WARWICK RESEARCH SOFTWARE ENGINEERING

Introduction to Software
Development

H. Ratcliffe and C.S. Brady

Senior Research Software Engineers

“The Angry Penguin”, used under creative commons licence

from Swantje Hess and Jannis Pohlmann.

December 10, 2017

Contents

Preface i
0.1 About these Notes i
0.2 Disclaimer L i
0.3 Example Programs 0o oo ii
0.4 Code Snippets ii
0.5 Glossaries and Links iii

1 Introduction to Software Development 1
1.1 Basic Software Design 1
1.2 Aside - Programming Paradigms 8
1.3 How to Create a Program From a Blank Editor 9
1.4 Patterns and Red Flags. 11
1.5 Practical Design o o 13
1.6 Documentation Strategies o000 14
1.7 Getting Data in and out of your Code 19
1.8 Sharing Code e 23
Glossary - Software Development 24

2 Principles of Testing and Debugging 27
2.1 Whatisabug? 27
2.2 Bug Catalogue 27
2.3 Non Bugs or “Why doesn’t it just...” 36
2.4 Aside - History of the Bug and Debugging 37
2.5 Your Compiler (or Interpreter) Wants to Help You 38
2.6 Basic Debugging Lo 39
2.7 Assertions and Preconditions L. 41
2.8 Testing Principles oo L 43
2.9 Testing for Research o oL 47
2.10 Responsibilities 50
Glossary - Testing and Debugging 51

3 Tools for Testing and Debugging 54
3.1 ProtoTools. 54

3.2 Symbolic Debuggers oo L 55

3.3 Memory Checking - Valgrind
3.4 Profiling and Profiling Tools
3.5 Testing Frameworks
3.6 Fully Automatic Testing
Glossary - Testing and Debugging 2
Workflow and Distribution Tools

4.1 Build Systems 000 L
4.2 Distribution Systems

4.3 Introduction to Version Control
4.4 Basic Version Control with Git

4.5 Releases and Versioning

Glossary - Workflow and Distribution

Wrap Up
5.1 Warning: The Expert Beginner

5.2 Where to go From Here
Glossary - General Programming

A Links and Resources

Must and Shoulds

B.1 Must
B.2 Should

CONTENTS

Preface

0.1 About these Notes

These notes were written by H Ratcliffe and C S Brady, both Senior Research Software
Engineers in the Scientific Computing Research Technology Platform at the University
of Warwick for a series of Workshops first run in December 2017 at the University of
Warwick. These workshops are intended as an introduction to software development
for those with some programming knowledge, taking somebody who can write simple
code for themselves and introducing principles and tools to allow them to write code
they can share with others and use for their research. In other words, all of the things
that often get forgotten in favour of syntax and language constructs.

This work, except where otherwise noted, is licensed under the Creative
Commons Attribution-NonCommercial-NoDerivatives 4.0 International Li-
cense. To view a copy of this license, visit http://creativecommons.org/
licenses/by-nc-nd/4.0/.

o0ce

The notes may redistributed freely with attribution, but may not be used for commercial
purposes nor altered or modified. The Angry Penguin and other reproduced material,
is clearly marked in the text and is not included in this declaration.

The notes were typeset in KTEXby H Ratcliffe.
Errors can be reported to rse@warwick.ac.uk

0.2 Disclaimer

These talks are going to take a very practical stance and will not always agree with the
beginner textbook theories you may have encountered. We're working from experience
of actually writing scientific code, and we’ll always try to note where something is a
practical shortcut or sidestep. However perhaps the crucial thing to remember is rules
are only useful until they’re not, and often advice is given with an understanding that
you will come to understand exactly why it was so formed, at which point you have the
necessary discretion to know when to ignore it.

If you have ever read any of Terry Pratchett’s Science of Discworld, for example,
you may have encountered “lies to children”,

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:rse@warwick.ac.uk

© 0 N 3 ks W N

=
o

i PREFACE

a statement that is false, but which nevertheless leads the child’s
mind towards a more accurate explanation, one that the child will only be
able to appreciate if it has been primed with the lie

When statements fall into this category, they are currently useful, but one day will
cease to be so. This is important to remember, and doubly important to remember if
you find yourself passing on your new wisdom.

In general, we will only say that you mustn’t do something, if we think that in
all likelihood it will never be the correct thing to do. It may break standards or we
see no circumstance where it would win in the cost-benefit stakes. (Although we may
occasionally be wrong on that.) Shouldn’t encompasses all of those currently, or
generally, useful generalisations. If you find yourself going against a recommendation
like that, think carefully before proceeding. Must and should are used similarly. And
finally, if something you're trying to do seems painfully difficult or awkward, consider
the possibility that there is a better way to do it.

After reading these notes, or attending our workshops, you should be in a good
position to understand more detailed material, and to know what terms and phrases
to search for to solve problems you encounter. Software development is a wide field
with many schools of thought, often with incompatible constraints and priorities. As
researchers, your priority is research. You code needs to work, and you need
to know it works. Anything that does not enhance that goal is decoration.

0.3 Example Programs

Several sections of these notes benefit from hands-on practise with the concepts and
tools involved. Test code and guided examples are available either as a tarball from
wherever you got this .pdf or on Github at
https://github.com/WarwickRSE/SoftwareDevDec2017

0.4 Code Snippets

Throughout these notes, we present snippets of code and pseudocode. Our pseudocode
is informal, and based roughly on Fortran. For example

Pseudocode

INTEGER i //An integer
REAL r //A real number (precision unspecified)
ARRAY a //An array (usually this would also have real or integer type)
FLAG 1 //A logical flag, with possible values TRUE or FALSE
FOR i = 0, 100 DO
PRINT, i //Print numbers from 0 to 100
END
IF (i < 10) THEN

END

https://github.com/WarwickRSE/SoftwareDevDec2017

0.5. GLOSSARIES AND LINKS iii

We also show examples in Fortran, C/C++' and Python”:

Fortran

IMPLICIT NONE
INTEGER :: i
REAL :: r
REAL, DIMENSION(100) :: arr
LOGICAL :: 1
DO i =0, 100
PRINT*, i !Print numbers 0 to 100
ENDDO
IF (i < 10) THEN

© 0w N O s W N

10

11| ENDIF

int i;
double r;
float [10] arr;
bool 1; // C99 or G+ only
for(i = 0; i < 10; i++){
printf(Yd\n’, i); //Print numbers 0 to 100

if(i < 10){

© W N O s W N =

Python

for i in range(0, 100):
print i #Print numbers 0 to 100
if i < 10:

LR

pass

Sometimes we also show snippets of commands for shell, make, or git. These often
contain parts which you should substitute with the relevant text you want to use.
These are marked with {}, such as

1| git branch {name} I

where you should replace “name” with the relevant text.

0.5 Glossaries and Links

We also include a series of glossaries, one per chapter, as well as a general one at the
end. Words throughout the text that look like this: source (code) are links to these.
Numbers® are links to footnotes placed throughout the text.

'We don’t distinguish these because our examples are only simple, and we rarely use C++ specific
features

2Mostly Py 2 or 3 agnostic except where stated

3Like this

Chapter 1

Introduction to Software
Development

1.1 Basic Software Design

“I conclude that there are two ways of constructing a software design:
One way is to make it so simple that there are obviously no deficiencies
and the other way is to make it so complicated that there are no obvious
deficiencies.” — C. A. R. Hoare

Before sitting down at your editor and actually writing code, you should always
spend at least a little time on actually designing your program, no matter how simple.
In time you will develop a preferred method of doing this, but how doesn’t matter
nearly as much as having some kind of plan. How detailed your plan needs to be
depends on a few simple factors, and a lot of complicated ones. If your code involves
any sensitive data, you really must read up on relevant regulations and
protocol. This includes:

e Personal data

Credit card or other monetary data

Protected information (e.g. medical data)

Safety critical interactions

Otherwise, your design can save you time, heartache and hair, but it needn’t be carefully
documented.

1.1.1 Structuring Source Code

You should already know how to write code. You know about control structures and
about dividing your code into functions so you can reuse chunks. You may have en-
countered Object-Oriented programming, modules (in Fortran) or namespaces (in C)

1

CHAPTER 1. INTRODUCTION TO SOFTWARE DEVELOPMENT

and various other aids to structuring your code. At this stage, there are a few general
rules you follow, many more that may be useful, and a very few things you
must do.

Essential Rules

Create a working code - it sounds silly, but the absolute key thing is that you
end up with some code that works, does what was intended, and is reasonably
dependable, i.e. wont break unexpectedly or in hard to detect ways.

Follow your chosen language standard - we will discuss this in more detail
below, but the standards dictate what is valid code and a valid program. For
example, in a valid Fortran program, all variable definitions must go at the top of
a function. In a valid C program, all functions must have been defined before they
are first used (either completely or via a “prototype” giving function arguments
and return type)

Use some sort of versioning - people joke about code iterations labelled
“my _function_fixed_mike_January.c” and that is clearly silly, but one can do silly
things with version control too. The core idea is to have some sort of record of
when changes were made (and by whom). If you choose to do daily dated back-
ups, and have the discipline to do it, that is fine. On the other hand, systems like
git have built in abilities to compare, search and assign blame. See Sec 4.3 for
more.

Validate your code enough - checking and testing is vital, but what “enough”
means varies. For a one-off small script, you might just run an example case; for
large projects you will want to consider formal testing and validation

Useful Guidelines

- in general, functions should do one
thing, but in practice that one thing can become complicated. For example,
writing data to a file is probably a single action, but need not be short. You may
hear absolute rules like functions should be 10 lines or less, but you will likely
notice that this is rubbish, and can add tangle. There is no line limit, but it is
easier to write, and far easier to debug a function if you are not having to think
about twenty things at once.

Lay out equations etc to help a human - all formatting is gone once your code is
compiled, or hits the interpreter, so use it to your advantage. You can use line
breaks to split terms of a calculation into logical groups, align groups horizontally,
use spacing to group and divide terms. You may also wish to keep equations
as they appear in books or papers for now, as they can be rearranged later.
Alternatively, you can put human-readable equations in comments.

Document as you go - we’ll discuss documenting a bit more, but in general do it
as you go, but never before a function’s purpose has been worked out. Orphaned
comments can be very confusing.

1.1. BASIC SOFTWARE DESIGN 3

Finally, there are many things that are good guidelines in general programming that
are far more subjective for scientific code. A few of these are below:

e Global variables - One often encounters statements like “global variables are evil”.
There is some truth in the reasoning - functions which modify a global have “side
effects” elsewhere in your code. However, consider a program calculating (some
physical field quantity). Something that you seem to be passing to “nearly every”
function is probably an actual global state, and if it is large you will not want to
copy it around. A carefully named and documented global variable is not a bad
solution here.

e You Aren’t Going to Need It (YAGNI) - In general, create the simplest program
to solve your problem. BUT do consider slightly what you’ll need from it next
week or you’ll find yourself writing non-extensible code and doing a lot of work.
Don’t add every bell and whistle though.

e Do not optimise (at this stage) - similarly, until your code works, don’t bother
with (most) optimisation. BUT do avoid making choices that can never be fast
enough.

e Don’t repeat yourself (DRY) - this is a good general principle, BUT do not take
it to extremes. In general it is better not to copy-and-paste code and then make
small edits, but it is easy to find examples where things are subtly different and
trying to write one piece to do them all makes it more complex and/or badly
performing.

e “There’s only one way to do it” from the Zen of Python - this idea sounds nice, but
we think it breaks down here, and is something no other language even tries to do.
There are many ways to solve most problems, and for the sort of code you’ll be
writing, your concerns may be slightly unusual and different to the norm. Getting
things to work, and to perform adequately is more important than any points of
philosophy.

1.1.2 Planning your Code

I have always found that plans are useless, but planning is indispensable.
— Dwight D. Eisenhower

Before you start coding in earnest, you will want to have some sort of
plan. This need not be written down, nor be in any special form. For example, for a
very small script you may need nothing more than your idea of what it should do, and
a first guess as to how. For a large piece of code that will take you weeks or months,
you probably do want some sort of formal plan.

You may find it helpful to write a flow-chart for your program, usually focusing on
the movement of data. Plan out the general sections, for example user interactions,
file I/O, your core algorithm. If you are planning complicated programs or want a

0o N O U ks W N

4 CHAPTER 1. INTRODUCTION TO SOFTWARE DEVELOPMENT

standard format to share with others, you may want to consider Unified Modeling
Language (UML). This is rather overkill for most purposes, but can be useful for formal
diagrams.

Pay particular attention to limitations and ordering, such as

1. Are any program sections dependent on others?

2. Where do you need user input?

3. Which sections are likely to be the crucial ones for testing and optimising?
4. Where does your code link to other code such as libraries?

5. Do any parts require research, study or unfamiliar libraries?

The section quote above is worth keeping in mind. When creating your plan, the
final result is not the only goal. For starters, once you actually try to implement your
plan there is a fair chance you will have to change it. Your goal is more to survey the
field, find out the limitations and problems, work out how much work this is going to
be etc.

1.1.3 Language and Implementation Standards

Many programming languages, C and Fortran included, have detailed language stan-
dards managed by ISO (the International Organization for Standardization). These
dictate what valid code is, and what guarantees a compiler or interpreter must make
about how it implements functionality. For example, both Fortran and C (modern
variants) /C++ allow one to specify variables as “constants” or “parameters” and these
must not be allowed to change. A compiler which allows them to be changed is violat-
ing the standard. Python has the PEP guidelines, which cover some language features,
but watch out for where they merge into coding style. Similarly, MPI (used for parallel
coding), and things like JSON (used for data sharing) define standards which must be
obeyed by valid implementations.

It is usually not necessary to actually read these standards, as many textbooks and
internet resources will give you a easier to understand version, but that does not mean
you don’t need to consider them. Code which does not conform to the strict standards
is invalid, and may not work on a different compiler. Extensions to the standards exist,
but these are subject to change.

As an example, consider this pseudo-code:

FUNCTION increment (INTEGER x)
x =x + 1
RETURN x

END FUNCTION

FUNCTION add (INTEGER x, INTEGER v)
RETURN x + y

10
11
12
13
14
15
16
17

1.1. BASIC SOFTWARE DESIGN 5

END FUNCTION
BEGIN MAIN
INTEGER x = 2

PRINT add(increment(x), x)

END MAIN

and try to work out the value printed. When the add function is called, the compiler
packs up the arguments and passes them (by value). If the function’s arguments are
worked out from left to right (and pass(ed) by reference), then you expect a value of 6
(incremented x plus incremented x), whereas if they go from right to left or are pass(ed)
by value, you expect 5 (x plus incremented x). In C/C++ for example the order is not
guaranteed, even though your compiler may always give you the same result."

One of the few rules in this guide is do not write code that violates standards
or has undefined behaviour. Even if it seems harmless now, it can backfire badly.
In C the joke goes that undefined behaviour can crash (the best result, as at least
you'll know), delete your hard drive contents (unlikely), or cause the implosion of the
entire universe (very unlikely”). The likely worst case scenario is code which doesn’t
quite work right. Perhaps it works fine except when the same function is called 3
times in succession. Perhaps a particular value just gives the wrong answer. Perhaps it
crashes one time in 10000. Bugs which you can’t reliably reproduce, sometimes called
Heisenbugs®, are a nightmare

1.1.4 Selecting Algorithms

Imagine you have a series of objects you need to sort into order. Doing this by hand,
for a small number of items, you are likely to proceed by examining each item in turn
until you find first the smallest element, then putting that in its place. Now, find the
new smallest, and put that in place, and so on. For ten items, this will take up to
104+9+48+... ie. n(n + 1)/2 examinations, and 10 moves of items. For a very large
number of things, this is approximately equal to n?/2 and so we say the algorithm
scales as n2.*

Imagine instead you have a large number of essays that need to be sorted into
alphabetical order. What you might do is to run through the pile once, creating 26
piles (assuming English names), one for names starting with each letter of the Alphabet.
Then, you take each pile in turn, and subdivide it by second letter, and so on, until

1For real C/C++ code to show this problem, increment would need to take a pointer/reference to
X.

2probably

3Named for the Heisenberg uncertainty principle - as you nail down some aspect of the bug, for
example where it occurs, some other aspect changes, leaving you no closer to a solution

4In formal language, “is big-O of n-squared” or O(n?). This means that n? with some unspecified
prefactor is an upper bound on the time required

6 CHAPTER 1. INTRODUCTION TO SOFTWARE DEVELOPMENT

each pile has only one item (assuming no duplicate names).” It is not easy to see, but
this has a time requirement proportional to only nlnn and for large n this is rather
quicker.

As a second example, imagine you have your alphabetized essays and now wish to
locate a particular student. You might start at the beginning and look until you find
them, which in general will require you look at n/2 names. A common alternative is to
pick the middle of the list and decide if your target name is before or after that name.
You then take the relevant half of the pile, and take the middle element and again check
for before or after. This requires only Inn examinations, which grows very slowly as
n gets bigger. This is an example of an approach called bisection.

Searching and sorting are prime examples of well developed, widely available, best
practice solutions to a problem, where failing to research can make your code much
slower than it needs to be. Slowness is sometimes acceptable, but it limits your code
to smaller problems than you may one day wish to work on.

A more serious example involves money calculations. You might initially try storing
floating-point, or real, numbers for currency amounts. However, you can quickly run
into rounding issues because of how floats work. An easy first “fix” is to instead store
integers for number of pennies. As long as your total amounts are never too large this
is OK, until you attempt to deal with percentage calculations. An item costing 4.99
with a 10% discount could reasonably cost either 4.50 (10% giving 49.9p, truncated to
49 p before subtraction) or 4.49 (49.9p, rounded). Several films have people collecting
all those fractions of pennies for themselves. This problem is particularly obvious with
compound interest, where any rounding errors can grow. Banks have strict protocols
on how these calculations must be done, and if protocol matters you must find
and follow the proper guidelines.

