880037080000 task.ti: ffff88003708
[ 397.875375] RIP: 0010:[<ffffffffc01d1027>]
[<ffffffffc01d1027>] track2lba+0x27
[ 397.876509] RSP: 0018:ffff880037083bd0 EFLAGS: 00010282
[ 397.877193] RAX: 0000000000000001 RBX: 0000000000003520 RCX: 0000000000000000
[ 397.878085] RDX: 0000000000000000 RSI: 0000000000003520 RDI: ffff880036bd70c0
[ 397.879016] RBP: ffff880037083bd0 R08: 00000000000001b0 R09: 0000000000000000
[ 397.879912] R10: 000000000000000a R11: f000000000000000 R12: ffff880036bd70c0
[ 397.880763] R13: 00000000002e46e0 R14: ffffc900001f7040 R15: 0000000000000000
[ 397.881618] FS: 00007f5767938700(0000) GS:ffff88003fc00000(0000)
[ 397.915186] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 397.932122] CR2: 0000000000000004 CR3: 000000003d3ea000 CR4: 00000000000406f0
[ 397.949459] Stack:

... stack contents and backtrace omitted ...

Listing 4.5: Linux kernel “Oops” message due to NULL pointer dereference.

but the POSIX standard requires that system calls return the EFAULT

error in response to bad addresses, not exit.) Instead, all code in the Linux

kernel which accesses user-provided memory addresses is supposed to use

a pair of functions, copy_from_user and copy_to_user, which check

that the user-provided memory region is valid for user-mode access11.

In very early versions of Linux the kernel ran in a separate address space

where virtual addresses mapped directly to physical addresses, and so these

functions actually interpreted the page tables to translate virtual addresses

to physical (i.e. kernel virtual) addresses, which was slow but made it

easy to return an error if an address was bad. Newer Linux versions map

the kernel and its data structures into each process virtual address space,

making these functions much faster but more complicated. The speedup

is because there is no longer any need to translate page tables in software;

instead the two copy_*_user functions just perform a few checks and

then a memcpy. More complicated because if it fails we don’t find out

about it in either of these functions, but rather in the page fault handler

itself. To make this work, if the page fault (a) occurs in kernel mode, and

(b) the handler can’t find a translation for the address, it checks to see if the

fault occurred while executing the copy_from_user or copy_to_user

functions, and if so it performs some horrible stack manipulation to cause

11This is important for security reasons. The chapter on security will talk more about

the importance of double-checking user imputs to keep a system secure.

copy_from_user
copy_to_user
copy_*_user
memcpy
copy_from_user
copy_to_user
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Figure 4.17: Memory usage of three copies of the same program.

that function to return an error code12.

But what if a page fault occurs in the kernel outside of these two functions?

That should never happen, because kernel structures are allocated from

memory that’s already mapped in the kernel address space. In other words

it’s a bug, just like the bugs that cause segmentation faults in your C

programs. And just like those bugs it causes a crash, resulting in an error

message such as the one shown in Figure 4.5. If the kernel was running

in a process context (e.g. executing system call code) then the currently-

running process will be killed, while if this occurs during an interrupt the

system will crash. The equivalent in Windows is called a Blue Screen

of Death (although they changed the color several versions back); since

almost all Windows kernel code executes in interrupt context, these errors

always result in a system crash.

4.10 Shared Executables and Libraries

In addition to simplifying memory allocation, virtual memory can also al-

low memory to be used more efficiently when running multiple processes.

Consider the case of a multi-user computer, where multiple users are

running the same program (i.e., the shell, /bin/bash) at the same time.

If we just follow the rules we’ve seen above for allocating and filling

memory, the memory usage of the three programs will look something

like the left-hand side of Figure 4.17.

However since the code section of each process is identical, we can share

those pages, giving the picture on the right-hand side of Figure 4.17.13

12In recent versions it’s even more complicated than that, using a table of all the locations

in the kernel where the two functions are invoked.
13Why are the code sections for each process identical? Because (a) they are mapped

/bin/bash
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Figure 4.18: Address mismatch when lib1 and lib2 are linked with different

programs

How does the OS determine that it can share the same page between

two processes? When a page fault happens, and the page fault handler

determines that it needs to read (i.e., page 10 from the executable /bin/

bash) it first searches to see whether that page is already stored in some

existing memory page14. If so, it can increment a reference count on that

page and map it into the process page table, instead of having to allocate

a new page and read the data in from the disk. When a process exits,

instead of blindly de-allocating any memory mapped by that process, the

reference count of each page is decremented, and it is only freed when this

count goes to zero, indicating that no other address spaces are mapping

that page.

Note that the operating system also provides a way for applications to

create memory regions which are explicitly shared between processes,

and used for communication between them. This can be used for high-

performance communication between processes, and is used in at least

one program that people actually use.

Sharing memory at the program level worked well on multi-user systems,

as you just saw, where many people ran the same simple programs (e.g.,

the shell, editor, and compiler) at the same time. With the advent of

graphical interfaces and single-user workstations, it stopped working so

well. Instead, now there’s a single user running one copy each of several

different programs. Worse yet, each program is far more complicated than

in the past, as the libraries for interacting with the display, mouse, and

keyboard are inevitably larger and more complex than the simple libraries

from the same file, and so started with the same values, and (b) they are read-only, so those

values haven’t changed. Is this safe? Doesn’t it give a process access to another processes’

memory space? It’s safe because each process still sees exactly the same data as they would

without sharing, and can’t change that data for other processes.
14Most operating systems only check for the case where pages in different processes map

to exactly the same page in exactly the same file. If you have two different executable files

that happen to be exact copies of each other, the OS will have no idea that they’re the same,

and will happily load pages from both of them into memory at the same time.

/bin/bash
/bin/bash
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#include <stdio.h>

int main()

{

printf("hello world\n");

}

Listing 4.6: Traditional “hello world” program

needed to define functions like printf for terminal output.15

The problem here is that even though your browser, text editor, and email

program all use the same libraries, each program ends up being a unique

combination of code, combining the actual program code with a specific

set of libraries, as seen in Figure 4.18. So even if the operating system

tried to recognize identical regions in the two files, the differing alignment

would make it impossible to share pages between them.

lib 2 lib 2=

lib 1 lib 1=

program 1 program 2!=

lib 2 lib 2=

lib 1 lib 1=

program 1 program 2!=

Figure 4.19: Memory sharing

with shared libraries

Shared libraries eliminate this wasted

space by combining code and libraries in a

way that allows sharing in most cases. To

do this, the program and the libraries are

structured so that different programs can

share a single copy of the same library. In

simple terms, each library is made to look

like a separate program, which means that

multiple copies of the same library can be

shared, even if the different programs that

use it can’t be shared.

In Figure 4.19 we see how each shared library is given its own region of

address space, rather than packing them all into a single segment. The base

programs (program1 and program2 below) still differ, but the libraries

remain identical and can be shared between address spaces.

This approach is taken in Linux; if we compile the standard “hello world”

program shown in Figure 4.6 we can use the ldd command to list the

libraries which will be loaded at runtime, as seen in Figure 4.7, resulting

in the memory map in Figure 4.8.

15Example: xterm is the original graphical terminal emulator for Unix, and uses very

few fancy features. The program itself compiles to about 372KB of machine instructions and

some amount of data, but it also uses 26 separate external libraries which add up to 5.6MB

of additional program space. A newer program, gnome-terminal, uses only 300KB of

memory for the program itself, but links in 48 libraries, for a total of 22MB of additional

memory. Although both of these examples are taken from Linux, both Apple OS X and

Windows use similar large libraries for the graphical interface.
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pjd@pjd-fx:/tmp$ ldd a.out
linux-vdso.so.1 => (0x00007fff99d56000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f5a0bb94000)
/lib64/ld-linux-x86-64.so.2 (0x00005590e6bba000)

Listing 4.7: Libraries linked with program in Figure 4.6.

Review questions

4.10.1. Page sharing can be used to (select all that apply):

a) Reduce the amount of memory used for multiple copies of the

same program or library

b) Reduce the amount of memory used by different programs

and libraries

c) Communicate between processes

4.10.2. The OS knows it can share a page when the same page in the same

file is mapped in two different processes: True / False

More Memory Sharing: fork() and copy-on-write

In all the cases you’ve seen so far, page sharing has been used to share

read-only pages—these are intrinsically safe to share, because processes

pjd@pjd-fx:~$ pmap -p 18012

0000000000400000 4K r-x-- /tmp/a.out

0000000000600000 4K r---- /tmp/a.out

0000000000601000 4K rw--- /tmp/a.out

00007ffff7a0f000 1792K r-x-- /lib/x86_64-linux-gnu/libc-2.21.so

00007ffff7bcf000 2048K ----- /lib/x86_64-linux-gnu/libc-2.21.so

00007ffff7dcf000 16K r---- /lib/x86_64-linux-gnu/libc-2.21.so

00007ffff7dd3000 8K rw--- /lib/x86_64-linux-gnu/libc-2.21.so

00007ffff7dd5000 16K rw--- [ anon ]

00007ffff7dd9000 144K r-x-- /lib/x86_64-linux-gnu/ld-2.21.so

00007ffff7fcd000 12K rw--- [ anon ]

00007ffff7ff6000 8K rw--- [ anon ]

00007ffff7ff8000 8K r---- [ anon ]

00007ffff7ffa000 8K r-x-- [ anon ]

00007ffff7ffc000 4K r---- /lib/x86_64-linux-gnu/ld-2.21.so

00007ffff7ffd000 4K rw--- /lib/x86_64-linux-gnu/ld-2.21.so

00007ffff7ffe000 4K rw--- [ anon ]

00007ffffffde000 132K rw--- [ stack ]

ffffffffff600000 4K r-x-- [ anon ]

total 4220K

Listing 4.8: Memory map for hello world program in Figure 4.6
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are unable to modify the pages and thereby affect other processes. But,

can writable pages be shared safely? The answer is yes, but it has to be

done carefully.

First, some background on why this is important. The Unix operating

system uses two system calls to create new processes and execute programs:

fork() and exec(). fork() makes a copy of the current process16,

while exec(file) replaces the address space of the current process with

the program defined by file and begins executing that program at its

designated starting point.

UNIX uses this method because of an arbitrary choice someone made 40

years ago; there are many other ways to do it, each of them with their own

problems. However this is how UNIX works, and we’re stuck with it, so

it’s important to be able to do it quickly.

In early versions of Unix, fork() was implemented by literally copying

all the writable sections (e.g., stack, data) of the parent process address

space into the child process address space. After doing all this work, most

(but not all) of the time, the first thing the child process would do is to

call exec(), throwing away the entire contents of the address space that

were just copied. It’s bad enough when the shell does this, but even worse

when a large program (e.g. Chrome) tries to execute a small program (e.g.

/bin/ls) in a child process.

We’ve already seen how to share read-only data, but can we do anything

about writable data? In particular, data which is writable, but isn’t actually

going to be written?

A quick inspection of several Firefox and Safari instances (using pmap on

Linux and vmmap on OS X) indicates that a browser with two or three

open tabs can easily have over 300MB of writable address space17. When

fork is executed these writable pages can’t just be given writable mappings

in the child process, or changes made in one process would be visible

in the other. In certain cases (i.e., the stack) this mutual over-writing of

memory would almost certainly be disastrous.

However in practice, most of these writable pages won’t be written to

again. In fact, if the child process only executes a few lines of code and

then calls exec, it may only modify a handful of pages before its virtual

address space is destroyed and replaced with a new one.

16In fact the system call returns twice, once in the parent and once in the child
17This measurement was made in 2012; more recent versions use more memory.

exec
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Copy-on-write is in fact a

widely-used strategy in computer

systems. It is effectively a “lazy”

copy, doing only the minimal

amount of work needed and

reducing both the cost of copying

and the total space consumed.

Similar copy-on-write mechanisms

can be seen in file systems, storage

devices, and some programming

language runtime systems.

Linux uses a technique called copy-

on-write to eliminate the need to

copy most of this memory. When

a child process is created in the

fork system call, its address space

shares not only the read-only pages

from the parent process, but the

writable pages as well. To prevent

the two processes from interfering

with each other, these pages are

mapped read-only, resulting in a

page fault whenever they are ac-

cessed by either process, but flagged as copy-on-write in the kernel mem-

ory map structures. This results in a page fault when either process tries

to write to one of these pages; the page fault handler then “breaks” the

sharing for that page, by allocating a new page, copying the old one, and

mapping a separate page read-write in each of the processes.

Review questions

4.10.1. Copy-on-write allows writable data pages to be shared: True /

False

4.10.2. Copy-on-write performs copying during the fork system call: True

/ False

fork
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Figure 4.20: Page Table Entry with D (dirty) bit

Memory Over-Commitment and Paging

Page faults allow data to be dynamically fetched into memory when it

is needed, in the same way that the CPU dynamically fetches data from

memory into the cache. This allows the operating system to over-commit

memory: the sum of all process address spaces can add up to more memory

than is available, although the total amount of memory mapped at any

point in time must fit into RAM. This means that when a page fault occurs

and a page is allocated to a process, another page (from that or another

process) may need to be evicted from memory.

Types of Virtual Segments: There

are two types of virtual segments:

file-backed and anonymous.

File-backed segments are what the

name says; approximately 99.9% of

them are read-only mappings of

demand-paged executables.

Anonymous mappings are called

this because they don’t correspond

to a file; most of them contain

writable program data or stacks.

Evicting a read-only page mapped

from a file is simple: just forget

the mapping and free the page; if a

fault for that page occurs later, the

page can be read back from disk.

Occasionally pages are mapped

read/write from a file, when a pro-

gram explicitly requests it with

mmap—in that case the OS can

write any modified data back to the

file and then evict the page; again

it can be paged back from disk if

needed again.

Anonymous segments such as stack and heap are typically created in

memory and do not need to be swapped; however if the system runs low

on memory it may evict anonymous pages owned by idle processes, in

order to give more memory to the currently-running ones. To do this the

OS allocates a location in “swap space” on disk: typically a dedicated swap

partition in Linux, and the PAGEFILE.sys and /var/vm/swapfile files

in Windows and OSX respectively. The data must first be written out to

that location, then the OS can store the page-to-location mapping and

release the memory page.
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Figure 4.21: Memory Hierarchy

Dirty and Clean Pages

How does the operating system determine whether a page has been mod-

ified and needs to be written to disk? It uses the D bit in the page table

entry for this, as seen in Figure 4.20. When a page is mapped in the page

table, the D bit in the PTE is set to zero; when the CPU writes to a page

with D = 0, the MMU re-writes the page table entry with D = 1. When the

OS decides to evict a page, the D bit tells it whether the page is “clean,”

i.e., it hasn’t been modified, or whether it is “dirty” and has to be written

back to disk.

When the OS is paging in from a file (e.g. executable code), it is straight-

forward to find the data to read in, as there is a direct mapping between

a range of pages in a specific file and corresponding pages in the virtual

memory space. This correspondence can easily be stored in the definition

of that virtual address segment. When pages are saved to swap space this

doesn’t work, however, as the locations they are saved to are allocated

dynamically and fairly arbitrarily.

This problem is solved by using the page table itself. After evicting a page,

its page table entry is invalidated by setting P = 0; however, the other 31

bits of the entry are ignored by the MMU. These bits are used to store

the location of the page in swap space, so it can be found later later at

page fault time. Thus, the page table entry does dual duty: when the page

is present it points to the physical page itself, and is interpreted by the

MMU; otherwise, it points to a location in swap space, and is ignored by

the MMU and used by the software page fault handler.

The Memory Hierarchy

Demand paging from files and from swap provides the mechanisms to

create the traditional memory hierarchy, as shown in Figure 4.22.

To access address A:
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• If it’s not in the cache, then the old cache line is evicted, and A is

loaded into the resulting empty cache line. This is done in hardware.

• If it’s not in memory, then the old page is evicted, and the page

containing A is loaded into the resulting empty page. This is done

in software.

In general, this works because of locality: when a cache line is brought in

from memory, a page is loaded into in memory from disk, etc., it tends to

get accessed multiple times before eviction.

Decades ago this was used to run programs much bigger than physical

memory—CPUs were slow and disks were almost as fast as they are today,

so the relative overhead of paging infrequently-used data to disk was

low. Today’s CPUs are thousands of times faster, while disks are only a

few times faster, and virtual memory doesn’t seem like such a great idea

anymore. However it still gets used, even on desktop and laptop systems,

to “steal” memory from idle programs: if you leave a large program like

Chrome or Microsoft Word idle for half an hour while you use another

memory-hungry program, memory will be released from the idle process

and given to the active one; if you switch back, the original program will

run slowly for a while as it swaps these pages back in.

Review questions

4.10.1. When a value cannot be found in main memory, it must be fetched

from: a) L2 or L1 cache b) Disk or other secondary storage

4.10.2. CPU caches and caches of disk data held in RAM both perform

best when accesses are random: True / False

4.11 Page Replacement

If there’s a limited amount of memory available, then every time a page

is swapped in from disk, it will be necessary to remove, or evict, another

page from memory. The choice of which page to evict is important: the

best page to choose would be one that won’t be needed anymore, while

the worst page to evict would be one of the next to be used. (in that case,

paging it back in would force another page to be evicted, and the work of

paging it out and back in again would be wasted.) In fact, replacement

of items in a cache is a general problem in computer systems; examples

include:

• Cache line replacement in the hardware CPU cache

• Entry replacement in the TLB
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• Buffer replacement in a file system buffer pool

• Page replacement in virtual memory

The page replacement problem can be stated in abstract form:

Given the following:

1. A disk holding d (virtual) pages, with virtual addresses 0, . . . d− 1;

2. A memory M consisting of m (physical) pages, where each page is

either empty or holds one of the d virtual pages, and

3. An access pattern a1, a2, a3, · · · where each ai is a virtual address

in the range (0, d− 1):

a demand-paging strategy is an algorithm which for each access ai does

the following:

• If ai is already in one of the m physical pages in M (i.e. a hit): do

nothing

• Otherwise (a miss) it must:

• Select a physical page j in M (holding some virtual address Mj)

and evict it, then

• Fetch virtual page ai from disk into physical page j

In other words it only fetches page j on demand—i.e. in response to a

request for it.

4.12 Page Replacement Strategies

In this class we consider the following page replacement strategies:

• FIFO: first-in first-out. The page evicted from memory is the first

page to have been fetched into memory.

• LRU: least-recently used. Here, accesses to each page are tracked

after it has been loaded into memory, and the least-recently-used

page is evicted (unsurprisingly, given the name of the strategy).

• OPT: this is the optimal demand-paged strategy, which is simple but

impossible to implement, since it requires knowledge of the future.

It’s examined because it provides a way of telling how well a real

replacement strategy is performing—is it close to OPT, or is it far

worse?

FIFO

This strategy is very simple to implement, as it only requires keeping track

of the order in which pages were fetched into memory. Given 4 pages in

physical memory, and the following access pattern:
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Figure 4.22: FIFO cleaning

Figure 4.23: LRU cleaning

1 2 3 4 2 1 3 4 5 4 1 2 5 6 3 2 5 2 3 6

The contents of memory after each access is shown in Figure 4.22, with

hits shown in light grey and pages evicted (when misses occur) shown in

dark grey.

LRU

The idea behind LRU is that pages which have been accessed in the recent

past are likely to be accessed in the near future, and pages which haven’t,

aren’t. LRU replacement is shown in Figure 4.23.

To make the operation of the LRU algorithm more clear, on each hit, the

accessed page is moved to the top of the column. (This is how LRU is

typically implemented in software: elements are kept in a list, and on

access, an element is removed and reinserted at the front of the list. The

least-recently-used element may then be found by taking the tail of the list)

Although this is a small example, a performance improvement is noted,

with four misses compared to six for FIFO.
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OPT

The optimal algorithm picks a page to evict by looking forward in time and

finding the page which goes for the longest time without being accessed

again. Except for seeing the future, OPT plays by the same rules as other

demand-paging algorithms: in particular, it can’t fetch a page until it is

accessed. (That’s why the OPT strategy still has misses.) OPT is shown

in Figure 4.24, using the same access pattern as before. The first eviction

decision is shown graphically: pages 4, 2, and 1 are accessed 1, 3, and 2

steps in the future, respectively, while page 3 isn’t accessed for 6 steps and

is thus chosen to be evicted.

FIFO with Second Chance (CLOCK)

LRU is simple and quite effective in many caching applications, and it’s

ideal that the operating system uses it to determine which pages to evict

from memory. But there is one small problem in using it in a virtual

memory system: in this case, a “miss” corresponds to a page fault and

fetching a page from disk, while a “hit” is when the page is already mapped

in memory and the access succeeds in hardware. This means that once a

page is faulted into memory, any further use of that page is “invisible” to

the operating system. If the OS doesn’t know when a page was last used,

it can’t implement the Least-Recently-Used replacement strategy.

Despite this issue, it’s still possible to do better than FIFO by using the A

(“accessed”) bit in the page table entry, which indicates whether the page

has been accessed since the last time the bit was cleared18. In Figure 4.25

we see an algorithm called “FIFO with second chance,” where the A bit

is used to determine whether a page has been accessed while it was in

Figure 4.24: OPT (optimal) cleaning

18When the hardware reads a page table entry into the TLB it checks the A bit; if it is

clear, then the hardware re-writes the entry with the A bit set.
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Figure 4.25: FIFO with second

chance
Figure 4.26: CLOCK Algorithm

the FIFO queue. If the A bit is 1, the replacement algorithm clears it and

re-writes the page table entry, and the page is given “another chance,” i.e.,

it is cycled back to the head of the list. If the A bit is 0, then there have

been no accesses to the page during its entire trip through the list, and so

it is selected for replacement.

CLOCK

An alternate way of visualizing the FIFO with second chance algorithm

is shown in Figure 4.26. Pages are arranged in a circle, with a “hand”

advancing around the circle testing pages and determining whether to

keep or evict them. This description is the origin of the widely-used name

for this algorithm, CLOCK.

Review questions

4.12.1. Page replacement strategies are used to decide:

a) Which pages to load into memory from disk

b) Which pages to evict from memory

4.12.2. Which of these statements are true?

a) The OPT replacement strategy results in more misses (i.e.

page faults) then LRU.

b) The OPT replacement strategy is easier to implement than

LRU.

c) The CLOCK replacement strategy is easier to implement in a

virtual memory system than LRU.
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Answers to Review questions

4.3.1 (translating 0x00C001C0) 1, 0x00C00. The top 20 bits (or 5 hex

digits, at 4 bits each) form the page number. The bottom 12 bits

(or offset) are 0x1C0, and the top 10 bits (taken as a 10-bit binary

number) are 0x008.

4.3.2 (top-level page table entry) (3), (P=1, PPN=00003), as this is the

entry at index 003 in the top-level page directory.

4.7.1 (physical addresses read in page table walk) (1), (00000080,

00002124). Remember that the address of the ith 4-byte element in

a table is 4 · i bytes after the beginning, not i bytes.

4.8.1 False. Each page accessed in loading and executing an instruction

can result in a page fault.

4.8.2 4 page faults - 2 for instruction fetch (in the case where the first

bytes of an instruction are on one page, and the remainder is on the

next page) and 2 for the memory access if it crosses a page boundary

as well.

4.8.3 (b), the MMU. The page fault handler calculates virtual-to-physical

mappings and installs them in the page table, but the MMU performs

the actual translation when an address is used.

4.8.1 (2), specified in the executable file header. (or mostly so - the

stack and heap are typically determined at runtime.) The CPU

hardware puts very few restraints on the address space layout, and

the command-line arguments are not used by the operating system

but are instead passed directly to the program.

4.8.2 False. The CPU only switches address spaces when the OS explicitly

loads the address of a new page table into the page table base register

(CR3).

4.8.3 False. A single instruction can safely give rise to multiple page

faults, one fault (or two, if page boundaries are straddled) for the

instruction itself, and one or two for each memory address referenced

by the instruction. (Note that this is different from a “double fault,”

which occurs if there is a page fault while executing the page fault

handler.)

4.10.1 (1) and (3). Memory can’t be shared between different programs

and libraries, as shared pages will have the same contents in each

address space.

4.10.2 True. As an example, different processes can share the memory

pages used to map the code section of a particular program, so that

no matter how many copies of the same program are running, only

a single copy of the program code is needed in memory.

4.10.1 By copying pages before they are written to, COW allows sharing
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of writable pages without risk of interference or information leakage.

4.10.2 False. Shared mappings are created in fork, but actual copying is

performed in the page fault handler.

4.10.1 (2), Disk / secondary storage. Data in L1/L2 cache is a subset of

data in memory, which is a subset of data on disk.

4.10.2 False. Cache performance relies on non-randomness—i.e. that

some values (hopefully the ones in cache) are used more than others.

4.12.1 (2). That’s why it’s called a page replacement strategy.

4.12.2 (1): False: no demand-paging strategy is more efficient than OPT.

(2) False: OPT is impossible to implement. (3) True: CLOCK is

easier to implement because it does not require precise knowledge

of when pages are used.



Chapter 5

I/O, Drivers, and DMA

This chapter covers (a) the memory and I/O bus architecture of modern

computers, (b) programmed I/O and direct-memory access, (c) disk drive

components and how they influence performance, and (d) logical block

addressing and the SATA and SCSI buses.

5.1 Introduction

Input/Output (I/O) devices are crucial to the operation of a computer. The

data that a program processes — as well as the program binary itself

— must be loaded into memory from some I/O device such as a disk,

network, or keyboard. Similarly, without a way to output the results of

a computation to the user or to storage, those results would be lost. One

of the primary functions of the operating system is to manage these I/O

devices. It should control access to them, as well as providing a consistent

programming interface across a wide range of hardware devices with

similar functionality but differing details. This chapter describes how I/O

devices fit within the architecture of modern computer systems, and the

role of programmed I/O, interrupts, direct memory access (DMA), and

device drivers in interacting with them. In addition, you will examine one

device, the hard disk drive and its corresponding controller, which is the

source and destination of most I/O on typical systems.

5.2 PC architecture and buses

In Figure 5.1 you see the architecture of a typical Intel-architecture com-

puter from a few years ago. Different parts of the system are connected

by buses, or communication channels, operating at various speeds. The

109
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L1 cache

L2 cache

CPU

Front-side
bus

Address
Data

DDR2 bus

Memory

PCI Express
bus

Graphics

SATA
interface

SATA bus

disk drive

North bridge

USB

South
bridge

slow stuff
(e.g. keyboard)

ISA busUSB bus

Figure 5.1: Standard Intel PC Architecture

Front-Side Bus carries all memory transactions which miss in L1 and L2

cache, and the North Bridge directs these transactions to memory (DDR2

bus) or I/O devices (PCIe bus) based on their address. The PCI Express

(PCIe) is somewhat slower than the front-side bus, but can be extended

farther; it connects all the I/O devices on the system. In some cases (like

USB and SATA), a controller connected to the PCIe bus (although typ-

ically located on the motherboard itself) may interface to a yet slower

external interface. Finally, the ISA bus is a vestige of the original IBM

PC; for some reason, they’ve never moved some crucial system functions

off of it, so it’s still needed.1

Simple I/O bus and devices

The fictional computer system described in earlier chapters included a

number of memory-mapped I/O devices, which are accessible at particular

physical memory addresses. On early computers such as the Apple II

and the original IBM PC this was done via a simple I/O bus as shown in

Figure 5.2 and Figure 5.3. Address and data lines were extended across

1The primary difference between this figure and contemporary (2016) systems is that

(a) the memory bus is DDR3 or DDR4, and (b) the north bridge is located on the CPU chip,

with no external front-side bus.
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Data

Address

CPU Memory I/O 

Figure 5.2: Simple memory/IO bus us-

ing shared address and data lines

Figure 5.3: Simple memory/IO bus

with extension cards

a series of connectors, allowing hardware on a card plugged into one of

these slots to respond to read and write requests in much the same way

as memory chips on the motherboard would. (This required each card

to respond to a different address, no matter what combination of cards

were plugged in, typically requiring the user to manually configure card

addresses with DIP switches.)

The term “bus” was taken from electrical engineering; in high-power

electric systems a bus bar is a copper bar used to distribute power to

multiple pieces of equipment. A simple bus like this one distributes

address and data signals in much the same way.

