
T U , D O H O A N G

O P E R AT I N G S Y S T E M S :

F R O M 0 T O 1

Contents

Preface i

I Preliminary 1

1 Domain documents 3

1.1 Problem domains 3

1.2 Documents for implementing a problem domain 6

1.3 Documents for writing an x86 Operating System. . . . 9

2 From hardware to software: Layers of abstraction . . 11

2.1 The physical implementation of a bit 11

2.2 Beyond transistors: digital logic gates 12

2.3 Beyond Logic Gates: Machine Language 17

2.4 Abstraction 26

3 Computer Architecture 33

3.1 What is a computer? 33

3.2 Computer Architecture 39

3.3 x86 architecture 44

3.4 Intel Q35 Chipset 47

3.5 x86 Execution Environment 47

II tu, do hoang

4 x86 Assembly and C 49

4.1 objdump 50

4.2 Reading the output 51

4.3 Intel manuals 53

4.4 Experiment with assembly code 54

4.5 Anatomy of an Assembly Instruction 56

4.6 Understand an instruction in detail 66

4.7 Example: jmp instruction 69

4.8 Examine compiled data 72

4.9 Examine compiled code 86

5 The Anatomy of a Program 107

5.1 Reference documents: 109

5.2 ELF header 109

5.3 Section header table 114

5.4 Understand Section in-depth 121

5.5 Program header table 141

5.6 Segments vs sections. 144

6 Runtime inspection and debug 151

6.1 A sample program 151

6.2 Static inspection of a program 152

6.3 Runtime inspection of a program 163

6.4 How debuggers work: A brief introduction 179

II Groundwork 191

7 Bootloader 193

7.1 x86 Boot Process 193

7.2 Using BIOS services 194

7.3 Boot process. 195

operating systems: from 0 to 1 III

7.4 Example Bootloader 195

7.5 Compile and load 196

7.6 Loading a program from bootloader 201

7.7 Improve productivity with scripts 205

8 Linking and loading on bare metal 217

8.1 Understand relocations with readelf 218

8.2 Crafting ELF binary with linker scripts 227

8.3 C Runtime: Hosted vs Freestanding 248

8.4 Debuggable bootloader on bare metal 249

8.5 Debuggable program on bare metal 251

III Kernel Programming 275

9 x86 Descriptors. 277

9.1 Basic operating system concepts 277

9.2 Drivers 279

9.3 Userspace and kernel space 279

9.4 Memory Segment 280

9.5 Segment Descriptor 280

9.6 Types of Segment Descriptors 280

9.7 Descriptor Scope 280

9.8 Segment Selector 280

9.9 Enhancement: Bootloader with descriptors 280

10 Process . 281

10.1 Concepts 281

10.2 Process 281

10.3 Threads 283

10.4 Task: x86 concept of a process 284

10.5 Task Data Structure 284

IV tu, do hoang

10.6 Process Implementation 284

10.7 Milestone: Code Refactor 285

11 Interrupt 287

12 Memory management 289

13 File System 291

Index . 293

Biblography 295

Preface

Greetings!

You’ve probably asked yourself at least once how an operating system

is written from the ground up. You might even have years of program-

ming experience under your belt, yet your understanding of operating

systems may still be a collection of abstract concepts not grounded in

actual implementation. To those who’ve never built one, an operating

system may seem like magic: a mysterious thing that can control hard-

ware while handling a programmer’s requests via the API of their favorite

programming language. Learning how to build an operating system seems

intimidating and difficult; no matter how much you learn, it never feels

like you know enough. You’re probably reading this book right now to

gain a better understanding of operating systems to be a better software

engineer.

If that is the case, this book is for you. By going through this book,

you will be able to find the missing pieces that are essential and enable

you to implement your own operating system from scratch! Yes, from

scratch, without going through any existing operating system layer to

prove to yourself that you are an operating system developer. You may

ask,“Isn’t it more practical to learn the internals of Linux?”.

Yes...

and no.

Learning Linux can help your workflow at your day job. However, if

you follow that route, you still won’t achieve the ultimate goal of writ-

ing an actual operating system. By writing your own operating system,

you will gain knowledge that you will not be able to glean just from learn-

ii tu, do hoang

ing Linux.

Here’s a list of some benefits of writing your own OS:

✄ You will learn how a computer works at the hardware level, and you

will learn to write software to manage that hardware directly.

✄ You will learn the fundamentals of operating systems, allowing you

to adapt to any operating system, not just Linux

✄ To hack on Linux internals suitably, you’ll need to write at least one

operating system on your own. This is just like applications program-

ming: to write a large application, you’ll need to start with simple ones.

✄ You will open pathways to various low-level programming domains

such as reverse engineering, exploits, building virtual machines, game

console emulation and more. Assembly language will become one of

your most indispensable tools for low-level analysis. (But that does

not mean you have to write your operating system in Assembly!)

✄ Writing an operating system is fun!

Why another book on Operating Systems?

There are many books and courses on this topic made by famous profes-

sors and experts out there already. Who am I to write a book on such

an advanced topic? While it’s true that many quality resources exist, I

find them lacking. Do any of them show you how to compile your C code

and the C runtime library independent of an existing operating system?

Most books on operating system design and implementation only dis-

cuss the software side; how the operating system communicates with the

hardware is skipped. Important hardware details are skipped, and it’s

difficult for a self-learner to find relevant resources on the Internet. The

aim of this book is to bridge that gap: not only will you learn how to pro-

gram hardware directly, but also how to read official documents from hard-

ware vendors to program it. You no longer have to seek out resources to

help yourself interpret hardware manuals and documentation: you can

do it yourself. Lastly, I wrote this book from an autodidact’s perspec-

tive. I made this book as self-contained as possible so you can spend more

operating systems: from 0 to 1 iii

time learning and less time guessing or seeking out information on the

Internet.

One of the core focuses of this book is to guide you through the pro-

cess of reading official documentation from vendors to implement your

software. Official documents from hardware vendors like Intel are criti-

cal for implementing an operating system or any other software that di-

rectly controls the hardware. At a minimum, an operating system devel-

oper needs to be able to comprehend these documents and implement

software based on a set of hardware requirements. Thus, the first chap-

ter is dedicated to discussing relevant documents and their importance.

Another distinct feature of this book is that it is “Hello World” cen-

tric. Most examples revolve around variants of a “Hello World” program,

which will acquaint you with core concepts. These concepts must be learned

before attempting to write an operating system. Anything beyond a sim-

ple “Hello World” example gets in the way of teaching the concepts, thus

lengthening the time spent on getting started writing an operating sys-

tem.

Let’s dive in. With this book, I hope to provide enough foundational

knowledge that will open doors for you to make sense of other resources.

This book will be beneficial to students who’ve just finished their first

C/C++ course greatly. Imagine how cool it would be to show prospec-

tive employers that you’ve already built an operating system.

Prerequisites

✄ Basic knowledge of circuits

– Basic Concepts of Electricity: atoms, electrons, proton, neutron, cur-

rent flow.

– Ohm’s law

If you are unfamiliar with these concepts, you can quickly learn them

here: http://www.allaboutcircuits.com/textbook/, by reading chap-

ter 1 and chapter 2.

✄ C programming. In particular:

http://www.allaboutcircuits.com/textbook/

iv tu, do hoang

– Variable and function declarations/definitions

– While and for loops

– Pointers and function pointers

– Fundamental algorithms and data structures in C

✄ Linux basics:

– Know how to navigate directory with the command line

– Know how to invoke a command with options

– Know how to pipe output to another program

✄ Touch typing. Since we are going to use Linux, touch typing helps. I

know typing speed does not relate to problem-solving, but at least your

typing speed should be fast enough not to let it get in the way and de-

grade the learning experience.

In general, I assume that the reader has basic C programming knowledge,

and can use an IDE to build and run a program.

What you will learn in this book

✄ How to write an operating system from scratch by reading hardware

datasheets. In the real world, you will not be able to consult Google

for a quick answer.

✄ Write code independently. It’s pointless to copy and paste code. Real

learning happens when you solve problems on your own. Some exam-

ples are provided to help kick start your work, but most problems are

yours to conquer. However, the solutions are available online for you

after giving a good try.

✄ A big picture of how each layer of a computer related to each other,

from hardware to software.

✄ How to use Linux as a development environment and common tools

for low-level programming.

✄ How a program is structured so that an operating system can run.

operating systems: from 0 to 1 v

✄ How to debug a program running directly on hardware with gdb and

QEMU.

✄ Linking and loading on bare metal x86_64, with pure C. No standard

library. No runtime overhead.

What this book is not about

✄ Electrical Engineering: The book discusses some concepts from

electronics and electrical engineering only to the extent of how soft-

ware operates on bare metal.

✄ How to use Linux or any OS types of books: Though Linux

is used as a development environment and as a medium to demonstrate

high-level operating system concepts, it is not the focus of this book.

✄ Linux Kernel development: There are already many high-quality

books out there on this subject.

✄ Operating system books focused on algorithms: This

book focuses more on actual hardware platform - Intel x86_64 - and

how to write an OS that utilizes of OS support from the hardware plat-

form.

The organization of the book

Part 1 provides a foundation for learning operating system.

✄ Chapter 1 briefly explains the importance of domain documents.

Documents are crucial for the learning experience, so they deserve

a chapter.

✄ Chapter 2 explains the layers of abstractions from hardware to soft-

ware. The idea is to provide insight into how code runs physically.

✄ Chapter 3 provides the general architecture of a computer, then in-

troduces a sample computer model that you will use to write an

operating system.

vi tu, do hoang

✄ Chapter 4 introduces the x86 assembly language through the use

of the Intel manuals, along with commonly used instructions. This

chapter gives detailed examples of how high-level syntax corresponds

to low-level assembly, enabling you to read generated assembly code

comfortably. It is necessary to read assembly code when debugging

an operating system.

✄ Chapter 5 dissects ELF in detail. Only by understanding how the

structure of a program at the binary level, you can build one that

runs on bare metal.

✄ Chapter 6 introduces gdb debugger with extensive examples for com-

monly used commands. After acquainting the reader with gdb, it

then provides insight on how a debugger works. This knowledge is

essential for building a debuggable program on the bare metal.

Part 2 presents how to write a bootloader to bootstrap a kernel. Hence

the name “Groundwork”. After mastering this part, the reader can con-

tinue with the next part, which is a guide for writing an operating sys-

tem. However, if the reader does not like the presentation, he or she

can look elsewhere, such as OSDev Wiki: http://wiki.osdev.org/.

✄ Chapter 7 introduces what the bootloader is, how to write one in

assembly, and how to load it on QEMU, a hardware emulator. This

process involves typing repetitive and long commands, so GNU Make

is applied to improve productivity by automating the repetitive parts

and simplifying the interaction with the project. This chapter also

demonstrates the use of GNU Make in context.

✄ Chapter 8 introduces linking by explaining the relocation process

when combining object files. In addition to a bootloader and an op-

erating system written in C, this is the last piece of the puzzle re-

quired for building debuggable programs on bare metal, including

the bootloader written in Assembly and an operating system writ-

ten in C.

Part 3 provides guidance on how to write an operating system, as you

should implement an operating system on your own and be proud of

your creation. The guidance consists of simpler and coherent explana-

tions of necessary concepts, from hardware to software, to implement

http://wiki.osdev.org/

operating systems: from 0 to 1 vii

the features of an operating system. Without such guidance, you will

waste time gathering information spread through various documents

and the Internet. It then provides a plan on how to map the concepts

to code.

Acknowledgments

Thank you, my beloved family. Thank you, the contributors.

Part I

Preliminary

1
Domain documents

1.1 Problem domains

In the real world, software engineering is not only focused on software,

but also the problem domain it is trying to solve.

A problem domain is the part of the world where the computer is to pro- problem domain

duce effects, together with the means available to produce them, directly

or indirectly. (Kovitz, 1999)

A problem domain is anything outside of programming that a software

engineer needs to understand to produce correct code that can achieve

the desired effects. “Directly” means include anything that the software

can control to produce the desired effects, e.g. keyboards, printers, moni-

tors, other software, etc. “Indirectly” means anything not part of the soft-

ware but relevant to the problem domain e.g. appropriate people to be

informed by the software when some event happens, students that move

to correct classrooms according to the schedule generated by the soft-

ware. To write a finance application, a software engineer needs to learn

sufficient finance concepts to understand the requirements of a customer requirements

and implement such requirements, correctly.

Requirements are the effects that the machine is to exert in the prob-

lem domain by virtue of its programming.

4 operating systems: from 0 to 1

Programming alone is not too complicated; programming to solve a prob-

lem domain, is 1. Not only a software engineer needs to understand how 1 We refer to the concept of “program-
ming” here as someone able to write

code in a language, but not necessary
know any or all software engineering

knowledge.

to implement the software, but also the problem domain that it tries to

solve, which might require in-depth expert knowledge. The software en-

gineer must also select the right programming techniques that apply to

the problem domain he is trying to solve because many techniques that

are effective in one domain might not be in another. For example, many

types of applications do not require performant written code, but a short

time to market. In this case, interpreted languages are widely popular

because it can satisfy such need. However, for writing huge 3D games or

operating system, compiled languages are dominant because it can gen-

erate the most efficient code required for such applications.

Often, it is too much for a software engineer to learn non-trivial do-

mains (that might require a bachelor degree or above to understand the

domains). Also, it is easier for a domain expert to learn enough program-

ming to break down the problem domain into parts small enough for the

software engineers to implement. Sometimes, domain experts implement

the software themselves.

Software Domain
Non-software

 Domains

Application

Domain

Figure 1.1.1: Problem domains:

Software and Non-software.

One example of such scenario is the domain that is presented in this

book: operating system. A certain amount of electrical engineering (EE)

knowledge is required to implement an operating system. If a computer

science (CS) curriculum does not include minimum EE courses, students

in the curriculum have little chance to implement a working operating

system. Even if they can implement one, either they need to invest a sig-

nificant amount of time to study on their own, or they fill code in a pre-

domain documents 5

defined framework just to understand high-level algorithms. For that rea-

son, EE students have an easier time to implement an OS, as they only

need to study a few core CS courses. In fact, only “C programming” and

“Algorithms and Data Structures” classes are usually enough to get them

started writing code for device drivers, and later generalize it into an op-

erating system.

Data Structure

and Algorithms

Electrical

Engineering

Operating

System

Figure 1.1.2: Operating System

domain.

One thing to note is that software is its own problem domain. A prob-

lem domain does not necessarily divide between software and itself. Compilers,

3D graphics, games, cryptography, artificial intelligence, etc., are parts of

software engineering domains (actually it is more of a computer science

domain than a software engineering domain). In general, a software-exclusive

domain creates software to be used by other software. Operating System

is also a domain, but is overlapped with other domains such as electrical

engineering. To effectively implement an operating system, it is required

to learn enough of the external domain. How much learning is enough

for a software engineer? At the minimum, a software engineer should be

knowledgeable enough to understand the documents prepared by hard-

ware engineers for using (i.e. programming) their devices.

Learning a programming language, even C or Assembly, does not mean

a software engineer can automatically be good at hardware programming

or any related low-level programming domains. One can spend 10 years,

20 years or his entire life writing C/C++ code, and he still cannot write

an operating system, simply because of the ignorance of relevant domain

knowledge. Just like learning English does not mean a person automat-

ically becomes good at reading Math books written in English. Much

6 operating systems: from 0 to 1

more than that is needed. Knowing one or two programming languages

is not enough. If a programmer writes software for a living, he had bet-

ter be specialized in one or two problem domains outside of software if

he does not want his job taken by domain experts who learn program-

ming in their spare time.

1.2 Documents for implementing a problem do-

main

Documents are essential for learning a problem domain (and actually,

anything) since information can be passed down in a reliable way. It is

evident that this written text has been used for thousands of years to

pass knowledge from generation to generation. Documents are integral

parts of non-trivial projects. Without the documents:

✄ New people will find it much harder to join a project.

✄ It is harder to maintain a project because people may forget impor-

tant unresolved bugs or quirks in their system.

✄ It is challenging for customers to understand the product they are go-

ing to use. However, documents do not need to be written in book for-

mat. It can be anything from HTML format to database format to

be displayed by a graphical user interface. Important information must

be stored somewhere safe, readily accessible.

There are many types of documents. However, to facilitate the under-

standing of a problem domain, these two documents need to be written:

software requirement document and software specification.

1.2.1 Software Requirement Document

Software requirement document includes both a list of requirements and Software requirement

a description of the problem domain (Kovitz, 1999).

A software solves a business problem. But, which problems to solve,

are requested by a customer. Many of these requests make a list of re-

quirements that our software needs to fulfill. However, an enumerated

list of features is seldom useful in delivering software. As stated in the

domain documents 7

previous section, the tricky part is not programming alone but program-

ming according to a problem domain. The bulk of software design and

implementation depends upon the knowledge of the problem domain. The

better understood the domain, the higher quality software can be. For

example, building a house is practiced over thousands of years and is well

understood, and it is easy to build a high-quality house; software is no

different. Code that is difficult to understand is usually due to the au-

thor’s ignorance of a problem domain. In the context of this book, we

seek to understand the low-level working of various hardware devices.

Because software quality depends upon the understanding of the prob-

lem domain, the amount of software requirement document should con-

sist of problem domain description.

Be aware that software requirements are not:

What vs How “what” and “how” are vague terms. What is the “what”?

Is it nouns only? If so, what if a customer requires his software to per-

form specific steps of operations, such as purchasing procedure for a

customer on a website. Does it include “verbs” now? However, isn’t

the “how” supposed to be step by step operations? Anything can be

the “what” and anything can be the “how”.

Sketches Software requirement document is all about the problem do-

main. It should not be a high-level description of an implementation.

Some problems might seem straightforward to map directly from its

domain description to the structure of an implementation. For exam-

ple:

✄ Users are given a list of books in a drop-down menu to choose.

✄ Books are stored in a linked list”.

✄ etc

In the future, instead of a drop-down menu, all books are listed directly

on a page in thumbnails. Books might be reimplemented as a graph,

and each node is a book for finding related books, as a recommender

is going to be added in the next version. The requirement document

needs updating again to remove all the outdated implementation de-

tails, thus required additional efforts to maintain the requirement doc-

8 operating systems: from 0 to 1

ument, and when the effort for syncing with the implementation is too

much, the developers give up documentation, and everyone starts rant-

ing how useless documentation is.

More often than not there is no straightforward one-to-one mapping.

For example, a regular computer user expects an OS to be something

that runs some program with GUI, or their favorite computer games.

But for such requirements, an operating system is implemented as mul-

tiple layers, each hiding the details from the upper layers. To imple-

ment an operating system, a large body of knowledge from multiple

fields is required, especially if the operating system runs on non-PC

devices.

It’s best to include information related to the problem domain in the

requirement document. A good way to test the quality of a require-

ment document is to provide it to a domain expert for proofreading,

to ensure he can understand the material thoroughly. A requirement

document is also useful as a help document later, or for writing one

much easier.

1.2.2 Software Specification

Software specification document states rules relating desired behavior of Software specification

the output devices to all possible behavior of the input devices, as well

as any rules that other parts of the problem domain must obey.Kovitz

(1999)

Simply put, software specification is interface design, with constraints

for the problem domain to follow e.g. the software can accept certain types

of input such as the software is designed to accept English but no other

language. For a hardware device, a specification is always needed, as soft-

ware depends on its hardwired behaviors. And in fact, it is mostly the

case that hardware specifications are well-defined, with the tiniest details

in it. It needs to be that way because once hardware is physically man-

ufactured, there’s no going back, and if defects exist, it’s a devastating

damage to the company on both finance and reputation.

Note that, similar to a requirement document, a specification only con-

cerns interface design. If implementation details leak in, it is a burden

domain documents 9

to sync between the actual implementation and the specification, and

soon to be abandoned.

Another important remark is that, though a specification document

is important, it does not have to be produced before the implementation.

It can be prepared in any order: before or after a complete implementa-

tion; or at the same time with the implementation, when some part is

done, and the interface is ready to be recorded in the specification. Regardless

of methods, what matter is a complete specification at the end.

1.3 Documents for writing an x86 Operating System

When problem domain is different from software domain, requirement

document and specification are usually separated. However, if the prob-

lem domain is inside software, specification most often includes both, and

content of both can be mixed with each other. As demonstrated by pre-

vious sections the importance of documents, to implement an OS, we will

need to collect relevant documents to gain sufficient domain knowledge.

These documents are as follow:

✄ Intel® 64 and IA-32 Architectures Software Developer’s Manual (Volume

1, 2, 3)

✄ Intel® 3 Series Express Chipset Family Datasheet

✄ System V Application Binary Interface

Aside from the Intel’s official website, the website of this book also hosts

the documents for convenience2. 2 Intel may change the links to the doc-

uments as they update their website,
so this book doesn’t contain any link
to the documents to avoid confusion

for readers.

Intel documents divide the requirement and specification sections clearly,

but call the sections with different names. The corresponding to the re-

quirement document is a section called “Functional Description”, which

consists mostly of domain description; for specification, “Register Description”

section describes all programming interfaces. Both documents carry no

unnecessary implementation details3. Intel documents are also great ex- 3 As itshouldbe,those details are

trade secret.
amples of how to write well requirements/specifications, as explained in

this chapter.

Other than the Intel documents, other documents will be introduced

in the relevant chapters.

2
From hardware to software:

Layers of abstraction

This chapter gives an intuition on how hardware and software connected

together, and how software is represented physically.

2.1 The physical implementation of a bit

All electronic devices, from simple to complex, manipulate this flow to

achieve desired effects in the real world. Computers are no exception. When

we write software, we indirectly manipulate electrical current at the phys-

ical level, in such a way that the underlying machine produces desired

effects. To understand the process, we consider a simple light bulb. A

light bulb can change two states between on and off with a switch, peri-

odically: an off means number 0, and an on means 1.

Figure 2.1.1: A lightbulb

However, one problem is that such a switch requires manual interven-

tion from a human. What is required is an automatic switch based on

the voltage level, as described above. To enable automatic switching of

electrical signals, a device called transistor, invented by William Shockley,

John Bardeen and Walter Brattain. This invention started the whole com-

puter industry.

12 operating systems: from 0 to 1

At the core, a transistor is just a resistor whose values can vary based transistor

on an input voltage value.
Figure 2.1.2: Modern transistor

1 32

With this property, a transistor can be used as a current amplifier (more

voltage, less resistance) or switch electrical signals off and on (block and

unblock an electron flow) based on a voltage level. At 0 v, no current can

pass through a transistor, thus it acts like a circuit with an open switch

(light bulb off) because the resistor value is enough to block the electri-

cal flow. Similarly, at +3.5 v, current can flow through a transistor be-

cause the resistor value is lessened, effectively enables electron flow, thus

acts like a circuit with a closed switch. If you want a deeper explana-

tion elec-

trons move, you should look at

the video “How semiconductors

work” on Youtube, by Ben Eater.

A bit has two states: 0 and 1, which is the building block of all digi-

tal systems and software. Similar to a light bulb that can be turned on

and off, bits are made out of this electrical stream from the power source:

Bit 0 are represented with 0 v (no electron flow), and bit 1 is +3.5 v to

+5 v (electron flow). Transistor implements a bit correctly, as it can reg-

ulate the electron flow based on voltage level.

2.1.1 MOSFET transistors

The classic transistors invented open a whole new world of micro digi-

tal devices. Prior to the invention, vacuum tubes - which are just fancier

light bulbs - were used to present 0 and 1, and required human to turn

it on and off. MOSFET, or Metal–Oxide–Semiconductor Field-Effect MOSFET

Transistor, invented in 1959 by Dawon Kahng and Martin M. (John) Atalla

at Bell Labs, is an improved version of classic transistors that is more

suitable for digital devices, as it requires shorter switching time between

two states 0 and 1, more stable, consumes less power and easier to pro-

duce.

There are also two types of MOSFETs analogous to two types of tran-

sistors: n-MOSFET and p-MOSFET. n-MOSFET and p-MOSFET are

also called NMOS and PMOS transistors for short.

2.2 Beyond transistors: digital logic gates

All digital devices are designed with logic gates. A logic gate is a device logic gate

that implements a boolean function. Each logic gate includes a number

from hardware to software: layers of abstraction 13

of inputs and an output. All computer operations are built from the com-

binations of logic gates, which are just combinations of boolean functions.

Figure 2.2.1: Example: NAND

gate

A

B
out2.2.1 The theory behind logic gates

Logic gates accept only binary inputs1 and produce binary outputs. In
1 Input that is either a 0 or 1.

other words, logic gates are functions that transform binary values. Fortunately,

a branch of math that deals exclusively with binary values already ex-

isted, called Boolean Algebra, developed in the 19thcentury by George Boole.

With a sound mathematical theory as a foundation logic gates were cre-

ated. As logic gates implement Boolean functions, a set of Boolean func-

tions is functionally complete, if this set can construct all other Boolean functionally complete

functions can be constructed from. Later, Charles Sanders Peirce (dur-

ing 1880 – 1881) proved that either Boolean function of NOR or NAND

alone is enough to create all other Boolean logic functions. Thus NOR

and NAND gates are functionally complete Peirce (1933). Gates are sim-

ply the implementations of Boolean logic functions, therefore NAND or

NOR gate is enough to implement all other logic gates. The simplest

gates CMOS circuit can implement are inverters (NOT gates) and from

the inverters, comes NAND gates. With NAND gates, we are confident

to implement everything else. This is why the inventions of transistors,

then CMOS circuit revolutionized computer industry. If youwant to understand

why and how fromNAND

gate we cancreate all Boolean

functions and a computer, I

suggest the course Build a

ModernComputer fromFirst

Principles: Fromto

Tetris available on Coursera:

https://www.coursera.org/

learn/build-a-computer. Go

even further, after the course,

youshould take the series

Computational Structures on

Edx.

We should realize and appreciate how powerful boolean functions are

available in all programming languages.

2.2.2 Logic Gate implementation: CMOS circuit

Underlying every logic gate is a circuit called CMOS - Complementary

CMOS

MOSFET. CMOS consists of two complementary transistors, NMOS

and PMOS. The simplest CMOS circuit is an inverter or a NOT gate:

https://www.coursera.org/learn/build-a-computer
https://www.coursera.org/learn/build-a-computer

14 operating systems: from 0 to 1

(a) When input is low (b) When input is high

Figure 2.2.2: Electron flows of an

inverter.Input is onthe left side

and output on the right side.The

upper component is a PMOS and

the lower component is a NMOS,

both connect to the input and out-

put. (Source: Createdwithhttp:

//www.falstad.com/circuit/)

From NOT gate, a NAND gate can be created:

(a) Input = 00, Ouput = 1 (b) Input = 01, Ouput = 1

(c) Input = 10, Output = 1 (d) Input = 11, Output = 0

Figure 2.2.3: Electron flows of a

NAND gate.

From NAND gate, we have all other gates. As demonstrated, such a

simple circuitry performs the logical operators in day-to-day program

languages e.g. NOT operator ~ is executed directly by an inverter cir-

cuit, and operator & is executed by an AND circuit and so on. Code does

not run on a magic black box. In contrast, code execution is precise and

transparent, often as simple as running some hardwired circuit. When

http://www.falstad.com/circuit/
http://www.falstad.com/circuit/

from hardware to software: layers of abstraction 15

we write software, we simply manipulate electrical current at the physi-

cal level to run appropriate circuits to produce desired outcomes. However,

this whole process somehow does not relate to any thought involving elec-

trical current. That is the real magic and will be explained soon.

One interesting property of CMOS is that a k-input gate uses k PMOS

and k NMOS transistors (Wakerly, 1999). All logic gates are built by

pairs of NMOS and PMOS transistors, and gates are the building blocks

of all digital devices from simple to complex, including any computer. Thanks

to this pattern, it is possible to separate between the actual physical cir-

cuit implementation and logical implementation. Digital designs are done

by designing with logic gates then later be “compiled” into physical cir-

cuits. In fact, later we will see that logic gates become a language that

describes how circuits operate. Understanding how CMOS works is im-

portant to understand how a computer is designed, and as a consequence,

how a computer works2. 2 Again, if you want to understand how
logic gates make a computer, consider

the suggested courses on Coursera and
Edx earlier.

Finally, an implemented circuit with its wires and transistors is stored

physically in a package called a chip. A chip is a substrate that an inte-

grated circuit is etched onto. However, a chip also refers to a completely

packaged integrated circuit in consumer market. Depends on the context,

it is understood differently.

Figure 2.2.4: 74HC00 chip physi-

cal view

Example 2.2.1. 74HC00 is a chip with four 2-input NAND gates. The

chip comes with 8 input pins and 4 output pins, 1 pin for connecting to

a voltage source and 1 pin for connecting to the ground. This device is

the physical implementation of NAND gates that we can physically touch

and use. But instead of just a single gate, the chip comes with 4 gates

that can be combined. Each combination enables a different logic func-

tion, effective creating other logic gates. This feature is what make the

chip popular.

Each of the gates above is just a simple NAND circuit with the elec-

tron flows, as demonstrated earlier. Yet, many these NAND-gates chips

combined can build a simple computer. Software, at the physical level,

is just electron flows.

16 operating systems: from 0 to 1

(a) Logic diagram of 74HC00 (b) Logic diagram of one NAND gate

Figure 2.2.5: 74HC00 logic dia-

grams (Source: 74HC00 datasheet,

http://www.scrpdf.com/pdf/

Semiconductors_new/Logic/

74HCT/74HC_HCT00.pdf)

A

A

Y

(a) NOT gate

A

B

Y

(b) AND gate

A

A

B

B

Y

(c) OR gate

A

A

B

B

Y

(d) NOR gate

Figure 2.2.6: Gates built from

NAND gates, each accepts 2 in-

put signals and generate 1 output

signal.

http://www.scrpdf.com/pdf/Semiconductors_new/Logic/74HCT/74HC_HCT00.pdf
http://www.scrpdf.com/pdf/Semiconductors_new/Logic/74HCT/74HC_HCT00.pdf
http://www.scrpdf.com/pdf/Semiconductors_new/Logic/74HCT/74HC_HCT00.pdf

from hardware to software: layers of abstraction 17

How can the above gates be created with 74HC00? It is simple: as ev-

ery gate has 2 input pins and 1 output pin, we can write the output of

1 NAND gate to an input of another NAND gate, thus chaining NAND

gates together to produce the diagrams as above.

2.3 Beyond Logic Gates: Machine Language

2.3.1 Machine language

Being built upon gates, as gates only accept a series of 0 and 1, a hard-

ware device only understands 0 and 1. However, a device only takes 0

and 1 in a systematic way. Machine language is a collection of unique Machine language

bit patterns that a device can identify and perform a corresponding ac-

tion. A machine instruction is a unique bit pattern that a device can iden-

tify. In a computer system, a device with its language is called CPU -

Central Processing Unit, which controls all activities going inside a com-

puter. For example, in the x86 architecture, the pattern 10100000 means

telling a CPU to add two numbers, or 000000101 to halt a computer. In

the early days of computers, people had to write completely in binary.

Why does such a bit pattern cause a device to do something? The rea-

son is that underlying each instruction is a small circuit that implements

the instruction. Similar to how a function/subroutine in a computer pro-

gram is called by its name, a bit pattern is a name of a little function in-

side a CPU that got executed when the CPU finds one.

Note that CPU is not the only device with its language. CPU is just

a name to indicate a hardware device that controls a computer system.

A hardware device may not be a CPU but still has its language. A de-

vice with its own machine language is a programmable device, since a user

can use the language to command the device to perform different actions.

For example, a printer has its set of commands for instructing it how to

print a page.

18 operating systems: from 0 to 1

Example 2.3.1. A user can use 74HC00 chip without knowing its in-

ternal, but only the interface for using the device. First, we need to know

its layout:

1A

1B

1Y

2A

2B

2Y

GND

Vcc

4B

4A

4Y

3B

3A

3Y

1

2

3

4

5

6

7

14

13

12

11

10

9

8

Figure 2.3.1: 74HC00 Pin

Layout (Source: 74HC00 datasheet,

http://www.nxp.com/documents/

data_sheet/74HC_HCT00.pdf)

Then, the functionality of each pin:

Symbol Pin Description

1A to 4A 1, 4, 9, 12 data input

1B to 4B 2, 5, 10, 13 data input

1Y to 4Y 3, 6, 8, 11 data output

GND 7 ground (0 V)

Vcc 14 supply voltage

Table 2.3.1: Pin Description

(Source: 74HC00 datasheet,

http://www.nxp.com/documents/

data_sheet/74HC_HCT00.pdf)

Finally, how to use the pins:

Input Output

nA nB nY

L L H

L X H

X L H

H H L

Table 2.3.2: Functional

Description

✄ n is a number, either 1, 2, 3,

or 4

✄ H = HIGH voltage level; L =

LOW voltage level; X = don’t

care.

The functional description provides a truth table with all possible pin

inputs and outputs, which also describes the usage of all pins in the de-

vice. A user needs not to know the implementation, but on such a table

to use the device. We can say that the truth table above is the machine

language of the device. Since the device is digital, its language is a col-

lection of binary strings:

✄ The device has 8 input pins, and this means it accepts binary strings

of 8 bits.

http://www.nxp.com/documents/data_sheet/74HC_HCT00.pdf
http://www.nxp.com/documents/data_sheet/74HC_HCT00.pdf
http://www.nxp.com/documents/data_sheet/74HC_HCT00.pdf
http://www.nxp.com/documents/data_sheet/74HC_HCT00.pdf

from hardware to software: layers of abstraction 19

✄ The device has 4 output pins, and this means it produces binary strings

of 4 bits from the 8-bit inputs.

The number of input strings is what the device understand, and the num-

ber of output strings is what the device can speak. Together, they make

the language of the device. Even though this device is simple, yet the lan-

guage it can accept contains quite many binary strings: 2
8 + 2

4 = 272.

However, the number is a tiny fraction of a complex device like a CPU,

with hundreds of pins.

When leaving as is, 74HC00 is simply a NAND device with two 4-bit

inputs3. 3 Or simply 4-bit NAND gate, as it can
only accept 4 bits of input at the maxi-
mum.Input Output

Pin 1A 1B 2A 2B 3A 3B 4A 4B 1Y 2Y 3Y 4Y

Value 1 1 0 0 1 1 0 0 0 1 0 1

The inputs and outputs as visually presented:

1A

1B

1Y

2A

2B

2Y

GND

Vcc

4B

4A

4Y

3B

3A

3Y

1

1

0

0

0

1

0

0

1

1

1

0

Figure 2.3.2: Pins when receiving

digital signals that correspond to

a binarystring. Green signals are

inputs; blue signals are outputs.

On the other hand, if OR gate is implemented, we can only build a 2-

input OR gate from 74HC00, as it requires 3 NAND gates: 2 input NAND

gates and 1 output NAND gate. Each input NAND gate represents only

a 1-bit input of the OR gate. In the following figure, the pins of each in-

put NAND gates are always set to the same values (either both inputs

are A or both inputs are B) to represent a single bit input for the final

OR gate:

20 operating systems: from 0 to 1

A

B

Y

NAND2

NAND1

NAND3

C

D

(a) 2-bit OR gate logic diagram, built from 3 NAND

gates with 4 pins just for 2 bits of input.

1A

1B

1Y

2A

2B

2Y

GND

Vcc

4B

4A

4Y

3B

3A

3Y

A

A

C

B

B

D

C

D

Y

(b) Pin 3A and 3B take the values from 1Y and 2Y.

Figure 2.3.3: 2-bit OR gate imple-

mentation

Table 2.3.3: Truth table of OR

logic diagram.

A B C D Y

0 0 1 1 0

0 1 1 0 1

1 0 0 1 1

1 1 0 0 1

To implement a 4-bit OR gate, we need a total of four of 74HC00 chips

configured as OR gates, packaged as a single chip as in figure 2.3.4.

1A

1B

1Y

2A

2B

2Y

GND

Vcc

4B

4A

4Y

3B

3A

3Y

A1

A2

C1

B1

B1

D1

C1

D1

Y1

1A

1B

1Y

2A

2B

2Y

GND

Vcc

4B

4A

4Y

3B

3A

3Y

A2

A2

C2

B2

B2

D2

C2

D2

Y2

1A

1B

1Y

2A

2B

2Y

GND

Vcc

4B

4A

4Y

3B

3A

3Y

A3

A3

C3

B3

B3

D3

C3

D3

Y3

1A

1B

1Y

2A

2B

2Y

GND

Vcc

4B

4A

4Y

3B

3A

3Y

A4

A4

C4

B4

B4

D4

C4

D4

Y4

Figure 2.3.4: 4-bit OR chip made

from four 74HC00 devices

from hardware to software: layers of abstraction 21

2.3.2 Assembly Language

Assembly language is the symbolic representation of binary machine code,

by giving bit patterns mnemonic names. It was a vast improvement when

programmers had to write 0 and 1. For example, instead of writing 000000101,

a programmer simply write hlt to stop a computer. Such an abstraction

makes instructions executed by a CPU easier to remember, and thus more

instructions could be memorized, less time spent looking up CPU man-

ual to find instructions in bit forms and as a result, code was written faster.

Understand assembly language is crucial for low-level programming

domains, even to this day. The more instructions a programmer want

to understand, the deeper understanding of machine architecture is re-

quired.

Example 2.3.2. We can build a device with 2 assembly instructions:

or <op1>, <op2>

nand <op1>, <op2>

✄ or accepts two 4-bit operands. This corresponds to a 4-input OR gate

device built from 4 74HC00 chips.

✄ nand accepts two 4-bit operands. This corresponds to a single 74HC00

chips, leave as is.

Essentially, the gates in the example 2.3.1 implements the instructions.

Up to this point, we only specify input and output and manually feed it

to a device. That is, to perform an operation:

✄ Pick a device by hands.

✄ Manually put electrical signals into pins.

First, we want to automate the process of device selection. That is, we

want to simply write assembly instruction and the device that implements

the instruction is selected correctly. Solving this problem is easy:

✄ Give each instruction an index in binary code, called operation code

or opcode for short, and embed it as part of input. The value for each

instruction is specified as in table 2.3.4.

Table 2.3.4: Instruction-Opcode

mapping.

Instruction Binary Code

nand 00

or 01

22 operating systems: from 0 to 1

Each input now contains additional data at the beginning: an opcode.

For example, the instruction:

nand 1100, 1100

corresponds to the binary string: 0011001100. The first two bits 00

encodes a nand instruction, as listed in the table above.

✄ Add another device to select a device, based on a binary code pecu-

liar to an instruction.

Such a device is called a decoder, an important component in a CPU that

decides which circuit to use. In the above example, when feeding 0011001100

to the decoder, because the opcode is 00, data are sent to NAND device

for computing.

Finally, writing assembly code is just an easier way to write binary

strings that a device can understand. When we write assembly code and

save in a text file, a program called an assembler translates the text file assembler

into binary strings that a device can understand. So, how can an assem-

bler exist in the first place? Assume this is the first assembler in the world,

then it is written in binary code. In the next version, life is easier: the

programmers write the assembler in the assembly code, then use the first

version to compile itself. These binary strings are then stored in another

device that later can be retrieved and sent to a decoder. A storage de- storage device

vice is the device that stores machine instructions, which is an array of

circuits for saving 0 and 1 states.

A decoder is built out of logic gates similar to other digital devices. However,

a storage device can be anything that can store 0 and 1 and is retriev-

able. A storage device can be a magnetized device that uses magnetism

to store information, or it can be made out of electrical circuits that can

change and rermember states when a voltage is applied. Regardless of

the technology used, as long as the device can store data and is accessi-

ble to retrieve data, it suffices. Indeed, the modern devices are so com-

plex that it is impossible and unnecessary to understand every implemen-

tation detail. Instead, we only need to learn the interfaces, e.g. the pins,

that the devices expose.

from hardware to software: layers of abstraction 23

1A

1B

1Y

2A

2B

2Y

GND

Vcc
4B

4A

4Y

3B

3A

3Y

A1

A2

C1

B1

B1

D1

C1

D1

Y1

1A

1B

1Y

2A

2B

2Y

GND

Vcc
4B

4A

4Y

3B

3A

3Y

A2

A2

C2

B2

B2

D2

C2

D2

Y2

1A

1B

1Y

2A

2B

2Y

GND

Vcc
4B

4A

4Y

3B

3A

3Y

A3

A3

C3

B3

B3

D3

C3

D3

Y3

1A

1B

1Y

2A

2B

2Y

GND

Vcc
4B

4A

4Y

3B

3A

3Y

A4

A4

C4

B4

B4

D4

C4

D4

Y4

1A

1B

1Y

2A

2B

2Y

GND

Vcc
4B

4A

4Y

3B

3A

3Y

1

1

0

0

0

1

0

0

1

1

1

0

4-bit NAND

4-bit OR

Decoder

send data

Storage

0011001100

0111111111

0111101100

0010101110
....................

....................

....................

retrieve data

current instruction

Figure 2.3.5: A decoder retrieves

the current instruction pointed by

the arrow and selects the NAND

device to execute the nand instruc-

tion.

A computer essentially implements this process:

✄ Fetch an instruction from a storage device.

✄ Decode the instruction.

✄ Execute the instruction.

Or in short, a fetch – decode – execute cycle. The above device is extremely

rudimentary, but it already represents a computer with a fetch – decode

– execute cycle. More instructions can be implemented by adding more

devices and allocating more opcodes for the instructions, then update

the decoder accordingly. The Apollo Guidance Computer, a digital com-

puter produced for the Apollo space program from 1961 – 1972, was built

entirely with NOR gates - the other choice to NAND gate for creating

24 operating systems: from 0 to 1

other logic gates. Similarly, if we keep improving our hypothetical device,

it eventually becomes a full-fledge computer.

2.3.3 Programming Languages

Assembly language is a step up from writing 0 and 1. As time goes by,

people realized that many pieces of assembly code had repeating patterns

of usages. It would be nice if instead of writing all the repeating blocks

of code all over again in all places, we simply refer to such blocks of code

with easier to use text forms. For example, a block of assembly code checks

whether one variable is greater than another and if so, execute a block

of code, else execute another block of code; in C, such block of assembly

code is represented by an if statement that is close to human language.

.................

.................

.................

source2.asm

source1.asm

source<n>.asm

if (...) {

} else {

}

Figure 2.3.6: Repeated assembly

patterns are generalized into a new

language.

People created text forms to represent common blocks of assembly code,

such as the if syntax above, then write a program to translate the text

forms into assembly code. The program that translates such text forms

to machine code is called a compiler : compiler

Any software logic a programming language can implement, hardware

from hardware to software: layers of abstraction 25

if (argc) {

 i = 1;

} else {

 i = 0;

}

Compiler

cmp DWORD PTR [ebp+0x8],0x0

je 80483f7 <main+0x1c>

mov DWORD PTR [ebp-0x4],0x1

jmp 80483fe <main+0x23>

mov DWORD PTR [ebp-0x4],0x0

Figure 2.3.7: From high-level lan-

guage back to low-level language.
can also implement. The reverse is also true: any hardware logic that

is implemented in a circuit can be reimplemented in a programming lan-

guage. The simple reason is that programming languages, or assembly

languages, or machine languages, or logic gates are just languages to ex-

press computations. It is impossible for software to implement something

hardware is incapable of because programming language is just a sim-

pler way to use the underlying hardware. At the end of the day, program-

ming languages are translated to machine instructions that are valid to

a CPU. Otherwise, code is not runnable, thus a useless software. In re-

verse, software can do everything hardware (that run the software) can,

as programming languages are just an easier way to use the hardware.

In reality, even though all languages are equivalent in power, not all

of them are capable of express programs of each other. Programming lan-

guages vary between two ends of a spectrum: high level and low level.

The higher level a programming language is, the more distant it be-

comes from the hardware. In some high-level programming languages,

such as Python, a programmer cannot manipulate underlying hardware,

despite being able to deliver the same computations as low-level program-

ming languages. The reason is that high-level languages want to hide hard-

ware details to free programmers from dealing with irrelevant details not

related to current problem domains. Such convenience, however, is not

free: it requires software to carry an extra code for managing hardware

details (e.g. memory) thus making the code run slower, and it makes hard-

ware programming difficult or impossible. The more abstractions a pro-

gramming language imposes, the more difficult it is for writing low-level

software, such as hardware drivers or an operating system. This is the

reason why C is usually a language of choice for writing an operating sys-

tem, since C is just a thin wrapper of the underlying hardware, making

26 operating systems: from 0 to 1

it easy to understand how exactly a hardware device runs when execut-

ing a certain piece of C code.

Each programming language represents a way of thinking about pro-

grams. Higher-level programming languages help to focus on problem

domains that are not related to hardware at all, and where programmer

performance is more important than computer performance. Lower-level

programming languages help to focus on the inner-working of a machine,

thus are best suited for problem domains that are related to control hard-

ware. That is why so many languages exist. Use the right tools for the

right job to achieve the best results.

2.4 Abstraction

Abstraction is a technique for hiding complexity that is irrelevant to the

problem in context. For example, writing programs without any other

layer except the lowest layer: with circuits. Not only a person needs an

in-depth understanding of how circuits work, making it much more ob-

scure to design a circuit because the designer must look at the raw cir-

cuits but think in higher-level such as logic gates. It is a distracting pro-

cess, as a designer must constantly translate the idea into circuits. It is

possible for a designer simply thinks his high-level ideas straight, and later

translate the ideas into circuits. Not only it is more efficient, but it is also

more accurate as a designer can focus all his efforts into verifying the

design with high-level thinking. When a new designer arrives, he can eas-

ily understand the high-level designs, thus can continue to develop or main-

tain existing systems.

2.4.1 Why abstraction works

In all the layers, abstractions manifest itself:

✄ Logic gates abstract away the details of CMOS.

✄ Machine language abstracts away the details of logic gates.

✄ Assembly language abstracts away the details of machine languages.

✄ Programming language abstracts away the details of assembly languages.

from hardware to software: layers of abstraction 27

We see repeating patterns of how lower-layers build upper-layers:

✄ A lower layer has a recurring pattern. Then, this recurring pattern is

taken out and built a language on top of it.

✄ A higher layer strips away layer-specific (non-recurring) details to fo-

cus on the recurring details.

✄ The recurring details are given a new and simpler language than the

languages of the lower layers.

What to realize is that every layer is just a more convenient language to

describe the lower layer. Only after a description is fully created with

the language of the higher layer, it is then be implemented with the lan-

guage of the lower layer.

✄ CMOS layer has a recurring pattern that makes sure logic gates are

reliably translated to CMOS circuits: a k-input gate uses k PMOS

and k NMOS transistors (Wakerly, 1999). Since digital devices use

CMOS exclusively, a language arose to describe higher level ideas while

hiding CMOS circuits: Logic Gates.

✄ Logic Gates hides the language of circuits and focuses on how to im-

plement primitive Boolean functions and combine them to create new

functions. All logic gates receive input and generate output as binary

numbers. Thanks to this recurring patterns, logic gates are hidden away

for the new language: Assembly, which is a set of predefined binary

patterns that cause the underlying gates to perform an action.

✄ Soon, people realized that many recurring patterns arisen from within

Assembly language. Repeated blocks of Assembly code appear in Assembly

source files that express the same or similar idea. There were many

such ideas that can be reliably translated into Assembly code. Thus,

the ideas were extracted for building into the high level programming

languages that everyone programmer learns today.