There are many very good books on algorithms in general, and on algorithms and
techniques for all sorts of fields. Here we just summarise some points to keep in mind
when selecting your methods, in the form of inspirational quotes:

e As simple as possible, but no simpler. Don’t choose complex methods just for
fun, as they do tend to be trickier to understand, implement and test. But don’t
oversimplify either.

e Don’t re-invent the wheel. Take advantage of prior art. However, sometimes
the wheel is for a bicycle and you’re designing a jumbo-jet, so it won’t fit. The
converse isn’t much better - jumbo-jet wheels are far more complex and costly to
maintain than a suitable bicycle wheel.

e Don’t pour good money after bad. Sometimes you will make a mis-step and spend
time on unproductive routes. Be willing to put that work aside and try again.
Don’t throw it away though - it may be useful another time.

5This is basically a radix or bucket sort although in practise you might do it more like a merge sort.

1.1. BASIC SOFTWARE DESIGN 7

e Better the devil you know. If you know a technique that will work, but may,
for example, be a bit more computationally demanding, it may still be a better
choice than trying something completely unfamiliar.

1.1.5 When Not to Create Software

If you wish to make an apple pie from scratch, you must first invent the
universe. — Carl Sagan

An often overlooked consideration is that of when you simply should NOT write
code. This is fairly unusual, although it should probably be considered more often that
it is in practice. Note first the trivial example - when you need only a simple, single use
script for a task. It is probably a waste of effort to generalise beyond your immediate
needs. Otherwise, consider not creating something yourself when:

e A tool exists that can do your task well enough. For example, data conversion
where a simple Excel import will suffice, or web-page creation where you might
be better using a WSIWY G editor rather than writing HTML.

e When a code exists that solves your problem, unless, of course,
It costs money and you don’t want to, or can’t pay for it
It almost solves your problem but you can’t extend or alter it to be perfect

It is proprietary and not licensed for your use

e When the effort would not be balanced by the reward. Sometimes you could
create something, BUT it would take time or effort that would not be rewarded,
and you would be better taking a different research tack.

e When you lack the expertise. Again, no matter how tempting, if your code will
require research-level computer science or algorithm knowledge, you may be better
off adapting your research problem to the tools available, as you may not even
realise the errors you are making.

1.1.6 Libraries and their Myths

The other time you should not “reinvent the wheel” by writing your own code is when
there is a library which can solve your problem. A library written by several people
with relevant expertise, that is used by and tested by many users and developers, can
often be better than anything you might create yourself. This is especially true of large
programs - it is very very unusual to need a custom operating system for example.

Libraries can be very powerful, save you a lot of work and save you from errors. Their
benefits are obvious enough that we’re instead going to focus here on when actually to
use them.

Way back in March 2016 a developer decided to remove his contributions from a
large package-management system, NPM. One of these functions, called “left-pad” was

8 CHAPTER 1. INTRODUCTION TO SOFTWARE DEVELOPMENT

11 lines of code designed to pad a string to a given length. Thousands of projects fell
over, because this crucial dependency was now missing. The package was subsequently
restored; a few simple commands got projects working again, and the system was
changed so packages can never be removed. Using libraries for such “trivial” function
can be dangerous, as you increase complexity for little gain.

Remember that every library you use is another thing your code depends on, another
thing your users (or you) have to install, and another source of variations outside your
control. In one code we work with, there are several released versions of a particular
library (MPI) which simply do not work. We are able to check the version and inform
the user before failing gracefully in these cases, but as the number of libraries grows
this becomes impossible. Imagine you have a code that uses 2 libraries, each of which
has 3 common versions. You now have 9 different possible environments that your code
may use, and this can get difficult to debug if a user reports a problem. Some versions
of some of your libraries may not even be mutually compatible.

Absorb what is useful, discard what is useless and add what is specifically
your own — Bruce Lee

1.1.7 Scoping a Project

Hofstadter’s Law: It always takes longer than you expect, even when
you take into account Hofstadter’s Law. — Douglas Hofstadter

Often you may find that your projects grow to fit the time available for them. This is
not uncommon, and is the origin of the section quote. Sometimes, though, you will need
to get a good estimate of how long you will need long before you start coding. This is
one of the trickiest parts of development, and can take years to perfect. Formal systems
based on Function Point analysis” abound. These use a proxies to try and estimate the
size and complexity of a project based on known factors and previous experience. A very
simplified application, aimed particularly towards academic code, is given in our esti-
mators at https://warwick.ac.uk/research/rtp/sc/rse/project_estimator.pdf
and https://warwick.ac.uk/research/rtp/sc/rse/project_estimatorwexample.
pdf (including a worked example). This tries to quantify size and complexity based on
inputs, outputs and libraries. If you have a recent project handy, try the sheet out to
calibrate your estimates.

1.2 Aside - Programming Paradigms

For our purposes, there are two unrelated ideas we can refer to as “paradigms” or
models. Firstly, there are those for source code itself. You may have encountered
“object oriented” programming, where one creates model objects representing some
physical or conceptual object and gives them data and functions to allow them to act.

e.g. https://en.wikipedia.org/wiki/Function_point

https://warwick.ac.uk/research/rtp/sc/rse/project_estimator.pdf
https://warwick.ac.uk/research/rtp/sc/rse/project_estimatorwexample.pdf
https://warwick.ac.uk/research/rtp/sc/rse/project_estimatorwexample.pdf
https://en.wikipedia.org/wiki/Function_point

1.3. HOW TO CREATE A PROGRAM FROM A BLANK EDITOR 9

Contrast this with “procedural” programming, where your code is a series of functions
which are called directly. Finally, there are the more specialised “functional” style,
where one abstracts the idea of the program’s “state” and favours “recursion”; and
“declarative” programming, where one states what should be done, and the engine
(often a database system) decides how to do it.

The other meaning for programming model relates to the design principles. The first
formal software design methodology was what is now called waterfall development. Here
design proceeds in stages, with each stage being fully and completely determined before
the next step is started. As we have mentioned at least once, some types of program
have to work correctly because they handle people’s data, money or safety. These
often benefit from waterfall design: detailed program specifications are written up and
confirmed before any code is created; code is then tested against these specifications;
and in theory nothing is released which does not meet the standards set. The general
alternative school of methods is based around agile development. These come from
industry, where the customer tends to change the specifications at will, request new
features close to deadlines, and refuse to clarify their needs. In response to this, agile
methods only pin-down what will be done in short chunks, often a week at a time,
and rely on regularly releasing working but incomplete code. This can work well in
academic practice, since it minimises the time spent on formal design, but be careful
to pin down enough details to make your code useful.

1.3 How to Create a Program From a Blank Editor

Once you have planned your code, you will find yourself sitting at a blank editor won-
dering where to start. For very simple programs you may simply want to just start
typing, using some combination of the methods in Sec 1.3.3. If you are using a new
language, a new technology, or working on a larger piece of code however, you will want

to first consider prototypes and trial codes.

1.3.1 Prototypes and the Minimum Useful Unit (MUU)

When designing a physical object, one often starts by building some kind of prototype.
The prototype may be smaller than the real object, may use cheaper or simpler to work
materials, and may only pretend to deliver certain functions. For example, wooden car
body concepts, protoboard or breadboard rats-nest circuit designs. Testing a new paint
colour by painting squares on your wall is a very simple prototype.

In software design, there are similarly several varieties of prototype. Many web pages
are designed by a designer using an illustration program as layered images without any
code at all. The commonest sort you will encounter is probably the functional prototype,
where you create a small program to do just some part of your idea, to check how it
works, trial your methods (next subsection) etc.

The MUU, for us, means simply the smallest unit of program which is useful (sur-
prise!), removing everything not totally essential. For example, your program may
ideally take an input file as an argument, but it is probably useful if it has merely a

10 CHAPTER 1. INTRODUCTION TO SOFTWARE DEVELOPMENT

hard coded name. You can extend the program later to take a filename. Later again
you may add an actual file browser to choose the file. Put another way, the MUU is the
target to hit for your program or addition to be a success. That file-browser is no use if
it doesn’t actually work, and you’d mostly never want to share code which is broken.”

For scientific code, the MUU is often first the simplest code that will let you produce
papers, and then it is any increment which allows you to produce a new paper. From
another perspective it is whatever will satisfy your funder. Note that MUU is not
meant as a perjorative, unlike the related Minimum Publishable Unit. Incremental
development is powerful and lets you get work done even while you develop your code
further.

1.3.2 Trialling Algorithms and Libraries

You have to learn to walk before you can run. (And sometimes learn to
crawl before you can walk).

Even experienced programmers find
it difficult to understand complex tools within complex programs. If one learns to play
an instrument, the first steps are simply learning to handle it and to play single notes
or chords, before combining them in sequences.

Trialling libraries usually means just creating a small program using the basic fea-
tures you’ll need. For example, you may need a high-quality random number generator
for your code, but you want it to be repeatable (give the same numbers every time).
You may try creating a small program to seed the generator and then print a few ran-
dom numbers. You run this a few times and make sure that you get the same numbers,
and if you have any problems, you can diagnose and fix them in a small piece of code
rather than a larger one. This is sometimes called a minimum working example.

Trialling an algorithm is more work, but if you think ahead you can simply insert
the prototype code into your main code.” You write up your implementation, and test
it on some simple data, and check the result. This is also a good time to check the
performance of both the algorithm and your version of it, if that is going to be critical.
Do not optimise the algorithm at this early stage, but do not be afraid to
throw it away if it will clearly not serve your purpose.

1.3.3 Getting Down to it

Once you have your plan, you're ready to start writing in your editor. There are many
ways to turn plan into code, just as there are many ways to write papers. Eventually,
you’ll find a favourite, and it is likely to contain elements of the following:

7Of course, sometimes you do: even gcc, the C compiler, has shipped with broken parts. Often
simply warning your user is enough.

8This can be a bad idea: some methods specifically mandate throwing away any prototype and
starting again, but that is not necessary in general.

1.4. PATTERNS AND RED FLAGS 11

1. Comment first - start writing, in plain language comments, what each piece of
code should do. Go around a few times, adding more detail, until you know
“exactly” what to code. “Exactly” is in quotes because how exact you need to
be depends on what you’re writing and your personal preference. You may want
each line fully described, or you may be happy with comments such as “Write the
data to the file”.

2. Files and functions - start by creating the files you’ll need, breaking your code into
chunks with a shared purpose. For example, you may want a “user interaction”
module, or an object representing a physical object. Then fill in the functions
signatures you know you need. Then gradually code your “main” routine, creating
functions as you need them, but not filling them in. Then start filling in layers of
functions.

3. Just do it - for simple scripts, problems you already know how to solve, or perhaps
counter intuitively, problems you have no idea how to solve, you can just sit down
and start writing, looking up how to do things as required. This has obvious
advantages for the first two sorts of problem: for the third attempting to plan in
detail is impossible without a lot of reading, and you may feel it is more productive
to learn as you go. Remember that you may eventually need to refactor, or even
rewrite your code in this approach, so allow time for this.

1.4 Patterns and Red Flags

Coding patterns are “language-independent models of robust, extensible solutions to

common problems”” Similarly to our designation, patterns describe a common,
effective general solution to a problem. Anti-patterns are examples of code which
matches our designation. They tend to be “commonly reinvented but

generally bad solutions”. While they are not strictly disallowed, e.g. do not violate

any standards, they are usually sub optimal. Do not assume every supposed

anti-pattern is bad code - global variables are often considered an anti-pattern, but

sometimes they are a convenient, and obvious solution. But don’t jump to assuming

your problem is special - often anti-patterns really are useful only in odd niche cases.
Some of the red flags to watch out for, in your code and that of others:

e Magic numbers - numeric constants embedded in the source without comment.
What is 864007' Unexplained magic numbers can get forgotten.

How many digits of pi will you need? Obvious constants can still need chang-
ing and now you have to edit every place it occurs.

9The term was coined by the original “bible” of patterns, Design Patterns: Elements of Reusable
Object-Oriented Software, often referred to as the Gang of Four book, by software pioneers Erich
Gamma, Richard Helm, Ralph Johnson and John Vlissides. This focusses on Object-Oriented code
and few of its models are useful in scientific code, but you may encounter the book.

10The number of seconds in one day

12

CHAPTER 1. INTRODUCTION TO SOFTWARE DEVELOPMENT

Even 1 can be magic, if it occurs because you have 0 and 1 based arrays

Global variables - too many, or the wrong ones.

Actual global state can be a global, but avoid it for local state.

What if a function goes wrong? Is the global in any sort of valid state?
Was it changed? Could it have been only partly written (see also atomicity) and
therefore be nonsense?

The god object/class/function - one thing that tries to do everything,.

Functions should do their one thing well

But sometimes dividing into functions too harshly only complicates your code
or kills performance
The golden hammer - when all you have is a hammer, everything looks like a nail

Don’t force your favourite language/tool/technique to do everything

But don’t spend time learning a new tool if yours is adequate
Premature optimisation - optimising your code before it works, or at cost of
readability /modifyability /correctness

Don’t optimise before your code works - doing the wrong thing faster is no
use

But don’t make things harder for yourself - don’t make decisions that make
your code hard to make fast enough in the end.

Multiple return types - in interpreted languages like Python, functions can return
any type of value, different types in different circumstances

Returning a dictionary with varying keys is OK unless you need particular
keys

Returning an array (if many results) or a single value (if one result) is OK
with caution but it may be more trouble than it’s worth

In general don’t return strings in some cases and numbers in others, such as
a sqrt function which gives either a number or the string “Bad input”. Instead
consider returning a struct or class containing both items. You may still make
mistakes, but they’ll be less weird.

Reflection - allowing your code to read, modify and write itself'!

This is very powerful in the right places, but can also be dangerous

For example, constructing a string you then execute as code. Are you certain
that the string is safe? In particular beware of ever executing user-input (see also
Section 1.7.2)

¢ and Fortran cannot really do this. Python can, as can many scripting languages

1.5. PRACTICAL DESIGN 13

Constructing an object “on-the-fly” can be useful, but you must then be
careful to only use it cooperatively, as you don’t know what members it has

1.5 Practical Design

No plan survives contact with the enemy. - A well known paraphrase of
a quote by H. von Moltke

This chapter so far has given a rapid summary of some rules and guidelines and general
ideas, and also some of the red flags to beware of when designing and creating code.
Most of this is based on our experiences with scientific software. As the section quote
notes, no detailed plan survives sitting down and actually writing, which is a major
motivation for agile development and its brothers. Even worse, in real situations you
often don’t have the luxury of using all of the best practices. This section gives a few
examples of practical scenarios where some part of our ideals has to be relaxed, and
one has to choose which parts to retain.

One useful model for doing this is to label everything with its MoSCoW method
specification. This means deciding for each item whether it must be included, i.e.
without it the project is deemed a failure; should be included, i.e. it adds real benefit
and is strongly desired; could be included, i.e. it would be nice to have; and wont be
included, i.e. it is not required at this time.

1.5.1 The Full Grant not-a-Problem

The easiest software project to start planning is the one where you have a large grant
which will pay for you to create the program itself, and the program is the primary
deliverable. All of the principles we have sped through in this chapter can be applied.
You have time to formally design the piece, to trial different algorithms to find the
optimum, and to document your software too.

1.5.2 The Create a Paper Problem

Sometimes the brief is as simple and general as to write some code in a general area in
order to produce some good papers. This makes it hard to formally plan, and is ideally
suited to an agile development approach where you plan only in one-week or one-month
blocks. This is not the same as not planning at alll You may also be more informal
about selecting algorithms, and you may set out to create code intending later to throw
it away and write it afresh (refactoring and perhaps also rewriting). This means you
don’t care much about style: you may patch together your own code with snippets
from manuals such as Numerical Recipes'? Never relax on standards - undefined
behaviour is always bad

12 Available in C or Fortran (77 and 90), this is the handbook of numerical techniques for everything
from linear equations to Fourier transforms.

14 CHAPTER 1. INTRODUCTION TO SOFTWARE DEVELOPMENT

1.5.3 The Rapid Development Problem

Code must be written now, either for a conference, a paper, or some other urgent
endeavour. Shares elements with Create-a-Paper and Legacy-Necromancy. Find some
time to plan regardless, but don’t worry too much about style. Allowing time for
checking and testing.

1.5.4 The Legacy Necromancy Problem

You have some old code that used to work but needs updating or fixing and are tasked
with just making it work. You don’t have time for a proper rewrite or refactor, you
aren’t able to carefully plan the structure and design but are forced to work with what
exists. Don’t touch the parts that work, and consider starting with writing tests so you
can validate as you go.

1.5.5 The I in Team Problem

You are part of some larger team. Somehow you must collaborate to produce a piece
of software. You’ll need a good plan, focussing on synchronisation, i.e. who delivers
what. Consistency of style can be very helpful, so consider a style guide.

1.5.6 The Coy Collaborator Problem

Like the I-in-Team you are part of a larger team, but here some members are unable
or unwilling to share their source code and designs. Again you’ll need to synchronise
your work. Your main problem is going to be integrating your sections with theirs.
Focus on guarantees made by closed source sections you may not edit. Document your
interfaces.

1.6 Documentation Strategies

1.6.1 Tools

Documentation tools exist that can read your source code and produce files that you
can display to users or developers, like this (Fig 1.1) example from one of my'’ codes.
This is the description of a function called get_ Bx which takes 3 parameters. The
documentation describes what the function does, what the parameters are, and what
is returned. This also includes a note that I would like to extend this function to cover
3-D space.