I/O vs. memory-mapped access: Certain CPUs, including Intel archi-

tecture, contain support for a secondary I/O bus, with a smaller address

width and accessed via special instructions. (e.g. “IN 0x100” to read a

byte from I/O location 0x100, which has nothing to do with reading a byte

from memory location 0x100)

Memory-mapped I/O: like in our fictional computer, devices can be

mapped in the physical memory space and accessed via standard load and

store instructions. In either case, I/O devices will have access to an inter-

rupt line, allowing interrupts to be raised for events like I/O completion.

Device selection: Depending on the system architecture, the device may

be responsible for decoding the full address and determining when it has

been selected, or a select signal may indicate when a particular slot on the

bus is being accessed. Almost all computers today use a version of the

PCI bus, which uses memory-mapped access, and at boot time, assigns

each I/O device a physical address range to which it should respond.
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(a) polled (b) interrupt-driven

Figure 5.4: Polled and interrupt-driven I/O

Polled vs. Interrupt-driven I/O

Polled (or “programmed”) I/O: As described in earlier chapters, the

simplest way to control an I/O device is for the CPU to issue commands and

then wait, polling a device status register until the operation is complete.

In Figure 5.4(a) an application requests I/O via e.g. a read system call;

the OS (step 1) then writes to the device command register to start an

operation, after which (step 2) it begins to poll the status register to detect

completion. Meanwhile (step 3) the device carries out the operation, after

which (step 4) polling by the OS detects that it is complete, and finally

(step 5) the original request (e.g. read) can return to the application.

Interrupt-driven I/O: The alternate is interrupt-driven I/O, as shown in

Figure 5.4(b). After (step 1) issuing a request to the hardware, the OS (step

2) puts the calling process to sleep and switches to another process while

(step 3) the hardware handles the request. When the I/O is complete, the

device (step 4) raises an interrupt. The interrupt handler then finishes the

request. In the illustrated example, the interrupt handler (step 5) reads data

that has become available, and then (step 6) wakes the waiting process,

which returns from the I/O call (step 7) and continues.

Latency and Programmed I/O

On our fictional computer the CPU is responsible for copying data between

I/O devices and memory, using normal memory load and store instructions.

Such an approach works well on computers such as the Apple II or the

original IBM PC which run at a few MHz, where the address and data

buses can be extended at full speed to external I/O cards. A modern CPU
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Figure 5.5: Latency between CPU and

various levels of memory/IO hierarchy
Figure 5.6: DMA access for high-speed

data transfer

runs at over 3 GHz, however; during a single clock cycle light can only

travel about 4 inches, and electrical signals even less. Figure 5.5 shows

example latencies for a modern CPU (in this case an Intel i5, with L3

cache omitted) to read a data value from L1 and L2 cache, a random

location in memory (sequential access is faster), and a register on a device

on the PCIe bus. (e.g. the disk or ethernet controller) In such a system,

reading data from a device in 4-byte words would result in a throughput

of 5 words every microsecond, or 20MB/s — far slower than a modern

network adapter or disk controller.

Review questions

5.2.1. Buses which extend farther from the CPU are usually:

a) Faster than those closer to the CPU

b) Slower than those closer to the CPU

5.2.2. Memory-mapped I/O is when the CPU reads from RAM: True /

False

As CPU speeds have become faster and faster, RAM and I/O devices have only

slowly increased in speed. The strategies for coping with the high relative latency

of RAM and I/O are very different, however—caching works quite well with

RAM, which stores data generated by the CPU, while I/O (at least the input side)

involves reading new data; here latency is overcome by pipelining, instead.

The PCIe Bus and Direct Memory Access (DMA)

Almost all computers today use the PCIe bus. Transactions on the PCIe

bus require a negotiation stage, when the CPU (or a device) requests
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access to bus resources, and then is able to perform a transaction after

being granted access. In addition to basic read and write requests, the bus

also supports Direct Memory Access (DMA), where I/O devices are able

to read or write memory directly without CPU intervention. Figure 5.6

shows a single programmed-I/O read (top) compared to a DMA burst

transfer (bottom). While the read request requires a round trip to read

each and every 4-byte word, once the DMA transfer is started it is able

to transfer data at a rate limited by the maximum bus speed. (For an 8 or

16-lane PCIe card this limit is many GB/s)

DMA Descriptors

A device typically requires multiple parameters to perform an operation

and transfer the data to or from memory. In the case of a disk controller,

for instance, these parameters would include the type of access (read

or write), the disk locations to be accessed, and the memory address

where data will be stored or retrieved from. Rather than writing each

of these parameters individually to device registers, the parameters are

typically combined in memory in what is called a DMA descriptor, such

as the one shown in Figure 5.7. A single write is then used to tell the

device the address of this descriptor, and the device can read the entire

descriptor in a single DMA read burst. In addition to being more effi-

cient than multiple programmed I/O writes, this approach also allows

multiple requests to be queued for a device. (In the case of queued disk

commands, the device may even process multiple such requests simul-

taneously.) When an I/O completes, the device notifies the CPU via an

interrupt, and writes status information (such as success/failure) into a

Cache-coherent I/O: The PCIe

bus is cache-consistent; many

earlier I/O buses weren’t. Consider

what would happen if the CPU

wrote a value to location 1000 (say

that’s the command/status field of a

DMA descriptor), then the device

wrote a new value to that same

location, and finally the CPU tried

to read it back?

field in the DMA descriptor. (or

sometimes in a device register,

for simple devices which do not

allow multiple outstanding re-

quests.) The interrupt handler can

then determine which operations

have completed, free their DMA

descriptors, and notify any waiting

processes.

Device Driver Architecture

Figure 5.8 illustrates the I/O process for a typical device from user-space

application request through the driver, hardware I/O operation, interrupt,

and finally back to user space.
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Command (e.g. R/W) 

Params (LBA, len) 

Status 

Next descr. 

Buffer address 

Buffer len 

data 
buffer data 

buffer 

data 
buffer 

Figure 5.7: List of typical DMA descriptors

Figure 5.8: Driver Architecture

In more detail:

• The user process executes a read system call, which in turn invokes

the driver read operation, found via the read method of the file

operations structure.

• The driver fills in a DMA descriptor (in motherboard RAM), writes

the physical address of the descriptor to a device register (generating

a Memory Write operation across the PCIe bus), and then goes to

sleep.

• The device issues a PCIe Memory Read Multiple command to read

the DMA descriptor from RAM.

• The device does some sort of I/O. (e.g. read from a disk, or receive

a network packet)

• A Memory Write and Invalidate operation is used to write the re-

ceived data back across the PCIe bus to the motherboard RAM, and
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to tell the CPU to invalidate any cached copies of those addresses.

• A hardware interrupt from the device causes the device driver inter-

rupt handler to run.

• The interrupt handler wakes up the original process, which is cur-

rently in kernel space in the device driver read method, in a call to

something like interruptible_sleep_on. After waking up, the

read method copies the data to the user buffer and returns.

Review questions

5.2.1. High I/O latency can be compensated for by the use of CPU caches,

so that almost all accesses complete at cache speeds instead of going

over the bus: True / False

5.2.2. Direct Memory Access (DMA) refers to a class of CPU instructions

which bypass the cache and access memory directly:

True / False

5.2.3. A device driver:

a) Is software which is part of the application

b) Is software which is part of the kernel

c) Is part of the hardware device
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5.3 Hard Disk Drives

The most widely used storage technology today is the hard disk drive,

which records data magnetically on one or more spinning platters, in

concentric circular tracks. The performance of a hard drive is primarily

determined by physical factors: the size and geometry of its components

and the speeds at which they move:

Platter: the platter rotates at a constant speed, typically one of the follow-

ing:

Speed Rotations/sec ms/rotation

5400 RPM 90 11

7200 RPM 120 8.3

10,000 RPM 167 6

15,000 RPM 250 4

Figure 5.9: Hard Disk Drive (HDD) compo-

nents

Head and actuator arm:

these take between 1 and

10 ms to move from one

track to another on consumer

disk drives, depending on

the distance between tracks,

and between 1 and 4 ms on

high-end enterprise drives.

(at the cost of higher power

consumption and noise)

Bits and tracks: on modern

drives each track is about 3

micro-inches (75nm) wide, and bits are about 1 micro-inch (25nm) long;

with a bit of effort and knowing that the disk is 3.5 inches at its outer

diameter you could calculate the maximum speed at which bits pass under

the head.

Electronics and interface: the drive electronics are responsible for con-

trolling the actuator and transferring data to and from the host. On a

consumer drive this occurs over a SATA interface, which has a top speed

of 150, 300, or 600MB/s for SATA 1, 2, or 3.

Hard Drive Performance

Data on a drive can be identified by the platter surface it is on, the track

on that surface, and finally the position on that track. Reading data from a

disk (or writing to it) requires the following steps:
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• Switching the electronics to communicate with the appropriate head.

(we’ll ignore this, as it’s fast)

• Moving the head assembly until the head is positioned over the

target track. (seek time)

• Waiting for the platter to rotate until the first bit of the target data is

passing under the head (rotational latency)

• Reading or writing until the last bit has passed under the head.

(transfer time)

Geometric disk addressing

Unlike memory, data on a disk drive is read and written in fixed-sized

units, or sectors, of either 512 or 4096 bytes. Thus small changes (e.g. a

single byte) require what is known as a read/modify/write operation — a

full sector is read from disk into memory, modified, and then written back

to disk. These sectors are arranged in concentric tracks on each platter

surface; a sector may thus be identified by its geometric coordinates:

• Cylinder: this is the track number; for historical reasons the group

formed by the same track on all disk platters has been called a

cylinder, as shown in the figure. Early disk drives could switch

rapidly between accesses to tracks in the same cylinder; however

this is no longer the case with modern drives.

• Head: this identifies one of the platter surfaces, as there is a sepa-

rate head per surface and the drive electronics switches electrically

between them in order to access the different surfaces.

• Sector: the sector within the track.

Performance examples

The overhead of seek and rotational delay has a major effect on disk

performance. To give an example, consider randomly accessing a data

Figure 5.10: Hard disk latency
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Figure 5.11: Why a track is also called a cylin-

der — the same track on each surface forms

a “virtual” cylinder.

Figure 5.12: Disk access diagram

block on a 7200 RPM disk with the following parameters:

• Average seek time: 8 ms.

• Average rotational delay: 4 ms. (i.e., 1/2 rotation — after seeking to

a track, the rotational delay for sectors on that track will be uniformly

distributed between 0 and 1 rotation)

• Transfer rate: 200 MB/s. (outer tracks on disks available in 2017)

On average, reading a random 4KB block (i.e. one not immediately

following the previous read) requires:

8 + 4 + 0.02 = 12ms

for an average throughput of 34 KB/s. (0.02 is 4KB / 200KB per ms)

Random access to a 5 MB block, or over 1000 times more data, requires:

8 + 4 + 25 = 37ms

for an average throughput of 134MB/s. (25ms is obtained by dividing

5000KB by a rate of 200KB/ms)

In other words, although disks are random-access devices, random access

is expensive. To achieve anywhere near full bandwidth on a modern disk

drive you need to read or write data in large contiguous blocks; in our

random access example, for instance, a 2 MB transfer would require 22 ms,

or less than twice as long2as the smallest transfer.

2For system operations such as this where performance has a fixed and a variable

component, you can think of the point where the two costs are equal as the “knee” in the

curve, where you switch from the region where performance is dominated by the fixed cost

to where it is dominated by the variable cost. To get high throughput you want to be firmly

in the variable-cost region, where the fixed-cost effects are relatively minor.



120 CHAPTER 5. I/O, DRIVERS, AND DMA

Disk scheduling

A number of strategies are used to avoid the full penalties of seek and

rotational delay in disks. One of these strategies is that of optimizing the

order in which requests are performed—for instance reading sectors 10

and 11 on a single track, in that order, would require a seek, followed by

a rotational delay until sector 10 was available, and then two sectors of

transfer time. However reading 11 first would require the same seek and

about the same rotational delay (waiting until sector 11 was under the

head), followed by a full rotation to get from section 12 all the way back

to sector 10.

Changing the order in which disk reads and writes are performed in order

to minimize disk rotations is known as disk scheduling, and relies on

the fact that multitasking operating systems frequently generate multiple

disk requests in parallel, which do not have to be completed in strict

order. Although a single process may wait for a read or write to complete

before continuing, when multiple processes are running they can each

issue requests and go to sleep, and then be woken in the order that requests

complete.

Primary Disk Scheduling Algorithms

The primary algorithms used for disk scheduling are:

• first-come first-served (FCFS): in other words no scheduling, with

requests handled in the order that they are received.

• Shortest seek time first (SSTF): this is the throughput-optimal

strategy; however it is prone to starvation, as a stream of requests to

nearby sections of the disk can prevent another request from being

serviced for a long time.

• SCAN: this (and variants) are what is termed the elevator algorithm

— pending requests are served from the inside to the outside of the

disk, then from the outside back in, etc., much like an elevator

goes from the first floor to the highest requested one before going

back down again. It is nearly as efficient as SSTF, while avoiding

starvation. (With SSTF one process can keep sending requests which

will require less seek time than another waiting request, “starving”

the waiting one.)

More sophisticated disk head scheduling algorithms exist, and could no

doubt be found by a scan of the patent literature; however they are mostly

of interest to hard drive designers.
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Implementing Disk Scheduling

Disk scheduling can be implemented in two ways — in the operating

system, or in the device itself. OS-level scheduling is performed by keeping

a queue of requests which can be re-ordered before they are sent to the

disk. On-disk scheduling requires the ability to send multiple commands

to the disk before the first one completes, so that the disk is given a choice

of which to complete first. This is supported as Command Queuing in

SCSI, and in SATA as Native Command Queuing (NCQ).

Note that OS-level I/O scheduling is of limited use today for improving

overall disk performance, as the OS has little or no visibility into the

internal geometry of a drive. (OS scheduling is still used to merge adjacent

requests into larger ones and to allocate performance fairly to different

processes, however.)

On-Disk Cache

In addition to scheduling, the other strategy used to improve disk perfor-

mance is caching, which takes two forms—read caching (also called track

buffering) and write buffering. Disk drives typically have a small amount

of RAM used for caching data3. Although this is very small in comparison

the the amount of RAM typically dedicated to caching on the host, if used

properly it can make a significant difference in performance.

At read time, after seeking to a track it is common practice for the disk to

store the entire track in the on-disk cache, in case the host requests this data

in the near future. Consider, for example, the case when the host requests

sector 10 on a track, then almost (but not quite) immediately requests

sector 11. Without the track buffer it would have missed the chance to

read 11, and would have to wait an entire revolution for it to come back

around; with the track buffer, small sequential requests such as this can be

handled efficiently.

Write buffering is a different matter entirely, and refers to a feature where a

disk drive may acknowledge a write request while the data is still in RAM,

before it has been written to disk. This can risk loss of data, as there is

a period of time during which the application thinks that data has been

safely written, while it would in fact be lost if power failed.

Although in theory most or all of the performance benefit of write buffering

could be achieved in a safer fashion via proper use of command queuing,

this feature was not available (or poorly implemented) in consumer drives

38-16MB two or three years ago; 128 MB is common today, probably in part because

128 MB chips are now cheaper than the old 16 MB ones.



122 CHAPTER 5. I/O, DRIVERS, AND DMA

until recently; as a result write buffering is enabled in SATA drives by

default. Although write buffering can be disabled on a per-drive basis,

modern file systems typically issue commands4 to flush the cache when

necessary to ensure file system data is not lost.

SATA and SCSI

Almost all disk drives today use one of two interfaces: SATA (or its pre-

cursor, IDE) or SCSI. The SATA and IDE interfaces are derived from

an ancient disk controller for the PC, the ST-506, introduced in about

1980. This controller was similar to—but even cruder than—the disk inter-

face in our fictional computer, with registers for the command to execute

(read/write/other) and address (cylinder/head/sector), and a single register

which the CPU read from or wrote to repeatedly to transfer data. What is

called the ATA (AT bus-attached) or IDE (integrated drive electronics)

disk was created by putting this controller on the drive itself, and using an

extender cable to connect it back to the bus, so that the same software could

still access the control registers. Over the years many extensions were

made, including DMA support, logical block addressing, and a high-speed

serial connection instead of a multi-wire cable; however the protocol is

still based on the idea of the CPU writing to and reading from a set of

remote, disk-resident registers.

Logical vs. CHS addressing: For CHS addressing to work the OS (and

bootloader, e.g. BIOS) has to know the geometry of the drive, so it can tell e.g.

whether the sector following (cyl=1,head=1,sector=51) is (1,1,52) or (2,1,0). For

large computers sold with a small selection of vendor-approved disks this was not

a problem, but it was a major hassle with PCs—you had to read a label on the disk

and set BIOS options. Then drive manufacturers started using “fake” geometries

because there weren’t enough bits in the cylinder and sector fields, making drives

that claimed to have 255 heads, giving the worst features of both logical and CHS

addressing.

In contrast, SCSI was developed around 1980 as a high-level, device-

independent protocol with the following features:

• Packet-based. The initiator (i.e. host) sends a command packet (e.g.

READ or WRITE) over the bus to the target; DATA packets are

then sent in the appropriate direction followed by a status indication.

SCSI specifies these packets over the bus; how the CPU interacts

with the disk controller to generate them is up to the maker of the

disk controller. (often called an HBA, or host bus adapter)

4In SATA the FLUSH command or the FUA (force unit attention) flag. Don’t ask me

what “force unit attention” means - I have no idea.
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• Logical block addressing. SCSI does not support C/H/S addressing

— instead the disk sectors are numbered starting from 0, and the disk

is responsible for translating this logical block address (LBA) into

a location on a particular platter. In recent years logical addressing

has been adopted by IDE and SATA, as well.

SCSI over everything

SCSI (like e.g. TCP/IP) is defined in a way that allows it to be carried

across many different transport layers. Thus today it is found in:

• USB drives. The USB storage protocol transports SCSI command

and data packets.

• CD and DVD drives. The first CD-ROM and CD-R drives were

SCSI drives, and when IDE CDROM drives were introduced, rather

than invent a new set of commands for CD-specific functions (e.g.

eject) the drive makers defined a way to tunnel existing SCSI com-

mands over IDE/ATA (and now SATA).

• Firewire, as used in some Apple systems.

• Fibre Channel, used in enterprise Storage Area Networks.

• iSCSI, which carries SCSI over TCP/IP, typically over Ethernet

and no doubt several other protocols as well. By using SCSI instead of

defining another block protocol, the device makers gained SCSI features

like the following:

• Standard commands (“Mode pages”) for discovering drive proper-

ties and parameters.

• Command queuing, allowing multiple requests to be processed by

the drive at once. (also offered by SATA, but not earlier IDE drives)

• Tagged command queuing, which allows a host to place constraints

on the re-ordering of outstanding requests.

Review questions

5.3.1. Since the platter spins while the head is seeking, rotational latency

and seek time happen in parallel and the time until data can be

accessed is the maximum of the two: True / False

5.3.2. Command queuing in SATA and SCSI will make which of the

following workloads run faster:

a) Very large sequential reads and writes

b) A single process performing random reads and waiting for

each read to complete before issuing the next one
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c) Multiple processes performing random reads.

5.4 RAID and other re-mappings

In the previous section you learned about:

• Disk drives: how they work, and how that determines their perfor-

mance

• SCSI and SATA buses, which carry block I/O commands between

host controllers and disk drives

• The PCI bus, DMA, and device drivers which communicate between

host controllers and the operating system

This section is about about disk-like devices, which behave like disks but

aren’t; this includes multi-disk arrays, solid-state drives (SSDs), and other

block devices.

Early disk drives used cylinder/head/sector addressing, required the op-

erating system to be aware of the exact parameters of each disk so that

it could store and retrieve data from valid locations. The development

of logical block addressing, first in SCSI, then in IDE and SATA drives,

allowed drives to be interchangeable: with logical block addressing the

operating system only needs to know how big a disk is, and can ignore its

internal details.

This model is more powerful than that, however, as there is no need for

the device on the other end of the SCSI (or SATA) bus to actually be a

disk drive. (You can do this with C/H/S addressing, as well, but it requires

creating a fake drive geometry, and then hoping that the operating system

won’t assume that it’s the real geometry when it schedules I/O requests)

Instead the device on the other end of the wire can be an array of disk drives,

a solid-state drive, or any other device which stores and retrieves blocks

of data in response to write and read commands. Such disk-like devices

are found in many of today’s computer systems, both on the desktop and

especially in enterprise and data center systems, and include:

• Partitions and logical volume management, for flexible division of

disk space

• Disk arrays, especially RAID (redundant arrays of inexpensive

disks), for performance and reliability

• Solid-state drives, which use flash memory instead of magnetic

disks

• Storage-area networks (SANs)

• De-duplication, to compress multiple copies of the same data
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Almost all of these systems look exactly like a disk to the operating system.

Their function, however, is typically (at least in the case of disk arrays)

an attempt to overcome one or more deficiencies of disk drives, which

include:

• Performance: Disk transfer speed is determined by (a) how small

bits can be made, and (b) how fast the disk can spin under the head.

Rotational latency is determined by (b again) how fast the disk spins.

Seek time is determined by (c) how fast the head assembly can move

and settle to a final position. For enough money, you can make (b)

and (c) about twice as fast as in a desktop drive, although you may

need to make the tracks wider, resulting in a lower-capacity drive.

To go any faster requires using more disks, or a different technology,

like SSDs.

• Reliability: Although disks are surprisingly reliable, they fail from

time to time. If your data is worth a lot (like the records from the

Bank of Lost Funds), you will be willing to pay for a system which

doesn’t lose data, even if one (or more) of the disks fails.

• Size: The maximum disk size is determined by the available technol-

ogy at any time—if they could build them bigger for an affordable

price, they would. If you want to store more data, you need to either

wait until they can build larger disks, or use more than one. Con-

versely, in some cases (like dual-booting) a single disk may be more

than big enough, but you may need to split it into multiple logical

parts.

In the rest of this section we will look at drive re-mappings, where a logical

volume is created which is a different size or has different properties than

the disk or disks it is built from. These mappings are not complex—in most

cases a simple mathematical operation on a logical block address (LBA)

within the logical volume will determine which disk or disks the operation

will be directed to, and to what LBA on that disk. This translation may

be done on an external device (a RAID array), within a host bus adaptor,

transparently to the host (a RAID adapter), or within the operating system

itself (software RAID), but the translations performed are the same in each

case.

Partitioning

The first remapping strategy, partitioning, is familiar to most advanced

computer users. A desktop or laptop computer typically has a single disk

drive; however it is frequently useful to split that device into multiple

logical devices via partitioning. An example is shown in Figure 5.1, where

a single 250GB disk (named sda, SCSI disk a) has been split into three
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sections for a Linux installation. A small partition (’sda1’) is used by

the boot loader, followed by a swap partition used for virtual memory,

and then the remainder (’sda3’) is used for the root file system. Another

common use for partitioning is for dual-booting a machine, where e.g.

Windows might be installed into one partition and Linux or Apple OS

X installed in another. Note that unlike some of the other remappings

we will examine, partitioning is almost always handled in the operating

system itself, rather than in an external device.

Device Boot Start End Blocks Id System
/dev/sda1 * 63 208844 104391 83 Linux
/dev/sda2 208845 4401809 2096482+ 82 Linux swap
/dev/sda3 4401810 488392064 241995127+ 83 Linux

Listing 5.1: Example Linux partition map

There are two parts to disk partitioning: (a) a method for recording partition

information in a partition table to be read by the operating system, and

(b) translating in-partition logical block addresses (LBAs) into absolute

LBAs (i.e. counting from the beginning of the entire disk) at runtime.

The first step is done via a partition table on the disk, which gives the

starting logical block address (LBA), length, and type of each partition.

On boot the operating system reads this table, and then creates virtual

block devices (each with an LBA range starting at 0) for each partition.

There are two partition table formats in wide use today — Master Boot

Record (MBR) boot tables based on the original IBM PC disk format,

and GUID Partition Table (GPT) tables used in new systems; for more

detail see the following Wikipedia entries: http://en.wikipedia.org/wiki/

Master_Boot_Record, http://en.wikipedia.org/wiki/GUID_Partition_Table

Address translation: Figure 5.13 shows a logical view of the translation

between logical block addresses within a partition and physical addresses

on the actual device.

Given a partition with start address S and length L and a block address A

within that partition, the actual on-disk address A0 can be determined as

follows:

if A > L:

error

else:

A0 = A + S

Figure 5.13: Partition layout and formula

http://en.wikipedia.org/wiki/Master_Boot_Record
http://en.wikipedia.org/wiki/Master_Boot_Record
http://en.wikipedia.org/wiki/GUID_Partition_Table
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Review questions

5.4.1. Which one of the following statements best describes what a disk

partition is?

a) A set of files on a disk reserved for a specific purpose

b) A portion of the disk address space (LBA or logical block

address space) which is treated as a separate virtual device

c) A type of disk drive

Concatenation

Concatenation means joining two things (like strings) end-to-end; a con-

catenated volume is the opposite of a partitioned disk, joining the LBA

spaces of each disk, one after the other, into a single logical volume which

is the sum of multiple physical disks.

Why would you do this? After all, you can just create separate file systems

on multiple disks and use the mount command to join them into a single

file system hierarchy, as shown in Figure 5.14.

Disk 

Single file  
system 

Mount point 

root 

/usr 

/home 

Figure 5.14: Multiple mounted file systems vs. single concatenated volume

This has disadvantages, though. What if you have 3 100GB disks, but

200GB of home directories? Now you’re stuck with home directories that

look like /home/disk1/joe and /home/disk2/jane, and no matter how you

assign accounts, one of the disks is likely to fill up while there is still a lot

of free space on the other one.

If you can paste all three disks together and create a single large volume,

however, with a single file system on top, then you have a single large,

flexible volume, and you don’t need to guess how much space to allocate

for different directories. (the most modern file systems — ZFS and Btrfs

— will handle this for you, but widely-used file systems like NTFS and

ext3 do not.)

In Figure 5.15 we see concatenation with three disks, D1, D2, D3, of size

S1, S2, S3. The address A in the concatenated volume is translated to a

physical disk D0 and an address on that disk A0, and (as for partitioning)

the translation is very simple:
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if A < S1 then

D0 = D1

A0 = A

else if A < S2 then

D0 = D2

A0 = A-S1

else if A < S3 then

D0 = D3

A0 = A-S1-S2

else

error

Logical volumes Physical disk 

A  

A
0
 

Figure 5.15: Concatenation layout and formula

Concatenation may be implemented in the OS (via the Logical Volume

Manager in Linux, or as a type of “software RAID” in Windows) or in an

external storage device. With the right tools for modifying the file system,

it can even be used to add another disk to an existing file system.

Striping — faster concatenation

Isn’t that RAID0? The term

“RAID” was coined in a 1988 paper

by Paterson, Gibson, and Katz,

titled “A case for redundant arrays

of inexpensive disks (RAID)”,

where they defined RAID levels 0

through 5—it turns out RAID0 and

RAID1 were what everyone had

been calling “striping” and

“mirroring” for years, but no one

had a name for the newer

parity-based systems. RAID2 and 3

are weird and obsolete; no one talks

about them.

Although the size of a concate-

nated volume is the sum of the indi-

vidual disk sizes, the performance

is typically not. For instance, if

you create a single large file, it will

probably be placed on contiguous

blocks on one of the disks, limit-

ing read and write throughput to

that of a single disk. If you’ve paid

for more than one disk, it would be

nice to actually get more than one

disk’s performance, if you can.

If the file was instead split into

small chunks, and each chunk placed on a different disk than the chunk

before it, it would be possible to read and write to all disks in parallel.

This is called striping, as the data is split into stripes which are spread

across the set of drives.

In Figure 5.16 we see individual strips, or chunks of data, layed out in

horizontal rows (called stripes) across three disks. In the figure, when

writing strips 0 through 5, strips 0, 1, and 2 would be written first at the

same time to the three different disks, followed by writes to strips 3, 4, and

5. Thus, writing six strips would take the same amount of time it takes to

write two strips to a single disk.