Recurring patterns are the key to abstraction. Recurring patterns are

why abstraction works. Without them, no language can be built, and thus

28 operating systems: from 0 to 1

no abstraction. Fortunately, human already developed a systematic dis-

cipline for studying patterns: Mathematics. As quoted from the British

mathematician G. H. Hardy (2005):

A mathematician, like a painter or a poet, is a maker of patterns. If his

patterns are more permanent than theirs, it is because they are made

with ideas.

Isn’t that a mathematical formula a representation of a pattern? A vari-

able represents values with the same properties given by constraints? Mathematics

provides a formal system to identify and describe existing patterns in

nature. For that reason, this system can certainly be applied in the digi-

tal world, which is just a subset of the real world. Mathematics can be

used as a common language to help translation between layers easier, and

help with the understanding of layers.

Assembly Language

Logic Gates

Circuit

Mathematics Problem Domain

Programming Language

Figure 2.4.1: Mathematics as a

universal language for all layers.

Since all layers can express mathe-

matics with their technologies, each

layer can be translated into another

layer.

2.4.2 Why abstraction reduces complexity

Abstraction by building language certainly leverages productivity by strip-

ping irrelevant details to a problem. Imagine writing programs without

any other layout except the lowest layer: with circuits. This is how com-

plexity emerges: when high-level ideas are expressed with lower-level lan-

guage, as the example above demonstrated. Unfortunately, this is the

case with software as programming languages at the moment are more

emphasized on software rather than the problem domains. That is, with-

out prior knowledge, code written in a language is unable to express it-

self the knowledge of its target domain. In other words, a language is ex-

pressive if its syntax is designed to express the problem domain it is try-

ing to solve. Consider this example: That is, the what it will do rather

from hardware to software: layers of abstraction 29

the how it will do.

Example 2.4.1. Graphviz (http://www.graphviz.org/) is a visual-

ization software that provides a language, called dot, for describing graph:

digraph {

 a -> b;

 b -> c;

 a -> c;

 d -> c;

}

a

b

c

d

Figure 2.4.2: From graph descrip-

tion to graph.As can be seen, the code perfectly expresses itself how the graph is

connected. Even a non-programmer can understand and use such lan-

guage easily. An implementation in C would be more troublesome, and

that’s assuming that the functions for drawing graphs are already avail-

able. To draw a line, in C we might write something like:

draw_line(a, b);

However, it is still verbose compared with:

a -> b;

Also, a and b must be defined in C, compared to the implicit nodes in

the dot language. However, if we do not factor in the verbosity, then C

still has a limitation: it cannot change its syntax to suit the problem do-

main. A domain-specific language might even be more verbose, but it

makes a domain more understandable. If a problem domain must be ex-

pressed in C, then it is constraint by the syntax of C. Since C is not a

http://www.graphviz.org/

30 operating systems: from 0 to 1

specialized language for a problem domain that, but is a general-purpose

programming language, the domain knowledge is buried within the im-

plementation details. As a result, a C programmer is needed to decipher

and extract the domain knowledge out. If the domain knowledge cannot

be extracted, then the software cannot be further developed.

Example 2.4.2. Linux is full of applications controlled by many domain-

specific languages and are placed in /etc directory, such as a web server.

Instead of reprogramming the software, a domain-agnostic language is

made for it.

In general, code that can express a problem domain must be under-

standable by a domain expert. Even within the software domain, build-

ing a language out of repeated programming patterns is useful. It helps

people aware the existence of such patterns in code and thus making soft-

ware easier to maintain, as software structure is visible as a language. Only

a programming language that is capable of morphing itself to suit a prob-

lem domain can achieve that goal. Such language is called a programmable

programming language. Unfortunately, this approach of turning software

structure visible is not favored among programmers, as a new language

must be made out of it along with new toolchain to support it. Thus, soft-

ware structure and domain knowledge are buried within code written in

the syntax of a general-purpose language, and if a programmer is not fa-

miliar or even aware of the existence of a code pattern, then it is hope-

less to understand the code. A prime example is reading C code that con-

trols hardware, e.g. an operating system: if a programmer knows abso-

lutely nothing about hardware, then it is impossible to read and write

operating system code in C, even if he could have 20 years of writing ap-

plication C code.

With abstraction, a software engineer can also understand the inner-

working of a device without specialized knowledge of physical circuit de-

sign, enables the software engineer to write code that controls a device.

The separation between logical and physical implementation also entails

that gate designs can be reused even when the underlying technologies

from hardware to software: layers of abstraction 31

changed. For example, in some distant future biological computer could

be a reality, and gates might not be implemented as CMOS but some kind

of biological cells e.g. as living cells; in either technology: electrical or

biological, as long as logic gates are physically realized, the same com-

puter design could be implemented.

3
Computer Architecture

To write lower level code, a programmer must understand the architec-

ture of a computer. It is similar to when one writes programs in a soft-

ware framework, he must know what kinds of problems the framework

solves, and how to use the framework by its provided software interfaces.

But before getting to the definition of what computer architecture is, we

must understand what exactly is a computer, as many people still think

that a computer is a regular computer we put on a desk, or at best, a server.

Computers come in various shapes and sizes and are devices that people

never imagine they are computers, and that code can run on such devices.

3.1 What is a computer?

A computer is a hardware device that consists of at least a processor (CPU), computer

a memory device and input/output interfaces. All the computers can be

grouped into two types:

Single-purpose computer is a computer built at the hardware level for

specific tasks. For example, dedicated application encoders/decoders ,

timer, image/video/sound processors.

General-purpose computer is a computer that can be programmed (with-

out modifying its hardware) to emulate various features of single-purpose

34 operating systems: from 0 to 1

computers.

3.1.1 Server

A server is a general-purpose high-performance computer with huge re- server

sources to provide large-scale services for a broad audience. The audi-

ence are people with their personal computer connected to a server.

Figure 3.1.1: Blade servers. Each

blade server is a computer with a

modular design optimize for the use

of physical space and energy.The

enclosure of blade servers is called a

chassis.(Source: Wikimedia, author:

Victorgrigas)

3.1.2 Desktop Computer

A desktop computer is a general-purpose computer with an input and out- desktop computer

put system designed for a human user, with moderate resources enough

for regular use. The input system usually includes a mouse and a key-

board, while the output system usually consists of a monitor that can

display a large mount of pixels. The computer is enclosed in a chassis

large enough for putting various computer components such as a proces-

sor, a motherboard, a power supply, a hard drive, etc.

Figure 3.1.2: A typical desktop

computer.

https://commons.wikimedia.org/wiki/File:Wikimedia_Foundation_Servers-8055_35.jpg

computer architecture 35

3.1.3 Mobile Computer

A mobile computer is similar to a desktop computer with fewer resources mobile computer

but can be carried around.

(a) A laptop (b) A tablet (c) A
mobile

phone

Figure 3.1.3: Mobile computers

3.1.4 Game Consoles

Game consoles are similar to desktop computers but are optimized for

gaming. Instead of a keyboard and a mouse, the input system of a game

console are game controllers, which is a device with a few buttons for con-

trolling on-screen objects; the output system is a television. The chas-

sis is similar to a desktop computer but is smaller. Game consoles use

custom processors and graphic processors but are similar to ones in desk-

top computers. For example, the first Xbox uses a custom Intel Pentium

III processor.

(a) A Play Station 4 (b) A Xbox One (c) A Wii U

Figure 3.1.4: Current-gen Game

ConsolesHandheld game consoles are similar to game consoles, but incorporate

both the input and output systems along with the computer in a single

package.

36 operating systems: from 0 to 1

(a) A Nintendo DS (b) A PS Vita

Figure 3.1.5: Some Handheld

Consoles

3.1.5 Embedded Computer

An embedded computer is a single-board or single-chip computer with lim- embedded computer

ited resources designed for integrating into larger hardware devices.
Figure 3.1.6: AnIntel 82815

Graphics and Memory Controller

Hub embedded on a PC mother-

board. (Source: Wikimedia, author:

Qurren)

Figure 3.1.7: A PIC microcon-

troller. (Soure: Microchip)

A microcontroller is an embedded computer designed for controlling

microcontroller

other hardware devices. A microcontroller is mounted on a chip. Microcontrollers

are general-purpose computers, but with limited resources so that it is

only able to perform one or a few specialized tasks. These computers are

used for a single purpose, but they are still general-purpose since it is pos-

sible to program them to perform different tasks, depends on the require-

ments, without changing the underlying hardware.

Another type of embedded computer is system-on-chip. A system-on-

chip is a full computer on a single chip. Though a microcontroller is housed

on a chip, its purpose is different: to control some hardware. A micro-

controller is usually simpler and more limited in hardware resources as

it specializes only in one purpose when running, whereas a system-on-

chip is a general-purpose computer that can serve multiple purposes. A

system-on-chip can run like a regular desktop computer that is capable

of loading an operating system and run various applications. A system-

on-chip typically presents in a smartphone, such as Apple A5 SoC used

in Ipad2 and iPhone 4S, or Qualcomm Snapdragon used in many Android

phones.
Figure 3.1.8: Apple A5 SoC

Be it a microcontroller or a system-on-chip, there must be an environ-

ment where these devices can connect to other devices. This environment

is a circuit board called a PCB – Printed C ircuit Board. A printed cir-

cuit board is a physical board that contains lines and pads to enable elec-

tron flows between electrical and electronics components. Without a PCB,

devices cannot be combined to create a larger device. As long as these

https://commons.wikimedia.org/wiki/File:Intel_82815_GMCH.jpg
http://www.microchip.com/wwwproducts/en/PIC18F4620

computer architecture 37

devices are hidden inside a larger device and contribute to a larger de-

vice that operates at a higher level layer for a higher level purpose, they

are embedded devices. Writing a program for an embedded device is there-

fore called embedded programming. Embedded computers are used in au-

tomatically controlled devices including power tools, toys, implantable

medical devices, office machines, engine control systems, appliances, remote

controls and other types of embedded systems.

3
.
5
m
m
o
u
t

C
o
m
p
o
s
i
t
e

V
i
d
e
o
+
a
u
d
i
o

Raspberry Pi Model B+ V1.2

(C)Raspberry Pi 2014

Ethernet

RJ45

2x USB 2.0

HDMI

Micro

USB

Power in

CPU/GPU

Broadcom

BCM2835

512MB SDRAM

C
a
m

e
ra

C
S
I

D
is

p
la

y
D

S
I Ethernet

controller

LAN9514

4x USB +

S
t
a
t
u
s

L
E
D
'
s

A
C
T

P
W

R

2x USB 2.0

Ethernet

m
i
c
r
o
S
D
s
l
o
t

40pins: 28x GPIO, I2C, SPI, UART

Regulator polarity protection

current
3.3V

&

1.8V

1

4 poles

HDMI out

jack

R
U
N

o
n
b
o
t
t
o
m
s
i
d
e

limiter

power
good

(a) Functional View.

The SoC is a Broadcom BCM2835.
The microcontroller is the Ethernet Controller LAN9514.
(Source: Wikimedia, author: Efa2)

(b) Physical

View

Figure 3.1.9: Raspberry PiB+

Rev 1.2, a single-board computer

that includes both a system-on-chip

and a microcontroller.

The line between a microcontroller and a system-on-chip is blurry. If

hardware keeps evolving more powerful, then a microcontroller can get

enough resources to run a minimal operating system on it for multiple

specialized purposes. In contrast, a system-on-chip is powerful enough

to handle the job of a microcontroller. However, using a system-on-chip

as a microcontroller would not be a wise choice as price will rise signifi-

cantly, but we also waste hardware resources since the software written

for a microcontroller requires little computing resources.

3.1.6 Field Gate Programmable Array

Field Programmable Gate Array (FPGA) is a hardware an array of re- Field Programmable Gate

Arrayconfigurable gates that makes circuit structure programmable after it

is shipped away from the factory1. Recall that in the previous chapter, 1 This is why it is called Field Gate

Programmable Array. It is changeable
“in the field” where it is applied.each 74HC00 chip can be configured as a gate, and a more sophisticated

device can be built by combining multiple 74HC00 chips. In a similar

https://commons.wikimedia.org/wiki/File:Raspberry_Pi_B%2B_rev_1.2.svg

38 operating systems: from 0 to 1

manner, each FPGA device contains thousands of chips called logic blocks,

which is a more complicated chip than a 74HC00 chip that can be con-

figured to implement a Boolean logic function. These logic blocks can

be chained together to create a high-level hardware feature. This high-

level feature is usually a dedicated algorithm that needs high-speed pro-

cessing.

Figure 3.1.10: FPGA

Architecture (Source: National

Instruments)

Digital devices can be designed by combining logic gates, without re-

garding actual circuit components, since the physical circuits are just mul-

tiples of CMOS circuits. Digital hardware, including various components

in a computer, is designed by writing code, like a regular programmer,

by using a language to describe how gates are wired together. This lan-

guage is called a Hardware Description Language. Later the hardware

description is compiled to a description of connected electronic compo-

nents called a netlist, which is a more detailed description of how gates

are connected.

The difference between FPGA and other embedded computers is that

programs in FPGA are implemented at the digital logic level, while pro-

grams in embedded computers like microcontrollers or system-on-chip

devices are implemented at assembly code level. An algorithm written

for a FPGA device is a description of the algorithm in logic gates, which

the FPGA device then follows the description to configure itself to run

the algorithm. An algorithm written for a microcontroller is in assem-

bly instructions that a processor can understand and act accordingly.

FPGA is applied in the cases where the specialized operations are un-

suitable and costly to run on a regular computer such as real-time medi-

cal image processing, cruise control system, circuit prototyping, video en-

http://www.ni.com/tutorial/6097/en/
http://www.ni.com/tutorial/6097/en/

computer architecture 39

coding/decoding, etc. These applications require high-speed processing

that is not achievable with a regular processor because a processor wastes

a significant amount of time in executing many non-specialized instruc-

tions - which might add up to thousands of instructions or more - to im-

plement a specialized operation, thus more circuits at physical level to

carry the same operation. A FPGA device carries no such overhead; in-

stead, it runs a single specialized operation implemented in hardware di-

rectly.

3.1.7 Application-Specific Integrated Circuit

An Application-Specific I ntegrated C ircuit (or ASIC) is a chip designed

for a particular purpose rather than for general-purpose use. ASIC does

not contain a generic array of logic blocks that can be reconfigured to

adapt to any operation like an FPGA; instead, every logic block in an

ASIC is made and optimized for the circuit itself. FPGA can be consid-

ered as the prototyping stage of an ASIC, and ASIC as the final stage

of circuit production. ASIC is even more specialized than FPGA, so it

can achieve even higher performance. However, ASICs are very costly to

manufacture and once the circuits are made, if design errors happen, ev-

erything is thrown away, unlike the FPGA devices which can simply be

reprogrammed because of the generic gate array.

3.2 Computer Architecture

The previous section examined various classes of computers. Regardless

of shapes and sizes, every computer is designed for an architect from high

level to low level.

Computer Architecture = Instruction Set Architecture+Computer Organization+Hardware

At the highest-level is the Instruction Set Architecture.

At the middle-level is the Computer Organization.

At the lowest-level is the Hardware.

40 operating systems: from 0 to 1

3.2.1 Instruction Set Architecture

An instruction set is the basic set of commands and instructions that a

microprocessor understands and can carry out.

An I nstruction Set Architecture, or ISA, is the design of an environ-

ment that implements an instruction set. Essentially, a runtime environ-

ment similar to those interpreters of high-level languages. The design in-

cludes all the instructions, registers, interrupts, memory models (how mem-

ory are arranged to be used by programs), addressing modes, I/O, etc., of

a CPU. The more features (e.g. more instructions) a CPU has, the more

circuits are required to implement it.

3.2.2 Computer organization

Computer organization is the functional view of the design of a computer. Computer organization

In this view, hardware components of a computer are presented as boxes

with input and output that connects to each other and form the design

of a computer. Two computers may have the same ISA, but different or-

ganizations. For example, both AMD and Intel processors implement x86

ISA, but the hardware components of each processor that make up the

environments for the ISA are not the same.

Computer organizations may vary depend on a manufacturer’s design,

but they are all originated from the Von Neumann architecture2: 2 John von Neumann was a mathe-

matician and physicist who invented a

computer architecture.

Memory
Input and

Output

Control bus

Address bus

Data bus S
y
s
te

m
 b

u
s

CPU
Figure 3.2.1: Von-Neumann

Architecture

CPU fetches instructions continuously from main memory and execute.

computer architecture 41

Memory stores program code and data.

Bus are electrical wires for sending raw bits between the above compo-

nents.

I/O Devices are devices that give input to a computer i.e. keyboard, mouse,

sensor, etc, and takes the output from a computer i.e. monitor takes

information sent from CPU to display it, LED turns on/off according

to a pattern computed by CPU, etc.

The Von-Neumann computer operates by storing its instructions in main

memory, and CPU repeatedly fetches those instructions into its internal

storage for executing, one after another. Data are transferred through

a data bus between CPU, memory and I/O devices, and where to store

in the devices is transferred through the address bus by the CPU. This

architecture completely implements the fetch – decode – execute cycle.

The earlier computers were just the exact implementations of the Von

Neumann architecture, with CPU and memory and I/O devices commu-

nicate through the same bus. Today, a computer has more buses, each is

specialized in a type of traffic. However, at the core, they are still Von

Neumann architecture. To write an OS for a Von Neumann computer,

a programmer needs to be able to understand and write code that con-

trols the cores components: CPU, memory, I/O devices, and bus.

CPU , or Central Processing Unit, is the heart and brain of any com-

puter system. Understand a CPU is essential to writing an OS from scratch:

✄ To use these devices, a programmer needs to controls the CPU to use

the programming interfaces of other devices. CPU is the only way, as

CPU is the only direct device a programmer can use and the only de-

vice that understand code written by a programmer.

✄ In a CPU, many OS concepts are already implemented directly in hard-

ware, e.g. task switching, paging. A kernel programmer needs to know

how to use the hardware features, to avoid duplicating such concept

in software, thus wasting computer resources.

✄ CPU built-in OS features boost both OS performance and developer

productivity because those features are actual hardware, the lowest

possible level, and developers are free to implement such features.

42 operating systems: from 0 to 1

✄ To effectively use the CPU, a programmer needs to understand the

documentation provided from CPU manufacturer. For example, Intel®

64 and IA-32 Architectures Software Developer Manuals.

✄ After understanding one CPU architecture well, it is easier to learn

other CPU architectures.

A CPU is an implementation of an ISA, effectively the implementation

of an assembly language (and depending on the CPU architecture, the

language may vary). Assembly language is one of the interfaces that are

provided for software engineers to control a CPU, thus control a computer.

But how can every computer device be controlled with only the access

to the CPU? The simple answer is that a CPU can communicate with

other devices through these two interfaces, thus commanding them:

Registers are a hardware component for high-speed data access and com- Registers

munication with other hardware devices. Registers allow software to

control hardware directly by writing to registers of a device, or receive

information from hardware device when reading from registers of a

device.

Not all registers are used for communication with other devices. In

a CPU, most registers are used as high-speed storage for temporary

data. Other devices that a CPU can communicate always have a set

of registers for interfacing with the CPU.

Port is a specialized register in a hardware device used for communica- Port

tion with other devices. When data are written to a port, it causes a

hardware device to perform some operation according to values writ-

ten to the port. The different between a port and a register is that

port does not store data, but delegate data to some other circuit.

These two interfaces are extremely important, as they are the only inter-

faces for controlling hardware with software. Writing device drivers is es-

sentially learning the functionality of each register and how to use them

properly to control the device.

Memory is a storage device that stores information. Memory consists Memory

of many cells. Each cell is a byte with its address number, so a CPU can

[http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
[http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

computer architecture 43

use such address number to access an exact location in memory. Memory

is where software instructions (in the form of machine language) is stored

and retrieved to be executed by CPU; memory also stores data needed

by some software. Memory in a Von Neumann machine does not distin-

guish between which bytes are data and which bytes are software instruc-

tions. It’s up to the software to decide, and if somehow data bytes are

fetched and executed as instructions, CPU still does it if such bytes rep-

resents valid instructions, but will produce undesirable results. To a CPU,

there’s no code and data; both are merely different types of data for it

to act on: one tells it how to do something in a specific manner, and one

is necessary materials for it to carry such action.

The RAM is controlled by a device called a memory controller. Currently,

most processors have this device embedded, so the CPU has a dedicated

memory bus connecting the processor to the RAM. On older CPU3, how- 3 Prior to the CPU’s produced in 2009

ever, this device was located in a chip also known as MCH or Memory

Controller Hub. In this case, the CPU does not communicate directly

to the RAM, but to the MCH chip, and this chip then accesses the mem-

ory to read or write data. The first option provides better performance

since there is no middleman in the communications between the CPU

and the memory.

CPU

Memory

Control

Address

Data

System Bus

MCH

(a) Old CPU

CPU Memory

Control

Address

Data

System Bus

MCH

(b) Modern CPU

Figure 3.2.2: CPU - Memory

CommunicationAt the physical level, RAM is implemented as a grid of cells that each

contain a transistor and an electrical device called a capacitor , which stores capacitor

charge for short periods of time. The transistor controls access to the ca-

pacitor; when switched on, it allows a small charge to be read from or

written to the capacitor. The charge on the capacitor slowly dissipates,

44 operating systems: from 0 to 1

requiring the inclusion of a refresh circuit to periodically read values from

the cells and write them back after amplification from an external power

source.

Bus is a subsystem that transfers data between computer components Bus

or between computers. Physically, buses are just electrical wires that con-

nect all components together and each wire transfer a single big chunk

of data. The total number of wires is called bus width, and is dependent bus width

on how many wires a CPU can support. If a CPU can only accept 16

bits at a time, then the bus has 16 wires connecting from a component

to the CPU, which means the CPU can only retrieve 16 bits of data a

time.

3.2.3 Hardware

Hardware is a specific implementation of a computer. A line of proces-

sors implement the same instruction set architecture and use nearly iden-

tical organizations but differ in hardware implementation. For example,

the Core i7 family provides a model for desktop computers that is more

powerful but consumes more energy, while another model for laptops is

less performant but more energy efficient. To write software for a hard-

ware device, seldom we need to understand a hardware implementation

if documents are available. Computer organization and especially the in-

struction set architecture are more relevant to an operating system pro-

grammer. For that reason, the next chapter is devoted to study the x86

instruction set architecture in depth.

3.3 x86 architecture

A chipset is a chip with multiple functions. Historically, a chipset is ac-

tually a set of individual chips, and each is responsible for a function, e.g.

memory controller, graphic controllers, network controller, power controller,

etc. As hardware progressed, the set of chips were incorporated into a

single chip, thus more space, energy, and cost efficient. In a desktop com-

puter, various hardware devices are connected to each other through a

PCB called a motherboard. Each CPU needs a compatible motherboard

that can host it. Each motherboard is defined by its chipset model that

computer architecture 45

determine the environment that a CPU can control. This environment

typically consists of

✄ a slot or more for CPU

✄ a chipset of two chips which are the Northbridge and Southbridge chips

– Northbridge chip is responsible for the high-performance commu-

nication between CPU, main memory and the graphic card.

– Southbridge chip is responsible for the communication with I/O

devices and other devices that are not performance sensitive.

✄ slots for memory sticks

✄ a slot or more for graphic cards.

✄ generic slots for other devices, e.g. network card, sound card.

✄ ports for I/O devices, e.g. keyboard, mouse, USB.

To write a complete operating system, a programmer needs to under-

stand how to program these devices. After all, an operating system man-

ages hardware automatically to free application programs doing so. However,

of all the components, learning to program the CPU is the most impor-

tant, as it is the component present in any computer, regardless of what

type a computer is. For this reason, the primary focus of this book will

be on how to program an x86 CPU. Even solely focused on this device,

a reasonably good minimal operating system can be written. The reason

is that not all computers include all the devices as in a normal desktop

computer. For example, an embedded computer might only have a CPU

and limited internal memory, with pins for getting input and producing

an output; yet, operating systems were written for such devices.

However, learning how to program an x86 CPU is a daunting task,

with 3 primary manuals written for it: almost 500 pages for volume 1,

over 2000 pages for volume 2 and over 1000 pages for volume 3. It is an

impressive feat for a programmer to master every aspect of x86 CPU pro-

gramming.

46 operating systems: from 0 to 1

CPU

Flash ROM
(BIOS)

Super I/O
Serial Port

Parallel Port
Floppy Disk

Keyboard
Mouse

Northbridge

(memory

controller hub)

Southbridge
(I/O controller

hub)

IDE
SATA
USB

Ethernet
Audio Codec

CMOS Memory

Clock

GeneratorGraphics

card slot

High-speed

graphics bus

(AGP or PCI

Express)

Chipset

Front-side

bus

Memory
bus

Memory Slots

PCI

Bus

PCI Slots

LPC

Bus

Internal

Bus

Cables and

ports leading

off-board

Figure 3.3.1: Motherboard organi-

zation.

computer architecture 47

3.4 Intel Q35 Chipset

Q35 is an Intel chipset released September 2007. Q35 is used as an ex-

ample of a high-level computer organization because later we will use QEMU

to emulate a Q35 system, which is latest Intel system that QEMU can

emulate. Though released in 2007, Q35 is relatively modern to the cur-

rent hardware, and the knowledge can still be reused for current chipset

model. With a Q35 chipset, the emulated CPU is also relatively up-to-

date with features presented in current day CPUs so we can use the lat-

est software manuals from Intel.

Figure 3.3.1 on the facing page is a typical current-day motherboard

organization, in which Q35 shares similar organization.

3.5 x86 Execution Environment

An execution environment is an environment that provides the facility

to make code executable. The execution environment needs to address

the following question:

✄ Supported operations? data transfer, arithmetic, control, floating-

point, etc.

✄ Where are operands stored? registers, memory, stack, accu-

mulator

✄ How many explicit operands are there for each instruc-

tion? 0, 1, 2, or 3

✄ How is the operand location specified? register, immedi-

ate, indirect, etc.

✄ What type and size of operands are supported? byte,

int, float, double, string, vector, etc.

✄ etc.

For the remain of this chapter, please carry on the reading to chapter 3

in Intel Manual Volume 1, “Basic Execution Environment” .

4
x86 Assembly and C

In this chapter, we will explore assembly language, and how it connects

to C. But why should we do so? Isn’t it better to trust the compiler, plus

no one writes assembly anymore?

Not quite. Surely, the compiler at its current state of the art is trust-

worthy, and we do not need to write code in assembly, most of the time.

A compiler can generate code, but as mentioned previously, a high-level

language is a collection of patterns of a lower-level language. It does not

cover everything that a hardware platform provides. As a consequence,

not every assembly instruction can be generated by a compiler, so we still

need to write assembly code for these circumstances to access hardware-

specific features. Since hardware-specific features require writing assem-

bly code, debugging requires reading it. We might spend even more time

reading than writing. Working with low-level code that interacts directly

with hardware, assembly code is unavoidable. Also, understand how a

compiler generates assembly code could improve a programmer’s produc-

tivity. For example, if a job or school assignment requires us to write as-

sembly code, we can simply write it in C, then let gcc does the hard work-

ing of writing the assembly code for us. We merely collect the generated

assembly code, modify as needed and be done with the assignment.

We will learn objdump extensively, along with how to use Intel docu-

ments to aid in understanding x86 assembly code.

50 operating systems: from 0 to 1

4.1 objdump

objdump is a program that displays information about object files. It will

be handy later to debug incorrect layout from manual linking. Now, we

use objdump to examine how high level source code maps to assembly

code. For now, we ignore the output and learn how to use the command

first. Supposed that we have a executable binary named hello compiled

from a hello.c thath prints “Hello World’, it is simple to use objdump

:

$ objdump -d hello

-d option only displays assembled contents of executable sections. A

section is a block of memory that contains either program code or data.

A code section is executable by the CPU, while a data section is not

executable. Non-executable sections, such as .data and .bss (for

storing program data), debug sections, etc, are not displayed. We will

learn more about section when studying ELF binary file format in

chapter 5 on page 107 . On the other hand:

$ objdump -D hello

where -D option displays assembly contents of all sections. If -D, -d is

implicitly assumed. objdump is mostly used for inspecting assembly

code, so -d is the most useful and thus is set by default.

The output overruns the terminal screen. To make it easy for reading,

send all the output to less:

$ objdump -d hello | less

To intermix source code and assembly, the binary must be compiled

with -g option to include source code in it, then add -S option:

$ objdump -S hello | less

x86 assembly and c 51

The default syntax used by objdump is AT&T syntax. To change it

to the familiar Intel syntax:

$ objdump -M intel -D hello | less

When using -M option, option -D or -d must be explicitly supplied.

Next, we will use objdump to examine how compiled C data and code

are represented in machine code.

Finally, we will write a 32-bit kernel, therefore we will need to com-

pile a 32-bit binary and examine it in 32-bit mode:

$ objdump -M i386,intel -D hello | less

-M i386 tells objdump to display assembly content using 32-bit layout.

Knowing the difference between 32-bit and 64-bit is crucial for writing

kernel code. We will examine this matter later on when writing our

kernel.

4.2 Reading the output

At the start of the output displays the file format of the object file:

hello: file format elf64-x86-64

After the line is a series of disassembled sections:

Disassembly of section .interp:

...

Disassembly of section .note.ABI-tag:

...

Disassembly of section .note.gnu.build-id:

...

...

etc

52 operating systems: from 0 to 1

Finally, each disassembled section displays its actual content - which is

a sequence of assembly instructions - with the following format:

4004d6: 55 push rbp

✄ The first column is the address of an assembly instruction. In the above

example, the address is 0x4004d6.

✄ The second column is assembly instruction in raw hex values. In the

above example, the value is 0x55.

✄ The third column is the assembly instruction. Depends on the section,

the assembly instruction might be meaningful or meaningless. For ex-

ample, if the assembly instructions are in a .text section, then the

assembly instructions are actual program code. On the other hand, if

the assembly instructions are displayed in a .data section, then we

can safely ignore the displayed instructions. The reason is that objdump

doesn’t know which hex values are code and which are data, so it blindly

translates every hex values into assembly instructions. In the above

example, the assembly instruction is push %rbp.

✄ The optional fourth column is a comment - appears when there is a

reference to an address - to inform where the address originates. For

example, the comment in blue:

lea r12,[rip+0x2008ee] # 600e10 <__frame_dummy_init_array_entry>

is to inform that the referenced address from [rip+0x2008ee] is 0x600e10,

where the variable __frame_dummy_init_array_entry resides.

In a disassembled section, it may also contain labels. A label is a name

given to an assembly instruction. The label denotes the purpose of an

assembly block to a human reader, to make it easier to understand. For

example, .text section carries many of such labels to denote where code

in a program start; .text section below carries two functions: _start

and deregister_tm_clones. The _start function starts at address 4003e0,

is annotated to the left of the function name. Right below _start label

is also the instruction at address 4003e0. This whole thing means that

a label is simply a name of a memory address. The function deregister_tm_clones

also shares the same format as every function in the section.

x86 assembly and c 53

00000000004003e0 <_start>:

4003e0: 31 ed xor ebp,ebp

4003e2: 49 89 d1 mov r9,rdx

4003e5: 5e pop rsi

...more assembly code....

0000000000400410 <deregister_tm_clones>:

400410: b8 3f 10 60 00 mov eax,0x60103f

400415: 55 push rbp

400416: 48 2d 38 10 60 00 sub rax,0x601038

...more assembly code....

4.3 Intel manuals

The best way to understand and use assembly language properly is to

understand precisely the underlying computer architecture and what each

machine instruction does. To do so, the most reliable source is to refer

to documents provided by vendors. After all, hardware vendors are the

one who made their machines. To understand Intel’s instruction set, we

need the document “Intel 64 and IA-32 architectures software developer’s

manual combined volumes 2A, 2B, 2C, and 2D: Instruction set reference,

A-Z”. The document can be retrieved here: https://software.intel.

com/en-us/articles/intel-sdm.

✄ Chapter 1 provides brief information about the manual, and the com-

ment notations used in the book.

✄ Chapter 2 provides an in-depth explanation of the anatomy of an as-

sembly instruction, which we will investigate in the next section.

✄ Chapter 3 - 5 provide the details of every instruction of the x86_64

architecture.

✄ Chapter 6 provides information about safer mode extensions. We won’t

need to use this chapter.

The first volume “Intel® 64 and IA-32 Architectures Software Developer’s

Manual Volume 1: Basic Architecture” describes the basic architecture

and programming environment of Intel processors. In the book, Chapter

https://software.intel.com/en-us/articles/intel-sdm
https://software.intel.com/en-us/articles/intel-sdm

54 operating systems: from 0 to 1

5 gives the summary of all Intel instructions, by listing instructions into

different categories. We only need to learn general-purpose instructions

listed chapter 5.1 for our OS. Chapter 7 describes the purpose of each

category. Gradually, we will learn all of these instructions.

Exercise 4.3.1. Read section 1.3 in volume 2, exclude sections 1.3.5 and

1.3.7.

4.4 Experiment with assembly code

The subsequent sections examine the anatomy of an assembly instruc-

tion. To fully understand, it is necessary to write code and see the code

in its actual form displayed as hex numbers. For this purpose, we use nasm

assembler to write a few line of assembly code and see the generated code.

Example 4.4.1. Suppose we want to see the machine code generated

for this instruction:

jmp eax

Then, we use an editor e.g. Emacs, then create a new file, write the code

and save it in a file, e.g. test.asm. Then, in the terminal, run the com-

mand:

$ nasm -f bin test.asm -o test

-f option specifies the file format, e.g. ELF, of the final output file. But

in this case, the format is bin, which means this file is just a flat binary

output without any extra information. That is, the written assembly

code is translated to machine code as is, without the overhead of the

metadata from file format like ELF. Indeed, after compiling, we can

examine the output using this command:

$ hd test

x86 assembly and c 55

hd (short for hexdump) is a program that displays the content of a

file in hex format. And get the following output: Though its name is short for hex-

dump, hd can display in different

base, e.g. binary, other than hex.00000000 66 ff e0 |f..|

00000003

The file only consists of 3 bytes: 66 ff e0, which is equivalent to the in-

struction jmp eax.

Example 4.4.2. If we were to use elf as file format:

$ nasm -f elf test.asm -o test

It would be more challenging to learn and understand assembly

instructions with all the added noise1: 1 The output from hd.

00000000 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00 |.ELF............|

00000010 01 00 03 00 01 00 00 00 00 00 00 00 00 00 00 00 |................|

00000020 40 00 00 00 00 00 00 00 34 00 00 00 00 00 28 00 |@.......4.....(.|

00000030 05 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*

00000060 00 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00 |................|

00000070 06 00 00 00 00 00 00 00 10 01 00 00 02 00 00 00 |................|

00000080 00 00 00 00 00 00 00 00 10 00 00 00 00 00 00 00 |................|

00000090 07 00 00 00 03 00 00 00 00 00 00 00 00 00 00 00 |................|

000000a0 20 01 00 00 21 00 00 00 00 00 00 00 00 00 00 00 | ...!...........|

000000b0 01 00 00 00 00 00 00 00 11 00 00 00 02 00 00 00 |................|

000000c0 00 00 00 00 00 00 00 00 50 01 00 00 30 00 00 00 |........P...0...|

000000d0 04 00 00 00 03 00 00 00 04 00 00 00 10 00 00 00 |................|

000000e0 19 00 00 00 03 00 00 00 00 00 00 00 00 00 00 00 |................|

000000f0 80 01 00 00 0d 00 00 00 00 00 00 00 00 00 00 00 |................|

00000100 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

56 operating systems: from 0 to 1

00000110 ff e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

00000120 00 2e 74 65 78 74 00 2e 73 68 73 74 72 74 61 62 |..text..shstrtab|

00000130 00 2e 73 79 6d 74 61 62 00 2e 73 74 72 74 61 62 |..symtab..strtab|

00000140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|

*

00000160 01 00 00 00 00 00 00 00 00 00 00 00 04 00 f1 ff |................|

00000170 00 00 00 00 00 00 00 00 00 00 00 00 03 00 01 00 |................|

00000180 00 74 65 73 74 2e 61 73 6d 00 00 00 00 00 00 00 |.disp8-5.asm....|

00000190

Thus, it is better just to use flat binary format in this case, to experiment

instruction by instruction.

With such a simple workflow, we are ready to investigate the struc-

ture of every assembly instruction.

Note: Using the bin format puts nasm by default into 16-bit mode.

To enable 32-bit code to be generated, we must add this line at the be-

ginning of an nasm source file:

bits 32

4.5 Anatomy of an Assembly Instruction

Chapter 2 of the instruction reference manual provides an in-depth of

view of instruction format. But, the information is too much that it can

overwhelm beginners. This section provides an easier instruction before

reading the actual chapter in the manual.

Recall that an assembly instruction is simply a fixed-size series of bits.

The length of an instruction varies and depends on how complicated an

instruction is. What every instruction shares is a common format described

in the figure above that divides the bits of an instruction into smaller

parts that encode different types of information. These parts are:

Instruction Prefixes appears at the beginning of an instruction. Prefixes

are optional. A programmer can choose to use a prefix or not because

in practice, a so-called prefix is just another assembly instruction to

x86 assembly and c 57

Instruction

Prefixes
Opcode ModR/M SIB Displacement Immediate

Prefixes of

1 byte each

(optional)1,2

1-, 2-, or 3-byte

opcode

1 byte

(if required)

1 byte

(if required)

Address

displacement

of 1, 2 or 4

bytes or none3

Immediate

data of

1, 2 or 4

bytes or none3

Mod
Reg/

Opcode
R/M

7 6 5 3 2 0

Scale Index Base

7 6 5 3 2 0

1. The REX prefix is optional, but if used must be immediately before the opcode; see Section

2.2.1, “REX Prefixes” in the manual for additional information.

2. For VEX encoding information, see Section 2.3, “Intel® Advanced Vector Extensions (Intel®

AVX)” in the manual.

3. Some rare instructions can take an 8B immediate or 8B displacement.

Figure 4.5.1: Intel 64 and IA-32

Architectures Instruction Formatbe inserted before another assembly instruction that such prefix is ap-

plicable. Instructions with 2 or 3-bytes opcodes include the prefixes

by default.

Opcode is a unique number that identifies an instruction. Each opcode

is given an mnemonic name that is human readable, e.g. one of the

opcodes for instruction add is 04. When a CPU sees the number 04

in its instruction cache, it sees instruction add and execute accord-

ingly. Opcode can be 1,2 or 3 bytes long and includes an additional

3-bit field in the ModR/M byte when needed.

Example 4.5.1. This instruction:

jmp [0x1234]

generates the machine code:

ff 26 34 12

The very first byte, 0xff is the opcode, which is unique to jmp

instruction.

ModR/M specifies operands of an instruction. Operand can either be a

58 operating systems: from 0 to 1

register, a memory location or an immediate value. This component

of an instruction consists of 3 smaller parts:

✄ mod field, or modifier field, is combined with r/m field for a total of

5 bits of information to encode 32 possible values: 8 registers and

24 addressing modes.

✄ reg/opcode field encodes either a register operand, or extends the

Opcode field with 3 more bits.

✄ r/m field encodes either a register operand or can be combined with

mod field to encode an addressing mode.

The tables 4.5.1 and 4.5.2 list all possible 256 values of ModR/M byte

and how each value maps to an addressing mode and a register, in 16-

bit and 32-bit modes.

x86 assembly and c 59

r8(/r) AL CL DL BL AH CH DH BH

r16(/r) AX CX DX BX SP BP1 SI DI
r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
mm(/r) MM0 MM1 MM2 MM3 MM4 MM5 MM6 MM7
xmm(/r) XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7
(In decimal) /digit (Opcode) 0 1 2 3 4 5 6 7
(In binary) REG = 000 001 010 011 100 101 110 111

Effective Address Mod R/M Values of ModR/M Byte (In Hexadecimal)

[BX + SI] 00 000 00 08 10 18 20 28 30 38

[BX + DI] 001 01 09 11 19 21 29 31 39

[BP + SI] 010 02 0A 12 1A 22 2A 32 3A

[BP + DI] 011 03 0B 13 1B 23 2B 33 3B

[SI] 100 04 0C 14 1C 24 2C 34 3C

[DI] 101 05 0D 15 1D 25 2D 35 3D

disp162 110 06 0E 16 1E 26 2E 36 3E

[BX] 111 07 0F 17 1F 27 2F 37 3F

[BX + SI] + disp83 01 000 40 48 50 58 60 68 70 78

[BX + DI] + disp8 001 41 49 51 59 61 69 71 79

[BP + SI] + disp8 010 42 4A 52 5A 62 6A 72 7A

[BP + DI] + disp8 011 43 4B 53 5B 63 6B 73 7B

[SI] + disp8 100 44 4C 54 5C 64 6C 74 7C

[DI] + disp8 101 45 4D 55 5D 65 6D 75 7D

[BP] + disp8 110 46 4E 56 5E 66 6E 76 7E

[BX] + disp8 111 47 4F 57 5F 67 6F 77 7F

[BX + SI] + disp16 10 000 80 88 90 98 A0 A8 B0 B8

[BX + DI] + disp16 001 81 89 91 99 A1 A9 B1 B9

[BP + SI] + disp16 010 82 8A 92 9A A2 AA B2 BA

[BP + DI] + disp16 011 83 8B 93 9B A3 AB B3 BB

[SI] + disp16 100 84 8C 94 9C A4 AC B4 BC

[DI] + disp16 101 85 8D 95 9D A5 AD B5 BD

[BP] + disp16 110 86 8E 96 9E A6 AE B6 BE

[BX] + disp16 111 87 8F 97 9F A7 AF B7 BF

EAX/AX/AL/MM0/XMM0 11 000 C0 C8 D0 D8 E0 E8 F0 F8

ECX/CX/CL/MM1/XMM1 001 C1 C9 D1 D9 E1 E9 F1 F9

EDX/DX/DL/MM2/XMM2 010 C2 CA D2 DA E2 EA F2 FA

EBX/BX/BL/MM3/XMM3 011 C3 CB D3 DB E3 EB F3 FB

ESP/SP/AHMM4/XMM4 100 C4 CC D4 DC E4 EC F4 FC

EBP/BP/CH/MM5/XMM5 101 C5 CD D5 DD E5 ED F5 FD

ESI/SI/DH/MM6/XMM6 110 C6 CE D6 DE E6 EE F6 FE

EDI/DI/BH/MM7/XMM7 111 C7 CF D7 DF E7 EF F7 FF

1. The default segment register is SS for the effective addresses containing a BP index, DS for other effective
addresses.

2. The disp16 nomenclature denotes a 16-bit displacement that follows the ModR/M byte and that is added to the
index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte and that is sign-extended

and added to the index.

Table 4.5.1: 16-Bit Addressing

Forms with the ModR/M Byte

60 operating systems: from 0 to 1

r8(/r) AL CL DL BL AH CH DH BH
r16(/r) AX CX DX BX SP BP SI DI
r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
mm(/r) MM0 MM1 MM2 MM3 MM4 MM5 MM6 MM7
xmm(/r) XMM0 XMM1 XMM2 XMM3 XMM4 XMM5 XMM6 XMM7
(In decimal) /digit (Opcode) 0 1 2 3 4 5 6 7
(In binary) REG = 000 001 010 011 100 101 110 111

Effective Address Mod R/M Values of ModR/M Byte (In Hexadecimal)

[EAX] 00 000 00 08 10 18 20 28 30 38

[ECX] 001 01 09 11 19 21 29 31 39

[EDX] 010 02 0A 12 1A 22 2A 32 3A

[EBX] 011 03 0B 13 1B 23 2B 33 3B

[--][--]1 100 04 0C 14 1C 24 2C 34 3C

disp322 101 05 0D 15 1D 25 2D 35 3D

[ESI] 110 06 0E 16 1E 26 2E 36 3E

[EDI] 111 07 0F 17 1F 27 2F 37 3F

[EAX] + disp83 01 000 40 48 50 58 60 68 70 78

[ECX] + disp8 001 41 49 51 59 61 69 71 79

[EDX] + disp8 010 42 4A 52 5A 62 6A 72 7A

[EBX] + disp8 011 43 4B 53 5B 63 6B 73 7B

[--][--] + disp8 100 44 4C 54 5C 64 6C 74 7C

[EBP] + disp8 101 45 4D 55 5D 65 6D 75 7D

[ESI] + disp8 110 46 4E 56 5E 66 6E 76 7E

[EDI] + disp8 111 47 4F 57 5F 67 6F 77 7F

[EAX] + disp32 10 000 80 88 90 98 A0 A8 B0 B8

[ECX] + disp32 001 81 89 91 99 A1 A9 B1 B9

[EDX] + disp32 010 82 8A 92 9A A2 AA B2 BA

[EBX] + disp32 011 83 8B 93 9B A3 AB B3 BB

[--][--] + disp32 100 84 8C 94 9C A4 AC B4 BC

[EBP] + disp32 101 85 8D 95 9D A5 AD B5 BD

[ESI] + disp32 110 86 8E 96 9E A6 AE B6 BE

[EDI] + disp32 111 87 8F 97 9F A7 AF B7 BF

EAX/AX/AL/MM0/XMM0 11 000 C0 C8 D0 D8 E0 E8 F0 F8

ECX/CX/CL/MM/XMM1 001 C1 C9 D1 D9 E1 E9 F1 F9

EDX/DX/DL/MM2/XMM2 010 C2 CA D2 DA E2 EA F2 FA

EBX/BX/BL/MM3/XMM3 011 C3 CB D3 DB E3 EB F3 FB

ESP/SP/AH/MM4/XMM4 100 C4 CC D4 DC E4 EC F4 FC

EBP/BP/CH/MM5/XMM5 101 C5 CD D5 DD E5 ED F5 FD

ESI/SI/DH/MM6/XMM6 110 C6 CE D6 DE E6 EE F6 FE

EDI/DI/BH/MM7/XMM7 111 C7 CF D7 DF E7 EF F7 FF

1. The [--][--] nomenclature means a SIB follows the ModR/M byte.

2. The disp32 nomenclature denotes a 32-bit displacement that follows the ModR/M byte (or the SIB byte if one is

present) and that is added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement that follows the ModR/M byte (or the SIB byte if one is

present) and that is sign-extended and added to the index.

Table 4.5.2: 32-Bit Addressing

Forms with the ModR/M Byte

x86 assembly and c 61

How to read the table:

In an instruction, next to the opcode is a ModR/M byte. Then, look up

the byte value in this table to get the corresponding operands in the row

and column.

Example 4.5.2. An instruction uses this addressing mode:

jmp [0x1234]

Then, the machine code is:

ff 26 34 12

0xff is the opcode. Next to it, 0x26 is the ModR/M byte. Look up in

the 16-bit table , the first operand is in the row, equivalent to a disp16, Remember, using bin format

generates 16-bit code by defaultwhich means a 16-bit offset. Since the instruction does not have a

second operand, the column can be ignored.

Example 4.5.3. An instruction uses this addressing mode:

add eax, ecx

Then the machine code is:

66 01 c8

The interesting feature of this instruction is that 0x66 is the not the

opcode. 0x01 is the opcode. So then, what is 0x66? Recall that for

every assembly instruction, there will be an optional instruction prefix,

and that is what 0x66 is. According to the Intel manual, vol 1:

The operand-size override prefix allows a program to switch between 16-

and 32-bit operand sizes. Either size can be the default; use of the pre-

fix selects the non-default size.