Most tools have some awareness of language syntax and can identify things like
function parameters. They then rely on you to provide a description of what these
do etc. They can produce hierarchy graphs if you use classes, and call graphs (what

13HRas

TR W N =

© 0w N O

N O Ot R W N

1.6. DOCUMENTATION STRATEGIES 15

data_array get Bx (std::string file_prefix,
size_t space_in[2],
size_t time_0

)

Read reference B_x from file at path file_prefix, dump number time_0. If space_in is not [-1, -1], only the slice it dictates is read

Parameters
file_prefix File path
space_in Limits on x-dimension to slice out

time_ 0 The dump time to read

Returns
data_array containing bx data

Extension:
Add 3-D space handling!

Figure 1.1: Documentation produced by an automatic tool (Doxygen 1.8.9.1)

functions call which others). Many can also generate todo lists, like the Extensions list
in the image.
Some common tools are listed in A.0.5 for various languages.

1.6.2 Self-documenting code

As you write code, you can take some simple steps to make it far easier and less onerous
to document. In particular, you can make it “self-documenting” by naming functions,
modules and variables to indicate their purpose.

Consider these pseudo-code snippets (some function signatures omitted for clarity)
in order of increasing verbosity, paying particular attention to the comments:

MODULE num

FUNCTION m(INTEGER n_v , ARRAY val)

FUNCIION av

FUNCTION gav

//These names are very short and neither descriptive nor memorable. It is

hard to tell what things are and what they do

MODULE io

FUNCTION prt (STRING str)

FUNCTION prtf (STRING str , STRING f, FLAG nl)

//Very very short names again. We know ’str’ is a string, but what is it
for?

//Often function names here differ only by a single character

MODULE numerical_functions

FUNCTION max(INTEGER n_values , ARRAY values)

FUNCTION average

FUNCITION geometric_average

//These names give some basic information about their functions
MODULE io

FUNCTION print (STRING text)

© 0o

10

11

N

w

-~

w

(=]

oo

©

10

16 CHAPTER 1. INTRODUCTION TO SOFTWARE DEVELOPMENT

FUNCTION print_to_file (STRING text , STRING filename , FLAG new_line)

//Names are longer and more descriptive. The second string is clearly the
filename to print into.

//The final flag variable is still quite terse, but we know this is some
indicator about a new line

//Note we have no problem with naming the module io. Common acronyms save

typing

MODULE functions_for_finding_basic_numerical_results_by_jim

FUNCTION maximum_value_of_an_array (INTEGER
int_.number_of_values_in_the_array , ARRAY arr_values)

FUNCTION average_of_two_numbers

FUNCTION geometric_average_of_two_numbers

//These names are long and irritating to type. The variable names repeat
the type information unnecessarily

MODULE input_and_output

FUNCTION print_text (STRING text_to_print)

FUNCTION print_text_to_named_file (STRING text_to_print , STRING
filename_to_print_to , FLAG print_new_line_at_end_of_text_or_not)
//The names are very long again and much information is redundant (both
print_text_to_named_file and filename_to_print_to tell us the same

thing)
//The flag name has become very long, and tells us what we (should) know
from the type, that this is a true—or—false flag whether to do X or

not

Self-documenting style does not mean you do not have to document your
code. The examples I show above as “good” do not completely describe the functions,
and as the last snippet shows, if you try to do this you quickly get too verbose and
complicated.

e Think Principle of Least Surprise (PLS) and try to name things to save everybody
time and effort, especially youself

e Don’t repeat information already given by variable types, such as the logical flag,
or the fact that a parameter is passed by reference

e Using common acronyms is a good idea; abbreviations and omitting vowels to
save typing is a personal preference or element of your coding standard

e Avoid ambiguous letters: 0 and O are easily confused, as are I, 1 and 1

1.6.3 Hungarian Warts

You may hear references to Hungarian notation, commonly known as Hungarian “warts”
on variables. This idea was suggested in the 70s and consists of pre-pending type
information to a variable.'* In its original form this was very useful, as it was intended
to supply additional information above the given type, in particular its purpose. For

“Hence the naming - in Hungarian Family name precedes Given name

1.6. DOCUMENTATION STRATEGIES 17

example, a string variable might be flagged as s_name or as us_name, standing for
“string” or for “unsafe” string; the latter can be used for e.g. storing unvetted user
input and should be handled with caution (see 1.7.2).

Unfortunately, the original Hungarian notation decayed into a tendency to repeat
type information at the start of variables, such as string s_name or int i_index. This
is not terribly useful in “explicitly” typed languages where you must specify the type
of a variable, although it can be useful in languages like Python where the type is
inferred for you. Of course, you must then be careful that your tag matches your type,
or confusion and trouble will ensue.

1.6.4 What to Document

Documentation for code serves several very different purposes. Firstly, we distinguish
between developer documentation and user documentation. The former is intended for
those editing, extending or for library code using, your code. The latter is intended
for normal users, who want to provide inputs and get outputs. Orthogonal to these
distinctions, we distinguish between interface documentation, i.e. what parameters
your functions take, and what they return, and implementation documentation, i.e.
descriptions of the internal assumptions, limitations, performance etc of your code. In
many cases you do not need to formally distinguish these, and may simply think in
terms of the level of detail given. For example you may provide a quick-start guide and
a more detailed use guide.

The following snippets are examples of typical combined docs:

Typical Combined Docs

1|int fimbriate (class nurney overrun, flag decimate)
2| Routine to fimbriate the excess nurneys. This is used to reduce the
errors produced by critically low entropy wvalues.

Parameters

overrun The nurney to process

decimate Reduce the nurney amplitude by a factor ten before processing
Returns

Calculated nurney amplitude

© 0 N 3 s W

10| const double minimum_entropy = 0.707

1 Critical entropy below which results become unreliable and fimbriation
is indicated. This parameter can be tuned to reduce the
calculation overhead. For best results use a value between —1.2 and
23

These show formal user docs versus developer docs:

Typical User Docs

1| This program calculates a thingy based on the model of Jones and
Williamsonsson. To compile the code, type

2|#make

3]To run the code type

gt W N =

W N

© 0 N o w»

10
11
12
13

[

18 CHAPTER 1. INTRODUCTION TO SOFTWARE DEVELOPMENT

#hex calculate

"Out of cheese’ errors imply you have insufficient ants to run at this
time. Try

#hex inititalise BRL

If problems persist, please reinstall Universe.

Typical Developer Docs

To add your own splines to the code, use

#add_splines (new_spline)

new_spline must implement the

#reticulate ()

method and must be guaranteed positive definite. Several sample splines
are provided for up to 5th order.

And these show formal interface versus implementation:

Typical Interface Docs

int fimbriate (class nurney overrun, flag decimate)
Nurney fimbriation routine

Routine to fimbriate the excess nurneys. Called by reticulate ,
spline_advance

Parameters

overrun The nurney to process

decimate Reduce the nurney amplitude by a factor ten before processing
Returns

Calculated nurney amplitude

const double minimum_entropy = 0.707
Critical entropy below which results become unreliable and fimbriation
is indicated .

Typical Implementation Docs

int main (int arge , char x argv[])

Calculates a thingy based on the model of Jones and Williamsonsson, using
reticulated splines to smooth the greebles. If the total entropy is
below zero, nurneys may appear.

const double minimum_entropy
Used to avoid underflow when calculating minimum entropy. Must not be
below —100 or infinite loops can result

1.7. GETTING DATA IN AND OUT OF YOUR CODE 19

1.7 Getting Data in and out of your Code

1.7.1 Input Strategies

Depending on the purpose, environment your code runs in, and flexibility of control you
wish to give to users, you can need anything from a single user input to several distinct
input paths. For a large code it would not be unusual to have half-a-dozen different
means of control. From least to most flexible, with plenty of case dependency:

1. Hard coded values - e.g. a log file name
2. User prompts - e.g. for an output directory

3. File-per-control - e.g. reading a single string filename from a specific filename,
or aborting if a particular file is present

4. Environment variables and/or compiler flags - e.g. to enable debugging
output or control working precision

5. Command line options - e.g. specifying problem size or working directory

6. Simple config files - e.g. ini files, json files, Fortran name lists or files of key-
value pairs

7. Input control systems - e.g. ability to specify maths expressions, automatic
setup of a problem with given geometry, full GUI (graphical user interface) con-
trols

One code we work on uses 5 different of these for various purposes, and 2 or 3 is not at
all uncommon.

Hard coded values have plenty of use for parameters you change only rarely. For
example you may write log information into a file called run.log in the specified work-
ing directory. Prompting the user should be used sparingly and consider offering an
alternative for somebody running your code via a script.'” Control by file existence is
especially useful for causing a long-running code to abort. You simply check every-so-
often for the presence of a file, e.g. STOP.

Environment variables share some perils with global variables and should be changed
only with caution, but can be very useful for simple global config information. Compiler
flags are invaluable for including or excluding debugging code, or selecting a code-path
at compile time for performance. They can also be used to select a variable type at
compilation (such as float versus double). They do introduce more code paths to test
though so should not be overused.

Command line options allow a lot of flexibility and are perfect for programs invoked
using a script. For example, when you compile your code, you probably supply the -o
argument to specify the output file name. Problem sizes, input-file names and behaviour
can all be controlled this way.

5They can pipe input to your code, but it is not always easy, especially in Python

Gl W N =

-

20 CHAPTER 1. INTRODUCTION TO SOFTWARE DEVELOPMENT

A significant downside to all options discussed so far is reproducibility: you should
help your users to preserve the information to reproduce their work in fu-
ture. You can, of course, write code to output this information, or write it directly into
your normal output files. However, your user still has to extract this and supply it to
the new run. Conlfig files are a good way to streamline this process. Many formats exist,
from very simple, such as a file containing a series of named values, through block-wise
files such as the old Windows .ini format

ini example

[control]
use_float =1

[output]

rolling_output = true

to complex nested structures such as XML or JSON files. JSON libraries exist in many
languages and are a very good option in general. If you want to, you can embed either
the entire config file, or some signature'® of the file into the output.

Finally, writing good, robust GUIs is hard and relatively uncommon for scientific
codes. In particular, direct control through a GUI is usually a poor choice for a code
running on a cluster, as you may have to wait for your job to schedule. A GUI to create
an input file can be useful, but is usually a late addition. For very complicated codes
you may even consider a scripting interface, for example using Python, Ruby or Lua
to setup and run your code. However, these options are out of scope for these notes.
Note also that a live interface brings back the issue of parameter preservation unless
you carefully output the configuration before running.

1.7.2 Validate your inputs!

Do it! - Arnold Schwarzenegger

Always validate your inputs. What this means in practice can vary, but in general,
do not trust anything supplied by a user, even if that is you. This is not be-
cause users cannot be trusted, but mistakes and ambiguities can happen. For
example, imagine your code starts by deleting any output files in its working directory.
You may write something like

FUNCTION cleanup_data (STRING relative_wkdir)
STRING full_path = 7./” + relative_wkdir //Assume working directory is
subdirectory of current directory

system . execute ('rm —rf’ + full_path) //Use system delete to remove all
files in working directory

END FUNCTION

16¢.g. an MD5 hash of the config file, but note that insignificant changes, such as whitespace, will
change this

1.7. GETTING DATA IN AND OUT OF YOUR CODE 21

Now imagine your user forgets or fails to supply a directory name to your code. This
function will happily delete any and all .dat files in their current directory. Worse,
imagine what happens if they give you a directory with a space at the start! If you
forget to trim this out, this code will endeavour to delete everything in their current
directory and then everything in the working directory! This may sound silly and
contrived, but worse things have happened.'’

As another example, suppose your code is intended to convert from one file format
to another, and you ask for two file names from the user, in and out. What happens
if they give the same name for both? Will your code cope? What about if you ask for
a number dictating an iteration count and the user gives you a negative value? Will
you get an infinite loop? What if you ask for a size and the user specifies a very large
number? Will your code eat all their memory and crash? Finally what about the classic
“SQL injection”, as in Fig 1.2 where names have been input and then inserted into a
database without input sanitation. A crafty user can instruct your database to delete
all its data. The last example is an entire course by itself, but in general: be nice to
your users and yourself and check inputs for sanity before proceeding, and always be
extra cautious when deleting or overwriting files and data.

HI, THIS 15 OH, DEAR - DID HE DID YCU REALLY WELL, WEVE LOST THIS
YOUR SON'S SCHOOL. | BREAK SOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WE'RE HAVING SOME IN A WAY = Robert'); DROP I HOPE YOURE HAPPY.
COMPUTER TROUBLE. .{ TRABLE Students;—- 7
X AND T HOPE
, s ~OH.YES LITTLE - YOUVE LEARNED
BOBBY TABLES, TO SANMIZE YOUR
WE CALL HIM. DATABASE INPUTS.
Figure 1.2: SQL injection in practice. Always check your inputs!! Perma-

link: https://imgs.xkcd.com/comics/exploits_of_a_mom.png Creative Commons
Attribution-NonCommercial 2.5 License.

1.7.3 Aside: Input in Parallel Codes

If you are writing code for use in parallel, for example using MPI, it is important to bear
in mind file-system locking. On many filesystems only one process at a time may access
a file'® and this means you can produce unexpected bad performance by having every
process attempt to. Consider reading the file on one processor only and broadcasting
to all others.

17If you know any bash scripting you may have realised that the command above is plain silly. It
makes no attempt to check what it is deleting, instead relying on just a directory name, and user
input validation can only help so much. However, see for example http://store.steampowered.com/
news/15512/ 'Fixed a rare bug where Steam could delete user files when failing to start’ Unexpectedly
empty parameters hurt!

8Not true on all systems, and particularly not if the file is opened read-only

https://imgs.xkcd.com/comics/exploits_of_a_mom.png
http://store.steampowered.com/news/15512/
http://store.steampowered.com/news/15512/

22 CHAPTER 1. INTRODUCTION TO SOFTWARE DEVELOPMENT

If you are reading large chunks of data, for example reading in a restart file (1.7.6)
you will want to consider using MPI 10 to allow collective reads. Alternatives are
reading the entire data set in on one processor and broadcasting it (needs enough
memory for the entire set on every processor), or reading in chunks on one processor and
sending each chunk in turn to the relevant process (inefficient, one send per processor).
MPI-IO allows multiple processes to read files at once and ensures they do not interfere
with each other.

1.7.4 Output Data Formats

For data output, you have many choices depending on the size, purpose and lifetime of
data files, such as:

1. One file per variable - for example Temperature.dat, Density.dat

2. Fixed format files - for example
1| 10/11/2017
2/ 10, 20, 13

3. Named block files - for example

date
10/11/2017

temperatures
10, 20, 13

B W N e

4. JSON, XML or other flexible formats

5. Full data file formats - for example fits files (in Astronomy), HDF5

Other considerations include

1. Do files need to be human readable? Binary files can be half the size of the
equivalent text file, but you need to either know their content or use a specific

binary format

2. Will the files be kept for long periods? Beware of choosing custom formats that
may change or be deprecated

3. Do the files need to be split or combined?

4. Will you share data files with others?

1.8. SHARING CODE 23

1.7.5 Aside: Output in Parallel Code

In parallel programs you have several options for output. Like with input, but more
commonly, only one process can write to a file at once, and you may not want to have
each process write in turn. The simplest alternative is called file-per-process and, as
it sounds, you write one file on each processor and recombine them in your analysis
step. For many processors this becomes unwieldy and for very many processors you
can exceed the number of open files allowed by your filesystem.'” MPI-IO (covered in
our Advanced MPIT sessions) can be used to perform writes collectively, or you can use
one of the parallel aware file IO libraries such as HDF5.

1.7.6 Continuation or Restart Files

Finally, if you are running large programs, or wish to run for very long durations,
consider writing code to freeze the state of your program so you can stop and restart
a job. This means outputting the current state of all essential variables, probably in
double precision, and also of any other state you want to re-initialise. For example, if
your program generates random numbers, and you want a stopped-and-restarted job to
give identical results to one run continually, you need to output the state of the RNG
and re-seed it when you begin again.

1.8 Sharing Code

Note: wversion control, or preserving your work as you create and edit code is covered
in the next chapter. This section talks about preserving working code and sharing code
you have used for published work. Chapter / talks more about making your software
installable and managing packages and libraries.

1.8.1 Preserving Your Work

Once you have some code, and have tested and proven it (see Chapter 2) you will
certainly want to use it for your work, and may want to share it with others too. Your
primary concern may simply be preservation and reproducibility. Your research council
probably has some rules about what you must do (see section 1.8.5); as may any journals
you publish in, so first consider this.

If you are simply sharing code with fellow researchers, you may not need any sort
of licensing beyond putting your name at the start of your files. This may be the case
even if you use other people’s packages or libraries, as long as you do not distribute
them yourself. Once you start distributing your code online, for example using Github,
you will want to consider choosing a proper license.

9Tf you do manage this, the sysadmin will not be happy either!

24 CHAPTER 1. INTRODUCTION TO SOFTWARE DEVELOPMENT

1.8.2 Basics of Licensing

Once you have decided you need a license, there are many online resources to help
you choose, such as https://choosealicense.com/. In general, you want to consider
points such as:

e Does my software use other software? What are its terms? Do I include their
code in mine?

e Do I want attribution when others use my code? What about if they share it?

e What about if they take it and edit it, perhaps producing their own programs
they also share?

e What if they profit from my work, directly or indirectly?
e What if my code affects somebody’s work or computer?

e Does my funder require that I share my outputs? Or do they own them?

1.8.3 Resharing Code

Many packages and libraries require some form of integration with your code. For
example, if you use a testing library you may need to include some code from it even
if you are not running the tests. Or you may be using pieces of somebody else’s source
code. In these cases, you must check whether they put any limitations on resharing,
and make sure your license is sufficient. Alternately, you can omit the shared code and
give instructions for obtaining and inserting it.

1.8.4 University Resources

Many Universities may provide hosting services for source code, such as a git server or
personal FTP filespace.

Some also have contacts to help you choose licenses etc making sure you obey funder
regulations.