How big is a strip? It depends, as this value is typically configurable—
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Figure 5.16: Striping across three disks

the RAID algorithms work with any strip size, although for convenience

everyone uses a power of 2. If it’s too small, the large number of I/Os may

result in overhead for the host (software RAID) or for the RAID adapter;

if it’s too large, then large I/Os will read or write from individual disks

one at a time, rather than in parallel. Typical values are 16 KB to 512 KB.

(the last one is kind of large, but it’s the default built into the mdadm utility

for creating software RAID volumes on Linux. And the mdadm man page

calls them “chunks” instead of “strips”, which seems like a much more

reasonable name.)

Striping data across multiple drives requires translating an address within

the striped volume to an address on one of the physical disks making up

the volume, using these steps:

1. Find the stripe set that the address is located in - this will give the

stripe number within an individual disk.

2. Calculate the stripe number within that stripe set, which tells you

the physical disk the stripe is located on.

3. Calculate the address offset within the stripe.

Note that—unlike concatenation—each disk must be of the same size for

striping to work. (Well, if any disks are bigger than the smallest one, that

extra space will be wasted.)

Given 3 disks d1, d2, d3 of the same size, with a strip size of N sectors,

an address A in the striped volume is translated to a physical disk D0 and

an address on that disk A0 as follows, assuming integer arithmetic:

Review questions

5.4.1. Which one of the following statements best describes the total

storage capacity of a striped volume of equal-sized disks?
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S = A / N

- strip # in volume

O = A % N

- offset in strip

case S % 3:

- disk is n1 mod 3

0: D0= d1

1: D0= d2

2: D0= d3

Sd = S / 3

- stripe # in disk

A0 = Sd*N + O

Figure 5.17: Striping layout and formula

a) the same as one of the disks in the volume

b) the sum of the capacity of the disks in the volume

5.4.2. The disks within a striped volume (or at least the portion used of

each disk) must be the same size: True / False

Mirroring

Figure 5.18: Failure of one

disk in mirrored volume.

Disks fail, and if you don’t have a copy of

the data on that disk, it’s lost. A lot of effort

has been spent on creating multi-disk systems

which are more reliable than single-disk ones,

by adding redundancy—i.e. additional copies

of data so that even if one disk fails completely

there is still a copy of each piece of your data

stored safely somewhere. (Note that striping is

actually a step in the wrong direction - if any

one of the disks in a striped volume fail, which

is more likely than failure of a single disk, then you will almost certainly

lose all the data in that volume.)

The simplest redundant configuration is mirroring, where two identical

(“mirror image”) copies of the entire volume are kept on two identical

disks. In Figure 5.18 we see a mirrored volume comprising two physical

disks; writes are sent to both disks, and reads may be sent to either one. If

one disk fails, reads (and writes) will go to the remaining disk, and data is

not lost. After the failed disk is replaced, the mirrored volume must be

rebuilt (sometimes termed “re-silvering”) by copying its contents from

the other drive. If you wait too long to replace the failed drive, you risk

having the second drive crash, losing your data.



5.4. RAID AND OTHER RE-MAPPINGS 131

Address translation in a mirrored volume is trivial: address A in the logical

volume corresponds to the same address A on each of the physical disks.

As with striping, both disks must be of the same size. (or any extra sectors

in the larger drive must be ignored.)

Mirroring and Consistency

A mirrored volume can be temporarily inconsistent during writing. Con-

sider the following case, illustrated in Figure 5.19:

1. a block in the logical volume contains the value X, and a write is

issued changing it to Y, and

2. Y is successfully written to one disk but not the other, and then

3. the power fails

Now, when the system comes back up (step 4 in the figure) the value of

this block will depend on which disk the request is sent to, and may change

if a disk fails.

High-end storage systems typically solve this problem by storing a tem-

porary copy of written data to non-volatile memory (NVRAM), either

battery-backed RAM or flash. If power fails, on startup the system

When recovering an inconsistent

mirrored volume, the value from

either disk may be used. Why is

this OK? (it helps to remember that

from the point of view of the file

system or application, a write to a

mirrored volume does not complete

until both sides have been

successfully written to.)

can check that all recent writes

completed to each disk. With-

out hardware support, the OS can

check on startup to see if it was

cleanly shut down, and if not it

may need to check both sides of the

mirror and ensure they are consis-

tent. (a lengthy process with mod-

ern disks)

X 

X 

Y 

Y 

Y 

X 

Y 

Y 

X 

Y 
? 

X 

Y 

1

2

3

4

mirrored 

volume

Figure 5.19: Failure during mirror write causing inconsistency
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mirrored

striped

RAID 1+0

(stripe of mirrors)

mirrored

striped

RAID 0+1

(mirror of stripes)

mirrored

striped

RAID 1+0

(stripe of mirrors)

mirrored

striped

RAID 0+1

(mirror of stripes)

Striping + Mirroring (RAID 0+1, RAID 1+0)

Mirroring and striping can also be used to construct a logical volume out

of other logical volumes, so you can create a mirrored volume consisting

of two striped volumes, or a striped volume consisting of two mirrored

volumes. In either case, a volume holding N drives worth of data will take

2N drives to hold (in this figure, that works out to eight drives) and will

give N times the performance of a single disk.

Since striping is also known as RAID 0 and mirroring as RAID 1, these

configurations are called RAID 0+1 and RAID 1+0, respectively. RAID

0+1 is less reliable, as if one disk fails in each of the two striped volumes

the whole volume will fail. Interestingly enough, the disks contain exactly

the same data in both cases; however, in the RAID 0+1 case the controller

doesn’t try as hard to recover it.

Review questions

5.4.1. Which one of the following statements best describes the storage

capacity of a mirrored volume?

a) It is the same as that of one of the disks making up the volume

b) It is equal to the sum of the capacities of the disks making it

up

c) It is equal to the sum of the capacities of all disks, minus the

capacity of the parity drive
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RAID 4

Although mirroring and RAID 1+0 are good for constructing highly reli-

able storage systems, sometimes you don’t want reliability bad enough to

be willing to devote half of your disk space to redundant copies of data.

This is where RAID 4 (and the related RAID 5) come in.

For the 8-disk RAID 1+0 volume described previously to fail, somewhere

between 2 and 5 disks would have to fail (3.66 on average). If you plan on

replacing disks as soon as they fail, this may be more reliability than you

need or are willing to pay for. RAID 4 provides a high degree of reliability

with much less overhead than mirroring or RAID 1+0.

0 1

0 0 1

1 1 0

0+1+1+0+1=1

0+1+X+0+1=1 ?

        X         =1Parity(a,b)a

b

0 1

0 0 1

1 1 0

0+1+1+0+1=1

0+1+X+0+1=1 ?

        X         =1Parity(a,b)a

bRAID 4 takes N

drives and adds a

single parity drive,

creating an array

that can tolerate

the failure of any

single disk without

loss of data. It does this by using the parity function (also known as

exclusive-OR, or addition modulo 2), which has the truth table seen in

the figure to the right. As you can see in the equation, given the parity

calculated over a set of bits, if one bit is lost, it can be re-created given the

other bits and the parity. In the case of a disk drive, instead of computing

parity over N bits, you compute it over N disk blocks, as shown here where

the parity of two blocks is computed:

001010011101010010001 ... 001101010101 +

011010100111010100100 ... 011000101010

= 010000111010000110101 ... 010101111111

RAID 4 - Organization: RAID 4 is organized almost exactly like a striped

(RAID 0) volume, except for the parity drive. We can see this in Figure 5.20

— each data block is located in the same place as in the striped volume,

and then the corresponding parity block is located on a separate disk.

Writing to a RAID 4 Volume: How you write to a RAID 4 volume

depends on whether it is a small or large write. For large writes you can

over-write a complete stripe set at a time, letting you calculate the parity

before you write. Small writes are less efficient: you have to read back

some amount of data in order to re-calculate the parity. There are two

options: you can either read the entire stripe set and calculate its parity
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Figure 5.20: RAID 4 organization

Large write:

• Calculate parity (no

I/O needed)

• (1) Write stripe set to

disk

Small write:

• (1) read old data, parity

• Calculate new parity (no I/O)

• (2) write new data, parity

Figure 5.21: Large and small writes to RAID 4

after modifying it, or you can read the old data and parity, subtract the

old data, and add in the new data, which is more efficient for larger RAID

volumes (i.e. with more than 4 drives).

In Figure 5.21 you can see that a small write can take twice as long and

require four times as many operations as the corresponding write to a

striped volume, where no parity recalculation is needed.
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A question for the reader: why does a small write to RAID 4 take twice as long,

rather than four times as long, as a single disk write?

Reading from a RAID 4 Volume: There are two cases when reading

from a RAID 4 volume: normal mode and degraded mode. In normal

mode the data is available on the disk(s) it was written to, which is the

case when no disks have failed, and for data on the remaining disks after

one has failed. In degraded mode the data being read was written to the

failed drive, and must be reconstructed from the remaining data and parity

in the stripe set. (The actual reconstruction is quite simple, as the missing

data stripe is just the exclusive OR of all the remaining data and parity in

the stripe set.)

To write in degraded mode, parity is calculated and stripes are written

to all but the failed disk. When the disk is replaced, its contents will be

reconstructed from the other drives.

Review questions

5.4.1. A RAID 4 volume with five data drives and one parity drive can

tolerate two disk failures without data loss: True / False

5.4.2. A RAID 4 volume with five data drives and one parity drive holds

more data than three mirrored disk pairs (six disks total) assuming

the disks are the same size in the two cases: True / False

5.4.3. After a disk fails on a RAID 4 volume, which statement is more

correct?

a) It should be replaced quickly

b) It doesn’t need to be replaced immediately, as the RAID con-

troller will prevent data loss if another disk fails

5.4.4. Which one of the following statements best describes the efficiency

of small writes on RAID 4?

a) They are more efficient than large writes

b) They are less efficient than large writes

RAID 5

Small writes to RAID 4 require four operations: one read each for the old

data and parity, and one write for each of the new data and parity. Two

of these four operations go to the parity drive, no matter what LBA is

being written, creating a bottleneck. If one drive can handle 200 random
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operations per second, the entire array will be limited to a total throughput

of 100 random small writes per second, no matter how many disks are in

the array.

By distributing the parity across drives in RAID 5, the parity bottleneck

is eliminated. It still takes four operations to perform a single small write,

but those operations are distributed evenly across all the drives. (Because

of the distribution algorithm, it’s technically possible for all the writes to

go to the same drive; however it’s highly unlikely.) In the five-drive case

shown here, if a disk can complete 200 operations a second, the RAID 4

array would be limited to 100 small writes per second, while the RAID 5

array could perform 250. (5 disks = 1000 requests/second, and 4 requests

per small write)

0 

4 

8 

1 

5 

9 

2 

6 

10 

3 

7 

11 

P 

P 

P 

100 small writes 

25 reads + 

25 writes each 

100 reads + 

100 writes 

0 

4 

8 

1 

5 

9 

2 

6 

P 

3 

P 

10 

P 

7 

11 

100 small writes 

40 reads + 

40 writes each 

RAID 5 

200 reads, 

200 writes 

total in either 

case 

RAID 6 - more reliability

RAID level 1 (including 1+0 and 0+1), and levels 4 and 5 are designed

to protect against the total failure of any single disk, assuming that the

remaining disks operate perfectly. However, there is another failure mode

known as a latent sector error, in which the disk continues to operate

but one or more sectors are corrupted and cannot be read back. As disks

become larger these errors become more problematic: for instance, one

vendor specifies their current desktop drives to have no more than 1 unre-

coverable read error per 1014 bits of data read, or 12.5 TB. In other words,

there might be in the worst case a 1 in 4 chance of an unrecoverable read

error while reading the entire contents of a 3TB disk. (Luckily, actual

error rates are typically much lower, but not low enough.)

If a disk in a RAID 5 array fails and is replaced, the “rebuild” process

requires reading the entire contents of each remaining disk in order to

reconstruct the contents of the failed disk. If any block in the remaining

drives is unreadable, data will be lost. (Worse yet, some RAID adapters



5.4. RAID AND OTHER RE-MAPPINGS 137

and software will abandon the whole rebuild, causing the entire volume

to be lost.)

RAID 6 refers to a number of RAID mechanisms which add additional

redundancy, using a second parity drive with a more complex error-

correcting code5. If a read failure occurs during a RAID rebuild, this

additional protection may be used to recover the contents of the lost block,

preventing data loss. Details of RAID 6 implementation will not be cov-

ered in this class, due to the complexity of the codes used.

Review questions

5.4.1. RAID 5 is less likely to lose data from disk failure than RAID 4:

True / False

5.4.2. RAID 5 is faster for very large writes than RAID 4: True / False

5.4.3. RAID 5 is faster for small writes than RAID 4: True / False

5.4.4. Which one of the following statements best describes why RAID 6

has become important recently?

a) Because total failure is more common in modern disks

b) Because modern disks are bigger

Logical Volume Management

If you have managed a Linux system (especially Fedora or Red Hat) you

may have used the Logical Volume Manager (LVM), which allows disks

on the system to be flexibly combined and split into different volumes;

similar functionality is available on other operating systems, as well as on

high-end storage arrays.

The volume types which can be created under LVM are those which have

been described in this section: partitioned, concatenated, and the various

RAID levels. In addition, however, logical volume managers typically

offer functions to migrate storage contents and to create snapshots of a

volume.

Volume snapshots rely on a copy-on-write mechanism almost identical

to that used in virtual memory:

5Commonly a Reed-Solomon code; see Wikipedia if you want to find out what that is.
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A snapshot is a “lazy copy” of a volume—it preserves the contents without

immediately consuming any additional disk space, instead consuming

space as the volume is written to. (It’s also much faster than copying all

the data) Why would you want to make a snapshot? Maybe you want

to save the state of your machine before you make major changes, like

installing new software and drivers, or upgrading the OS. If things don’t

work out, you can revert back to the snapshot and try again.

Snapshots are also frequently used for backing up a computer, because it

takes so long to copy all the data from a modern disk. If you merely copied

all the files off of the disk, the backed-up version of one file might be

hours older than another file; this can be avoided by backing up a snapshot

instead of the volume itself.

Live migration is a sort of magical

operation, allowing you to switch

from one disk drive to another

while the machine continues to run.

It works by using a map to direct in-

dividual requests to either the old

volume or the new volume, with

the dividing line moving as data is copied from one to the other. What

happens if you try to write to the small section being copied in the middle?

The write gets stalled until the copy is done, and then is directed to the

new location.

Solid State Drives

Solid-state drives (SSDs) store data on semiconductor-based flash memory

instead of magnetic disk; however by using the same block-based interface

(e.g. SATA) to connect to the host they are able to directly replace disk

drives.

SSDs rely on flash memory, which stores data electrically: a high program-

ming voltage is used to inject a charge onto a circuit element (a floating

gate—ask your EE friends if you want an explanation) that is isolated by

insulating layers, and the presence or absence of such a stored charge can
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be detected in order to read the contents of the cell. Flash memory has

several advantages over magnetic disk, including:

• Random access performance: since flash memory is addressed

electrically, instead of mechanically, random access can be very

fast.

• Throughput: by using many flash chips in parallel, a consumer SSD

(in 2018) can read speeds of 1-2 GB/s, while the fastest disks are

limited to a bit more than 200MB/s.

Flash is organized in pages of 4KB to 16KB, which must be read or written

as a unit. These pages may be written only once before they are erased

in blocks of 128 to 256 pages, making it impossible to directly modify

a single page. Instead, the same copy-on-write algorithm used in LVM

snapshots is used internally in an SSD: a new write is written to a page in

one of a small number of spare blocks, and a map is updated to point to

the new location; the old page is now invalid and is not needed. When not

enough spare blocks are left, a garbage collection process finds a block

with many invalid pages, copies any remaining valid pages to another

spare block, and erases the block.

When data is written sequentially, this process will be efficient, as the

garbage collector will almost always find an entirely invalid block which

can be erased without any copying. For very random workloads, especially

on cheap drives with few spare blocks and less sophisticated garbage

collection, this process can involve huge amounts of copying (called write

amplification) and run very slowly.

SSD Wear-out: Flash can only be written and erased a certain number of

times before it begins to degrade and will not hold data reliably: most flash

today is rated for 3000 write/erase operations before it becomes unreliable.

The internal SSD algorithms distribute writes evenly to all blocks in the

device, so in theory you can safely write 3000 times the capacity of a

current SSD, or the entire drive capacity every day for 8 years. (Note that

3000 refers to internal writes; random writes with high write amplification

will wear out an SSD more than the same volume of sequential writes.)

For a laptop or desktop this would be an impossibly high workload, espe-

cially since they are typically used only half the hours in a day or less. For

some server applications, however, this is a valid concern. Special-purpose

SSDs are available (using what is called Single-Level Cell, or SLC, flash)

which are much more expensive but are rated for as many as 100,000

write/erase cycles. (This capacity is the equivalent of overwriting an entire

drive every 30 minutes for 5 years. For a 128GB drive, this would require

continuously writing at over 70MB/s, 24 hours a day.)
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New Disk Technologies

The capacity of a disk drive is determined by how many bits there are on

a track (i.e. how short the bits are), how many tracks fit on each side of a

platter (how narrow the bits are), and how many platters and sssociated

heads fit into a drive enclosure. Since sometime around the late 90s most

of the increase in drive density has come from making the tracks narrower;

however this has hit a stumbling block recently. The narrower you make

the write head, the weaker its magnetic field, until eventually it becomes

too weak to magnetize bits on the platter. You can fix this for a while by

making the platter easier to magnetize (lower coercivity), but if you go

too far in that direction, the bits will flip spontaneously due to thermal

noise. (There’s a cure for that—make the bits bigger—but it obviously

won’t help.)

In the last few years disks have come perilously close to this limit. Much of

the capacity growth in the last couple of years (2018) and most in coming

years is expected to come from the following technologies:

• Helium: Filling the drive with helium6 reduces the air turbulence

around the heads and platters, allowing them to be thinner so you

can cram more of them into a disk. (The highest capacity air-filled

drives typically had 4 platters and 8 heads; the largest helium-filled

drives today have 9 platters.)

• Shingled magnetic recording (SMR): Narrow tracks can be writ-

ten with a wide (and thus high magnetic field) head by overlapping

the wide tracks, like rows of shingles7, and read back by a narrower

read head. Unfortunately, overwriting a sector on an SMR disk will

damage the neighboring sector, requiring a translation layer (much

like a flash translation layer) in order to be used by a normal file

system.

• Heat-assisted Magnetic Recording (HAMR): If you heat a mag-

netic material it becomes easier to magnetize. HAMR relies on

narrow, weak write heads that shouldn’t be able to write to the

platter, and heats the surface with a laser just before writing to it.

Although the impending death of hard disk drives has been predicted

many times—Google “bubble memory” for an example–technological

breakthroughs have come through each time to keep them in the position

6Which is harder than it sounds, since helium will leak through cast aluminum, which

is the preferred material for HDD enclosures.
7Really more like clapboards, but “clapboarded” just doesn’t have the same ring to it.
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of the most cost-effective bulk storage medium available. It remains to

be seen whether high-density SSDs based on low-performance NAND

flash are able to catch up to disk in cost per terabyte, or whether some

technological advance will keep disk ahead for yet another decade.

Storage-area Networks

In enterprise environments it is typical to separate storage systems from

the servers that use the storage. This allows tasks such as backup to

be centralized, as well as simplifying the task of replacing or servicing

hardware. (In fact, in a virtualized environment (covered in a later chapter)

external storage allows running servers to be moved from one piece of

hardware to another without interruption.)

Storage-Area Networks, or SANs, typically use the SCSI protocol and a

transport which can be routed or switched as a network. The most common

SAN technologies are Fibre Channel and iSCSI:

• Fibre Channel is a bizarre networking protocol used only in SANs;

for historic reasons it is typically used with optical fiber cabling,

which is expensive and unreliable for short connections.

• iSCSI is an encapsulation of SCSI within TCP/IP; it uses traditional

ethernet cabling, switching, and IP routing, although an iSCSI

deployment may use a separate network for storage.

“Disks” on a SAN are identified by a transport address (either an IP address

or DNS name, for iSCSI, or a 64-bit World Wide Name (WWN) for Fibre

Channel) plus a logical unit number (LUN), which identifies a specific

volume on a target. In other words, an individual block of data on a SAN

can be identified by address + LUN + LBA.

One of the key administrative features in a SAN is LUN masking, which

determines which resources (LUNs) on the network may be seen by which

hosts. This lets each server see only the LUNs which have been assigned to

it, so that a misconfigured host cannot access or corrupt storage which it is

not supposed to have access to. In addition to source-based access control,

iSCSI also offers several authentication protocols, to prevent access to

disk volumes from unauthorized hosts or applications.

De-duplication

Large enterprise storage systems typically store large amounts of similar

data. As an example, your CCIS account stores your home directory on a

central server; if you log onto a college Windows or Linux machine almost

all the files you create and edit will be located on this server.
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In a corporate environment this approach is frequently used with desk-

top machines, resulting in many copies of the same data (items like a

spreadsheet or document sent to several people will be copied into each

users’ email inbox) In addition in such environments data is backed up

frequently, creating even more copies. Very high compression ratios can

be achieved by saving only a single copy of such data, using a process

called (not surprisingly) deduplication. We see this in the figure below,

where the data to be stored is 26 long, but only contains 9 unique blocks,

giving a nearly 3:1 compression ratio if the 26 blocks of data are replaced

by pointers to unique data blocks:

Figure 5.22: De-duplication

To perform deduplication, a cryptographic hash (a form of checksum) is

calculated over each block to be written, and checked against a database.

If the hash is found, then a block containing the same bits has already

been written to storage, and we store a pointer to that block. If not—i.e.

it is the first time we saw that particular data pattern—it is written to a

new location on disk, and a pointer to that location is stored. By using

this map we can then (somewhat slowly) retrieve the data later.

De-duplication is widely used for storing backups and retaining data for

legal purposes, as it achieves very high compression (and thus lower cost)

in many such cases. However, due to the overhead and non-sequential

reads involved in retrieving data, it is typically much slower than normal

storage.

5.5 Putting it all together

In our ls example the block layer and disk drive get used extensively

by the file system. When the new process is created the kernel must

read the first page from disk, to identify the type of executable, and then

after the sections are mapped into memory, page faults will cause block

read requests to be sent through the file system to the underlying device.

Additional disk requests will come in response to the readdir system
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call, as the file system reads directory and inode data to list the files in a

directory.

We’ll ignore the file system for now, as it is described in more detail

in later chapters, and focus on the role of the Linux block layer, which

sits between file systems and the physical devices8. The block layer is

organized around the struct bio object, a typical Linux kernel object

which is fantastically complicated in order to track lots of things we don’t

really care about. We’ll ignore most of this complexity; the fields that

we’re concerned with are the command flag (indicating read or write),

data pointer (points to one or more pages), a callback function and private

data field provided by the subsystem which submitted the I/O (more on

this below), and a pointer to the device to which the I/O has been issued.

(actually a pointer to a struct block_device)

First, a note about the private data pointer and callbacks, which are a

common design pattern in C. (at least in the Linux kernel) In a proper

object-oriented language, if you want to specialize a class (e.g. a block

I/O descriptor) by adding additional fields (e.g. for details like timers

or queues needed by your device driver), you can create a derived class

with these additional fields. You can’t do that in C—you can allocate

two structures, or embed an instance of the general structure within the

specialized one, but there will be cases (like callback functions) where a

function handling the general class will in turn invoke another function

which needs to access the specialized structure.

The most straightforward way to do this is via a “private data” field in a

object; this is a generic pointer which is set to point to a separate structure

holding the specialized data. An example shown in the listing below is the

bio callback function (called bi_end_io): this is a function pointer which

is invoked when the I/O operation completes, which is given a pointer to

the bio itself as an argument.

struct my_data {

... specific data ...

};

void my_end_io(struct bio *b)

{

struct my_data *md = b->bi_private;

...

}

...

{

8For a more detailed description of the Linux block layer, see https://lwn.net/

Articles/736534/.

https://lwn.net/Articles/736534/
https://lwn.net/Articles/736534/
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struct bio *b = ...

struct my_data *priv = ...

b->bi_private = priv;

b->bi_end_io = my_end_io;

submit_bio(b);

}

Listing 5.2: Using the bi_private field to pass information to a call-

back function

Note that struct bio has no way to indicate the type of attached data;

instead we need to be sure that functions which interpret bi_private

as a pointer to struct my_data are only ever called on bios where the

attached object actually is of that type. (e.g. in this case bi_end_io will

only be set to my_end_io in cases where the attached object is of type

struct my_data)

Turning our attention back to the block layer, let’s trace the case where a file

system submits a single page read or write to a old-fashioned programmed-

IO IDE drive. If you remember the IDE drive is similar to the disk con-

troller described earlier in the text, with a few registers to indicate the

disk sector, command (read / write), and the number of sectors to transfer,

as well as a register which the CPU reads or writes to transfer the data.

For a write you push the command and data, then wait for an interrupt

to indicate that it’s done; for a read you wait until the interrupt before

transferring the data.

Here we see the path for submitting a read request in ext29:

fs/ext2/inode.c:

793 int ext2_readpage(struct file *file, struct page *page) {

795 return mpage_readpage(page, ext2_get_block);

fs/mpage.c:

398 int mpage_readpage(struct page *page, get_block_t get_block) {

408 bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,

411 mpage_bio_submit(REQ_OP_READ, 0, bio);

143 struct bio *

144 do_mpage_readpage(struct bio *bio, struct page *page, ...) {

284 bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),

68 struct bio *

69 mpage_alloc(struct block_device *bdev, ...) {

77 bio = bio_alloc(gfp_flags, nr_vecs);

85 bio->bi_bdev = bdev;

9Line numbers from Linux kernel 4.8.0
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59 struct bio *mpage_bio_submit(int op, int op_flags, ...

61 bio->bi_end_io = mpage_end_io;

64 submit_bio(bio);

Listing 5.3: Ext2 read bio submission

Ignoring all sorts of bookkeeping and optimizations, we have: a bio is

allocated (mpage_alloc line 77) and a pointer is stored to the destination

device (line 85), then a callback function is set (mpage_bio_submit line

61) and the I/O enters the block system via submit_bio.

From this point the block system generates a request10 to the underlying

device:

block/blk-core.c:

2067 blk_qc_t submit_bio(struct bio *bio) {

2099 return generic_make_request(bio);

1995 blk_qc_t generic_make_request(struct bio *bio) {

2036 struct request_queue *q = bdev_get_queue(bio->bi_bdev);

2039 ret = q->make_request_fn(q, bio);

Listing 5.4: Submit_bio logic

We’ll skip over the details of how I figured out what value

q->make_request_fn has here; just trust me that in our case it’s

blk_queue_bio:

block/blk-core.c:

1663 blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)

1704 el_ret = elv_merge(q, &req, bio);

1705 if (el_ret == ELEVATOR_BACK_MERGE) {

1706 if (bio_attempt_back_merge(q, req, bio)) {

1710 goto out_unlock;

1739 req = get_request(q, bio_data_dir(bio), rw_flags, bio, ...

1752 init_request_from_bio(req, bio);

1775 add_acct_request(q, req, where);

1776 __blk_run_queue(q);

Listing 5.5: block/block-core.c, blk_queue_bio

It first calls the “elevator” merge function (a reference to the classic disk

scheduling algorithm) which tries to merge it with an existing queued I/O;

10Unix block devices have always been different from normal files in that they have a

single submission function for both reads and writes.
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if it can, then we return via goto11 (lines 1704-1710). If not, we allocate a

request structure (basically a bunch of information for queueing, hashing,

accounting, sleeping, and stuff like that) and set up all its fields (lines 1739,

1752). Then we add the request to the elevator queue (line 1775, which

in turn calls __elv_add_request, which has a lot of very complicated

logic to figure out where to put the request in the queue) and then run a

request from the queue:

block/block-core.c

311 inline void __blk_run_queue_uncond(struct request_queue *q)

324 q->request_fn(q);

Listing 5.6: Running a request from the queue

For a “legacy” (i.e. really old) IDE device the request function is

do_ide_request. If you’re looking at the code yourself, note that any-

thing with _pm_ in it is power management, that while start_request

is important, blk_start_request doesn’t do anything interesting, and

that “plugging” refers to a complicated mechanism of delaying I/Os a

short time to see if they’ll be followed by additional requests that can be

merged into one big request. You can skip over those parts; I did.

drivers/ide/ide-io.c:

456 void do_ide_request(struct request_queue *q)

517 rq = blk_fetch_request(drive->queue);

551 startstop = start_request(drive, rq);

block/blk-core.c:

2506 struct request *blk_fetch_request(struct request_queue *q)

2510 rq = blk_peek_request(q);

2349 struct request *blk_peek_request(struct request_queue *q)

2354 ... rq = __elv_next_request(q) ...