If the CPU is switched to 32-bit mode, when it runs an instruction with

0x66 prefix, the instruction operands are limited to only 16-bit width.

62 operating systems: from 0 to 1

On the other hand, if the CPU is in 16-bit environment, as a result, 32-

bit is considered non-standard and as such, instruction operands are tem-

porary upgraded to 32-bit width while the instructions without the pre-

fix use 16-bit operands.

Next to it, c8 is the ModR/M byte. Look up in the 16-bit table at c8

value, the row tells the first operand is ax , the column tells the second Remember, using bin format gen-

erates 16-bit code by defaultoperand is cx; the column can’t be ignored as the second operand is in

the instruction.

Why is the first operand in the row and the second in a column? Let’s

break down the ModR/M byte, with an example value c8, into bits:

mod reg/opcode r/m

1 1 0 0 1 0 0 0

The mod field divides addressing modes into 4 different categories. Further

combines with the r/m field, exactly one addressing mode can be selected

from one of the 24 rows. If an instruction only requires one operand, then

the column can be ignored. Then the reg/opcode field finally provides

an extra register or different variants, if an instruction requires one.

SIB is Scale-I ndex-Base byte. This byte encodes ways to calculate the

memory position into an element of an array. SIB is the name that is

based on this formula for calculating an effective address:

Effective address = scale ∗ index + base

✄ Index is an offset into an array.

✄ Scale is a factor of Index. Scale is one of the values 1, 2, 4 or 8;

any other value is invalid. To scale with values other than 2, 4 or

8, the scale factor must be set to 1, and the offset must be calculated

manually. For example, if we want to get the address of the nth el-

ement in an array and each element is 12-bytes long. Because each

element is 12-bytes long instead of 1, 2, 4 or 8, Scale is set to 1 and

a compiler needs to calculate the offset:

x86 assembly and c 63

Effective address = 1 ∗ (12 ∗ n) + base

Why do we bother with SIB when we can manually calculate the

offset? The answer is that in the above scenario, an additional mul

instruction must be executed to get the offset, and the mul instruc-

tion consumes more than 1 byte, while the SIB only consumes 1

byte. More importantly, if the element is repeatedly accessed many

times in a loop, e.g. millions of times, then an extra mul instruc-

tion can detriment the performance as the CPU must spend time

executing millions of these additional mul instructions.

The values 2, 4 and 8 are not random chosen. They map to 16-bit

(or 2 bytes), 32-bit (or 4 bytes) and 64-bit (or 8 bytes) numbers that

are often used for intensive numeric calculations.

✄ Base is the starting address.

Below is the table listing all 256 values of SIB byte, with the lookup

rule similar to ModR/M tables:

Example 4.5.4. This instruction:

jmp [eax*2 + ebx]

generates the following code:

00000000 67 ff 24 43

First of all, the first byte, 0x67 is not an opcode but a prefix. The num-

ber is a predefined prefix for address-size override prefix. After the pre-

fix, comes the opcode 0xff and the ModR/M byte 0x24. The value from

ModR/M suggests that there exists a SIB byte that follows. The SIB byte

is 0x43.

Look up in the SIB table, the row tells that eax is scaled by 2, and the

column tells that the base to be added is in ebx.

Displacement is the offset from the start of the base index.

Example 4.5.5. This instruction:

jmp [0x1234]

64 operating systems: from 0 to 1

r32(/r) EAX ECX EDX EBX ESP EBP ESI EDI
(In decimal) /digit (Opcode) 0 1 2 3 4 5 6 7
(In binary) REG = 000 001 010 011 100 101 110 111

Effective Address SS R/M Values of SIB Byte (In Hexadecimal)

[EAX] 00 000 00 01 02 03 04 05 06 07
[ECX] 001 08 09 0A 0B 0C 0D 0E 0F
[EDX] 010 10 11 12 13 14 15 16 17
[EBX] 011 18 19 1A 1B 1C 1D 1E 1F
none 100 20 21 22 23 24 25 26 27
[EBP] 101 28 29 2A 2B 2C 2D 2E 2F
[ESI] 110 30 31 32 33 34 35 36 37
[EDI] 111 38 39 3A 3B 3C 3D 3E 3F
[EAX*2] 01 000 40 41 42 43 44 45 46 47
[ECX*2] 001 48 49 4A 4B 4C 4D 4E 4F
[EDX*2] 010 50 51 52 53 54 55 56 57
[EBX*2] 011 58 59 5A 5B 5C 5D 5E 5F
none 100 60 61 62 63 64 65 66 67
[EBP*2] 101 68 69 6A 6B 6C 6D 6E 6F
[ESI*2] 110 70 71 72 73 74 75 76 77
[EDI*2] 111 78 79 7A 7B 7C 7D 7E 7F
[EAX*4] 10 000 80 81 82 83 84 85 86 87
[ECX*4] 001 88 89 8A 8B 8C 8D 8E 8F
[EDX*4] 010 90 91 92 93 94 95 96 97
[EBX*4] 011 98 99 9A 9B 9C 9D 9E 9F
none 100 A0 A1 A2 A3 A4 A5 A6 A7
[EBP*4] 101 A8 A9 AA AB AC AD AE AF
[ESI*4] 110 B0 B1 B2 B3 B4 B5 B6 B7
[EDI*4] 111 B8 B9 BA BB BC BD BE BF
[EAX*8] 11 000 C0 C1 C2 C3 C4 C5 C6 C7
[ECX*8] 001 C8 C9 CA CB CC CD CE CF
[EDX*8] 010 D0 D1 D2 D3 D4 D5 D6 D7
[EBX*8] 011 D8 D9 DA DB DC DD DE DF
none 100 E0 E1 E2 E3 E4 E5 E6 E7
[EBP*8] 101 E8 E9 EA EB EC ED EE EF
[ESI*8] 110 F0 F1 F2 F3 F4 F5 F6 F7
[EDI*8] 111 F8 F9 FA FB FC FD FE FF

1. The [*] nomenclature means a disp32 with no base if the MOD is 00B. Otherwise, [*] means disp8 or disp32 +
[EBP]. This provides the following address modes:

MOD bits Effective Address

00 [scaled index] + disp32

01 [scaled index] + disp8 + [EBP]

10 [scaled index] + disp32 + [EBP]
Table 4.5.3: 32-Bit Addressing

Forms with the SIB Byte

x86 assembly and c 65

generates machine code is:

ff 26 34 12

0x1234, which is generated as 34 12 in raw machine code, is the dis-

placement and stands right next to 0x26, which is the ModR/M byte.

Example 4.5.6. This instruction:

jmp [eax * 4 + 0x1234]

generates the machine code:

67 ff 24 85 34 12 00 00

✄ 0x67 is an address-size override prefix. Its meaning is that if an in-

struction runs a default address size e.g. 16-bit, the use of prefix

enables the instruction to use non-default address size, e.g. 32-bit

or 64-bit. Since the binary is supposed to be 16-bit, 0x67 changes

the instruction to 32-bit mode.

✄ 0xff is the opcode.

✄ 0x24 is the ModR/M byte. According to table 4.5.2, the value sug-

gests that a SIB byte follows, .

✄ 0x85 is the SIB byte. According to table 4.5.3, the byte 0x85 can

be destructured into bits as follow:

SS R/M REG

1 0 0 0 0 1 0 1

The above values are obtained through the columns SS, R/M and

finally the 8 column of REG respectively. The total bits combined

into the value 10000101, which is 0x85 in hex value. By default,

if a register after the displacement is not specified, it is set to EBP

register, and thus the 6th column (bit pattern 101) is always cho-

sen. If the example uses another register:

Example 4.5.7. For example:

jmp [eax * 4 + eax + esi]

the SIB byte becomes 0x86 instead of , which is in the 7th column.

Try to verify with the table 4.5.3 again.

66 operating systems: from 0 to 1

✄ 34 12 00 00 is the displacement. As can be seen, the displacement

is 4 bytes in size, which is equivalent to 32-bit, due to address-size

override prefix.

Immediate When an instruction accepts a fixed value, e.g. 0x1234, as

an operand, this optional field holds the value. Note that this field is

different from displacement: the value is not necessary used an offset,

but an arbitrary value of anything.

Example 4.5.8. This instruction:

mov eax, 0x1234

generates the code:

66 b8 34 12 00 00

✄ 0x66 is operand-sized override prefix. Similar to address-size over-

ride prefix, this prefix enables operand-size to be non-default.

✄ 0xb8 is one of the opcodes for mov instruction.

✄ 0x1234 is the value to be stored in register eax. It is just a value

for storing directly into a register, and nothing more. On the other

hand, displacement value is an offset for some address calculation.

Exercise 4.5.1. Read section 2.1 in Volume 2 for even more details.

Exercise 4.5.2. Skim through section 5.1 in volume 1. Read chapter

7 in volume 1. If there are terminologies that you don’t understand e.g.

segmentation, don’t worry as the terms will be explained in later chap-

ters or ignored.

4.6 Understand an instruction in detail

In the instruction reference manual (Volume 2), from chapter 3 onward,

every x86 instruction is documented in detail. Whenever the precise be-

havior of an instruction is needed, we always consult this document first.

However, before using the document, we must know the writing conven-

tions first. Every instruction has the following common structure for or-

ganizing information:

x86 assembly and c 67

Opcode table lists all possible opcodes of an assembly instruction.

Each table contains the following fields, and can have one or more rows:

Opcode Instruction Op/En 64/32-bit Mode CPUID

Feature flag

Description

Opcode shows a unique hexadecimal number assigned to an instruc-

tion. There can be more than one opcode for an instruction, each

encodes a variant of the instruction. For example, one variant re-

quires one operand, but another requires two. In this column, there

can be other notations aside from hexadecimal numbers. For exam-

ple, /r indicates that the ModR/M byte of the instruction contains

a reg operand and an r/m operand. The detail listing is in section

3.1.1.1 and 3.1.1.2 in the Intel’s manual, volume 2.

Instruction gives the syntax of the assembly instruction that a pro-

grammer can use for writing code. Aside from the mnemonic repre-

sentation of the opcode, e.g. jmp, other symbols represent operands

with specific properties in the instruction. For example, rel8 rep-

resents a relative address from 128 bytes before the end of the in-

struction to 127 bytes after the end of instruction; similarly rel16/rel32

also represents relative addresses, but with the operand size of 16/32-

bit instead of 8-bit like rel8. For a detailed listing, please refer to

section 3.1.1.3 of volume 2.

Op/En is short for Operand/Encoding. An operand encoding speci-

fies how a ModR/M byte encodes the operands that an instruction

requires. If a variant of an instruction requires operands, then an

additional table named “Instruction Operand Encoding” is added

for explaining the operand encoding, with the following structure:

Op/En Operand 1 Operand 2 Operand 3 Operand 4

Most instructions require one to two operands. We make use of these

instructions for our OS and skip the instructions that require three

or four operands. The operands can be readable or writable or both.

The symbol (r) denotes a readable operand, and (w) denotes a writable

operand. For example, when Operand 1 field contains ModRM:r/m

68 operating systems: from 0 to 1

(r), it means the first operand is encoded in r/m field of ModR/M byte,

and is only readable.

64/32-bit mode indicates whether the opcode sequence is supported

in a 64-bit mode and possibly 32-bit mode.

CPUID Feature Flag indicates a particular CPU feature must be

available to enable the instruction. An instruction is invalid if

a CPU does not support the required feature. In Linux, the command:

cat /proc/cpuinfo

lists the information of available

CPUs and its features in flags

field.

Compat/Leg Mode Many instructions do not have this field, but in-

stead is replaced with Compat/Leg Mode, which stands for Compatibility

or Legacy Mode. This mode enables 64-bit variants of instruc-

tions to run normally in 16 or 32-bit mode.

Table 4.6.1: Notations in

Compat/Leg Mode

Notation Description

Valid Supported

I Not supported

N.E. The 64-bit opcode cannot be

encoded as it overlaps with

existing 32-bit opcode.

Description briefly explains the variant of an instruction in the cur-

rent row.

Description specifies the purpose of the instructions and how an in-

struction works in detail.

Operation is pseudo-code that implements an instruction. If a descrip-

tion is vague, this section is the next best source to understand an as-

sembly instruction. The syntax is described in section 3.1.1.9 in vol-

ume 2.

Flags affected lists the possible changes to system flags in EFLAGS reg-

ister.

Exceptions list the possible errors that can occur when an instruction

cannot run correctly. This section is valuable for OS debugging. Exceptions

fall into one of the following categories:

✄ Protected Mode Exceptions

✄ Real-Address Mode Exception

✄ Virtual-8086 Mode Exception

✄ Floating-Point Exception

✄ SIMD Floating-Point Exception

✄ Compatibility Mode Exception

x86 assembly and c 69

✄ 64-bit Mode Exception

For our OS, we only use Protected Mode Exceptions and Real-Address Mode

Exceptions. The details are in section 3.1.1.13 and 3.1.1.14, volume 2.

4.7 Example: jmp instruction

Let’s look at our good old jmp instruction. First, the opcode table:

Opcode Instruction Op/

En

64-bit

Mode

Compat/Leg

Mode

Description

EB cb JMP rel8 D Valid Valid Jump short, RIP = RIP + 8-bit displacement sign

extended to 64-bits

E9 cw JMP rel16 D N.S. Valid Jump near, relative, displacement relative to next

instruction. Not supported in 64-bit mode.

E9 cd JMP rel32 D Valid Valid Jump near, relative, RIP = RIP + 32-bit displacement

sign extended to 64-bits

FF /4 JMP r/m16 M N.S. Valid Jump near, absolute indirect, address = zero- extended

r/m16. Not supported in 64-bit mode

FF /4 JMP r/m32 M N.S. Valid Jump near, absolute indirect, address given in r/m32.

Not supported in 64-bit mode

FF /4 JMP r/m64 M Valid N.E Jump near, absolute indirect, RIP = 64-Bit offset from

register or memory

EA cd JMP ptr16:16 D Inv. Valid Jump far, absolute, address given in operand

EA cp JMP ptr16:32 D Inv. Valid Jump far, absolute, address given in operand

FF /5 JMP m16:16 D Valid Valid Jump far, absolute indirect, address given in m16:16

FF /5 JMP m16:32 D Valid Valid Jump far, absolute indirect, address given in m16:32

REX.W + FF /5 JMP m16:64 D Valid N.E. Jump far, absolute indirect, address given in m16:64

Table 4.7.1: jmp opcode table
Each row lists a variant of jmp instruction. The first column has the

opcode EB cb, with an equivalent symbolic form jmp rel8. Here, rel8

means 128 bytes offset, counting from the end of the instruction. The

end of an instruction is the next byte after the last byte of an instruc-

tion. To make it more concrete, consider this assembly code:

main:

jmp main

jmp main2

jmp main

70 operating systems: from 0 to 1

main2:

jmp 0x1234

generates the machine code:

main main2

↓ ↓

Address 00 01 02 03 04 05 06 07 08 09

Opcode eb fe eb 02 eb fa e9 2b 12 00

Table 4.7.2: Memory address of

each opcode

The first jmp main instruction is generated into eb fe and occupies

the addresses 00 and 01; the end of the first jmp main is at address 02,

past the last byte of the first jmp main which is located at the address

01. The value fe is equivalent to -2, since eb opcode uses only a byte

(8 bits) for relative addressing. The offset is -2, and the end address of

the first jmp main is 02, adding them together we get 00 which is the

destination address for jumping to.

Similarly, the jmp main2 instruction is generated into eb 02, which

means the offset is +2; the end address of jmp main2 is at 04, and

adding together with the offset we get the destination address is 06,

which is the start instruction marked by the label main2.

The same rule can be applied to rel16 and rel32 encoding. In the

example code, jmp 0x1234 uses rel16 (which means 2-byte offset) and

is generated into e9 2b 12. As the table 4.7.1 shows, e9 opcode takes a

cw operand, which is a 2-byte offset (section 3.1.1.1, volume 2). Notice

one strange issue here: the offset value is 2b 12, while it is supposed to

be 34 12. There is nothing wrong. Remember, rel8/rel16/rel32 is an

offset, not an address. A offset is a distance from a point. Since no label

is given but a number, the offset is calculated from the start of a program.

In this case, the start of the program is the address 00, the end of jmp

0x1234 is the address 092, so the offset is calculated as 0x1234 - 0x9 2 which means 9 bytes was consumed,
starting from address 0.

= 0x122b. That solved the mystery!

The jmp instructions with opcode FF /4 enable jumping to a near,

absolute address stored in a general-purpose register or a memory loca-

tion; or in short, as written in the description, absolute indirect. The sym-

bol /4 is the column with digit 4 in table 4.5.13. For example: 3 The column with the following fields:
AH

SP

ESP

M45

XMM4

4

100

x86 assembly and c 71

jmp [0x1234]

is generated into:

ff 26 34 12

Since this is 16-bit code, we use table 4.5.1. Looking up the table,

ModR/M value 26 means disp16, which means a 16-bit offset from the

start of current index4, which is the base address stored in DS register. 4 Look at the note under the table.

In this case, jmp [0x1234] is implicitly understood as jmp

[ds:0x1234], which means the destination address is 0x1234 bytes

away from the start of a data segment.

The jmp instruction with opcode FF /5 enables jumping to a far, ab-

solute address stored in a memory location (as opposed to /4, which means

stored in a register); in short, a far pointer. To generate such instruction,

the keyword far is needed to tell nasm we are using a far pointer:

jmp far [eax]

is generated into:

67 ff 28

Since 28 is the value in the 5th column of the table 4.5.25 that refers 5 Remember the prefix 67 indicates the

instruction is used as 32-bit. The pre-
fix only added if the default environ-
ment is assumed as 16-bit when gener-

ating code by an assembler.

to [eax], we successfully generate an instruction for a far jump. After

CPU runs the instruction, the program counter eip and code segment

register cs is set to the memory address, stored in the memory location

that eax points to, and CPU starts fetching code from the new address

in cs and eip. To make it more concrete, here is an example:

eax

0x00001000

00 01 02 0403 05 06 07 0908 0A 0B 0C 0E0D 0F

1000
cs

eip

0x00001234

0x00005678 jmp far [eax]

567800 001234

Figure 4.7.1: far jmp example,

with the destination memory stored

at address 0x1000, which is stored

in eax to be dereferenced. After

CPU executes the instruction, code

segment register cs and instruction

pointer eip

The far address consumes total of 6 bytes in size for a 16-bit segment

and 32-bit address, which is encoded as m16:32 from the table 4.7.1. As

72 operating systems: from 0 to 1

can be seen from the figure above, the blue part is a segment address,

loaded into cs register with the value 0x5678; the red part is the

memory address within that segment, loaded into eip register with the

value 0x1234 and start executing from there.

Finally, the jmp instructions with EA opcode jump to a direct abso-

lute address. For example, the instruction:

jmp 0x5678:0x1234

is generated into:

ea 34 12 78 56

The address 0x5678:0x1234 is right next to the opcode, unlike FF /5

instruction that needs an indirect address in eax register.

We skip the jump instruction with REX prefix, as it is a 64-bit instruc-

tion.

4.8 Examine compiled data

In this section, we will examine how data definition in C maps to its as-

sembly form. The generated code is extracted from .bss section. That

means, the assembly code displayed has no6, aside from showing that such 6 Actually, code is just a type of data,

and is often used for hijacking into a
running program to execute such code.
However, we have no use for it in this

book.

a value has an equivalent assembly opcode that represents an instruc-

tion.

The code-assembly listing is not random, but is based on Chapter 4

of Volume 1, “Data Type”. The chapter lists fundamental data types that

x86 hardware operates on, and through learning the generated assembly

code, it can be understood how close C maps its syntax to hardware, and

then a programmer can see why C is appropriate for OS programming.

The specific objdump command used in this section will be:

$ objdump -z -M intel -S -D -j .data -j .bss <object

file> | less

Note: zero bytes are hidden with three dot symbols: ... To show all

the zero bytes, we add -z option.

x86 assembly and c 73

4.8.1 Fundamental data types

The most basic types that x86 architecture works with are based on sizes,

each is twice as large as the previous one: 1 byte (8 bits), 2 bytes (16 bits),

4 bytes (32 bits), 8 bytes (64 bits) and 16 bytes (128 bits).

Byte Unsigned Integer

07

Word Unsigned Integer

015

Doubleword Unsigned Integer

031

Byte Signed Integer

07

Word Signed Integer

015

Doubleword Signed Integer

031

Quadword Unsigned Integer

063

Quadword Signed Integer

063

Sign

Sign

Sign

Sign

Figure 4.8.1: Fundamental Data

Types

These types are simplest: they are just chunks of memory at different

sizes that enables CPU to access memory efficiently. From the manual,

section 4.1.1, volume 1:

Words, doublewords, and quadwords do not need to be aligned in mem-

ory on natural boundaries. The natural boundaries for words, double words,

and quadwords are even-numbered addresses, addresses evenly divisible

by four, and addresses evenly divisible by eight, respectively. However,

to improve the performance of programs, data structures (especially stacks)

should be aligned on natural boundaries whenever possible. The reason

for this is that the processor requires two memory accesses to make an

unaligned memory access; aligned accesses require only one memory ac-

cess. A word or doubleword operand that crosses a 4-byte boundary or

a quadword operand that crosses an 8-byte boundary is considered un-

aligned and requires two separate memory bus cycles for access.

Some instructions that operate on double quadwords require memory

operands to be aligned on a natural boundary. These instructions gen-

erate a general-protection exception (#GP) if an unaligned operand is spec-

ified. A natural boundary for a double quadword is any address evenly

divisible by 16. Other instructions that operate on double quadwords

74 operating systems: from 0 to 1

permit unaligned access (without generating a general-protection excep-

tion). However, additional memory bus cycles are required to access un-

aligned data from memory.

In C, the following primitive types (must include stdint.h) maps to the

fundamental types:

Source
#include <stdint.h>

uint8_t byte = 0x12;

uint16_t word = 0x1234;

uint32_t dword = 0x12345678;

uint64_t qword = 0x123456789abcdef;

unsigned __int128 dqword1 = (__int128) 0x123456789abcdef;

unsigned __int128 dqword2 = (__int128) 0x123456789abcdef << 64;

int main(int argc, char *argv[]) {

return 0;

}

Assembly 0804a018 <byte>:

804a018: 12 00 adc al,BYTE PTR [eax]

0804a01a <word>:

804a01a: 34 12 xor al,0x12

0804a01c <dword>:

804a01c: 78 56 js 804a074 <_end+0x48>

804a01e: 34 12 xor al,0x12

0804a020 <qword>:

804a020: ef out dx,eax

804a021: cd ab int 0xab

804a023: 89 67 45 mov DWORD PTR [edi+0x45],esp

804a026: 23 01 and eax,DWORD PTR [ecx]

0000000000601040 <dqword1>:

601040: ef out dx,eax

601041: cd ab int 0xab

601043: 89 67 45 mov DWORD PTR [rdi+0x45],esp

601046: 23 01 and eax,DWORD PTR [rcx]

x86 assembly and c 75

601048: 00 00 add BYTE PTR [rax],al

60104a: 00 00 add BYTE PTR [rax],al

60104c: 00 00 add BYTE PTR [rax],al

60104e: 00 00 add BYTE PTR [rax],al

0000000000601050 <dqword2>:

601050: 00 00 add BYTE PTR [rax],al

601052: 00 00 add BYTE PTR [rax],al

601054: 00 00 add BYTE PTR [rax],al

601056: 00 00 add BYTE PTR [rax],al

601058: ef out dx,eax

601059: cd ab int 0xab

60105b: 89 67 45 mov DWORD PTR [rdi+0x45],esp

60105e: 23 01 and eax,DWORD PTR [rcx]

gcc generates the variables byte, word, dword, qword, dqword1,

dword2, written earlier, with their respective values highlighted in the

same colors; variables of the same type are also highlighted in the

same color. Since this is data section, the assembly listing carries no

meaning. When byte is declared with uint8_t, gcc guarantees that the

size of byte is always 1 byte. But, an alert reader might notice the 00

value next to the 12 value in the byte variable. This is normal, as gcc

avoid memory misalignment by adding extra padding bytes. To make it

easier to see, we look at readelf output of .data section:

$ readelf -x .data hello

the output is (the colors mark which values belong to which variables):

Hex dump of section ’.data’:

0x00601020 00000000 00000000 00000000 00000000

0x00601030 12003412 78563412 efcdab89 67452301 ..4.xV4.....gE#.

0x00601040 efcdab89 67452301 00000000 00000000gE#.........

0x00601050 00000000 00000000 efcdab89 67452301gE#.

As can be seen in the readelf output, variables are allocated storage

space according to their types and in the declared order by the program-

76 operating systems: from 0 to 1

mer (the colors correspond the the variables). Intel is a little-endian ma-

chine, which means smaller addresses hold bytes with smaller values, larger

addresses hold byte with larger values. For example, 0x1234 is displayed

as 34 12; that is, 34 appears first at address 0x601032, then 12 at 0x601033.

The decimal values within a byte is unchanged, so we see 34 12 instead

of 43 21. This is quite confusing at first, but you will get used to it soon.

Also, isn’t it redundant when char type is always 1 byte already and

why do we bother adding int8_t? The truth is, char type is not guar-

anteed to be 1 byte in size, but only the minimum of 1 byte in size. In

C, a byte is defined to be the size of a char, and a char is defined to be small-

est addressable unit of the underlying hardware platform. There are hard-

ware devices that the smallest addressable unit is 16 bit or even bigger,

which means char is 2 bytes in size and a “byte” in such platforms is ac-

tually 2 units of 8-bit bytes.

Not all architectures support the double quadword type. Still, gcc does

provide support for 128-bit number and generate code when a CPU sup-

ports it (that is, a CPU must be 64-bit). By specifying a variable of type

__int128 or unsigned __int128, we get a 128-bit variable. If a CPU does

not support 64-bit mode, gcc throws an error.

The data types in C, which represents the fundamental data types,

are also called unsigned numbers. Other than numerical calculations, un-

signed numbers are used as a tool for structuring data in memory; we

will see this application later on the book, when various data structures

are organized into bit groups.

In all the examples above, when the value of a variable with smaller

size is assigned to a variable with larger size, the value easily fits in the

larger variable. On the contrary, the value of a variable with larger size

is assigned to a variable with smaller size, two scenarios occur:

✄ The value is greater than the maximum value of the variable with smaller

layout, so it needs truncating to the size of the variable and causing

incorrect value.

✄ The value is smaller than the maximum value of the variable with a

smaller layout, so it fits the variable.

x86 assembly and c 77

However, the value might be unknown until runtime and can be value, it

is best not to let such implicit conversion handled by the compiler, but

explicitly controlled by a programmer. Otherwise it will cause subtle bugs

that are hard to catch as the erroneous values might rarely be used to

reproduce the bugs.

4.8.2 Pointer Data Types

Pointers are variables that hold memory addresses. x86 works with 2 types

of pointers:

Near pointer is a 16-bit/32-bit offset within a segment, also called effec-

tive address.

Far pointer is also an offset like a near pointer, but with an explicit seg-

ment selector.

Near Pointer

031

3247 031

Far Pointer or Logical Address

Segment Selector Offset

Offset

Figure 4.8.2: Numeric Data

Types

C only provides support for near pointers, since far pointers are plat-

form dependent, such as x86. In application code, you can assume that

the address of current segment starts at 0, so the offset is actually any

memory address from 0 to the maximum address.

Source
#include <stdint.h>

int8_t i = 0;

int8_t *p1 = (int8_t *) 0x1234;

int8_t *p2 = &i;

78 operating systems: from 0 to 1

int main(int argc, char *argv[]) {

return 0;

}

Assembly 0000000000601030 <p1>:

601030: 34 12 xor al,0x12

601032: 00 00 add BYTE PTR [rax],al

601034: 00 00 add BYTE PTR [rax],al

601036: 00 00 add BYTE PTR [rax],al

0000000000601038 <p2>:

601038: 41 10 60 00 adc BYTE PTR [r8+0x0],spl

60103c: 00 00 add BYTE PTR [rax],al

60103e: 00 00 add BYTE PTR [rax],al

Disassembly of section .bss:

0000000000601040 <__bss_start>:

601040: 00 00 add BYTE PTR [rax],al

0000000000601041 <i>:

601041: 00 00 add BYTE PTR [rax],al

601043: 00 00 add BYTE PTR [rax],al

601045: 00 00 add BYTE PTR [rax],al

601047: 00 .byte 0x0

The pointer p1 holds a direct address with the value 0x1234. The pointer

p2 holds the address of the variable i. Note that both the pointers are

8 bytes in size (or 4-byte, if 32-bit).

4.8.3 Bit Field Data Type

A bit field is a contiguous sequence of bits. Bit fields allow data structur-

ing at bit level. For example, a 32-bit data can hold multiple bit fields

that represent multiples different pieces of information, such as bits 0-4

specifies the size of a data structure, bit 5-6 specifies permissions and so

on. Data structures at the bit level are common for low-level program-

ming.

Source
struct bit_field {

int data1:8;

x86 assembly and c 79

.

Least

Significant

Bit

Bit Field

Field Length

Figure 4.8.3: Numeric Data

Types (Source: Figure 4-6, Volume

1

int data2:8;

int data3:8;

int data4:8;

};

struct bit_field2 {

int data1:8;

int data2:8;

int data3:8;

int data4:8;

char data5:4;

};

struct normal_struct {

int data1;

int data2;

int data3;

int data4;

};

struct normal_struct ns = {

.data1 = 0x12345678,

.data2 = 0x9abcdef0,

.data3 = 0x12345678,

.data4 = 0x9abcdef0,

};

80 operating systems: from 0 to 1

int i = 0x12345678;

struct bit_field bf = {

.data1 = 0x12,

.data2 = 0x34,

.data3 = 0x56,

.data4 = 0x78

};

struct bit_field2 bf2 = {

.data1 = 0x12,

.data2 = 0x34,

.data3 = 0x56,

.data4 = 0x78,

.data5 = 0xf

};

int main(int argc, char *argv[]) {

return 0;

}

Assembly Each variable and its value are given a unique color in the as-

sembly listing below:

0804a018 <ns>:

804a018: 78 56 js 804a070 <_end+0x34>

804a01a: 34 12 xor al,0x12

804a01c: f0 de bc 9a 78 56 34 lock fidivr WORD PTR [edx+ebx*4+0x12345678]

804a023: 12

804a024: f0 de bc 9a 78 56 34 lock fidivr WORD PTR [edx+ebx*4+0x12345678]

804a02b: 12

0804a028 <i>:

804a028: 78 56 js 804a080 <_end+0x44>

804a02a: 34 12 xor al,0x12

0804a02c <bf>:

804a02c: 12 34 56 adc dh,BYTE PTR [esi+edx*2]

x86 assembly and c 81

804a02f: 78 12 js 804a043 <_end+0x7>

0804a030 <bf2>:

804a030: 12 34 56 adc dh,BYTE PTR [esi+edx*2]

804a033: 78 0f js 804a044 <_end+0x8>

804a035: 00 00 add BYTE PTR [eax],al

804a037: 00 .byte 0x0

The sample code creates 4 variables: ns, i, bf, bf2. The definition of normal_struct

and bit_field structs both specify 4 integers. bit_field specifies ad-

ditional information next to its member name, separated by a colon, e.g.

.data1 : 8. This extra information is the bit width of each bit group.

It means, even though defined as an int, .data1 only consumes 8 bit of

information. If additional data members are specified after .data1, two

scenarios happen:

✄ If the new data members fit within the remaining bits after .data, which

are 24 bits7, then the total size of bit_field struct is still 4 bytes, or 7 Since .data1 is declared as an int, 32
bits are still allocated, but .data1 can
only access 8 bits of information.32 bits.

✄ If the new data members don’t fit, then the remaining 24 bits (3 bytes)

are still allocated. However, the new data members are allocated brand

new storages, without using the previous 24 bits.

In the example, the 4 data members: .data1, .data2, .data3 and .data4,

each can access 8 bits of information, and together can access all of 4 bytes

of the integer first declared by .data1. As can be seen by the generated

assembly code, the values of bf are follow natural order as written in the

C code: 12 34 56 78, since each value is a separate members. In con-

trast, the value of i is a number as a whole, so it is subject to the rule

of little endianess and thus contains the value 78 56 34 12. Note that

at 804a02f, is the address of the final byte in bf, but next to it is a num-

ber 12, despite 78 is the last number in it. This extra number 12 does

not belong to the value of bf. objdump is just being confused that 78 is

an opcode; 78 corresponds to js instruction, and it requires an operand.

For that reason, objdump grabs whatever the next byte after 78 and put

it there. objdump is a tool to display assembly code after all. A better

tool to use is gdb that we will learn in the next chapter. But for this chap-

ter, objdump suffices.

82 operating systems: from 0 to 1

Unlike bf, each data member in ns is allocated fully as an integer, 4

bytes each, 16 bytes in total. As we can see, bit field and normal struct

are different: bit field structure data at the bit level, while normal struct

works at byte level.

Finally, the struct of bf28 is the same of bf9, except it contains one 8 bit_field2
9 bit_field

more data member: .data5, and is defined as a char. For this reason, an-

other 4 bytes are allocated just for .data5, even though it can only ac-

cess 4 bits of information, and the final value of bf2 is: 12 34 56 78 0f

00 00 00. The remaining 3 bytes must be accessed by the mean of a pointer,

or casting to another data type that can fully access all 4 bytes..

Exercise 4.8.1. What happens when the definition of bit_field struct

and bf variable are changed to:

struct bit_field {

int data1:8;

};

struct bit_field bf = {

.data1 = 0x1234,

};

What will be the value of .data1?

Exercise 4.8.2. What happens when the definition of bit_field2 struct

is changed to:

struct bit_field2 {

int data1:8;

int data5:32;

};

What is layout of a variable of type bit_field2?

4.8.4 String Data Types

Although share the same name, string as defined by x86 is different than

a string in C. x86 defines string as “continuous sequences of bits, bytes,

words, or doublewords”. On the other hand, C defines a string as an ar-

ray of 1-byte characters with a zero as the last element of the array to

x86 assembly and c 83

make a null-terminated string. This implies that strings in x86 are ar-

rays, not C strings. A programmer can define an array of bytes, words

or doublewords with char or uint8_t, short or uint16_t and int or uint32_t,

except an array of bits. However, such a feature can be easily implemented,

as an array of bits is essentially any array of bytes, or words or double-

words, but operates at the bit level.

The following code demonstrates how to define array (string) data types:

Source
#include <stdint.h>

uint8_t a8[2] = {0x12, 0x34};

uint16_t a16[2] = {0x1234, 0x5678};

uint32_t a32[2] = {0x12345678, 0x9abcdef0};

uint64_t a64[2] = {0x123456789abcdef0, 0x123456789abcdef0

};

int main(int argc, char *argv[])

{

return 0;

}

Assembly 0804a018 <a8>:

804a018: 12 34 00 adc dh,BYTE PTR [eax+eax*1]

804a01b: 00 34 12 add BYTE PTR [edx+edx*1],dh

0804a01c <a16>:

804a01c: 34 12 xor al,0x12

804a01e: 78 56 js 804a076 <_end+0x3a>

0804a020 <a32>:

804a020: 78 56 js 804a078 <_end+0x3c>

804a022: 34 12 xor al,0x12

804a024: f0 de bc 9a f0 de bc lock fidivr WORD PTR [edx+ebx*4-0x65432110]

804a02b: 9a

0804a028 <a64>:

804a028: f0 de bc 9a 78 56 34 lock fidivr WORD PTR [edx+ebx*4+0x12345678]

804a02f: 12

804a030: f0 de bc 9a 78 56 34 lock fidivr WORD PTR [edx+ebx*4+0x12345678]

84 operating systems: from 0 to 1

804a037: 12

Despite a8 is an array with 2 elements, each is 1-byte long, but it is still

allocated with 4 bytes. Again, to ensure natural alignment for best per-

formance, gcc pads extra zero bytes. As shown in the assembly listing,

the actual value of a8 is 12 34 00 00, with a8[0] equals to 12 and a8[1]

equals to 34.

Then it comes a16 with 2 elements, each is 2-byte long. Since 2 ele-

ments are 4 bytes in total, which is in the natural alignment, gcc pads

no byte. The value of a16 is 34 12 78 56, with a16[0] equals to 34 12

and a16[1] equals to 78 56. Note that, objdump is confused again, as

de is the opcode for the instruction fidivr (short of reverse divide) that

requires another operand, so objdump grabs whatever the next bytes that

makes sense to it for creating “an operand”. Only the highlighted values

belong to a32.

Next is a32, with 2 elements, 4 bytes each. Similar to above arrays,

the value of a32[0] is 78 56 34 12, the value of a32[1] is f0 de bc 9a,

exactly what is assigned in the C code.

Finally is a64, also with 2 elements, but 8 bytes each. The total size

of a64 is 16 bytes, which is in the natural alignment, therefore no padding

bytes added. The values of both a64[0] and a64[1] are the same: f0

de bc 9a 78 56 34 12, that got misinterpreted to fidivr instruction.

a8: 12 | 34

a16: 34 12 | 78 56

a32: 78 56 34 12 | f0 de bc 9a

a64: f0 de bc 9a 78 56 34 12 | f0 de bc 9a 78 56 34 12

Figure 4.8.4: a8, a16, a32 and

a64 memory layouts

However, beyond one-dimensional arrays that map directly to hard-

ware string type, C provides its own syntax for multi-dimensional arrays:

Source
#include <stdint.h>

uint8_t a2[2][2] = {

{0x12, 0x34},

{0x56, 0x78}

};

x86 assembly and c 85

uint8_t a3[2][2][2] = {

{{0x12, 0x34},

{0x56, 0x78}},

{{0x9a, 0xbc},

{0xde, 0xff}},

};

int main(int argc, char *argv[]) {

return 0;

}

Assembly 0804a018 <a2>:

804a018: 12 34 56 adc dh,BYTE PTR [esi+edx*2]

804a01b: 78 12 js 804a02f <_end+0x7>

0804a01c <a3>:

804a01c: 12 34 56 adc dh,BYTE PTR [esi+edx*2]

804a01f: 78 9a js 8049fbb <_DYNAMIC+0xa7>

804a021: bc .byte 0xbc

804a022: de ff fdivrp st(7),st

Technically, multi-dimensional arrays are like normal arrays: in the end,

the total size is translated into flat allocated bytes. A 2 x 2 array is allo-

cated with 4 bytes; a 2× 2× 2 array is allocated with 8 bytes, as can be

seen in the assembly listing of a210 and a3. In low-level assembly code, 10 Again, objdump is confused and put
the number 12 next to 78 in a3 listing.

the representation is the same between a[4] and a[2][2]. However, in

high-level C code, the difference is tremendous. The syntax of multi-dimensional

array enables a programmer to think with higher level concepts, instead

of translating manually from high-level concepts to low-level code and

work with high-level concepts in his head at the same time.

Example 4.8.1. The following two-dimensional array can hold a list of

2 names with the length of 10:

char names[2][10] = {

"John␣Doe",

"Jane␣Doe"

86 operating systems: from 0 to 1

};

To access a name, we simply adjust the column index11 e.g. names[0], 11 The left index is called column index

since it changes the index based on a
column.names[1]. To access individual character within a name, we use the row

index12 e.g. names[0][0] gives the character “J”, names[0][1] gives the 12 Same with column index, the right
index is calledrow index since it

changes the index based on a row.character “o” and so on.

Without such syntax, we need to create a 20-byte array e.g. names[20],

and whenever we want to access a character e.g. to check if the names

contains with a number in it, we need to calculate the index manually.

It would be distracting, since we constantly need to switch thinkings be-

tween the actual problem and the translate problem.

Since this is a repeating pattern, C abstracts away this problem with

the syntax for define and manipulating multi-dimensional array. Through

this example, we can clearly see the power of abstraction through lan-

guage can give us. It would be ideal if a programmer is equipped with

such power to define whatever syntax suitable for a problem at hands.

Not many languages provide such capacity. Fortunately, through C macro,

we can partially achieve that goal .

In all cases, an array is guaranteed to generate contiguous bytes of mem-

ory, regardless of the dimensions it has.

Exercise 4.8.3. What is the difference between a multi-dimensional ar-

ray and an array of pointers, or even pointers of pointers?

4.9 Examine compiled code

This section will explore how compiler transform high level code into as-

sembly code that CPU can execute, and see how common assembly pat-

terns help to create higher level syntax. -S option is added to objdump

to better demonstrate the connection between high and low level code.

In this section, the option --no-show-raw-insn is added to objdump

command to omit the opcodes for clarity:

$ objdump --no-show-raw-insn -M intel -S -D <object

file> | less

x86 assembly and c 87

4.9.1 Data Transfer

Previous section explores how various types of data are created, and how

they are laid out in memory. Once memory storages are allocated for vari-

ables, they must be accessible and writable. Data transfer instructions

move data (bytes, words, doublewords or quadwords) between memory

and registers, and between registers, effectively read from a storage source

and write to another storage source.

Source
#include <stdint.h>

int32_t i = 0x12345678;

int main(int argc, char *argv[]) {

int j = i;

int k = 0xabcdef;

return 0;

}

Assembly 080483db <main>:

#include <stdint.h>

int32_t i = 0x12345678;

int main(int argc, char *argv[]) {

80483db: push ebp

80483dc: mov ebp,esp

80483de: sub esp,0x10

int j = i;

80483e1: mov eax,ds:0x804a018

80483e6: mov DWORD PTR [ebp-0x8],eax

int k = 0xabcdef;

80483e9: mov DWORD PTR [ebp-0x4],0xabcdef

return 0;

80483f0: mov eax,0x0

}

80483f5: leave

88 operating systems: from 0 to 1

80483f6: ret

80483f7: xchg ax,ax

80483f9: xchg ax,ax

80483fb: xchg ax,ax

80483fd: xchg ax,ax

80483ff: nop

The general data movement is performed with the mov instruction. Note

that despite the instruction being called mov, it actually copies data from

one destination to another.

The red instruction copies data from the register esp to the register

ebp. This mov instruction moves data between registers and is assigned

the opcode 89.

The blue instructions copies data from one memory location (the i

variable) to another (the j variable). There exists no data movement from

memory to memory; it requires two mov instructions, one for copying the

data from a memory location to a register, and one for copying the data

from the register to the destination memory location.

The pink instruction copies an immediate value into memory. Finally,

the green instruction copies immediate data into a register.

4.9.2 Expressions
Source

int expr(int i, int j)

{

int add = i + j;

int sub = i - j;

int mul = i * j;

int div = i / j;

int mod = i % j;

int neg = -i;

int and = i & j;

int or = i | j;

int xor = i ^ j;

int not = ~i;

int shl = i << 8;

x86 assembly and c 89

int shr = i >> 8;

char equal1 = (i == j);

int equal2 = (i == j);

char greater = (i > j);

char less = (i < j);

char greater_equal = (i >= j);

char less_equal = (i <= j);

int logical_and = i && j;

int logical_or = i || j;

++i;

--i;

int i1 = i++;

int i2 = ++i;

int i3 = i--;

int i4 = --i;

return 0;

}

int main(int argc, char *argv[]) {

return 0;

}

Assembly The full assembly listing is really long. For that reason, we ex-

amine expression by expression.

Expression: int add = i + j;

80483e1: mov edx,DWORD PTR [ebp+0x8]

80483e4: mov eax,DWORD PTR [ebp+0xc]

80483e7: add eax,edx

80483e9: mov DWORD PTR [ebp-0x34],eax

The assembly code is straight forward: variable i and j are stored

in eax and edx respectively, then added together with the add in-

struction, and the final result is stored into eax. Then, the result

is saved into the local variable add, which is at the location [ebp-0x34].

90 operating systems: from 0 to 1

Expression: int sub = i - j;

80483ec: mov eax,DWORD PTR [ebp+0x8]

80483ef: sub eax,DWORD PTR [ebp+0xc]

80483f2: mov DWORD PTR [ebp-0x30],eax

Similar to add instruction, x86 provides a sub instruction for sub-

traction. Hence, gcc translates a subtraction into sub instruction,

with eax is reloaded with i, as eax still carries the result from pre-

vious expression. Then, j is subtracted from i. After the subtrac-

tion, the value is saved into the variable sub, at location [ebp-0x30].

Expression: int mul = i * j;

80483f5: mov eax,DWORD PTR [ebp+0x8]

80483f8: imul eax,DWORD PTR [ebp+0xc]

80483fc: mov DWORD PTR [ebp-0x34],eax

Similar to sub instruction, only eax is reloaded, since it carries the

result of previous calculation. imul performs signed multiply13. eax 13 Unsigned multiply is perform by mul

instruction.
is first loaded with i, then is multiplied with j and stored the re-

sult back into eax, then stored into the variable mul at location [ebp-0x34].

Expression: int div = i / j;

80483ff: mov eax,DWORD PTR [ebp+0x8]

8048402: cdq

8048403: idiv DWORD PTR [ebp+0xc]

8048406: mov DWORD PTR [ebp-0x30],eax

Similar to imul, idiv performs sign divide. But, different from imul

above idiv only takes one operand:

1. First, i is reloaded into eax.

2. Then, cdq converts the double word value in eax into a quad-

word value stored in the pair of registers edx:eax, by copying

the signed (bit 31th) of the value in eax into every bit position

in edx. The pair edx:eax is the dividend, which is the variable

i, and the operand to idiv is the divisor, which is the variable

j.

3. After the calculation, the result is stored into the pair edx:eax

registers, with the quotient in eax and remainder in edx. The

quotient is stored in the variable div, at location [ebp-0x30].

x86 assembly and c 91

Expression: int mod = i % j;

8048409: mov eax,DWORD PTR [ebp+0x8]

804840c: cdq

804840d: idiv DWORD PTR [ebp+0xc]

8048410: mov DWORD PTR [ebp-0x2c],edx

The same idiv instruction also performs the modulo operation, since

it also calculates a remainder and stores in the variable mod, at lo-

cation [ebp-0x2c].

Expression: int neg = -i;

8048413: mov eax,DWORD PTR [ebp+0x8]

8048416: neg eax

8048418: mov DWORD PTR [ebp-0x28],eax

neg replaces the value of operand (the destination operand) with

its two’s complement (this operation is equivalent to subtracting

the operand from 0). In this example, the value i in eax is replaced

replaced with -i using neg instruction. Then, the new value is stored

in the variable neg at [ebp-0x28].

Expression: int and = i & j;

804841b: mov eax,DWORD PTR [ebp+0x8]

804841e: and eax,DWORD PTR [ebp+0xc]

8048421: mov DWORD PTR [ebp-0x24],eax

and performs a bitwise AND operation on two operands, and stores

the result in the destination operand, which is the variable and at

[ebp-0x24].

Expression: int or = i | j;

8048424: mov eax,DWORD PTR [ebp+0x8]

8048427: or eax,DWORD PTR [ebp+0xc]

804842a: mov DWORD PTR [ebp-0x20],eax

Similar to and instruction, or performs a bitwise OR operation on

two operands, and stores the result in the destination operand, which

is the variable or at [ebp-0x20] in this case.