Finally if your code has commercial value, your University may have resources to
help you benefit from this. Warwick offer https://www2.warwick.ac.uk/services/
ventures/softwareincubator/

1.8.5 Research Council Expectations

If your work is funded by a research council you must read and obey any
rules they have as to sharing your code and its results. For example, many
funders require code be made available on request. Many journals require source-code
used to create published data be shared. Be careful that you do not find yourself with
incompatible restrictions in these cases.

https://choosealicense.com/
https://www2.warwick.ac.uk/services/ventures/softwareincubator/
https://www2.warwick.ac.uk/services/ventures/softwareincubator/

Glossary - Software Development 25

Glossary - Software Development

agile development A (family of) software development method(s) where design is
adapted to requirements regularly and no planning is done further ahead than a
chosen time, often as little as one week. 9, 13

anti-pattern Patterns for the dark-side: models of code which are inflexible, restric-
tive, or unreliable common approaches to a problem. C.f. pattern, 11

bisection (AKA Binary bisection) Searching for something in an ordered collection
(an item in a list, the version of code where something breaks) by repeatedly
splitting into two halves, the one containing the target, and the one not, and then
repeating the process on the containing half. For example, you have code that
adds one to a particular variable in say ten places, you know that it starts at zero,
but ends at 9, and you want to know which step is being missed.
0,1,2, 3,4,5,6,6,7,8,9 | Target is above 6th element, value 5

6,6,7,8,9 | Target is at or below 3rd element, value 7

6,6,7 Target is at or below 2nd element, value 6
6,6 Target is above 1st element, value 6
6 Length is one, target found

Note that we select “at or below” and “above”, and when the length is even, we
choose the lower element as the “middle”. These are not the only choices, but it
is vital to be consistent or you will sometimes get the wrong answer. 6, 39

coding standard A set of rules dictating anything from techniques (some companies
forbid pointers), naming conventions, source code layout (2 spaces or 47 Do
braces go on a new line?) and every other element of code style. The coding
standard may select a language standard but shouldn’t cover matters of source
code validity. 16

DRY Don’t Repeat Yourself, the idea that you should try and reuse code as functions,
modules, libraries etc rather than copy paste and edit. 3

input sanitation Removing active code or invalid characters from input. For ex-
ample, suppose you were to (please don’t ever do this without extreme cau-
tion!!) take some user input and execute it, as all sorts of online bots do.
Now suppose you feed this directly to the system and your user enters “firefox
http://my _super_virus_downloader.co.uk”. 21

MoSCoW method A prioritization method where requirements are grouped into
things that Must be, Should be, Could be and Wont be done, and then treated
as such, often in a given iteration of a piece of code. 13

MUU Minimum Useful Unit; the smallest functioning, useful, releasable version of a
program or feature. 9, 10

26 Glossary - Software Development

pattern Models of code which are flexible, general purpose, reliable common ap-
proaches to a problem. C.f. anti-pattern, 11

PLS Principle of Least Surprise; do the least surprising thing in case of ambiguity. 10,
36

prototype A partial product, giving useful information. For example, a look-and-
feel prototype for a webpage may be a simple image showing how the page will
be arranged. A prototype code may work on only a restricted set of inputs, or
produce no output, or use a slower but simpler algorithm. 9

refactor . see refactoring, 11

refactoring Changing the content of code without changing its results, c.f. rewriting.
For example moving some chunk of code into a function; placing several named
variables into a single structure; renaming things for better consistency etc. 13,
26

rewrite . see rewriting, 11

rewriting Rewriting differs from refactoring as you may actually change results. Chang-
ing to a different inexact algorithm would generally be a rewrite, as would chang-
ing from plain-text output files to a special file format. 13, 26

UML Unified Modeling Language; a standard way of creating program description

)

diagrams. 3

waterfall development A (family of) software development method(s) where design
and creation steps are fully completed before the next stage can begin, so infor-
mation flows only downwards. 9

WSIWYG What You See Is What You Get, editors like Word where you see format-
ting and arrangement as you go, as opposed to e.g. Latex where you must compile
your document to see it laid out. 7

YAGNI You Aren’t Going to Need It, a feature which may seem cool but isn’t actually
required right now, and probably never will be. If it ever is, your current version
of it probably wont work anyway. 3

Chapter 2

Principles of Testing and Debugging

Debugging is twice as hard as writing the code in the first place. There-
fore, if you write the code as cleverly as possible, you are, by definition, not
smart enough to debug it. - Brian Kernigham

2.1 What is a bug?

Testing shows the presence, not the absence of bugs - Edsger Dijkstra

The definition of “bug” is “an error, flaw, failure or fault in a computer program
or system that causes it to produce an incorrect or unexpected result, or to behave
in unintended ways.” [Wikipedia (Software bug)] Note that not every example of a
program “misbehaving” is a bug, depending on how one defines “unexpected”. Some-
times there may be several valid ways of doing something, or the programmer may have
chosen a compromise.

As we mentioned earlier, undefined behaviour in C, “system dependent” behaviour
in Fortran and in Python the absence of a standard and subsequent platform-dependence,
are very important to watch for. What they mean is that your program may work cor-
rectly on your machine, but on another system may fail, and not necessarily in any way
you might notice. Bugs which you can reproduce are troublesome - bugs which you
can’t are awful. Not only are you working in the dark to diagnose it, you can never be
sure it has gone!

2.2 Bug Catalogue

This section is a rough categorisation of the common sorts of bug you might encounter,
with examples and discussion. Not all of these can arise in all languages, and sometimes
your compiler may catch the problem for you, especially if you turn on warnings (see
Sec 2.5). Languages like Python tend to throw exceptions for many of these errors, so
it is important that you do not squash or ignore those.

27

28 CHAPTER 2. PRINCIPLES OF TESTING AND DEBUGGING

2.2.1 Logic or algorithm bugs

Logic bugs are a catch-all for when your program does what it ought to, but not what
you wanted; effectively you have written the wrong correct program. They can be very
tricky to find, because they often arise from some misunderstanding of what you are
trying to achieve. You may find it helpful to look over your plan (you did make a
plan, right?)

Symptoms:

e incorrect answers
e poor performance
Examples:

e Finding the minimum of a list the wrong way: if your data is sorted, the minimum
value must be the first in the list but sorting the data to just find the minimum
item is silly."

e Missing parts of a range:

1{INTEGER a, c

2| a = GET NEXTINTEGER/()

s|IF (a < 0) THEN

4 c =1

5\ELSE IF (a > 0 AND a < 5) THEN
6 c =20

7|ELSE IF (a >= 5) THEN

8 c =2

o| END

Notice that the case of a == 0 has been missed, and in this case ¢ is undefined.

e Single branch of sqrt: calculating a from something like a®> = 9, and forgetting
that a can be either 3 or -3, introducing a sign error in further calculations

e Most typos: mistyped names, function assignment rather than call (Python),
missing semicolon (C). Mis-use of operators, for example using & and && (C).

e The lampposts problem: for n slots, there are n+1 lampposts

2.2.2 Numerics bugs
Floating Point Basics

Computers store numbers in a fixed number of bits, using a binary representation.
Usually, floating point numbers are stored as a number and a power of 2 to multiply it by,
analogous to scientific notation.” Most languages define several types of float, currently

!This exact issue showed up in actual proprietary code. Company must remain anonymous
2E.g. 1.2 x 103 == 1200

2.2. BUG CATALOGUE 29

32 bit and 64 bit being common. For 32-bit floats, 8 bits are used for the exponent, 23
for the significand® and one for the sign. This introduces several limitations. Firstly,
for large numbers it can be the case that X +1 == X to the computer’, because with
only 23 bits, some of the number has been truncated. Secondly, they can’t exactly
represent all decimals, even those which terminate in normal, base-10 representation.’
And finally, sufficiently large numbers cannot be stored at all, and will overflow.

Rounding Errors and Truncation

You may recall from school that for most calculations it is recommended to do all
intermediate steps to as many significant figures as possible, before rounding the final
result. In code, any time a number is stored into a variable it is converted to the correct
type and any additional information is thrown away. For example in this snippet

1|/ INTEGER a = 3.0/2.0
2/PRINT a // Prints 1

the value 3.0/2.0 is calculated 1.5 and then stored into the integer a by truncating the
non-integer part. Most programming languages truncate rather than round, i.e. they
throw away the decimal part. This can lead to odd results in combination with floating
point errors, for example the example below where 0.5/0.01 can be slightly less than
50, and so when truncated becomes 49.

Rounding errors are one of the reasons it is a bad idea to use floating point numbers
as loop indexes, even if your language allows it. This snippet

1.0, 0.01 DO //Loop stride is 0.01

can end up with i slightly less than 1 at the expected end point, and you may then
sometimes get an entire extra iteration.

Combining Big and Small Numbers

When you add two numbers, you must first line up the places (like in long-hand arith-
metic, matching units to units, tens to tens, hundreds to hundreds and so on), so
because of the limited precision, if you add a small number to a large one, you lose pre-
cision in the smaller. In most cases, this wont matter much, because it will make only
small differences to the final answer. There are two common issues however. Firstly,
the order of the terms in the sum may make subtle changes to the final answer. In
the worst cases this breaks associativity of addition,® because of the rounding at each
stage. If this matters, there exist special algorithms for dealing with such sums, to

3Number being multiplied, 1.2 in previous note

4See machine epsilon

5 Any number with denominator a power of 2 is exact, all others aren’t
6 Associativity is the property that a+b+c=(a+b)+c=a+ (b+c)

30 CHAPTER 2. PRINCIPLES OF TESTING AND DEBUGGING

reduce these rounding and truncation errors. Secondly, if you take two such sums and
subtract them, you can get strange cancellation results and unexpected zero or non-zero
answers, see the example below.

Overflow and Underflow Bugs

All numeric types have an upper limit on the number they can store. Some languages,
such as Python, may hide this but it is important to be aware of. You can look up the
limits for your platform and data type. If you try and store a larger number (positive
or negative) you will get an overflow error.

For integers, most languages define two kinds, signed and unsigned. Unsigned inte-
gers cannot be less than zero, and can therefore be roughly twice as large. In Python,
integers will automatically become large-ints if they get too big, which can lead to signif-
icant slow-down. In C-like languages, signed integer overflow is well defined and should
wrap around to negative values. Unsigned overflow is undefined behaviour although it
often seems to work.

According to the IEEE (I triple-E) standards, there are strict standards for floating
point operations, in particular which combinations are infinity or NalN(see also below).
Fig 2.1 shows these. Note that there is a “signed zero” which has to result from some
operations, such as 1/ — Inf

Underflow means that a number gets too small (not too-large-and-negative). There
is a wrinkle here, which is explored a little in the accompanying exercise, called “denor-
mal” numbers. Usually the base part of the number always has leading bit set, so is a
number like 1.abcde as in normal scientific notation but base 2.” In denormal numbers
the exponent is already as small as possible, so the significant is made a pure decimal.
This allows the representation of smaller numbers, but at lower precision, because there
is a finite number of bits available.”

Mixed Mode arithmetic

Mixed-mode arithmetic means using different types of number in an expression. For
example in C, Fortran or Python 2’

a/b is 0.5 exactly, as is d/e. However, in the first case, a and b are integers so the
result of their division is converted to an integer, here by truncating (throwing away
the fractional part) to give 0. This is the case even when we ask it be stored into a
decimal, c¢. d and e are floating point numbers, so behave as we expect. In complicated

“In normalised scientific notation 1.00 x 10% and 9.99 x 10% are both valid but e.g. 0.10 x 10% is
not.

8Suppose 5 "slots” are available: 1.2345 x 10% has more sig.fig than 0.0123 x 1073

9Python 3 promotes all divisions to be float, and uses the special operator // for integer division.

2.2. BUG CATALOGUE 31

expressions it can be difficult to work out which parts might be integer divisions, so
it is a good idea to explicitly convert to floating point to be sure. Note that similar
conversions occur if you mix 32 and 64 bit (or any other sizes) of number. The rules
can be complicated, so again it is a good idea to keep everything the same or you may
get unexpected loss of precision.

What is NaN?

NaN(nan in Python) is a special value indicating that something is Not a Number.
NaNcan result from e.g taking square-root of a negative number, as there is no real val-
ued solution. NalNis contagious - any calculation involving a NalNwill have NaNresult.
However NalNhas one special property - it is not equal to any other number, including
itself, and does not compare to any of them either. Beware though: this is true for
any other comparison too, so NaNis not less than NaNnor greater than it. Figure 2.1
shows which arithmetic operations can result in NalN.

Symptoms:

e subtly wrong answers
e severe changes to answers on small edits
e underflow and overflow exceptions/warnings/signals (see Sec 2.5)
e NalN, Inf or other special values in results
Examples:

e Non exact numbers: 1.0/33.0 = 0.030303030303030304 Where did that 4 come
from? In C, if we ask for 1/33 to 45 dp we get
0.030303030303030303871381079261482227593660355

e The commonest non-bug in gce: https://gecc.gnu.org/bugs/#nonbugs

#include <iostream>
int main ()

{

1
2
3
4 double a
5
6

0.5;

double b 0.01;

std::cout << (int)(a / b) << std::endl; //Prints either 49 or 50
depending on optimisation etc
7 return 0;

e In really bad cases this even breaks associativity: 1.0-(1/33.0 + 2/33.0 + 29/33.0)
- 1/33.0 may not give the same answer as 1.0 - (1/33.0 4+ 2/33.0 + 30/33.0)

e Divide by zero: in Python this is an exception. In gfortran you can set floating-
point exception traps using -ffpe-trap etc

https://gcc.gnu.org/bugs/#nonbugs

inf nan
nan nan
inf nan

Left operand is in the column, right along the top

* -1.0 0.0 0.0 1.0 Iinf

inf _inf |nan nan
-1.0 iinf 1.0 0.0 -00 -1.0

nan
nan
nan

inf nan -0.0 nan 0.0 0.0 -0.0 -0.0 nan nan

inf nan 0.0 nan -0.0 -0.0 0.0 0.0 nan nan

inf nan 1.0 -1.0 -0.0 0.0 1.0 linf nan

inf nan |inf inf inf inf inf | nan inf nan nan inf inf nan
nan nan nan nan nhan nan nan nan nan nan nan nan nan nan nan nan
nan / -1.0 0.0 0.0 1.0 linf nan

nan nan |inf inf mnan nan

nan -1.0 0.0 1.0 inf -1.0 -0.0 nan

nan -0.0 00 0.0 nan nan -0.0 -0.0 nan

nan 0.0 -0.0 -0.0 nan nan 0.0 0.0 nan

nan 1.0 -0.0 -1.0 inf 1.0 0.0 nan

inf inf inf inf inf inf nan nan inf nan inf inf nan nan
nan nan nan nan nhan nan nan nan nan nan nan nan nan nan nan nan

Figure 2.1: IEEE requirements for floating point number operations

43

ONIODONTAd ANV ONILLSHL AO SHIdIONIHd ¢ H4.LdVHO

2.2. BUG CATALOGUE 33

e Sums: Adding a small thing to a large thing

e Small differences of large numbers: (1.0 4+ le-15 + 3e-15) - (1.0 + 4e-15) is not
zero in e.g. Python2, but (1.0 4+ le-15 + 3e-15) - (1.0 + 4e-15 + 2e-16) is.

e Integer division: discussed under Mixed-Mode above. Result of 1/2 is different to
1.0/2.0

e In Python all real numbers are “double precision” so run up to about 1.8e308.
Integers will automatically grow to hold their content BUT they will get poten-
tially a lot slower when they do. In C or Fortran you specify type, float/double
and int/long. Try this:

int j—2147483647;
printf ("%d\n”, j);
printf ("%d\n” , j+1);

The value j is set to is the maximum possible 64 bit integer, so the +1 “overflows”.
The reason it becomes negative is because of how integers are represented. Note
there are also “unsigned” integers, which overflow to 0.

e Instability: some algorithms work analytically but when numerical effects like
rounding are included can become unstable and give a wrong or no answer

2.2.3 Initialisation Bugs

These types of bugs occur when you create a variable and forget or fail to set it (such
as in the range-error example in Sec 2.2.1), or when you accidentally create a local
variable and think you're working with a global (or vice versa). In C-type languages
where you manage memory they can occur when you forget to allocate memory, or
when you forget to nullify a pointer and then try and work with it. These latter are
more serious as you can accidentally overwrite other parts of your program’s data.
Symptoms:

e segmentation (seg) faults or crashing

different answers run-to-run

e severe changes to behaviour on small edits
e rogue connections between supposedly independent bits of code
e changes with optimisation level

Examples:

e Undefined variable: variable gets whatever value that bit of memory happened to
have. Code may give the wrong answer, may vary run to run, may be changed if
unrelated code is edited

34 CHAPTER 2. PRINCIPLES OF TESTING AND DEBUGGING

e Undefined pointer: a pointer gets whatever value the memory had. Usually leads
to a segmentation (seg) fault if you try to access it. Always nullify your pointers.

e Unallocated memory: memory isn’t allocated, but the pointer or reference to it
“seems” OK and doesn’t crash. Can overwrite other parts of your program’s data
etc and lead to anything from an infinite loop (if you accidentally clobber your
loop index) to wrong answers, crashing at seemingly unrelated times, etc

2.2.4 Memory Bugs

Note: overlaps with Sec 2.2.5

These types of bugs occur when try and create very large objects, or very many
objects, when you try to access beyond the range of an object such as an array, when
you try to use an unitialized or already freed pointer in languages where you manage
your own memory or lifetimes, e.g. C or Fortran, or when you rapidly create and free
objects in a language with a garbage collector. A similar sort of error exists where you
use resources like file identifiers.
Symptoms:

e hanging (if you try to obtain too much of a resource)
e changes to wrong data

e crashes (usually only if you write to completely invalid memory, or exceed available
memory)

Examples:

e Off-by-1 error in array access:

1|/ARRAY, REAL(100) arr
2larr [0:100] =1

Remember that different languages use 0 or 1 for the first element of an array.

e Buffer overrun errors: (C strings, C++ if you use C-style strings etc)

1| char name[10] = ”Abcdefghij”; // No space for null terminator,
string is now invalid
printf (™%s”, name); //See string content and then some junk

e Using a freed pointer: When objects are freed, their memory is marked free, but
is not changed until it is allocated to something else.'’ If you are lucky, use of
a freed pointer will segfault or show up fast. If you are unlucky, it will work
perfectly as the “ghost” of the data is still there, and show up only as subtle
bugs. Always nullify pointers after freeing the memory they point to

10T his may be familiar if you have ever accidentally deleted a file - often the file is still there on the
disk and can be restored, but any new files written may overwrite it.