2399 ret = q->prep_rq_fn(q, rq);

drivers/ide/ide-io.c

306 ide_startstop_t start_request (ide_drive_t *drive, ... *rq)

343 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)

344 return execute_drive_cmd(drive, rq);

So in order of execution, we grab a request from the queue (blk-core.c

2354) and call the queue prep function (idedisk_prep_fn, which sets

rq->cmd_type to REQ_TYPE_ATA_TASKFILE and does a lot of other

11The use of gotos to jump to cleanup code is a common design pattern in kernel coding,

replacing the try/finally pattern in more civilized programming languages.
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things we ignore), and then we call start_request (ide-io.c line 551)

which calls execute_drive_cmd (line 344).

drivers/ide/ide-io.c

253 ide_startstop_t execute_drive_cmd (ide_drive_t *drive, ... *rq)

259 if (cmd->protocol == ATA_PROT_PIO) {

260 ide_init_sg_cmd(cmd, blk_rq_sectors(rq) << 9);

261 ide_map_sg(drive, cmd);

264 return do_rw_taskfile(drive, cmd);

If the drive controller is in programmed I/O mode (PIO),

ide_init_sg_cmd creates a “taskfile”, the bytes that have to be

written to the control registers of the device; ide_map_sg gets pointers

to all the memory regions to transfer. *Now* we’re finally ready to send a

command to the disk controller.

We’ll trace a write operation, since it’s easier:

drivers/ide/ide-taskfile.c:

78 ide_startstop_t do_rw_taskfile(ide_drive_t *drive, ...

118 tp_ops->tf_load(drive, &cmd->hob, cmd->valid.out.hob);

119 tp_ops->tf_load(drive, &cmd->tf,

cmd->valid.out.tf);

122 switch (cmd->protocol) {

123 case ATA_PROT_PIO:

123 if (cmd->tf_flags & IDE_TFLAG_WRITE) {

125 tp_ops->exec_command(hwif, tf->command);

126 ndelay(400); /* FIXME */

127 return pre_task_out_intr(drive, cmd);

(Fun fact: that FIXME comment was there in kernel 2.4.31 in 2005. I

don’t think it will get fixed.)

First the taskfile (and extended taskfile, known as the HOB since it’s valid

when the High Order Bit is set somewhere in the basic taskfile) to the

controller, using ide_tf_load, which uses the outb instruction to write

the bytes to the appropriate control registers; e.g. the 3 bytes of LBA in

each get written as so:

...

if (valid & IDE_VALID_LBAL)

tf_outb(tf->lbal, io_ports->lbal_addr);

if (valid & IDE_VALID_LBAM)

tf_outb(tf->lbam, io_ports->lbam_addr);

if (valid & IDE_VALID_LBAH)

tf_outb(tf->lbah, io_ports->lbah_addr);

...
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Then ide_exec_command writes the command byte to the appropriate

register, and calls pre_task_out_intr:

drivers/ide/ide-taskfile.c:

403 ide_startstop_t pre_task_out_intr(ide_drive_t *drive, ... cmd)

419 ide_set_handler(drive, &task_pio_intr, WAIT_WORSTCASE);

421 ide_pio_datablock(drive, cmd, 1);

which sets a handler (saved in hwif->handler, with a timer in case the

disk hangs) to be called when the request completes, and then actually

copies the data to the data register.

We’re almost done; bear with me. When the drive finishes writing its

data, the IDE interrupt handler is called, which invokes the handler we

just registered above, and then through a long, complicated chain of calls

invokes bio->bi_end_io, which is the mpage_end_io that we stuck in

the bio structure way back up at the top:

drivers/ide/ide-io.c:

892 irqreturn_t ide_intr (int irq, void *dev_id)

793 handler = hwif->handler;

849 startstop = handler(drive);

drivers/ide/ide-taskfile.c:

344 ide_startstop_t task_pio_intr(ide_drive_t *drive)

348 u8 stat = hwif->tp_ops->read_status(hwif);

... handle partial transfers; if done:

396 ide_complete_rq(drive, 0, blk_rq_sectors(cmd->rq) << 9);

drivers/ide/ide-io.c:

115 int ide_complete_rq(ide_drive_t *drive, int error, ...

128 rc = ide_end_rq(drive, rq, error, nr_bytes);

57 int ide_end_rq(ide_drive_t *drive, struct request *rq, ...

70 return blk_end_request(rq, error, nr_bytes);

block/blk-core.c

2796 bool blk_end_request(struct request *rq, int error, ...

2798 return blk_end_bidi_request(rq, error, nr_bytes, 0);

2740 bool blk_end_bidi_request(struct request *rq, int error,

2746 if (blk_update_bidi_request(rq, error, nr_bytes, ...

2654 bool blk_update_bidi_request(struct request *rq, int error,

2658 if (blk_update_request(rq, error, nr_bytes))

2539 bool blk_update_request(struct request *req, int error, ...

2604 req_bio_endio(req, bio, bio_bytes, error);

142 void req_bio_endio(struct request *rq, struct bio *bio, ...

155 bio_endio(bio);
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block/bio.c:

1742 void bio_endio(struct bio *bio)

1761 if (bio->bi_end_io)

1762 bio->bi_end_io(bio);

Listing 5.7: The home stretch: from IDE interrupt to invoking bio->bi_end_io

Review questions

5.5.1. SSDs wear out faster if you repeatedly write to the same file or

logical block address: True / False

5.5.2. Which one of the following statements is correct?

a) Deduplication is faster than traditional RAID arrays, but re-

quires more disk space to hold the same amount of data

b) Deduplication is slower than traditional RAID arrays, but can

hold more data with the same amount of disk space

Answers to Review Questions

5.2.1 (2) In general, connections which span longer distances and connect

more devices (such as those far from the CPU) will be slower.

5.2.2 False. RAM and I/O devices (even memory-mapped I/O devices)

are separate parts of the system.

5.2.1 False. The whole idea of an I/O (input/output) device is that the

CPU doesn’t know what value will be returned when it reads it.

5.2.2 False. DMA is when a device on the PCIe (or similar) bus accesses

memory directly, without CPU intervention.

5.2.3 (2), software in the kernel. A device driver is that part of the kernel

code which reads from, writes to, and handles interrupts from one

or more specific hardware devices.

5.3.1 False. Since the platter is constantly spinning, when the head reaches

the right track it may still have to wait as much as a full rotation for

the target block to come beneath the head.

5.3.2 (3), multiple processes performing simultaneous random reads. In

this case the OS can issue multiple read commands which are queued

by the drive and completed in the most efficient order.

5.4.1 (2), a portion of the disk LBA space. The partition boundary is

specified in a partition table in the beginning of the disk, and the

operating system treats each partition as if it were a separate device.

5.4.1 (2), the storage capacity of a striped volume is the sum of the capacity

of the disks in the volume, since only one copy of data is stored.
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5.4.2 True. Stripes from each disk are interleaved at a fine granularity, so

when one disk comes to an end, the entire volume has to end.

5.4.1 (1), each disk holds a copy of each byte written to the volume. (and

no, there’s no parity drive in a mirrored volume.)

5.4.1 False. The RAID 4 parity code can only recover from one missing

drive, no matter how many drives are in the volume.

5.4.2 True. Three mirrored pairs hold three disks worth of data, while the

six-disk RAID volume contains five disks of data.

5.4.3 (1) Once a single disk fails in a RAID 4 (or 5) volume, the data is

unprotected and will be lost if a second disk fails. The sooner the

disk is replaced, the less likely this is to happen.

5.4.4 (2) Small writes require reading old data and parity, and then writing

data and parity, requiring four operations for a one-block write.

Writing a full stripe set allows parity to be calculated without reading

any information from disk, adding only a single operation to the

parity drive.

5.4.1 False. RAID 5 and RAID 4 can both tolerate only a single disk

failure without data loss.

5.4.2 False. If an entire stripe set is written at once, the parity can be

calculated and written with it, resulting in one write operation for

each drive in the array, regardless of whether it is RAID 4 or RAID

5.

5.4.3 True. A small write requires four operations: read (1) old data,

(2) old parity, write (3) new data, (4) new parity. In RAID 4, two

of these always go to the same (parity) drive, which becomes a

bottleneck.

5.4.4 (2) Modern disks do not seem to fail more or less frequently than

those of several years ago. Similarly, the probability of losing a

single block of data to an unrecoverable read error has stayed roughly

the same (as of 2015); however, the number of data blocks on a

single disk has grown hugely, making it far more likely that one of

the data blocks on a disk will be lost.

5.5.1 False. SSD algorithms distribute writes evenly over the internal

flash, whether writes are to the same or different block addresses.

5.5.2 (2) Writing to a de-duplicated volume is slower due to the need to

search for possible duplicates. Reading is typically much slower, as

well, because the fragments making up a file will not be sequential

on the underlying disk. For many workloads, however, it may be

possible to store 10 times as much data on the same number of

disks.



Chapter 6

File Systems

General-purpose operating systems typically provide access to block stor-

age (i.e. disks) via a file system, which provides a much more application-

and user-friendly interface to storage. From the point of view of the user,

a file system contains the following elements:

• a name space, the set of names identifying objects;

• objects such as the files themselves as well as directories and other

supporting objects;

• operations on these objects.

Hierarchical namespace: File systems have traditionally used a tree-

structured namespace1, as shown Figure 6.1. This tree is constructed via

the use of directories, or objects in the namespace which map strings to

further file system objects. A full filename thus specifies a path from the

root, through the tree, to the object (a file or directory) itself. (Hence the

use of the term “path” to mean “filename” in Unix documentation)

File: Early operating systems supported many different file types—binary

executables, text files, and record-structured files, and others. The Unix

operating system is the earliest I know of that restricted files to sequences

of 8-bit bytes; it is probably not a coincidence that Unix arrived at the

same time as computers which dealt only with multiples of 8-bit bytes (e.g.

16 and 32-bit words), replacing older systems which frequently used odd

word sizes such as 36 bits. (Note that a machine with 36-bit instructions

already needs two incompatible types of files, one for text and one for

executable code)

1Very early file systems sometimes had a single flat directory per user, or like MS-DOS

1.0, a single directory per floppy disk.
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Figure 6.1: Logical view (left) and implementation (right) of a hierarchical file

system name space.

Modern operating systems follow the UNIX model, which imposes no

structure on a file—a file is merely a sequence of bytes.2 Any structure to

the file (such as a JPEG image, an executable program, or a database) is

the responsibility of applications which read and write the file. The file

format is commonly indicated by a file extension like .jpg or .xml, but this

is just a convention followed by applications and users. You can do things

like rename file.pdf to file.jpg, which will confuse some applications and

users, but have no effect on the file contents.

Data in a byte-sequence file is identified by the combination of the file

and its offset (in bytes) within the file. Unlike in-memory objects in an

application, where a reference (pointer) to a component of an object may be

passed around independently, a portion of a file cannot be named without

identifying the file it is contained in. Data in a file can be created by a

write which appends more data to the end of a shorter file, and modified

by over-writing in the middle of a file. However, it can’t be “moved” from

one offset to another: if you use a text editor to add or delete text in the

middle of a file, the editor must re-write the entire file (or at least from

the modified part to the end).

Unix file name translation: each process has an associated current di-

2Almost. Apple OSX uses resource forks to store information associated with a file

(HFS and HFS+ file systems only), Windows NTFS provides for multiple data streams in

single file, although they were never put to use, and several file systems support file attributes,

small tags associated with a file..
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rectory, which may be changed via the chdir system call. File names

beginning in ’/’ are termed absolute names, and are interpreted relative to

the root of the naming tree, while relative names are interpreted beginning

at the current directory. (In addition, d/.. always points to the parent

directory of d, and d/. points to d itself.) Thus in the file system in Fig-

ure 6.1, if the current directory were /home, the the paths pjd/.profile

and /home/pjd/.profile refer to the same file, and ../bin/cat and

/bin/cat refer to the same file.

6.1 File System Operations:

There are several common types of file operations supported by Linux

(and with slight differences, Windows). They can be classified into three

main categories: open/close, read/write, and naming and directories.

Open/close: In order to access a file in Linux (or most operating systems)

you first need to open the file, passing the file name and other parameters

and receiving a handle (called a file descriptor in Unix) which may be

used for further operations. The corresponding system calls are:

• int desc = open(name, O_READ) - Verify that file name exists

and may be read, and then return a descriptor which may be used

to refer to that file when reading it.

• int desc = open(name, O_WRITE | flags, mode) - Verify

permissions and open name for writing, creating it (or erasing exist-

ing contents) if necessary as specified in flags. Returns a descrip-

tor which may be used for writing to that file.

• close(desc) - stop using this descriptor, and free any resources

allocated for it.

Note that application programs rarely use the system calls themselves to

access files, but instead use higher-level frameworks, ranging from Unix

Standard I/O to high-level application frameworks.

Read/Write operations: To get a file with data in it, you need to write

it; to use that data you need to read it. To allow reading and writing in

units of less than an entire file, or tedius calculations of the current file

offset, UNIX uses the concept of a current position associated with a file

descriptor. When you read 100 bytes (i.e. bytes 0 to 99) from a file this

pointer advances by 100 bytes, so that the next read will start at byte 100,

and similarly for write. When a file is opened for reading the pointer starts

at 0; when open for writing the application writer can choose to start at the

beginning (default) and overwrite old data, or start at the end (O_APPEND

flag) to append new data to the file.
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System calls for reading and writing are:

• n = read(desc, buffer, max) - Read max bytes (or fewer if

the end of the file is reached) into buffer, starting at the current

position, and returning the actual number of bytes n read; the current

position is then incremented by n.

• n = write(desc, buffer, len) - write len bytes from

buffer into the file, starting at the current position, and incre-

menting the current position by len.

• lseek(desc, offset, flag) Set an open file’s current position

to that specified by offset and flag, which specifies whether

offset is relative to the beginning, end, or current position in the

file.

Note that in the basic Unix interface (unlike e.g. Windows) there is no way

to specify a particular location in a file to read or write from3. Programs

like databases (e.g. SQLite, MySQL) which need to write to and read

from arbitrary file locations must instead move the current position by

using lseek before a read or write. However most programs either read

or write a file from the beginning to the end (especially when written for

an OS that makes it easier to do things that way), and thus don’t really

need to perform seeks. Because most Unix programs use simple “stream”

input and output, these may be re-directed so that the same program can—

without any special programming—read from or write to a terminal, a

network connection, a file, or a pipe from or to another program.

Naming and Directories: In Unix there is a difference between a name

(a directory entry) and the object (file or directory) that the name points

to. The naming and directories operations are:

• rename(path1, path2) - Rename an object (i.e. file or directory)

by either changing the name in its directory entry (if the destination

is in the same directory) or creating a new entry and deleting the

old one (if moving into a new directory).

• link(path1, path2) Add a hard link to a file4.

3On Linux the pread and pwrite system calls allow specifying an offset for the read

or write; other UNIX-derived operating systems have their own extensions for this purpose.
4A hard link is an additional directory entry pointing to the same file, giving the file two

(or more) names. Hard links are peculiar to Unix, and in modern systems have mostly been

replaced with symbolic links (covered next); however Apple’s Time Machine makes very

good use of them: multiple backups can point to the same single copy of an un-modified file

using hard links.
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• unlink(path) - Delete a file.5

• desc = opendir(path)

readdir(desc, dirent*), dirent=(name,type,length)

This interface allows a program to enumerate names in a directory,

and determine their type. (i.e. file, directory, symbolic link, or

special-purpose file)

• stat(file, statbuf)

fstat(desc, statbuf) - returns file attributes - size, owner, per-

missions, modification time, etc. In Unix these are attributes of the

file itself, residing in the i-node, and can’t be found in the directory

entry - otherwise it would be necessary to keep multiple copies

consistent.

• mkdir(path)

rmdir(path) - directory operations: create a new, empty directory,

or delete an empty directory.

Review Questions

6.1.1. Directories in most file systems only contain pointers to files, not

to other directories: True / False

6.1.2. Which one or more of the following scenarios could cause the

contents of the 1000th byte in a file to either change or cease to

exist?

a) The file is renamed

b) The file is deleted

c) Bytes 500 through 600 in the file are over-written

d) Bytes 900 through 1200 are over-written

6.1.3. For the read operation read(handle, buffer, max), the range

of bytes to be read from the file (e.g. bytes 100 through 199) is

determined by which of the following? (more than one may apply)

a) The ’buffer’ and ’max’ arguments

b) The file handle current position and file length

c) The ’max’ argument

d) bytes 0 through ’max’

5Sort of. If there are multiple hard links to a file, then this just removes one of them;

the file isn’t deleted until the last link is removed. Even then it might not be removed yet -

on Unix, if you delete an open file it won’t actually be removed until all open file handles

are closed.. In general, deleting open files is a problem: while Unix solves the problem by

deferring the actual delete, Windows solves it by protecting open files so that they cannot be

deleted
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Symbolic links

An alternative to hard links to allow multiple names for a file is a third file

system object (in addition to files and directories), a symbolic link. This

holds a text string which is interpreted as a “pointer” to another location

in the file system. When the kernel is searching for a file and encounters a

symbolic link, it substitutes this text into the current portion of the path,

and continues the translation process.

Thus if we have:

directory: /usr/program-1.0.1

file: /usr/program-1.0.1/file.txt

sym link: /usr/program-current -> "program-1.0.1"

and if the OS is looking up the file /usr/program-current/file.txt,

it will:

1. look up usr in the root directory, finding a pointer to the /usr

directory

2. look up program-current in /usr, finding the link with contents

program-1.0.1

3. look up program-1.0.1 and use this result instead of the re-

sult from looking up program-current, getting a pointer to the

/usr/program-1.0.1 directory.

4. look up file.txt in this directory, and find it.

Note that unlike hard links, a symbolic link may be “broken”—i.e. if the

file it points to does not exist. This can happen if the link was created in

error, or the file or directory it points to is deleted later. In that case path

translation will fail with an error:

pjd-1:tmp pjd$ ln -s /bad/file/name bad-link
pjd-1:tmp pjd$ ls -l bad-link
lrwxr-xr-x 1 pjd wheel 22 Aug 2 00:07 bad-link -> /bad/file/name
pjd-1:tmp pjd$ cat bad-link
cat: bad-link: No such file or directory

Finally, to prevent loops there is a limit on how many levels of symbolic

link may be traversed in a single path translation:

pjd@pjd-fx:/tmp$ ln -s loopy loopy
pjd@pjd-fx:/tmp$ ls -l loopy
lrwxrwxrwx 1 pjd pjd 5 Aug 24 04:25 loopy -> loopy
pjd@pjd-fx:/tmp$ cat loopy
cat: loopy: Too many levels of symbolic links
pjd@pjd-fx:/tmp$

In early versions of Linux (pre-2.6.18) the link translation code was recur-

sive, and this limit was set to 5 to avoid stack overflow. Current versions

use an iterative algorithm, and the limit is set to 40.
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Device Names vs. Mounting: A typical system may provide access to

several file systems at once, e.g. a local disk and an external USB drive or

network volume. In order to unambiguously specify a file we thus need

to both identify the file within possibly nested directories in a single file

system, as well as identifying the file system itself. (in Unix this name

is called an absolute pathname, providing an unambiguous “path” to the

file.) There are two common approaches to identifying file systems:

• Explicitly: each file system is given a name, so that a full path-

name looks like e.g. C:\MyDirectory\file.txt (Windows6) or

DISK1:[MYDIR]file.txt (VMS).

• Implicitly: a file system is transparently mounted onto a directory

in another file system, giving a single uniform namespace; thus on

a Linux system with a separate disk for user directories, the file

“/etc/passwd” would be on one file system (e.g. “disk1”), while

“/home/pjd/file.txt” would be on another (e.g. “disk2”).

The actual implementation of mounting in Linux and other Unix-like

systems is implemented via a mount table, a small table in the kernel

mapping directories to directories on other file systems. In the example

above, one entry would map “/home” on disk1 to (“disk2”, “/”). As the

kernel translates a pathname it checks each directory in this table; if found,

it substitutes the mapped file system and directory before searching for an

entry. Thus before searching “/home” on disk1 (which is probably empty)

for the entry “pjd”, the kernel will substitute the top-level directory on

disk2,and then search for “pjd”.

For a more thorough explanation of path translation in Linux and other

Unix systems see the path_resolution(7) man page, which may be

accessed with the command man path_resolution.

Review Questions

6.1.1. Creating, modifying, and deleting directories is performed by dif-

ferent system calls than creating and deleting files. Which of the

following are possible reasons for this?

a) When deleting a directory, the OS must check to be sure that

it is empty

b) Directories use a different kind of name from files

c) To prevent users from modifying directory data which is ac-

cessed by kernel code.

6Modern Windows systems actually use a mount-like naming convention internally; e.g.

the C: drive actually corresponds to the name \DosDevices\C: in this internal namespace.
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6.1.2. Which one of the following statements best describes the Unix

mount table?

a) Used at startup to determine how to name different filesystems

b) A table in the kernel used to recognize where one filesystem

is “attached” to another

6.2 File System Layout

To store a file system on a real disk, the high-level objects (directories,

files, symbolic links) must be translated into fixed-sized blocks identified

by logical block addresses.

Note that instead of 512-byte sectors, file systems traditionally use disk

blocks, which are some small power-of-two multiple of the sector size,

typically 1KB, 2KB, or 4KB. Reading and writing is performed in units

of complete blocks, and addresses are stored as disk block numbers rather

than LBAs, and are then multiplied by the appropriate value before being

passed to the disk. Since modern disk drives have an internal sector size

of 4 KB (despite pretending to support 512-byte sectors) and the virtual

memory page size is 4 KB on most systems today, that has become a very

common file system block size.

Designing on-disk data structures is complicated by the fact that for various

reasons (virtual memory, disk controller restrictions, etc.) the data in a file

needs to be stored in full disk blocks — e.g. bytes 0 through 4095 of a file

should be stored in a single 4096-byte block. (This is unlike in-memory

structures, where odd-sized allocations usually aren’t a problem.)

In this section we examine a number of different file systems; we can

categorize them by the different solutions their designers have come up

with for the following three problems:

1. How to find objects (files, directories): file identification.

2. How to find the data within a file: file organization.

3. How to allocate free space for creating new files.

CD-ROM File System

In Figure 6.2 we see an example of an extremely simple file system, similar

to early versions of the ISO-9660 file system for CD-ROM disks. Objects

on disk are either files or directories, each composed of one or more 2048-
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byte7 blocks; all pointers in the file system are in terms of block numbers,

with blocks numbered from block 0 at the beginning of the disk.

name type start len

bin d 1 2048

home d 5 2048

tmp d ... 2048

usr d ... 2048

name type start len

ls f 2 4001

cat f 4 1500

0

1

2

3

4

name type start len

pjd d 6 2048

quincy d  7 2048

ralph d 8 2048

5

ls

cat

Block
number

......

name type start len

bin d 1 2048

home d 5 2048

tmp d ... 2048

usr d ... 2048

name type start len

ls f 2 4001

cat f 4 1500

0

1

2

3

4

name type start len

pjd d 6 2048

quincy d  7 2048

ralph d 8 2048

5

ls

cat

Block
number

......

Figure 6.2: Simplified ISO-9660 (CD-

ROM) file layout for tree in Figure 6.1,

2KB blocks

There are no links—each object

has exactly one name—and the

type of an object is indicated in

its directory entry. (The only ex-

ception is the root directory, which

has no name; however it is always

found at the beginning of the disk)

Finally, all objects are contigu-

ous, allowing them to be identified

by a starting block number and a

length.

This organization is both compact

and fairly efficient. As in almost

all file systems, an object is lo-

cated by using linear search to find

each path component in the corre-

sponding directory. Once a file is

located, access to any position is

straightforward and can be calcu-

lated from the starting block ad-

dress of the file, as all files are con-

tiguous.

Contiguous organization works fine for a read-only file system, where

all files (and their sizes) are available when the file system is created. It

works poorly for writable file systems, however, as space would quickly

fragment making it impossible to create large files. (Also the CDROM

file system has no method for tracking free space, so allocation would be

very inefficient.)

In the simple CD-ROM file system, what were the solutions to the three

design problems?

1. File identification: files are identified by their starting block number

2. File organization: blocks in a file are contiguous, so an offset in the

file can be found by adding to the starting block number.

3. Free space allocation: since it’s a read-only file system, there is no

free space to worry about.

7Why 2048? Because the designers of the CDROM file system defined it that way. Data

is stored on CD in 2048-byte blocks plus error correction, making use of smaller block sizes

difficult, and the authors evidently didn’t see any need to allow larger block sizes, either.
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Review Questions

6.2.1. On-disk structures must be constructed of disk blocks, rather than

arbitrary-sized regions: True / False

6.2.2. A file system can use large blocks for the large files in a directory

and small blocks for the small files: True / False

6.2.3. Not counting blocks used for the directory, how much space would

be required to store 20 files, each 100 bytes long, in the CD-ROM

file system described?

a) It would require 20 2048-byte blocks

b) It would require a single 2048-byte block

6.2.4. The CD-ROM file system described in this chapter tracks free space

in its directories: True / False
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MS-DOS file system

Figure 6.3: Linked list organization with in-

object pointers (typical for in-memory struc-

tures) and external pointers, as used in MS-

DOS File Allocation Table.

The next file system we con-

sider is the MS-DOS (or FAT,

File Allocation Table) file sys-

tem. Here blocks within a file

are organized in a linked list;

however implementation of this

list is somewhat restricted by

the requirement that all access

to the disk be done in multiples

of a fixed block size.8 Instead

these pointers are kept in a sep-

arate array, with an entry corre-

sponding to each disk block, in

what is called the File Alloca-

tion Table.

Entries in this table can indicate

(a) the number of the next block

in the file or directory, (b) that

the block is the last one in a file or directory, or (c) the block is free. The

FAT is thus used for free space management as well as file organization;

when a block is needed the table may be searched for a free entry which

can then be allocated.

Again, what were the solutions to the three design problems?

1. File identification - Files and directories are identified by their start-

ing block number

2. File organization - blocks within a file are linked by pointers in the

FAT

3. Free space allocation - free blocks are marked in the FAT, and linear

search is used to find free space

Directories are similar to the CD-ROM file system - each entry has a name,

the object type (file or directory), its length, and the starting address of the

file contents. Note that although the last block of a file can be identified

by a flag in the FAT, the length field is not redundant as it is still needed to

know how much of the last block is valid. (E.g. a 5-byte file will require

8The astute reader will note that the pointer could use bytes within a block, causing

each block to store slightly less than a full block of data. This would pose difficulties for

operating systems such as Linux which tightly couple the virtual memory and file systems,

and assume that each 4 KB virtual memory page corresponds to one (or maybe 2 or 4) file

system blocks.



162 CHAPTER 6. FILE SYSTEMS

an entire block, but will only use 5 bytes in that block.) Sequential access

to a file incurs overhead to fetch file allocation table entries, although since

these are frequently used they may be cached; random access to a file,

however, requires walking the linked list to find the corresponding entry,

which can be slow even when cached in memory. (Consider random I/O

within a 1 GB virtual disk image with 4 KB blocks—the linked list will

be 256K long, and on average each I/O will require searching halfway

through the list9).

Directories in the MS-DOS file system are similar to those in ISO-9660.

Each directory entry is a fixed size and has a field indicating whether it

is valid; to delete a file, this field is set to invalid and the blocks in that

file are marked as free in the file allocation table. Only a single name per

file is supported, and all file metadata (e.g. timestamps, permissions) is

stored in the directory entry along with the size and first block number.