Expression: int xor = i ^ j;

92 operating systems: from 0 to 1

804842d: mov eax,DWORD PTR [ebp+0x8]

8048430: xor eax,DWORD PTR [ebp+0xc]

8048433: mov DWORD PTR [ebp-0x1c],eax

Similar to and/or instruction, xor performs a bitwise XOR opera-

tion on two operands, and stores the result in the destination operand,

which is the variable xor at [ebp-0x1c].

Expression: int not = ~i;

8048436: mov eax,DWORD PTR [ebp+0x8]

8048439: not eax

804843b: mov DWORD PTR [ebp-0x18],eax

not performs a bitwise NOT operation (each 1 is set to 0, and each

0 is set to 1) on the destination operand and stores the result in

the destination operand location, which is the variable not at [ebp-0x18].

Expression: int shl = i <�< 8;

804843e: mov eax,DWORD PTR [ebp+0x8]

8048441: shl eax,0x8

8048444: mov DWORD PTR [ebp-0x14],eax

shl (shift logical left) shifts the bits in the destination operand to

the left by the number of bits specified in the source operand. In

this case, eax stores i and shl shifts eax by 8 bits to the left. A dif-

ferent name for shl is sal (shift arithmetic left). Both can be used

synonymous. Finally, the result is stored in the variable shl at [ebp-0x14].

Here is a visual demonstration of shl/sal and shr instructions:

After shifting to the left, the right most bit is set for Carry Flag in

EFLAGS register.

Expression: int shr = i >�> 8;

8048447: mov eax,DWORD PTR [ebp+0x8]

804844a: sar eax,0x8

804844d: mov DWORD PTR [ebp-0x10],eax

sar is similar to shl/sal, but shift bits to the right and extends

the sign bit. For right shift, shr and sar are two different instruc-

tions. shr differs to sar is that it does not extend the sign bit. Finally,

the result is stored in the variable shr at [ebp-0x10].

x86 assembly and c 93

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1X

CF

Initial State

After 1-bit SHL/SAL instruction

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 01 0

After 1-bit SHL/SAL instruction

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 00 0

(a) SHL/SAL (Source: Figure 7-6, Volume 1)

1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 X

CF

Initial State

After 1-bit SHR instruction

10

After 10-bit SHR instruction

0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 00 0

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1

(b) SHR (Source: Figure 7-7, Volume 1)

Figure 4.9.1: Shift Instructions

(red is the start bit, blue is the end

bit.)
In the figure 4.9.1(b), notice that initially, the sign bit is 1, but af-

ter 1-bit and 10-bit shiftings, the shifted-out bits are filled with ze-

ros.

0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 X

CF

Initial State (Positive Operand)

After 1-bit SAR instruction

1

Initial State (Negative Operand)

1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1 X

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1

After 10-bit SAR instruction

1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 1

Operand

Operand

Figure 4.9.2: SAR Instruction

Operation (Source: Figure 7-8,

Volume 1)

With sar, the sign bit (the most significant bit) is preserved. That

is, if the sign bit is 0, the new bits always get the value 0; if the sign

bit is 1, the new bits always get the value 1.

Expression: char equal1 = (i == j);

8048450: mov eax,DWORD PTR [ebp+0x8]

8048453: cmp eax,DWORD PTR [ebp+0xc]

8048456: sete al

8048459: mov BYTE PTR [ebp-0x41],al

94 operating systems: from 0 to 1

cmp and variants of the variants of set instructions make up all the

logical comparisons. In this expression, cmp compares variable i and

j; then sete stores the value 1 to al register if the comparison from

cmp earlier is equal, or stores 0 otherwise. The general name for vari-

ants of set instruction is called SETcc. The suffix cc denotes the

condition being tested for in EFLAGS register. Appendix B in vol-

ume 1, “EFLAGS Condition Codes”, lists the conditions it is possi-

ble to test for with this instruction. Finally, the result is stored in

the variable equal1 at [ebp-0x41].

Expression: int equal2 = (i == j);

804845c: mov eax,DWORD PTR [ebp+0x8]

804845f: cmp eax,DWORD PTR [ebp+0xc]

8048462: sete al

8048465: movzx eax,al

8048468: mov DWORD PTR [ebp-0xc],eax

Similar to equality comparison, this expression also compares for

equality, with an exception that the result is stored in an int type.

For that reason, one more instruction is a added: movzx instruction,

a variant of mov that copies the result into a destination operand

and fills the remaining bytes with 0. In this case, since eax is 4-byte

wide, after copying the first byte in al, the remaining bytes of eax

are filled with 0 to ensure the eax carries the same value as al.

12 34 56 78

(a) eax before movzx

00 00 00 78

(b) after movzx eax, al

Figure 4.9.3: movzx instruction

Expression: char greater = (i > j);

804846b: mov eax,DWORD PTR [ebp+0x8]

804846e: cmp eax,DWORD PTR [ebp+0xc]

8048471: setg al

8048474: mov BYTE PTR [ebp-0x40],al

Similar to equality comparison, but used setg for greater compari-

son instead.

Expression: char less = (i < j);

8048477: mov eax,DWORD PTR [ebp+0x8]

x86 assembly and c 95

804847a: cmp eax,DWORD PTR [ebp+0xc]

804847d: setl al

8048480: mov BYTE PTR [ebp-0x3f],al

Applied setl for less comparison.

Expression: char greater_equal = (i >= j);

8048483: mov eax,DWORD PTR [ebp+0x8]

8048486: cmp eax,DWORD PTR [ebp+0xc]

8048489: setge al

804848c: mov BYTE PTR [ebp-0x3e],al

Applied setge for greater or equal comparison.

Expression: char less_equal = (i <= j);

804848f: mov eax,DWORD PTR [ebp+0x8]

8048492: cmp eax,DWORD PTR [ebp+0xc]

8048495: setle al

8048498: mov BYTE PTR [ebp-0x3d],al

Applied setle for less than or equal comparison.

Expression: int logical_and = (i && j);

804849b: cmp DWORD PTR [ebp+0x8],0x0

804849f: je 80484ae <expr+0xd3>

80484a1: cmp DWORD PTR [ebp+0xc],0x0

80484a5: je 80484ae <expr+0xd3>

80484a7: mov eax,0x1

80484ac: jmp 80484b3 <expr+0xd8>

80484ae: mov eax,0x0

80484b3: mov DWORD PTR [ebp-0x8],eax

Logical AND operator && is one of the syntaxes that is made entirely

in software14 with simpler instructions. The algorithm from the as- 14 That is, there is no equivalent assem-
bly instruction implemented in hard-

ware.sembly code is simple:

1. First, check if i is 0 with the instruction at 0x804849b.

(a) If true, jump to 0x80484ae and set eax to 0.

(b) Set the variable logical_and to 0, as it is the next instruc-

tion after 0x80484ae.

96 operating systems: from 0 to 1

2. If i is not 0, check if j is 0 with the instruction at 0x80484a1.

(a) If true, jump to 0x80484ae and set eax to 0.

(b) Set the variable logical_and to 0, as it is the next instruc-

tion after 0x80484ae.

3. If both i and j are not 0, the result is certainly 1, or true.

(a) Set it accordingly with the instruction at 0x80484a7.

(b) Then jump to the instruction at 0x80484b3 to set the vari-

able logical_and at [ebp-0x8] to 1.

Expression: int logical_or = (i || j);

80484b6: cmp DWORD PTR [ebp+0x8],0x0

80484ba: jne 80484c2 <expr+0xe7>

80484bc: cmp DWORD PTR [ebp+0xc],0x0

80484c0: je 80484c9 <expr+0xee>

80484c2: mov eax,0x1

80484c7: jmp 80484ce <expr+0xf3>

80484c9: mov eax,0x0

80484ce: mov DWORD PTR [ebp-0x4],eax

Logical OR operator || is similar to logical and above. Understand

the algorithm is left as an exercise for readers.

Expression: ++i; and --i; (or i++ and i--)

80484d1: add DWORD PTR [ebp+0x8],0x1

80484d5: sub DWORD PTR [ebp+0x8],0x1

The syntax of increment and decrement is similar to logical AND and

logical OR in that it is made from existing instruction, that is add.

The difference is that the CPU actually does has a built-in instruc-

tion, but gcc decided not to use the instruction because inc and

dec cause a partial flag register stall, occurs when an instruction

modifies a part of the flag register and the following instruction is

dependent on the outcome of the flags (section 3.5.2.6, Intel Optimization

Manual, 2016b). The manual even suggests that inc and dec should

be replaced with add and sub instructions (section 3.5.1.1, Intel Optimization

Manual, 2016b).

Expression: int i1 = i++;

x86 assembly and c 97

80484d9: mov eax,DWORD PTR [ebp+0x8]

80484dc: lea edx,[eax+0x1]

80484df: mov DWORD PTR [ebp+0x8],edx

80484e2: mov DWORD PTR [ebp-0x10],eax

First, i is copied into eax at 80484d9. Then, the value of eax + 0x1

is copied into edx as an effective address at 80484dc. The lea (load

effective address) instruction copies a memory address into a reg-

ister. According to Volume 2, the source operand is a memory ad-

dress specified with one of the processors addressing modes. This

means, the source operand must be specified by the addressing modes

defined in 16-bit/32-bit ModR/M Byte tables, 4.5.1 and 4.5.2.

After loading the incremented value into edx, the value of i is in-

creased by 1 at 80484df. Finally, the previous i value is stored back

to i1 at [ebp-0x8] by the instruction at 80484e2.

Expression: int i2 = ++i;

80484e5: add DWORD PTR [ebp+0x8],0x1

80484e9: mov eax,DWORD PTR [ebp+0x8]

80484ec: mov DWORD PTR [ebp-0xc],eax

The primary differences between this increment syntax and the pre-

vious one are:

✄ add is used instead of lea to increase i directly.

✄ the newly incremented i is stored into i2 instead of the old value.

✄ the expression only costs 3 instructions instead of 4.

This prefix-increment syntax is faster than the post-fix one used

previously. It might not matter much which version to use if the

increment is only used once or a few hundred times in a small loop,

but it matters when a loop runs millions or more times. Also, de-

pends on different circumstances, it is more convenient to use one

over the other e.g. if i is an index for accessing an array, we want

to use the old value for accessing previous array element and newly

incremented i for current element.

Expression: int i3 = i--;

80484ef: mov eax,DWORD PTR [ebp+0x8]

98 operating systems: from 0 to 1

80484f2: lea edx,[eax-0x1]

80484f5: mov DWORD PTR [ebp+0x8],edx

80484f8: mov DWORD PTR [ebp-0x8],eax

Similar to i++ syntax, and is left as an exercise to readers.

Expression: int i4 = --i;

80484fb: sub DWORD PTR [ebp+0x8],0x1

80484ff: mov eax,DWORD PTR [ebp+0x8]

8048502: mov DWORD PTR [ebp-0x4],eax

Similar to ++i syntax, and is left as an exercise to readers.

Exercise 4.9.1. Read section 3.5.2.4, “Partial Register Stalls” to un-

derstand register stalls in general.

Exercise 4.9.2. Read the sections from 7.3.1 to 7.3.7 in volume 1.

4.9.3 Stack

A stack is a contiguous array of memory locations that holds a collection

of discrete data. When a new element is added, a stack grows down in

memory toward lesser addresses, and shrinks up toward greater addresses

when an element is removed. x86 uses the esp register to point to the

top of the stack, at the newest element. A stack can be originated any-

where in main memory, as esp can be set to any memory address. x86

provides two operations for manipulating stacks:

✄ push instruction and its variants add a new element on top of the stack

✄ pop instructions and its variants remove the top-most element from

the stack.

0x10000 00

0x10001 00

0x10002 00

0x10003 00

0x10004 12 ← esp

(a) Initial state at address 0x10004

0x10000 00

0x10001 00

0x10002 78 ← esp

0x10003 56

0x10004 12

(b) After executing push word

0x5678

0x10000 00

0x10001 00

0x10002 00

0x10003 00

0x10004 12 ← esp

(c) After executing pop word

Figure 4.9.4: Stack operations

x86 assembly and c 99

4.9.4 Automatic variables

Local variables are variables that exist within a scope. A scope is delim-

ited by a pair of braces: {..}. The most common scope to define local

variables is at function scope. However, scope can be unnamed, and vari-

ables created inside an unnamed scope do not exist outside of its scope

and its inner scope.

Example 4.9.1. Function scope:

void foo() {

int a;

int b;

}

a and b are variables local to the function foo.

Example 4.9.2. Unnamed scope:

int foo() {

int i;

{

int a = 1;

int b = 2;

{

return i = a + b;

}

}

}

a and b are local to where it is defined and local into its inner child

scope that return i = a + b. However, they do not exist at the function

scope that creates i.

When a local variable is created, it is pushed on the stack; when a lo-

cal variable goes out of scope, it is pop out of the stack, thus destroyed.

When an argument is passed from a caller to a callee, it is pushed on the

stack; when a callee returns to the caller, the arguments are popped out

100 operating systems: from 0 to 1

the stack. The local variables and arguments are automatically allocated

upon enter a function and destroyed after exiting a function, that’s why

it’s called automatic variables.

A base frame pointer points to the start of the current function frame,

and is kept in ebp register. Whenever a function is called, it is allocated

with its own dedicated storage on stack, called stack frame. A stack frame

is where all local variables and arguments of a function are placed on a

stack15. 15 Data and only data are exclusively

allocatedon stackforevery stack
frame. No code resides here.When a function needs a local variable or an argument, it uses ebp

to access a variable:

✄ All local variables are allocated after the ebp pointer. Thus, to access

a local variable, a number is subtracted from ebp to reach the loca-

tion of the variable.

✄ All arguments are allocated before ebp pointer. To access an argument,

a number is added to ebp to reach the location of the argument.

✄ The ebp itself pointer points to the return address of its caller.

Previous Frame Current Frame

Function Arguments ebp Local variables

A1 A2 A3 An Return Address Old ebp L1 L2 L3 Ln
Figure 4.9.5: Function arguments

and local variablesA = Argument

L = Local Variable

Here is an example to make it more concrete:

Source
int add(int a, int b) {

int i = a + b;

return i;

}

Assembly 080483db <add>:

#include <stdint.h>

int add(int a, int b) {

80483db: push ebp

x86 assembly and c 101

80483dc: mov ebp,esp

80483de: sub esp,0x10

int i = a + b;

80483e1: mov edx,DWORD PTR [ebp+0x8]

80483e4: mov eax,DWORD PTR [ebp+0xc]

80483e7: add eax,edx

80483e9: mov DWORD PTR [ebp-0x4],eax

return i;

80483ec: mov eax,DWORD PTR [ebp-0x4]

}

80483ef: leave

80483f0: ret

In the assembly listing, [ebp-0x4] is the local variable i, since it is allo-

cated after ebp, with the length of 4 bytes (an int). On the other hand,

a and b are arguments and can be accessed with ebp:

✄ [ebp+0x8] accesses a.

✄ [ebp+0xc] access b.

For accessing arguments, the rule is that the closer a variable on stack

to ebp, the closer it is to a function name.

ebp+0xc ebp+0x8 ebp+0x4 ebp

↓ ↓ ↓ ↓

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

0x10000 b a Return Address Old ebp

ebp+0x8 ebp+0x4

↓ ↓

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

0xffe0 N i
Figure 4.9.6: Function arguments

and local variables in memoryN = Next local variable starts here

From the figure, we can see that a and b are laid out in memory with

the exact order as written in C, relative to the return address.

4.9.5 Function Call and Return

102 operating systems: from 0 to 1

Source
#include <stdio.h>

int add(int a, int b) {

int local = 0x12345;

return a + b;

}

int main(int argc, char *argv[]) {

add(1,1);

return 0;

}

Assembly For every function call, gcc pushes arguments on the stack in

reversed order with the push instructions. That is, the arguments pushed

on stack are in reserved order as it is written in high level C code, to

ensure the relative order between arguments, as seen in previous sec-

tion how function arguments and local variables are laid out. Then,

gcc generates a call instruction, which then implicitly pushes a re-

turn address before transferring the control to add function:

080483f2 <main>:

int main(int argc, char *argv[]) {

80483f2: push ebp

80483f3: mov ebp,esp

add(1,2);

80483f5: push 0x2

80483f7: push 0x1

80483f9: call 80483db <add>

80483fe: add esp,0x8

return 0;

8048401: mov eax,0x0

}

8048406: leave

x86 assembly and c 103

8048407: ret

Upon finishing the call to add function, the stack is restored by adding

0x8 to stack pointer esp (which is equivalent to 2 pop instructions). Finally,

a leave instruction is executed and main returns with a ret instruction.

A ret instruction transfers the program execution back to the caller to

the instruction right after the call instruction, the add instruction. The

reason ret can return to such location is that the return address implic-

itly pushed by the call instruction, which is the address right after the

call instruction; whenever the CPU executes ret instruction, it retrieves

the return address that sits right after all the arguments on the stack:

At the end of a function, gcc places a leave instruction to clean up

all spaces allocated for local variables and restore the frame pointer to

frame pointer of the caller.

080483db <add>:

#include <stdio.h>

int add(int a, int b) {

80483db: push ebp

80483dc: mov ebp,esp

80483de: sub esp,0x10

int local = 0x12345;

80483e1: DWORD PTR [ebp-0x4],0x12345

return a + b;

80483e8: mov edx,DWORD PTR [ebp+0x8]

80483eb: mov eax,DWORD PTR [ebp+0xc]

80483ee: add eax,edx

}

80483f0: leave

80483f1: ret

Exercise 4.9.3. The above code that gcc generated for function call-

ing is actually the standard method x86 defined. Read chapter 6, “Produce

Calls, Interrupts, and Exceptions”, Intel manual volume 1.

104 operating systems: from 0 to 1

4.9.6 Loop

Loop is simply resetting the instruction pointer to an already executed

instruction and starting from there all over again. A loop is just one ap-

plication of jmp instruction. However, because looping is a pervasive pat-

tern, it earned its own syntax in C.

Source
#include <stdio.h>

int main(int argc, char *argv[]) {

for (int i = 0; i < 10; i++) {

}

return 0;

}

Assembly 080483db <main>:

#include <stdio.h>

int main(int argc, char *argv[]) {

80483db: push ebp

80483dc: mov ebp,esp

80483de: sub esp,0x10

for (int i = 0; i < 10; i++) {

80483e1: mov DWORD PTR [ebp-0x4],0x0

80483e8: jmp 80483ee <main+0x13>

80483ea: add DWORD PTR [ebp-0x4],0x1

80483ee: cmp DWORD PTR [ebp-0x4],0x9

80483f2: jle 80483ea <main+0xf>

}

return 0;

80483f4: b8 00 00 00 00 mov eax,0x0

}

80483f9: c9 leave

80483fa: c3 ret

80483fb: 66 90 xchg ax,ax

80483fd: 66 90 xchg ax,ax

x86 assembly and c 105

80483ff: 90 nop

The colors mark corresponding high level code to assembly code:

1. The red instruction initialize i to 0.

2. The green instructions compare i to 10 by using jle and compare

it to 9. If true, jump to 80483ea for another iteration.

3. The blue instruction increase i by 1, making the loop able to ter-

minate once the terminate condition is satisfied.

Exercise 4.9.4. Why does the increment instruction (the blue instruc-

tion) appears before the compare instructions (the green instructions)?

Exercise 4.9.5. What assembly code can be generated for while and

do...while?

4.9.7 Conditional

Again, conditional in C with if...else... construct is just another ap-

plication of jmp instruction under the hood. It is also a pervasive pat-

tern that earned its own syntax in C.

Source
#include <stdio.h>

int main(int argc, char *argv[]) {

int i = 0;

if (argc) {

i = 1;

} else {

i = 0;

}

return 0;

}

Assembly int main(int argc, char *argv[]) {

80483db: push ebp

106 operating systems: from 0 to 1

80483dc: mov ebp,esp

80483de: sub esp,0x10

int i = 0;

80483e1: mov DWORD PTR [ebp-0x4],0x0

if (argc) {

80483e8: cmp DWORD PTR [ebp+0x8],0x0

80483ec: je 80483f7 <main+0x1c>

i = 1;

80483ee: mov DWORD PTR [ebp-0x4],0x1

80483f5: jmp 80483fe <main+0x23>

} else {

i = 0;

80483f7: mov DWORD PTR [ebp-0x4],0x0

}

return 0;

80483fe: mov eax,0x0

}

8048403: leave

8048404: ret

The generated assembly code follows the same order as the correspond-

ing high level syntax:

✄ red instructions represents if branch.

✄ blue instructions represents else branch.

✄ green instruction is the exit point for both if and else branch.

if branch first compares whether argc is false (equal to 0) with cmp

instruction. If true, it proceeds to else branch at 80483f7. Otherwise,

if branch continues with the code of its branch, which is the next in-

struction at 80483ee for copying 1 to i. Finally, it skips over else

branch and proceeds to 80483fe, which is the next instruction pasts

the if..else... construct.

else branch is entered when cmp instruction from if branch is true.

else branch starts at 80483f7, which is the first instruction of else

branch. The instruction copies 0 to i, and proceeds naturally to the

next instruction pasts the if...else... construct without any jump.

5
The Anatomy of a Program

Every program consists of code and data, and only those two components

made up a program. However, if a program consists purely code and data

of its own, from the perspective of an operating system (as well as hu-

man), it does not know in a program, which block of binary is a program

and which is just raw data, where in the program to start execution, which

region of memory should be protected and which is free to modify. For

that reason, each program carries extra metadata to communicate with

the operating system how to handle the program.

When a source file is compiled, the generated machine code is stored

into an object file, which is just a block of binary. One or more object files object file

can be combined to produce an executable binary, which is a complete executable binary

program runnable in an operating system.

readelf is a program that recognizes and displays the ELF metadata

of a binary file, be it an object file or an executable binary. ELF , or Executable

and Linkable Format, is the content at the very beginning of an executable

to provide an operating system necessary information to load into main

memory and run the executable. ELF can be thought of similar to the

table of contents of a book. In a book, a table of contents list the page

numbers of the main sections, subsections, sometimes even figures and

tables for easy lookup. Similarly, ELF lists various sections used for code

and data, and the memory addresses of each symbol along with other in-

108 operating systems: from 0 to 1

formation.

An ELF binary is composed of:

✄ An ELF header : the very first section of an executable that describes ELF header

the file’s organization.

✄ A program header table: is an array of fixed-size structures that de- program header table

scribes segments of an executable.

✄ A section header table: is an array of fixed-size structures that describes section header table

sections of an executable.

✄ Segments and sections are the main content of an ELF binary, which Segments and sections

are the code and data, divided into chunks of different purposes.

A segment is a composition of zero or more sections and is directly loaded

by an operating system at runtime.

A section is a block of binary that is either:

– actual program code and data that is available in memory when a

program runs.

– metadata about other sections used only in the linking process, and

disappear from the final executable.

Linker uses sections to build segments.

...

.data

.rodata

.text

Program header table

ELF header

Section header table

{
{

Figure 5.0.1: ELF - Linking

View vs Executable View (Source:

Wikipedia)

Later we will compile our kernel as an ELF executable with GCC, and

explicitly specify how segments are created and where they are loaded

the anatomy of a program 109

in memory through the use a linker script, a text file to instruct how a

linker should generate a binary. For now, we will examine the anatomy

of an ELF executable in detail.

5.1 Reference documents:

The ELF specification is bundled as a man page in Linux: ELF specification

$ man elf

It is a useful resource to understand and implement ELF. However, it

will be much easier to use after you finish this chapter, as the specifica-

tion mixes implementation details in it.

The default specification is a generic one, in which every ELF imple-

mentation follows. However, each platform provides extra features unique

to it. The ELF specification for x86 is currently maintained on Github

by H.J. Lu: https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI.

Platform-dependent details are referred to as “processor specific” in

the generic ELF specification. We will not explore these details, but study

the generic details, which are enough for crafting an ELF binary image

for our operating system.

5.2 ELF header

To see the information of an ELF header:

$ readelf -h hello

The output:

Output
ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Class: ELF64

Data: 2’s complement, little endian

https://github.com/hjl-tools/x86-psABI/wiki/X86-psABI

110 operating systems: from 0 to 1

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)

Machine: Advanced Micro Devices X86-64

Version: 0x1

Entry point address: 0x400430

Start of program headers: 64 (bytes into file)

Start of section headers: 6648 (bytes into file)

Flags: 0x0

Size of this header: 64 (bytes)

Size of program headers: 56 (bytes)

Number of program headers: 9

Size of section headers: 64 (bytes)

Number of section headers: 31

Section header string table index: 28

Let’s go through each field:

Magic Displays the raw bytes that uniquely addresses a file is an ELF

executable binary. Each byte gives a brief information.

In the example, we have the following magic bytes:

Output
Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Examine byte by byte:

the anatomy of a program 111

Byte Description

7f 45 4c 46 Predefined values. The first byte is always

7F, the remaining 3 bytes represent the

string “ELF”.

02 See Class field below.

01 See Data field below.

01 See Version field below.

00 See OS/ABI field below.

00 00 00 00 00

00 00 00

Padding bytes. These bytes are unused

and are always set to 0. Padding bytes are

added for proper alignment, and is

reserved for future use when more

information is needed.

Class A byte in Magic field. It specifies the class or capacity of a file.

Possible values:

Value Description

0 Invalid class

1 32-bit objects

2 64-bit objects

Data A byte in Magic field. It specifies the data encoding of the processor-

specific data in the object file.

Possible values:

Value Description

0 Invalid data encoding

1 Little endian, 2’s complement

2 Big endian, 2’s complement

Version A byte in Magic. It specifies the ELF header version number.

Possible values:

112 operating systems: from 0 to 1

Value Description

0 Invalid version

1 Current version

OS/ABI A byte in Magic field. It specifies the target operating system

ABI. Originally, it was a padding byte.

Possible values: Refer to the latest ABI document, as it is a long list

of different operating systems.

Type Identifies the object file type.

Value Description

0 No file type

1 Relocatable file

2 Executable file

3 Shared object file

4 Core file

0xff00 Processor specific, lower bound

0xffff Processor specific, upper bound

The values from 0xff00 to 0xffff are reserved for a processor to de-

fine additional file types meaningful to it.

Machine Specifies the required architecture value for an ELF file e.g.

x86_64, MIPS, SPARC, etc. In the example, the machine is of x86_64

architecture.

Possible values: Please refer to the latest ABI document, as it is a long

list of different architectures.

Version Specifies the version number of the current object file (not the

version of the ELF header, as the above Version field specified).

Entry point address Specifies the memory address where the very first

code to be executed. The address of main function is the default in

a normal application program, but it can be any function by explic-

itly specifying the function name to gcc. For the operating system

we are going to write, this is the single most important field that we

need to retrieve to bootstrap our kernel, and everything else can be

ignored.

the anatomy of a program 113

Start of program headers The offset of the program header table, in

bytes. In the example, this number is 64 bytes, which means the 65th

byte, or <start address> + 64, is the start address of the program

header table. That is, if a program is loaded at address 0x10000 in mem-

ory, then the start address is 0x10000 (the very first byte of Magic field,

where the value 0x7f resides) and the start address of program header

table is 0x10000 + 0x40 = 0x10040.

Start of section headers The offset of the section header table in bytes,

similar to the start of program headers. In the example, it is 6648 bytes

into file.

Flags Hold processor-specific flags associated with the file. When the

program is loaded, in a x86 machine, EFLAGS register is set according

to this value. In the example, the value is 0x0, which means EFLAGS

register is in a clear state.

Size of this header Specifies the total size of ELF header’s size in bytes.

In the example, it is 64 bytes, which is equivalent to Start of program

headers. Note that these two numbers are not necessarily equivalent,

as program header table might be placed far away from the ELF header.

The only fixed component in the ELF executable binary is the ELF

header, which appears at the very beginning of the file.

Size of program headers Specifies the size of each program header

in bytes. In the example, it is 64 bytes.

Number of program headers Specifies the total number of program

headers. In the example, the file has a total of 9 program headers.

Size of section headers Specifies the size of each section header in

bytes. In the example, it is 64 bytes.

Number of section headers Specifies the total number of section head-

ers. In the example, the file has a total of 31 section headers. In a sec-

tion header table, the first entry in the table is always an empty sec-

tion.

Section header string table index Specifies the index of the header

in the section header table that points to the section that holds all

114 operating systems: from 0 to 1

null-terminated strings. In the example, the index is 28, which means

it’s the 28th entry of the table.

5.3 Section header table

As we know already, code and data compose a program. However, not

all types of code and data have the same purpose. For that reason, in-

stead of a big chunk of code and data, they are divided into smaller chunks,

and each chunk must satisfy these conditions (according to gABI):

✄ Every section in an object file has exactly one section header describ-

ing it. But, section headers may exist that do not have a section.

✄ Each section occupies one contiguous (possibly empty) sequence of

bytes within a file. That means, there’s no two regions of bytes that

are the same section.

✄ Sections in a file may not overlap. No byte in a file resides in more

than one section.

✄ An object file may have inactive space. The various headers and the

sections might not “cover” every byte in an object file. The contents

of the inactive data are unspecified.

To get all the headers from an executable binary e.g. hello, use the fol-

lowing command:

$ readelf -S hello

Here is a sample output (do not worry if you don’t understand the

output. Just skim to get your eyes familiar with it. We will dissect it

soon enough):

Output
There are 31 section headers, starting at offset 0x19c8:

Section Headers:

[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

the anatomy of a program 115

[0] NULL 0000000000000000 00000000

0000000000000000 0000000000000000 0 0 0

[1] .interp PROGBITS 0000000000400238 00000238

000000000000001c 0000000000000000 A 0 0 1

[2] .note.ABI-tag NOTE 0000000000400254 00000254

0000000000000020 0000000000000000 A 0 0 4

[3] .note.gnu.build-i NOTE 0000000000400274 00000274

0000000000000024 0000000000000000 A 0 0 4

[4] .gnu.hash GNU_HASH 0000000000400298 00000298

000000000000001c 0000000000000000 A 5 0 8

[5] .dynsym DYNSYM 00000000004002b8 000002b8

0000000000000048 0000000000000018 A 6 1 8

[6] .dynstr STRTAB 0000000000400300 00000300

0000000000000038 0000000000000000 A 0 0 1

[7] .gnu.version VERSYM 0000000000400338 00000338

0000000000000006 0000000000000002 A 5 0 2

[8] .gnu.version_r VERNEED 0000000000400340 00000340

0000000000000020 0000000000000000 A 6 1 8

[9] .rela.dyn RELA 0000000000400360 00000360

0000000000000018 0000000000000018 A 5 0 8

[10] .rela.plt RELA 0000000000400378 00000378

0000000000000018 0000000000000018 AI 5 24 8

[11] .init PROGBITS 0000000000400390 00000390

000000000000001a 0000000000000000 AX 0 0 4

[12] .plt PROGBITS 00000000004003b0 000003b0

0000000000000020 0000000000000010 AX 0 0 16

[13] .plt.got PROGBITS 00000000004003d0 000003d0

0000000000000008 0000000000000000 AX 0 0 8

[14] .text PROGBITS 00000000004003e0 000003e0

0000000000000192 0000000000000000 AX 0 0 16

[15] .fini PROGBITS 0000000000400574 00000574

0000000000000009 0000000000000000 AX 0 0 4

[16] .rodata PROGBITS 0000000000400580 00000580

0000000000000004 0000000000000004 AM 0 0 4

116 operating systems: from 0 to 1

[17] .eh_frame_hdr PROGBITS 0000000000400584 00000584

000000000000003c 0000000000000000 A 0 0 4

[18] .eh_frame PROGBITS 00000000004005c0 000005c0

0000000000000114 0000000000000000 A 0 0 8

[19] .init_array INIT_ARRAY 0000000000600e10 00000e10

0000000000000008 0000000000000000 WA 0 0 8

[20] .fini_array FINI_ARRAY 0000000000600e18 00000e18

0000000000000008 0000000000000000 WA 0 0 8

[21] .jcr PROGBITS 0000000000600e20 00000e20

0000000000000008 0000000000000000 WA 0 0 8

[22] .dynamic DYNAMIC 0000000000600e28 00000e28

00000000000001d0 0000000000000010 WA 6 0 8

[23] .got PROGBITS 0000000000600ff8 00000ff8

0000000000000008 0000000000000008 WA 0 0 8

[24] .got.plt PROGBITS 0000000000601000 00001000

0000000000000020 0000000000000008 WA 0 0 8

[25] .data PROGBITS 0000000000601020 00001020

0000000000000010 0000000000000000 WA 0 0 8

[26] .bss NOBITS 0000000000601030 00001030

0000000000000008 0000000000000000 WA 0 0 1

[27] .comment PROGBITS 0000000000000000 00001030

0000000000000034 0000000000000001 MS 0 0 1

[28] .shstrtab STRTAB 0000000000000000 000018b6

000000000000010c 0000000000000000 0 0 1

[29] .symtab SYMTAB 0000000000000000 00001068

0000000000000648 0000000000000018 30 47 8

[30] .strtab STRTAB 0000000000000000 000016b0

0000000000000206 0000000000000000 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings), l (large)

I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)

O (extra OS processing required) o (OS specific), p (processor specific)

The first line:

the anatomy of a program 117

There are 31 section headers, starting at offset 0x19c8

summarizes the total number of sections in the file, and where the

address where it starts. Then, comes the listing section by section with

the following header, is also the format of each section output:

Output
[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

Each section has two lines with different fields:

Nr The index of each section.

Name The name of each section.

Type This field (in a section header) identifies the type of each section.

Types are used to classify sections.

Address The starting virtual address of each section. Note that the ad-

dresses are virtual only when a program runs in an OS with support

for virtual memory enabled. In our OS, we run on the bare metal, the

addresses will all be physical.

Offset is a distance in bytes, from the first byte of a file to the start of

an object, such as a section or a segment in the context of an ELF bi-

nary file.

Size The size in bytes of each section.

EntSize Some sections hold a table of fixed-size entries, such as a sym-

bol table. For such a section, this member gives the size in bytes of

each entry. The member contains 0 if the section does not hold a ta-

ble of fixed-size entries.

Flags describes attributes of a section. Flags together with a type de-

fines the purpose of a section. Two sections can be of the same type,

but serve different purposes. For example, even though .data and .text

share the same type, .data holds the initialized data of a program while

118 operating systems: from 0 to 1

.text holds executable instructions of a program. For that reason,

.data is given read and write permission, but not executable. Any at-

tempt to execute code in .data is denied by the running OS: in Linux,

such invalid section usage gives a segmentation fault.

ELF gives information to enable an OS with such protection mecha-

nism. However, running on bare metal, nothing can prevent from do-

ing anything. Our OS can execute code in data section, and vice versa,

writing to code section.

Table 5.3.1: Section Flags

Flag Descriptions

W Bytes in this section are writable during execution.

A Memory is allocated for this section during process execution. Some control sections do

not reside in the memory image of an object file; this attribute is off for those sections.

X The section contains executable instructions.

M The data in the section may be merged to eliminate duplication. Each element in the

section is compared against other elements in sections with the same name, type and flags.

Elements that would have identical values at program run-time may be merged.

S The data elements in the section consist of null-terminated character strings. The size of

each character is specified in the section header’s EntSize field.

l Specific large section for x86_64 architecture. This flag is not specified in the Generic ABI

but in x86_64 ABI.

I The Info field of this section header holds an index of a section header. Otherwise, the

number is the index of something else.

L Preserve section ordering when linking. If this section is combined with other sections in

the output file, it must appear in the same relative order with respect to those sections, as

the linked-to section appears with respect to sections the linked-to section is combined

with. Apply when the Link field of this section’s header references another section (the

linked-to section)

G This section is a member (perhaps the only one) of a section group.

T This section holds Thread-Local Storage, meaning that each thread has its own distinct

instance of this data. A thread is a distinct execution flow of code. A program can have

multiple threads that pack different pieces of code and execute separately, at the same time.

We will learn more about threads when writing our kernel.

the anatomy of a program 119

E Link editor is to exclude this section from executable and shared library that it builds when

those objects are not to be further relocated.

x Unknown flag to readelf. It happens because the linking process can be done manually

with a linker like GNU ld (we will later later). That is, section flags can be specified

manually, and some flags are for a customized ELF that the open-source readelf doesn’t

know of.

O This section requires special OS-specific processing (beyond the standard linking rules) to

avoid incorrect behavior. A link editor encounters sections whose headers contain

OS-specific values it does not recognize by Type or Flags values defined by ELF standard,

the link editor should combine those sections.

o All bits included in this flag are reserved for operating system-specific semantics.

p All bits included in this flag are reserved for processor-specific semantics. If meanings are

specified, the processor supplement explains them.

Link and Info are numbers that references the indexes of sections, sym-

bol table entries, hash table entries. Link field only holds the index

of a section, while Info field holds an index of a section, a symbol ta-

ble entry or a hash table entry, depends on the type of a section.

Later when writing our OS, we will handcraft the kernel image by ex-

plicitly linking the object files (produced by gcc) through a linker script.

We will specify the memory layout of sections by specifying at what

addresses they will appear in the final image. But we will not assign

any section flag and let the linker take care of it. Nevertheless, know-

ing which flag does what is useful.

Align is a value that enforces the offset of a section should be divisible

by the value. Only 0 and positive integral powers of two are allowed.

Values 0 and 1 mean the section has no alignment constraint.

Example 5.3.1. Output of .interp section:

Output
[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

[1] .interp PROGBITS 0000000000400238 00000238

000000000000001c 0000000000000000 A 0 0 1

Nr is 1.

120 operating systems: from 0 to 1

Type is PROGBITS, which means this section is part of the program.

Address is 0x0000000000400238, which means the program is loaded

at this virtual memory address at runtime.

Offset is 0x00000238 bytes into file.

Size is 0x000000000000001c in bytes.

EntSize is 0, which means this section does not have any fixed-size

entry.

Flags are A (Allocatable), which means this section consumes mem-

ory at runtime.

Info and Link are 0 and 0, which means this section links to no sec-

tion or entry in any table.

Align is 1, which means no alignment.

Example 5.3.2. Output of the .text section:

Output
[14] .text PROGBITS 00000000004003e0 000003e0

0000000000000192 0000000000000000 AX 0 0 16

Nr is 14.

Type is PROGBITS, which means this section is part of the program.

Address is 0x00000000004003e0, which means the program is loaded

at this virtual memory address at runtime.

Offset is 0x000003e0 bytes into file.

Size is 0x0000000000000192 in bytes.

EntSize is 0, which means this section does not have any fixed-size

entry.

Flags are A (Allocatable) and X (Executable), which means this sec-

tion consumes memory and can be executed as code at runtime.

Info and Link are 0 and 0, which means this section links to no sec-

tion or entry in any table.

Align is 16, which means the starting address of the section should

be divisible by 16, or 0x10. Indeed, it is: 0x3e0/0x10 = 0x3e.

the anatomy of a program 121

5.4 Understand Section in-depth

In this section, we will learn different details of section types and the pur-

poses of special sections e.g. .bss, .text, .data, etc, by looking at each

section one by one. We will also examine the content of each section as

a hexdump with the commands:

$ readelf -x <section name|section number> <file>

For example, if you want to examine the content of section with index

25 (the .bss section in the sample output) in the file hello:

$ readelf -x 25 hello

Equivalently, using name instead of index works:

$ readelf -x .data hello

If a section contains strings e.g. string symbol table, the flag -x can

be replaced with -p.

NULL marks a section header as inactive and does not have an associated

section. NULL section is always the first entry of section header table.

It means, any useful section starts from 1.

Example 5.4.1. The sample output of NULL section:

Output
[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

[0] NULL 0000000000000000 00000000

0000000000000000 0000000000000000 0 0 0

Examining the content, the section is empty:

Output
Section ” has no data to dump.

122 operating systems: from 0 to 1

NOTE marks a section with special information that other programs will

check for conformance, compatibility, etc, by a vendor or a system builder.

Example 5.4.2. In the sample output, we have 2 NOTE sections:

Output
[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

[2] .note.ABI-tag NOTE 0000000000400254 00000254

0000000000000020 0000000000000000 A 0 0 4

[3] .note.gnu.build-i NOTE 0000000000400274 00000274

0000000000000024 0000000000000000 A 0 0 4

Examine 2nd section with the command:

$ readelf -x 2 hello

we have:

Output
Hex dump of section ’.note.ABI-tag’:

0x00400254 04000000 10000000 01000000 474e5500GNU.

0x00400264 00000000 02000000 06000000 20000000

PROGBITS indicates a section holding the main content of a program, ei-

ther code or data.

Example 5.4.3. There are many PROGBITS sections:

Output
[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

[1] .interp PROGBITS 0000000000400238 00000238

000000000000001c 0000000000000000 A 0 0 1

...

[11] .init PROGBITS 0000000000400390 00000390

000000000000001a 0000000000000000 AX 0 0 4

[12] .plt PROGBITS 00000000004003b0 000003b0

0000000000000020 0000000000000010 AX 0 0 16

[13] .plt.got PROGBITS 00000000004003d0 000003d0

the anatomy of a program 123

0000000000000008 0000000000000000 AX 0 0 8

[14] .text PROGBITS 00000000004003e0 000003e0

0000000000000192 0000000000000000 AX 0 0 16

[15] .fini PROGBITS 0000000000400574 00000574

0000000000000009 0000000000000000 AX 0 0 4

[16] .rodata PROGBITS 0000000000400580 00000580

0000000000000004 0000000000000004 AM 0 0 4

[17] .eh_frame_hdr PROGBITS 0000000000400584 00000584

000000000000003c 0000000000000000 A 0 0 4

[18] .eh_frame PROGBITS 00000000004005c0 000005c0

0000000000000114 0000000000000000 A 0 0 8

...

[23] .got PROGBITS 0000000000600ff8 00000ff8

0000000000000008 0000000000000008 WA 0 0 8

[24] .got.plt PROGBITS 0000000000601000 00001000

0000000000000020 0000000000000008 WA 0 0 8

[25] .data PROGBITS 0000000000601020 00001020

0000000000000010 0000000000000000 WA 0 0 8

[27] .comment PROGBITS 0000000000000000 00001030

0000000000000034 0000000000000001 MS 0 0 1

For our operating system, we only need the following section:

.text This section holds all the compiled code of a program.

.data This section holds the initialized data of a program. Since the

data are initialized with actual values, gcc allocates the section with

actual byte in the executable binary.

.rodata This section holds read-only data, such as fixed-size strings

in a program, e.g. “Hello World”, and others.

.bss This section, shorts for Block Started by Symbol, holds unini-

tialized data of a program. Unlike other sections, no space is allo-

cated for this section in the image of the executable binary on disk.

The section is allocated only when the program is loaded into main

memory.

124 operating systems: from 0 to 1

Other sections are mainly needed for dynamic linking, that is code

linking at runtime for sharing between many programs. To enable

such feature, an OS as a runtime environment must be presented.

Since we run our OS on bare metal, we are effectively creating such

environment. For simplicity, we won’t add dynamic linking to our

OS.

SYMTAB and DYNSYM These sections hold symbol table. A symbol table

is an array of entries that describe symbols in a program. A symbol

is a name assigned to an entity in a program. The types of these en-

tities are also the types of symbols, and these are the possible types

of an entity:

Example 5.4.4. In the sample output, section 5 and 29 are symbol

tables:

Output
[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

[5] .dynsym DYNSYM 00000000004002b8 000002b8

0000000000000048 0000000000000018 A 6 1 8

...

[29] .symtab SYMTAB 0000000000000000 00001068

0000000000000648 0000000000000018 30 47 8

To show the symbol table:

$ readelf -s hello

Output consists of 2 symbol tables, corresponding to the two sections

above, .dynsym and .symtab:

Output
Symbol table ’.dynsym’ contains 4 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND

1: 0000000000000000 0 FUNC GLOBAL DEFAULT UND puts@GLIBC_2.2.5 (2)

2: 0000000000000000 0 FUNC GLOBAL DEFAULT UND __libc_start_main@GLIBC_2.2.5 (2)

3: 0000000000000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

the anatomy of a program 125

Symbol table ’.symtab’ contains 67 entries:

Num: Value Size Type Bind Vis Ndx Name

..

59: 0000000000601040 0 NOTYPE GLOBAL DEFAULT 26 _end

60: 0000000000400430 42 FUNC GLOBAL DEFAULT 14 _start

61: 0000000000601038 0 NOTYPE GLOBAL DEFAULT 26 __bss_start

62: 0000000000400526 32 FUNC GLOBAL DEFAULT 14 main

63: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _Jv_RegisterClasses

64: 0000000000601038 0 OBJECT GLOBAL HIDDEN 25 __TMC_END__

65: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_registerTMCloneTable

66: 00000000004003c8 0 FUNC GLOBAL DEFAULT 11 _init

TLS The symbol is associated with a Thread-Local Storage entity.

Num is the index of an entry in a table.

Value is the virtual memory address where the symbol is located.

Size is the size of the entity associated with a symbol.

Type is a symbol type according to table.

NOTYPE The type of a symbol is not specified.

OBJECT The symbol is associated with a data object. In C, any vari-

able definition is of OBJECT type.

FUNC The symbol is associated with a function or other executable

code.

SECTION The symbol is associated with a section, and exists pri-

marily for relocation.

FILE The symbol is the name of a source file associated with an

executable binary.

COMMON The symbol labels an uninitialized variable. That is, when

a variable in C is defined as global variable without an initial

value, or as an external variable using the extern keyword. In

other words, these variables stay in .bss section.

Bind is the scope of a symbol.

LOCAL are symbols that are only visible in the object files that

defined them. In C, the static modifier marks a symbol (e.g.

a variable/function) as local to only the file that defines it.

126 operating systems: from 0 to 1

Example 5.4.5. If we define variables and functions with static

modifer:

hello.c

static int global_static_var = 0;

static void local_func() {

}

int main(int argc, char *argv[])

{

static int local_static_var = 0;

return 0;

}

Then we get the static variables listed as local symbols after

compiling:

$ gcc -m32 hello.c -o hello

$ readelf -s hello

Output
Symbol table ’.dynsym’ contains 5 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 00000000 0 NOTYPE LOCAL DEFAULT UND

1: 00000000 0 FUNC GLOBAL DEFAULT UND puts@GLIBC_2.0 (2)

2: 00000000 0 NOTYPE WEAK DEFAULT UND __gmon_start__

3: 00000000 0 FUNC GLOBAL DEFAULT UND __libc_start_main@GLIBC_2.0 (2)

4: 080484bc 4 OBJECT GLOBAL DEFAULT 16 _IO_stdin_used

Symbol table ’.symtab’ contains 72 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 00000000 0 NOTYPE LOCAL DEFAULT UND

......... output omitted

38: 0804a020 4 OBJECT LOCAL DEFAULT 26 global_static_var

39: 0804840b 6 FUNC LOCAL DEFAULT 14 local_func

the anatomy of a program 127

40: 0804a024 4 OBJECT LOCAL DEFAULT 26 local_static_var.1938

......... output omitted

GLOBAL are symbols that are accessible by other object files when

linking together. These symbols are primarily non-static func-

tions and non-static global data. The extern modifier marks

a symbol as externally defined elsewhere but is accessible in the

final executable binary, so an extern variable is also considered

GLOBAL.

Example 5.4.6. Similar to the LOCAL example above, the out-

put lists many GLOBAL symbols such as main:

Num: Value Size Type Bind Vis Ndx Name

......... output omitted

66: 080483e1 10 FUNC GLOBAL DEFAULT 14 main

......... output omitted

WEAK are symbols whose definitions can be redefined. Normally,

a symbol with multiple definitions are reported as an error by

a compiler. However, this constraint is lax when a definition is

explicitly marked as weak, which means the default implementa-

tion can be replaced by a different definition at link time.