2.2. BUG CATALOGUE 35

e Severely bad writes (out of program arena): common error in C, possible in
Fortran but uncommon, can occur when you attempt to allocate a very very large
memory block. For extra fun these can crash tools like Valgrind (later) when you
try to diagnose.

e Mis-allocation of memory:

1| int * start = malloc(1024%x1024%1024%3); //Exceeds MAXINT, actually
attempts to allocate a negative number

Note that your compiler is unlikely to warn you about this, even if it detects the
overflow

2.2.5 Speed Bugs

Slowness is not a bug in itself, but it can be symptom of various logic-type bugs. We
include these here as they have many of the same characteristics. The commonest cause
is repeating work unnecessarily, for instance inside a loop.

Examples:

e File IO

INTEGER . i
ARRAY data[100] = GETNAMES()
FILE output_file
FOR i = 0, 99 DO
OPENW output_file //Open file for writing
data[i] = TO.UPPER.CASE(data[i])
WRITE output_file , data[i]
CLOSE output_file
END

© 0w N O s W N

e Multiple loops where one would do, and/or loops where array ops would do
1| INTEGER. i

2|ARRAY data[100] = GETINTEGERS|()

3fFOR i = 0, 99 DO

4| data[i] = data[i] + 1

5| END

JFOR i = 0, 99 DO

71 data[i] = data[i] %2

s| END

Usually the overhead of the loop is not much, but in these cases with very little
work to do, it can be significant. These examples could also be replaced with
a single array operation (in Fortran, Python, C++) which can be much more
efficient.

e Wrong algorithms (see also Sec 2.2.1)

36 CHAPTER 2. PRINCIPLES OF TESTING AND DEBUGGING

e Not breaking early:

INTEGER . i
ARRAY data[100] = GETNAMES()
FLAG found = FALSE
FOR i = 0, 99 DO
IF (data][i] = ”"Bob”) THEN
found = TRUE
//Bob found
END

© W N O s W N =

END

Since the only purpose of this loop is to identify whether the given value exists
in the data, we may as well BREAK on line 7, as continuing the loop is needless
work. !

2.3 Non Bugs or “Why doesn’t it just...”

We mentioned earlier the Principle of Least Surprise (PLS). Ideally, code and tools
should work in the way that most people expect. This is a great ideal, but you still
may find yourself saying something like “why doesn’t it just...” or “Why doesn’t it
know that...” There is also a classic programmer joke phrase, “it’s not a bug, it’s a
feature”. Sometimes this is true, and something that looks like a bug is intentional,
often as a result of a choice of compromises. Occasionally, a bug turns into a feature,
such as Post-It notes, which were an experiment in strong glue, but produced instead a
valuable removable glue. Another example of a wildly successful accident is the original
ARM processor, which wasn’t designed to be low power, but during testing it was found
that the power circuits weren’t working, and the chip was running on a fraction of a
watt leaking from other circuits.'

Whenever you encounter the “why doesn’t it” it is worth thinking about the answer,
as this can teach you a lot. As an example, you might think an over-zealous virus
scanner is “malfunctioning” when it detects a program you wrote as potential malware,
but how can you identify malicious code? In particular, is there a way to know what
answer a program will give for arbitrary input without running it? When we discuss
testing this is worth keeping in mind.

There’s also several syntactic examples, where you wonder why the computer can’t
tell what you mean. Some of these are truly unambiguous but just incompatible with
how most languages work. For example, it is tempting to wonder why 2 < a < 20 is not
a valid comparison, because surely the computer “should be able” to work out what
is meant. Similarly why doesn’t a,b = 10 set both a and b to 10. In C the “comma

1Tn some security critical code, early breaking introduces the potential for a “timing attack” where
one gets information based on how long code takes to execute. For instance, in the example here, we
might be able to guess whether “Bob” is definitely in the list, because those cases would stop slightly
quicker.

126 g, https://www.epo.org/learning-events/european-inventor/finalists/2013/wilson/
feature.html

https://www.epo.org/learning-events/european-inventor/finalists/2013/wilson/feature.html
https://www.epo.org/learning-events/european-inventor/finalists/2013/wilson/feature.html

2.4. ASIDE - HISTORY OF THE BUG AND DEBUGGING 37

7T
94
o g Gt b _Euh,l el Fionz gp? 9AE
J e Bk~ andeem) i 7647 BYE TPY covaid
jx «_‘Er',- HE - me L O =33) Yol 5 725045
FPro = 2 Mioyrieyis
Covu e z rbo&?ﬁr\-,’
Fdlpas e 03s fouded ;‘-,umu" Sy leat
I e . eor At -
!-\L-;.T b A
rie farted Cosine Tape (Sine <he<k)
1S4¢ B \3._{;..‘['*]‘._. Vanel I
hn AT Y T 4
| G - e .
Fiest ashua) case -f bu-l bein '{ dnd
s G banrd sladid)
1300 'A‘J-JJ!""" .

L

Figure 2.2: The first actual computer bug? http://americanhistory.si.edu/
collections/search/object/nmah_334663

operator” in effect returns its second argument, so you get b=10 and a is untouched.
In Python, a,b is interpreted as a tuple and the interpreter looks for two values on the
right and doesn’t find them, giving an error. In Fortran, a,b is simply invalid.

Ultimately, most languages are trying to be consistent, to avoid context where it is
not needed'”, and to be able to do very complicated things. Sometimes this does make
simple things hard.

2.4 Aside - History of the Bug and Debugging

There are several theories about the origin of the term bug for unintended behaviour
in programs, but it certainly dates back to the 19th Century or before. It had entered
common computer parlance by 1947, when “engineers working on the Mark II computer
at Harvard University found a moth stuck in one of the components. They taped the
insect in their logbook and labeled it “first actual case of bug being found.”'* Figure
2.2 is an image of this entry.

Even further back is this quote from Babbage:

On two occasions I have been asked, “Pray, Mr. Babbage, if you put into
the machine wrong figures, will the right answers come out?” ... I am not
able rightly to apprehend the kind of confusion of ideas that could provoke
such a question. - Charles Babbage

This sounds silly, but you may be surprised how often a “bug” turns out to be almost
exactly this but in reverse. You are certain that the code is correct, and the input
data is correct, and yet the wrong answer comes out, again and again. To paraphrase

13T.e. wherever possible a chunk of code has the same meaning regardless of the surrounding code.
14Quoted from http://americanhistory.si.edu/collections/search/object/nmah_334663

http://americanhistory.si.edu/collections/search/object/nmah_334663
http://americanhistory.si.edu/collections/search/object/nmah_334663
http://americanhistory.si.edu/collections/search/object/nmah_334663

38 CHAPTER 2. PRINCIPLES OF TESTING AND DEBUGGING

Sherlock Holmes when you have eliminated the impossible and still not found
the answer, perhaps it wasn’t as impossible as all that. Keep this in mind when
debugging. Computers are very complex, but they are also stupid. They do as they are
instructed. Sometimes this is not what you thought you had instructed them to do, and
very, very occasionally it is truly incorrect, but your aim is usually to find where
what you thought would happen diverges from what actually happens.

Remember, when debugging, you are in good company. The founders of computing
wrote buggy code, and some of the key developments in early days was learning how
to test, validate and fix it, as for example

As soon as we started programming, we found to our surprise that it
wasn’t as easy to get programs right as we had thought. Debugging had
to be discovered. I can remember the exact instant when I realized that a
large part of my life from then on was going to be spent in finding mistakes
in my own programs. — Maurice Wilkes 1949

or the wonderfully pithy

There are two ways to write error-free programs; only the third one
works. — Alan Perlis, ”Epigrams on Programming”

2.5 Your Compiler (or Interpreter) Wants to Help
You

A lot of work goes into writing a compiler or interpreter to be correct and efficient. Yet
more work goes into making them user friendly. By default, most compilers are unin-
trusive, telling you only about actual errors, i.e. code which they cannot understand.
Many of these may feel little better than “something went wrong”, but as you gain
experience they tell you more and more. Even better, most compilers allow you to turn
on many layers of warnings about code which has been understood, but is a common
source of errors.

For example, an old trick in C is to do the following:

int x = 10;
if (10 =x){

X+

}

43 2

Can you guess why? It is not uncommon to mistakenly type only one “=" sign inside
the if. If this happens, then x = 10 is perfectly valid and will compile and surprise you
by always executing the body of the if. Swapping the order makes this invalid. Note
that this trick is no longer needed, as compilers will warn you about bugs like
accidental assignment instead of comparison if you let them.

2.6. BASIC DEBUGGING 39

2.6 Basic Debugging

The most effective debugging tool is still careful thought, coupled with
judiciously placed print statements.— Brian Kernighan (1979)

Sometimes referred to as Tracing, Old-School debugging or a host of mildly deroga-
tory names, print debugging is the method of placing output statements at various
places in your code to work out where an error occurs and what it is. Many people
consider this technique antiquated. We disagree. The quote above is old, but still holds.
The fanciest debugger in the world will not help you if you are not thinking.

Further, if you are running code on a machine you do not control, so cannot install
software onto, or on a cluster on many processors, or non-interactively, it can be the
only feasible method you have available, so it is worth knowing even if you come to
favour the symbolic debugger.

Finally, print statement debugging can be effective and fast when you have either
no idea where a problem arises and wish to narrow it down, or when you know roughly
where and what the problem must be and just need to confirm your suspicions.

The method is simple:

1. Turn on all compiler errors and warnings, and recompile/run your code. If this
stops the error occurring, see Sec 2.6.3. Otherwise continue these steps.

2. Turn on additional error trapping if your compiler/interpreter offers it. gfortran
for example has -ffpe-trap to find divide-by-zero etc. These are not on by default
because they can be slow. Fix any errors this turns up.

3. Place some output statements roughly throughout the troublesome code, or your
main code if you have no idea where to start
Simple prints allow you to check whether code is reached or executed
Printing values of variables helps you check for undefined or wrong data

If your code exists with an error you may get a backtrace. This usually
tells you the line where the failure occurs and gives you a starting point for the
problem.

4. Begin to drill down to the source of the problem, placing output statements more
tightly around the problem and running again

The fastest way to find the problem is probably bisection again.'” There’s no
rule for deciding what “half” means though: sometimes it is a number of lines of
code, sometimes it is some kind of “functional unit”

5. Stop and think
What do you know?

I5Remember bisection works on ordered items: here the order is the order the lines of your program
run in

40 CHAPTER 2. PRINCIPLES OF TESTING AND DEBUGGING

What would you benefit from knowing?

What are you assuming, and are you certain it is correct?

6. If no problem can be found, return to step 3. but this time be very careful
about what impossible means. Remember that some problems can cause errors
in apparently unrelated code.

7. If the problem is not evident, repeat from step 4.

2.6.1 Remember to Flush!

Programs generally don’t write to file every time you call something like PRINT, printf
or cout<<. Instead they write to a file buffer, stored in memory. System libraries take
care of filling up the buffer, and when enough data is there to be “worth” spinning up
a hard-disk, they flush to disk. This means if your program crashes, you may not get
all your expected prints because they never got flushed.

Flushes usually occur when the file is closed and when the program exits “properly”.
For debugging, you probably want to insert suitable flushes yourself, either after each
print or each block of them. In C you can use fflush, in Fortran FLUSH and in C+-+
std: :endl.

2.6.2 The Rubber Duck

Docendo discimus, (Latin “by teaching, we learn”)

Everybody has, at some point, struggled with a problem for hours getting nowhere;
giving up and asking for help, you find that as soon as you explain the problem the
solution becomes obvious. The importance of the act of explaining is well know, and for
tricky programming problems, there is no substitute for talking the thing through with
another coder. Often, especially as researchers, there may not be anybody you can do
this with. The commonest suggestion is to use a rubber duck.'® Anything will do, but
the key is to put the problem into words, preferably aloud. Explain what is happening
and what should be happening. Often you will find that your have the answer before
you even finish the question.

2.6.3 Debug Environment

Turning on debugging flags in your compiler (-g) for example, and some of the other
debug options your compiler may offer does change the environment your code runs
in. For example, some compilers disable optimisation in debugging mode, which can
change the layout of your data and code. Some of the errors you may have can be
affected by this, particularly memory errors, or undefined behaviour.

There are no easy ways to get around this behaviour. Your simplest option is to
compile in normal mode and try and find the error with print statements. This is

Ynttps://en.wikipedia.org/wiki/Rubber_duck_debugging

https://en.wikipedia.org/wiki/Rubber_duck_debugging

T W N =

2.7. ASSERTIONS AND PRECONDITIONS 41

another reason why print-debugging should be in your repertoire, as some sorts of bug
just do not occur inside the debugger.

2.6.4 Leaving Logging in Place

Sometimes, for especially troublesome code sections, it can be useful to leave your
debugging statements in place for when you need them, but disabling them for normal
use. In a compiled language, you can do this with the pre-processor. If you use C
you will be familiar with the #include statement and may have seen #ifdef used in
include-guards. You can put your debug code inside an #ifdef DEBUG block in C or
Fortran,'” and then they will be used only if you give the definition -DDEBUG to the
compiler at compile-time.

In interpreted languages, the best option is to use a custom print statement. For
example, you might do this:

global _debug = False

def debug_print(text):

if _debug:
print text #Python 2, use print(text) in Py3

Then to enable debugging you set the global to be True and rerun your code. This can
also be done in compiled code, but remember that it does have some cost.

A more flexible option is to use a library designed for logging purposes. The Python
logging module is good for this. You designate statements as Errors, Warnings, Debug
etc, and then set the logging level. These modules benefit from letting you print to
screen or to a file or not at all, from adding dates and source code line info, and from
keeping log info separate to information you want to display to a user.

2.7 Assertions and Preconditions

It’s not a bug, it’s an undocumented feature

While the quote above is a joke, there is some truth in it: once a shortcoming of
code is documented, it is no longer strictly a bug. You may encounter bugs in bug
trackers that are labelled “wont fix” or similar. This usually means there is a known
bug, but that it will not be fixed. Often these were the result of a design decision which
could have been made differently, but cannot now be amended, either at all or for a
reasonable time, effort or complexity cost. On the other hand it is very annoying as a
user to find that you have wasted time on something that will not work.

In your code, you are likely to make assumptions and approximations, and to have
to choose between simpler, easier to implement algorithms and more complex ones. For
example, suppose you had to implement code to calculate x¥. The simplest way to
do this is by repeated multiplication: z" = x * x * ..x where n is an integer. If your

1"Name your file .F90 (capital F) to indicate the preprocessor should run

© W N O s W N

== e
N o~ O

© 0w N s W N

42 CHAPTER 2. PRINCIPLES OF TESTING AND DEBUGGING

code only ever needs to calculate positive integer powers, it is quite reasonable, and in
fact recommended, to use this simple version. It is faster, simpler, and fit for purpose.
However, you must document that a limitation exists and you should consider
adding code to check for violation of your limitations.

Asserts are one way to ensure that you are dealing with types and values that you
are able to. This is especially useful in languages like Python where you do not specify
types directly. For example:

FUNCTION power (REAL x, INTEGER n)
ASSERT(n > 0) //n must be positive
power = 1
FOR i = 1, n DO power = powerxx
RETURN power

END

INTEGER n = 3

REAL x = 2.0

PRINT power(x, n) //Prints 4.0
PRINT power(x, —1) //Assertion error

In languages that do not have an ASSERT, you can raise or throw an error if your
condition is not met, or return with an error value.

def power(x, n):
assert (type(n) is int)
assert(n > 0)
power = 1
for i in range(l, n): power = powerkx
return power
print power (2.0, 3) //4.0
print power (2.0, 3.0) //Assertion error line 2, n not an int
print power (2.0, —1) //Assertion error line 3, n not +ve

Formally, those things which must be true when a function is called are named
“preconditions”, and those things the function guarantees will be true when it completes
are called “postconditions”. Together these form the “contract” between the function
and the calling code.

As a second example, consider accessing an array. In C simple arrays do not know
their size; C4++ provides the vector class, a 1-D array that can use checked or unchecked
access; In Fortran, array size can be checked, but is not by default; while in Python
out-of-bounds access is an error. The following snippet has several possible results,
depending on language and compiler options.

ARRAY, REAL(100) data = GETDATA()
PRINT data[101] //May print junk, throw an error, cause seg—fault

Remember that each check adds overhead, so performance focused languages tend to
have them only as an option, while more general purpose languages make them always
apply. Checks like these are the foundations of code testing. You want to know how
things behave when given good and bad inputs, and be sure about what is going on.

Ut R W N =

2.8. TESTING PRINCIPLES 43
2.8 Testing Principles

2.8.1 What Does Testing Tell You?

You may hear people say things like “any code that’s not tested is wrong”. Clearly this
is not meant to be read literally, as the code may well be entirely correct, and adding
a single test doesn’t tell you it is always correct. Like most other pithy phrases, this is
quite a simplification.

Consider the power function we used earlier, i.e.