Like most file systems, linear search is used to locate a file in a directory.

This is usually reasonably efficient (it’s used by most Unix file systems, too)

but works poorly for very large directories. (That’s why your browser cache

has filenames that look like ab/xy/abxy123x.dat, instead of putting all

its files in the same directory.)

A note for the reader - the original MS-DOS file system only supported 8-byte

upper-case names with 3-byte extensions, with (seemingly) no way to get around

this restriction, since the size of a directory entry is fixed. A crazy mechanism

was devised that is still used today: multiple directory entries are used for each

file, with the extra entries filled with up to 13 2-character Unicode filename

characters in not only the filename field, but also the space that would have

otherwise been used for timestamp, size, starting block number, etc., and marked

in a way that would be ignored by older versions of MS-DOS.

Review Questions

6.2.1. The MS-DOS file system identifies the blocks in a file through

which of the following processes?

a) By marking them with the file ID in the file allocation table

b) By linking them with pointers at the beginning of each block

c) By linking them with pointers in the FAT

6.2.2. Which of these are differences between ext2 and the MS-DOS file

system described previously?

9A benchmark run on login.ccs.neu.edu indicates that “pointer chasing” on a high-end

Xeon takes about 200 ns when data is not in cache; each such random I/O would thus take

about 25 ms of CPU time.
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a) ext2 allows multiple names for the same file, while MS-DOS

only allows one.

b) ext2 has less overhead than the MS-DOS file system.

Unix file systems (e.g. ext2)

File systems derived from the original Unix file system (e.g.

Linux ext2 and ext3) use a per-file structure called an in-

ode (“indirect node”) designed with three goals in mind:

Why not use e.g. a balanced

binary tree? The in-memory tree

structures from your algorithms

class aren’t appropriate for a file

system, for several reasons: (a) the

minimum allocation unit is a disk

block, typically 4 KB, (b) disk

seeks are really expensive, and (c)

we want to avoid re-arranging

existing data on disk as the file

grows, so that we don’t lose it if the

system crashes mid-operation.

(a) low overhead for small files, in

terms of both disk seeks and allo-

cated blocks10, (b) ability to rep-

resent sufficiently large files with-

out excessive storage space or per-

formance overhead, and (c) crash

resiliency—crashing while the file

is growing should not endanger ex-

isting data.

To do this, the inode uses an asym-

metric tree, or actually a series of

trees of increasing height with the

root of each tree stored in the inode. As seen in Figure 6.4 the inode

contains N direct block pointers (12 in ext2/ext3), so that files of N blocks

or less need no indirect blocks. A single indirect pointer specifies an

indirect block, holding pointers to blocks N,N +1, ...N +N1− 1 where

N1 is the number of block numbers that fit in a file system block (1024

for ext2 with a 4 KB blocksize). If necessary, the double-indirect pointer

specifies a block holding pointers to N1 indirect blocks, which in turn hold

pointers to blocks N +N1...N +N1 +N2
1 − 1—i.e. an N1-ary tree of

height 2; a triple indirect block in turn points to a tree of height 3. For ext2

with 4-byte block numbers, if we use 4K blocks this gives a maximum file

size of (4096/4)3 4 KiB11 blocks, or 4.004 TiB. This organization allows

random access within a file with overhead O(logN) where N is the file

size, which is vastly better than the O(N) overhead of the MS-DOS File

Access Table system.

In addition to the block pointers, the inode holds file metadata such as

the owner, permissions, size, and timestamps. The separation of name

(i.e. directory entry) and object (the inode and the blocks it points to) also

allows files to have multiple names, which for historical reasons are called

10The median file size in a recent study was 4 KB, or one block
11When we’re being really precise, we’ll use KiB, MiB, GiB etc. to mean 2

10, 220, 230

and KB, MB, GB to mean 10
3, 106 and 10

9.
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Figure 6.4: Inode-type file organization as found in many Unix file systems (e.g.

Linux ext2, ext3). Note that the degree of branching is far lower than in real file

systems, and the triple-indirect pointer is missing.

hard links. For the longest time hard links were a little-used capability

of Unix-style file systems; however Apple Time Machine for the HFS+

file system makes good use of them to create multiple backup snapshots

which share identical files to save space.

Since files can have multiple names, the inode also contains a reference

count; as each name is deleted (via the unlink system call) the count is

decremented, and when the count goes to zero the file is deleted. This

also allows a file to have zero names—when a file is opened the reference

count (in memory, not on disk) is incremented, and decremented when it

is closed, so if you unlink a file which is in use, it is not actually deleted

until the last open file descriptor is closed12.

Ext2 space allocation: The original Unix file system used a free list to

store a list of unused blocks; blocks were allocated from the head of this

list for new files, and returned to the head when freed. As files were created

and deleted this list became randomized, so that blocks allocated for a file

were rarely sequential and disk seeks were needed for nearly every block

read from or written to disk. This wasn’t a significant problem, because

12Deleting open files is a tricky problem, as there’s no good way to handle operations on

those open handles after the file is deleted. Unix solves it by postponing the actual deletion

until the file descriptor is closed; Windows instead locks the file against deletion until any

open file handles are closed.
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Figure 6.5: Ext2 on-disk layout

early Unix systems ran on machines with fast disks and excruciatingly

slow CPUs. As computers got faster and users started noticing that the

file system was horribly slow, the Fast File System (FFS) from Berkeley

Unix replaced the free list with a more efficient mechanism, the allocation

bitmap.

Ext2 is essentially a copy of FFS, and uses this bitmap mechanism. It

keeeps a boolean array with one bit for each disk block; if the block is

allocated the corresponding bit is set to ’1’, and cleared to ’0’ if it is freed.

To allocate a block you read a portion of this bitmap into memory and scan

for a ’0’ bit, changing it to ’1’ and writing it back. When you extend a file

you begin the search at the bit corresponding to the last block in the file; in

this way if a sequential block is available it will be allocated. This method

results in files being allocated in a mostly sequential fashion, reducing

disk seeks and greatly improving performance. (An additional bitmap

is used for allocating inodes; in this case we don’t care about sequential

allocation, but it’s a compact representation, and we can re-use some of

the code written for block allocation.)

Block groups, as shown in Figure 6.5, are an additional optimization from

FFS. Each block group is a miniature file system, with block and inode

bitmaps, inodes, and data blocks. The file system tries to keep the inode

and data blocks of a file in the same block group, as well as a directory

and its contents. In this way common operations (e.g. open and read a

file, or ’ls -l’) will typically access blocks within a single block group,

avoiding long disk seeks.

Long file names: Ext2 supports long file names using the mechanism

used in FFS. Rather than treating the directory as an array of fixed-sized

structures, it is instead organized as a sequence of length/value-encoded

entries, with free space treated as just another type of entry. Directory

search is performed using linear search.

Ext2 solutions to the three design problems?
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1. File identification - files and directories are identified by inode

number, and the location of the fixed-sized inode can be calculated

from inode number and the inode table location.

2. File organization - blocks within a file are located via pointers from

the inode

3. Free space allocation - free blocks are tracked in a free-space bitmap,

and block groups are used to keep blocks from the same file near to

each other, their inode, and their directory.

Note the difference here between the data structure (a bitmap) and strate-

gies used such as trying to allocate the block immediately after the previous

one written. The MS-DOS file system organizes its free list in an array,

as well, and most of the allocation techniques introduced in the Berkeley

Unix file system could be used with it. In practice, however, the MS-DOS

file system was typically implemented with simple allocation strategies

that resulted in significant file system fragmentation.

An additional anti-fragmentation strategy used by many modern operating

systems is the enforcement of a maximum utilization, typically 90% or

95%, as when a file system is almost full, it is likely that any free space

will be found in small fragments scattered throughout the disk. By limiting

utilization to e.g. 90%—i.e. one block out of ten is free—we significantly

increase the chance of finding multiple contiguous blocks when writing

to a file, while greatly decreasing the fraction of the bitmap we may need

to search to find a free block.

6.3 Superblock

Before a disk can be used in most systems it needs to be initialized or

formatted—the basic file system structures need to be put in place, de-

scribing a file system with a single directory and no files. A key structure

written in this process is the superblock, written at a well-known location

on the disk. (This is often block 1, allowing block 0 to be used by the boot

loader.) The superblock specifies various file system parameters, such as:

• Block size - most file systems can be formatted with different block

sizes, and the OS needs to know this size before it can interpret any

pointers given in terms of disk blocks. Historically larger blocks

were used for performance and to allow larger file systems, and

smaller blocks for space efficiency. In recent years disk drives have

transitioned to using an internal block size of 4KB, while keeping

the traditional 512-byte sector addressing, so any file system should

use a block size of at least 4KB.
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• Version - including a version number allows backwards compatibil-

ity as a file system evolves. That way you can upgrade your OS, for

instance, without reformatting your disk.

• Other parameters - in the MS-DOS file system the OS needs to know

how large the FAT table is, so that it doesn’t accidently go off the

end and start looking at the first data block. In ext2 you need to

know the sizes of the block groups, as well as the bitmap sizes, how

many inodes are in each group, etc.

• Dirty flag - when a file system is mounted, this flag is set; as part of a

clean shutdown the flag is cleared again. If the system crashes with-

out clearing the flag, at the next boot this indicates that additional

error checks are needed before mounting the file system.

6.4 Extents, NTFS, and Ext4

The ext2 and MS-DOS file systems use separate pointers to every data

block in a file, located in inodes and indirect blocks in the case of ext2,

and in the file allocation table in MS-DOS. But the values stored in these

pointers are often very predictable, because the file system attempts to

allocate blocks sequentially to avoid disk seeks—if the first block in a file

is block 100, it’s highly likely that the second will be 101, the third 102,

etc.

We can take advantage of this to greatly compress the information needed

to identify the blocks in a file - rather than having separate pointers to

blocks 100,101,. . . 120 we just need to identify the starting block (100)

and the length (21 blocks). This is shown in Figure 6.6, where five data

blocks are identified by inodes or indirect block pointers; to the right, the

same five data blocks are identified by a single extent. Why would we

want to compress the information needed to organize the blocks in a file?

Mostly for performance—although the code is more complicated, it will

require fewer disk seeks to read from disk.

This organization is the basis of extent-based file systems, where blocks

in a file are identified via one or more extents, or (start,length) pairs. The

inode (or equivalent) can contain space for a small number of extents;

if the file grows too big, then you add the equivalent of indirect blocks -

extents pointing to blocks holding more extents. Both Microsoft NTFS

and Linux ext4 use this sort of extent structure.

NTFS: Each NTFS file system has a Master File Table (MFT), which is

somewhat like the inode table in ext2—each file or directory has an entry

in this table which holds things like permissions, timestamps, and block

information. (The superblock contains a pointer to the start of the MFT;
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Figure 6.6: File structure—pointers vs. extents

the first entry in the MFT describes the MFT itself, so that it can grow as

needed.) Each entry in the MFT is structured as a set of attributes, with a

$Data attribute specifying the file contents. This attribute can be of two

types: internal, where the attribute holds file data directly (for very small

files), or external, in which case the $Data attribute holds a list of extents,

or contiguous regions identified by a starting block and length.

If the number of extents grows too large to fit into the MFT entry, an

$ATTRIBUTE_LIST field is added, holding a list of extents describing

the blocks holding the list of extents describing the file. This can continue

for one more level, which is enough to support files up to 16TB. Note that

the amount of space taken by the $Data attribute depends not only on the

size of the file, but its fragmentation; a very large file created on an empty

file system might consist of only a few extents, while a modest-sized file

created slowly (e.g. a log file) on a full file system might be composed of

hundreds of extents.

Free space is handled similarly, as a list of extents sorted by starting

block number; this allows the free space list to be easily compacted when

storage is freed. (i.e. just by checking to see if it can be combined with its

neighbors on either side) This organization makes it easy to minimize file

fragmentation, reducing the number of disk seeks required to read a file

or directory. It has the disadvantage that random file access is somewhat

more complex, and appears to require reading the entire extent list to find

which extent an offset may be found in. (A more complex organization

could in fact reduce this overhead; however in practice it does not seem

significant, as unless highly fragmented the extent lists tend to be fairly

short and easily cached.)

NTFS solutions to the three design problems?

1. file identification - Master File Table entry
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2. file organization - (possibly multi-level) extent list

3. free space management - sorted extent list.

Ext4: Ext4 supports extent-based file organization with minimal change

to the inode structure in ext2/ext3: an extent tree is used, with each node

explicitly marked as an interior or leaf node, as shown in Figure 6.7.

The inode holds a four-entry extent tree node, allowing small files to be

accessed without additional lookup steps, while for moderate-sized files

only a single level of the tree (a “leaf node” in the figure) is needed.

Figure 6.7: Ext4 on-disk structure

6.5 Smarter Directories

In the CD-ROM, MS-DOS, and ext2 file systems, a directory is just an

array of directory entries, in unsorted order. To find a file, you search

through the directory linearly; to delete a file, you mark its entry as unused;

finally, to create a new entry, you find any entry that’s free. (It’s a bit more

complicated for file systems like ext2 which have variable-length directory

entries, but not much.)

From your data structures class you should realize that linear search isn’t

an optimal data structure for searching, but it’s simple, robust, and fast

enough for small directories, where the primary cost is retrieving a block of

data from the disk. As an example, one of my Linux machines has 94944

directories that use a single 4KB block, another 957 that use 2 to 5 blocks,

and only 125 larger than 5 blocks. In other words, for the 99% of the

directories that fit within a single 4 KB block, a more complex algorithm

would not reduce the amount of data read from disk, and the difference
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between O(N) and O(logN) algorithms when searching a single block

is negligible.

However the largest directories are actually quite big: the largest on this

machine, for example, has 13,748 entries; another system I measured had

a database directory containing about 64,000 files with long file names, or

roughly 4000 blocks (16 MB) of directory data. Since directories tend to

grow slowly, these blocks were probably allocated a few at a time, resulting

in hundreds or thousands of disk seeks to read the entire directory into

memory. At 15 ms per seek, this could require 10-30 seconds or more,

and once the data was cached in memory, linear search in a 16 MB array

will probably take a millisecond or two.

To allow directories with tens of thousands of files or more, modern file

systems tend to use more advanced data structures for their directories.

NTFS (and Linux Btrfs) use B-trees, a form of a balanced tree. Other file

systems, like Sun ZFS, use hash tables for their directories, while ext4

uses a hybrid hash/tree structure. If you’re really interested, you can look

these up in Google.
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6.6 The B-tree
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Figure 6.8: B-tree growth

The B-tree is one of those widely-used data

structures that you never see in your data struc-

tures course. It’s not a file system— the B-tree

is a disk-optimized search structure, optimized

for the case where accessing a block of infor-

mation is much more expensive (e.g. requiring

a disk seek) than searching through that block

after it has been accessed. It has been used for

file systems, databases, and similar purposes

since the 1970s, along with various extensions

(e.g. B+-trees) which are not described here.

B-tries are balanced trees made up of large

blocks, with a high branching factor, in order

to reduce the number of block accesses needed

for an operation. Interior and leaf nodes are

identical; each contains a sorted list of key/-

value pairs, and (in non-leaf nodes) pointers be-

tween pairs of keys, pointing to subtrees hold-

ing keys which are between those two values.

The tree grows from the bottom up: if a block

overflows, you split it, dividing the contents

between two blocks, and add a pointer to the

new block in the correct position in the parent;

if the parent overflows it is split, and so on. If

the root node splits, a new root is allocated

with pointers to the two pieces.

If the branching factor of a B-tree is m, then each block (except for the root)

holds between m/2 and m entries. In the example shown in Figure 6.8,

m=2; in a real system each node would contain many more entries.

In Figure 6.8 we see seven values being added to the tree, which grows

“from the bottom up”:

1. The first value goes in the root

2. Since the root isn’t full, the second value goes here too

3. Now it’s full - split the block. Since the block doesn’t have a parent

(it’s the root) we add one, which becomes the new root

4. ’4’ fits into one of the leaf nodes where there’s room

5. ’5’ doesn’t fit, so we split the node. There’s room in the parent to

hold another pointer

6. ’6’ fits in the leaf node
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7. ’7’ doesn’t, so we split the leaf node, but that causes the parent node

to overflow, so we split it, and have to add a new parent node which

becomes the new root.

6.7 Consistency and Journaling

Unlike in-memory structures, data structures on disk must survive system

crashes, whether due to hardware reasons (e.g. power failure) or software

failures. This is a different problem than the consistency issues we dealt

with for in-memory structures, where data corruption could only occur due

to the action of other threads, and could be prevented by the proper use of

mutexes and similar mechanisms. Unfortunately there is no mutex which

will prevent a system from crashing before the mutex is unlocked, or file

system designers would use it liberally. The problem is compounded by

the fact that operating systems typically cache reads and writes to increase

performance, so that writes to the disk may occur in a much different order

than that in which they were issued by the file system code.

In its simplest form the problem is that file system operations of-

ten involve writing to multiple disk blocks—for example, moving a

file from one directory to another requires writing to blocks in the

source and destination directories, while creating a file writes to the

block and inode allocation bitmaps, the new inode, the directory

block, and the file data block or blocks13. If some but not all of

bitmap

directory 
entry

data 
block

inode
/a 

/a/b 
1

2

Figure 6.9: File, directory, bitmap

these writes occur before a

crash, the file system may be-

come inconsistent—i.e. in a

state not achievable through any

legal sequence of file system

operations, where some opera-

tions may return improper data

or cause data loss.

For a particularly vicious exam-

ple, consider deleting the file

/a/b as shown in Figure 6.9,

which requires the following actions:

1. Clear the directory entry for /a/b. This is done by marking the entry

as unused and writing its block back to the directory.

2. Free the file data block, by clearing the corresponding entry in the

block allocation bitmap

13These steps ignore inode writes to update file or directory modification times.
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written before crash

This results in two disk blocks being modified

and written back to disk; if the blocks are

cached and written back at a later point in

time they may be written to disk in any order.

(this doesn’t matter for running programs, as

when they access the file system the OS will

check cached data before going to disk)

If the system crashes (e.g. due to a power

failure) after one of these blocks has been

written to disk, but not the other, two case are

possible:

1. The directory block is written, but not the bitmap. The file is no

longer accessible, but the block is still marked as in use. This is a

disk space leak (like a memory leak), resulting in a small loss of

disk space but no serious problems.

2. The bitmap block is written, but not the directory. Applications are

still able to find the file, open it, and write to it, but the block is also

available to be allocated to a new file or directory. This is much

more serious.

If the same block is now re-allocated for a new file (/a/c in this case)

we now have two files sharing the same data block, which is obviously a

problem. If an application writes to /a/b it will also overwrite any data in

/a/c, and vice versa. If /a/c is a directory rather than a file things are even

worse - a write to /a/bwill wipe out directory entries, causing files pointed

to by those entries to be lost. (The files themselves won’t be erased, but
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entry still points 
at inode

block marked  
as free

Figure 6.11: Bitmap block

written before crash

without directory entries pointing to them

there won’t be any way for a program to ac-

cess them.)

This can be prevented by writing blocks in a

specific order—for instance in this case the

directory entry could always be cleared before

the block is marked as free, so that in the

worst case a crash might cause a few data

blocks to become unusable. Unfortunately

this is very slow, as these writes must be done

synchronously, waiting for each write to complete before issuing the next

one.

Fsck / chkdsk: One way to prevent this is to run a disk checking routine

every time the system boots after a crash. The dirty flag in the file system

superblock was described in the section above; when a machine boots, if
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the file system is marked dirty, (fsck, or chkdsk in Windows) is run to

repair any problems.

In particular, the Unix file system checker performs the following checks

and corrections:

1. Blocks and sizes. Each allocated inode is checked to see that (a)

the number of blocks reachable through direct and indirect pointers

is consistent with the file size in the inode, (b) all block pointers

are within the valid range for the volume, and (c) no blocks are

referenced by more than one inode.

2. Pathnames. The directory tree is traversed from the root, and each

entry is checked to make sure that it points to a valid inode of the

same type (directory / file / device) as indicated in the entry.

3. Connectivity. Verifies that all directory inodes are reachable from

the root.

4. Reference counts. Each inode holds a count of how many directory

entries (hard links) are pointing to it. This step validates that count

against the count determined by traversing the directory tree, and

fixes it if necessary.

5. “Cylinder Groups” The block and inode bitmaps are checked for

consistency. In particular, are all blocks and inodes reachable from

the root marked in use, and all unreachable ones marked free?

6. “Salvage Cylinder Groups” Free inode and block bitmaps are up-

dated to fix any discrepancies.

This is a lot of work, and involves a huge number of disk seeks. On a large

volume it can take hours to run. Note that full recovery may involve a

lot of manual work; for instance, if fsck finds any files without matching

directory entries, it puts them into a lost+found directory with numeric

names, leaving a human (i.e. you) to figure out what they are and where

they belong.

Checking disks at startup worked fine when disks were small, but as they

got larger (and seek times didn’t get faster) it started taking longer and

longer to check a file system after a crash. Uninterruptible power supplies

help, but not completely, since many crashes are due to software faults

in the operating system. The corruption problem you saw was due to

inconsistency in the on-disk file system state. In this example, the free

space bitmap did not agree with the directory entry and inode. If the file

system can ensure that the on-disk data is always in a consistent state, then

it should be possible to prevent losing any data except that being written

at the exact moment of the crash.

Performing disk operations synchronously (and carefully ordering them
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in the code) will prevent inconsistency, but as described above imposes

excessive performance costs. Instead a newer generation of file systems,

termed journaling file systems, has incorporated mechanisms which add

additional information which can be used for recovery, allowing caching

and efficient use of the disk, while maintaining a consistent on-disk state.

6.8 Journaling

Most modern file systems (NTFS, ext3, ext4, and various others) use

journaling, a variant of the database technique of write-ahead logging.

The idea is to keep a log which records the changes that are going to be

made to the file system, before those changes are made. After an entry is

written to the log, the changes can be written back in any order; after they

are all written, the section of log recording those changes can be freed.

When recovering from a crash, the OS goes through the log and checks

that all the changes recorded there have been performed on the file system

itself14. Some thought should convince you that if a log entry is written,

then the modification is guaranteed to happen, either before or after a

crash; if the log entry isn’t written completely then the modification never

happened. (There are several ways to detect a half-written log entry,

including using an explicit end marker or a checksum; we’ll just assume

that it’s possible.)

Figure 6.12: Synchronous disk writes for ext2 consistency.

14Actually it doesn’t check, but rather “replays” all the changes recorded in the log.
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Ext3 Journaling: The ext3 file system uses physical block logging: each

log entry contains a header identifying the disk blocks which are modified

(in the example you saw earlier, the bitmap and the directory entry) and a

copy of the disk blocks themselves. After a crash the log is replayed by

writing each block from the log to the location where it belongs. If a block

is written multiple times in the log, it will get overwritten multiple times

during replay, and after the last over-write it will have the correct value.

To avoid synchronous journal writes for every file operation, ext3 uses

batch commit: journal writes are deferred, and multiple writes are com-

bined into a single transaction. The log entries for the entire batch are

written to the log in a single sequential write, called a checkpoint. In

the event of a crash, any modifications since the last checkpoint will be

lost, but since checkpoints are performed at least every few seconds, this

typically isn’t a problem. (If your program needs a guarantee that data is

written to a file right now, you need to use the fsync system call to flush

data to disk.)

Ext3 supports three different journaling modes:

• Journaled: In this mode, all changes (to file data, directories, inodes

and bitmaps) are written to the log before any modifications are

made to the main file system.

• Ordered: Here, data blocks are flushed to the main file system

before a journal entry for any metadata changes (directories, free

space bitmaps, inodes) is written to the log, after which the metadata

changes may be made in the file system. This provides the same

consistency guarantees as journaled mode, but is usually faster.

• Writeback: In this mode, metadata changes are always written to

the log before being applied to the main file system, but data may

be written at any time. It is faster than the other two modes, and

will prevent the file system itself from becoming corrupted, but data

within a file may be lost.
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Figure 6.13: Ext2 vs Log-structured file system layout

6.9 Log-Structured File Systems

Log-structured file systems (like LFS in NetBSD, or NetApp WAFL) are

an extreme version of a journaled file system: the journal is the entire

file system. Data is never over-written; instead a form of copy-on-write

is used: modified data is written sequentially to new locations in the log.

This gives very high write speeds because all writes (even random ones)

are written sequentially to the disk.

Figure 6.13 compares LFS to ext2, showing a simple file system with two

directories (dir1, dir2) and two files (/dir1/file1, /dir2/file2). In ext2 the

root directory inode is found in a fixed location, and its data blocks do

not move after being allocated; in LFS both inode and data blocks move

around—as they are modified, the new blocks get written to the head of the

log rather than overwriting the old ones. The result can be seen graphically

in the figure—in the LFS image, pointers only point to the left, pointing

to data that is older than the block holding a pointer. Unlike ext2 there is

no fixed location to find the root directory; this is solved by periodically

storing its location in a small checkpoint record in a fixed location in the

superblock. (This checkpoint is not shown in the figure, and would be the

only arrow pointing to the right.)

When a data block is re-written, a new block with a new address is used.

This means that the inode (or indirect block) pointing to the data block

must be modified, which means that its address changes.

LFS uses a table mapping inodes to locations on disk, which is updated

with the new inode address to complete the process; this table is itself
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Figure 6.14: WAFL tree before and after update

stored as a file. (The astute reader may wonder why this update doesn’t

in fact trigger another update to the inode file, leading to an infinite loop.

This is solved by buffering blocks in memory before they are written, so

that multiple changes can be made.)

In WAFL these changes percolate all the way up through directory entries,

directory inodes, etc., to the root of the file system, potentially causing

a large number of writes for a small modification. (although they’ll still

be fairly fast since it’s a single sequential write) To avoid this overhead,

WAFL buffers a large number of changes before writing to disk; thus

although any single write will modify the root directory, only a single

modified copy of the root directory has to be written in each batch.

In Figure 6.14 a WAFL directory tree is shown before and after modifying

/dir1/file2, with the out-of-date blocks shown in grey. If we keep a pointer

to the old root node, then you can access a copy of the file system as it

was at that point in time. When the disk fills up these out-of-date blocks

are collected by a garbage collection process, and made available for new

writes.

One of the advantages of a log-structured file system is the ability to easily

keep snapshots of file system state—a pointer to an old version of the

inode table or root directory will give you access to a copy of the file

system at the point in time corresponding to that version. (e.g. look in

your .snapshot directory on login.ccs.neu.edu - this data is stored on

a NetApp filer using WAFL and its snapshot functionality.)

6.10 Kernel implementation

When applications access files they identify them by file and directory

names, or by file descriptors (handles), and reads and writes may be

performed in arbitrary lengths and alignments. These requests need to

be translated into operations on the on-disk file system, where data is

identified by its block number and all reads and writes must be in units of

disk blocks.
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The primary parts of this task are:

• Path translation - given a list of path components (e.g. “usr”, “local”,

“bin”, “program”) perform the directory lookups necessary to find

the file or directory named by that list.

• Read and write - translate operations on arbitrary offsets within a

file to reads, writes, and allocations of complete disk blocks.

Path translation is a straightforward tree search - starting at the root direc-

tory, search for an entry for the first path component, find the location for

that file or directory, and repeat until the last component of the list has

been found, or an error has occurred. (not counting permissions, there are

two possible errors here—either an entry of the path was not found, or a

non-final component was found but was a file rather than a directory)

Reading requires finding the blocks which must be read, reading them

in, and copying the requested data (which may not be all the data in the

blocks, if the request does not start or end on a block boundary) to the

appropriate locations in the user buffer.

Writing is similar, with added complications: if a write starts in the middle

of a block, that block must be read in, modified, and then written back so

that existing data is not lost, and if a write extends beyond the end of the

file new blocks must be allocated and added to the file.