Example 5.4.7. Suppose we have a default implementation of

the function add:

hello.c

#include <stdio.h>

__attribute__((weak)) int add(int a, int b) {

printf("warning: function is not implemented.\n")

;

return 0;

}

int main(int argc, char *argv[])

{

128 operating systems: from 0 to 1

printf("add(1,2) is %d\n", add(1,2));

return 0;

}

__attribute__((weak)) is a function attribute. A function at- function attribute

tribute is extra information for a compiler to handle a function

differently from a normal function. In this example, weak attribute

makes the function add a weak function,which means the default

implementation can be replaced by a different definition at link

time. Function attribute is a feature of a compiler, not standard

C.

If we do not supply a different function definition in a different

file (must be in a different file, otherwise gcc reports as an er-

ror), then the default implementation is applied. When the func-

tion add is called, it only prints the message: "warning: function

not implemented"and returns 0:

$./hello

warning: function is not implemented.

add(1,2) is 0

However, if we supply a different definition in another file e.g. math.c:

math.c

int add(int a, int b) {

return a + b;

}

and compile the two files together:

$ gcc math.c hello.c -o hello

Then, when running hello, no warning message is printed and

the correct value is returned.

Weak symbol is a mechanism to provide a default implementa-

tion, but replaceable when a better implementation is available

(e.g. more specialized and optimized) at link-time.

the anatomy of a program 129

Vis is the visibility of a symbol. The following values are available:

Table 5.4.1: Symbol Visibility

Value Description

DEFAULT The visibility is specified by the binding type of asymbol.

✄ Global and weak symbols are visible outside of their defining component (executable

file or shared object).

✄ Local symbols are hidden. See HIDDEN below.

HIDDEN A symbol is hidden when the name is not visible to any other program outside of its

running program.

PROTECTED A symbol is protected when it is shared outside of its running program or shared libary

and cannot be overridden. That is, there can only be one definition for this symbol

across running programs that use it. No program can define its own definition of the

same symbol.

INTERNAL Visibility is processor-specific and is defined by processor-specific ABI.

Ndx is the index of a section that the symbol is in. Aside from fixed

index numbers that represent section indexes, index has these spe-

cial values:

Table 5.4.2: Symbol Index

Value Description

ABS The index will not be changed by any symbol relocation.

COM The index refers to an unallocated common block.

UND The symbol is undefined in the current object file, which means the symbol depends on the

actual definition in another file. Undefined symbols appears when the object file refers to

symbols that are available at runtime, from shared library.

LORESERVE

HIRESERVE

LORESERVE is the lower boundary of the reserve indexes. Its value is 0xff00.

HIREVERSE is the upper boundary of the reserve indexes. Its value is 0xffff.

The operating system reserves exclusive indexes between LORESERVE and HIRESERVE,

which do not map to any actual section header.

XINDEX The index is larger than LORESERVE. The actual value will be contained in the section

SYMTAB_SHNDX, where each entry is a mapping between a symbol, whose Ndx field is a

XINDEX value, and the actual index value.

130 operating systems: from 0 to 1

Others Sometimes, values such as ANSI_COM, LARGE_COM, SCOM, SUND appear. This means that the

index is processor-specific.

Name is the symbol name.

Example 5.4.8. A C application program always starts from sym-

bol main. The entry for main in the symbol table in .symtab section

is:

Output
Num: Value Size Type Bind Vis Ndx Name

62: 0000000000400526 32 FUNC GLOBAL DEFAULT 14 main

The entry shows that:

✄ main is the 62th entry in the table.

✄ main starts at address 0x0000000000400526.

✄ main consumes 32 bytes.

✄ main is a function.

✄ main is in global scope.

✄ main is visible to other object files that use it.

✄ main is inside the 14th section, which is .text. This is logical, since

.text holds all program code.

STRTAB hold a table of null-terminated strings, called string table. The

first and last byte of this section is always a NULL character. A string

table section exists because a string can be reused by more than one

section to represent symbol and section names, so a program like readelf

or objdump can display various objects in a program, e.g. variable, func-

tions, section names, in a human-readable text instead of its raw hex

address.

Example 5.4.9. In the sample output, section 28 and 30 are of STRTAB

type:

the anatomy of a program 131

Output
[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

[28] .shstrtab STRTAB 0000000000000000 000018b6

000000000000010c 0000000000000000 0 0 1

[30] .strtab STRTAB 0000000000000000 000016b0

0000000000000206 0000000000000000 0 0 1

.shstrtab holds all the section names.

.strtab holds the symbols e.g. variable names, function names, struct

names, etc., in a C program, but not fixed-size null-terminated C strings;

the C strings are kept in .rodata section.

Example 5.4.10. Strings in those section can be inspected with the

command:

$ readelf -p 29 hello

The output shows all the section names, with the offset (also the string

index) into .shstrtab the table to the left:

Output
String dump of section ’.shstrtab’:

[1] .symtab

[9] .strtab

[11] .shstrtab

[1b] .interp

[23] .note.ABI-tag

[31] .note.gnu.build-id

[44] .gnu.hash

[4e] .dynsym

[56] .dynstr

[5e] .gnu.version

[6b] .gnu.version_r

[7a] .rela.dyn

[84] .rela.plt

132 operating systems: from 0 to 1

[8e] .init

[94] .plt.got

[9d] .text

[a3] .fini

[a9] .rodata

[b1] .eh_frame_hdr

[bf] .eh_frame

[c9] .init_array

[d5] .fini_array

[e1] .jcr

[e6] .dynamic

[ef] .got.plt

[f8] .data

[fe] .bss

[103] .comment

The actual implementation of a string table is a contiguous array of

null-terminated strings. The index of a string is the position of its first

character in the array. For example, in the above string table, .symtab

is at index 1 in the array (NULL character is at index 0). The length

of .symtab is 7, plus the NULL character, which occurs 8 bytes in to-

tal. So, .strtab starts at index 9, and so on.

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00000000 \0 . s y m t a b \0 . s t r t a b

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00000010 \0 . s h s t r t a b \0 . i n t e

.... and so on
Figure 5.4.1: String table in

memory of .shstrtab. A red

number is the starting index of a

string.
Similarly, the output of .strtab:

Output
String dump of section ’.strtab’:

[1] crtstuff.c

[c] __JCR_LIST__

[19] deregister_tm_clones

the anatomy of a program 133

[2e] __do_global_dtors_aux

[44] completed.7585

[53] __do_global_dtors_aux_fini_array_entry

[7a] frame_dummy

[86] __frame_dummy_init_array_entry

[a5] hello.c

[ad] __FRAME_END__

[bb] __JCR_END__

[c7] __init_array_end

[d8] _DYNAMIC

[e1] __init_array_start

[f4] __GNU_EH_FRAME_HDR

[107] _GLOBAL_OFFSET_TABLE_

[11d] __libc_csu_fini

[12d] _ITM_deregisterTMCloneTable

[149] j

[14b] _edata

[152] __libc_start_main@@GLIBC_2.2.5

[171] __data_start

[17e] __gmon_start__

[18d] __dso_handle

[19a] _IO_stdin_used

[1a9] __libc_csu_init

[1b9] __bss_start

[1c5] main

[1ca] _Jv_RegisterClasses

[1de] __TMC_END__

[1ea] _ITM_registerTMCloneTable

HASH holds a symbol hash table, which supports symbol table access.

DYNAMIC holds information for dynamic linking.

NOBITS is similar to PROGBITS but occupies no space.

Example 5.4.11. .bss section holds uninitialized data, which means

134 operating systems: from 0 to 1

the bytes in the section can have any value. Until a operating system

actually loads the section into main memory, there is no need to allo-

cate space for the binary image on disk to reduce the size of a binary

file. Here is the details of .bss from the example output:

Output
[Nr] Name Type Address Offset

Size EntSize Flags Link Info Align

[26] .bss NOBITS 0000000000601038 00001038

0000000000000008 0000000000000000 WA 0 0 1

[27] .comment PROGBITS 0000000000000000 00001038

0000000000000034 0000000000000001 MS 0 0 1

In the above output, the size of the section is only 8 bytes, while the

offsets of both sections are the same, which means .bss consumes no

byte of the executable binary on disk.

Notice that the .comment section has no starting address. This means

that this section is discarded when the executable binary is loaded

into memory.

REL holds relocation entries without explicit addends. This type will be

explained in details in 8.1

RELA holds relocation entries with explicit addends. This type will be

explained in details in 8.1

INIT_ARRAY is an array of function pointers for program initialization.

When an application program runs, before getting to main(), initial-

ization code in .init and this section are executed first. The first el-

ement in this array is an ignored function pointer.

It might not make sense when we can include initialization code in

the main() function. However, for shared object files where there are

no main(), this section ensures that the initialization code from an

object file executes before any other code to ensure a proper environ-

ment for main code to run properly. It also makes an object file more

modularity, as the main application code needs not to be responsible

for initializing a proper environment for using a particular object file,

but the object file itself. Such a clear division makes code cleaner.

the anatomy of a program 135

However, we will not use any .init and INIT_ARRAY sections in our

operating system, for simplicity, as initializing an environment is part

of the operating-system domain.

Example 5.4.12. To use the INIT_ARRAY, we simply mark a func-

tion with the attribute constructor:

hello.c

#include <stdio.h>

__attribute__((constructor)) static void init1(){

printf("%s\n", __FUNCTION__);

}

__attribute__((constructor)) static void init2(){

printf("%s\n", __FUNCTION__);

}

int main(int argc, char *argv[])

{

printf("hello␣world\n");

return 0;

}

The program automatically calls the constructor without explicitly

invoking it:

$ gcc -m32 hello.c -o hello

$./hello

init1

init2

hello world

Example 5.4.13. Optionally, a constructor can be assigned with a

priority from 101 onward. The priorities from 0 to 100 are reserved

136 operating systems: from 0 to 1

for gcc. If we want init2 to run before init1, we give it a higher pri-

ority:

hello.c

#include <stdio.h>

__attribute__((constructor(102))) static void init1(){

printf("%s\n", __FUNCTION__);

}

__attribute__((constructor(101))) static void init2(){

printf("%s\n", __FUNCTION__);

}

int main(int argc, char *argv[])

{

printf("hello␣world\n");

return 0;

}

The call order should be exactly as specified:

$ gcc -m32 hello.c -o hello

$./hello

init2

init1

hello world

Example 5.4.14. We can add initialization functions using another

method:

hello.c

#include <stdio.h>

the anatomy of a program 137

void init1() {

printf("%s\n", __FUNCTION__);

}

void init2() {

printf("%s\n", __FUNCTION__);

}

/* Without typedef, init is a definition of a function

pointer.

With typedef, init is a declaration of a type.*/

typedef void (*init)();

__attribute__((section(".init_array"))) init init_arr[2]

= {init1, init2};

int main(int argc, char *argv[])

{

printf("hello␣world!\n");

return 0;

}

The attribute section(“...”) put a function into a particular sec-

tion rather than the default .text. In this example, it is .init_array.

The section name is not necessary the same as the standard header

in an ELF file (such as .text or .init_array, but can be anything.

Non-standard section names are often used for controlling the final

binary layout of a compiled program. We will explore this techinque

in more details when learning the GNU ld linker and the linking pro-

cess. Again, the program automatically calls the constructors without

explicitly invoking it:

138 operating systems: from 0 to 1

$ gcc -m32 hello.c -o hello

$./hello

init1

init2

hello world!

FINI_ARRAY is an array of function pointers for program termination,

called after exiting main(). If the application terminate abnormally,

such as through abort() call or a crash, the .finit_array is ignored.

Example 5.4.15. A destructor is automatically called after exiting

main(), if one or more available:

hello.c

#include <stdio.h>

__attribute__((destructor)) static void destructor(){

printf("%s\n", __FUNCTION__);

}

int main(int argc, char *argv[])

{

printf("hello␣world\n");

return 0;

}

$ gcc -m32 hello.c -o hello

$./hello

hello world

destructor

PREINIT_ARRAY is an array of function pointers that are invoked before

all other initialization functions in INIT_ARRAY.

the anatomy of a program 139

Example 5.4.16. To use the .preinit_array, the only way to put

functions into this section is to use the attribute section():

hello.c

#include <stdio.h>

void preinit1() {

printf("%s\n", __FUNCTION__);

}

void preinit2() {

printf("%s\n", __FUNCTION__);

}

void init1() {

printf("%s\n", __FUNCTION__);

}

void init2() {

printf("%s\n", __FUNCTION__);

}

typedef void (*preinit)();

typedef void (*init)();

__attribute__((section(".preinit_array"))) preinit

preinit_arr[2] = {preinit1, preinit2};

__attribute__((section(".preinit_array"))) init init_arr

[2] = {init1, init2};

int main(int argc, char *argv[])

{

printf("hello␣world!\n");

140 operating systems: from 0 to 1

return 0;

}

$ gcc -m32 hello2.c -o hello2

$./hello2

preinit1

preinit2

init1

init2

hello world!

GROUP defines a section group, which is the same section that appears

in different object files but when merged into the final executable bi-

nary file, only one copy is kept and the rest in other object files are

discarded. This section is only relevant in C++ object files, so we will

not examine further.

SYMTAB_SHNDX is a section containing extended section indexes, that are

associated with a symbol table. This section only appears when the

Ndx value of an entry in the symbol table exceeds the LORESERVE value.

This section then maps between a symbol and an actual index value

of a section header.

Upon understanding section types, we can understand the number in Link

and Info fields:

Exercise 5.4.1. Verify that the value of the Link field of a SYMTAB sec-

tion is the index of a STRTAB section.

Exercise 5.4.2. Verify that the value of the Info field of a SYMTAB sec-

tion is the index of last local symbol + 1. It means, in the symbol table,

from the index listed by Info field onward, no local symbol appears.

Exercise 5.4.3. Verify that the value of the Info field of a REL section

is the index of the SYMTAB section.

Exercise 5.4.4. Verify that the value of the Link field of a REL section

is the index of the section where relocation is applied. For example. if

the section is .rel.text, then the relocating section should be .text.

the anatomy of a program 141

Type Link Info

DYNAMIC Entries in this section uses the section

index of the dynamic string table.

0

HASH

GNU_HASH

The section index of the symbol table

to which the hash table applies.

0

REL

RELA

The section index of the associated

symbol table.

The section index to which the

relocation applies.

SYMTAB

DYNSYM

The section index of the associated

string table.

One greater than the symbol table

index of the last local symbol.

GROUP The section index of the associated

symbol table.

The symbol index of an entry in the

associated symbol table. The name of

the specified symbol table entry

provides a signature for the section

group.

SYMTAB_SHNDX The section header index of the

associated symbol table.

Table 5.4.3: The meannings

of Link and Info depend on

section types. interpretation
5.5 Program header table

A program header table is an array of program headers that defines the

memory layout of a program at runtime.

A program header is a description of a program segment.

A program segment is a collection of related sections. A segment con-

tains zero or more sections. An operating system when loading a pro-

gram, only use segments, not sections. To see the information of a pro-

gram header table, we use the -l option with readelf:

$ readelf -l <binary file>

Similar to a section, a program header also has types:

PHDR specifies the location and size of the program header table itself,

both in the file and in the memory image of the program

INTERP specifies the location and size of a null-terminated path name

to invoke as an interpreter for linking runtime libraries.

LOAD specifies a loadable segment. That is, this segment is loaded into

main memory.

142 operating systems: from 0 to 1

DYNAMIC specifies dynamic linking information.

NOTE specifies the location and size of auxiliary information.

TLS specifies the Thread-Local Storage template, which is formed from

the combination of all sections with the flag TLS.

GNU_STACK indicates whether the program’s stack should be made exe-

cutable or not. Linux kernel uses this type.

A segment also has permission, which is a combination of these 3 values:

Table 5.5.1: Segment Permission

Permission Description

R Readable

W Writable

E Executable✄ Read (R)

✄ Write (W)

✄ Execute (E)

Example 5.5.1. The command to get the program header table:

$ readelf -l hello

Output:

Output
Elf file type is EXEC (Executable file)

Entry point 0x400430

There are 9 program headers, starting at offset 64

Program Headers:

Type Offset VirtAddr PhysAddr

FileSiz MemSiz Flags Align

PHDR 0x0000000000000040 0x0000000000400040 0x0000000000400040

0x00000000000001f8 0x00000000000001f8 R E 8

INTERP 0x0000000000000238 0x0000000000400238 0x0000000000400238

0x000000000000001c 0x000000000000001c R 1

[Requesting program interpreter: /lib64/ld-linux-x86-64.so.2]

LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000

0x000000000000070c 0x000000000000070c R E 200000

the anatomy of a program 143

LOAD 0x0000000000000e10 0x0000000000600e10 0x0000000000600e10

0x0000000000000228 0x0000000000000230 RW 200000

DYNAMIC 0x0000000000000e28 0x0000000000600e28 0x0000000000600e28

0x00000000000001d0 0x00000000000001d0 RW 8

NOTE 0x0000000000000254 0x0000000000400254 0x0000000000400254

0x0000000000000044 0x0000000000000044 R 4

GNU_EH_FRAME 0x00000000000005e4 0x00000000004005e4 0x00000000004005e4

0x0000000000000034 0x0000000000000034 R 4

GNU_STACK 0x0000000000000000 0x0000000000000000 0x0000000000000000

0x0000000000000000 0x0000000000000000 RW 10

GNU_RELRO 0x0000000000000e10 0x0000000000600e10 0x0000000000600e10

0x00000000000001f0 0x00000000000001f0 R 1

Section to Segment mapping:

Segment Sections...

00

01 .interp

02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr

.gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .plt.got .text .fini

.rodata .eh_frame_hdr .eh_frame

03 .init_array .fini_array .jcr .dynamic .got .got.plt .data .bss

04 .dynamic

05 .note.ABI-tag .note.gnu.build-id

06 .eh_frame_hdr

07

08 .init_array .fini_array .jcr .dynamic .got

In the sample output, LOAD segment appears twice:

Output
LOAD 0x0000000000000000 0x0000000000400000 0x0000000000400000

0x000000000000070c 0x000000000000070c R E 200000

LOAD 0x0000000000000e10 0x0000000000600e10 0x0000000000600e10

0x0000000000000228 0x0000000000000230 RW 200000

Why? Notice the permission:

✄ the upper LOAD has Read and Execute permission. This is a text seg-

144 operating systems: from 0 to 1

ment. A text segment contains read-only instructions and read-only

data.

✄ the lower LOAD has Read and Write permission. This is a data segment.

It means that this segment can be read and written to, but is not al-

lowed to be used as executable code, for security reason.

Then, LOAD contains the following sections:

Output
02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr

.gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .plt.got .text .fini

.rodata .eh_frame_hdr .eh_frame

03 .init_array .fini_array .jcr .dynamic .got .got.plt .data .bss

The first number is the index of a program header in program header

table, and the remaining text is the list of all sections within a segment.

Unfortunately, readelf does not print the index, so a user needs to keep

track manually which segment is of which index. First segment starts at

index 0, second at index 1 and so on. LOAD are segments at index 2 and

3. As can be seen from the two lists of sections, most sections are load-

able and is available at runtime.

5.6 Segments vs sections

As mentioned earlier, an operating system loads program segments, not

sections. However, a question arises: Why doesn’t the operating system

use sections instead? After all, a section also contains similar informa-

tion to a program segment, such as the type, the virtual memory address

to be loaded, the size, the attributes, the flags and align. As explained

before, a segment is the perspective of an operating system, while a sec-

tion is the perspective of a linker. To understand why, looking into the

structure of a segment, we can easily see:

✄ A segment is a collection of sections. It means that sections are logi-

cally grouped together by their attributes. For example, all sections

the anatomy of a program 145

in a LOAD segment are always loaded by the operating system; all sec-

tions have the same permission, either a RE (Read + Execute) for ex-

ecutable sections, or RW (Read + Write) for data sections.

✄ By grouping sections into a segment, it is easier for an operating sys-

tem to batch load sections just once by loading the start and end of

a segment, instead of loading section by section.

✄ Since a segment is for loading a program and a section is for linking

a program, all the sections in a segment is within its start and end vir-

tual memory addresses of a segment.

To see the last point clearer, consider an example of linking two object

files. Suppose we have two source files:

hello.c

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("Hello World\n");

return 0;

}

and:

math.c

int add(int a, int b) {

return a + b;

}

Now, compile the two source files as object files:

$ gcc -m32 -c math.c

$ gcc -m32 -c hello.c

Then, we check the sections of math.o:

146 operating systems: from 0 to 1

$ readelf -S math.o

Output
There are 11 section headers, starting at offset 0x1a8:

Section Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al

[0] NULL 00000000 000000 000000 00 0 0 0

[1] .text PROGBITS 00000000 000034 00000d 00 AX 0 0 1

[2] .data PROGBITS 00000000 000041 000000 00 WA 0 0 1

[3] .bss NOBITS 00000000 000041 000000 00 WA 0 0 1

[4] .comment PROGBITS 00000000 000041 000035 01 MS 0 0 1

[5] .note.GNU-stack PROGBITS 00000000 000076 000000 00 0 0 1

[6] .eh_frame PROGBITS 00000000 000078 000038 00 A 0 0 4

[7] .rel.eh_frame REL 00000000 00014c 000008 08 I 9 6 4

[8] .shstrtab STRTAB 00000000 000154 000053 00 0 0 1

[9] .symtab SYMTAB 00000000 0000b0 000090 10 10 8 4

[10] .strtab STRTAB 00000000 000140 00000c 00 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings)

I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)

O (extra OS processing required) o (OS specific), p (processor specific)

As shown in the output, all the section virtual memory addresses of

every section are set to 0. At this stage, each object file is simply a block

of binary that contains code and data. Its existence is to serve as a ma-

terial container for the final product, which is the executable binary. As

such, the virtual addresses in hello.o are all zeroes.

No segment exists at this stage:

$ readelf -l math.o

There are no program headers in this file.

The same happens to other object file:

the anatomy of a program 147

Output
There are 13 section headers, starting at offset 0x224:

Section Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al

[0] NULL 00000000 000000 000000 00 0 0 0

[1] .text PROGBITS 00000000 000034 00002e 00 AX 0 0 1

[2] .rel.text REL 00000000 0001ac 000010 08 I 11 1 4

[3] .data PROGBITS 00000000 000062 000000 00 WA 0 0 1

[4] .bss NOBITS 00000000 000062 000000 00 WA 0 0 1

[5] .rodata PROGBITS 00000000 000062 00000c 00 A 0 0 1

[6] .comment PROGBITS 00000000 00006e 000035 01 MS 0 0 1

[7] .note.GNU-stack PROGBITS 00000000 0000a3 000000 00 0 0 1

[8] .eh_frame PROGBITS 00000000 0000a4 000044 00 A 0 0 4

[9] .rel.eh_frame REL 00000000 0001bc 000008 08 I 11 8 4

[10] .shstrtab STRTAB 00000000 0001c4 00005f 00 0 0 1

[11] .symtab SYMTAB 00000000 0000e8 0000b0 10 12 9 4

[12] .strtab STRTAB 00000000 000198 000013 00 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings)

I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)

O (extra OS processing required) o (OS specific), p (processor specific)

$ readelf -l hello.o

There are no program headers in this file.

Only when object files are combined into a final executable binary, sec-

tions are fully realized:

$ gcc -m32 math.o hello.o -o hello

$ readelf -S hello.

Output
There are 31 section headers, starting at offset 0x1804:

Section Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al

148 operating systems: from 0 to 1

[0] NULL 00000000 000000 000000 00 0 0 0

[1] .interp PROGBITS 08048154 000154 000013 00 A 0 0 1

[2] .note.ABI-tag NOTE 08048168 000168 000020 00 A 0 0 4

[3] .note.gnu.build-i NOTE 08048188 000188 000024 00 A 0 0 4

[4] .gnu.hash GNU_HASH 080481ac 0001ac 000020 04 A 5 0 4

[5] .dynsym DYNSYM 080481cc 0001cc 000050 10 A 6 1 4

[6] .dynstr STRTAB 0804821c 00021c 00004a 00 A 0 0 1

[7] .gnu.version VERSYM 08048266 000266 00000a 02 A 5 0 2

[8] .gnu.version_r VERNEED 08048270 000270 000020 00 A 6 1 4

[9] .rel.dyn REL 08048290 000290 000008 08 A 5 0 4

[10] .rel.plt REL 08048298 000298 000010 08 AI 5 24 4

[11] .init PROGBITS 080482a8 0002a8 000023 00 AX 0 0 4

[12] .plt PROGBITS 080482d0 0002d0 000030 04 AX 0 0 16

[13] .plt.got PROGBITS 08048300 000300 000008 00 AX 0 0 8

[14] .text PROGBITS 08048310 000310 0001a2 00 AX 0 0 16

[15] .fini PROGBITS 080484b4 0004b4 000014 00 AX 0 0 4

[16] .rodata PROGBITS 080484c8 0004c8 000014 00 A 0 0 4

[17] .eh_frame_hdr PROGBITS 080484dc 0004dc 000034 00 A 0 0 4

[18] .eh_frame PROGBITS 08048510 000510 0000ec 00 A 0 0 4

[19] .init_array INIT_ARRAY 08049f08 000f08 000004 00 WA 0 0 4

[20] .fini_array FINI_ARRAY 08049f0c 000f0c 000004 00 WA 0 0 4

[21] .jcr PROGBITS 08049f10 000f10 000004 00 WA 0 0 4

[22] .dynamic DYNAMIC 08049f14 000f14 0000e8 08 WA 6 0 4

[23] .got PROGBITS 08049ffc 000ffc 000004 04 WA 0 0 4

[24] .got.plt PROGBITS 0804a000 001000 000014 04 WA 0 0 4

[25] .data PROGBITS 0804a014 001014 000008 00 WA 0 0 4

[26] .bss NOBITS 0804a01c 00101c 000004 00 WA 0 0 1

[27] .comment PROGBITS 00000000 00101c 000034 01 MS 0 0 1

[28] .shstrtab STRTAB 00000000 0016f8 00010a 00 0 0 1

[29] .symtab SYMTAB 00000000 001050 000470 10 30 48 4

[30] .strtab STRTAB 00000000 0014c0 000238 00 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings)

I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)

the anatomy of a program 149

O (extra OS processing required) o (OS specific), p (processor specific)

Every loadable section is assigned an address, highlighted in green. The

reason each section got its own address is that in reality, gcc does not

combine an object by itself, but invokes the linker ld. The linker ld uses

the default script that it can find in the system to build the executable

binary. In the default script, a segment is assigned a starting address 0x8048000

and sections belong to it. Then:

✄ 1st section address = starting segment address + section offset = 0x8048000 + 0x154 = 0x08048154

✄ 2nd section address = starting segment address + section offset = 0x8048000 + 0x168 = 0x08048168

✄ and so on until the last loadable section.

Indeed, the end address of a segment is also the end address of the final

section. We can see this by listing all the segments:

$ readelf -l hello

And check, for example, LOAD segment which starts at 0x08048000 and

end at 0x08048000 + 0x005fc = 0x080485fc:

Output
Elf file type is EXEC (Executable file)

Entry point 0x8048310

There are 9 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000034 0x08048034 0x08048034 0x00120 0x00120 R E 0x4

INTERP 0x000154 0x08048154 0x08048154 0x00013 0x00013 R 0x1

[Requesting program interpreter: /lib/ld-linux.so.2]

LOAD 0x000000 0x08048000 0x08048000 0x005fc 0x005fc R E 0x1000

LOAD 0x000f08 0x08049f08 0x08049f08 0x00114 0x00118 RW 0x1000

DYNAMIC 0x000f14 0x08049f14 0x08049f14 0x000e8 0x000e8 RW 0x4

NOTE 0x000168 0x08048168 0x08048168 0x00044 0x00044 R 0x4

GNU_EH_FRAME 0x0004dc 0x080484dc 0x080484dc 0x00034 0x00034 R 0x4

GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x10

150 operating systems: from 0 to 1

GNU_RELRO 0x000f08 0x08049f08 0x08049f08 0x000f8 0x000f8 R 0x1

Section to Segment mapping:

Segment Sections...

00

01 .interp

02 .interp .note.ABI-tag .note.gnu.build-id .gnu.hash .dynsym .dynstr

.gnu.version .gnu.version_r .rel.dyn .rel.plt .init .plt .plt.got .text .fini

.rodata .eh_frame_hdr .eh_frame

03 .init_array .fini_array .jcr .dynamic .got .got.plt .data .bss

04 .dynamic

05 .note.ABI-tag .note.gnu.build-id

06 .eh_frame_hdr

07

08 .init_array .fini_array .jcr .dynamic .got

The last section in the first LOAD segment is .eh_frame. The .eh_frame

section starts at 0x0804851 because the start address is 0x08048000, the

offset into the file is 0x510. The end address of .eh_frame should be: 0x08048000 + 0x510 + 0xec = 0x080485fc

because the segment size is 0xec. This is exactly the same as the end ad-

dress of the first LOAD segment above: 0x08048000 + 0x5ec = 0x080485fc.

Chapter 8 will explore this whole process in detail.

6
Runtime inspection and debug

A debugger is a program that allows inspection of a running program. debugger

A debugger can start and run a program then stop at a specific line for

examining the state of the program at that point. The point where the

debugger stop (but not halt) is called a breakpoint.

We will be using the GDB - GNU Debugger for debugging our ker-

nel. gdb is the program name. gdb can do four main kinds of things:

✄ Start your program, specifying anything that might affect its behav-

ior.

✄ Make your program stop on specified conditions.

✄ Examine what has happened, when your program has stopped

✄ Change things in your program, so you can experiment with correct-

ing the effects of one bug and go on to learn about another

6.1 A sample program

There must be an existing program for debugging. The good old “Hello

World” program suffices for the educational purpose in this chapter:

hello.c

152 operating systems: from 0 to 1

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("Hello World!\n");

return 0;

}

We compile it with debugging information with the option -g:

$ gcc -m32 -g hello.c -o hello

Finally, we start gdb with the program as argument:

$ gdb hello

6.2 Static inspection of a program

Before inspecting a program at runtime, gdb loads it first. Upon loading

into memory (but without running), a lot of useful information can be

retrieve for inspection. The commands in this section can be used be-

fore the program runs. However, they are also usable when the program

runs and can display even more information.

6.2.1 Command: info target/info file/info files

This command prints the information of the target being debugged. A

target is the debugging program.

Example 6.2.1. The output of the command from hello program, a

local target in detail:

(gdb) info target

runtime inspection and debug 153

Output
Symbols from "/tmp/hello".

Local exec file:

‘/tmp/hello’, file type elf32-i386.

Entry point: 0x8048310

0x08048154 - 0x08048167 is .interp

0x08048168 - 0x08048188 is .note.ABI-tag

0x08048188 - 0x080481ac is .note.gnu.build-id

0x080481ac - 0x080481cc is .gnu.hash

0x080481cc - 0x0804821c is .dynsym

0x0804821c - 0x08048266 is .dynstr

0x08048266 - 0x08048270 is .gnu.version

0x08048270 - 0x08048290 is .gnu.version_r

0x08048290 - 0x08048298 is .rel.dyn

0x08048298 - 0x080482a8 is .rel.plt

0x080482a8 - 0x080482cb is .init

0x080482d0 - 0x08048300 is .plt

0x08048300 - 0x08048308 is .plt.got

0x08048310 - 0x080484a2 is .text

0x080484a4 - 0x080484b8 is .fini

0x080484b8 - 0x080484cd is .rodata

0x080484d0 - 0x080484fc is .eh_frame_hdr

0x080484fc - 0x080485c8 is .eh_frame

0x08049f08 - 0x08049f0c is .init_array

0x08049f0c - 0x08049f10 is .fini_array

0x08049f10 - 0x08049f14 is .jcr

0x08049f14 - 0x08049ffc is .dynamic

0x08049ffc - 0x0804a000 is .got

0x0804a000 - 0x0804a014 is .got.plt

0x0804a014 - 0x0804a01c is .data

0x0804a01c - 0x0804a020 is .bss

The output displayed reports:

✄ Path of a symbol file. A symbol file is the file that contains the debug-

ging information. Usually, this is the same file as the binary, but it is

154 operating systems: from 0 to 1

common to separate between an executable binary and its debugging

information into 2 files, especially for remote debugging. In the exam-

ple, it is this line:

Symbols from "/tmp/hello".

✄ The path of the debugging program and its file type. In the example,

it is this line:

Local exec file:

‘/tmp/hello’, file type elf32-i386.

✄ The entry point to the debugging program. That is, the very first code

the program runs. In the example, it is this line:

Entry point: 0x8048310

✄ A list of sections with its starting and ending addresses. In the exam-

ple, it is the remaining output.

Example 6.2.2. If the debugging program runs in a different machine,

it is a remote target and gdb only prints a brief information:

(gdb) info target

Output
Remote serial target in gdb-specific protocol:

Debugging a target over a serial line.

6.2.2 Command: maint info sections

This command is similar to info target but give extra information about

program sections, specifically the file offset and the flags of each section.

Example 6.2.3. Here is the output when running against hello pro-

gram:

(gdb) maint info sections

runtime inspection and debug 155

Output
Exec file:

‘/tmp/hello’, file type elf64-x86-64.

[0] 0x00400238->0x00400254 at 0x00000238: .interp ALLOC LOAD READONLY DATA HAS_CONTENTS

[1] 0x00400254->0x00400274 at 0x00000254: .note.ABI-tag ALLOC LOAD READONLY DATA HAS_CONTENTS

[2] 0x00400274->0x00400298 at 0x00000274: .note.gnu.build-id ALLOC LOAD READONLY DATA HAS_CONTENTS

[3] 0x00400298->0x004002b4 at 0x00000298: .gnu.hash ALLOC LOAD READONLY DATA HAS_CONTENTS

[4] 0x004002b8->0x00400318 at 0x000002b8: .dynsym ALLOC LOAD READONLY DATA HAS_CONTENTS

[5] 0x00400318->0x00400355 at 0x00000318: .dynstr ALLOC LOAD READONLY DATA HAS_CONTENTS

[6] 0x00400356->0x0040035e at 0x00000356: .gnu.version ALLOC LOAD READONLY DATA HAS_CONTENTS

[7] 0x00400360->0x00400380 at 0x00000360: .gnu.version_r ALLOC LOAD READONLY DATA HAS_CONTENTS

....remaining output omitted....

The output is similar to info target, but with more details. Next to

the section names are the section flags, which are attributes of a section.

Here, we can see that the sections with LOAD flag are from LOAD segment.

The command can be combined with the section flags for filtered outputs:

ALLOBJ displays sections for all loaded object files, including shared

libraries. Shared libraries are only displayed when the program is al-

ready running.

section names displays only named sections.

Example 6.2.4. The command:

(gdb) maint info sections .text .data .bss

only displays .text, .data and .bss sections:

Output
Exec file:

‘/tmp/hello’, file type elf64-x86-64.

[13] 0x00400430->0x004005c2 at 0x00000430: .text ALLOC LOAD READONLY CODE HAS_CONTENTS

[24] 0x00601028->0x00601038 at 0x00001028: .data ALLOC LOAD DATA HAS_CONTENTS

[25] 0x00601038->0x00601040 at 0x00001038: .bss ALLOC

section-flags displays only sections with specified section flags. Note that

these section flags are specific to gdb, though it is based on the sec-

tion attributes defined previously. Currently, gdb understands the fol-

lowing flags:

156 operating systems: from 0 to 1

ALLOC Section will have space allocated in the process when loaded.

Set for all sections except those containing debug information.

LOAD Section will be loaded from the file into the child process mem-

ory. Set for pre-initialized code and data, clear for .bss sections.

RELOC Section needs to be relocated before loading.

READONLY Section cannot be modified by the child process.

CODE Section contains executable code only.

DATA Section contains data only (no executable code).

ROM Section will reside in ROM.

CONSTRUCTOR Section contains data for constructor/destructor

lists.

HAS_CONTENTS Section is not empty.

NEVER_LOAD An instruction to the linker to not output the sec-

tion.

COFF_SHARED_LIBRARY A notification to the linker that the sec-

tion contains COFF shared library information. COFF is an ob-

ject file format, similar to ELF. While ELF is the file format for

an executable binary, COFF is the file format for an object file.

IS_COMMON Section contains common symbols.

Example 6.2.5. We can restrict the output to only display sections

that contain code with the command:

(gdb) maint info sections CODE

The output:

Output
Exec file:

‘/tmp/hello’, file type elf64-x86-64.

[10] 0x004003c8->0x004003e2 at 0x000003c8: .init ALLOC LOAD READONLY CODE HAS_CONTENTS

[11] 0x004003f0->0x00400420 at 0x000003f0: .plt ALLOC LOAD READONLY CODE HAS_CONTENTS

[12] 0x00400420->0x00400428 at 0x00000420: .plt.got ALLOC LOAD READONLY CODE HAS_CONTENTS

[13] 0x00400430->0x004005c2 at 0x00000430: .text ALLOC LOAD READONLY CODE HAS_CONTENTS

[14] 0x004005c4->0x004005cd at 0x000005c4: .fini ALLOC LOAD READONLY CODE HAS_CONTENTS

runtime inspection and debug 157

6.2.3 Command: info functions

This commands list all function names and their loaded addresses. The

names can be filtered with a regular expression.

Example 6.2.6. Run the command, we get the following output:

(gdb) info functions

Output
All defined functions:

File hello.c:

int main(int, char **);

Non-debugging symbols:

0x00000000004003c8 _init

0x0000000000400400 puts@plt

0x0000000000400410 __libc_start_main@plt

0x0000000000400430 _start

0x0000000000400460 deregister_tm_clones

0x00000000004004a0 register_tm_clones

0x00000000004004e0 __do_global_dtors_aux

0x0000000000400500 frame_dummy

0x0000000000400550 __libc_csu_init

0x00000000004005c0 __libc_csu_fini

0x00000000004005c4 _fini

6.2.4 Command: info variables

This command lists all global and static variable names, or filtered with

a regular expression.

Example 6.2.7. If we add a global variable int i into the sample source

program and recompile then run the command, we get the following out-

put:

(gdb) info variables

158 operating systems: from 0 to 1

Output
All defined variables:

File hello.c:

int i;

Non-debugging symbols:

0x00000000004005d0 _IO_stdin_used

0x00000000004005e4 __GNU_EH_FRAME_HDR

0x0000000000400708 __FRAME_END__

0x0000000000600e10 __frame_dummy_init_array_entry

0x0000000000600e10 __init_array_start

0x0000000000600e18 __do_global_dtors_aux_fini_array_entry

0x0000000000600e18 __init_array_end

0x0000000000600e20 __JCR_END__

0x0000000000600e20 __JCR_LIST__

0x0000000000600e28 _DYNAMIC

0x0000000000601000 _GLOBAL_OFFSET_TABLE_

0x0000000000601028 __data_start

0x0000000000601028 data_start

0x0000000000601030 __dso_handle

0x000000000060103c __bss_start

0x000000000060103c _edata

0x000000000060103c completed

0x0000000000601040 __TMC_END__

0x0000000000601040 _end

6.2.5 Command: disassemble/disas

This command displays the assembly code of the executable file.

Example 6.2.8. gdb can display the assembly code of a function:

(gdb) disassemble main

runtime inspection and debug 159

Output
Dump of assembler code for function main:

0x0804840b <+0>: lea ecx,[esp+0x4]

0x0804840f <+4>: and esp,0xfffffff0

0x08048412 <+7>: push DWORD PTR [ecx-0x4]

0x08048415 <+10>: push ebp

0x08048416 <+11>: mov ebp,esp

0x08048418 <+13>: push ecx

0x08048419 <+14>: sub esp,0x4

0x0804841c <+17>: sub esp,0xc

0x0804841f <+20>: push 0x80484c0

0x08048424 <+25>: call 0x80482e0 <puts@plt>

0x08048429 <+30>: add esp,0x10

0x0804842c <+33>: mov eax,0x0

0x08048431 <+38>: mov ecx,DWORD PTR [ebp-0x4]

0x08048434 <+41>: leave

0x08048435 <+42>: lea esp,[ecx-0x4]

0x08048438 <+45>: ret

End of assembler dump.

Example 6.2.9. It would be more useful if source is included:

(gdb) disassemble /s main

Output
Dump of assembler code for function main:

hello.c:

4 {

0x0804840b <+0>: lea ecx,[esp+0x4]

0x0804840f <+4>: and esp,0xfffffff0

0x08048412 <+7>: push DWORD PTR [ecx-0x4]

0x08048415 <+10>: push ebp

0x08048416 <+11>: mov ebp,esp

0x08048418 <+13>: push ecx

0x08048419 <+14>: sub esp,0x4

160 operating systems: from 0 to 1

5 printf("Hello World!\n");

0x0804841c <+17>: sub esp,0xc

0x0804841f <+20>: push 0x80484c0

0x08048424 <+25>: call 0x80482e0 <puts@plt>

0x08048429 <+30>: add esp,0x10

6 return 0;

0x0804842c <+33>: mov eax,0x0

7 }

0x08048431 <+38>: mov ecx,DWORD PTR [ebp-0x4]

0x08048434 <+41>: leave

0x08048435 <+42>: lea esp,[ecx-0x4]

0x08048438 <+45>: ret

End of assembler dump.

Now the high level source (in green text) is included as part of the as-

sembly dump. Each line is backed by the corresponding assembly code

below it.

Example 6.2.10. If the option /r is added, raw instructions in hex are

included, just like how objdump displays assembly code by default:

(gdb) disassemble /rs main

Output
Dump of assembler code for function main:

hello.c:

4 {

0x0804840b <+0>: 8d 4c 24 04 lea ecx,[esp+0x4]

0x0804840f <+4>: 83 e4 f0 and esp,0xfffffff0

0x08048412 <+7>: ff 71 fc push DWORD PTR [ecx-0x4]

0x08048415 <+10>: 55 push ebp

0x08048416 <+11>: 89 e5 mov ebp,esp

0x08048418 <+13>: 51 push ecx

0x08048419 <+14>: 83 ec 04 sub esp,0x4

5 printf("Hello World!\n");

0x0804841c <+17>: 83 ec 0c sub esp,0xc

runtime inspection and debug 161

0x0804841f <+20>: 68 c0 84 04 08 push 0x80484c0

0x08048424 <+25>: e8 b7 fe ff ff call 0x80482e0 <puts@plt>

0x08048429 <+30>: 83 c4 10 add esp,0x10

6 return 0;

0x0804842c <+33>: b8 00 00 00 00 mov eax,0x0

7 }

0x08048431 <+38>: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]

0x08048434 <+41>: c9 leave

0x08048435 <+42>: 8d 61 fc lea esp,[ecx-0x4]

0x08048438 <+45>: c3 ret

End of assembler dump.

Example 6.2.11. A function in a specific file can also be specified:

(gdb) disassemble /sr ’hello.c’::main

Output
Dump of assembler code for function main:

hello.c:

4 {

0x0804840b <+0>: 8d 4c 24 04 lea ecx,[esp+0x4]

0x0804840f <+4>: 83 e4 f0 and esp,0xfffffff0

0x08048412 <+7>: ff 71 fc push DWORD PTR [ecx-0x4]

0x08048415 <+10>: 55 push ebp

0x08048416 <+11>: 89 e5 mov ebp,esp

0x08048418 <+13>: 51 push ecx

0x08048419 <+14>: 83 ec 04 sub esp,0x4

5 printf("Hello World!\n");

0x0804841c <+17>: 83 ec 0c sub esp,0xc

0x0804841f <+20>: 68 c0 84 04 08 push 0x80484c0

0x08048424 <+25>: e8 b7 fe ff ff call 0x80482e0 <puts@plt>

0x08048429 <+30>: 83 c4 10 add esp,0x10

6 return 0;

0x0804842c <+33>: b8 00 00 00 00 mov eax,0x0

7 }

162 operating systems: from 0 to 1

0x08048431 <+38>: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]

0x08048434 <+41>: c9 leave

0x08048435 <+42>: 8d 61 fc lea esp,[ecx-0x4]

0x08048438 <+45>: c3 ret

End of assembler dump.

The filename must be included in a single quote, and the function must

be prefixed by double colons e.g. ’hello.c’::main to specify disassem-

bling of the function main in the file hello.c.

6.2.6 Command: x

This command examines the content of a given memory range.

Example 6.2.12. We can examine the raw content in main:

(gdb) x main

Output
0x804840b <main>: 0x04244c8d

By default, without any argument, the command only prints the con-

tent of a single memory address. In this case, that is the starting mem-

ory address in main.

Example 6.2.13. With format arguments, the command can print a

range of memory in a specific format.

(gdb) x/20b main

Output
0x804840b <main>: 0x8d 0x4c 0x24 0x04 0x83 0xe40xf0 0xff

0x8048413 <main+8>: 0x71 0xfc 0x55 0x89 0xe5 0x510x83 0xec

0x804841b <main+16>: 0x04 0x83 0xec 0x0c

/20b main argument means that the command prints 20 bytes, where

main starts in memory.

The general form for format argument is: /<repeated count><format

letter>

runtime inspection and debug 163

If the repeated count is not supplied, by default gdb supplies the count

as 1. The format letter is one the following values:

Letter Description

o Print the memory content in octal format.

x Print the memory content in hex format.

d Print the memory content in decimal format.

u Print the memory content in unsigned decimal format.

t Print the memory content in binary format.

f Print the memory content in float format.

a Print the memory content as memory addresses.

i Print the memory content as a series of assembly instructions, similar to disassemble command.

c Print the memory content as an array of ASCII characters.

s Print the memory content as a string

Depends on the circumstance, certain format is advantageous than

the others. For example, if a memory region contains floating-point num-

bers, then it is better to use the format f than viewing the number as

separated 1-byte hex numbers.

6.2.7 Command: print/p

Examining raw memory is useful but usually it is better to have a more

human-readable output. This command does precisely the task: it pretty-

prints an expression. An expression can be a global variable, a local vari-

able in current stack frame, a function, a register, a number, etc.

6.3 Runtime inspection of a program

The main use of a debugger is to examine the state of a program, when

it is running. gdb provides a set of useful commands for retrieving useful

runtime information.

6.3.1 Command: run

This command starts running the program.

Example 6.3.1. Run the hello program:

164 operating systems: from 0 to 1

(gdb) r

Output
Starting program: /tmp/hello

Hello World!

[Inferior 1 (process 1002) exited normally]

The program runs successfully and printed the message “Hello World”.

However, it would not be useful if all gdb can do is run a program.

6.3.2 Command: break/b

This command sets a breakpoint at a location in the high-level source

code. When gdb runs to a specific location marked by a breakpoint, it

stops executing for a programmer to inspect the current state of a pro-

gram.

Example 6.3.2. A breakpoint can be set on a line as displayed by an

editor. Suppose we want to set a breakpoint at line 3 of the program, which

is the start of main function:

hello.c

1 #include <stdio.h>

2

3 int main(int argc, char *argv[])

4 {

5 printf("Hello World!\n");

6 return 0;

7 }

When running a program, instead of running from start to finish, gdb

stopped at line 3:

(gdb) b 3

runtime inspection and debug 165

Output
Breakpoint 1 at 0x400535: file hello.c, line 3.