FUNCTION power (REAL x, INTEGER n)
ASSERT(n > 0) //n must be positive
power = 1
FOR i = 1, n DO power = powerxx
RETURN power

END

We want to pick some input values that will let us be sure the function works. Clearly
we thought about the negative n case, so we should test that. 0 is often special in
maths, so we probably want to check x of 0, and check that n = 0 gives the expected
assertion error. If we look at line 4 we notice that our loop is from 1 to n, which suggests
we should also check n =1 (to make sure the loop runs once, not 0 times) and n = 2.
This is the principle of checking the boundaries. This seems to be a comprehensive set
of values, but we do need to check them all.

There is something crucial about what we have done here. We have carefully crafted
our test values based on how we know the function works. This is sometimes called
“white box” testing (in contrast to a “black box” where the code internals are unseen).
“Aha” we now think. We checked everything that can go wrong! We know this function
works all the time. In this simple example, we were able to do this. In more complex
examples it is not so easy to spot all the possible things that can go wrong.

A classic example of fatal software bugs is the Therac-25'% Therac was a radiation
therapy machine, delivering electron-beam and X-ray treatments in the 80s. Previous
versions had complex systems of hardware interlocks to ensure the proper shielding
plates were in place, and that no unsafe doses could be delivered. Therac-25 removed
these in favour of a computer system. Between 1985 and 1987 7 people were exposed
to massive radiation overdoses. 2 or 3 died'’ and the others suffered serious and life-
changing injuries.

Primarily, the Therac-25 disaster is an example of a terribly wrong solution. The
removal of hardware interlocks on such a critical system was risky. Even your kitchen
microwave has a hardware switch to turn it off when the door is open. In some senses
it is an example of a lack of proper testing, for example, requesting one mode, and
then requesting another within 8 seconds, while the system was still moving pieces into

18(e.g. (Contain some medical details) https://hackaday.com/2015/10/26/killed-by-a-
machine-the-therac-25/, http://courses.cs.vt.edu/professionalism/Therac_25/Therac_1.
html)

90ne died of the cancer being treated, but would have at least needed major surgery otherwise

https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/
https://hackaday.com/2015/10/26/killed-by-a-machine-the-therac-25/
http://courses.cs.vt.edu/professionalism/Therac_25/Therac_1.html
http://courses.cs.vt.edu/professionalism/Therac_25/Therac_1.html

44 CHAPTER 2. PRINCIPLES OF TESTING AND DEBUGGING

place, left the system in an indeterminate state. This could, and should, have been
caught. Another bug turned out to be a simple integer overflow.

Finally though, Therac-25 is an example of the real pitfall - only testing for the
errors that were thought of, not being able to catch all possible inputs, and assuming
that passing the tests meant correctness. To quote “In both of these situations, operator
action within very narrow time-frame windows was necessary for the accidents to occur.
It is unlikely that software testing will discover all possible errors that involve operator
intervention at precise time frames during software operation.””’ The machine was
tested, and was used for thousands of hours, and only a handful of incidents occurred.
For a not-completely-inaccurate version of the problem, imagine a simple system which
can swing a lead plate into position in front of the beam, and also activate the beam on
high or on low. The operator selects low mode and no shield plate and your software
begins to set up. The operator realises they selected the wrong mode, and changes
inputs. The software switches the beam mode, but fails to note that the plate position
was also edited. Nothing checks the settings are all consistent. The beam activates on
high, with no shield in place. Hardware interlocks activate after a small delay and the
system shuts off, but the machine readout calculates dose based on the settings it now
has stored and reports insufficient dosage, allowing the operator to press a single key
to fire the beam again...

Testing is incredibly powerful, and can catch all sorts of bugs. There are many
well developed strategies and theories of how best to do it. Some form of testing is
essential in your software. But there is also a golden rule you may not see written
down often: running tests tells you that the tests pass, not that the code is
correct. You must work hard to make this the case, not suppose it. with
immediate corollary

2.8.2 Testing Terminology

Formal testing of code has a lot of associated jargon. In this section we give some brief
summaries of the phrases you're likely to encounter. As usual, this is neither exhaustive
nor comprehensive.

Unit Testing

Unit testing is testing each building block of your code in isolation, for example each
function. You provide inputs and check the outputs. You may focus on testing the
domain of functions, i.e. that they behave properly for all parameters, or you may
focus on testing their correctness for common parameters, or accuracy across a range.
Formally you should provide “mock” versions of all inputs, but in practice there are
likely to be certain inputs you want to focus on.

20http://courses.cs.vt.edu/professionalism/Therac_25/Therac_4.html quoting Miller (1987)

2.8. TESTING PRINCIPLES 45

10,000 T v r—r—r——TT

1,000 |

flx)

O error

0100

b 0.010

0.001 L I
0.01 0.10

Figure 2.3: A simple integral using the trapezium rule, and the rough scaling of the
error with the step size for z; = 0.5, 25 = 1.0

Continuous Integration

Continuous Integration in its pure form means merging work from multiple developers
regularly, running automatic code building and testing steps, and rejecting code that
fails. For large projects with many developers, this ensures that people do not make
incompatible changes, and that there is always a working latest version of the code
ready to go. For our purposes we're interested only in the automatic-build-and-test
element.

Regression Testing

Regression testing is perhaps the easiest sort of test to implement in scientific code. At
the basic level you create a few test cases with known answers, either analytically or
based on a first working version of your code. Each time you make significant changes,
you run the code on these problems and compare the final answers. If the answers differ
by too much then the test fails. Note that too much depends on circumstances. For
example, consider a simple integral like this:

T2
/ ridr ~ Z 0.5(22 + 22,,)Ax

as illustrated in Fig 2.3. We know the analytic solution, so we can work out the
percentage error for different step sizes on the interval [0.5,1.0]. You may recall from
numerical analysis courses that the error scales as (Az)?. Now suppose your code per-
forms an integral like this. Changes to Ax will change the exact solution you find, but
there will be some range of acceptable answers. Be careful when setting error in-
tervals: absolute values are useful for things like floating point errors, but in
most we probably want to use an error percentage otherwise we have much more
stringent constraints on the function 1022 than we do 0.122Unless your requirement

46 CHAPTER 2. PRINCIPLES OF TESTING AND DEBUGGING

Purpose Tolerance””

64 bit machine precision””’ 2752~ 222 x 10716
32 bit machine precision 2723 ~1.19 x 10797
Exact calculation equality (64 bit)*! 10712

Variant calculation equality (64 bit)* 10710
Numerical calculation equality (64 bit)*® | 107¢ to 1078
Approximation equality ** 1073 to 107°

Table 2.1: Typical tolerances for numeric results. The most important rule is to allow
tolerances at least 10x smaller than the effect size you are seeking.

is bit-wise exact reproducibility, (page 46) do not compare floats for exact
equality in your tests. There are circumstances where code like the following can
print FALSE even though all the numbers are exact”!

REAL a = 10.0, b= 5.0, ¢ = 2.0
PRINT bxc =— a

This can cause trouble if you change to another compiler or machine which behaves
subtly differently.

Bitwise Exact Reproducibility

Sometimes, usually for mission-critical code, there is a requirement that changes not
only do not change the answer a meaningful amount, but not not change it at all. L.e.
the answer is the same in every bit, for every quantity, for all time. This is a very very
stringent requirement. It usually means you must specify the compiler in use, down to
an exact version, specify which optimisations it is allowed to make, even perhaps specify
the processor you run on. Even reordering calculations can break bit-wise exactness.
Avoid bit-wise exactness testing where ever possible. In most cases it is
excessive. This means no exact comparisons of floats.

Test Coverage

Test coverage, or code coverage, is the fraction of code which is included in tests. Ideally
all of your code would be tested, but in practise there are often rare combinations
of errors that you never expect will occur, and some functions which are difficult or
unproductive to test. Note that coverage refers to code, not inputs. 100% coverage

21This is quite rare, but can happen when one side of the expression is stored in “extended precision”,
currently usually 80 bits. The “extra” bits are irrelevant and will be truncated when the result is put
back into a normal 64 or 32 bit variable, but at the point of comparison they are not the same.

Z2These rules of thumb are the ones HR uses in general code.

23For numbers approximately 1, see machine epsilon

241 e. the same calculation performed with different code

251.e. slightly different analytical calculations

26T.e. a good to excellent numerical result

27I.e. two different approximate answers

2.9. TESTING FOR RESEARCH 47

doesn’t mean all possible inputs are considered: that might not even be possible. 100%
coverage still doesn’t guarantee correctness!

Performance Testing

Once your code works, and not before, you may want to consider profiling.
Many tools are available to help you find which parts of your code are dominating
its run time so you can improve performance. Usually they give you a graph of the
percentage of time spent in each function, often in the form of a tree.

2.8.3 Testing As you Develop

Test-driven development refers to a method where you first write tests for a function,
and then create the function. Once it satisfies the tests, it is complete. This has several
advantages, including that you write the tests without knowing how the function works
so are less likely to accidentally write a test that avoids its pathologies.

2.9 Testing for Research

If you don’t know where you are going, you might wind up someplace
else. - multiple attributions, probably inspired by Lewis Carroll

Man must shape his tools lest they shape him. - Arthur Miller

It is easy to get sidetracked by testing. There is a wealth of theory, dozens of libraries
and frameworks, pretty dashboards and endless statistics. You can devote hours to
getting code-coverage up, unit testing every function and building a comprehensive CI
workflow. This is a mistake. Testing is a tool, not a goal in itself. Your goal
is writing correct software to do research. You may at some point realise that
we are going slightly against the tide here, and not stressing the vitalness of testing as
much as many people do. This is true. We think it is most important that your code
works, and we are not terribly concerned with how you strive to attain this.

But, testing is an incredibly useful tool for verifying your code against targets such
as

1. Correctness
2. Reliability
3. Well-specified domains

4. Reasonable performance

There is nothing as demoralising to a researcher as examining your results and realising
that the terribly interesting discovery you thought you had found was an error. This
gets even worse if the result is already published. Equally, it is awful to spend hours
writing code only to run it and realise it will take weeks to get a result, or to wait days
for a job to schedule on a computing cluster only to have it abort with an error.

48 CHAPTER 2. PRINCIPLES OF TESTING AND DEBUGGING

2.9.1 A Basic Testing Strategy

In our opinion, the optimal approach to testing for research codes is a mix of all the
useful elements from various strategies, from the smallest elements of your code to the
largest. Roughly then:

1. Unit test the basic functions of your code where practical. For example, test your
numerical solvers in isolation. Test your data structures.

Errors deep in your code are the hardest to find, so aim to be confident in the
building-blocks before testing further up.

2. Test the domains of all your basic function too. Make sure you get a reasonable
response if you provide bad input, noting that there may not be much you can
do except fail. At least try to provide an error a user can understand.

3. Test larger chunks of code in the same way.

4. Run any available analytical test problems and check for a reasonable answer.

Try to cover all of the basic functionality for a few likely parameters.

5. Test for regressions as you modify your code. Make sure your answers are not
changing unduly.

In particular it is a good idea to keep test problems around that previously
broke the code or gave wrong answers.

6. Test on each new target problem against previous published results.

For real questions there is probably no test problem of use, so you’ll have
to check against other people’s work. Look for general agreement and remember
that you are unlikely to reproduce their answers exactly unless you are using the
same code and inputs.

As an example, consider the classic introductory programming task of writing a
simple scientific calculator from scratch. Suppose we want to type in simple expres-
sions, including basic mathematical functions and get an answer. Assume that we're
not allowed to use functions like sin directly, and instead have to calculate the series
expansions. Our final testing remit using this strategy may look something like the
following. Note the overlaps between tasks and code areas.

e Unit tests, analytical results. We test our maths functions in isolation, making
sure we get the right answers for classic known values, such as sinm or exp 1.

e Domain testing. At the same time we check that invalid inputs gives us back a
sensible error rather than crashing the program.

e Unit tests. We want to be sure we're taking user input correctly and printing
it out correctly too. If we misread input expressions we’ll never give the right
answers.

2.9. TESTING FOR RESEARCH 49

e Chunk testing, analytical results. While we could write unit tests for all the bits
in our expression parsing code, we might decide to simply test the final result
against known correct results.

e Analytical results. Once we’ve got mostly working code, we try using the program
on simple test problems, like the sin m example, but now using the user-interface
and parsing code.

e Regression testing. We keep some example inputs around, along with their out-
puts. We also keep some inputs that caused errors previously to check we don’t
reintroduce those bugs.

e Real-world results. We might wonder if our calculator can calculate an expression
like exp(sin) for which we don’t know the answer, and have to turn to another
calculator for confirmation.

2.9.2 Convergence Testing and Uncertainty Quantification

For research code, in particular numerical calculations, testing does not finish when
you have released code. Convergence testing is not part of the traditional software
set, but is an absolutely vital process which is often overlooked. Consider back to the
integral example in Fig 2.3. How do we know when we have “enough” points to get a
good answer? We increase the number of points and at some point the answer stops
changing when rounded to the precision we want. At this point, we say the integral
has converged.

For the integral, we know exactly what the correct answer is, so we can say absolutely
when we are within a given accuracy. We also know absolutely that this integral does
converge. If you took any higher maths courses, you may have met the harmonic series
https://en.wikipedia.org/wiki/Harmonic_series_(mathematics),

n
Zl/n:1+1+1+...
- 2 3
Each term is smaller than the last, so the sum looks like it is converging, but it actually
grows without limit as n gets large. Thankfully this situation rarely arises in practice,
but you must be cautious with convergence if you do not know your algorithms are
stable and convergent.””

Exactly the same process can be carried out with global parameters of an entire
code, such as a grid spacing. Remember that any two points can be joined by
a straight line so you need at least 3 points for convergence, preferably more.
If your quantity of interest seems to be converging, as in Fig 2.4, you can estimate the
“true” value and your error.

28Further discussion is beyond the scope of these notes, but see any good text on numerical tech-
niques.

https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)

50 CHAPTER 2. PRINCIPLES OF TESTING AND DEBUGGING

Converging Steady Growth Diverging

Figure 2.4: Shapes of curves: converging, steady and diverging

Formal correctness of software can be handled by Uncertainty Quantification”’ tech-
niques. This involves rerunning calculations with multiple input values and using this
to work out statistically what the expected range of outputs is. For a practical exam-
ple, when you view weather forecasts predicted by model, it is likely the model was
run several times with varying parameters to give an estimate of the likelihood of each
outcome.

2.10 Responsibilities

Extraordinary claims require extraordinary evidence — Carl Sagan, re-
stating many others

As researchers, publishing a paper is effectively saying “these results are true and correct
to the best of my knowledge”. So if you publish using a code that you wrote, you need to
be reasonably confident that it is “correct”. How much testing that requires varies. In
particular if you're claiming some sort of wonderful new discovery, or presenting results
which might have real impact, you really must have a decent set of tests, and check
extensively against the current state-of-the-art results. For more ordinary results, you’d
test as thoroughly as you would some algebra or calculation, to avoid an embarrassing
correction or retraction.

If, or when, you start sharing your code with other researchers, the responsibilities
increase somewhat. You'll need to be quite sure your code can’t cause chaos (like the
clause in nearly every EULA about damage to computer or data, or penalties resulting
from incorrect use of software). You also want to be as sure as feasible that the answers
are correct. And finally, you now need to consider the possibility of somebody using
your code “wrongly”. We’ve noted before that limitations and assumptions ought to
be clearly stated, and this is part of why. You’ll definitely need some sort of user
documentation at this point, covering all of this. You don’t want to stumble across a
paper and realise its wrong because your algorithm doesn’t work in that regime.

Since you have (right?) got a set of tests that validate your code, you can also
consider releasing those along with the code as a test-suite. Anybody who has your

2Gee e.g. https://en.wikipedia.org/wiki/Uncertainty_quantification and links therein

https://en.wikipedia.org/wiki/Uncertainty_quantification

Glossary - 'Testing and Debugging 51

code can then run these to confirm there’s nothing odd about their setup. Chapter 3
talks a little about testing frameworks which can help you here. The set you release
probably isn’t the entire set though, as you can set aside those which you only need
during development. End-to-end and regression tests are probably the most useful here.

Finally, any published result should be reproducible. This means capturing the
state of the code, it’s inputs, and any other essential information for every paper. For
the first item, version-control systems are ideal, and are discussed in Chapter 4. For
the others, see the section on Input and Output in Chapter 1.