As an example, to handle the system calls

fd = open("/home/pjd/file.txt", O_RDONLY)

read(fd, buf, 1024)

the kernel has to perform the following steps:

1. Split the string /home/pjd/file.txt into parts - home, pjd,

file.txt

2. Read the root directory inode to find the location of the root directory

data block. (let’s assume it’s a small directory, with one block)
root	
  

inode	
  

home	
  

memory 

disk	
  

root	
  

inode	
  
inode	
  

pjd	
   inode	
   file.txt	
  
inode	
  

data	
  

block	
  

2	
  

3. Read the root directory data block, search for "home", and find the

corresponding inode number

4. Read the inode for the directory "home" to get the data block pointer
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5. Read the "home" directory data block, search for "pjd" to get the

inode number

6. Read the "pjd" directory inode, get the data block pointer
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7. Read the "pjd" directory block, and find the entry for file.txt

8. Read the "file.txt" inode and get the first data block pointer

9. Read the data block into the user buffer
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Most of this work (steps 2 through 7) is path translation, or the process

of traversing the directory tree to find the file itself. In doing this, the OS

must handle the following possibilities:

1. The next entry in the path may not exist - the user may have typed

/hme/pjd/file.txt or /home/pjd/ffile.txt

2. An intermediate entry in the path may be a file, rather than a direc-

tory - for instance /home/pjd/file.txt/file.txt

3. The user may not have permissions to access one of the entries in

the path. On the CCIS systems, for instance, if a user other than

pjd tries to access /home/pjd/classes/file.txt, the OS will

notice that /home/pjd/classes is protected so that only user pjd

may access it.
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6.11 Caching

Disk accesses are slow, and multiple disk accesses are even slower. If

every file operation required multiple disk accesses, your computer would

run very slowly. Instead much of the information from the disk is cached

in memory in various ways so that it can be used multiple times without

going back to disk. Some of these ways are:

File descriptors: When an application opens a file the OS must translate

the path to find the file’s inode; the inode number and information from

that inode can then be saved in a data structure associated with that open

file (a file descriptor in Unix, or file handle in Windows), and freed when

the file descriptor is closed.

Translation caching: An OS will typically maintain an in-memory trans-

lation cache (the dentry cache in Linux, holding individual directory

entries) which holds frequently-used translations, such as root directory

entries.

The directory entry cache differs from e.g. a CPU cache in that it holds

both normal entries (e.g. directory+name to inode) and negative entries,

indicating that directory+name does not exist15. If no entry is found the

directory is searched, and the results added to the dentry cache.

Block caching: To accelerate reads of frequently-accessed blocks, rather

than directly reading from the disk the OS can maintain a block cache.

Before going to disk the OS checks to see whether a copy of the disk block

is already present; if so the data can be copied directly, and if not it is read

from disk and inserted into the cache before being returned. When data is

modified it can be written to this cache and written back later to the disk.

Among other things, this allows small reads (smaller than a disk block)

and small writes to be more efficient. The first small read will cause the

block to be read into cache, while following reads from the same block will

come from cache. Small writes will modify the same block in cache, and

if a block is not flushed immediately to disk, it can be modified multiple

times while only resulting in a single write.

Modern OSes like Linux use a combined buffer cache, where virtual

memory pages and the file system cache come from the same pool. It’s a

bit complicated, and is not covered in this class.

15To be a bit formal about it, a CPU cache maps a dense address space, where every key

has a value, while the translation cache maps a sparse address space.
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6.12 VFS

In order to support multiple file systems such as Ext3, CD-ROMs, and

others at the same time, Linux and other Unix variants use an interface

called VFS, or the Virtual File System interface. (Windows uses a much

different interface with the same purpose) The core of the OS does not

know how to interpret individual file systems; instead it knows how to

make requests across the VFS interface. Each file system registers an

interface with VFS, and the methods in this interface implement the file

system by talking to e.g. a disk or a network server.

VFS objects all exist in memory; any association between these structures

and data on disk is the responsibility of the file system code. The important

objects and methods in this interface are:

superblock. Not to be confused with the superblock on disk, this object

corresponds to a mounted file system; in particular, the system mount

table holds pointers to superblock structures. The important field in the

superblock object is a pointer to the root directory inode.

inode - this corresponds to a file or directory. Its methods allow attributes

(owner, timestamp, etc.) to be modified; in addition if the object corre-

sponds to a directory, other methods allow creating, deleting, and renaming

entries, as well as looking up a string to return a directory entry.

dentry - an object corresponding to a directory entry, as described earlier.

It holds a name and a pointer to the corresponding inode object, and no

interesting methods.

file - this corresponds to an open file. When it is created there is no

associated “real” file; its open method is called with a dentry pointing to

the file to open.

To open a file the OS will start with the root directory inode (from the

superblock object) and call lookup, getting back a dentry with a pointer

to the next directory, etc. When the dentry for the file is found, the OS will

create a file object and pass the dentry to the file object’s open method.

FUSE (File system in User Space) is a file system type in Linux which

does not actually implement a file system itself, but instead forwards VFS

requests to a user-space process, and then takes the responses from that

process and passes them back to the kernel. This is seen in Figure 6.15,

where a read call from the application results in kernel requests through

VFS to FUSE, which are forwarded to a user-space file system process.

You will use FUSE to implement a file system in Homework 4, storing

the file system in an image file accessed by the file system process.
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• getattr - return attributes (size,

owner, etc.) of a file or directory.

• readdir - list a directory

• mkdir, rmdir, create, unlink

- create and remove directories

and files

• read, write - note that these

identify the offset in the file, as the

kernel (not the file system) han-

dles file positions.

• rename - change a name in a di-

rectory entry

• truncate - shorten a file

• ... and others, most of which are

optional.
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Figure 6.15: FUSE architecture and methods

Like VFS, the FUSE interface consists of a series of methods which

you must implement, and if you implement them correctly and return

consistent results, the kernel (and applications running on top of it) will

see a file system. Unlike VFS, FUSE includes various levels of user-

friendly support; we will use it in a mode where all objects are identified

by human-readable path strings, rather than dentries and inodes.

6.13 Network File Systems

The file systems discussed so far are local file systems, where data is stored

on local disk and is only directly accessible from the computer attached to

that disk. Network file systems are used when we want to access to data

from multiple machines - for instance, if you log in to a machine in the

CCIS lab in room 102, your home directory will be the same on every

machine, and is in fact stored on a NetApp file server in a machine room

upstairs.

The two network file systems in most common use today are Unix NFS

(Network File System) and Windows SMB (also known as CIFS). Each

protocol provides operations somewhat similar to those in VFS (quite

similar in the case of NFS, as the original VFS was designed for it),

allowing the kernel to traverse and list directories, create and delete files,

and read and write arbitrary offsets within a file.

The primary differences between the NFS (up through v3 - v4 is more

complicated) and SMB are:

• State - NFS is designed to be stateless for reliability. Once you

have obtained a file’s unique ID (from the directory entry) you can
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just read from or write to a location in it, without opening the file.

Operations are idempotent, which means they can be repeated mul-

tiple times without error. (e.g. writing page P to offset x can be

repeated, while appending page P to the end of the file can’t.) In

contrast SMB is connection-oriented, and requires files and direc-

tories to be opened before they can be operated on. NFS tolerates

server crashes and restarts more gracefully, but does not have some

of the connection-related features in SMB such as authentication,

described below.

• Identity - NFS acts like a local file system, trusting the client to

authenticate users and pass numeric user IDs to the server. SMB

handles authentication on the server side - each connection to the

server begins with a handshake that authenticates to the server with

a specific username, and all operations within that connection are

done as that user.

Answers to Review Questions

6.1.1 False - otherwise there would be no subdirectories.

6.1.2 (2) and (4). If the file is deleted (2), all bytes (including the 1000th

byte) will cease to exist; the 1000th byte is in the range being over-

written in (4). Renaming leaves the file otherwise unchanged, and

modifying bytes 500 through 600 does not affect any other locations

in the file.

6.1.3 (2) and (3). Bytes will be read starting at the current position

until ’max’ bytes have been read or the end of the file is reached,

whichever comes first. The data itself is irrelevant, as is the ’buffer’

argument. (as long as it points to enough valid memory)

6.1.1 (1) and (3). The OS will not allow non-empty directories to be

deleted, as otherwise the files would be lost and their space would

not be reclaimed. In addition it must prevent normal user writes

to a directory, as user corruption of directory contents might be a

security or crash risk.

6.1.2 (2) The mount table is internal to the kernel, and holds the current

configuration of where filesystems are mounted, so it can be used

when looking up a file. Programs external to the kernel are responsi-

ble for knowing where filesystems should be mounted, and doing so.

(Typically the startup scripts in Linux read this information from

the file /etc/fstab.)

6.2.1 True. Disks only support reading and writing in fixed-sized blocks;

to modify a smaller region the OS must read a block, modify it, and

write it back.
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6.2.2 False. In almost all file systems, all blocks must be of the same size.

6.2.3 (1) Since the start of each file is indicated by only a block number

(not by e.g. block number plus offset), each file must start at the

beginning of a block.

6.2.4 False. It doesn’t track free space at all, since being read-only it never

needs to allocate space to create new files.

6.2.1 (3) Data blocks contain only data, and are linked via external point-

ers in the file allocation table.

6.2.2 (1) In ext2 multiple directory entries can point to the same inode.

Like MS-DOS, ext2 requires (at least) one pointer per file block;

these are in the inode and indirect blocks, while in the MS-DOS file

system they are located in the FAT.





Chapter 7

Security

The term computer security covers a number of areas and goals. Most of

them fall under the following categories:

• Confidentiality of data. As a user of a computer system, this allows

you to prevent others from accessing information which you wish

to keep private, such as email or passwords.

• Confidentiality of actions. This lets you prevent others from observ-

ing what programs you run and what files or external resources you

access.

• Integrity of data. Your data will not be modified or deleted without

your permission.

• Integrity of operations. Commands should do what they are sup-

posed to do. For example, when you type ls you should get a di-

rectory listing, rather than a script that sends your passwords to a

secret website in Russia.

• Availability. A system will not stop running when you need it to be

operational.

With the rise of the Internet, security has become a much broader field,

much of it related to either networking or the behavior of applications such

as web browsers. This chapter will cover operating system features which

enable computer security, and which reduce the risks from security flaws

in application software; the field of computing security is much larger,

however1.

1E.g. see courses such as CS 5770, Software Vulnerabilities and Security, CS 6750,

Cryptography and Communication Security, CS 6740, Network Security, or CS 6760, Privacy,

Security and Usability

187
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7.1 Protection

Much of security involves protection: deciding whether or not to allow an

operation based on a series of rules. The purpose of protection is to ensure

the security goals described above, by applying these rules to computing

operations, allowing some operations and forbiding others. (This is not

sufficient for full security, as seen in the discussion below of software

vulnerabilities, but it helps.) These rules are typically based on a simple

model, of actors, objects, and actions:

• Actors. These perform the actions. At the lowest level these are

almost always processes, but they are typically identified by a text or

numeric user ID, which is typically associated with either an actual

person or a system service.

• Objects. These are the things which are being protected: usually

files or directories, but sometimes processes, special devices, con-

figurations, or other aspects of the system which can be modified.

• Actions. These are performed on objects. The most common actions

are read and write, but others can include creating and deleting files,

killing a process, or rebooting the system.

The goal of the operating system’s protection or access control mech-

anisms is to express and enforce policies which determine whether a

particular combination of an actor performing an action on an object is to

be allowed or denied.

Identity and Authentication

In a Unix-like operating system, the actual actors are processes, which

perform actions by issuing system calls. However specifying rules based on

the processes themselves—e.g. process 10 may access file "/home/pjd"—

will not work, because processes are created dynamically: rules could only

be made for processes in existence at that time, and not for ones created in

the future.

The solution used in almost all operating systems today is the concept of

user identity: every process is associated with a user identity (e.g. a user

name and ID in Unix) and rules are specified in terms of these identities.

In its simplest form each of these identities is a login name associated

with an individual person, and rules for that identity are used to permit

or restrict access by that person2. User identity is inherited through the

2Additional identities are typically used for system accounts, like the httpd user asso-

ciated with the webserver process on many systems. This allows the same mechanism to be

used to grant or restrict access for various system operations.
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fork system call, so that actions taken by a process either directly or

indirectly (through children of that process) are bound by the same rules.

Access rules specify actors in terms of these identities, and every process

is associated with one of these identities, allowing a fixed mapping from

identities to permissions.

These authentication mechanisms

are frequently called factors; hence

the term multi-factor authentication,

where more than one factor (e.g.

password, text message) are used.

The Wikipedia entry on

“Multi-factor authentication” is a

good introduction.

In practice this requires a login pro-

cess, or authentication, in which

an external user proves that she has

the right to take on a certain iden-

tity. Thus, the person Jane Smith

may be given the right to use the

operating system identity named

smith.j, after authenticating that

identity to the system by providing the correct password. Authentication is

an important part of operating system security, as it forms the link between

the higher-level goals of system administration (e.g. Jane is allowed to

access file.txt, but Joe isn’t) and the operating system-level features which

implement this control.

Most authentication mechanisms can be classified as one of three types,

based on the type of verification provided by the user:

1. Something you know: e.g. a password. This is the most common

form of authentication, due to ease of implementation.

2. Something you have: like a key to a lock, an RSA SecurID token, etc.

More complicated to administer, but more difficult for an adversary

to obtain.

3. Something you are: often biometric data, such as a fingerprint.

You have undoubtedly used many password-authenticated processes; in

addition you may have used other methods such as a SecureID token or

fingerprint scanner. There are advantages and disadvantages to each type

of authentication; however this class focuses on passwords as they are the

most widely used.

Checking passwords

Securely storing and checking passwords is difficult, and various methods

have been used over the years. The primary alternatives are as follows.

Unencrypted file: Passwords are stored In an unencrypted file, only ac-

cessible to the operating system or a privileged user, and a simple string

compare is used to verify a user-entered password. Although in principle

this should be secure, the result of any error or failure is catastrophic. (This
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issue is particularly problematic since people typically re-use passwords

across systems.)

Hashed password file: Passwords are put through a one-way crypto-

graphic hash function3 before being stored. User-entered passwords are

hashed by the same algorithm and compared with the stored password

hash; if the two match, then the password is correct. Early UNIX systems

used this mechanism, and made the password file publicly-readable, as

the same file held other information (e.g. mapping between numeric user

ID and text username) used by many unprivileged programs. (e.g. the ls

-l command would need this mapping to show file ownership.) This was

considered fairly secure on slow (and especially non-networked) machines,

due to the length of time required to crack an individual password by brute

force—i.e. trying all possible combinations until the correct password was

found. However the discovery of dictionary attacks changed this, however.

A dictionary attack is based on the idea that in most cases breaking into

any account is almost as good as breaking a particular account, and takes

advantage of the fact that on shared machines (e.g. login.ccs.neu.edu)

there are a large number of user accounts, increasing the chance of breaking

into one of them. The attack consists of calculating the hash for every

word in a dictionary4, and then comparing this list with the hashes in

the password file; if any of the accounts has a password in this list, the

attack succeeds. (a more sophisticated attack, using pre-computed rainbow

tables5 is able to crack individual hashed passwords very quickly, as well.)

Password “salt”: This is a variation on hashed passwords—when a pass-

word is stored, a random string S is chosen (for unknown reasons called

the salt) and appended to the password before hashing ; the stored value

is then [S, hash(S+password)]. Verifying a password is straightforward:

the salt value is read from the password file and appended to the input

password before it is hashed and compared. This protects against attacks

which require pre-computed tables (e.g. dictionary and rainbow table

attacks), as now tables would be needed for every possible salt value. (in

early usage this was 12 bits long; in modern systems it is 32 bits or more.)

As machines (especially GPUs) become faster and faster, even this method

has become less secure over time, as it is becoming feasible for attackers

to evaluate billions of possible passwords per second. Counter-measures

include making the hash function slower (e.g. running the password

3Typically, the password is used as a key to encrypt a known, constant message.
4Typically common words, plus personal names, plus variations on those words such as

appending a digit.
5see https://engineering.purdue.edu/kak/compsec/NewLectures/

Lecture24.pdf

https://engineering.purdue.edu/kak/compsec/NewLectures/ Lecture24.pdf
https://engineering.purdue.edu/kak/compsec/NewLectures/ Lecture24.pdf
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pjd@cs5600-vbox:~$ ls -l /etc/shadow /etc/passwd
-rw-r--r-- 1 root root 1061 Aug 24 2013 /etc/passwd
-rw-r----- 1 root shadow 867 Aug 24 2013 /etc/shadow
pjd@cs5600-vbox:~$ tail -2 /etc/passwd
student:x:1000:1000:A,,,:/home/student:/bin/bash
pjd:x:1001:1001:Peter Desnoyers,,,:/home/pjd:/bin/bash
pjd@cs5600-vbox:~$ sudo tail -2 /etc/shadow
student:$6$JjiTdyS2$cvbtxgVxMwMI5fL0If5Dc90JRuds9yolCKGHc/52ET1tLwksji/

SN05pksqdwACztcvhIyCDRfAt9lrK133WA/:15935:0:99999:7:::
pjd:$6$wz5.BTqz$RXkmlCnbb0aoA7C67zf2zL7FokmdKLoc51MLdn7jcDe/JMHzs7iePBC

NEy7O7ZGbVFIl4wTEbi5a8yhhQALnd1:15941:0:99999:7:::

Listing 7.1: Password and shadow password files in Linux

through the hash function 5000 times), and protecting the password file

against public access, just like was done with early plain-text password

files. (this is done in Linux— /etc/passwd contains username and

UID information, and is publicly readable, while /etc/shadow contains

password hashes and is protected.

Challenge-response: This is another variation on password checking,

although it is typically used over a network rather than for direct login. In

this case the server must keep the password in clear text; when a client

requests authentication, the server sends a challenge—a random string—

which the client adds to the password before hashing it and sending the

result back to the server. In this way an attacker with access to the network

is unable to learn the password, and (if the server never repeats challenges)

is unable to replay previous responses.

Review Questions

7.1.1. In Unix, a password is used to determine if you have permission to

access a file: True / False

7.1.2. Because the passwords in a password file are encrypted, it is safe

to make the file publicly readable: True / False

Centralized authentication - LDAP and Kerberos

Modern computer systems frequently use centralized password administra-

tion: for instance, when you log in to a CCIS workstation your password

is not checked locally, but rather against a central authentication server.

The most common used mechanisms are LDAP and Kerberos, frequently

used as part of Microsoft’s Active Directory service. LDAP (lightweight

directory access protocol) is a general-purpose directory protocol that

can store information about people, machines, and just about anything
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# pjd, people, ccs.neu.edu

dn: uid=pjd,ou=people,dc=ccs,dc=neu,dc=edu

displayName: Peter J. Desnoyers

cn: pjd

loginShell: /bin/bash

uidNumber: 11415

gidNumber: 65100

sn: Desnoyers

homeDirectory: /home/pjd

mail: pjd@ccs.neu.edu

givenName: Peter

...

Listing 7.2: Typical CCIS LDAP entry

else that a computer might want to name; an example entry is shown in

Figure 7.2.

One of the attributes an LDAP entry can have is a password: a client

can log in to the LDAP server by specifying this password, which will be

checked by the server. A Linux or other system will use an LDAP server for

authentication by attempting to login with the credentials supplied by the

user; if this succeeds, then the local login is successful and user information

(such as shell and home directory) is retrieved from the server6.

Kerberos is a more general-purpose authentication mechanism that allows

a server to supply unforgeable cryptographically-signed tickets. These

allow untrusted machines, like personal computers, to securely access

network services, such as a file server while only having to authenticate

once, to the Kerberos server; after this initial authentication, the Kerberos

tickets can be used for authentication without having to request additional

passwords from the user.

Review Questions

7.1.1. LDAP is used for:

a) Storing user information on a central server

b) Storing (and checking) user passwords on a central server

c) Both of the above.

6In Linux and some other systems this is handled in practice by the PAM (pluggable

authentication module) framework, developed at Sun Microsystems, which specifies one or

more authentication sources for the system to try for various events such as login.
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7.2 Unix Access Control

Basic security in an operating system is performed by access control: the

process of determining whether each OS action will be allowed, based on

the actor (determined by information like a user ID), the specific object (e.g.

a file), and object permissions. The desired operation can be described by

an access control matrix, such as this one:

file1 file2 dir1 file3

user1 - read - read/write

user2 read read read/write read

user3 read read - -

user4 read/write read/write - -

Table 71: Simple access matrix for four users, 3 files and 1 directory

To be more specific, the Unix security model has the following parts:

Actors: Users. User identity (and file ownership) is described by two IDs:

1. User id (uid)

2. Group id (gid)

In addition there are permissions for world—i.e. any user.

Objects: Files and directories.

Actions: On files: read, write, and execute (i.e. run as a program). Di-

rectories: list (as in ls), traverse - i.e. accessing the file /a/b/c requires

traversing the directories /a and /a/b, and modify - i.e. creating, deleting,

or renaming files (or directories) within that directory. (note that list,

traverse, and modify are encoded as read, execute, and write permissions)

Users may belong to more than one group: as an example, user pjd belongs

to groups faculty, cs5600 and sssl, as shown here by the id command:

pjd@login:~$ id pjd
uid=11415(pjd) gid=65100(faculty) groups=1254(cs5600),1294(sssl),65100(faculty)

Listing 7.3: Id command output

Files and directories have an owner and a group, and three sets of permis-

sions: one for the file owner, one for members of its group, and one for

world, with the permissions typically encoded in a single string, as shown

in Figure 7.1.

Finally, (a) only the owner of a file may change its permissions, and (b)

each user may belong to some number of groups. (typically up to 32)

Permissions are interpreted as follows:
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Figure 7.1: Interpreting file ownership and permissions

check(process, action, file):

if process.uid = file.uid:

if action in file.perm.owner

allow

else deny

if process.gid = file.gid:

if action in file.perm.group

allow

else deny

if action in file.perm.world:

allow

else deny

Listing 7.4: File access algorithm

As an example, the access control matrix from earlier: can be encoded in

file1 file2 dir1 file3

user1 - read - read/write

user2 read read read/write read

user3 read read - -

user4 read/write read/write - -

Table 72: Simple access matrix (again)

the set of permissions shown in Figure 7.5.
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group1 = {user2,user3,user4}
file1: owner = user4, group = group1

permissions = {owner = ’rw-’, group = ’r--’, other = ’---’}
file2: owner = user4, group = [doesn’t matter]

permissions = {owner = ’rw-’, group = ’r--’, other = ’r--’}
dir1: owner = user2, group = [doesn’t matter]

permissions = {owner = ’rw-’, group = ’---’, other = ’---’}
group2 = {user1,user2}
file3: owner = user1, group = group2

permissions = {owner = ’rw-’, group = ’r--’, other = ’---’}

Listing 7.5: Permissions for access matrix in Table 72

Limitations of Unix permissions

However if we make minor changes to this access control list:
file1 file2 dir1 file3

user1 — r– — rw-

user2 r– r– rw– r–

user3 rw- r– — rwx

user4 rw- rw- — —

Table 73: Complex access matrix (ls -l notation used for conciseness)

There are two problems here:

file1: Here two users have the highest level of privilege. If user3 and

user4 are assigned to the same group, and the file1 owner and group

permission are both set to rw-, then the only permission left is “world”. If

that is set to –- then user2 will not have the read access specified in the

access control matrix; however if it is set to r– then user1 will improperly

have access7.

file3: Here there are 4 distinct combinations of permissions, while Unix

permissions for a single file can only hold 3 combinations (owner, group,

and world).

Review Questions

7.2.1. Given the following file permissions:

pjd@login: ls -l file.txt

-rwxrw-r– 13 pjd faculty 1280 2013-10-19 00:01 file.txt

(A) which users can read the file? (B) Which users can write to the

file? (C) which users can execute the file?

7 Although it’s possible to achieve this matrix with owner=[user2 r–],

group=[(user2,user3,user4) rw-], and world=[–-], it doesn’t really make sense since

the owner can gain write access just by changing permissions on the file.
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a) Only user pjd

b) Only user pjd and any other user in group faculty

c) All users

7.2.2. In the following access control matrix:

file1 file2 dir1 file3

user1 - w - - - - r - - rw -

user2 r - - r - - rw - r - -

user3 r - - r - - - - - r - -

user4 rw - rw - rwx - - -

which of the desired access for which files or directories cannot be

implemented using simple Unix permissions?

a) file1 and dir1

b) file1 and file4

c) None: the entire access matrix can be expressed in Unix per-

missions

d) dir1

Access Control Lists

Access Control Lists (ACLs) are explicit rules granting or denying access

to users, and are more powerful than simple permissions. The idea is

straightforward: an ACL is a list of rules, where each rule specifies a user

or group, an action, and whether to allow or deny permissions.

Using the same example, which could not be encoded in standard Unix

permissions:

file1 file2 dir1 file3

user1 --- r-- --- rw-

user2 r-- r-- rw- r--

user3 rw- r-- --- rwx

user4 rw- rw- --- ---

the desired access to file1 can be expressed as:

file1: owner = user4, group = {user4,user3}

owner: rw-, group: rw-, user2: r--, other: ---

file3: owner = user3, group = {user3, user1}

owner: rwx, group: rw-, user2: r--, other: ---

Access Control List Examples

This example uses OSX access control lists; however, Linux and Windows

have similar mechanisms. We start with three user IDs: pjd, guest, and

joe.
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First a file is created, made readable by all users, and an ACL rule is added

denying access to user joe (using the chmod —a command).

pjd$ echo ’file 1 contents’ > file.1

pjd$ chmod u=r,g=r,o=r file.1

pjd$ chmod +a ’joe deny read’ file.1

pjd$ ls -le file.1

-r--r--r--+ 1 pjd wheel 16 Aug 28 14:20 file.1

0: user:joe deny read

The file can now be read by both pjd and guest, but not joe:

pjd$ cat file.1

file 1 contents

joe$ cat file.1

cat: file.1: Permission denied

guest$ cat file.1

file 1 contents

Now we create a second file, set it owner read-only, and a rule is added
giving read access to joe but no other user:

pjd$ echo ’file 2 contents’ > file.2

pjd$ chmod u=r,g=,o= file.2

pjd$ ls -le file.2

-r--------+ 1 pjd wheel 16 Aug 28 14:20 file.2

0: user:joe allow read

Now the file can be read by pjd and joe but not guest:

pjd$ cat file.2

file 2 contents

joe$ cat file.2

file 2 contents

guest$ cat file.2

cat: file.2: Permission denied

Other Privileged Operations

Most Linux security checking is handled by a combination of the following

rules:

• File system permissions

• Signal permissions. A non-root process can only signal processes

with the same user ID.

• Super-user. User ID 0 (traditionally named “root”) may access any

file or signal any process; dangerous kernel operations can only be

performed if the current user id is 0.
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• Set UID. This allows users to invoke functions with elevated privi-

leges when appropriate.

Most security checking in Linux / Unix is handled by file system permis-

sions. As an example, system utilities need direct access to the disk (e.g.

to format a new file system); normal users are prevented from reformatting

the disk by the permissions on the special file representing the disk device

(e.g. /dev/sd0)

Unix signals are primarily used to kill a process, and so are only allowed

between processes with the same user ID.

User ID number 0 (traditionally given the username “root”) is allowed

to bypass all user id-based permissions. In addition, certain system calls

(e.g. mount a file system, reboot, install a kernel module) may only be

performed by the super-user.

Finally, the setuid permission flag on a file tells the kernel that when the

file is executed it should take on the identity of the file’s owner, not the

user who invoked it. This is a simple mechanism which allows programs

to make finer distinctions than the kernel does. For instance the mount

program is owned by user “root”, and marked setuid, as under certain

circumstances a normal user may be allowed to mount a filesystem (e.g.

when it is a removable drive). When the program is run by a normal user,

it checks configuration files to see whether the request is authorized; if so

it is able to invoke the mount system call as user ID root.

7.3 SELinux

An alternate security mechanism available in Linux is called SELinux, or

Security-Enhanced Linux. This is an enhancement to the normal Linux

security model, which allows for exceptions to normal Linux rules. As

an example, normal file permissions can still deny access to a file, but in

cases where permissions allow access, SELinux rules might still forbid it.

SELinux is based on rules about domains and types. A domain is an

execution environment that users run programs in; a set of rules for a

domain determine which users can run what programs within that domain.