(gdb) r

Output
Starting program: /tmp/hello

Breakpoint 1, main (argc=1, argv=0x7fffffffdfb8) at hello.c:5

5 printf("Hello World!\n");

The breakpoint is at line 3, but gdb stopped line 5. The reason is that

line 3 does not contain code, but a function signature; gdb only stops where

it can execute code. The code in the function starts at line 5, the call to

printf, so gdb stops there.

Example 6.3.3. Line of code is not always the reliable way to specify

a breakpoint, as the source code can be changed. What if gdb should al-

ways stop at main function? In this case, a better method is to use the

function name directly:

b main

Then, regardless of how the source code changes, gdb always stops at

the main function.

Example 6.3.4. Sometimes, the debugging program does not contain

debug info, or gdb is debugging assembly code. In that case, a memory

address can be specified as a stop point. To get the function address, print

command can be used:

(gdb) print main

Output
$3 = {int (int, char **)} 0x400526 <main>

Knowing the address of main, we can easily set a breakpoint with a

memory address:

166 operating systems: from 0 to 1

b *0x400526

Example 6.3.5. gdb can also set breakpoint in any source file. Suppose

that hello program is composed not just one file but many files e.g. hello1.c,

hello2.c, hello3.c... In that case, simply add the filename before ei-

ther a line number:

b hello.c:3

Example 6.3.6. A function name in a specific file can also be set:

b hello.c:main

6.3.3 Command: next/n

This command executes the current line and stops at the next line. When

the current line is a function call, steps over it.

Example 6.3.7. After setting a breakpoint at main, run a program and

stop at the first printf:

(gdb) r

Output
Starting program: /tmp/hello

Breakpoint 1, main (argc=1, argv=0x7fffffffdfb8) at hello.c:5

5 printf("Hello World!\n");

Then, to proceed to the next statement, we use the next command:

(gdb) n

Output
Hello World!

6 return 0;

runtime inspection and debug 167

In the output, the first line shows the output produced after execut-

ing line 5; then, the next line shows where gdb stops currently, which is

line 6.

6.3.4 Command: step/s

This command executes the current line and stops at the next line. When

the current line is a function call, steps into it to the first next line in the

called function.

Example 6.3.8. Suppose we have a new function add1: 1 Why should we add a new function

and function call instead of using the
existing printf call? Stepping into
shared library functions is tricky be-
cause to make debugging works, the de-
bug info must be installed and loaded.
It is not worth the trouble for demon-
strating this simple command.

hello.c

#include <stdio.h>

int add(int a, int b) {

return a + b;

}

int main(int argc, char *argv[])

{

add(1, 2);

printf("Hello World!\n");

return 0;

}

If step command is used instead of next on the function call printf,

gdb steps inside the function:

(gdb) r

Output
Starting program: /tmp/hello

Breakpoint 1, main (argc=1, argv=0xffffd154) at hello.c:11

11 add(1, 2);

168 operating systems: from 0 to 1

(gdb) s

Output
add (a=1, b=2) at hello.c:6

6 return a + b;

After executing the command s, gdb stepped into the add function where

the first statement is a return.

6.3.5 Command: ni

At the core, gdb operates on assembly instruction. Source line by line

debugging is simply an enhancement to make it friendlier for program-

mers. Each statement in C translates to one or more assembly instruc-

tion, as shown with objdump and disassemble command. With the de-

bug info available, gdb knows how many instructions belong to one line

of high-level code; line by line debugging is just a execution of assembly

instructions of a line when moving from the current line to the next.

This command executes the one assembly instruction belongs to the

current line. Until all assembly instructions of the current line are exe-

cuted, gdb will not move to the next line. If the current instruction is a

call, step over it to the next instruction.

Example 6.3.9. When breakpoint is on the printf call and ni is used,

it steps through each assembly instruction:

(gdb) disassemble /s main

Output
Dump of assembler code for function main:

hello.c:

4 {

0x0804840b <+0>: lea ecx,[esp+0x4]

0x0804840f <+4>: and esp,0xfffffff0

0x08048412 <+7>: push DWORD PTR [ecx-0x4]

0x08048415 <+10>: push ebp

runtime inspection and debug 169

0x08048416 <+11>: mov ebp,esp

0x08048418 <+13>: push ecx

0x08048419 <+14>: sub esp,0x4

5 printf("Hello World!\n");

0x0804841c <+17>: sub esp,0xc

0x0804841f <+20>: push 0x80484c0

0x08048424 <+25>: call 0x80482e0 <puts@plt>

0x08048429 <+30>: add esp,0x10

6 return 0;

=> 0x0804842c <+33>: mov eax,0x0

7 }

0x08048431 <+38>: mov ecx,DWORD PTR [ebp-0x4]

0x08048434 <+41>: leave

0x08048435 <+42>: lea esp,[ecx-0x4]

0x08048438 <+45>: ret

End of assembler dump.

(gdb) r

Output
Starting program: /tmp/hello

Breakpoint 1, main (argc=1, argv=0xffffd154) at hello.c:5

5 printf("Hello World!\n");

(gdb) ni

Output
0x0804841f 5 printf("Hello World!\n");

(gdb) ni

Output
0x08048424 5 printf("Hello World!\n");

170 operating systems: from 0 to 1

(gdb) ni

Output
Hello World!

0x08048429 5 printf("Hello World!\n");

(gdb)

Output
6 return 0;

Upon entering ni, gdb executes current instruction and display the

next instruction. That’s why from the output, gdb only displays 3 ad-

dresses: 0x0804841f, 0x08048424 and 0x08048429. The instruction at

0x0804841c, which is the first instruction of printf, is not displayed be-

cause it is the first instruction that gdb stopped at. Assume that gdb stopped

at the first instruction of printf at 0x0804841c, the current instruction

can be displayed using x command:

(gdb) x/i $eip

Output
=> 0x804841c <main+17>: sub esp,0xc

6.3.6 Command: si

Similar to ni, this command executes the current assembly instruction

belongs to the current line. But if the current instruction is a call, step

into it to the first next instruction in the called function.

Example 6.3.10. Recall that the assembly code generated from printf

contains a call instruction:

(gdb) disassemble /s main

runtime inspection and debug 171

Output
Dump of assembler code for function main:

hello.c:

4 {

0x0804840b <+0>: lea ecx,[esp+0x4]

0x0804840f <+4>: and esp,0xfffffff0

0x08048412 <+7>: push DWORD PTR [ecx-0x4]

0x08048415 <+10>: push ebp

0x08048416 <+11>: mov ebp,esp

0x08048418 <+13>: push ecx

0x08048419 <+14>: sub esp,0x4

5 printf("Hello World!\n");

0x0804841c <+17>: sub esp,0xc

0x0804841f <+20>: push 0x80484c0

0x08048424 <+25>: call 0x80482e0 <puts@plt>

0x08048429 <+30>: add esp,0x10

6 return 0;

=> 0x0804842c <+33>: mov eax,0x0

7 }

0x08048431 <+38>: mov ecx,DWORD PTR [ebp-0x4]

0x08048434 <+41>: leave

0x08048435 <+42>: lea esp,[ecx-0x4]

0x08048438 <+45>: ret

End of assembler dump.

We try instruction by instruction stepping again, but this time by run-

ning si at 0x08048424, where call resides:

(gdb) si

Output
0x0804841f 5 printf("Hello World!\n");

(gdb) si

172 operating systems: from 0 to 1

Output
0x08048424 5 printf("Hello World!\n");

(gdb) x/i $eip

Output
=> 0x8048424 <main+25>: call 0x80482e0 <puts@plt>

(gdb) si

Output
0x080482e0 in puts@plt ()

The next instruction right after 0x8048424 is the first instruction at

0x080482e0 in puts function. In other words, gdb stepped into puts in-

stead of stepping over it.

6.3.7 Command: until

This command executes until the next line is greater than the current

line.

Example 6.3.11. Suppose we have a function that execute a long loop:

hello.c

#include <stdio.h>

int add1000() {

int total = 0;

for (int i = 0; i < 1000; ++i){

total += i;

}

printf("Done adding!\n");

runtime inspection and debug 173

return total;

}

int main(int argc, char *argv[])

{

add1000(1, 2);

printf("Hello World!\n");

return 0;

}

Using next command, we need to press 1000 times for finishing the

loop. Instead, a faster way is to use until:

(gdb) b add1000

Output
Breakpoint 1 at 0x8048411: file hello.c, line 4.

(gdb) r

Output
Starting program: /tmp/hello

Breakpoint 1, add1000 () at hello.c:4

4 int total = 0;

(gdb) until

Output
5 for (int i = 0; i < 1000; ++i){

(gdb) until

Output
6 total += i;

174 operating systems: from 0 to 1

(gdb) until

Output
5 for (int i = 0; i < 1000; ++i){

(gdb) until

Output
8 printf("Done adding!\n");

Executing the first until, gdb stopped at line 5 since line 5 is greater

than line 4.

Executing the second until, gdb stopped at line 6 since line 6 is greater

than line 5.

Executing the third until, gdb stopped at line 5 since the loop still

continues. Because line 5 is less than line 6, with the fourth until, gdb

kept executing until it does not go back to line 5 anymore and stopped

at line 8. This is a great way to skip over loop in the middle, instead of

setting unneeded breakpoint.

Example 6.3.12. until can be supplied with an argument to explic-

itly execute to a specific line:

(gdb) r

Output
Starting program: /tmp/hello

Breakpoint 1, add1000 () at hello.c:4

4 int total = 0;

(gdb) until 8

Output
add1000 () at hello.c:8

8 printf("Done adding!\n");

runtime inspection and debug 175

6.3.8 Command: finish

This command executes until the end of a function and displays the re-

turn value. finish is actually just a more convenient version of until.

Example 6.3.13. Using the add1000 function from the previous exam-

ple and use finish instead of until:

(gdb) r

Output
Starting program: /tmp/hello

Breakpoint 1, add1000 () at hello.c:4

4 int total = 0;

(gdb) finish

Output
Run till exit from #0 add1000 () at hello.c:4

Done adding!

0x08048466 in main (argc=1, argv=0xffffd154) at hello.c:15

15 add1000(1, 2);

Value returned is $1 = 499500

6.3.9 Command: bt

This command prints the backtrace of all stack frames. A backtrace is a backtrace

list of currently active functions:

Example 6.3.14. Suppose we have a chain of function calls:

hello.c

void d(int d) { };

void c(int c) { d(0); }

void b(int b) { c(1); }

void a(int a) { b(2); }

int main(int argc, char *argv[])

176 operating systems: from 0 to 1

{

a(3);

return 0;

}

bt can visualize such a chain in action:

(gdb) b a

Output
Breakpoint 1 at 0x8048404: file hello.c, line 9.

(gdb) r

Output
Starting program: /tmp/hello

Breakpoint 1, a (a=3) at hello.c:9

9 void a(int a) { b(2); }

(gdb) s

Output
b (b=2) at hello.c:7

7 void b(int b) { c(1); }

(gdb) s

Output
c (c=1) at hello.c:5

5 void c(int c) { d(0); }

(gdb) s

runtime inspection and debug 177

Output
d (d=0) at hello.c:3

3 void d(int d) { };

(gdb) bt

Output
#0 d (d=0) at hello.c:3

#1 0x080483eb in c (c=1) at hello.c:5

#2 0x080483fb in b (b=2) at hello.c:7

#3 0x0804840b in a (a=3) at hello.c:9

#4 0x0804841b in main (argc=1, argv=0xffffd154) at hello.c:13

Most-recent calls are placed on top and least-recent calls are near the

bottom. In this case, d is the most current active function, so it has the

index 0. Next is c, the 2nd active function, has the index 1 and so on with

function b, function a, and finally function main at the bottom, the least-

recent function. That is how we read a backtrace.

6.3.10 Command: up

This command goes up one frame earlier the current frame.

Example 6.3.15. Instead of staying in d function, we can go up to c

function and look at its state:

(gdb) bt

Output
#0 d (d=0) at hello.c:3

#1 0x080483eb in c (c=1) at hello.c:5

#2 0x080483fb in b (b=2) at hello.c:7

#3 0x0804840b in a (a=3) at hello.c:9

#4 0x0804841b in main (argc=1, argv=0xffffd154) at hello.c:13

(gdb) up

178 operating systems: from 0 to 1

Output
#1 0x080483eb in c (c=1) at hello.c:3

3 void b(int b) { c(1); }

The output displays the current frame is moved to c and where the

call to c is made, which is in function b at line 3.

6.3.11 Command: down

Similar to up, this command goes down one frame later then the current

frame.

Example 6.3.16. After inspecting c function, we can go back to d:

(gdb) bt

Output
#0 d (d=0) at hello.c:3

#1 0x080483eb in c (c=1) at hello.c:5

#2 0x080483fb in b (b=2) at hello.c:7

#3 0x0804840b in a (a=3) at hello.c:9

#4 0x0804841b in main (argc=1, argv=0xffffd154) at hello.c:13

(gdb) up

Output
#1 0x080483eb in c (c=1) at hello.c:3

3 void b(int b) { c(1); }

(gdb) down

Output
#0 d (d=0) at hello.c:1

1 void d(int d) { };

runtime inspection and debug 179

6.3.12 Command: info registers

This command lists the current values in commonly used registers. This

command is useful when debugging assembly and operating system code,

as we can inspect the current state of the machine.

Example 6.3.17. Executing the command, we can see the commonly

used registers:

(gdb) info registers

Output
eax 0xf7faddbc -134554180

ecx 0xffffd0c0 -12096

edx 0xffffd0e4 -12060

ebx 0x0 0

esp 0xffffd0a0 0xffffd0a0

ebp 0xffffd0a8 0xffffd0a8

esi 0xf7fac000 -134561792

edi 0xf7fac000 -134561792

eip 0x804841c 0x804841c <main+17>

eflags 0x286 [PF SF IF]

cs 0x23 35

ss 0x2b 43

ds 0x2b 43

es 0x2b 43

fs 0x0 0

gs 0x63 99

The above registers suffice for writing our operating system in later

part.

6.4 How debuggers work: A brief introduction

6.4.1 How breakpoints work

When a programmer places a breakpoint somewhere in his code, what

actually happens is that the first opcode of the first instruction of a state-

180 operating systems: from 0 to 1

ment is replaced with another instruction, int 3 with opcode CCh:

83 ec 0c → cc ec 0c

sub esp,0x4 int 3
Figure 6.4.1: Opcode replace-

ment, with int 3

int 3 only costs a single byte, making it efficient for debugging. When

int 3 instruction is executed, the operating system calls its breakpoint

interrupt handler. The handler then checks what process reaches a break-

point, pauses it and notifies the debugger it has paused a debugged pro-

cess. The debugged process is only paused and that means a debugger

is free to inspect its internal state, like a surgeon operates on an anes-

thetic patient. Then, the debugger replaces the int 3 opcode with the

original opcode and executes the original instruction normally.

cc ec 0c → 83 ec 0c

int 3 sub esp,0x4
Figure 6.4.2: Restore the original

opcode, after int 3 was executed

Example 6.4.1. It is simple to see int 3 in action. First, we add an

int 3 instruction where we need gdb to stop:

hello.c

#include <stdio.h>

int main(int argc, char *argv[])

{

asm("int 3");

printf("Hello World\n");

return 0;

}

int 3 precedes printf, so gdb is expected to stop at printf. Next,

we compile with debug enable and with Intel syntax:

$ gcc -masm=intel -m32 -g hello.c -o hello

Finally, start gdb:

$ gdb hello

runtime inspection and debug 181

Running without setting any breakpoint, gdb stops at printf call, as

expected:

(gdb) r

Output
Starting program: /tmp/hello

Program received signal SIGTRAP, Trace/breakpoint trap.

main (argc=1, argv=0xffffd154) at hello.c:6

6 printf("Hello World\n");

The blue text indicates that gdb encountered a breakpoint, and indeed

it stopped at the right place: the printf call, where int 3 preceded it.

6.4.2 Single stepping

When breakpoint is implemented, it is easy to implement single stepping:

a debugger simply places another int 3 opcode in the next instruction.

So, when a programmer sets a breakpoint at an instruction, the next in-

struction is automatically set by the debugger, thus enable instruction

by instruction debugging. Similarly, source line by line debugging is just

the placements of the very first opcodes in the two statements with two

int 3 opcodes.

6.4.3 How a debugger understands high level source code

DWARF is a debugging file format used by many compilers and debug-

gers to support source level debugging. DWARF contains information

that maps between entities in the executable binary with the source files.

A program entity can either be data or code. A DIE, or Debugging I nformationDebugging Information

EntryEntry, is a description of a program entity. A DIE consists of a tag, which spec-

ifies the entity that the DIE describes, and a list of attributes that de-

scribes the entity. Of all the attributes, these two attributes enables source-

level debugging:

✄ Where the entity appears in the source files: which file

and which line the entity appears.

182 operating systems: from 0 to 1

✄ Where the entity appears in the executable binary:

in which memory address the entity is loaded at runtime. With the

precise address, gdb can retrieve correct value for a data entity, or place

a correct breakpoint and stop accordingly for a code entity. Without

the information of these addresses, gdb would not know where the en-

tities are to inspect them.

hello.c DIE

Line 1

Line 2

⇒ Line 3

Line 5

Line 6

#include <stdio.h>

int main(int argc, char *argv[])

..........

..........

→

....

....

main in hello.c is at

0x804840b in hello

....

....

↓↑

hello (at 0x804840b)

...8d 4c 24 04 83 e4 f0

ff 71 fc

Figure 6.4.3: Source-binary

mapping with DIEIn addition to DIEs, another binary-to-source mapping is the line num-

ber table. The line number table maps between a line in the source code

and at which memory address is the start of the line in the executable

binary.

In sum, to successfully enable source-level debugging, a debugger needs

to know the precise location of the source files and the load addresses

at runtime. Address matching, between the image layout of the ELF bi-

nary and the address where it is loaded, is extremely important since de-

bug information relies on correct loading address at runtime. That is, it

assumes the addresses as recorded in the binary image at compile-time

the same as at runtime e.g. if the load address for .text section is recorded

in the executable binary at 0x800000, then when the binary actually runs,

.text should really be loaded at 0x800000 for gdb to be able to correctly

match running instructions with high-level code statement. Address mis-

matching makes debug information useless, as actual code at one address

is displayed as code at another address. Without this knowledge, we will

runtime inspection and debug 183

not be able to build an operating system that can be debugged with gdb.

Example 6.4.2. When an executable binary contains debug info, readelf

can display such information in a readable format. Using the good old

hello world program:

hello.c

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("Hello World\n");

return 0;

}

and compile with debug info:

$ gcc -m32 -g hello.c -o hello

With the binary ready, we can look at the line number table with the

command:

$ readlelf -wL hello

-w option prints all the debug information. In combination with its

sub-option, only specific information is displayed. For example, with -L,

only the line number table is displayed:

Output
Decoded dump of debug contents of section .debug_line:

CU: hello.c:

File name Line number Starting address

hello.c 6 0x804840b

hello.c 7 0x804841c

hello.c 9 0x804842c

184 operating systems: from 0 to 1

hello.c 10 0x8048431

From the above output:

CU shorts for Compilation Unit, a separately compiled source file. In

the example, we only have one file, hello.c.

File name displays the filename of the current compilation unit.

Line number is the line number in the source file of which the line is not

an empty line. In the example, line 8 is an empty line, so it does not

appear.

Starting address is the memory address where the line actually starts

in the executable binary.

With such crystal clear information, this is how gdb is able to set a break-

point on a line easily. For placing breakpoints on variables and functions,

it is time to look at the DIEs. To get the DIEs information from an ex-

ecutable binary, run the command:

$ readlelf -wi hello

-wi option lists all the DIE entries. This is one typical DIE entry:

<0>: Abbrev Number: 1 (DW_TAG_compile_unit)

<c> DW_AT_producer : (indirect string, offset: 0xe): GNU C11 5.4.0 20160609 -masm=intel -m32

<10> DW_AT_language : 12 (ANSI C99)

<11> DW_AT_name : (indirect string, offset: 0xbe): hello.c

<15> DW_AT_comp_dir : (indirect string, offset: 0x97): /tmp

<19> DW_AT_low_pc : 0x804840b

<1d> DW_AT_high_pc : 0x2e

<21> DW_AT_stmt_list : 0x0

Red This left-most number indicates the current nesting level of a DIE

entry. 0 is the outer-most level DIE with its entity is the compilation

unit. This means subsequent DIE entries with higher nesting level are

all the children of this tag, the compilation unit. It makes sense, as

all the entities must originate from a source file.

runtime inspection and debug 185

Blue These numbers in hex format indicate the offsets into .debug_info

section. Each meaningful information is displayed along with its off-

set. When an attribute references to another attribute, the offset is

used to precisely identify the referenced attribute.

Green These names with DW_AT_ prefix are the attributes attached to a

DIE that describe an entity. Notable attributes:

DW_AT_name

DW_AT_comp_dir The filename of the compilation unit and the direc-

tory where compilation occurred. Without the filename and the path,

gdb would not be able to display the high-level source, despite the

availability of the debug info. Debug info only contains the map-

ping between source and binary, not the source code itself.

DW_AT_low_pc

DW_AT_high_pc The start and end of the current entity, which is the

compilation unit, in the executable binary. The value in DW_AT_low_pc

is the starting address. DW_AT_high_pc is the size of the compila-

tion unit, when adding up to DW_AT_low_pc results in the end ad-

dress of the entity. In this example, code compiled from hello.c

starts at 0x804840b and end at 0x804840b + 0x2e = 0x8048439.

To really make sure, we verify with objdump:

Output
int main(int argc, char *argv[])

{

804840b: 8d 4c 24 04 lea ecx,[esp+0x4]

804840f: 83 e4 f0 and esp,0xfffffff0

8048412: ff 71 fc push DWORD PTR [ecx-0x4]

8048415: 55 push ebp

8048416: 89 e5 mov ebp,esp

8048418: 51 push ecx

8048419: 83 ec 04 sub esp,0x4

printf("Hello World\n");

804841c: 83 ec 0c sub esp,0xc

804841f: 68 c0 84 04 08 push 0x80484c0

186 operating systems: from 0 to 1

8048424: e8 b7 fe ff ff call 80482e0 <puts@plt>

8048429: 83 c4 10 add esp,0x10

return 0;

804842c: b8 00 00 00 00 mov eax,0x0

}

8048431: 8b 4d fc mov ecx,DWORD PTR [ebp-0x4]

8048434: c9 leave

8048435: 8d 61 fc lea esp,[ecx-0x4]

8048438: c3 ret

8048439: 66 90 xchg ax,ax

804843b: 66 90 xchg ax,ax

804843d: 66 90 xchg ax,ax

804843f: 90 nop

It is true: main starts at 804840b and end at 8048439, right after

the ret instruction at 8048438. The instructions after 8048439 are

just padding bytes inserted by gcc for alignment, which do not be-

long to main. Note that the output from objdump shows much more

code past main. It is not counted, as the code is outside of hello.c,

added by gcc for the operating system. hello.c contains only one

function: main and this is why hello.c also starts and ends the

same as main.

Pink This number displays the abbreviation form of a tag. An abbre-

viation is the form of a DIE. When debug info is displayed with -wi,

the DIEs are displayed with their values. -wa option shows abbrevi-

ations in the .debug_abbrev section:

Output
Contents of the .debug_abbrev section:

Number TAG (0x0)

1 DW_TAG_compile_unit [has children]

DW_AT_producer DW_FORM_strp

DW_AT_language DW_FORM_data1

DW_AT_name DW_FORM_strp

DW_AT_comp_dir DW_FORM_strp

runtime inspection and debug 187

DW_AT_low_pc DW_FORM_addr

DW_AT_high_pc DW_FORM_data4

DW_AT_stmt_list DW_FORM_sec_offset

DW_AT value: 0 DW_FORM value: 0

.... more abbreviations

The output is similar to a DIE output, with only attribute names and

without any value. We can also say an abbreviation is a type of a DIE,

as an abbreviation represents the structure of a particular DIE. Many

DIEs share the same abbreviation, or structure, thus they are of the

same type. An abbreviation number specifies which type a DIE is in

the abbreviation table above. Abbreviations improve encoding effi-

ciency (reduce binary size) because each DIE needs not to carry their

structure information as pairs of attribute-value2, but simply refers 2 Forexample,data formatsuchas
YAML or JSON encodes its attribute
names along with its values. This

simplifies encoding, but with overhead.

to an abbreviation for correct decoding.

Here are all the DIEs of hello represented as a tree:

In the figure 6.4.4, DW_TAG_subprogram represents a function such as

main. Its children are the DIEs of argc and argv. With such precise in-

formation, matching source to binary is an easy job for gdb.

If more than one compilation units exist in an executable binary, the

DIE entries are sorted according to the compilation order from gcc. For

example, suppose we have another test.c source file3 and compile it to- 3 It can contain anything. Just a sam-
ple file.

gether with hello:

$ gcc -masm=intel -m32 -g test.c hello.c -o hello

Then, the all DIE entries in test.c are displayed before the DIE en-

tries in hello.c:

<0>: Abbrev Number: 1 (DW_TAG_compile_unit)

<c> DW_AT_producer : (indirect string, offset: 0x0): GNU C11 5.4.0 20160609

-masm=intel -m32 -mtune=generic -march=i686 -g -fstack-protector-strong

<10> DW_AT_language : 12 (ANSI C99)

188 operating systems: from 0 to 1

<0>: Abbrev Number: 1 (DW_TAG_compile_unit)
 <c> DW_AT_producer : (indirect string, offset: 0xe): GNU C11
5.4.0 20160609 -masm=intel -m32 -mtune=generic -march=i686 -g
-fstack-protector-strong
 <10> DW_AT_language : 12 (ANSI C99)
 <11> DW_AT_name : (indirect string, offset: 0xbe): hello.c
 <15> DW_AT_comp_dir : (indirect string, offset: 0x97): /tmp
 <19> DW_AT_low_pc : 0x804840b
 <1d> DW_AT_high_pc : 0x2e
 <21> DW_AT_stmt_list : 0x0

<1><2c>: Abbrev Number: 2 (DW_TAG_base_type)
 <2d> DW_AT_byte_size : 1
 <2e> DW_AT_encoding : 8 (unsigned char)
 <2f> DW_AT_name : (indirect string, offset: 0x84): unsigned char

<1><25>: Abbrev Number: 2 (DW_TAG_base_type)
 <26> DW_AT_byte_size : 4
 <27> DW_AT_encoding : 7 (unsigned)
 <28> DW_AT_name : (indirect string, offset: 0x77): unsigned int

<1><33>: Abbrev Number: 2 (DW_TAG_base_type)
 <34> DW_AT_byte_size : 2
 <35> DW_AT_encoding : 7 (unsigned)
 <36> DW_AT_name : (indirect string, offset: 0xa1): short unsigned int

 <1><3a>: Abbrev Number: 2 (DW_TAG_base_type)
 <3b> DW_AT_byte_size : 4
 <3c> DW_AT_encoding : 7 (unsigned)
 <3d> DW_AT_name : (indirect string, offset: 0x72): long unsigned int

..many more base type entries

 <1><7f>: Abbrev Number: 5 (DW_TAG_subprogram)
 <80> DW_AT_external : 1
 <80> DW_AT_name : (indirect string, offset: 0x92): main
 <84> DW_AT_decl_file : 1
 <85> DW_AT_decl_line : 3
 <86> DW_AT_prototyped : 1
 <86> DW_AT_type : <0x4f>
 <8a> DW_AT_low_pc : 0x804840b
 <8e> DW_AT_high_pc : 0x2e
 <92> DW_AT_frame_base : 1 byte block: 9c (DW_OP_call_frame_cfa)
 <94> DW_AT_GNU_all_tail_call_sites: 1
 <94> DW_AT_sibling : <0xb5>

 <2><98>: Abbrev Number: 6 (DW_TAG_formal_parameter)
 <99> DW_AT_name : (indirect string, offset: 0x9c): argc
 <9d> DW_AT_decl_file : 1
 <9e> DW_AT_decl_line : 3
 <9f> DW_AT_type : <0x4f>
 <a3> DW_AT_location : 2 byte block: 91 0 (DW_OP_fbreg: 0)

 <2><a6>: Abbrev Number: 6 (DW_TAG_formal_parameter)
 <a7> DW_AT_name : (indirect string, offset: 0xcf): argv
 <ab> DW_AT_decl_file : 1
 <ac> DW_AT_decl_line : 3
 <ad> DW_AT_type : <0xb5>
 <b1> DW_AT_location : 2 byte block: 91 4 (DW_OP_fbreg: 4)

Figure 6.4.4: DIE entries visual-

ized as a tree

runtime inspection and debug 189

<11> DW_AT_name : (indirect string, offset: 0x64): test.c

<15> DW_AT_comp_dir : (indirect string, offset: 0x5f): /tmp

<19> DW_AT_low_pc : 0x804840b

<1d> DW_AT_high_pc : 0x6

<21> DW_AT_stmt_list : 0x0

<1><25>: Abbrev Number: 2 (DW_TAG_subprogram)

<26> DW_AT_external : 1

<26> DW_AT_name : bar

<2a> DW_AT_decl_file : 1

<2b> DW_AT_decl_line : 1

<2c> DW_AT_low_pc : 0x804840b

<30> DW_AT_high_pc : 0x6

<34> DW_AT_frame_base : 1 byte block: 9c (DW_OP_call_frame_cfa)

<36> DW_AT_GNU_all_call_sites: 1

....after all DIEs in test.c listed....

<0><42>: Abbrev Number: 1 (DW_TAG_compile_unit)

<43> DW_AT_producer : (indirect string, offset: 0x0): GNU C11 5.4.0 20160609

-masm=intel -m32 -mtune=generic -march=i686 -g -fstack-protector-strong

<47> DW_AT_language : 12 (ANSI C99)

<48> DW_AT_name : (indirect string, offset: 0xc5): hello.c

<4c> DW_AT_comp_dir : (indirect string, offset: 0x5f): /tmp

<50> DW_AT_low_pc : 0x8048411

<54> DW_AT_high_pc : 0x2e

<58> DW_AT_stmt_list : 0x35

....then all DIEs in hello.c are listed....

Part II

Groundwork

7
Bootloader

A bootloader loads an OS, or an application 1 that runs and communi- 1 Many embedded devices don’t use
an OS. In embedded systems,the
bootloader is simply included in boot

firmware and no bootloader is needed.

cate directly with hardware. To run an OS, the first thing to write is a

bootloader. In this chapter, we are going to write a rudimentary boot-

loader, as our main focus is writing an operating system, not a bootloader.

More interestingly, this chapter will present related tools and techniques

that are applicable for writing a bootloader as well as an operating sys-

tem.

7.1 x86 Boot Process

After the POST process finished, the CPU’s program counter is set to

the address FFFF:0000h for executing BIOS code. BIOS - Basic I nput/Output

System is a firmware that performs hardware initialization and provides

a set of generic subroutines to control input/output devices. The BIOS

checks all available storage devices (floppy disks and hard disks) if any

device is bootable, by examining the last two bytes of the first sector whether

it has the boot record signature of 0x55, 0xAA. If so, the BIOS loads the

first sector to the address 7C00h, set the program counter to that address

and let the CPU executing code from there.

The first sector is called Master Boot Record, or MBR. The program

in the first sector is called MBR Bootloader.

194 operating systems: from 0 to 1

7.2 Using BIOS services

BIOS provides many basic services for controlling the hardware at the

boot stage. A service is a group of routines that controls a particular hard-

ware device, or returns information of current system. Each service is given

an interrupt number. To call a BIOS routine, an int instruction must

be used with an interrupt number. Each BIOS service defines its own

numbers for its routines; to call a routine, a specific number must be writ-

ten to a register required by each service. The list of all BIOS interrupts

is available with Ralf Brown’s Interrupt List at: http://www.cs.cmu.edu/

~ralf/files.html.

BIOS Bootloader OS

Figure 7.2.1: The boot process.

Example: Interrupt call 13h (diskette service) requires number of sectors

to read, track number, sector number, head number and drive number

to read from a storage device. The content of the sector is stored in

memory at the address defined by the pair of registers ES:BX. The pa-

rameters are stored in registers like this:

1 ; Store sector content in the buffer 10FF:0000

2 mov dx, 10FFh

3 mov es, dx

4 xor bx, bx

5 mov al, 2 ; read 2 sector

6 mov ch, 0 ; read track 0

7 mov cl, 2 ; 2nd sector is read

8 mov dh, 0 ; head number

9 mov dl, 0 ; drive number. Drive 0 is floppy drive.

10 mov ah, 0x02 ; read floppy sector function

11 int 0x13 ; call BIOS - Read the sector

The BIOS is only available in real mode. However, when switching to

protected mode, then BIOS will not be usable anymore and the operat-

http://www.cs.cmu.edu/~ralf/files.html
http://www.cs.cmu.edu/~ralf/files.html

bootloader 195

ing system code is responsible for controlling hardware devices. This is

when the operating system stands on its own: it must provide its own

kernel drivers for talking to hardware.

7.3 Boot process

1. BIOS transfers control to MBR bootloader by jumping to 0000:7c00h,

where bootloader is assumed to exist already.

2. Setup machine environment for booting by properly initialize segment

registers to enable flat memory model.

3. Load the kernel:

(a) Read kernel from disk.

(b) Save it somewhere in the main memory.

(c) Jump to the starting code address of the kernel and execute.

4. If error occurs, print a message to notify users something went wrong

and halt.

7.4 Example Bootloader

Here is a simple bootloader that does nothing, except not crashing the

machine but halt it gracefully. If the virtual machine does not halt but

text repeatedly flashing, it means the bootloader does not load properly

and the machine crashed. The machine crashed because it keeps execut-

ing until the near end of physical memory (1 MB in real mode), which

is FFFF:0000h, which starts the whole BIOS boot process all over again.

This is effectively a reset, but not fully, since machine environment from

previous run is still reserved. For that reason, it is called a warm reboot.

The opposite of warm reboot is cold reboot, in which the machine envi-

ronment is reset to initial settings when the computer starts from a pow-

erless state.

bootloader.asm

1 ;**

196 operating systems: from 0 to 1

2 ; bootloader.asm

3 ; A Simple Bootloader

4 ;**

5 org 0x7c00

6 bits 16

7 start: jmp boot

8

9 ;; constant and variable definitions

10 msg db "Welcome to My Operating System!", 0ah, 0dh, 0h

11

12 boot:

13 cli ; no interrupts

14 cld ; all that we need to init

15 hlt ; halt the system

16

17 ; We have to be 512 bytes. Clear the rest of the bytes with

0

18 times 510 - ($-$$) db 0

19 dw 0xAA55 ; Boot Signiture

7.5 Compile and load

We compile the code with nasm and write it to a disk image:

$ nasm -f bin bootloader.asm -o bootloader

Then, we create a 1.4 MB floppy disk and:

$ dd if=/dev/zero of=disk.img bs=512 count=2880

Output
2880+0 records in

2880+0 records out

1474560 bytes (1.5 MB, 1.4 MiB) copied, 0.00625622 s, 236 MB/s

bootloader 197

Then, we write the bootloader to the 1stsector:

$ dd conv=notrunc if=bootloader of=disk.img bs=512

count=1 seek=0

Output
1+0 records in

1+0 records out

512 bytes copied, 0.000102708 s, 5.0 MB/s

The option conv=notrunc preserves the original size of the floppy disk.

Without this option, the 1.4 MB disk image will be completely replaced

by the new disk.img with only 512 bytes, and we do not want that hap-

pens.

In the past, developing an operating system is complicated because

a programmer needs to understand specific hardware he is using. Even

though x86 was ubiquitous, the minute differences between models made

some code written for a machine not run on another. Further, if you use

the same physical computer you write your operating system take very

long between runs, and also difficult to debug. Fortunately, today we can

uniformly produce a virtual machine with a particular specification and

avoid the incompatibility issue altogether, thus making an OS easier to

write and test since everyone can reproduce the same machine environ-

ment.

We will be using QEMU, a generic and open source machine emula-

tor and virtualizer. QEMU can emulate various types of machine, not

limited to x86_64 only. Debug is easy since you can connect GDB to a

virtual machine to debug code that runs on it, through QEMU’s built-in

GDB server. QEMU can use disk.img as a boot device e.g. a floppy disk:

$ qemu-system-i386 -machine q35 -fda disk.img -gdb

tcp::26000 -S

✄ With option -machine q35, QEMU emulates a q35 machine model

from Intel.2. 2 The following command lists all
supported emulated machines from
QEMU:

qemu-system-i386 -machine help

198 operating systems: from 0 to 1

✄ With option -fda disk.img, QEMU uses disk.img as a floppy disk

image.

✄ With option -gdb tcp::26000, QEMU allows gdb to connect to the

virtual machine for remote debugging through a tcp socket with port

26000.

✄ With option -S, QEMU waits for gdb to connect before it starts run-

ning.

After the command is executed, a new console window that displays the

screen output of the virtual machine. Open another terminal, run gdb

and set the current architecture to i8086, since we are running in 16-bit

mode:

(gdb) set architecture i8086

Output
warning: A handler for the OS ABI "GNU/Linux" is not built into this configuration

of GDB. Attempting to continue with the default i8086 settings.

The target architecture is assumed to be i8086

Then, connect gdb to the waiting virtual machine with this command:

(gdb) target remote localhost:26000

Output
Remote debugging using localhost:26000

0x0000fff0 in ?? ()

Then, place a breakpoint at 0x7c00:

(gdb) b *0x7c00

Output
Breakpoint 1 at 0x7c00

Note the asterick before the memory address. Without the asterisk,

gdb treats the address as a symbol in a program rather than an address.

bootloader 199

Then, for convenience, we use a split layout for viewing the assembly code

and registers together:

(gdb) layout asm

(gdb) layout reg

Finally, run the program:

(gdb) c

If the virtual machine successfully runs the bootloader, this is what

the QEMU screen should look like:

Figure 7.5.1: Boot succeeded.

7.5.1 Debugging

If, for some reason, the sample bootloader cannot get to such screen and

gdb does not stop at 0x7c00, then the following scenarios are likely:

✄ The bootloader is invalid: the message “Boot failed: not a bootable

disk” appears for floppy disk booting. Make sure the boot signature

is at the last 2 bytes of the 512-byte first sector.

200 operating systems: from 0 to 1

✄ The machine cannot find a boot disk: the message “Boot

failed: not a bootable disk” appears for floppy disk booting. Make sure

the bootloader is correctly written to the first sector. It can be verify

by check the disk with hd:

$ hd disk.img | less

If the first 512 bytes are all zeroes, then it is likely that the bootloader

is incorrectly written to another sector.

✄ The machine crashes: When such scenario happens, it reset back

to the beginning at FFFF:0000h. If the QEMU machine starts with-

out waiting for gdb, then the console output window keeps flashing as

the machine is repeatedly reset. It is likely some instruction in the boot-

loader code causing the fault.

Exercise 7.5.1. Print a welcome message

We loaded the bootloader successfully. But, it needs to do something

useful other than halting our machine. The easiest thing to do is print-

ing something on screen, like how an introduction to all programming

language starts with “Hello World”. Our bootloader prints “Welcome to

my operating system”3. In this part, we will build a simple I/O library 3 Or whatever message you want.

that allows us to set a cursor anywhere on the screen and print text there.

First, create a file io.asm for I/O related routines. Then, write the

following routines:

1. MovCursor

Purpose: Move a cursor to a specific location on screen and remem-

ber this location.

Parameters:

✄ bh = Y coordinate

✄ bl = X coordinate.

Return: None

bootloader 201

2. PutChar

Purpose: Print a character on screen, at the cursor position previously

set by MovCursor .

Parameters:

✄ al = Character to print

✄ bl = text color

✄ cx = number of times the character is repeated

Return: None

3. Print

Purpose: Print a string.

Parameters:

✄ ds:si = Zero terminated string

Return: None

Test the routines by putting each in the bootloader source, compile and

run. To debug, run GDB and set a breakpoint at a specific routine. The

end result is that Print should display a welcome message on screen.

7.6 Loading a program from bootloader

Now that we get the feel of how to use the BIOS services, it is time for

something more complicated. We will place our kernel on 2nd sector on-

ward, and our bootloader reads 30 sectors starting from 2nd sector. Why

30 sectors? Our kernel will grow gradually, so we will preserve 30 sectors

and save us time for modifying the bootloader each time the kernel size

expands another sector.

The primary responsibility of a bootloader is to read an operating sys-

tem from some storage device e.g. hard disk, then loads it into main mem-

ory and transfer the control to the loaded operating system, similar to

202 operating systems: from 0 to 1

how the BIOS reads and loads a bootloader. At the moment, our boot-

loader does nothing more than just an assembly program loaded by the

BIOS. To make our bootloader a real one, it must perform well the above

two tasks: read and load an operating system.

7.6.1 Floppy Disk Anatomy

To read from a storage device, we must understand how the device works,

and the provided interface for controlling it. First of all, a floppy disk is

a storage device, similar to RAM, but can store information even when

a computer is turned off, thus is called persistent storage device. A floppy persistent storage device

disk also a persistent storage device, thus it provides a storage space up

to 1.4 MB, or 1,474,560 bytes. When reading from a floppy disk, the small-

est unit that can be read is a sector, a group of 512 contiguous bytes. A

group of 18 sectors is a track. Each side of a floppy disk consists of 80

tracks. A floppy drive is required to read a floppy disk. Inside a floppy

drive contains an arm with 2 heads, each head reads a side of a floppy

drive; head 0 writes the upper side and head 1 writes the lower side of a

floppy disk.

Figure 7.6.1: Sector and Track.
Track

Sector

When a floppy drive writes data to a brand new floppy disk, track 0

on the upper side is written first, by head 0. When the upper track 0 is

full, the lower track 0 is used by head 1. When both the upper and lower

side of a track 0 are full, it goes back to head 0 for writing data again,

but this time the upper side of track 1 and so on, until no space left on

the device. The same procedure is also applied for reading data from floppy

disk.

Figure 7.6.2: Floppy disk platter

with 2 sides.

Head 0

Head 1

7.6.2 Read and load sectors from a floppy disk

First, we need to a sample program for writing into the 2nd sector, so we

can experiment with floppy disk reading:

sample.asm

1 ;**

2 ; sample.asm

3 ; A Sample Program

bootloader 203

4 ;**

5 mov eax, 1

6 add eax, 1

Such a program is good enough. To simplify and for the purpose of

demonstration, we will use the same floppy disk that holds the bootloader

to hold our operating system. The operating system image starts from

the 2nd sector, as the 1st sector is already in use by the bootloader. We

compile and write it to the 2nd sector with dd:

$ nasm -f bin sample.asm -o sample

$ dd if=sample of=disk.img bs=512 count=1 seek=1

1st sector 2nd sector 30th sector

bootloader sample (empty)
Figure 7.6.3: The bootloader and

the sample program on floppy disk.

Next, we need to fix the bootloader for reading from the floppy disk

and load a number of arbitrary sectors. Before doing so, a basic under-

standing of floppy disk is required. To read data from disk, interrupt 13

with AH = 02 is a routine for reading sectors from disk into memory:

AH = 02

AL = number of sectors to read (1-128 dec.)

CH = track/cylinder number (0-1023 dec., see below)

CL = sector number (1-17 dec.)

DH = head number (0-15 dec.)

DL = drive number (0=A:, 1=2nd floppy, 80h=drive 0, 81h=drive 1)

ES:BX = pointer to buffer

Return:

AH = status (see INT 13,STATUS)

AL = number of sectors read

CF = 0 if successful

= 1 if error

Apply the above routine, the bootloader can read the 2nd sector:

204 operating systems: from 0 to 1

bootloader.asm

1 ;**

2 ; Bootloader.asm

3 ; A Simple Bootloader

4 ;**

5 org 0x7c00

6 bits 16

7 start: jmp boot

8

9 ;; constant and variable definitions

10 msg db "Welcome to My Operating System!", 0ah, 0dh, 0h

11

12 boot:

13 cli ; no interrupts

14 cld ; all that we need to init

15

16 mov ax, 0x50

17

18 ;; set the buffer

19 mov es, ax

20 xor bx, bx

21

22 mov al, 2 ; read 2 sector

23 mov ch, 0 ; track 0

24 mov cl, 2 ; sector to read (The second sector)

25 mov dh, 0 ; head number

26 mov dl, 0 ; drive number

27

28 mov ah, 0x02 ; read sectors from disk

29 int 0x13 ; call the BIOS routine

30 jmp 0x50:0x0 ; jump and execute the sector!

31

32 hlt ; halt the system

33

34 ; We have to be 512 bytes. Clear the rest of the bytes

bootloader 205

with 0

35 times 510 - ($-$$) db 0

36 dw 0xAA55 ; Boot Signiture

The above code jumps to the address 0x50:00 (which is 0x500). To

test the code, load it on a QEMU virtual machine and connect through

gdb, then place a breakpoint at 0x500. If gdb stops at the address, with

the assembly listing is the same code as in sample.asm, then the boot-

loader successfully loaded the program. This is an important milestone,

as we ensure that our operating system are loaded and ran properly.

7.7 Improve productivity with scripts

7.7.1 Automate build with GNU Make

Up to this point, the whole development process felt repetitive: when-

ever a change is made, the same commands are entered again. The com-

mands are also complex. Ctrl+r helps, but it still feels tedious.

GNU Make is a program that controls and automates the process

of building a complex software. For a small program, like a single C source

file, invoking gcc is quick and easy. However, soon your software will be

more complex, with multiples spanning multiple directories, it is a chore

to manually build and link files. To solve such problem, a tool was cre-

ated to automate away this problem and is called a build system. GNU

Make is one such of tools. There are various build systems out there, but

GNU Make is the most popular in Linux world, as it is used for building

the Linux kernel.

For a comprehensive introduction to make, please refer to the official

Introduction to Make: https://www.gnu.org/software/make/manual/

html_node/Introduction.html#Introduction. And that’s enough for

our project. You can also download the manual in different formats e.g.

PDF from the official manual page: https://www.gnu.org/software/

make/manual/ .

With Makefile, we can build simpler commands and save time:

https://www.gnu.org/software/make/manual/html_node/Introduction.html#Introduction
https://www.gnu.org/software/make/manual/html_node/Introduction.html#Introduction
https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/

206 operating systems: from 0 to 1

Makefile

1 all: bootloader bootdisk

2

3 bootloader:

4 nasm -f bin bootloader.asm -o bootloader.o

5

6 kernel:

7 nasm -f bin sample.asm -o sample.o

8

9 bootdisk: bootloader.o kernel.o

10 dd if=/dev/zero of=disk.img bs=512 count=2880

11 dd conv=notrunc if=bootloader.o of=disk.img bs=512

count=1 seek=0

12 dd conv=notrunc if=sample.o of=disk.img bs=512 count=1

seek=1

Now, with a single command, we can build from start to finish a disk

image with a bootloader at 1stsector and the sample program at 2ndsector:

$ make bootdisk

Output
nasm -f bin bootloader.asm -o bootloader.o

nasm -f bin sample.asm -o bootloader.o

dd if=/dev/zero of=disk.img bs=512 count=2880

2880+0 records in

2880+0 records out

1474560 bytes (1.5 MB, 1.4 MiB) copied, 0.00482188 s, 306 MB/s

dd conv=notrunc if=bootloader.o of=disk.img bs=512 count=1 seek=0

0+1 records in

0+1 records out

10 bytes copied, 7.0316e-05 s, 142 kB/s

dd conv=notrunc if=sample.o of=disk.img bs=512 count=1 seek=1

0+1 records in

0+1 records out

bootloader 207

10 bytes copied, 0.000208375 s, 48.0 kB/s

Looking at the Makefile, we can see a few problems:

First, the name disk.img are all over the place. When we want to change

the disk image name e.g. floppy_disk.img, all the places with the name

disk.img must be changed manually. To solve this problem, we use a

variable, and every appearance of disk.img is replaced with the refer-

ence to the variable. This way, only one place that is changed - the vari-

able definition - all other places are updated automatically. The follow-

ing variables are added:

BOOTLOADER=bootloader.o

OS=sample.o

DISK_IMG=disk.img.o

The second problem is, the name bootloader and sample appears as

part of the filenames of the source files e.g. bootloader.asm and sample.asm,

as well as the filenames of the binary files e.g. bootloader and sample.