To summarise:

e Do “enough” testing, and release useful tests with code
e Document carefully and thoroughly, especially limitations

e Preserve your code to make results reproducible

Glossary - Testing and Debugging

code path Aka control flow path. The path taken through your source code when
your program runs. For example, each “if” statement causes a branch into two
paths, true and false. The complexity grows exponentially: a second if following
the first gives up to 4 paths and a 3rd gives up to 8. The use of “up-to” is
because in general many paths will be indistinguishable because the branches are
independent. Ideally all code paths should be tested. 19

correct A program that uses all language features that it uses correctly. It does not
necessarily give the answer that you expect. 27

floating point numbers Decimals, where the position of the decimal point is allowed
to vary. This gives them the same relative precision over a very large range of
values. Scientific notation is technically a floating point notation: although you
always write a fixed number of decimals, the scaling factor 10* means the absolute
accuracy changes. 28

garbage collector When variables go out of scope the memory they occupy should
be made available for reuse. In languages that allow references or pointers to
variables, there is a problem with this, as you only want this to happen after the
last reference to a given item is lost. This is done by the “garbage collector” in
languages which have one. Usually, this runs every so often, or when available
memory is getting tight, and cleans up all the now dead values. Note that lan-
guages like C don’t have this, you must free memory when the last pointer or
reference goes. In Fortran you must manually clean up Pointers, but Allocatables
are automatically deallocated (since F95) and cleaned up like regular variables.
34, 58

52 Glossary - Testing and Debugging

invariant A condition which is always fulfilled. For example, within any for loop (FOR
i =0, 10) you know that i is between 0 and 10. Often it is very useful to know
that a number is positive, non-zero etc as this allows you use code that relies
on this (e.g. if you're passing the number to a sqrt function, or dividing by it
respectively).

machine epsilon Floating point numbers are stored in the exponential format a x 2°.
With a limited number of bits, there is a finite step from one number to the next
that can be represented. For example, in base-10 with a 5 digit significand (a) we
have 1.0000 x 10° and the next number we can show is 1.0001 x 10°. For b = 0 the
difference between these is 0.0001. For b = 4 the difference is 1. This step-size
is called the machine epsilon, and is usually quoted for numbers close to 1. For
very large numbers, the step size can be much greater than 1. This is one reason
why you should not using floating-point numbers for large integers. 28, 46

minimum working example A small program that demonstrates something with as
little extra code as possible. They are very useful when trying out a new library
or code, or when reporting a problem or bug. If somebody is trying to help, they
wont appreciate wading through reams of code to find the problem, so producing
a small program that demonstrates your issue is very useful. 10

no-op Code that does nothing. Stands for no-operation, and can exist for many
reasons. Can include incomplete statements, like a; in C or conditionals like
if (false). 55, 104

overflow A numerical error caused by exceeding the largest number (positive or neg-
ative) a type can store. 30

precondition and postcondition Guarantees about the inputs (precondition) or the
outputs (postcondition) of a function. E.g. for a sqrt function, you may have to
be sure that the input is positive, and the function may promise to return only
the positive branch (1/(9) is plus OR minus 3).

regression Going backwards in code fitness, e.g. reintroducing a bug which was al-
ready fixed, making answer quality worse, breaking a working feature etc. 45

segmentation (seg) fault A severe error in code causing it to attempt to read or

write invalid memory. 33, 55

syntax error An error in the sequence of characters in a piece of code. For example,
a misspelled name, or a missing bracket, making the piece invalid and unreadable
to the computer.

underflow A numerical error caused by attempting to store a number that is too small,
often causing it to be rounded to 0. 30

Glossary - 'Testing and Debugging 53

unreachable code Code that never runs. This can be a function that is never called,
or a condition that is always true or false, so its body is unreachable. 55, 104

Chapter 3

Tools for Testing and Debugging

Sec 2.2 went through the many types of bugs, with examples and their typical symp-
toms. Sec 2.6 discussed a basic strategy for debugging using print statements, while
Sec 2.8 discussed basic testing strategies. In this Chapter, we focus on some tools to
make debugging, profiling and testing quicker, easier, and more reliable.

3.1 ProtoTools

3.1.1 Your Brain

Several of the sorts of bug in the Catalogue in Chapter 2 will not be caught by any
tool because they are logical errors. Testing goes some way towards catching these, but
can’t generally catch everything. The most vital debugging and testing tool is
your own brain.

In particular, these tools will only give you information about errors. In simple
cases this may be enough to find them for you, but not always. Sometimes you get an
enormous cascade of errors, just like you do when you forgot to close a bracket early
in your program. Always start at the first error! Often the rest are the same
error popping up later on.

3.1.2 Your Compiler

The next debugging tool you should consider is the compiler (or interpreter) itself. Most
offer a host of options for warning you about potential bugs, and flagging up things
which may be ambiguous, erroneous, or just redundant. Note that not every warning
is accurate as just because something is commonly a mistake doesn’t mean it always
is. On the other hand, a lot of warnings makes it hard to see the relevant ones, so it is
often worth fixing them anyway:.

o4

3.2. SYMBOLIC DEBUGGERS 95

Optimisation

Compilers have all sorts of competing demands to consider. Sometimes the main con-
sideration is the time taken for the compilation step. Sometimes it is the size of the
resulting program' or its speed. Early compilers were comparatively simple, transform-
ing source into executable with some minor adjustments. Computer time was expensive
enough that complex compilation was not worth it.

Modern compilers are incredibly complex systems, because they strive to simplify
and optimise their output. Since this takes time, most give the option to set the level
of optimisation to use. For instance, the default is usually level 0, which makes only
minimal changes. Higher levels, commonly 1-3 can do things like inlining functions,
move parts of calculation out of a loop, or remove loops entirely, replacing them with
copies of the relevant code (loop unrolling).

There is one universal:

unreachable code Nno-ops
2 Tt is not absolutely the case that compiler optimisations can’t change the
behaviour of your code, but it is unusual. More commonly you have invoked undefined
behaviour and so there is no rule.

Usually you will want to debug at optimisation level 0, which does very little,
but sooner or later you will encounter a bug which disappears when you do. This
makes it particularly likely that you have forgotten to initialise something, or are doing
something ambiguous. This is another reason to avoid undefined behaviour rigorously,
because the bug often goes away when you run the debugger. Note that some compilers,
such as Cray, turn off all optimisation in debug mode, which makes finding this sort of
thing very tricky.

3.1.3 Program Output

If your bug occurs during an actual code run, which can happen even with good solid
testing and development, your only source of diagnostics may be the program output
itself, and whatever your computer or scheduling system gives you. Sometimes this
can give you a lot of information, so don’t ignore it. Also consider judiciously flushing
output to disk. This will reduce performance a little, but used carefully is very useful.

3.2 Symbolic Debuggers

The symbolic debugger runs your code, but allows you to pause and interact with
things as it goes. It lets you link the names you gave to variables to their internal
representation, and it lets you add breakpoints into the source where it should stop and
wait for input.

A lot of what you do with a debugger like this is the same as you would with print
statements, with one major advantage for a particular class of errors, segmentation (seg)

!For example, programs to run on micro-controllers are very size constrained
2For example, tail-recursion, or C++ return-value optimisation

56 CHAPTER 3. TOOLS FOR TESTING AND DEBUGGING

faults. In these cases, the debugger is an easy way to get a backtrace. The debugger
also doesn’t require you to recompile your code for each new “print”, which can be a
major advantage. Finally, in complicated cases the debugger lets you print details of
memory, and where variables are stored, which can be useful. You can also set variable
values to test bug fixes inside the debugger.

3.2.1 GDB for Compiled Code

For compiled codes, the commonly available debugger on Linux-like systems is called
gdb. Basic usage is simple: you compile your code, but use the -g flag to include debug
symbols, and usually turn off optimisation. Then, rather than running your code, you
run it inside gdb, using gdb {my_code} That starts gdb and leaves you at the gdb
prompt, (gdb) If you now type run your code will run’, and you will either see it stop
and print a backtrace telling you where things went wrong, or you will see a message like
[Inferior 1 (process 35607) exited normally] Note that most GDB commands
have a long form and also a short form (usually the first letter). You can use either or

both.

Print-like Debugging

You can use the debugger just like you used print statements earlier on. Have a copy of
your source code handy, and compile without optimisation (otherwise the line numbers
may not match the code) and with debug symbols. Start the debugger.

Work out where you want to see variable values. Set breakpoints on each line you
identify, using b {linenum} (short form) or break {linenum} (long) Now run the code.
It will continue to the first breakpoint and then stop, printing the line to be executed
next. You can now print variables by name using print or p and the variable name.
Alternately you can show all local variables with the command info locals. Continue
to the next breakpoint with continue. When the program reaches its end, you can
start again by using run. In simple cases, this may be all you need to find a problem.

In more complicated cases, like code that loops, or a fault only for some input values,
you can use conditional breakpoints. These can contain (almost) any valid expression
using named variables from your code. For example, you can check for a function
argument being > 0 with a line like

1| (gdb) break {linenum} if {argname} > 0

You can also set breakpoints to fire on entry to a function by name rather than line-
number, such as

1| (gdb) break {my_function} if {condition}

You can remove breakpoints with clear and the linenumber or function name you
used to set them. Alternately, each breakpoint is numbered, so you see output like

30n some systems, including OSX, you may be asked for your password to allow gdb to “attach” to
a process. This is because you can attach gdb to running processes and use it to inspect their memory,
so it does need some privileges.

3.2. SYMBOLIC DEBUGGERS o7

Breakpoint 1, main (argc=1, argv=0x7{ff5fbff8c0) at file.c:17

The

delete {breakpoint_num} I

command lets you delete by number, which is useful if you have two on one line, for
example. Finally, you exit the debugger with quit. If the program is still running, you
may be prompted whether you really want to exit.

-

Frames and Traces

Each time your program calls a function, a new “stack-frame” is created in the call
stack® which contains information on the function, its parameters and in particular
where the computer should go to when the function ends. In the debugger you can
view the backtrace showing each level of the call stack. For example

(gdb) backtrace
2|#0 push_particles () at src/particles.F90:135

3|#1 0x00000001000al9be in pic () at src/epoch2d.F90:190

4|#2 0x00000001000alcaa in main (arge=1, argv=0x7{ff5fbffb18) at src/
epoch2d .F90:35

Level 0 is our current level, and in this case we are 2 function calls down from “main”
in a function called “push_particles”. Note that this shows the line-numbers for each
call.

In the debugger we can step back up the frames to see how we got here. For example
we may want to examine some variables in the calling function to work out how we
got a NaN, or a negative value. This uses the frame {frame num} command or the
up {increment} command which moves us increment levels up. down moves us back
down (towards 0).

Note that if a function was inlined, no stack frame is created, and the function isn’t
shown in the backtrace. This is one more reason to debug at optimisation OO.

A Typical Session
A typical debugging session might look like this:

1|>>gdb . /egl

2| (gdb) run

3| Program received signal SIGSEGV, Segmentation fault.
4|15 printf("%d\n”, xptr);

5| (gdb) break 15

6| (gdb) run

7| The program being debugged has been started already.
s Start it from the beginning? (y or n) y

4A stack is a particular data structure which is “Last In First Out” so elements are taken off in
reverse of the order they were put on, like a stack of real objects. Compare a “queue” which, like a
real queue is FIFO: the first person to queue up is the first to be served.

10
11
12

58 CHAPTER 3. TOOLS FOR TESTING AND DEBUGGING

Breakpoint 1, main (argc=1, argv=0x7{ff5fbff8c0) at egl.c:15
15 printf(”%d\n”, *ptr);

(gdb) print ptr

$1 = (int *) Oxfffff

This value is clearly bad. We might be lucky and the value was set in only one place so
we know the error already. If we're less lucky we’ll now have to try and trace the error.

Advanced: Attaching to a Running Process

If you work with parallel codes or on a system with a queueing system you may need
to be able to “attach” GDB or similar tools to a process that is already running. This
is not difficult, but can be fiddly. First, you need to get the process-id or PID (using
top, ps or similar). Then you “attach” to this using either gdb -p PID or gdb attach
PID (see e.g. ftp://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_22.html).
Note that GDB needs to be able to find the program executable to work. Then you
debug as normal.

3.2.2 PDB for Python

For Python code you can use the standard library debugger which is designed to mimic
tools like GDB. Here you invoke debugger and program from inside Python. Break-
points, printing, stack frames etc are all the same as above. Obviously you don’t need
to worry about segfaults and such, but you will need to think about exceptions.

3.3 Memory Checking - Valgrind

For languages without a garbage collector you will sometimes need to check for, find or

diagnose memory problems.” Several tools exist to help with this. Here we’re going to
discuss valgrind."

Valgrind has several “tools” but the default is memcheck. This runs your program,
but not in the normal way. Instead it runs “inside” valgrind which provides its own
memory handling libraries and replaces the normal ones with these. It can then track
memory allocation, access and deallocation. This does mean programs may run slowly,
in some cases quite slowly, and require more memory than normal.”

5Tn languages with a garbage collector the problems are not gone but are different

Shttp://valgrind.org/docs/manual/manual . html

"From the previous link: “Your program will run much slower (eg. 20 to 30 times) than normal,
and use a lot more memory.”

ftp://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_22.html
http://valgrind.org/docs/manual/manual.html

Nl = S

e S R
N O s W N = O

3.3. MEMORY CHECKING - VALGRIND 29

3.3.1 Basic Running

The valgrind QuickStart guide® gives the basic steps to running your program. Compile
as usual, but include the -g flag and stick to lower optimisation levels’ (O0 or O1). Run
the program using valgrind --leak-check=yes {program name}. Fix the errors. Fix
earlier errors first. Often later errors are a direct result of earlier ones, so
it pays to consider them in order.

3.3.2 Reading the Final Report

Valgrind always gives a report at the end of the program, and often gives errors and
warnings along the way. Typically the final report on a slightly buggy program looks
like (the ==PID== text starting each line is omitted for clarity as is valgrind’s advice):

HEAP SUMMARY:
in use at exit: 39,377 bytes in 425 blocks
total heap usage: 521 allocs, 96 frees, 46,257 bytes allocated
200 bytes in 5 blocks are definitely lost in loss record 51 of 80
at 0x10000859B: malloc (...)
by 0x100000E3B: fill_array (x#*x%x.c:33)
by 0x100000DEC: main (*#*x*.c:23)
LEAK SUMMARY:

definitely lost: 200 bytes in 5 blocks
indirectly lost: O bytes in 0 blocks
possibly lost: O bytes in 0 blocks
still reachable: 4,244 bytes in 4 blocks
suppressed: 35,081 bytes in 419 blocks

ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 15 from 15)

The heap is where any dynamically created variables are kept, that can be allocated
and freed as your program runs. The first part, lines 1-3 summarises everything this
program did with this memory. Next is a report of lost memory, that where a pointer
or reference to it no longer exists. This is C code using malloc (see line 6) in which I
created an array of length 10 (4 bytes per integer, 40 bytes total) 5 times and then lost
the pointers. Line 5 tells me this; lines 6-8 tell me (roughly) where it happened.

Lines 10-15 are a report of all possible memory leaks. First, the definitely lost
memory, to which we no longer have any pointer. “Indirectly lost” and “possibly lost”
are likely to go away once you fix all “definitely lost” memory, so focus on that first.
For details see http://valgrind.org/docs/manual/faq.html#faq.deflost. “Still
reachable” is all memory in use when your program ends; the program still has references
to it, so it could be explicitly freed, but wasn’t. It’s generally good practise to clean

8http://valgrind.org/docs/manual/QuickStart.html
9You don’t need the program to crash to diagnose it, and optimisation can cause reported line
numbers to be wrong. Also, high optimisation can lead to false positive results.

http://valgrind.org/docs/manual/faq.html#faq.deflost
http://valgrind.org/docs/manual/QuickStart.html

60 CHAPTER 3. TOOLS FOR TESTING AND DEBUGGING

up: everything is freed when your program finishes, but one day you may make changes
that turn these into actual leaks. “Suppressed” leaks are described in Sec 3.3.4.

Finally we have the summary of how many errors. Here we have 1 errors from 1
contexts. Contexts is roughly the number of different errors (type, code location etc)
and the number is the total occurrences.

3.3.3 Reading Error Messages

The commonest valgrind messages, and what they mean, are summarised here. NOTE:
valgrind only reports errors when a value is used. This is deliberate, to reduce false posi-
tives, but can make some errors tricky to track down. Note there is a track-origins=yes
which attempts to show you where the problem was created.

An uninitialised value was used

Use of uninitialised value of size 8

by 0x1001D3827: printf (...)
by 0x100000D97: main (*%x*.c:31)

=W N =

Since we misused this value in a “print” we also get (in C code at least)

-

Syscall param write(count) contains uninitialised byte(s)
Syscall param write(buf) points to uninitialised byte(s)

M

which tells us the call to the system printing library has a bad count and a bad buffer.
This isn’t inside our code, but is due to it. In general, you can get a lot of opaque errors
if you send uninitialised values into libraries, especially ones like print, so it can be a
good idea to alter the code to do something (remember if you're not using the value
nothing will be reported) less complex. In this case, the print gives us 715 errors
from 84 contexts as opposed to 8 errors from 2 contexts with a simpler use.

An if statement, case/switch statement etc depends on something uninitialised

1| Conditional jump or move depends on uninitialised value(s)
at 0x100000DC1: main (**%.c:34)

Writing beyond the bounds of an array

Invalid write of size 4
at 0x100000E2C: main (**%.c:18)
Address 0x1007ffa68 is 0 bytes after a block of size 40 alloc ’d

at 0x10000859B: malloc (....)
by 0x100000DF3: main (*%x*.c:14)

G W N

Here we wrote an integer (4 bytes) to the wrong memory. The second part tells us
where: 0 bytes past the end of a block of size 40 bytes we have allocated. I.e. we have

Gl W N =

=W N =

3.4. PROFILING AND PROFILING TOOLS 61

an array of size 10, and we tried to write to the 11th element.

Reading from memory we’ve already freed

Invalid read of size 4
at 0x100000ECO: main (#*%.c:27)
Address 0x1007ffa54 is 20 bytes inside a block of size 40 free’d

at 0x1000089DF: free (...)
by 0x100000E62: main (*%%.c:22)

Here we read from our array after we had called free (DEALLOCATE in Fortran). The
second message tells us this was element 5 (5 * 4 bytes = 20 bytes) of our 10 element
array.

Finally there’s the one we saw above which tells us that we lost memory

200 bytes in 5 blocks are definitely lost in loss record 51 of 80
at 0x10000859B: malloc (...)

by 0x100000E3B: fill_array (x%x.c:33)

by 0x100000DEC: main (*%x*.c:23)

3.3.4 Suppressions

Valgrind, particularly on OSX or when using system libraries or libraries like MPI
can find a lot of false positive errors. String buffers and padding are a common
source of these. Valgrind comes with a default set of errors it should suppress because
they’re not caused by your code, and can’t be fixed. You can read more about these
at http://valgrind.org/docs/manual/manual-core.html#manual-core.suppress.
You can safely ignore the line about suppressed errors in the output. You may some-
times want to hunt for or create a suitable suppression file for a library you’re using to
separate your important errors from the others.