Files have types, and rules determine which domains are able to access

which types of files. Finally, users can change domains by running cer-

tain programs; when this occurs is again determined by (unsurprisingly)

another set of rules.

Rules are loaded into the kernel by a user-space policy process, and file

types are determined by an SELinux context associated with the file, stored
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in file extended attributes in the file inode.

As an example, the password file /etc/passwd contains usernames,

groups, home directories, but not the hashed passwords themselves, which

are in the shadow file, /etc/shadow; the shadow file may be modified

when users run the /usr/bin/passwd program:

[root@localhost ~]# ls -Z /etc/passwd /etc/shadow /usr/bin/passwd
-rw-r--r-- root root system_u:object_r:etc_t /etc/passwd
-r-------- root root system_u:object_r:shadow_t /etc/shadow
-r-s--x--x root root system_u:object_r:passwd_exec_t /usr/bin/passwd

One SELinux policy rule states that a user enters the passwd_t domain

when executing a file of type passwd_exec_t; another states that pro-

cesses running in the passwd_t domain have read and write privileges

to files of type shadow_t. If SELinux is enabled, then even the supe-

ruser will only be able to modify /etc/shadow (and update your pass-

word) by executing /usr/bin/passwd or another executable marked

passwd_exec_t.

Actual SELinux policies are extremely complex, containing hundreds

of rules; if you are interested in finding out more there are a number of

tutorials on the Internet, including http://www.centos.org/docs/5/

html/Deployment_Guide-en-US/ch-selinux.html

Control of Information Flow

File access control is (somewhat) straightforward for an operating system

to provide, as it represents a simple decision. If access is allowed, then

the requested operation proceeds without interference; if it is denied, then

the request fails completely.

In many cases, however, the desired restrictions are more subtle. Perhaps

the earliest published example was a simple computer guessing game; the

program would need to access the data to be guessed, while preventing the

user from accessing it directly. Simple file permissions would not work, as

if the game program were able to access the data file, then other programs

(e.g. an editor) would be able to as well, allowing users to cheat.

In general such a problem requires interposing higher-layer software be-

tween the user and the protected information. In Unix the setuid mecha-

nism allows a user A to run a program as a different user B (e.g. root), by

having the executable file owned by user B and setting the setuid permis-

sion on the file. This can be done in a way that user B has full access to

the protected data, allowing the program to access the data on behalf of

user A, but only in ways allowed by the program logic.

/etc/passwd
/etc/shadow
/usr/bin/passwd
passwd_t
passwd_exec_t
passwd_t
shadow_t
/etc/shadow
/usr/bin/passwd
passwd_exec_t
http://www.centos.org/docs/5/html/Deployment_Guide-en-US/ch-selinux.html
http://www.centos.org/docs/5/html/Deployment_Guide-en-US/ch-selinux.html
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In modern systems it is more common for such a gatekeeper role to be

played by a server with access to the data, which accepts requests from

users via messages and makes decisions on what data to reveal. Some

examples:

MySQL: This database accepts connections over a TCP socket; users log

in and then are able to read and modify those tables they have been given

permission to access, regardless of which files the data resides in. The

MySQL process runs under a separate user ID, which is the only one able

to access the underlying data.

Blackboard: Connections to Blackboard are web sessions, controlled

directly by users, and isolation of the data itself is ensured by preventing

user access to the system that Blackboard runs on. The application logic

enforces a complex set of rules governing what information each user may

access; thus an instructor may see all grades, while a student may only see

aggregate information (e.g. averages) about other students’ grades.

Review Questions

7.3.1. Which of the following most accurately describes the effect of the

setuid attribute on a file?

a) It causes the file owner (i.e., user ID) to be updated whenever

a process accesses the file

b) It causes the file owner to be updated whenever a process

executes the file

c) It causes the user ID of the process to be updated when a

process executes the file

7.3.2. Which of the following statements are true? A server-based

database such as MySQL:

a) protects the security of its data by putting it in files owned by

a separate user ID

b) uses file permissions to prevent access to its data

c) uses application logic on a per-request basis to determine

whether to provide access to a data item.
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7.4 Attacks — Stack Overflow

Figure 7.2: Stack frame and

buffer overflow

In Figure 7.2 you can see a fragment of code

that was attacked (among others) by the first

piece of Internet malware, the 1988 Mor-

ris worm. The target program (fingerd)

was run with a network connection for its

standard input, and used the gets function

to read a line of input into a buffer on the

stack; it would normally return a simple re-

ply based on that input and then exit. Gets

reads a line from standard input, reading

as many bytes as it takes before it finds a

newline or reaches end-of-file. The buffer

used, located at a lower address on the stack

than the return address, was 512 bytes long,

but the worm sent a 537-byte single-line

message consisting of machine code, end-

ing with a carefully chosen return address

pointing at the beginning of the injected

code. Since fingerd was run as the root user, the result was that when

the function returned, the malware code had full control of the machine.

In the years since, many lessons have been learned about preventing this

sort of attack:

• (application writers) Do not use gets or other functions which can

overrun a fixed-length buffer. (e.g. fgets takes the buffer length as

an argument)

• (OS writers) Randomize the location of the stack and libraries each

time a program is run, to make it more difficult to guess where an

attack should return to.

• (OS writers) Use the NX (“no execute”) page table bit on modern

processors to prevent code on the stack from being executed.

Unfortunately buffer overflow vulnerabilities are still alive and well, as

more sophisticated attacks have been developed to counter these tech-

niques, as long as there is an initial application bug to give access to the

stack.8

8If you are interested in learning more about stack overflows, there is a good tutorial at

http://www.tenouk.com/cncplusplusbufferoverflow.html

http://www.tenouk.com/cncplusplusbufferoverflow.html
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Figure 7.3: Image by Randall Munroe, from Xkcd: http://xkcd.com/327/, licensed under

creative commons non-commercial license 2.5

Security - SQL Injection

What happened to Bobby’s school’s student database? Let’s assume they

used code like this Visual Basic fragment, adapted from an example on

an MSDN discussion board. (’&’ concatenates strings in VB):

cmd.commandText = "INSERT INTO Students (Name) VALUES (’" \& studentName \& "’);"
cmd.executeNonQuery()

So if studentName=“Joey Smith”, the following SQL command will be

executed:

‘‘INSERT INTO Students (Name) VALUES(’Joey Smith’);"

But if studentName=“Robert’); DROP TABLE Students;–”, we get:

‘‘INSERT INTO Students (Name) VALUES(’Robert’); DROP TABLE Students;--);’’

Semicolon (“;”) is the command separator in SQL, and “” is a comment

marker causing the rest of the line to be ignored; after adding ’Robert’

to the Students table, the DROP TABLE command will be executed,

removing the entire table.

SSL and Connection Security

Secure Sockets Layer (SSL) allows two systems to establish a connection

that cannot be intercepted, even by an adversary who observes every packet

sent by both systems. Most importantly, it does not require any shared

encryption key to be used by both systems9. SSL relies on a combination

of private- and public-key encryption:

• Private-key encryption uses a private key to encrypt a message,

which may then be decrypted using the same private key.

9 In most cases using a shared private key doesn’t solve the problem: before you use it,

you have to figure out how to securely communicate the private key.
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• Public-key encryption uses two keys: (a) A public key to encrypt

the message, and (b) a separate private key which must be used to

decrypt it. In one of today’s public-key systems, the public key is

the product of two large prime numbers, and the private key is the

two numbers themselves. The private key can be derived from the

public key by factoring it, but for large numbers this is believed to

be prohibitively difficult to actually do.

The simplest use of public-key encryption to provide a private connection

would be for the two systems to each have public/private key pairs, send

each other their public keys, and then encrypt traffic with the other system’s

public key. Unfortunately, public-key encryption is very computationally

expensive, so instead SSL uses the following steps, sometimes called the

SSL handshake:

1. The client connects to the server

2. The server sends its public key to the client

3. The client chooses a random number, encrypts it with the public

key, and sends it to the server, which then decrypts it.

Client and server both use this random number as the key to a private-

key code — all outgoing messages are encrypted using this key, and all

incoming messages are decrypted with it. There are additional aspects of

the SSL protocol to guard against impersonation and “man-in-the-middle”

attacks, which are somewhat more complicated and are not covered here.

Answers to Review Questions

7.1.1 False. The password authorizes you to log in as a specific user ID;

file permissions determine whether that user ID has access to a

particular file.

7.1.2 False. This used to be the case, but modern hardware can crack

encrypted passwords very quickly.

7.1.1 (3) - LDAP handles both user information and passwords.

7.2.1 Read: (3), all users. (“world” permissions are r–) Write: (2), owner

and group members. Execute: (1), owner pjd only.

7.2.2 dir1 has four separate sets of access, which cannot be encoded in

three sets of permissions.

7.3.1 (3) the process ID is set to that of the owner of the file

7.3.2 All of these statements are true.





Chapter 8

Hardware Virtualization

Topics covered in this chapter include:

• Applications of virtualization, including server consolidation

• Software emulation, full binary translation, and classical virtualiza-

tion

• Kernel binary translation, hardware virtualization, and paravirtual-

ization

• Virtual machine migration

• Hosted vs. “bare-metal” hypervisors

• Containers and Docker (even though they don’t use HW virtualiza-

tion)

Hardware virtualization is a technique that allows multiple virtual ma-

chines (VMs) to run on the same physical machine, using either pure

software or a combination of hardware and software techniques.

Previous chapters have described the differences between threads—

separate flows of control sharing (almost) all resources such as memory

and file descriptors—and processes, which are isolated from each other

by the operating system, requiring the use of files, pipes, or similar mech-

anisms to communicate between two processes. A virtual machine is

similar to a process, but is designed to run a full operating system and

its applications, rather than a single program; communication between

VMs is like that between real machines, and must take place over (possibly

emulated) networks.

A virtual machine requires a much different interface—while a process

runs in unprivileged mode, performing I/O and memory management

operations by issuing system calls to the OS kernel, an operating system

runs in supervisor mode and uses special instructions and other hardware

205
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Figure 8.1: Virtual machine architecture

mechanisms to perform its operations. In a virtual machine, as shown in

Figure 8.1, these mechanisms are performed by the hypervisor1 which

sits “underneath” the operating system.

Running multiple operating system instances on the same physical hard-

ware serves a number of purposes:

Running multiple operating systems: Many applications are tied to a

specific OS or even OS version; by using virtual machines it is possible to

run instances of these other operating systems and make these applications

availabe to a user without requiring extra hardware. (As an example, the

laptop I am typing on runs Apple’s OS X, but I have a virtual machine

running Ubuntu Linux for Linux development.)

Multiple Configurations: Even applications which run on the same op-

erating system may need to run on different machines, rather than just in

separate processes. This may be because they require different, incom-

patible versions of system libraries, or different configuration options. In

some cases (e.g. running an old and new version of the same application)

they may need different versions of the same configuration files.

Supporting multiple configurations is frequently called server consolida-

tion, as in the past an enterprise may have needed to use multiple physical

machines to provide these configurations. Frequently the load on each

service or configuration was much less than what could be handled by a

single machine, and many of these services can instead be deployed as

virtual machines on a single physical system.

Security: Many applications (e.g. webservers, databases) require admin-

istrative privileges (e.g. root on Unix) for configuration. In the past these

applications were typically considered infrastructure services, maintained

1Early operating systems were often called supervisors; what do you call the program

which supervises the supervisor? A hypervisor, I guess.
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and configured by system administrators at the request of users. However

in many recent cases (e.g. Amazon’s Elastic Compute Cloud) the customer

is expected to perform all configuration and management, and multiple

untrusted customers may share the same physical hardware. Instead of

being provided an unprivileged login on a shared machine, each customer

is given a virtual machine which they can configure as they wish, with full

root or administrative privileges, without posing a threat to customers on

other virtual machines.

Operating system containers, such

as those used by Docker, provide

many of the advantages of virtual

machines while using a single

operating system. Each container is

a set of processes with a namespace

of process IDs and network

connections, and a separate file

system tree, and (barring

misconfiguration or kernel bugs) is

unable to access resources

belonging to other containers or to

the host OS.

These uses for virtual machines are

artifacts of how applications and

operating systems have evolved,

and a perfectly-designed OS would

no doubt provide the security and

manageability benefits described

above using operating system-

level protections. (This would of

course eliminate the need to use

any other less perfect operating

system.) Virtual machines hold an-

other security advantage, however:

they have a smaller attack surface than general-purpose operating systems.

Operating systems are very large, with millions of lines of code.2 A hy-

pervisor, the piece of software responsible for managing virtual machines,

is typically far smaller in comparison, and has only a small number of

external interfaces. In theory fewer lines of code (espcially the security-

critical code which validates user inputs) means fewer bugs and thus fewer

opportunities for security exploits; experience to date seems to support

this theory.

Review Questions

8.0.1. Which of these are reasons why it can be difficult to run multi-

ple network servers on the same machine with a normal operating

system?

a) Problems related to assigning separate network addresses to

different servers

b) Conflicts between the software and OS requirements for dif-

ferent software packages

2The kernel/ and mm/ directories in the Linux source add up to about a third of a

million lines of code; support for Intel CPUs in arch/x86/ is another third of a million; the

drivers/ directory is over ten million LOC.
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c) The need for administrative privileges to install software pack-

ages

d) All of the above

8.1 Implementing Hardware Virtualization

If you are used to running VirtualBox or VMware on your laptop, it

may seem like it’s just another program, maybe using more memory

and CPU than most. But it isn’t. To understand why, consider trying to

run Linux (the “guest” operating system) on top of a “host” operating

system, e.g. Windows. The linux kernel is an executable file, typically

found in /boot/vmlinux, and could be readily translated into a Windows

executable. However if you tried to do this3 it would crash immediately.

Some of the reasons an operating system kernel cannot run as a process

are:

Privileged instructions: One of the first things the kernel does on startup

is to initialize the virtual memory system, mapping virtual addresses to

physical addresses. This configuration requires privileged-mode instruc-

tions, which are inaccessible to user-mode applications, as they could be

used to bypass operating system protections. The first such instruction

executed by the guest OS would cause an exception, killing the process.

Interference: The problem isn’t just that the guest OS won’t be allowed

to modify virtual address mappings. If it actually could modify these map-

pings, then the underlying host operating system would almost certainly

crash, as it assumes that it has complete control over them. The CPU only

has a single address translation mechanism, and if two operating systems

are going to make use of it, they must either deliberately share access, or

it must be virtualized before being used by one or both OS.

Security: Secure isolation between virtual machines, including memory

protection, is at least as important as isolation between processes in a

normal operating system. But if a guest operating system has direct access

to the CPU address translation mechanisms it can easily access physical

memory allocated to another virtual machine (or to the host OS itself),

bypassing any security mechanisms.

I/O: A process running under Linux or Windows uses system calls such

as open and read to access files. In contrast, an operating system uses

drivers to access physical devices.

3or, actually, running any OS on top of any OS including itself



8.1. IMPLEMENTING HARDWARE VIRTUALIZATION 209

char memory[EMULATED_MEM_SIZE];

int R1, R2, R3, ...;

int PC, SP, CR1, CR2, CR3, ...;

bool S; /* supervisor mode */

while (true):

instr = memory[PC]

PC += sizeof(instr)

case (instr) in:

"MOV R1 -> R2":

R2 = R1

case "JMP <arg>":

PC = <arg>

case "STORE Rx, <addr>":

<paddr> = MMU_translate[<addr>]

- on error: emulate page fault

if <paddr> is real memory:

memory[paddr] = Rx

else

simulate_IO_access(Write, paddr, Rx)

.... Etc. (for ~1000 more instructions)

Figure 8.2: Hypothetical software emulation

In the remainder of this chapter we discuss the following approaches to

supporting virtual machines, arranged (roughly) in increasing order of

both complexity and performance:

• Software emulation.

• Emulation with binary translation.

• Classical (direct execution + trap-and-emulate) virtualization

• Direct execution + binary translation

• Hardware-assisted virtualization

• Paravirtualization.

Software emulation

The most straightforward way to run a virtual machine is to emulate it

entirely in software: in other words, to write a program that behaves

exactly like the CPU, memory, and I/O devices of the real machine. The

idea is simple: given a complete description of how the CPU behaves,

create variables for the registers and a big array for memory, and write

a program that repeatedly fetches instructions from the memory array,

decodes them, and emulates their operation, much like the sample code in

Figure 8.2.
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The Java Virtual Machine (JVM)

executes bytecode instructions, and

can be considered a sort of CPU.

Almost all JVMs are based on

software emulation, typically with

additional performance

optimizations.

Full software emulation is simple

conceptually, although in practice

the list of instructions to imple-

ment can get long (over 1000 on

modern x86 CPUs) and complex.

It has one major advantage, porta-

bility: once the code to emulate a

specific CPU is written, it can be

compiled and run on almost any host. This is especially useful in embed-

ded development, where it is often necessary to develop and test software

before the CPU (or at least the system incorporating that CPU) is ready to

use.

The primary disadvantage is performance—full software emulation is

slow. It can be hundreds of times slower than native execution, making it

unsuited for all but a few applications.

Emulation plus binary translation

Other software systems which use

binary translation techniques

include:

JVMs: Almost all Java

implementations use JIT compiling

for performance.

Javascript: Recent browsers

(Safari, Firefox, and others) use

just-in-time compilation to improve

Javascript performance.

Apple Rosetta: This allowed

Intel-based Macintosh computers to

execute programs compiled for

PowerPC.

Software interpreters can be sped

up by what Java developers call

Just In Time (JIT) compilation,

and which CPU emulator develop-

ers call Binary Translation. The

idea is to translate commonly-used

fragments of code into actual ma-

chine code, which can usually run

far faster than pure emulation. (In

part, it eliminates the software-

implemented instruction fetch and

decode for each instruction, which

is a significant overhead.) An ex-

ample can be seen in Figure 8.3.

In other words, the following occurs when a section of binary-translated

code is executed:

1. The real CPU registers are loaded from the virtual (i.e., software-

emulated) registers

2. The translated instructions are executed

3. The virtual CPU state is updated with results from the real CPU

In most cases the translator will produce more than one instruction per

emulated instruction. Memory accesses are particularly tricky, as the

generated code must emulate address translation performed by the MMU,
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The following code:

ADD R1+R2 -> R2

ADD R2+R3 -> R3

MUL 2,R3 -> R3

might be translated into the following fragment:

LOAD Rx <- &emulated_R1

LOAD Ry <- &emulated_R2

LOAD Rz <- &emulated_R3

ADD Rx,Ry -> Ry

ADD Ry,Rz -> Rz

MUL 2,Rz -> Rz

STORE Ry -> &emulated_R2

STORE Rz -> &emulated_R3

RET

Figure 8.3: Example of binary translation

and then check to see whether the resulting address is I/O or RAM be-

fore performing the operation. In practice it may be possible to arrange

emulator memory (using e.g. the mmap system call) so that most memory

accesses can be performed directly; in this case the overhead for most

memory accesses can be reduced to a few instructions which check that

an access falls within this typical range.

Trap and Emulate

Even with binary translation, software emulation is still slow—even the

best binary translation systems incur a slowdown of 3x to 10x compared

to running directly on the same hardware. This is much better than unop-

timized software emulation, and may be the best that can be done when

emulating one CPU on top of a CPU running a different instruction set.

(e.g. running iPhone or Android applications on an Intel-based laptop

or desktop, or the Rosetta emulator which Apple used to allow PowerPC

applications to run seamlessly on early Intel-based Macintosh systems.)

However In many other cases—such as VirtualBox running on my laptop—

the CPU emulated by the virtual machine is the same as the real, physical

CPU. In this case we can improve performance greatly by using direct

execution when possible: executing instructions directly on the physical

CPU. The only reason we were emulating instructions in the first place

was because the host OS could not allow a virtual machine to directly

execute certain privileged instructions, so the goal here is to emulate only

these privileged instructions while directly executing all others.



212 CHAPTER 8. HARDWARE VIRTUALIZATION

MOV EAX -> EBX

... user-mode	 


	 instructions...




LOAD CR3 <- EAX




  ... more	 	 


user-mode

	 instructions...

Load user-visible registers 

into software CPU

Emulate one instruction

Restore user-visible registers

from software CPU

exception

return to normal

execution

Figure 8.4: Trap-and-emulate virtualization

This can be done4 using a strategy that can be called trap-and-emulate. The

guest OS is executed directly in user mode; when it executes a privileged

instruction it causes an exception which is handled by a specialized OS

called a hypervisor or virtual machine monitor. The hypervisor loads the

user-visible CPU registers into the software CPU emulation, runs it for a

single instruction, and then returns back to direct execution.

It is interesting to compare a hypervisor running a guest OS (and guest

applications) with a traditional operating system running multiple pro-

cesses. A normal OS virtualizes CPU, memory, and other resources to

provide a virtual machine abstraction to each process: each process sees its

own memory space and a CPU which can execute user-mode instructions

and a special system call instruction. A hypervisor, in contrast, performs

a similar task of virtualizing memory and CPU, but provides a virtual

machine abstraction which is identical to that of the hardware itself.

Figure 8.4 shows a representation of this trap-and-emulate process. It

allows almost all instructions to run directly, at native hardware speed,

while the specific instructions which need to be executed in privileged

mode (a tiny fraction of all instructions) are emulated. This form of

virtualization was originally developed by IBM in the late 60s and early

70s for mainframes, where it continues to be used.

But how does a hypervisor handle exceptions? An operating system relies

heavily on exceptions; in fact, just about everything an OS does is part of

some exception handler, whether that exception is a system call, a page

fault, or a timer or I/O device interrupt. Since the guest OS runs in user

mode, exceptions such as system calls or page faults generated by guest

applications will be delivered to the hypervisor rather than the guest OS.

The solution is for the hypervisor to just emulate the real CPU operation:

4on the right processors, as described below
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1. Set the emulated supervisor bit to 1

2. (with the emulated CPU) Handle user/supervisor stack switch, push-

ing registers, and all the other exception-handling mechanisms that

take up so many pages in the CPU reference manuals.

3. Return to user mode, load user-visible registers from the emulated

CPU, and call the guest OS exception handler.

4. When the guest exception handler returns, set the emulated super-

visor bit to 0, restore user registers from the kernel stack, switch

to user stack, then jump back to direct execution at the instruction

where the exception occurred5.

How does it know where to find that exception handler? The hardware CPU

locates exception handlers via one or more control registers which point to

interrupt descriptors which are located in memory. (e.g in Intel-compatible

CPUS the IDTR register, which points to the interrupt descriptor table)

These registers may only be accessed in supervisor mode, so the hypervisor

is able to virtualize access to these registers and maintain a separate

emulated copy for each virtual machine. The real hardware register points

to the hypervisor exception handler table, and when a hypervisor exception

handler determines that an exception should be forwarded to the guest

operating system it looks in the table pointed to by the emulated register

to find the guest OS exception handler.

Review questions

8.1.1. Which of the following statements are true?

a) Software emulation uses special-purpose CPU hardware to

run virtual machine instructions.

b) Software emulation is slower than native execution.

8.1.2. Trap-and-emulate virtualization:

a) Allows the guest OS to run in user mode, and intercepts ex-

ceptions that occur when it executes privileged instructions

b) Allows the guest OS to run in supervisor mode, and intercepts

exceptions that occur when it executes privileged instructions

c) Prevents exceptions from occurring while the guest OS is

executing

5Or the immediately following instruction in the case of traps such as system calls.
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8.2 Virtualized memory

In a full software emulation, guest virtual addresses were translated into

accesses to “fake” physical memory, e.g. the memory[ ] array in the

example code. However, with trap-and-emulate virtualization, guest ap-

plications and most OS code execute directly on the CPU, and virtual

addresses are translated to physical addresses in hardware, by the TLB and

page tables. This is a problem, because to run multiple virtual machines on

a single host, the hypervisor must be able to prevent each from accessing

physical memory assigned to the other. Further complicating things, in

many cases each guest OS expects physical memory to be in the same

place, typically starting at physical address 0. This requires two levels

of address translation to get from virtual addresses (used by the guest

applications and OS) to real physical memory:

1. Virtual address to “fake” physical address: this translation is main-

tained by the guest OS

2. “Fake” physical address to real physical address: this translation is

maintained by the hypervisor

How does this work on a CPU that only supports one level of virtual-to-

physical address translation? By having the hypervisor maintain the real

page tables (the ones pointed to by the real CR3) and making sure these

tables contain the full virtual→ fake physical→ real physical translation.

This requires two page tables: one pointed to by the emulated CR3 and used

by the guest, and one “shadow” table that the real CR3 points to. When

a page fault occurs the hypervisor page fault handler uses the following

logic:

If faulting address is in guest page table:

1. Look up virtual-to-fake-physical (guest page table) and

fake physical-to-real-physical (hypervisor) mappings

2. Install virtual → real physical mapping in

shadow page table

3. Return

else (not in guest page table):

1. invoke guest OS page fault handler

Review questions

8.2.1. Address translation for a virtual machine is handled by:

a) Allowing the guest OS to maintain control of the hardware

page tables.

b) Having the hypervisor determine the mappings which go in

the hardware page tables
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Figure 8.5: “Type 1” Hypervisor — no host OS.

c) Loading the hardware page tables with mappings which com-

bine the guest OS page tables and the hypervisor memory

maps.

8.3 Virtualized I/O Devices

Memory-mapped I/O devices are straightforward to emulate in a trap-and-

emulate system. When the guest OS maps the physical memory addresses

of emulated device registers, the hypervisor leaves the corresponding

pages unmapped in the shadow table, so that all read and write accesses

will result in a page fault. The hypervisor page fault handler handles

faults on these pages specially, calling code that emulates reading from or

writing to the emulated I/O device.

8.4 Hosted and “bare-metal” hypervisors

In Figure 8.5 you can see how this works together. Exceptions from user

applications (page faults, system calls, etc.) are handled by the hypervisor,

which in most cases passes them to the guest OS. Interrupts from I/O

devices are passed to drivers in the hypervisor, which may in turn decide

that it’s time for a virtual hardware device to send an interrupt to a guest

OS.

This image describes server systems (like VMware ESX), where the ma-

chine boots the hypervisor instead of a regular OS, and does nothing but

run virtual machines. But what about a “hosted” system like VirtualBox

or VMware Workstation? In particular, how does it run “on top of” a host

OS?

The short answer is, it doesn’t. When you install VirtualBox it installs

a set of drivers, which (like normal hardware drivers) run as part of the

kernel, in supervisor mode. When a virtual machine starts running, these



216 CHAPTER 8. HARDWARE VIRTUALIZATION

Figure 8.6: Sensitive state in the Intel architecture EFLAGS register

drivers insert themselves under the host operating system, “stealing” ex-

ceptions such as page faults and system calls whenever a virtual machine

is executing, and forwarding them to the hypervisor. Running on the same

system as a host operating system has its advantages, though, as the host

OS has drivers for all of its hardware, a file system, display, and other

useful interfaces. A hosted hypervisor can take advantage of this, passing

I/O requests back to the host OS (via a rather complicated route) to be

handled through these standard interfaces, rather than requiring its own

drivers for any hardware it uses6.

8.5 Non-Virtualizable CPUs

There is a minor problem with the classic trap-and-emulate virtualization

mechanism as described above: it doesn’t work. Or rather, it doesn’t work

on the machines you want it to work on.

In order to perform classic virtualization to work, every “sensitive” in-

struction (in other words, one that has to be emulated, like loading CR3 to

switch page tables) must trap so that it can be emulated by the hypervisor.

Unfortunately, some CPU architectures (in particular, Intel x86 CPUs)

have instructions that fail this requirement. For example, on x86 CPUs, a

number of instructions which modify supervisor-mode state will silently

do nothing when executed in user mode, rather than causing an exception.

As an example, the EFLAGS register as shown in Figure 8.6 contains some

commonly-used flags such as carry (CF) and zero (ZF) which it inherited

6That’s how it works with binary emulation. With hardware virtualization support, the

CPU has provisions to allow the “root” environment to continue to run without virtualization,

but it’s complicated.