Similar to disk.img, when a name changed, every reference of that name

must also be changed manually for both the names of the source files and

the names of the binary files e.g. if we change bootloader.asm to loader.asm,

then the object file bootloader.o needs changing to loader.o. To solve

this problem, instead of changing filenames manually, we create a rule

that automatically generate the filenames of one extension to another.

In this case, we want any source file that starts with .asm to have its equiv-

alent binary files, without any extension e.g. bootloader.asm → bootloader.o.

Such transformation is common, so GNU Make provides built-in func-

tions: wildcard and patsubst for solving such problems:

BOOTLOADER_SRCS := $(wildcard *.asm)

BOOTLOADER_OBJS := $(patsubst %.asm, %.o, $(BOOTLOADER_SRCS

))

wildcard matches any .asm file in the current directory, then assigned

the list of matched files into the variable BOOTLOADER_SRCS. In this case,

BOOTLOADER_SRCS is assigned the value:

208 operating systems: from 0 to 1

bootloader.asm sample.asm

patsubst substitutes any filename starts with .asm into a filename .o

e.g. bootloader.asm → bootloader.o. After patsubsts runs, we get

a list of object files in BOOTLOADER_OBJS:

bootloader.o sample.o

Finally, a recipe for building from .asm to .o are needed:

%.o: %.asm

nasm -f bin $< -o $@

✄ $< is a special variable that refers to the input of the recipe: %.asm.

✄ $@ is a special variable that refers to the output of the recipe: %.o.

When the recipe is executed, the variables are replaced with the actual

values. For example, if a transformation is bootloader.asm → bootloader.o,

then the actual command executed when replace the placeholders in the

recipe is:

nasm -f bin bootloader.asm -o bootloader.o

With the recipe, all the .asm files are built automatically with the nasm

command into .o files and we no longer need a separate recipe for each

object files. Putting it all together with the new variables, we get a bet-

ter Makefile:

Makefile

1 BOOTLOADER=bootloader.o

2 OS=sample.o

3 DISK_IMG=disk.img

4

5 BOOTLOADER_SRCS := $(wildcard *.asm)

6 BOOTLOADER_OBJS := $(patsubst %.asm, %.o, $(BOOTLOADER_SRCS

))

bootloader 209

7

8 all: bootdisk

9

10 %.o: %.asm

11 nasm -f bin $< -o $@

12

13 bootdisk: $(BOOTLOADER_OBJS)

14 dd if=/dev/zero of=$(DISK_IMG) bs=512 count=2880

15 dd conv=notrunc if=$(BOOTLOADER) of=$(DISK_IMG) bs=512

count=1 seek=0

16 dd conv=notrunc if=$(OS) of=$(DISK_IMG) bs=512 count=1

seek=1

From here on, any .asm file is compiled automatically, without an ex-

plicit recipe for each file.

The object files are in the same directory as the source files, making

it more difficult when working with the source tree. Ideally, object files

and source files should live in different directories. We want a better or-

ganized directory layout like Figure 7.7.1.

Figure 7.7.1: A better project lay-

out

.

bootloader

bootloader.asm

Makefile

build

bootloader

bootloader.o

disk.img

os

sample.o

Makefile

os

Makefile

sample.asm

The layout can be displayed with tree

command:

$ tree

bootloader/ directory holds bootloader source files; os/ holds oper-

ating system source files that we are going to write later; build/ holds

the object files for both the bootloader, the os and the final disk image

disk.img. Notice that bootloader/ directory also has its own Makefile.

This Makefile will be responsible for building everything in bootloader/

directory, while the top-level Makefile is released from the burden of build-

ing the bootloader, but only the disk image. The content of the Makefile

in bootloader/ directory should be:

bootloader/Makefile

1 BUILD_DIR=../build/bootloader

2

3 BOOTLOADER_SRCS := $(wildcard *.asm)

4 BOOTLOADER_OBJS := $(patsubst %.asm, $(BUILD_DIR)/%.o, $(

BOOTLOADER_SRCS))

5

210 operating systems: from 0 to 1

6 all: $(BOOTLOADER_OBJS)

7

8 $(BUILD_DIR)/%.o: %.asm

9 nasm -f bin $< -o $@

Figure 7.7.2: Makefile in

bootloader/

.

bootloader

bootloader.asm

Makefile

build

bootloader

bootloader.o

disk.img

os

sample.o

Makefile

os

Makefile

sample.asm

Basically everything related to the bootloader in the top-level Makefile

are extracted into this Makefile. When make runs this Makefile, bootloader.o

should be built and put into ../build/ directory. As a good practice,

all references to ../build/ go through BUILD_DIR variable. The recipe

for transforming from .asm → .o is also updated with proper paths, else

it will not work.

✄ %.asm refers to the assembly source files in the current directory.

✄ $(BUILD_DIR)/%.o refers to the output object files in the build direc-

tory in the path ../build/.

The entire recipe implements the transformation from <source_file.asm>

→ ../build/<object_file.o>. Note that all paths must be correct. If

we try to build object files in a different directory e.g. current directory,

it will not work since there is no such recipe exists to build objects at such

a path.

We also create a similar Makefile for os/ directory:

Figure 7.7.3: Makefile in os/

.

bootloader

bootloader.asm

Makefile

build

bootloader

bootloader.o

disk.img

os

sample.o

Makefile

os

Makefile

sample.asm

os/Makefile

1 BUILD_DIR=../build/os

2

3 OS_SRCS := $(wildcard *.asm)

4 OS_OBJS := $(patsubst %.asm, $(BUILD_DIR)/%.o, $(OS_SRCS))

5

6 all: $(OS_OBJS)

7

8 $(BUILD_DIR)/%.o: %.asm

9 nasm -f bin $< -o $@

bootloader 211

For now, it looks almost identical to the Makefile for bootloader. In

the next chapter, we will update it for C code. Then, we update the top-

level Makefile:

Figure 7.7.4: Top-level Makefile

.

bootloader

bootloader.asm

Makefile

build

bootloader

bootloader.o

disk.img

os

sample.o

Makefile

os

Makefile

sample.asm

Makefile

1 BUILD_DIR=build

2 BOOTLOADER=$(BUILD_DIR)/bootloader/bootloader.o

3 OS=$(BUILD_DIR)/os/sample.o

4 DISK_IMG=disk.img

5

6 all: bootdisk

7

8 .PHONY: bootdisk bootloader os

9

10 bootloader:

11 make -C bootloader

12

13 os:

14 make -C os

15

16 bootdisk: bootloader os

17 dd if=/dev/zero of=$(DISK_IMG) bs=512 count=2880

18 dd conv=notrunc if=$(BOOTLOADER) of=$(DISK_IMG) bs=512

count=1 seek=0

19 dd conv=notrunc if=$(OS) of=$(DISK_IMG) bs=512 count=1

seek=1

The build process is now truly modularized:

✄ bootloader and os builds are now delegated to child Makefile of re-

spective components. -C option tells make to execute with a Makefile

in a supplied directory. In this case, the directories are bootloader/

and os/.

✄ The target all of the top-level Makefile is only responsible for bootdisk

target, which is the primary target of this Makefile.

212 operating systems: from 0 to 1

In many cases, a target is not always a filename, but is just a name for

a recipe to be always executed when requested. If a filename is of the

same name as a target and the file is up-to-date, make does not execute

the target. To solve this problem, .PHONY specifies that some targets are

not files. All phony targets will then run when requested, regardless of

files of the same names.

To save time entering the command for starting up a QEMU virtual

machine, we also add a target to the top-level Makefile:

qemu:

qemu-system-i386 -machine q35 -fda $(DISK_IMG) -gdb tcp

::26000 -S

One last problem is project cleaning. At the moment, object files need

removing manually and this is a repetitive process. Instead, let the Makefile

of each component takes care of cleaning its object files, then top-level

Makefile performs project cleaning by calling the component Makefile to

do the jobs. Each Makefile is added with a clean target at the end:

✄ Bootloader Makefile:

clean:

rm $(BUILD_DIR)/*

✄ OS Makefile:

clean:

rm $(BUILD_DIR)/*

✄ Top-level Makefile:

clean:

make -C bootloader clean

make -C os clean

Simply invoking make clean at the project root, all object files the are

removed.

bootloader 213

7.7.2 GNU Make Syntax summary

GNU Make, at its core, is a domain-specific language for build automa-

tion. As any programming language, it needs a way to define data and

code. In a Makefile, variables carry data. A variable value is either hard

coded or evaluated from invoking a shell such as Bash. All variable val-

ues in Make has the same type: a string of text. Number 3 is not a num-

ber, but textual representation of the symbol 3. Here are common ways

how to define data in a Makefile:

Syntax Description

A = 1

B = 2

C = $$(expr $(A) + $(B))

⇒ A is 1, B is 2, C is 3.

Declare a variable and assign a textual value to it.

the double dollar sign $$ means the enclosing

expression evaluating by a shell, defined by /bin/sh.

In this case, the enclosing expression is (expr $(A)

+ $(B)) and is evaluated by Bash.

PATH = /bin

PATH := $PATH:/usr/bin

⇒ PATH is /bin/:/usr/bin

Declare a variable and assign to it. However, the

difference is that the = syntax does not allow refer

to a variable to use itself as a value in the right

hand side, while this syntax does.

PATH = /bin

PATH += /usr/bin

⇒ PATH is /bin/:/usr/bin

Append a new value at the end of a variable.

Equivalent to:

PATH := $PATH:/usr/bin

CFLAGS ?= -o

⇒ CFLAGS is assigned the value -o if it was

not defined.

This syntax is called conditional reference. Set a

variable to a value if it is undefined. This is useful

if a user wants to supply different value for a

variable from the command line e.g. add debugging

option to CFLAGS. Otherwise, Make uses the default

defined by ?=.

214 operating systems: from 0 to 1

SRCS = lib1.c lib2.c main.c

OBJS := $(SRC:.o=.c)

⇒ OBJS has the value lib1.o lib2.o

main.o

This syntax is called substitution reference. A

part of referenced variable is replaced with

something else. In this case, all the .c extension is

replaced by .o extension, thus creating a list of

object files for OBJS variable from the list of source

files from SRCS variable.

Code in GNU Make is a collection of recipes that it can run. Each recipe

is analogous to a function in a programming language, and can be called

like a regular function. Each recipe carries a series of shell commands to

be executed by a shell e.g. Bash. A recipe has the following format:

target: prerequisites

command

Each target is analogous to a function name. Each prerequisite

is a call another target. Each command is one of Make’s built-in com-

mands or a command that is executable by a shell. All prerequisites must

be satisfied before entering main body of target; that is, each prerequi-

site must not return any error. If any error is returned, Make terminates

the whole build process and prints an error on the command line.

Each time make runs, by default if no target is supplied, it starts with

all target, go through every prerequisites and finally the body of all.

all is analogous to main in other programming languages. However, if

make is given a target, it will start from that target instead of main. This

feature is useful to automate multiple aspects in a project. For example,

one target is for building the project, one target is for generating the doc-

uments e.g. test reports, another target for running the whole test suite

and all runs every main targets.

7.7.3 Automate debugging steps with GDB script

For the convenience, we save GDB configuration to .gdbinit file at the

project root directory. This configuration is just a collection of GDB com-

mands and a few extra commands. When gdb runs, it first loads the .gdbinit

bootloader 215

file at home directory, then the .gdbinit file at the current directory. Why

shouldn’t we put commands in ~/.gdbinit? Because these commands

are specific to only this project e.g. not all programs are required a re-

mote connection.

Our first configuration:

.gdbinit

1 define hook-stop

2 # Translate the segment:offset into a physical address

3 printf "[%4x:%4x] ", $cs, $eip

4 x/i $cs*16+$eip

5 end

The above script displays the memory address in [segment:offset]

format, which is necessary for debugging our bootloader and operating

system code.

It is better to use Intel syntax:

set disassembly-flavor intel

The following commands set a more convenient layout for debugging as-

sembly code:

layout asm

layout reg

We are currently debugging bootloader code, so it is a good idea to first

set it to 16-bit:

set architecture i8086

Every time the QEMU virtual machine starts, gdb must always connect

to port 26000. To avoid the trouble of manually connecting to the vir-

tual machine, add the command:

target remote localhost:26000

216 operating systems: from 0 to 1

Debugging the bootloader needs a breakpoint at 0x7c00, where our boot-

loader code starts:

b *0x7c00

Now, whenever gdb starts, it automatically set correct architecture based

on code, automatically connects to the virtual machine4, displays out- 4 The QEMU virtual machine should

have already been started before start-
ing gdb.put in a convenient layout and set a necessary breakpoint. All that need

to do is run the program.

8
Linking and loading on bare metal

Relocation is the process of replacing symbol references with its actual Relocation

symbolic definitions in an object file. A symbol reference is the memory

address of a symbol.

If the definition is hard to understand, consider a similar analogy: house

relocation. Suppose that a programmer bought a new house and the new

house is empty. He must buy furnitures and appliances to fulfill daily needs

and thus, he made a list of items to buy, and where to place them. To

visualize the placements of new items, he draws a blueprint of the house

and the respective places of all items. He then travels to the shops to

buy goods. Whenever he visit a shop and sees matched items, he tells

the shop owner to note them down. After done selecting, he tells the shop

owner to pick up a brand new item instead of the objects on display, then

give the address for delivering the goods to his new house. Finally, when

the goods arrive, he places the items where he planned at the beginning.

Now that house relocation is clear, object relocation is similar:

✄ The list of items represents the relocation table, where the memory

location for each symbol (item) is predetermined.

✄ Each item represents a pair of symbol definition and its symbol address.

✄ Each shop represents a compiled object file.

218 operating systems: from 0 to 1

✄ Each item on display represents a symbol definition and references in

the object file.

✄ The new address, where all the goods are delivered, represents the fi-

nal executable binary or the final object file. Since the items on dis-

play are not for sale, the shop owner delivers brand new goods instead.

Similarly, the object files are not merged together, but copied all over

a new file, the object/executable file.

✄ Finally, the goods are placed in the positions according to the shop-

ping list made from the beginning. Similarly, the symbol definitions

are placed appropriately in its respective section and the symbol ref-

erences of the final object/executable file are replaced with the actual

memory addresses of the symbol definitions.

8.1 Understand relocations with readelf

Earlier, when we explore object sections, there exists sections that be-

gins with .rel. These sections are relocation tables that maps between

a symbol and its location in the final object file or the final executable

binary1. 1 A .rel section is equivalent to a list
of items in the house analogy.

Suppose that a function foo is defined in another object file, so main.c

declares it as extern:

main.c

int i;

void foo();

int main(int argc, char *argv[])

{

i = 5;

foo();

return 0;

}

void foo() {}

When we compile main.c as object file with this command:

linking and loading on bare metal 219

$ gcc -m32 -masm=intel -c main.c

Then, we can inspect the relocation tables with this command:

$ readelf -r main.o

The output:

Output
Relocation section ’.rel.text’ at offset 0x1cc contains 2 entries:

Offset Info Type Sym.Value Sym. Name

00000013 00000801 R_386_32 00000004 i

0000001c 00000a02 R_386_PC32 0000002e foo

Relocation section ’.rel.eh_frame’ at offset 0x1dc contains 2 entries:

Offset Info Type Sym.Value Sym. Name

00000020 00000202 R_386_PC32 00000000 .text

0000004c 00000202 R_386_PC32 00000000 .text

8.1.1 Offset

An offset is the location into a section of a binary file, where the actual offset

memory address of a symbol definition is replaced. The section with .rel

prefix determines which section to offset into. For example, .rel.text

is the relocation table of symbols whose address needs correcting in .text

section, at a specific offset into .text section. In the example output:

Output
0000001c 00000a02 R_386_PC32 0000002e foo

The blue number indicates there exists a reference of symbol foo that

is 1c bytes into .text section. To see it clearer, we recompile main.c with

option -g into the file main_debug.o, then run objdump on it and got:

Output
Disassembly of section .text:

00000000 <main>:

int i;

void foo();

220 operating systems: from 0 to 1

int main(int argc, char *argv[])

{

0: 8d 4c 24 04 lea ecx,[esp+0x4]

4: 83 e4 f0 and esp,0xfffffff0

7: ff 71 fc push DWORD PTR [ecx-0x4]

a: 55 push ebp

b: 89 e5 mov ebp,esp

d: 51 push ecx

e: 83 ec 04 sub esp,0x4

i = 5;

11: c7 05 00 00 00 00 05 mov DWORD PTR ds:0x0,0x5

18: 00 00 00

foo();

1b: e8 fc ff ff ff call 1c <main+0x1c>

return 0;

20: b8 00 00 00 00 mov eax,0x0

}

25: 83 c4 04 add esp,0x4

28: 59 pop ecx

29: 5d pop ebp

2a: 8d 61 fc lea esp,[ecx-0x4]

2d: c3 ret

....irrelevant content omitted....

The byte at 1b is the opcode e8, the call instruction; byte at 1c is

the value fc. Why is the operand value for e8 is 0xfffffffc, which is

equivalent to -4, but the translated instruction call 1c? It will be ex-

plained after a few more sections, but you should pause and think a bit

about the reason why.

8.1.2 Info

Info specifies index of a symbol in the symbol table and the type of relo-

cation to perform.

linking and loading on bare metal 221

Output
0000001c 00000a02 R_386_PC32 0000002e foo

The pink number is the index of symbol foo in the symbol table, and

the green number is the relocation type. The numbers are written in hex

format. In the example, 0a means 10 in decimal, and symbol foo is in-

deed at index 10:

Output
10: 0000002e 6 FUNC GLOBAL DEFAULT 1 foo

8.1.3 Type

Type represents the type value in textual form. Looking at the type of

foo:

Output
0000001c 00000a02 R_386_PC32 0000002e foo

The green number is type in its numeric form, and R_386_PC32 is the

name assigned to that value. Each value represents a relocation method

of calculation. For example, with the type R_386_PC32, the following for-

mula is applied for relocation (Inteli386 psABI):

Relocated Offset = S + A− P

To understand the formula, it is necessary to understand symbol val-

ues.

8.1.4 Sym.Value

This field shows the symbol value. A symbol value is a value assigned to

a symbol, whose meaning depends on the Ndx field:

A symbol whose section index is COMMON, its symbol value holds

alignment constraints.

Example 8.1.1. In the symbol table, the variable i is identified as

COM (uninitialized variable):2 2 The command forlisting symbol
table is (assume the objectfile is
hello.o):

readelf -s hello.o

222 operating systems: from 0 to 1

Output
Symbol table ’.symtab’ contains 16 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 00000000 0 NOTYPE LOCAL DEFAULT UND

1: 00000000 0 FILE LOCAL DEFAULT ABS hello2.c

2: 00000000 0 SECTION LOCAL DEFAULT 1

3: 00000000 0 SECTION LOCAL DEFAULT 3

4: 00000000 0 SECTION LOCAL DEFAULT 4

5: 00000000 0 SECTION LOCAL DEFAULT 5

6: 00000000 0 SECTION LOCAL DEFAULT 7

7: 00000000 0 SECTION LOCAL DEFAULT 8

8: 00000000 0 SECTION LOCAL DEFAULT 10

9: 00000000 0 SECTION LOCAL DEFAULT 12

10: 00000000 0 SECTION LOCAL DEFAULT 14

11: 00000000 0 SECTION LOCAL DEFAULT 15

12: 00000000 0 SECTION LOCAL DEFAULT 13

13: 00000004 4 OBJECT GLOBAL DEFAULT COM i

14: 00000000 46 FUNC GLOBAL DEFAULT 1 main

15: 0000002e 6 FUNC GLOBAL DEFAULT 1 foo

so its symbol value is a memory alignment for assigning a proper mem-

ory address that conforms to the alignment in the final memory ad-

dress. In the case of i, the value is 4, so the starting memory address

of i in the final binary file will be a multiple of 4.

A symbol whose Ndx identifies a specific section, its sym-

bol value holds a section offset.

Example 8.1.2. In the symbol table, main and foo belong to section

1:

Output
14: 00000000 46 FUNC GLOBAL DEFAULT 1 main

15: 0000002e 6 FUNC GLOBAL DEFAULT 1 foo

which is .text3 section4: 3 .text holds program code and read-
only data.
4 The command for listing sections is

(assume the object file is hello.o):

readelf -S hello.o

linking and loading on bare metal 223

Output
There are 20 section headers, starting at offset 0x558:

Section Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al

[0] NULL 00000000 000000 000000 00 0 0 0

[1] .text PROGBITS 00000000 000034 000034 00 AX 0 0 1

[2] .rel.text REL 00000000 000414 000010 08 I 18 1 4

[3] .data PROGBITS 00000000 000068 000000 00 WA 0 0 1

[4] .bss NOBITS 00000000 000068 000000 00 WA 0 0 1

[5] .debug_info PROGBITS 00000000 000068 000096 00 0 0 1

..... remaining output omitted for clarity....

In the final executable and shared object files, instead

of the above values, a symbol value holds a memory address.

Example 8.1.3. After compiling hello.o into the final executable hello,

the symbol table now contains the memory address for each symbol5: 5 The command to compile the object
file hello.o into the executable hello:

gcc -g -m32 -masm=intel hello.o -o hello
Output

Symbol table ’.symtab’ contains 75 entries:

Num: Value Size Type Bind Vis Ndx Name

0: 00000000 0 NOTYPE LOCAL DEFAULT UND

1: 08048154 0 SECTION LOCAL DEFAULT 1

2: 08048168 0 SECTION LOCAL DEFAULT 2

3: 08048188 0 SECTION LOCAL DEFAULT 3

....output omitted...

64: 08048409 6 FUNC GLOBAL DEFAULT 14 foo

65: 0804a020 0 NOTYPE GLOBAL DEFAULT 26 _end

66: 080482e0 0 FUNC GLOBAL DEFAULT 14 _start

67: 08048488 4 OBJECT GLOBAL DEFAULT 16 _fp_hw

68: 0804a01c 4 OBJECT GLOBAL DEFAULT 26 i

69: 0804a018 0 NOTYPE GLOBAL DEFAULT 26 __bss_start

70: 080483db 46 FUNC GLOBAL DEFAULT 14 main

...ouput omitted...

Unlike the values of the symbols foo, i and main as in the hello.o ob-

ject file, the complete memory addresses are in place.

224 operating systems: from 0 to 1

Now it suffices to understand relocation types. Previously, we mentioned

the type R_386_PC32. The following formula is applied for relocation (Inteli386

psABI):

Relocated Offset = S + A− P

where

S represents the value of the symbol. In the final executable binary, it

is the address of the symbol.

A represents the addend, an extra value added to the value of a sym-

bol.

P Represents the memory address to be fixed.

Relocate Offset is the distance between a relocating location6 and the 6 where the referenced memory address

is to be fixed.
actual memory location of a symbol definition, or a memory address.

But why do we waste time in calculating a distance instead of replacing

with a direct memory address? The reason is that x86 architecture does

not use employ any addressing mode that uses an absolute memory ad-

dress, as listed in table 4.5.2. All addressing modes in x86 are relative.

In some assembly language, an absolute address can be used simply be-

cause it is a syntactic sugar that is later transformed into one of the rel-

ative addressing mode provided by the x86 hardware by the assembler.

Example 8.1.4. For the foo symbol:

Output
0000001c 00000a02 R_386_PC32 0000002e foo

The distance between the usage of foo in main.o and its definition,

applying the formula S + A− P is: 2e + 0− 1c = 12. That is, the place

where memory fixing starts is 0x12 or 18 bytes away from the definition

of the symbol foo. However, to make an instruction works properly, we

must also subtract 4 from 0x12 and results in 0xe. Why the extra -4?

Because the relative address starts at the end of an instruction, not the

linking and loading on bare metal 225

address where memory fixing starts. For that reason, we must also exclude

the 4 bytes of the overwritten address.

Indeed, looking at the objdump output of the object file hello.o:

Output
Disassembly of section .text:

00000000 <main>:

0: 8d 4c 24 04 lea ecx,[esp+0x4]

4: 83 e4 f0 and esp,0xfffffff0

7: ff 71 fc push DWORD PTR [ecx-0x4]

a: 55 push ebp

b: 89 e5 mov ebp,esp

d: 51 push ecx

e: 83 ec 04 sub esp,0x4

11: c7 05 00 00 00 00 05 mov DWORD PTR ds:0x0,0x5

18: 00 00 00

1b: e8 fc ff ff ff call 1c <main+0x1c>

20: b8 00 00 00 00 mov eax,0x0

25: 83 c4 04 add esp,0x4

28: 59 pop ecx

29: 5d pop ebp

2a: 8d 61 fc lea esp,[ecx-0x4]

2d: c3 ret

0000002e <foo>:

2e: 55 push ebp

2f: 89 e5 mov ebp,esp

31: 90 nop

32: 5d pop ebp

33: c3 ret

The place where memory fixing starts is after the opcode e8, with the

mock value fc ff ff ff, which is -4 in decimal. However, the assem-

bly code, the value is displayed as 1c. The memory address right after

e8. The reason is that the instruction e8 starts at 1b and ends at 207. 7 The end of an instruction is the mem-
ory address right after its last operand.

The whole instruction e8 spans from

the address 1b to the address 1f.

-4 means 4 bytes backward from the end of instruction, that is: 20− 4 = 1c.

After linking, the output of the final executable file is displayed with the

actual memory fixing:

226 operating systems: from 0 to 1

Output
080483db <main>:

80483db: 8d 4c 24 04 lea ecx,[esp+0x4]

80483df: 83 e4 f0 and esp,0xfffffff0

80483e2: ff 71 fc push DWORD PTR [ecx-0x4]

80483e5: 55 push ebp

80483e6: 89 e5 mov ebp,esp

80483e8: 51 push ecx

80483e9: 83 ec 04 sub esp,0x4

80483ec: c7 05 1c a0 04 08 05 mov DWORD PTR ds:0x804a01c,0x5

80483f3: 00 00 00

80483f6: e8 0e 00 00 00 call 8048409 <foo>

80483fb: b8 00 00 00 00 mov eax,0x0

8048400: 83 c4 04 add esp,0x4

8048403: 59 pop ecx

8048404: 5d pop ebp

8048405: 8d 61 fc lea esp,[ecx-0x4]

8048408: c3 ret

08048409 <foo>:

8048409: 55 push ebp

804840a: 89 e5 mov ebp,esp

804840c: 90 nop

804840d: 5d pop ebp

804840e: c3 ret

804840f: 90 nop

In the final output, the opcode e8 previously at 1b now starts at the

address 80483f6. The mock value fc ff ff ff is replaced with the ac-

tual value 0e 00 00 00 using the same calculating method from its ob-

ject file: opcode e8 is at 80483f6. The definition of foo is at 8048409.

The offset from the next address after e8 is 8048409 + 0− 80483f7− 4 = 0e.

However, for readability, the assembly is displayed as call 8048409 <foo>,

since GNU as8 assembler allows specifying the actual memory address 8 Or any current assembler in use to-

day.
of a symbol definition. Such address is later translated into relative ad-

dressing mode, saving the programmer the trouble of calculating offset

linking and loading on bare metal 227

manually.

8.1.5 Sym. Name

This field displays the name of a symbol to be relocated. The named sym-

bol is the same as written in a high level language such as C.

8.2 Crafting ELF binary with linker scripts

A linker is a program that combines separated object files into a final linker

binary file. When gcc is invoked, it runs ld underneath to turn object

files into the final executable file..

A linker script is a text file that instructs how a linker should com- linker script

bine object files. When gcc runs, it uses its default linker script to build

the memory layout of a compiled binary file. Standardized memory lay-

out is called object file format e.g. ELF includes program headers, sec-

tion headers and their attributes. The default linker script is made for

running in the current operating system environment9. Running on bare 9 To view the defaultscript,use

--verbose option:

ld --verbose
metal, the default script cannot be used as it is not designed for such en-

vironment. For that reason, a programmer needs to supply his own linker

script for such environments.

Every linker script consists of a series of commands with the follow-

ing format:

COMMAND

{

sub-command 1

sub-command 2

.... more sub-command....

}

Each sub-command is specific to only the top-level command. The sim-

plest linker script needs only one command: SECTION, that consumes in-

put sections from object files and produces output sections of the final

binary file10. 10 Recall that sections are chunks of
code or data, or both.

228 operating systems: from 0 to 1

8.2.1 Example linker script

Here is a minimal example of a linker script:

main.lds

SECTIONS /* Command */

{

. = 0x10000; /* sub-command 1 */

.text : { *(.text) } /* sub-command 2 */

. = 0x8000000; /* sub-command 3 */

.data : { *(.data) } /* sub-command 4 */

.bss : { *(.bss) } /* sub-command 5 */

}

Code Dissection:

Code Description

SECTION Top-level command that declares a list of custom program

sections. ld provides a set of such commands.

. = 0x10000; Set location counter to the address 0x10000. Location counter

specifies the base address for subsequent commands. In this

example, subsequent commands will use 0x10000 onward.

.text : { *(.text) } Since location counter is set to 0x10000, the output .text in the

final binary file will starts at the address 0x10000. This

command combines all .text sections from all object files with

*(.text) syntax into a final .text section. The * is the

wildcard which matches any file name.

. = 0x8000000; Again, the location counter is set to 0x8000000. Subsequent

commands will use this address for working with sections.

.data : { *(.data) } All .data section are combined into one .data section in the

final binary file.

.bss : { *(.bss) } All .bss section are combined into one .bss section in the final

binary file.

The addresses 0x10000 and 0x8000000 are called Virtual Memory Address.

A virtual memory address is the address where a section is loaded in mem- virtual memory address

ory when a program runs. To use the linker script, we save it as a file

e.g. main.lds11; then, we need a sample program in a file, e.g. main.c: 11 .lds is the extension forlinker

script.

main.c

void test() {}

linking and loading on bare metal 229

int main(int argc, char *argv[])

{

return 0;

}

Then, we compile the file and explicitly invoke ld with the linker script:

$ gcc -m32 -g -c main.c

$ ld -m elf_i386 -o main -T main.lds main.o

In the ld command, the options are similar to gcc:

Option Description

-m Specify object file format that ld produces. In the example, elf_i386 means a 32-bit ELF is

to be produced.

-o Specify the name of the final executable binary.

-T Specify the linker script to use. In the example, it is main.lds.

The remaining input is a list of object files for linking. After the com-

mand ld is executed, the final executable binary - main - is produced. If

we try running it:

$./main

Segmentation fault

The reason is that when linking manually, the entry address must be

explicitly set, or else ld sets it to the start of .text section by default.

We can verify from the readelf output:

$ readelf -h main

Output
ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

Class: ELF64

Data: 2’s complement, little endian

Version: 1 (current)

230 operating systems: from 0 to 1

OS/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)

Machine: Advanced Micro Devices X86-64

Version: 0x1

Entry point address: 0x10000

Start of program headers: 64 (bytes into file)

Start of section headers: 2098144 (bytes into file)

Flags: 0x0

Size of this header: 64 (bytes)

Size of program headers: 56 (bytes)

Number of program headers: 3

Size of section headers: 64 (bytes)

Number of section headers: 14

Section header string table index: 11

The entry point address is set to 0x10000, which is the beginning of

.text section. Using objdump to examine the address:

$ objdump -z -M intel -S -D prog | less

we see that the address 0x10000 does not start at main function when

the program runs:

Output
Disassembly of section .text:

00010000 <test>:

int a = 5;

int i;

void test(){}

10000: 55 push ebp

10001: 89 e5 mov ebp,esp

10003: 90 nop

10004: 5d pop ebp

10005: c3 ret

00010006 <main>:

linking and loading on bare metal 231

int main(int argc, char *argv[])

{

10006: 55 push ebp

10007: 89 e5 mov ebp,esp

return 0;

10009: b8 00 00 00 00 mov eax,0x0

}

1000e: 5d pop ebp

1000f: c3 ret

The start of .text section at 0x10000 is the function test, not main!

To enable the program to run at main properly, we need to set the entry

point in the linker script with the following line at the beginning of the

file:

ENTRY(main)

Recompile the executable binary file main again. This time, the output

from readelf is different:

Output
ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00

Class: ELF32

Data: 2’s complement, little endian

Version: 1 (current)

OS/ABI: UNIX - System V

ABI Version: 0

Type: EXEC (Executable file)

Machine: Intel 80386

Version: 0x1

Entry point address: 0x10006

Start of program headers: 52 (bytes into file)

Start of section headers: 9168 (bytes into file)

Flags: 0x0

Size of this header: 52 (bytes)

232 operating systems: from 0 to 1

Size of program headers: 32 (bytes)

Number of program headers: 3

Size of section headers: 40 (bytes)

Number of section headers: 14

Section header string table index: 11

The program now executes code at the address 0x10006 when it starts.

0x10006 is where main starts! To make sure we really starts at main, we

run the program with gdb, set two breakpoints at main and test func-

tions:

$ gdb ./main

Output
.... output omitted

Reading symbols from ./main...done.

(gdb) b test

Output
Breakpoint 1 at 0x10003: file main.c, line 1.

(gdb) b main

Output
Breakpoint 2 at 0x10009: file main.c, line 5.

(gdb) r

Output
Starting program: /tmp/main

Breakpoint 2, main (argc=-11493, argv=0x0) at main.c:5

5 return 0;

As displayed in the output, gdb stopped at the 2nd breakpoint first.

Now, we run the program normally, without gdb:

linking and loading on bare metal 233

$./main

Segmentation fault

We still get a segmentation fault. It is to be expected, as we ran a cus-

tom binary without C runtime support from the operating system. The

last statement in the main function: return 0, simply returns to a ran-

dom place12. The C runtime ensures that the program exit properly. In 12 Return address is above the current
ebp. However, when we enter main, no

return value is pushed on the stack.
So, when return is executed, it simply
retrieves any value above ebp and use

as a return address.

Linux, the _exit() function is implicitly called when main returns. To

fix this problem, we simply change the program to exit properly:

hello.c

1 void test() {}

2 int main(int argc, char *argv[])

3 {

4 asm("mov eax, 0x1\n"

5 "mov ebx, 0x0\n"

6 "int 0x80");

7 }

Inline assembly is required because interrupt 0x80 is defined for sys-

tem calls in Linux. Since the program uses no library, there is no other

way to call system functions, aside from using assembly. However, when

writing our operating system, we will not need such code, as there is no

environment for exiting properly yet.

Now that we can precisely control where the program runs initially,

it is easy to bootstrap the kernel from the bootloader. Before we move

on to the next section, note how readelf and objdump can be applied

to debug a program even before it runs.

8.2.2 Understand the custom ELF structure

In the example, we manage to create a runnable ELF executable binary

from a custom linker script, as opposed to the default one provided by

gcc. To make it convenient to look into its structure:

234 operating systems: from 0 to 1

$ readelf -e main

-e option is the combination of 3 options -h -l -S:

Output
....... ELF header output omitted

Section Headers:

[Nr] Name Type Addr Off Size ES Flg Lk Inf Al

[0] NULL 00000000 000000 000000 00 0 0 0

[1] .text PROGBITS 00010000 001000 000010 00 AX 0 0 1

[2] .eh_frame PROGBITS 00010010 001010 000058 00 A 0 0 4

[3] .debug_info PROGBITS 00000000 001068 000087 00 0 0 1

[4] .debug_abbrev PROGBITS 00000000 0010ef 000074 00 0 0 1

[5] .debug_aranges PROGBITS 00000000 001163 000020 00 0 0 1

[6] .debug_line PROGBITS 00000000 001183 000038 00 0 0 1

[7] .debug_str PROGBITS 00000000 0011bb 000078 01 MS 0 0 1

[8] .comment PROGBITS 00000000 001233 000034 01 MS 0 0 1

[9] .shstrtab STRTAB 00000000 00133a 000074 00 0 0 1

[10] .symtab SYMTAB 00000000 001268 0000c0 10 11 10 4

[11] .strtab STRTAB 00000000 001328 000012 00 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings)

I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)

O (extra OS processing required) o (OS specific), p (processor specific)

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

LOAD 0x001000 0x00010000 0x00010000 0x00068 0x00068 R E 0x1000

GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x10

Section to Segment mapping:

Segment Sections...

00 .text .eh_frame

01

The structure is incredibly simple. Both the segment and section list-

ings can be contained within one screen. This is not the case with de-

fault ELF executable binary. From the output, there are only 11 sections,

linking and loading on bare metal 235

and only two are loaded at runtime: .text and .eh_frame because both

section are assigned with an actual memroy addresses, 0x10000 and 0x10010

respectively. The remaining sections are assigned with 0 in the final ex-

ecutable binary13, which mean they are not loaded at runtime. It makes 13 As opposed to the object files, where
memory addresses are always 0 and

only assigned with actual values in the
linking process.

sense, as those sections are related to versioning14, debugging15 and link-

14 It is the .comment section. It can be

viewed with the comment readelf -p

.comment main.
15 The ones starts with .debug prefix.

ing16.

16 The symbol tables and string table.

The program segment header table is even simpler. It only contains 2

segments: LOAD and GNU_STACK. By default, if the linker script does not

supply the instructions for building program segments, ld provides rea-

sonable default segments. As in this case, .text should be in the LOAD

segment. GNU_STACK segment is a GNU extension used by the Linux ker-

nel to control the state of the program stack. We will not need this seg-

ment, along with .eh_frame, which is for exception handling, as we write

our own operating system from scratch. To achieve these goals, we will

need to create our own program headers instead of letting ld handles

the task, and instruct ld to remove .eh_frame.

8.2.3 Manipulate the program segments

First, we need to craft our own program header table by using the fol-

lowing syntax:

PHDRS

{

<name> <type> [FILEHDR] [PHDRS] [AT (address)]

[FLAGS (flags)] ;

}

PHDRS command, similar to SECTION command, but for declaring a list

of custom program segments with a predefined syntax.

name is the header name for later referenced by a section declared in

SECTION command.

type is the ELF segment type, as described in section Section 5.5, with

added prefix PT_. For example, instead of NULL or LOAD as displayed

by readelf, it is PT_NULL or PT_LOAD.

236 operating systems: from 0 to 1

Example 8.2.1. With only name and type, we can create any number

of program segments. For example, we can add the NULL program seg-

ment and remove the GNU_STACK segment:

main.lds

1 PHDRS

2 {

3 null PT_NULL;

4 code PT_LOAD;

5 }

6

7 SECTIONS

8 {

9 . = 0x10000;

10 .text : { *(.text) } :code

11 . = 0x8000000;

12 .data : { *(.data) }

13 .bss : { *(.bss) }

14 }

The content of PHDRS command tells that the final executable binary

contains 2 program segments: NULL and LOAD. The NULL segment is given

the name null and LOAD segment given the name code to signify this

LOAD segment contains program code. Then, to put a section into a seg-

ment, we use the syntax :<phdr>, where phdr is the name given to a seg-

ment earlier. In this example, .text section is put into code segment.

We compile and see the result (assuming main.o compiled earlier remains):

$ ld -m elf_i386 -o main -T main.lds main.o

$ readelf -l main

Output
Elf file type is EXEC (Executable file)

Entry point 0x10000

linking and loading on bare metal 237

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

NULL 0x000000 0x00000000 0x00000000 0x00000 0x00000 0x4

LOAD 0x001000 0x00010000 0x00010000 0x00010 0x00010 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text .eh_frame

Those 2 segments are now NULL and LOAD instead of LOAD and GNU_STACK.

Example 8.2.2. We can add as many segments of the same type, as long

as they are given different names:

main.lds

1 PHDRS

2 {

3 null1 PT_NULL;

4 null2 PT_NULL;

5 code1 PT_LOAD;

6 code2 PT_LOAD;

7 }

8

9 SECTIONS

10 {

11 . = 0x10000;

12 .text : { *(.text) } :code1

13 .eh_frame : { *(.eh_frame) } :code2

14 . = 0x8000000;

15 .data : { *(.data) }

16 .bss : { *(.bss) }

17 }

After amending the PHDRS content earlier with this new segment list-

ing, we put .text into code1 segment and .eh_frame into code2 segment,

we compile and see the new segments:

238 operating systems: from 0 to 1

$ ld -m elf_i386 -o main -T main.lds main.o

$ readelf -l main

Output
Elf file type is EXEC (Executable file)

Entry point 0x10000

There are 4 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

NULL 0x000000 0x00000000 0x00000000 0x00000 0x00000 0x4

NULL 0x000000 0x00000000 0x00000000 0x00000 0x00000 0x4

LOAD 0x001000 0x00010000 0x00010000 0x00010 0x00010 R E 0x1000

LOAD 0x001010 0x00010010 0x00010010 0x00058 0x00058 R 0x1000

Section to Segment mapping:

Segment Sections...

00

01

02 .text

03 .eh_frame

Now .text and .eh_frame are in different segments.

FILEHDR is an optional keyword, when added specifies that a program

segment includes the ELF file header of the executable binary. However,

this attribute should only added for the first program segment, as it

drastically alters the size and starting address of a segment because

the ELF header is always at the beginning of a binary file, recall that

a segment starts at the address of its first content, which is in most

of the cases (except for this case, which is the file header), the first sec-

tion.

Example 8.2.3. Adding the FILEHDR keyword changes the size of NULL

segment:

linking and loading on bare metal 239

main.lds

PHDRS

{

null PT_NULL FILEHDR;

code PT_LOAD;

}

..... content is the same

We link it again and see the result:

$ ld -m elf_i386 -o main -T main.lds main.o

$ readelf -l main

Output
Elf file type is EXEC (Executable file)

Entry point 0x10000

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

NULL 0x000000 0x00000000 0x00000000 0x00034 0x00034 R 0x4

LOAD 0x001000 0x00010000 0x00010000 0x00068 0x00068 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text .eh_frame

In previous examples, the file size and memory size of the NULL sec-

tion are always 0, now they are both 34 bytes, which is the size of an ELF

header.

Example 8.2.4. If we assign FILEHDR to a non-starting segment, its size

and starting address changes significantly:

main.lds

PHDRS

{

null PT_NULL;

240 operating systems: from 0 to 1

code PT_LOAD FILEHDR;

}

..... content is the same

$ ld -m elf_i386 -o main -T main.lds main.o

$ readelf -l main

Output
Elf file type is EXEC (Executable file)

Entry point 0x10000

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

NULL 0x000000 0x00000000 0x00000000 0x00000 0x00000 0x4

LOAD 0x000000 0x0000f000 0x0000f000 0x01068 0x01068 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text .eh_frame

The size of the LOAD segment in the previous example is only 0x68,

the same size as the total sizes of .text and .eh_frame sections in it. But

now, it is 0x01068, got 0x1000 bytes larger. What is the reason for these

extra bytes? A simple answer: segment alignment. From the output, the

alignment of this segment is 0x1000; it means that regardless of which

address is the start of this segment, it must be divisible by 0x1000. For

that reason, the starting address of LOAD is 0xf000 because it is divisi-

ble by 0x1000.

Another question arises: why is the starting address 0xf000 instead

of 0x10000? .text is the first section, which starts at 0x10000, so the

segment should start at 0x10000. The reason is that we include FILEHDR

as part of the segment, it must expand to include the ELF file header,

which is at the very start of an ELF executable binary. To satisfy this

constraint and the alignment constraint, 0xf000 is the closest address.

Note that the virtual and physical memory addresses are the addresses

linking and loading on bare metal 241

at runtime, not the locations of the segment in the file on disk. As the

FileSiz field shows, the segment only consumes 0x1068 bytes on disk.

Figure 8.2.1 illustrates the difference between the memory layouts with

and without FILEHDR keyword.

242 operating systems: from 0 to 1

0x34

0x1000

0x1068

0x0

0x10000

0x10068

File

Memory

.text .eh_frame

ELF header

.text .eh_frame

0x0

0xFFFFFFFF

0x1590

Loaded contentLOAD segment

(a) Without FILEHDR.

0x34

0x1000

0x1068

0x0

0x10000

0x10068

0xf000

File

Memory

.text .eh_frame

ELF header ELF header

.text .eh_frame

0x0

0xFFFFFFFF

0xf034

0x1590

Loaded contentLOAD segment

(b) With FILEHDR.

Figure 8.2.1: LOAD segment on

disk and in memory.

linking and loading on bare metal 243

PHDRS is an optional keyword, when added specifies that a program

segment is a program segment header table.

Example 8.2.5. The first segment of the default executable binary gen-

erated by gcc is a PHDR since the program segment header table appears

right after the ELF header. It is also a convenient segment to put the

ELF header into using the FILEHDR keyword. We replace the unused NULL

segment earlier with a PHDR segment:

main.lds

PHDRS

{

headers PT_PHDR FILEHDR PHDRS;

code PT_LOAD FILEHDR;

}

..... content is the same

$ ld -m elf_i386 -o main -T main.lds main.o

$ readelf -l main

Output
Elf file type is EXEC (Executable file)

Entry point 0x10000

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000000 0x00074 0x00074 R 0x4

LOAD 0x001000 0x00010000 0x00010000 0x00068 0x00068 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text .eh_frame

As shown in the output, the first segment is of type PHDR. Its size is

0x74, which includes:

244 operating systems: from 0 to 1

✄ 0x34 bytes for ELF header.

✄ 0x40 bytes for the program segment header table, with 2 entries, each

is 0x20 bytes (32 bytes) in length.

The above number is consistent with ELF header output:

Output
ELF Header:

Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00

Class: ELF32

....... output omitted

Size of this header: 52 (bytes) --> 0x34 bytes

Size of program headers: 32 (bytes) --> 0x20 bytes each program header

Number of program headers: 2 --> 0x40 bytes in total

Size of section headers: 40 (bytes)

Number of section headers: 12

Section header string table index: 9

AT (address) specifies the load memory address where the segment

is placed. Every segment or section has a virtual memory address and

a load memory address:

✄ A virtual memory address is a starting address of a segment or a virtual memory address

section when a program is in memory and running. The memory

address is called virtual because it does not map to the actual mem-

ory cell that corresponds to the address number, but any random

memory cell, which depends on how the underlying operating sys-

tem translates the address. For example, the virtual memory ad-

dress 0x1 might map to the memory cell with the physical address

0x1000.

✄ A load memory address is the physical memory address, where a load memory address

program is loaded but not yet running.

The load memory address is specified by AT syntax. Normally both

types of addresses are the same, and the physical address can be ig-

linking and loading on bare metal 245

nored. They differ when loading and running are purposely divided

into two distinct phases that require different address regions.