8.5. NON-VIRTUALIZABLE CPUS 217

from the 16-bit 8086, as well as system flags such as interrupt enable and

“IO privilege level”, the CPU user/supervisor privilege level. The POPF

instruction modifies this register, by loading it with a value popped from

the top of the stack. To prevent application code from arbitrarily disabling

interrupts or turning on supervisor mode, when POPF is executed in user

mode it silently ignores any privileged bits like IOPL and interrupt enable;

when kernel code executes POPF in supervisor mode, these bits are loaded

with new values. If we try to run the kernel in user mode this instruction

will silently do the wrong thing, rather than trapping into the hypervisor.

Instructions like this complicate the task of performing efficient virtual-

ization, but it is still possible, using one of three approaches:

• Emulation with binary translation: This is the simplest approach

to describe, although rather difficult to implement well. Whenever

the guest transitions into supervisor mode (for example, for a sys-

tem call or an interrupt) the hypervisor emulates all instructions in

software, using binary to translation speed up this process, and only

resuming direct execution when the guest returns to user mode. This

is slower for normal instructions in the kernel, but faster for privi-

leged instructions, as it can translate them once instead of incurring

the overhead of trapping and emulating each privileged instruction

every time it executes.

• Hardware virtualization: Modern x86 CPUs include virtualiza-

tion extensions, which add a third privilege level more powerful

than supervisor mode. The guest runs in normal user and super-

visor mode, but certain instructions trap into hypervisor mode for

emulation, just as in trap-and-emulate virtualization on a virtualiz-

able CPU. Which instructions? It depends: there are configuration

registers providing the hypervisor with a menu of which operations

it wants to intercept.

• Paravirtualization: rather than providing complete emulation of

the hardware platform, the hypervisor provides an OS-like interface

so that the operating system can request operations (e.g. address

space switch) which would be performed by hardware instructions

(e.g. LOAD CR3) on bare hardware. The guest operating system

must be modified to use these requests, and so while binary transla-

tion and hardware virtualization can run unmodified guest operating

systems (e.g. standard Windows installation media) paravirtual-

ization can only support guest operating systems which have been

modified for paravirtualization.

The changes required in a guest OS are actually not that extensive,

as most modern operating systems (even Windows) are structured

so that they can be (relatively) easily modified to support different
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machine types, with hardware-specific portions isolated into a small,

replaceable part of the code.

A paravirtualized hypervisor looks sort of like a regular OS: it runs in

supervisor mode, with guests running in user mode making requests via

system calls using TRAP instructions. Unlike a normal OS, however, these

system calls perform hardware-level operations like loading a page table,

allocating physical memory, or installing a page fault handler.

If you’re curious, the Linux code to

switch address spaces can be found

in the activate_mm macro in

arch/x86/include/asm/

context.h. On regular hardware

it calls switch_mm which executes

a LOAD CR3 instruction; in

paravirtualized mode it calls

paravirt_activate_mm (in

arch/x86/include/

asm/paravirt.h) which invokes

a “hypercall” to request the

hypervisor to perform the operation.

Although paravirtualization re-

quires some modifications to the

guest OS, in some cases it provides

higher performance. As an exam-

ple, the hypervisor interface can be

as efficient as a system call, while

hardware virtualization extensions

require many cycles to trap, de-

code, and emulate each instruc-

tion.

For years Amazon EC2 used a

modified version of the Xen par-

avirtualized hypervisor, although as hardware virtualization support con-

tinues to improve, this remains the case only for a small number of their

instance types.

What type of virtualization is fastest? This is actually a hard question—

putting something (like virtualization support) into hardware doesn’t au-

tomatically make it faster. State-of-the-art hardware and software-based

(binary translation) hypervisors can have equivalent performance7, so the

choice between them often comes down to features.

Review questions

8.5.1. Which of the following are correct?

a) Paravirtualization requires specialized hardware support

b) Paravirtualization provides a system call-like interface that the

guest OS uses to e.g. switch page tables

c) Paravirtualization requires modification to the guest operating

system

7citation here - Ageson

arch/x86/include/asm/context.h
arch/x86/include/asm/context.h
arch/x86/include/asm/
arch/x86/include/asm/
paravirt.h
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8.6 Paravirtualized I/O Devices

It is common for hypervisors to have optional drivers (VMware Tools,

VirtualBox Guest Additions, etc.) which can be loaded in the guest to

improve performance. These typically include paravirtualized drivers

for the disk controller and network interface: rather than catching writes

to emulated registers, the paravirtualized driver uses a system call-like

interface to make I/O requests to the hypervisor. Note that this works

because almost all operating systems provide a simple means to load

arbitrary kernel-mode drivers for third-party hardware; a paravirtualized

device is just another piece of (virtualized) hardware that you need to

install a driver for. In contrast, operating systems writers don’t typically

anticipate the need to support plugging in a different type of CPU.

8.7 Linux Containers and Docker

Running different applications within separate virtual machines provides

a number of benefits when compared to running them all on the same

unvirtualized operating system:

• Security—if one application is compromised, or is untrusted, the

only way for it to attack the other applications (other than via the

external network) is by subverting the hypervisor. This is difficult,

as they are small and have tended to be quite reliable in practice.

(i.e. with few bugs that can be exploited)

• Performance isolation—server-class virtualization systems can en-

force resource limits (memory, CPU time, disk and network I/O)

which ensure that heavy loads on one application do not negatively

impact another.

• Management isolation—each virtual machine has its own file system,

administrative (root) account, installed libraries, etc. and can be

configured without regard to the dependencies of other applications

running in other virtual machines.

• Packaging convenience—a virtual machine image is a convenient

and useful format for storing a virtual machine and all of its con-

figuration, as well as for distributing it to others. (like the CS-5600

virtual machine image you received at the beginning of this class)

Note, however, that none of these benefits actually requires hardware

virtualization8. If all of the applications are going to be running on the

same operating system, then Operating System Virtualization can be used:

rather than pretending that a single hardware machine is actually multiple

8That is, unless you need to run multiple different operating systems.
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virtual machines, we pretend that a single instance of the operating system

is actually multiple instances. This approach was first used in FreeBSD

jails and Solaris containers, but the mostly widely known example today

is Linux Containers (LXC) and Docker.

LXC allows the creation of isolated process groups: each process in such

a group (and any children of those processes) thinks that the group has

the entire operating system to itself. This is done via two mechanisms:

Namespaces - in recent Linux versions, any access to the file system,

process ID, networking, user or group IDs, or several more obscure system

parameters (e.g. hostname) is relative to a namespace. In a normal system

with no containers there will be a single namespace, visible to all processes.

(or at least those that have sufficient permission, in the case of e.g. file

system access) However you can also create new namespaces, with a

restricted view of the file system (e.g. only able to see a small subtree),

with their own process ID space and user names and IDs, and separate

network interfaces and addresses. Within a namespace you can have a

root user which can perform privileged operations within the namespace,

but which has no power or visibility outside of it.

Control groups (cgroups) - these are used to control operating system

allocation of resources such as memory, CPU time, or disk and network

bandwidth. A cgroup can be associated with a process group, and the

process group as a whole will be subject to any limits (e.g. on memory,

CPU time, etc.) placed on that cgroup.

The combination of these two features allows the creation of separate con-

tainers, each with its own file system, network interfaces, etc., and where

processes within a container are isolated from those in other containers or

in the “base” or root operating system within which these containers were

created. Processes in a container interact with the OS kernel in exactly

the same way as in a non-containerized system; the only difference is in

what they see, which is controlled via namespaces, and how their CPU

time and I/O are scheduled, which is controlled via cgroups. Containers

are thus more efficient, as there is no virtualization overhead, and can be

created almost as quickly as normal processes.

Since there is still a single operating system kernel, all containers in a

system share the same operating system version. Note, however, that

they may have entirely different file systems; thus it is quite possible

to have both a Red Hat and an Ubuntu distribution running in separate

containers on the same machine, although each will be using the kernel of

the underlying system.

Docker is based on LXC; however perhaps its main innovation is the way in
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which it manages container file systems. A Docker container uses a union

file system to join together multiple file systems—the first one of which is

writeable, and with one or more read-only ones “behind” it. To understand

the operation of a union file system, consider how the Unix shell finds an

executable: it searches each directory in the PATH variable in order, and

takes the first version of the file that it finds. Thus if the value of PATH is

/usr/bin:/sbin:/bin, and you type ls, it will search /usr/bin/ls

(not found), /sbin/ls (not found), and then /bin/ls (successful). A

union file system operates in a similar fashion: on read access to a file

(or directory) it will search through each underlying file system in order

until it is found. When writing to a file, however, it will write to the first

writable file system in the list, providing a form of copy-on-write.

This allows various environments to be stacked: e.g. a base file system

containing the files from a minimal Linux installation, with additional file

systems “on top” of it containing installed versions of various packages

one wishes to use, and a writable file system on top for per-instance

configuration parameters, application data, etc.

Answers to Review Questions

8.0.1 (4), all of the above.

8.1.1 (1) False: that’s why it’s called software emulation. (2) True: in

fact it’s much slower.

8.1.2 (1). privileged instructions will trap in user mode, and the hypervi-

sor emulates them.

8.2.1 (3). The guest cannot be allowed to manipulate hardware page

tables, and the hypervisor does not know the guest mappings, but the

hypervisor can compose the “fake” guest page tables with hypervisor

mappings to provide the correct translation.

8.5.1 (2) and (3). The hardware interface is replaced with “hypercalls”,

and the guest OS must be modified to use them instead of direct

hardware access.





Appendix A

The CSx600 Micro-Computer

A.1 Overview

The CSx600 is a fictional computer used for examples in this class. The

architecture of the system is shown in Figure A.1, below.

Figure A.1: CSx600 System Architecture

It has 64K bytes of memory, with an address width of 16 bits, and 10

16-bit registers plus two condition flags. Like most modern computers,

memory may be accessed as individual bytes or in multi-byte words, as

shown in Figure A.2; bytes within a word are stored in little-endian fashion

as in Intel processors.

Instructions are either a single 16-bit word (2 bytes) for simple instructions,

or 4 bytes for instructions which require an additional 16-bit value. They
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Figure A.2: Byte and 16-bit word addressing of memory. Note that ordering

of bytes in words is little-endian - the lower address contains the “little” (i.e.

least-significant) byte.

are grouped into the following 9 categories:

• Load, store - move data between registers and memory.

• Add, subtract - perform basic arithmetic.

• Push, pop - manipulate the stack.

• Call, return - subroutine invocation.

• Jump - go to another address, either unconditionally or conditionally.

• Interrupt - a subroutine-like mechanism used to implement system

calls.

A.2 Calling conventions

The CSx600 CPU uses standard calling conventions, with R7 dedicated

as the base pointer:

Arguments are promoted to 16-bit values, and pushed onto the stack

starting with the last argument; then the CALL instruction is executed.

The function prologue pushes the old base pointer onto the stack, copies

the stack pointer into the base pointer, and then subtracts nnn bytes from

the stack pointer where nnn is the size in bytes (rounded to a multiple of

2) of the local variables.

The first, second, etc. function arguments may now be addressed as *(bp-

4), *(bp-6), etc., while the local variables in turn may be addressed as

*(bp+2), *(bp+4), ... Note that these expressions do not change, even

though the stack pointer moves up and down while calling subroutines.

The function epilogue restores the original stack pointer by (a) copying

the base pointer into the stack pointer, and (b) popping the old value of

the stack pointer.

The return value is placed in R0 before returning.
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A.3 Memory-mapped I/O

As shown in Figure A.3, addresses from 0000 to EFFF (hexadecimal) are

used for normal memory, but the 4KB range from F000 to FFFF is devoted

to I/O. What this means is that when the CPU reads or writes an address

in this range, the operation will be directed to one of several input/output

devices: the frame buffer (for display), keyboard controller, disk controller,

or serial terminal controller. The memory map for this region may be seen

in Figure 2. Note that there are large undefined sections in this map; the

result of reading or writing these addresses is not defined, but is unlikely

to be good.

Figure A.3: Memory-mapped I/O devices



226 APPENDIX A. THE CSX600 MICRO-COMPUTER

Frame buffer (F000 – F77F)

The frame buffer is a con-

tiguous array of 80x24 =

1920 bytes of memory. Each

address is mapped to a loca-

tion on the screen; the byte

stored at that address will be

displayed in the correspond-

ing screen location. (the VGA screen used by the PC BIOS and e.g. Linux

running in console mode works almost identically to this)

Keyboard controller (F800, F801)

When a key is pressed, the key value is stored in the keycode register

(F801) and the status register (F800) is set to 1. After software reads the

keycode, it writes a 0 to the status register so that it can detect the next

keypress.

Serial port controllers (F820 – F82F)

In order to allow multiple

users to access the computer

at once, there are four serial

ports connected to external ter-

minals. Incoming data from

a terminal is received in the

same way as for the keyboard

controller — the data byte is placed in the data(in) register by the hard-

ware, and status(in) set to 1; the status flag is then set to 0 by software. To

send a byte to the terminal, it is written to the data(out) register, and the

cmd/status(out) register is set to 1; after the data has been transmitted, the

hardware will set the cmd/status(out) register to 0. Note that there are 4

sets of terminal control registers, one for each external terminal.

Disk controller (F820 – FAFF)

The disk controller reads or writes a

single 512-byte disk sector at a time.

It has a 16-bit register to hold the sec-

tor number, and an 8-bit command/s-
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tatus register — a command (read = 0x80, write = 0xC0) is written to

the register by software, and a status value (0 = failure, 1 = success) is

written to the register by hardware when the command is complete. To

read a sector, software sets the sector number register, writes 0x80 to the

command register, and waits until the command completes (indicated by

the value in the command/status register changing to 01 for success); 512

bytes of data may then be copied from the data register, two bytes at a time.

To write a sector, the sector number register is set, the write command

(0xC0) is written to the command register, and then 512 bytes of data are

written to the data register, after which the controller will write the sector

to the disk and set the status register to 1 to signal completion.

A.4 Detailed Instruction Definitions

Load/Store instructions:

These operate on 16-bit words and 8-bit bytes, and have the following

addressing modes (which you have no doubt learned in an architecture

course):

• absolute - the address used is given as a parameter to the instruction.

• indirect - the address is contained in a register which is identified

as a parameter to the instruction.

• indexed - the address is calculated by adding a constant value (sup-

plied as a parameter to the instruction) to an address contained in a

register.

• immediate - no address is used, and the value is supplied as a

parameter to the instruction.

Traditional assembler syntax separates the source and destination of an

operation with a comma — e.g. mov eax,ebx — and which argument is

the source and which the destination varies from machine to machine. To

eliminate this ambiguity, we will use an arrow symbol to separate source

and destination operands in CSx600 assember syntax. The encodings

of the instructions are shown in their descriptions below; since this is a

fictitious CPU there are no actual numeric values defined for any of the

opcodes.
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LOAD.W Rdst ← *addr — load word from constant address

Opcode = LOAD.W1 Rdst

Address

Retrieves 16 bits starting at addr and puts the value into Rdst.

LOAD.B Rdst ← *addr — load byte from constant address

Opcode = LOAD.B1 Rdst

Address

Retrieves 8 bits starting at addr and puts the value into Rdst. The top 8 bits

of Rdst are set to 0. (note that the remaining load/store instructions each

have byte and word variants; descriptions will be combined for brevity.)

STORE.W Rsrc → *addr — store word to constant address

STORE.B Rsrc → *addr — store byte to constant address

Opcode = STORE.W2 /

STORE.B2

Rsrc

Address

Takes 16-bit word (8-bit byte) from Rsrc and stores it into memory starting

at addr.

LOAD.W Rdst ← *(Raddr) – load word indirect

LOAD.B Rdst ← *(Raddr) – load byte indirect

Opcode = LOAD.W2 /

LOAD.B2

Rdst Raddr

Fetches a 16-bit word (8-bit byte) from memory, starting at the address

found in register Raddr and stores it in Rdst. If only one byte is loaded,

the top 8 bits of Rdst are set to zero.

STORE.W Rsrc → *(Raddr) – store word indirect

STORE.B Rsrc → *(Raddr) – store byte indirect
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Opcode = STORE.W3 /

STORE.B3

Rsrc Raddr

Takes a 16-bit word (8-bit byte) from Rsrc and stores it into memory

starting at the address found in Raddr.

LOAD.W Rdst ← *(Raddr +offset) – load word indexed

LOAD.B Rdst ← *(Raddr +offset) – load byte indexed

Opcode = LOAD.W4 /

LOAD.B4

Rdst Raddr

Offset

Loads a word (byte) into Rdst from the address found by adding offset to

the value in Raddr.

STORE.W Rsrc → *(Raddr +offset) – store word indexed

STORE.B Rsrc → *(Raddr +offset) – store byte indexed

Opcode = STORE.W5 /

STORE.B5

Rsrc Raddr

Offset

Stores a word (byte) from Rsrc into the address found by adding offset to

the value in Raddr.

LOAD.I Rdst ← value – load immediate value

Opcode = LOAD.W6 Rdst

Value

Load Value into Rdst.

A.5 Arithmetic Instructions

These instructions perform arithmetic operations on values in registers.

The instructions listed here operate on 16-bit words; for completeness

there should probably be byte versions of each, but we will not use them

in this class.
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ADD Rsrc → Rdst – add register to register

Opcode = ADD Rsrc Rdst

Adds the 16-bit value in Rsrc to the value in Rdst and places the result in

Rdst. Z flag is set iff the result is zero; S flag is set iff the sign bit (most

significant bit) of the result is 1.

ADD value → Rdst – add immediate value to register

Opcode = ADDI Rdst

Value

Adds value to the value in Rdst and places the result in Rdst. Sets Z and

S flag as above.

SUB Rsrc → Rdst – subtract register from register

Opcode = SUB Rsrc Rdst

Subtracts the 16-bit value in Rsrc from the value in Rdst and places the

result in Rdst. Sets Z and S flag as above.

SUB.I value → Rdst – subtract immediate value from register

Opcode = SUBI Rdst

Value

Subtracts value from the value in Rdst and places the result in Rdst. Sets

Z and S flag as above.

CMP Rsrc, Rdst – Compare registers

Opcode = SUB Rsrc Rdst

Subtracts the 16-bit value in Rsrc from the value in Rdst; discard result

but set Z and S flags.

CMP.I value, Rdst – compare register with immediate value

Opcode = CMPI Rdst

Value
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Subtract value from that in Rdst; discard result but set Z and S flags.

MOV Rsrc → Rdst – move (copy) register to register

Opcode = MOV Rsrc Rdst

Copies the contents of Rsrc to Rdst. Sets Z and S flag as above.

Stack and Subroutine instructions

These instructions are used for manipulating the stack and calling / return-

ing from subroutines.

PUSH Rsrc – push contents of register to stack

Opcode = PUSH Rsrc

Subtracts 2 from SP, and then stores the contents of Rsrc to the address in

SP.

POP Rdst – pop top of stack into register

Opcode = POP Rdst

Fetches the contents of the memory location indicated by the address in

SP, saves it in Rdst, and adds 2 to SP.

ADD_SP #value – add immediate to stack pointer

SUB_SP #value – subtract immediate from stack pointer

Opcode = ADD_SP / SUB_SP

Value

Adds value to SP, thus discarding value/2 elements from the top of the

stack. Alternately, subtracts value from SP, reserving value bytes of storage

for local variables.

CALL #addr – call subroutine

Opcode = CALL

Addr
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Pushes return address (the address of the next instruction after CALL)

onto the stack, and jumps to addr. I.e.: SP = SP-2, *SP = PC+4, PC =

addr.

RET – return from subroutine

Opcode = RET

Pops a return address off the stack and jumps to that address.

Branch instructions

These are unconditional and conditional GOTO instructions, used for e.g.

loops and ’if’ statements.

JMP #addr – jump unconditionally to address

Opcode = JMP

Addr

Loads the program counter (PC) with addr, causing execution to skip to

that address.

JMP_Z #addr – jump if zero flag set

JMP_NZ #addr – jump if zero flag clear

Opcode = JMP_Z / JMP_NZ

Addr

If the Z flag is set (not set), jumps to address addr, causing execution to

skip to that address. Otherwise does nothing.

JMP_NEG #addr – jump if sign flag set (negative)

JMP_POS #addr – jump if sign flag clear

Opcode = JMP_NEG / JMP_POS

Addr

If the S flag is set (not set), jumps to address addr, causing execution to

skip to that address. Otherwise does nothing.

INT #nnn – software interrupt number nnn
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Opcode = INT nnn

Reads the value of interrupt vector nnn — i.e. the 16-bit value at address

2*nnn — and performs a subroutine call to that address.





Appendix B

The CS5600 File System

This chapter provides the following background information:

• The blkdev interface over which the file system is built

• An overview of the FUSE user-space file system toolkit, used in

this assignment.

• Debugging and testing advice.

B.1 Blkdev interface

The block device abstraction we use is implemented in the following

structure:

struct blkdev {
struct blkdev_ops *ops;
void *private;

};
#define BLOCK_SIZE 512 /* 512-byte unit for all blkdev addresses */
struct blkdev_ops {

int (*num_blocks)(struct blkdev *dev);
int (*read_blk)(struct blkdev * dev, int first_blk, int num_blks, char *buf);
int (*write_blk(struct blkdev * dev, int first_blk, int num_blks, char *buf);
void (*close)(struct blkdev *dev);

};

The file system in the assignment has changed since the last time the

book was updated; the description of the old file system has been

removed. The material related to the blkdev interface and FUSE

programming has been retained for reference.
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This is a common style of operating system structure, which provides the

equivalent of a C++ abstract class by using a structure of function pointers

for the virtual method table and a void* pointer for any subclass-specific

data. Interfaces like this are used so that independently compiled drivers

(e.g. network and graphics drivers) to be loaded into the kernel in an OS

such as Windows or Linux and then invoked by direct function calls from

within the OS.

The methods provided in the blkdev_ops structure are:

• num_blks: the total size of this block device, in 512-byte blocks

• read: read one or more blocks into a buffer. The caller guarantees

that ’buf’ points to a buffer large enough to hold the amount of

data being requested, and that num_blks>0. Legal return values are

SUCCESS and E_BADADDR.

• write: write one or more blocks. The caller guarantees that

’buf’ points to a buffer holding the amount of data being writ-

ten, and that num_blks>0. Legal return values are SUCCESS

and E_BADADDR.

• close: the destructor method, this closes the blkdev and frees any

memory allocated.

The E_BADADDR error is returned if any address in the requested

range is illegal—i.e. less than zero or greater than blkdev->ops->num_

blks(blkdev).

We will be working with disk image files, rather than actual devices, for

ease of running and debugging your code. You may be familiar with image

files in the form of .ISO files, which are byte-for-byte copies of a CD-ROM

or DVD, and can be read by the same file system code which interacts

with a physical disk; in our case we will be writing to the files as well.

B.2 FUSE API

FUSE (File system in USEr space) is a kernel module and library which

allow you to implement Linux file systems within a user-space process.

For this homework we will use the C interface to the FUSE toolkit to

create a program which can read, write, and mount CS5600fs file systems.

When you run your working program, it should mount its file system on a

normal Linux directory, allowing you to ’cd’ into the directory, edit files

in it, and otherwise use it as any other file system.

A program which provides a FUSE file system needs to:

1. define file methods — mknod, mkdir, delete, read, write, getdir, ...

blkdev->ops->num_blks(blkdev)
blkdev->ops->num_blks(blkdev)
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2. register those methods with the FUSE library

3. call the FUSE event loop

You will be given code (misc.c) which registers your file methods and

calls the FUSE event loop; your job is to write the methods which imple-

ment the actual file system.

FUSE Data structures

The following data structures are used in the interfaces to the FUSE meth-

ods:

path: this is the name of the file or directory a method is being

applied to, relative to the mount point. Thus if I mount a FUSE

file system at /home/pjd/my-fuseFS, then an operation on the file

/home/pjd/my-fuseFS/subdir/filename.txt will pass /subdir/

filename.txt to any FUSE methods invoked.

mode: when file permissions need to be specified, they will be passed as a

mode_t variable: owner, group, and world read/write/execute permissions

encoded numerically as described in ’man 2 chmod’1.

device: several methods have a dev_t argument; this can be ignored.

struct stat: described in ’man 2 lstat’, this is used to pass information

about file attributes (size, owner, modification time, etc.) to and from

FUSE methods.

struct fuse_file_info: this gets passed to most of the FUSE methods, but

we don’t use it.

Error Codes

FUSE methods return error codes in the standard UNIX kernel fashion—

positive and zero return values indicate success, while a negative value

indicates an error, with the particular negative value used indicating the

error type. The error codes you will need to use are:

• EEXIST: a file or directory of that name already exists

• ENOENT: no such file or directory

• EISDIR, ENOTDIR: the operation is invalid because the target is

(or is not) a directory

• ENOTEMPTY: directory is not empty (returned by rmdir)

1Special files (e.g. /dev files) are also indicated by additional bits in a mode specifier,

but we don’t implement them in cs5600fs.

misc.c
/home/pjd/my-fuseFS
/home/pjd/my-fuseFS/subdir/filename.txt
/subdir/filename.txt
/subdir/filename.txt
mode_t
dev_t
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• ENOMEM, ENOSPC: operation failed due to lack of memory or

disk space

• EOPNOTSUPP: operation not supported.

• EINVAL: invalid arguments

In each case you will return the negative of the value; e.g.:

return -ENOENT; /* file not found */

The EOPNOTSUPP error code indicates that the operation implemented by

a particular method is not supported. Your code should not be returning

this error code—if a particular combination of arguments results in a

request which will not be handled (see the simplifications listed below)

then you should return EINVAL, for invalid arguments.

FUSE Methods

The methods that you will have to implement are:

• mkdir(path,mode): create a directory with the specified mode.

Returns success (0), EEXIST, ENOENT or ENOTDIR if the con-

taining directory can’t be found or is a file.

• rmdir(path): remove a directory. Returns success, ENOENT,

ENOTEMPTY, ENOTDIR.

• create(path,mode,finfo): create a file with the given mode.

Ignore the ’finfo’ argument. Return values are success, EEXIST,

ENOTDIR, or ENOENT.

• unlink(path): remove a file. Returns success, ENOENT, or EISDIR.

• readdir: read a directory, using a rather complicated interface in-

cluding a callback function. See the sample code for more details.

Returns success, ENOENT, ENOTDIR.

• getattr(path, attrs): returns file attributes. (see ’man lstat’ for more

details of the format used)

• read(path,buf,len,offset): read ’len’ bytes starting at offset

’offset’ into the buffer pointed to by ’buf’. Returns the number of

bytes read on success - this should always be the same as the number

requested unless you hit the end of the file. If ’offset’ is beyond the

end of the file, return 0—this is how UNIX file systems indicate

end-of-file. Errors — ENOENT or EISDIR if the file cannot be

found or is a directory.

• write(path,buf,len,offset): write ’len’ bytes starting at off-

set ’offset’ from the buffer pointed to by ’buf’. Returns the number

of bytes written on success - this should always be the same as the

mkdir(path, mode)
rmdir(path)
create(path,mode,finfo)
read(path, buf, len, offset)
write(path, buf, len, offset)
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number requested. If ’offset’ is greater than the current length of

the file, return EINVAL2. Errors: ENOENT or EISDIR.

• truncate(path,offset): delete all bytes of a file after ’offset’.

If ’offset’ is greater than zero, return EINVAL3; otherwise delete

all data so the file becomes zero-length.

• rename(path1,path2): rename a file or directory. If ’path2’

exists, returns EEXISTS. If the two paths are in different directories,

return EINVAL.

• chmod(path,mode): change file permissions.

• utime(path,timebuf): change file access and modification

times.

• statfs(path,statvfs): returns statistics on a particular file sys-

tem instance — block size, total/free/used block count, max name

length. Always returns success.

Note that in addition to any error codes indicted above in the method

descriptions, the ’write’, ’mkdir’, and ’create’ methods can also return

ENOSPC, if they are unable to allocate either a file system block or a

directory entry.

2UNIX file systems support “holes”, where you can write to a location beyond the end

of the file and the region in the middle is magically filled with zeros. Linux supports plenty

of file systems that don’t.
3UNIX allows truncating a file to a non-zero length, but this is rarely used so we skip it.

truncate(path, offset)
rename(path1, path2)
chmod(path, mode)
utime(path, timebuf)
statfs(path, statvfs)
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