For example, a program can be designed to load into a ROM17 at a 17 Read-Only Memory

fixed address. But when loading into RAM for a bare-metal applica-

tion or an operating system to use, the program needs a load address

that accommodates the addressing scheme of the target application

or operating system.

Example 8.2.6. We can specify a load memory address for the segment

LOAD with AT syntax:

main.lds

PHDRS

{

headers PT_PHDR FILEHDR PHDRS AT(0x500);

code PT_LOAD;

}

..... content is the same

$ ld -m elf_i386 -o main -T main.lds main.o

$ readelf -l main

Output
Elf file type is EXEC (Executable file)

Entry point 0x4000

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000500 0x00074 0x00074 R 0x4

LOAD 0x001000 0x00004000 0x00002000 0x00068 0x00068 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text .eh_frame

246 operating systems: from 0 to 1

It depends on an operating system whether to use the address or not.

For our operating system, the virtual memory address and load are the

same, so an explicit load address is none of our concern.

FLAGS (flags) assigns permissions to a segment. Each flag is an in-

teger that represents a permission and can be combined with OR op-

erations. Possible values:

Permission Value Description

R 1 Readable

W 2 Writable

E 4 Executable

Example 8.2.7. We can create a LOAD segment with Read, Write and

Execute permissions enabled:

main.lds

PHDRS

{

headers PT_PHDR FILEHDR PHDRS AT(0x500);

code PT_LOAD FILEHDR FLAGS(0x1 | 0x2 | 0x4);

}

..... content is the same

$ ld -m elf_i386 -o main -T main.lds main.o

$ readelf -l main

Output
Elf file type is EXEC (Executable file)

Entry point 0x0

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000500 0x00074 0x00074 R 0x4

linking and loading on bare metal 247

LOAD 0x001000 0x00000000 0x00000000 0x00010 0x00010 RWE 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text .eh_frame

LOAD segment now gets all the RWE permissions, as shown above.

Finally, we want to remove the .eh_frame or any unwanted section,

we add a special section called /DISCARD/:

main.lds

... program segment header table remains the same ...

SECTIONS

{

/* . = 0x10000; */

.text : { *(.text) } :code

. = 0x8000000;

.data : { *(.data) }

.bss : { *(.bss) }

/DISCARD/ : { *(.eh_frame) }

}

Any section putting in /DISCARD/ disappears in the final executable

binary:

$ ld -m elf_i386 -o main -T main.lds main.o

$ readelf -l main

Output
Elf file type is EXEC (Executable file)

Entry point 0x0

There are 2 program headers, starting at offset 52

Program Headers:

248 operating systems: from 0 to 1

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000500 0x00074 0x00074 R 0x4

LOAD 0x001000 0x00000000 0x00000000 0x00010 0x00010 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text

As can be seen, .eh_frame is nowhere to be found.

8.3 C Runtime: Hosted vs Freestanding

The purpose of .init, .init_array, .fini_array and .preinit_array

section is to initialize a C Runtime environment that supports the C stan-

dard libraries. Why does C need a runtime environment, when it is sup-

posed to be a compiled language? The reason is that many of the stan-

dard functions depend on the underlying operating system, which is of

itself a big runtime environment. For example, I/O related functions such

as reading from keyboard with gets(), reading from file with open(),

printing on screen with printf(), managing system memory with malloc(),

free(), etc.

A C implementation cannot provide such routines without a running

operating system, which is a hosted environment. A hosted environment

is a runtime environment that:

✄ provides a default implementation of C libraries that includes system-

dependent data and routines.

✄ perform resource allocations to prepare an environment for a program

to run.

This process is similar to the hardware initialization process:

✄ When first powered up, a desktop computer loads its basic system rou-

tines from a read-only memory stored on the motherboard.

✄ Then, it starts initializing an environment, such as setting default val-

ues for various registers in CPU and devices, before executing the any

linking and loading on bare metal 249

code.

In contrast, a freestanding environment is an environment that does not

provide system-dependent data and routines. As a consequence, almost

no C library exists and the environment can run code compiled written

from pure C syntax. For a free standing environment to become a host

environment, it must implement standard C system routines. But for a

conforming freestanding environment, it only needs these header files avail-

able: <float.h>, <limits.h>, <stadarg.h> and <stddef.h> (according

to GCC manual).

For a typical desktop x86 program, C runtime environment is initial-

ized by a compiler so a program runs normal. However, for an embed-

ded platform where a program runs directly on it, this is not the case.

The typical C runtime environment used in desktop operating systems

cannot be used on the embedded platforms, because architectural differ-

ences and resource constraints. As such, the software writer must imple-

ment a custom C runtime environment suitable for the targeted platform.

For the embedded platform,

In writing our operating system, the first step is to create a freestand-

ing environment before creating a hosted one.

8.4 Debuggable bootloader on bare metal

Currently, the bootloader is compiled as a flat binary file. Although gdb

can display the assembly code, it is not always the same as the source

code. In the assembly source code, there exists variable names and la-

bels. These symbols are lost when compiled as a flat binary file, making

debugging more difficult. Another issue is the mismatch between the writ-

ten assembly source code and the displayed assembly source code. The

written code might contain higher level syntax that is assembler-specific

and is generated into lower-level assembly code as displayed by gdb. Finally,

with debug information available, the command next/n and prev/p can

be used instead of ni and si.

To enable debug information, we modify the bootloader Makefile:

1. The bootloader must be compiled as a ELF binary. Open the Makefile

250 operating systems: from 0 to 1

in bootloader/ directory and change this line under $(BUILD_DIR)/%.o:

%.asm recipe:

nasm -f bin $< -o $@

to this line:

nasm -f elf $< -F dwarf -g -o $@

In the updated recipe, bin format is replaced with elf format to en-

able debugging information to be properly produced.-F option speci-

fies the debug information format, which is dwarf in this case. Finally,

-g option causes nasm to actually generate debug information in se-

lected format.

2. Then, ld consumes the ELF bootloader binary and produces another

ELF bootloader binary, with proper starting memory address of .text

section that match the actual address of the bootloader at runtime,

when QEMU virtual machine loads it at 0x7c00. We need ld because

when compiled by nasm, the starting address is assumed to be 0, not

0x7c00.

3. Finally, we use objcopy to separate extract only the flat binary con-

tent as the original bootloader by adding this line to $(BUILD_DIR)/%.o:

%.asm:

objcopy -O binary $(BUILD_DIR)/bootloader.o.elf $@

objcopy, as its name implies, is a program that copies and translates

object files. Here, we copy the original ELF bootloader and translate

it into a flat binary file.

The updated recipe should look like:

$(BUILD_DIR)/%.o: %.asm

nasm -f elf $< -F dwarf -g -o $@

ld -m elf_i386 -T bootloader.lds $@ -o $@.elf

objcopy -O binary $(BUILD_DIR)/bootloader.o.elf $@

linking and loading on bare metal 251

Now we test the bootloader with debug information available:

1. Start the QEMU machine:

$ make qemu

2. Start gdb with the debug information stored in bootloader.o.elf:

$ gdb build/bootloader/bootloader.o.elf

After getting into gdb, press the Enter key and if the sample .gdbinit

section 7.7.3 is used, the output should look like:

Output
---Type <return> to continue, or q <return> to quit---

[f000:fff0] 0x0000fff0 in ?? ()

Breakpoint 1 at 0x7c00: file bootloader.asm, line 6.

(gdb)

gdb now understand where the instruction at address 0x7c00 is in the

assembly source file, thanks to the debug information.

8.5 Debuggable program on bare metal

The process of building a debug-ready executable binary is similar to that

of a bootloader, except more involved. Recall that for a debugger to work

properly, its debugging information must contain correct address map-

pings between memory addresses and the source code. gcc stores such

mapping information in DIE entries, in which it tells gdb at which code

address corresponds to a line in a source file, so that breakpoints work

properly.

But first, we need a sample C source file, a very simple one:

os.c

void main() {}

252 operating systems: from 0 to 1

Because this is a free standing environment, standard libraries that

involve system functions such as printf() would not work, because a

C runtime does not exist. At this stage, the goal is to correctly jump to

main with source code displayed properly in gdb, so no fancy C code is

needed yet.

The next step is updating os/Makefile:

BUILD_DIR=../build

OS=$(BUILD_DIR)/os

CFLAGS+=-ffreestanding -nostdlib -gdwarf-4 -m32 -ggdb3

OS_SRCS := $(wildcard *.c)

OS_OBJS := $(patsubst %.c, $(BUILD_DIR)/%.o, $(OS_SRCS))

all: $(OS)

$(BUILD_DIR)/%.o: %.c

gcc $(CFLAGS) -c $< -o $@

$(OS): $(OS_OBJS)

ld -m elf_i386 -Tos.lds $(OS_OBJS) -o $@

clean:

rm $(OS_OBJS)

We updated the Makefile with the following changes:

✄ Add a CFLAGS variable for passing options to gcc.

✄ Instead of the rule to build assembly source code earlier, it is replaced

with a C version with a recipe to build C source files. The CFLAGS vari-

able makes the gcc command in the recipe looks cleaner regardless

how many options are added.

✄ Add a linking command for building the final executable binary of the

operating system with a custom linker script os.lds.

linking and loading on bare metal 253

Everything looks good, except for the linker script part. Why is it needed?

The linker script is required for controlling at which physical memory ad-

dress the operating system binary appears in the memory, so the linker

can jump to the operating system code and execute it. To complete this

requirement, the default linker script used by gcc would not work as it as-

sumes the compiled executable runs inside an existing operating system,

while we are writing an operating system itself.

The next question is, what will be the content in the linker script? To

answer this question, we must understand what goals to achieve with the

linker script:

✄ For the bootloader to correctly jump to and execute the operating sys-

tem code.

✄ For gdb to debug correctly with the operating system source code.

To achieve the goals, we must devise a design of a suitable memory lay-

out for the operating system. Recall that the bootloader developed in

chapter 7 can already load a simple binary compiled from the sample Assembly

program sample.asm. To load the operating system, we can simply throw

binary compiled from sample.asm with the binary compiled from os.c

above.

If only it is that simple. The idea is correctly, but not enough. The

goals implies the following constraints:

1. The operating system code is written in C and compiled as an ELF

executable binary. It means, the bootloader needs to retrieve correct

entry address from the ELF header.

2. To debug properly with gdb, the debug info must contain correct map-

pings between instruction addresses and source code.

Thanks to the understanding of ELF and DWARF acquire in the ear-

lier chapters, we can certainly modify the bootloader and create an exe-

cutable binary that satisfy the above constraint. We will solve these prob-

lems one by one.

254 operating systems: from 0 to 1

8.5.1 Loading an ELF binary from a bootloader

Earlier we examined that an ELF header contains a entry address of a

program. That information is 0x18 bytes away from the beginning of an

ELF header, according to man elf :

typedef struct {

unsigned char e_ident[EI_NIDENT];

uint16_t e_type;

uint16_t e_machine;

uint32_t e_version;

ElfN_Addr e_entry;

ElfN_Off e_phoff;

ElfN_Off e_shoff;

uint32_t e_flags;

uint16_t e_ehsize;

uint16_t e_phentsize;

uint16_t e_phnum;

uint16_t e_shentsize;

uint16_t e_shnum;

uint16_t e_shstrndx;

} ElfN_Ehdr;

The offset from the start of the struct to the start of e_entry is:

✄ 16 bytes of e_ident[EI_NIDENT]:

#define EI_NIDENT 16

✄ 2 bytes of e_type

✄ 2 bytes of e_machine

✄ 4 bytes of e_version

Offset = 16 + 2 + 2 + 4 = 24 = 0x18

linking and loading on bare metal 255

e_entry is of type ElfN_Addr, in which N is either 32 or 64. We are

writing 32-bit operating system, in this case N = 32 and so ElfN_Addr

is Elf32_Addr, which is 4 bytes long.

Example 8.5.1. With any program, such as this simple one:

hello.c

#include <stdio.h>

int main(int argc, char *argv[])

{

printf("hello␣world!\n");

return 0;

}

We can retrieve the entry address with a human-readable presenta-

tion using readelf:

$ gcc hello.c -o hello

$ readelf -h hello

Output
ELF Header:

Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00

.... output omitted

Entry point address: 0x400430

.... output omitted

Or in raw binary with hd:

$ hd hello | less

Output
00000000 7f 45 4c 46 02 01 01 00 00 00 00 00 00 00 00 00 |.ELF............|

00000010 02 00 3e 00 01 00 00 00 30 04 40 00 00 00 00 00 |..>.....0.@.....|

.........

The offset 0x18 is the start of the least-significant byte of e_entry,

256 operating systems: from 0 to 1

which is 0x30, followed by 04 40 00, together in reverse makes the address

0x00400430.

Now that we know where the position of the entry address in the ELF

header, it is easy to modify the bootloader made in section 7.6.2 to re-

trieve and jump to the address:

bootloader.asm

;**

; Bootloader.asm

; A Simple Bootloader

;**

bits 16

start: jmp boot

;; constant and variable definitions

msg db "Welcome to My Operating System!", 0ah, 0dh, 0h

boot:

cli ; no interrupts

cld ; all that we need to init

mov ax, 50h

;; set the buffer

mov es, ax

xor bx, bx

mov al, 2 ; read 2 sector

mov ch, 0 ; we are reading the second sector past us,

; so its still on track

0

mov cl, 2 ; sector to read (The second sector)

mov dh, 0 ; head number

mov dl, 0 ; drive number. Remember Drive 0 is floppy

drive.

linking and loading on bare metal 257

mov ah, 0x02 ; read floppy sector function

int 0x13 ; call BIOS - Read the sector

jmp [500h + 18h] ; jump and execute the sector!

hlt ; halt the system

; We have to be 512 bytes. Clear the rest of the bytes

with 0

times 510 - ($-$$) db 0

dw 0xAA55 ; Boot Signiture

It is as simple as that! First, we load the operating system binary at

0x500, then we retrieve the entry address at the offset 0x18 from 0x500,

by first calculating the expression 500h + 18h = 518h to get the actual

in-memory address, then retrieve the content by dereference it.

The first part is done. For the next part, we need to build an ELF op-

erating system image for the bootloader to load. The first step is to cre-

ate a linker script:

main.lds

ENTRY(main);

PHDRS

{

headers PT_PHDR FILEHDR PHDRS;

code PT_LOAD;

}

SECTIONS

{

.text 0x500: { *(.text) } :code

.data : { *(.data) }

.bss : { *(.bss) }

/DISCARD/ : { *(.eh_frame) }

258 operating systems: from 0 to 1

}

The script is straight-forward and remains almost the same as before.

The only differences are:

✄ main are explicitly specified as the entry point by specifying ENTRY(main).

✄ .text is explicitly specified with 0x500 as its virtual memory address

since we load the operating system image at 0x500.

After putting the script, we compile with make and it should work smoothly:

$ make clean; make

$ readelf -l build/os/os

Output
Elf file type is EXEC (Executable file)

Entry point 0x500

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000000 0x00074 0x00074 R 0x4

LOAD 0x000500 0x00000500 0x00000500 0x00040 0x00040 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text

All looks good, until we run it. We begin by starting the QEMU vir-

tual machine:

$ make qemu

Then, start gdb and load the debug info (which is also in the same bi-

nary file) and set a breakpoint at main:

linking and loading on bare metal 259

(gdb) symbol-file build/os/os

Reading symbols from build/os/os...done.

(gdb) b main

Breakpoint 2 at 0x500

Then we start the program:

(gdb) symbol-file build/os/os

Reading symbols from build/os/os...done.

(gdb) b main

Breakpoint 2 at 0x500

Keep the programming running until it stops at main:

(gdb) c

Continuing.

[0:7c00]

Breakpoint 1, 0x00007c00 in ?? ()

(gdb) c

Continuing.

[0: 500]

Breakpoint 2, main () at main.c:1

At this point, we switch the layout to the C source code instead of the

registers:

(gdb) layout split

layout split creates a layout that consists of 3 smaller windows:

✄ Source window at the top.

✄ Assembly window in the middle.

✄ Command window at the bottom.

After the command, the layout should look like this:

260 operating systems: from 0 to 1

Output
main.c

B+> 1 void main(){}

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

B+> 0x500 <main> jg 0x547

0x502 <main+2> dec sp

0x503 <main+3> inc si

0x504 <main+4> add WORD PTR [bx+di],ax

0x506 add WORD PTR [bx+si],ax

0x508 add BYTE PTR [bx+si],al

0x50a add BYTE PTR [bx+si],al

0x50c add BYTE PTR [bx+si],al

0x50e add BYTE PTR [bx+si],al

0x510 add al,BYTE PTR [bx+si]

0x512 add ax,WORD PTR [bx+si]

0x514 add WORD PTR [bx+si],ax

0x516 add BYTE PTR [bx+si],al

0x518 add BYTE PTR [di],al

0x51a add BYTE PTR [bx+si],al

linking and loading on bare metal 261

0x51c xor al,0x0

0x51e add BYTE PTR [bx+si],al

remote Thread 1 In: main L1 PC: 0x500

[f000:fff0] 0x0000fff0 in ?? ()

Breakpoint 1 at 0x7c00

(gdb) symbol-file build/os/os

Reading symbols from build/os/os...done.

(gdb) b main

Breakpoint 2 at 0x500: file main.c, line 1.

(gdb) c

Continuing.

[0:7c00]

Breakpoint 1, 0x00007c00 in ?? ()

(gdb) c

Continuing.

[0: 500]

Breakpoint 2, main () at main.c:1

(gdb) layout split

(gdb)

Something wrong is going on here. It is not the generated assembly

code for function call as it is known in section 4.9.5. It is definitely wrong,

verified with objdump:

$ objdump -D build/os/os | less

Output
/home/tuhdo/workspace/os/build/os/os: file format elf32-i386

Disassembly of section .text:

00000500 <main>:

500: 55 push %ebp

501: 89 e5 mov %esp,%ebp

503: 90 nop

262 operating systems: from 0 to 1

504: 5d pop %ebp

505: c3 ret

.... remaining output omitted

The assembly code of main is completely different. This is why un-

derstanding assembly code and its relation to high-level languages are

important. Without the knowledge, we would have used gdb as a simple

source-level debugger without bother looking at the assembly code from

the split layout. As a consequence, the true cause of the non-working code

could never been discovered.

8.5.2 Debugging the memory layout

What is the reason for the incorrect Assembly code in main displayed by

gdb? There can only be one cause: the bootloader jumped to the wrong

addresses. But why was the address wrong? We made the .text section

at address 0x500, in which main code is in the first byte for executing,

and instructed the bootloader to retrieve the address at the offset 0x18,

then jump to the entry address.

Figure 8.5.1: Memory state after

loading 2nd sector.

0x500

Memory

ELF header

.text

0x0

0xFFFFFFFF

Loaded content

Then, it might be possible for the bootloader to load the operating sys-

tem address at the wrong address. But then, we explicitly set the load

address to 50h:00, which is 0x500, and so the correct address was used.

After the bootloader loas the 2nd sector, the in-memory state should look

like the figure 8.5.1:

Here is the problem: 0x500 is the start of the ELF header. The boot-

loader actually loads the 2nd sector, which stores the executable as a whole,

to 0x500. Clearly, .text section, where main resides, is far from 0x500.

Since the in-memory entry address of the executable binary is 0x500, .text

should be at 0x500 + 0x500 = 0xa00. However, the entry address recorded

in the ELF header remains 0x500 and as a result, the bootloader jumped

there instead of 0xa00. This is one of the issues that must be fixed.

The other issue is the mapping between debug info and the memory

address. Because the debug info is compiled with the assumed offset 0x500

that is the start of .text section, but due to actual loading, the offset

is pushed another 0x500 bytes, making the address actually is at 0xa00.

linking and loading on bare metal 263

This memory mismatch renders the debug info useless.

0x500

Memory

ELF header

.text

0x0

0xFFFFFFFF

Loaded content

Debug Info

.text

.text

Debug info is
supposed to be here

Figure 8.5.2: Wrong symbol-

memory mappings in debug info.

In summary, we have 2 problems to overcome:

✄ Fix the entry address to account for the extra offset when loading into

memory.

✄ Fix the debug info to account for the extra offset when loading into

memory.

First, we need to know the actual layout of the compiled executable bi-

nary:l

$ readelf -l build/os/os

Output
Elf file type is EXEC (Executable file)

Entry point 0x500

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000000 0x00074 0x00074 R 0x4

LOAD 0x000500 0x00000500 0x00000500 0x00040 0x00040 R E 0x1000

Section to Segment mapping:

Segment Sections...

264 operating systems: from 0 to 1

00

01 .text

Notice the Offset and the VirtAddress fields: both have the same

value. This is problematic, as the entry address and the memory addresses

in the debug info depend on VirtAddr field, but the Offset having the

same value destroys the validity of VirtAddr18 because it means that 18 The offset is the distance in bytes
between the beginning of the file, the

address 0, to the beginning address of

a segment or a section.

the real in-memory address will always be greater than the VirtAddr.

If we try to adjust the virtual memory address of the .text section

in the linker script os.lds, whatever value we set also sets the Offset

to the same value, until we set it to some value equal or greater than 0x1074:

Output
Elf file type is EXEC (Executable file)

Entry point 0x1074

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000000 0x00074 0x00074 R 0x4

LOAD 0x000074 0x00001074 0x00001074 0x00006 0x00006 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text

If we adjust the virtual address to 0x1073, both the Offset and VirtAddr

still share the same value:

Output
Elf file type is EXEC (Executable file)

Entry point 0x1073

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000000 0x00074 0x00074 R 0x4

LOAD 0x001073 0x00001073 0x00001073 0x00006 0x00006 R E 0x1000

Section to Segment mapping:

linking and loading on bare metal 265

Segment Sections...

00

01 .text

The key to answer such phenonemon is in the Align field. The value

0x1000 indicates that the offset address of the segment should be divisi-

ble by 0x1000, or if the distance between segment is divisible by 0x1000,

the linker removes such distance to save the binary size. We can do some

experiments to verify this claim19: 19 All the outputs are produced by the
command:

$ readelf -l build/os/os

✄ By setting the virtual address of .text to 0x0 to 0x73 (in os.lds),

the offset starts from 0x1000 to 0x1073, accordingly. For example, by

setting it to 0x0:

Output
Elf file type is EXEC (Executable file)

Entry point 0x0

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000000 0x00074 0x00074 R 0x4

LOAD 0x001000 0x00000000 0x00000000 0x00006 0x00006 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text

By default, if we do not specify any virtual address, the offset stays at

0x1000 because 0x1000 is the perfect offset to satisfy the alignment

constraint. Any addition from 0x1 to 0x73 makes the segment mis-

aligned, but the linker keeps it anyway because it is told so.

✄ By setting the virtual address of .text to 0x74 (in os.lds):

Output
Elf file type is EXEC (Executable file)

Entry point 0x74

There are 2 program headers, starting at offset 52

266 operating systems: from 0 to 1

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000000 0x00074 0x00074 R 0x4

LOAD 0x000074 0x00000074 0x00000074 0x00006 0x00006 R E 0x1000

Section to Segment mapping:

Segment Sections...

00

01 .text

PHDR is 0x74 bytes in size, so if LOAD starts at 0x1074, the distance

between the PHDR segment and LOAD segment is 0x1074− 0x74 = 0x1000

bytes. To save space, it removes that extra 0x1000 bytes.

✄ By setting the virtual address of .text to any value between 0x75 and

0x1073 (in os.lds), the offset takes the exact values specified, as can

be seen in the case of setting to 0x1073 above.

✄ By setting the virtual address of .text to any value equal or greater

than 0x1074: it starts all over again at 0x74, where the distance is equal

to 0x1000 bytes.

Now we get a hint how to control the values of Offset and VirtAddr to

produce a desired binary layout. What we need is to change the Align

field to a value with smaller value for finer grain control. It might work

out with a binary layout like this:

Output
Elf file type is EXEC (Executable file)

Entry point 0x600

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000000 0x00074 0x00074 R 0x4

LOAD 0x000100 0x00000600 0x00000600 0x00006 0x00006 R E 0x100

Section to Segment mapping:

Segment Sections...

00

01 .text

linking and loading on bare metal 267

The binary will look like figure 8.5.3 in memory:

0x600

Memory

ELF header

.text

0x0

0xFFFFFFFF

Loaded content
Debug Info

.text

0x500

0x100

Figure 8.5.3: A good binary

layout.

If we set the Offset field to 0x100 from the beginning of the file and

the VirtAddr to 0x600, when loading in memory, the actual memory of

.text is 0x500 + 0x100 = 0x600; 0x500 is the memory location where the

bootloader loads into the physical memory and 0x100 is the offset from

the end of ELF header to .text. The entry address and the debug info

will then take the value 0x600 from the VirtAddr field above, which to-

tally matches the actual physical layout. We can do it by changing os.lds

as follow:

main.lds

ENTRY(main);

PHDRS

{

headers PT_PHDR FILEHDR PHDRS;

code PT_LOAD;

}

SECTIONS

{

.text 0x600: ALIGN(0x100) { *(.text) } :code

268 operating systems: from 0 to 1

.data : { *(.data) }

.bss : { *(.bss) }

/DISCARD/ : { *(.eh_frame) }

}

The ALIGN keyword, as it implies, tells the linker to align a section, thus

the segment containing it. However, to make the ALIGN keyword has any

effect, automatic alignment must be disabled. According to man ld:

Output -n

--nmagic

Turn off page alignment of sections, and disable linking against shared

libraries. If the output format supports Unix style magic numbers, mark the

output as "NMAGIC"

That is, by default, each section is aligned by an operating system page,

which is 4096, or 0x1000 bytes in size. The -n or -nmagic option disables

this behavior, which is needed. We amend the ld command used in os/Makefile:

os/Makefile

..... above content omitted

$(OS): $(OS_OBJS)

ld -m elf_i386 -nmagic -Tos.lds $(OS_OBJS) -o $@

Finally, we also need to update the top-level Makefile to write more

than one sector into the disk image for the operating system binary, as

its size exceeds one sector:

$ ls -l build/os/os

-rwxrwxr-x 1 tuhdo tuhdo 9060 Feb 13 21:37 build/os/os

We update the rule so that the sectors are automatically calculated:

os/Makefile

..... above content omitted

bootdisk: bootloader os

linking and loading on bare metal 269

dd if=/dev/zero of=$(DISK_IMG) bs=512 count=2880

dd conv=notrunc if=$(BOOTLOADER) of=$(DISK_IMG) bs=512

count=1 seek=0

dd conv=notrunc if=$(OS) of=$(DISK_IMG) bs=512 count=$$

(($(shell stat --printf="%s" $(OS))/512)) seek=1

After updating the everything, recompiling the executable binary and

we get the desired offset and virtual memory at 0x100 and 0x600, respec-

tively:

Output
Elf file type is EXEC (Executable file)

Entry point 0x600

There are 2 program headers, starting at offset 52

Program Headers:

Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align

PHDR 0x000000 0x00000000 0x00000000 0x00074 0x00074 R 0x4

LOAD 0x000100 0x00000600 0x00000600 0x00006 0x00006 R E 0x100

Section to Segment mapping:

Segment Sections...

00

01 .text

8.5.3 Testing the new binary

First, we start the QEMU machine:

$ make qemu

In another terminal, we start gdb, loading the debug info and set a break-

point at main:

$ gdb

The following output should be produced:

270 operating systems: from 0 to 1

Output
---Type <return> to continue, or q <return> to quit---

[f000:fff0] 0x0000fff0 in ?? ()

Breakpoint 1 at 0x7c00

Breakpoint 2 at 0x600: file main.c, line 1.

Then, let gdb runs until it hits the main function, then we change to

the split layout between source and assembly:

(gdb) layout split

The final terminal output should look like this:

Output
main.c

B+> 1 void main(){}

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

B+> 0x600 <main> push bp

0x601 <main+1> mov bp,sp

0x603 <main+3> nop

linking and loading on bare metal 271

0x604 <main+4> pop bp

0x605 <main+5> ret

0x606 aaa

0x607 add BYTE PTR [bx+si],al

0x609 add BYTE PTR [si],al

0x60b add BYTE PTR [bx+si],al

0x60d add BYTE PTR [bx+si],al

0x60f add BYTE PTR [si],al

0x611 add ax,bp

0x613 push ss

0x614 add BYTE PTR [bx+si],al

0x616 or al,0x67

0x618 adc al,BYTE PTR [bx+si]

0x61a add BYTE PTR [bx+si+0x2],al

remote Thread 1 In: main L1 PC: 0x600

(gdb) c

Continuing.

[0:7c00]

Breakpoint 1, 0x00007c00 in ?? ()

(gdb) c

Continuing.

[0: 600]

Breakpoint 2, main () at main.c:1

(gdb) layout split

Now, the displayed assembly is the same as in objdump, except the reg-

isters are 16-bit ones. This is normal, as gdb is operating in 16-bit mode,

while objdump displays code in 32-bit mode. To make sure, we verify the

raw opcode by using x command:

(gdb) x/16xb 0x600

272 operating systems: from 0 to 1

Output
0x600 <main>: 0x55 0x89 0xe5 0x90 0x5d 0xc3 0x37

0x00

0x608: 0x00 0x00 0x04 0x00 0x00 0x00 0x00 0x00

From the assembly window, main stops at the address 0x605. As such,

the corresponding bytes from 0x600 to 0x605 are highlighted in red from

the output of the command x/16xb 0x600. Then, the raw opcode from

the objdump output:

$ objdump -z -M intel -S -D build/os/os | less

Output
build/os/os: file format elf32-i386

Disassembly of section .text:

00000600 <main>:

void main(){}

600: 55 push ebp

601: 89 e5 mov ebp,esp

603: 90 nop

604: 5d pop ebp

605: c3 ret

Disassembly of section .debug_info:

...... output omitted

Both raw opcode displayed by the two programs are the same. In this

case, it proved that gdb correctly jumped to the address in main for a proper

debugging. This is an extremely important milestone. Being able to de-

bug in bare metal will help tremendously in writing an operating system,

as a debugger allows a programmer to inspect the internal state of a run-

ning machine at each step to verify his code, step by step, to gradually

build up a solid understanding. Some professional programmers do not

like debuggers, but it is because they understand their domain deep enough

to not need to rely on a debugger to verify their code. When encounter-

ing new domains, a debugger is indispensable learning tool because of

its verifiability.

linking and loading on bare metal 273

However, even with the aid of debugger, writing an operating system

is still not a walk in the park. The debugger may give the access to the

machine at one point in time, but it does not give the cause. To find out

the root cause, is up to the ability of a programmer. Later in the book,

we will learn how to use other debugging techniques, such as using QEMU

logging facility to debug CPU exceptions.

Part III

Kernel Programming

9
x86 Descriptors

9.1 Basic operating system concepts

The first and foremost, OS manages hardware resources. It’s easy to see

the core features of an OS based on Von Neumann diagram:

CPU management: allows programs to share CPU for multitasking.

Memory management: allocates enough storage for programs to run.

Devices management: detects and communicates with different devices

Any OS should be good at the above fundamentals tasks.

Another important feature of an OS is to provide an software inter-

face layer, that hides away hardware interfaces, to interface with appli-

cations that run on top of that OS. The benefits of such a layer:

✄ reusability: that is, the same software API can be reused across pro-

grams, thus simplifying software development process

✄ separation of concerns: bugs appear either in application programs,

or in the OS; a programmer needs to isolate where the bugs are.

✄ simplify software development process: provides an easier to use soft-

ware interface layer with a uniform access to hardware resources across

278 operating systems: from 0 to 1

devices, instead of directly using the hardware interface of a particu-

lar device.

9.1.1 Hardware Abstraction Layer

There are so many hardware devices out there, so it’s best to leave the

hardware engineers how the devices talk to an OS. To achieve this goal,

the OS only provides a set of agreed software interfaces between itself

and the device driver writers and is called Hardware Abstraction Layer.

In C, this software interface is implemented through a structure func-

tion pointers.

[illustrate with Linux example]

9.1.2 System programming interface

System programming interfaces are standard interfaces that an OS pro-

vides application programs to use its services. For example, if a program

wishes to read a file on disk, then it must call a function like open() and

let the OS handle the details of talking to the hard disk for retrieving

the file.

9.1.3 The need for an Operating System

In a way, OS is an overhead, but a necessary one, for a user to tell a com-

puter what to do. When resources in a computer system (CPU, GPU,

memory, hard drive...) became big and more complicated, it’s tedious to

manually manage all the resources.

Imagine we have to manually load programs on a computer with 3 GB

of RAM. We would have to load programs at various fix addresses, and

for each program a size must be manually calculated to avoid wasting

memory resource, and enough for programs to not overriding each other.

Or, when we want to give computer input through the keyboard, with-

out an OS, an application also has to carry code to facilitate the com-

munication with keyboard hardware; each application then handles such

keyboard communication on its own. Why should there be such dupli-

cations across applications for such standard feature? If you write an ac-

x86 descriptors 279

counting software, why should a programmer concern writing a keyboard

driver, totally irrelevant to the problem domain?

That’s why a crucial job of an OS is to hide the complexity of hard-

ware devices, so a program is freed from the burden of maintaining its

own code for hardware communication by having a standardized set of

interfaces and thus, reduce potential bugs along with faster development

time.

To write an OS effectively, a programmer need to understand well the

underlying computer architecture that programmer are writing an OS

for. The first reason is, many OS concepts are supported by the architec-

ture e.g. the concepts of virtual memory are well supported by x86 ar-

chitecture. If the underlying computer architecture is not well-understood,

OS developers are doomed to reinvent it in your OS, and such software-

implemented solutions run slower than the hardware version.

9.2 Drivers

Drivers are programs that enable an OS to communicate and use features

of hardware devices. For example, a keyboard driver enables an OS to

get input from keyboard; or a network driver allows a network card to

send and receive data packets to and from the Internet.

If you only write application programs, you may wonder how can soft-

ware control hardware devices? As mentioned in Chapter 2, through the

hardware-software interface: by writing to a device’s registers or to write

to ports of a device, through the use of CPU’s instructions.

9.3 Userspace and kernel space

Kernel space refers to the working environment of an OS that only the

kernel can access. Kernel space includes the direct communication with

hardware, or manipulate privileged memory regions (such as kernel code

and data).

In contrast, userspace refers to less privileged processes that run above

the OS, and is supervised by the OS. To access the kernel facility, user

280 operating systems: from 0 to 1

program must go through the standardized system programming inter-

faces provided by the OS.

9.4 Memory Segment

9.5 Segment Descriptor

9.6 Types of Segment Descriptors

9.6.1 Code and Data descriptors

9.6.2 Task Descriptor

9.6.3 Interrupt Descriptor

9.7 Descriptor Scope

9.7.1 Global Descriptor

9.7.2 Local Descriptor

9.8 Segment Selector

9.9 Enhancement: Bootloader with descriptors

10
Process

10.1 Concepts

10.2 Process

10.2.1 Task

A task is a unit of work that an OS needs to do, similar to how human

have tasks to do daily. From a user point of view, a task for a computer

to do can be web browsing, document editing, gaming, sending and receiv-

ing emails, etc. Since a CPU can only execute sequentially, one instruc-

tion after another (fetching from main memory), there must be some way

to do many meaningful tasks at once. For that reason, the computer must

share the resources e.g. registers, stack, memory, etc, between tasks, since

we have many tasks but single and limited resources.

10.2.2 Process

Process is a data structure that keeps track of the execution state of a

task. Task is a general concept, and process is the implementation of a

task. In a general-purpose OS, a task is usually a program. For exam-

ple, when you run Firefox, a process structure is created to keep track

of where the stack and the heap allocated for firefox are, where Firefox’s

282 operating systems: from 0 to 1

code area is and which instruction EIP is holding to execute next, etc.

The typical process structure looks like this:

[insert process image]

Process is a virtual computer, but much more primitive than the vir-

tual machine in virtualization software like Virtual Box, and that’s a good

thing. Imagine having to run a full-fledged virtual machine for every task;

how wasteful of machine resources that would be.. In the view of a run-

ning process, its code executes as if it runs directly on hardware. Each

process has its own set of register values, which are kept tracked by the

OS, and its own contiguous virtual memory space (which is discontigu-

ous in actual physical memory). The code in a process is given virtual

memory addresses to read and write from.

[illustrate: - a process looks like a mini Von Neumann - with contigu-

ous memory, each with a color; each cell of a process mapped to distant

memory cell in physical memory]

A process can run so much until the OS tells it to temporary stop for

other tasks to use the hardware resources. The suspended process can

then wait until further notice from the OS. This whole switching pro-

cess is so fast that a computer user think his computer actually runs tasks

in parallel. The program that does the switching between tasks is called

a *scheduler*.

10.2.3 Scheduler

An OS needs to perform a wide range of different functionalities, e.g. web

browsing, document editing, gaming, etc. A scheduler decides which tasks

got to run before the others and, for how long, in an efficient manner. Scheduler

enables your computer to become a time sharing system, because tasks

share CPU execution time and no one process can monopolize the CPU

(in practice, it still happens regularly). Without a scheduler, only a sin-

gle task can be performed at a time.

10.2.4 Context switch

When a process is prepared to be switched out for another process to take

its place, certain hardware resources i.e. current open files, current regis-

process 283

ter values, etc. must be backed up to later resume that process’s execu-

tion.

10.2.5 Priority

Priority is an important metric for OS to decide which task is scheduled

to run before the others to allocate appropriate CPU execution time for

each task.

10.2.6 Preemptive vs Non-preemptive

A preemptive OS can interrupt an executing process and switch to an-

other process.

A non-preemtive OS, a task runs until its completion.

10.2.7 Process states

State is a particular condition of a process, triggered by an action from

the scheduler. A process goes through various states during its life cy-

cle. A process typically has these states:

Run indicating CPU is executing code in this process.

Sleep (or Suspended): indicating CPU is executing some process else.

Destroyed: process is done and waiting to be destroyed completely.

10.2.8 procfs

10.3 Threads

Threads are units of work inside a process that shares the execution en-

vironment. A process creates a whole new execution environment with

code of its own:

[illustration between process and thread, with each process is a big

rectangle box and threads nested boxes point to different code region]

Instead of creating a completely new process structure in memory, OS

simply let the thread uses some of the resources of the parent process

that created it. A thread has its own registers, program counter, stack

284 operating systems: from 0 to 1

pointer, and its own call stack. Everything else is shared between the threads,

such as an address space, heap, static data, and code segments, and file

descriptors. Because thread simply reuses existing resources and involve

no context switching, it is much faster to create and switch between pro-

cesses.

However, note that the above scheme is just an implementation of thread

concept. You can completely treat thread the same as process (hence you

can call all processes threads and vice versa). Or you can just back up

some resources, whlie leaving some resources shared. It’s up to the OS

designer to distinguish between threads and processes. Threads are usu-

ally implemented as a component of a process.

On Linux, a thread is simply a process that shares resources with its

parent process; for that reason, a Linux thread is also called *light-weight

process*. Or put it another way, a thread in Linux is merely an imple-

mentation of a single-threaded process that execute its main program

code. A multi-threaded program in Linux is just a process with shared

with its single-threaded children processes, each points to different code

region of its parent process.

[TODO: turn the above table into a diagram]

On Windows, threads and processes are two separated entities, so the

above description for Linux does not apply. However, the general idea: a

thread shares the execution environment, holds.

10.4 Task: x86 concept of a process

10.5 Task Data Structure

10.5.1 Task State Segment

10.5.2 Task Descriptor

10.6 Process Implementation

10.6.1 Requirements

process 285

10.6.2 Major Plan

10.6.3 Stage 1: Switch to a task from bootloader

10.6.4 Stage 2: Switch to a task with one function from kernel

10.6.5 Stage 3: Switch to a task with many functions from kernel

To implement the concept of a process, a kernel needs to be able to save

and restore its machine states for different tasks.

Description [Describe task switching mechanism involving LDT and GDT]

qasdfasdf asd

Constraints

Design

Implementation plan

10.7 Milestone: Code Refactor

11
Interrupt

12
Memory management

12.0.1 Address Space

Address space is the set of all addressable memory locations. There are

2 types of address spaces in physical memory address:

✄ One for memory:

✄ One for I/O:

Each process has its own address space to do whatever it wants, as long

as the physical memory is not exhausted. This address space is called

virtual memory.

12.0.2 Virtual Memory

Physical memory is a contagious memory locations that has a simple map-

ping between a physical memory address and its corresponding location

in memory, decoded by memory controller. On the other hand, *virtual

memory* does not have direct mapping between a memory address and

the corresponding physical memory location, even though it appears con-

tagious from the view of an userspace program. Instead, virtual memory

address is translated by OS into an actual physical memory address. For

that reason, even addresses appear next to each other in virtual memory

space, they are scattered through out the physical memory.

290 operating systems: from 0 to 1

Why virtual memory is needed? Because virtual memory reduces the

complexity of programming, by giving each program an illusion that it

has its own separate "physical" memory to work with. Without virtual

memory, programs must know and agree with each other their own mem-

ory regions to not accidentally destroy each other.

[illustration a world without virtual memory]

Virtual memory also enables a more secured OS, as application pro-

grams cannot manipulate main memory directly, so malicious programs

won’t cause havocs by destroying main memory and possibly hardware

devices, by gaining access to hardware I/O ports.

Another benefit is that virtual memory can extend beyond physical

memory, by storing its data to hard disk. By swapping some of unused

memory (i.e. inactive memory of a sleeping process), the system gains

some free memory to continue running, so no data is destroyed. Otherwise,

the OS is forced to kill a random user process to free up some memory,

and you may lose unsaved work that belongs to the killed process. However,

this process can significantly slow down the whole system because of Von

Neumann bottleneck. In the old days, when memory was scarce, it was

useful.

13
File System

File system is a mechanism on how raw bytes in a storage device can be

meaningfully managed. That is, a group of bytes at specific locations in

a storage device can be allocated for a purpose e.g. storing raw ASCII

document, and later the exact chunks of bytes can be retrieved correctly.

File system manages many such groups of bytes. It’s helpful to think a

file system as a database that maps between high level information and

specific locations in a hard disk, similar to how business information is

mapped to a specific row in a table. The high level information that is

relevant to a file system is organized as *files* and *directories*.

[illustration between a file system and a database table to see how they

are similar]

File is an entity that includes two components: metadata and the ac-

tual raw data. Metadata is the information describes the properties of

the raw data associated with the file; raw data are real content of a file.

Directory is a file that holds a group of files and also child directories. Together,

they create a file hierarchy system as commonly seen in Windows or Linux.

13.0.1 Example: Ex2 filesystem

Index

Abstraction, 26

Application-Specific Integrated

Circuit, 39

ASIC, 39

assembler, 22

backtrace, 175

bit field, 78

Bus, 41, 44

bus width, 44

capacitor, 43

Central Processing Unit, 41

chip, 15

chipset, 44

CMOS, 13

compiler, 24

computer, 33

Computer organization, 40

CPU, 40, 41

debugger, 151

Debugging Information Entry,

181

desktop computer, 34

domain expert, 4

ELF header, 108

embedded computer, 36

embedded programming, 37

executable binary, 107

execution environment, 47

fetch – decode – execute, 41

fetch – decode – execute, 23

Field Gate Programmable

Array, 37

FPGA, 37

freestanding environment, 249

function attribute, 128

functionally complete, 13

Hardware Description

Language, 38

hosted environment, 248

I/O Devices, 41

instruction set, 40

Instruction Set Architecture, 40

ISA, 40

linker, 227

linker script, 227

294 operating systems: from 0 to 1

load memory address, 244

logic gate, 12

Machine language, 17

Memory, 41, 42

memory controller, 43

Memory Controller Hub, 43

Microcontroller, 36

mobile computer, 35

MOSFET, 12

motherboard, 44

netlist, 38

objdump, 50

object file, 107

offset, 117, 219

padding bytes, 75

PCB, 36

persistent storage device, 202

Port, 42

Printed Circuit Board, 36

problem domain, 3

program header, 141

Program header table, 108

program header table, 141

program segment, 141

Registers, 42

Relocation, 217

requirements, 3

section, 50, 108

Section header table, 108

sector, 202

segment, 108

Segments and section, 108

server, 34

Software requirement

document, 6

Software specification, 8

storage device, 22

system-on-chip, 36

track, 202

transistor, 12

virtual memory address, 228,

244

Bibliography

G. H. Hardy. A Mathematician’s Apology,chapter 10,page 13.

University of Alberta Mathematical Sciences Society, 2005.

Intel. IntelÂ® 64 and IA-32 Architectures Optimization Reference

Manual. Intel, 2016b.

Benjamin L. Kovitz. Practical Software Requirements,chapter 3,

page 53. Manning, 1999.

Charles Sanders Peirce. Collected Papers v. 4,chapter A Boolean

Algebra with One Constant. 1933.

John F. Wakerly. Digital Design: Principles and Practices, chapter 3,

page 86. Prentice Hall, 1999.

	Contents
	Preface
	I Preliminary
	1 Domain documents
	1.1 Problem domains
	1.2 Documents for implementing a problem domain
	1.3 Documents for writing an x86 Operating System

	2 From hardware to software: Layers of abstraction
	2.1 The physical implementation of a bit
	2.2 Beyond transistors: digital logic gates
	2.3 Beyond Logic Gates: Machine Language
	2.4 Abstraction

	3 Computer Architecture
	3.1 What is a computer?
	3.2 Computer Architecture
	3.3 x86 architecture
	3.4 Intel Q35 Chipset
	3.5 x86 Execution Environment

	4 x86 Assembly and C
	4.1 objdump
	4.2 Reading the output
	4.3 Intel manuals
	4.4 Experiment with assembly code
	4.5 Anatomy of an Assembly Instruction
	4.6 Understand an instruction in detail
	4.7 Example: jmp instruction
	4.8 Examine compiled data
	4.9 Examine compiled code

	5 The Anatomy of a Program
	5.1 Reference documents:
	5.2 ELF header
	5.3 Section header table
	5.4 Understand Section in-depth
	5.5 Program header table
	5.6 Segments vs sections

	6 Runtime inspection and debug
	6.1 A sample program
	6.2 Static inspection of a program
	6.3 Runtime inspection of a program
	6.4 How debuggers work: A brief introduction

	II Groundwork
	7 Bootloader
	7.1 x86 Boot Process
	7.2 Using BIOS services
	7.3 Boot process
	7.4 Example Bootloader
	7.5 Compile and load
	7.6 Loading a program from bootloader
	7.7 Improve productivity with scripts

	8 Linking and loading on bare metal
	8.1 Understand relocations with readelf
	8.2 Crafting ELF binary with linker scripts
	8.3 C Runtime: Hosted vs Freestanding
	8.4 Debuggable bootloader on bare metal
	8.5 Debuggable program on bare metal

	III Kernel Programming
	9 x86 Descriptors
	9.1 Basic operating system concepts
	9.2 Drivers
	9.3 Userspace and kernel space
	9.4 Memory Segment
	9.5 Segment Descriptor
	9.6 Types of Segment Descriptors
	9.7 Descriptor Scope
	9.8 Segment Selector
	9.9 Enhancement: Bootloader with descriptors

	10 Process
	10.1 Concepts
	10.2 Process
	10.3 Threads
	10.4 Task: x86 concept of a process
	10.5 Task Data Structure
	10.6 Process Implementation
	10.7 Milestone: Code Refactor

	11 Interrupt
	12 Memory management
	13 File System

	Index
	Biblography