3.4 Profiling and Profiling Tools

Programmers waste enormous amounts of time thinking about, or wor-
rying about, the speed of noncritical parts of their programs, and these at-
tempts at efficiency actually have a strong negative impact when debugging
and maintenance are considered. We should forget about small efficiencies,
say about 97% of the time: premature optimization is the root of all
evil. Yet we should not pass up our opportunities in that critical 3%. A
good programmer will not be lulled into complacency by such reasoning, he
will be wise to look carefully at the critical code; but only after that code
has been identified. — Donald Knuth

When your code works, and not before, you can consider optimising.
Before doing this, you need to know which parts are slow. Often a piece of

http://valgrind.org/docs/manual/manual-core.html#manual-core.suppress

Ut e W N =

62 CHAPTER 3. TOOLS FOR TESTING AND DEBUGGING

code will have only a few bottlenecks, or rate-determining steps, where it spends the
majority of calculation time. The quote above is worth reading carefully, as it tells
us both critical points. Also keep in mind the 80-20 rule: you often get 80% of the
result from 20% of the work, but it will take a lot longer to get the final 20% benefit.
Often this is not worth it. Finally though, make sure to distinguish good design
from premature optimisation: don’t choose approaches that wont ever be
fast enough to be useful.

3.4.1 Callgrind

Valgrind also provides a basic profiling tool, called callgrind. This tells you how many
times each function in your program was called, but note it doesn’t tell you about time
spent. Example output from a simple test program'’ is something like:

214,195,714 Prof_eg.c:solve_array [./prof]

110,000,000 Prof_eg.c:add_to_element [./prof]
6,568,122 Prof_eg.c:divide_element [./prof]

325,691 ??7:__vfprintf [/usr/lib/system/libsystem_c.dylib]

281,049 Prof_eg.c:fill_array [./prof]

210,000 ???:rand [/usr/lib/system/libsystem_c.dylib]

This program creates and fills an array with random numbers, then calls a function
called solve_array. This does a lot of add calls and a smaller number of divide calls.
It also does some printing.

In this case there is nothing pathological in our code, although it strongly implies
any optimisation effort would start with add_to_element as this is called by far the
most. However that doesn’t always mean it will take longest.

Using callgrind is quite simple. Once again, compile with -g and no optimisation
and then run the program with valgrind --tool=callgrind ./{program name} This
creates a file called callgrind.out.{pid} The pid will be printed when valgrind finishes
running, so make a note of it. Now, you run callgrind annotate {filename} on the
generated file to get output like above.

You can also have callgrind show you which function called which using --tree=caller
to get more information. Full details are at http://valgrind.org/docs/manual/cl-
manual.html#cl-manual.callgrind_annotate-options

3.4.2 System Tools

While call numbers can be useful, often you want to know the actual runtime used
by each function. NOTE: You also probably want the timings in ‘“release” mode, i.e.
whatever optimisation level you run at

On Linux systems, the gcc toolchain provides a profiler called gprof which can
do this. Compile your program with gcc -pg, run as normal, and then call gprof
{program name} We get two useful outputs, first the “flat profile” showing the total
time in each function:

0DebugTools/C/Prof_eg.c and see (.3 about obtaining the example code

http://valgrind.org/docs/manual/cl-manual.html#cl-manual.callgrind_annotate-options
http://valgrind.org/docs/manual/cl-manual.html#cl-manual.callgrind_annotate-options

© N O s W N

© 0 N 3 oA W N

T e e S S S
o © 0 N 3 ks W N o= O

N

3.4. PROFILING AND PROFILING TOOLS 63

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total

time seconds seconds calls us/call wus/call name

67.87 3.28 3.28 10000 327.82 485.70 solve_array
29.04 4.68 1.40 1000000000 0.00 0.00 add_-to_element
3.64 4.86 0.18 58908370 0.00 0.00 divide_element
0.00 4.86 0.00 1 0.00 0.00 fill_array

and second the call graph

index % time self children called name
3.28 1.58 10000/10000 main [2]
[1] 100.0 3.28 1.58 10000 solve_array [1]
1.40 0.00 1000000000/1000000000 add_to_element [3]
0.18 0.00 58908370/58908370 divide_element [4]
<spontaneous>
[2] 100.0 0.00 4.86 main [2]
3.28 1.58 10000/10000 solve_array [1]
0.00 0.00 1/1 fill_array [5]
1.40 0.00 1000000000/1000000000 solve_array [1]
(3] 28.9 1.40 0.00 1000000000 add_to_element [3]
0.18 0.00 58908370/58908370 solve_array [1]
[4] 3.6 0.18 0.00 58908370 divide_element [4]
0.00 0.00 1/1 main [2]
(5] 0.0 0.00 0.00 1 fill _array [5]

Comparing index 3 and 4 in this, we see that our addition is called here 1000000000
times for a total of 1.4 s (~ 1.4 ns per call) while our division is called only 58908370
times for a total of 0.18 s (~ 3.1 ns per call). Note this is without optimisation: in
this simple program optimisation implies inlining our add and divide functions for a
roughly 50% speedup without us doing anything more.

On OSX the easiest option is often to use Activity Monitor, or rather the OSX
sampler. Have your program run in a loop so that you have time to catch it.
Either open Activity Monitor, find your process by name, click the Gear icon 3rd across
in the top left of the window, click “Sample Process” and wait.
Or type sample {process name} and wait.
Example output on the same code as above (hex sample ids omitted):

Call graph:
2212 Thread_3743037 DispatchQueue_1: com.apple.main—thread (serial
)
2212 start (in libdyld.dylib) + 1 [0x7fff8c3b25c9]
2192 main (in prof)
+ 1504 solve_array (in prof)

64 CHAPTER 3. TOOLS FOR TESTING AND DEBUGGING

+ 561 solve_array (in prof)
+ ! 561 add_to_element (in prof)
+ 127 solve_array (in prof)
+ 127 divide_element (in prof)
20 main (in prof)

18 printf (in libsystem_c.dylib)
' 17 viprintf_.1 (in libsystem_c.dylib)
(more printf system calls here)

Times are in ms. Here we see that add_to_element takes 0.561 s whereas divide_element
takes 0.127 s Since we know the former is called a lot more often than the latter, we
can see that divide is far more costly, so perhaps we have more to gain by improving
that.

3.4.3 Overheads

The other major consideration to keep in mind for optimisation is the overheads of
various elements of a program. Here we limit to just a few items in cursory form.

Function Calls

As the example above showed quite dramatically, function inlining can give significant
speedups. Sometimes however, especially in interpreted languages, this can’t be done,
and you can’t force the computer to do it. Usually the speed cost is irrelevant, but if
you divide your program into very many functions, it might start to cost you. Once
again, when the program works and not before, consider inlining the worst functions
yourself.

Branches and Misses

Particularly in compiled languages, the computer can try to predict what the program
will do, and “get ready”!' to do it. This can speed things up, but when the guess is
wrong the benefit is lost. You can try various tools to see the misprediction rates, such
as the valgrind cachegrind tool (with --branchsim=yes) or the Linux perf tool. In
general however, avoid branches inside your critical loops where possible.

Disk, RAM and Cache

Reading and writing to disk is also a lot slower than reading from memory, and as well as
RAM, computers have several levels of fast memory cache. You can read about Caching
at e.g. https://en.wikipedia.org/wiki/Cache_(computing). For our purposes we
just want to note that files are buffered, stored in memory until enough writes have
occurred to be worth flushing to disk, so you may notice odd jumps in run time with
problem size, and similar issues.

UE g https://en.wikipedia.org/wiki/Branch_predictor for more details

https://en.wikipedia.org/wiki/Cache_(computing)
https://en.wikipedia.org/wiki/Branch_predictor

3.5. TESTING FRAMEWORKS 65

Useful Numbers

Some numbers to keep in mind, and a fascinating history of them since 1990 are available
at https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html

3.5 Testing Frameworks

Testing frameworks are libraries to help you write tests for your code, giving some
degree of automation to the process. Many are written entirely in the target language,
some are external; regardless, your tests must be written in the target language.

3.5.1 Why Frameworks

While you don’t need to use a framework, it can save you time and effort, and in
particular means no extra code that you yourself have to be responsible for developing
and testing. In most cases you’ll be using “data-driven” sorts of testing: you have a
calculation to run, and a known answer, and you wish to confirm that they match.
Many frameworks have built-in support for comparing floating point numbers (recall
Sec2.8.2) Another advantage of a proper framework is that you can often reuse tests you
write on different programs, rather than baking them directly into the source. Finally,
frameworks deal with the nitty-gritty of reporting results cleanly and usefully, including
information about the source code (linenumbers where errors occurred etc).

3.5.2 Which to Choose

There are a plethora of options available in most languages, and a handful in Fortran
(see e.g. https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks). It
is not really practical to go through one in detail here, since they are so different.
Instead, we recommend a few options and suggest you look for online tutorials on
whichever you choose.

3.5.3 Fortran

In Fortran, the best option is the Nasa created PFUnit. Originally created in 2005, this
is still seeing some development. See:

https://en.wikipedia.org/wiki/PFUnit

Docs and link to code: http://pfunit.sourceforge.net/

Tutorial: https://sea.ucar.edu/sites/default/files/pFUnitTutorial.pdf

3.54 C

In plain C there are several options, many listed in the wikipedia link above.

We suggest Check

https://people.eecs.berkeley.edu/~rcs/research/interactive_latency.html
https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
https://en.wikipedia.org/wiki/PFUnit
http://pfunit.sourceforge.net/
https://sea.ucar.edu/sites/default/files/pFUnitTutorial.pdf

66 CHAPTER 3. TOOLS FOR TESTING AND DEBUGGING

Docs and link to code: https://libcheck.github.io/check/
Tutorial: https://libcheck.github.io/check/doc/check_html/check_3.html

Alternatively you can use CppUnit (see C++ section) with plain C.

3.5.5 CH+

In C++ you'll want a framework that can understand classes and inheritance.

CppUnit is a good option and also works with C:
About: https://en.wikipedia.org/wiki/CppUnit
Docs and code: https://freedesktop.org/wiki/Software/cppunit/

Boost.Test might be useful if you're already using Boost
Docs: http://www.boost.org/doc/1libs/1_65_1/1ibs/test/doc/html/index.html

3.5.6 Python

Python has several frameworks built into it, including

PyUnit: https://wiki.python.org/moin/PyUnit

Nose: http://nose.readthedocs.io/en/latest/

Doctest: https://docs.python.org/2/library/doctest.html

3.5.7 How to Use Them

Once you've chosen your library, the best approach is to find a smallish piece of code
(yours, or something open source) and have a go. Ideally you'll want something with
a few functions, perhaps in more than one file. If you don’t have anything handy, you
can try resources like http://rosettacode.org/wiki/Rosetta_Code for snippets, or
pick something small from a site like Github that interests you.

Write tests for the functions, until you think you have covered the likely bugs. Then
make some changes to the results, or introduce some bugs, and make sure your tests
would have caught them. If they didn’t, write a test that does and try again. Make a
note of the bugs you missed for future reference, and aim to catch them next time.

Once you're familiar with the library, you can use it in your own code. It can be
daunting working out where to start if you have a lot of code to test, but in general:

e Start with at least one end-to-end test, for example a simple test case where you
know the answer. This helps you know if you ever break your core code

e Add tests to any new code you produce as you produce it. You are most likely to
spot the tricky bits when you write the code as that’s when you know best how
it works, so that’s the time to write the best tests

e Focus on “fragile” areas: those that have broken in the past, those are are a bit
tricky or the ones that are regularly modified

https://libcheck.github.io/check/
https://libcheck.github.io/check/doc/check_html/check_3.html
https://en.wikipedia.org/wiki/CppUnit
https://freedesktop.org/wiki/Software/cppunit/
http://www.boost.org/doc/libs/1_65_1/libs/test/doc/html/index.html
https://wiki.python.org/moin/PyUnit
http://nose.readthedocs.io/en/latest/
https://docs.python.org/2/library/doctest.html
http://rosettacode.org/wiki/Rosetta_Code

3.6. FULLY AUTOMATIC TESTING 67

e Aim for broad coverage at first rather than exhaustive testing of a few functions

e Keep tests simple. You can'’t test the test code, so try to make it obviously correct

Remember, you almost never have as much time to test things as you’d like, so focus
on the parts that are likely to break!

3.6 Fully Automatic Testing

If you are sharing code that people are using, you don’t want to give them something
that doesn’t work. For example, if somebody downloads your code from a git repository,
you want it to at least compile. Chapter 4 discusses workflows that keep a separate
“release” and “development” track of code, but that doesn’t solve the core problem:
once something hits the release track, how can you be sure it actually works.

The solution to this is what’s known as continuous integration.'” The origin is in
teams where it is useful to continually integrate work from multiple developers. For
our purposes, we're interested only in the automatic testing part of the idea. Here you
set up a system which will run tests every time you release code. This can be either
every time you push to your repository, or only when you make code ready for release.

Either way, you will need both some tests to run, and an automated runner. If you
are using a service like Github, there are various options for CI, detailed at https://
github.com/marketplace/category/continuous-integration. We suggest looking
into https://travis-ci.org/ which offers free running of public code on Github.

If you're using your own git server, you will have to set up a system yourself. In
particular, you will need something to provide test runners and to set up the system so
that if the tests fail, the deployment will not go ahead. Check the docs: your system
may have information on how to do it.

Glossary - Testing and Debugging 2

backtrace (Aka stacktrace) A readout of the call stack of your program. The call
stack, loosely, is the path from where you are in the code back up to the main
level. 39, 55, 56, 57

breakpoint A command to the debugger to stop and wait for your input (i.e. to
“break” execution). 55, 68

call graph A tree showing which functions call, and are called by, others. 63

call stack The chain of function calls made by your program. A stack is a particular
data structure which is “Last In First Out” so elements are taken off in reverse
of the order they were put on, like a stack of real objects. Compare a “queue”
which, like a real queue is FIFO: the first person to queue up is the first to be
served. Each level of the call stack is called a stack frame. 57, 67, 68

12Gtrictly we describe only part of this philosophy here

https://github.com/marketplace/category/continuous-integration
https://github.com/marketplace/category/continuous-integration
https://travis-ci.org/

68 Glossary - 'Testing and Debugging 2

continuous integration The process of continually combining code from multiple de-
velopers, usually with some automatic testing process which disallows contribut-
ing code that doesn’t work. 67

debug symbols During compilation, the variable and function names you used are
replaced with internal symbols to allow the compiler to link together all of their
occurrences. For debugging, you can attach extra information, such as the name
used in the source, the filename and line number where the definition was made
etc. This information is used by symbolic debugger to map between your source
code and the actual running executable. 56, 68

entry point (function) The start of a function. In theory, and in some old code, you
could jump into your function somewhere other than the start. This is generally
accepted to have been a Bad Idea. Note that you can generally return from a
function in several places, but be sensible.

inlining To call a function, a program will construct a stack frame, copy (where nec-
essary) variables into place in it, jump to the function code, run the content and
then jump back to the calling point, copying the return value into place if needed.
To avoid this, the compiler may inline a function instead, replacing the function
call with the content of the function. 55, 63, 64

profiling Analysing where code spends its time, to identify performance bottlenecks
and hotspots for optimization. 47, 54, 103

stack frame A single level of the call stack of your program, each frame contains
information on the function called, its parameters and in particular where the
computer should go to when the function ends.. 67, 68

symbolic debugger A debugger relying on debug symbols to allow you to run your
code and to link it to the source you wrote. For example, you can print the value
of a variable by name, even though that name may have been altered (mangled)
in the executable. Also, you can set things like breakpoints at specific points in
the source code, or you can ask the debugger to continue until the next function
call etc. 39, 55, 68

test runner Processes (threads) that can run tests etc. Usually these are idling until
they’re called upon. Automated testing systems need runners to perform tests.
67

Chapter 4

Workflow and Distribution Tools

4.1 Build Systems

4.1.1 Why Use a System

For small programs, containing only a few files, it is straightforward to simply type the
compile command when you need it. For example, you may have a command like

gece testl.c test2.c —o test
gfortran testl.f90 —o test

gcc —pedantic testl.c —o test —Ilm

For a few files, a few libraries and a few compiler flags this is fine. But as the list grows
it becomes easy to forget or misspell files, or forget to link a crucial library. It is also
irritating to have to recompile everything every time, even though only a few files have
changed, and it is impossible to run the build in parallel.

Aside - For Python Programmers

For Python or other interpreted languages there is no build step required. Tools like
Make can be used to control your workflow, but there are better options for most
purposes. However, you may encounter Make so it is a useful tool to know about.

4.1.2 Build Scripts

The simplest option for automating your code compilation is a script, typically a shell
script. This allows you to build with a simple command instead of typing out a long
line. You can of course do all sorts of clever things like parameterising the script,
so that you can compile and link separately etc, but you can’t solve the problems of
recompiling everything, nor can you parallelise building.! There’s also no easy way to
tell if you need to recompile, since even files which have not changed themselves need
re-doing when files they depend on change.

LOr rather, this would entail recreating Make yourself

69

70 CHAPTER 4. WORKFLOW AND DISTRIBUTION TOOLS

4.1.3 Using Make

In 1976 somebody got fed up of wasting time debugging a program where it turned out
the bug had been fixed hours ago but the recompilation was failing. His solution was
to create a system to do things automagically, called Make, which is what we’re going
to discuss here.

Make is the most widely used build tool for compiled languages. The core Make
standard is supported by all of the variants, but more advanced features and extensions
are specific to a given implementation. Here we are going to restrict to Gnu Make
although much of what we introduce is universal.

What Make Does and Doesn’t Do

If you have ever built a large code from source, you may be familiar with the classic
sequence

./ configure
make
make install

This first configures the build for your particular machine and operating system, check-
ing, for example, the size of an integer, and the availabliity of certain libraries etc, and
creates a suitable “Makefile”. The next line compiles the code, and the last line installs
it, usually by copying the executable into the right place and telling the system where
it is.

Make is responsible for the compile step here. A different tool, Gnu Autotools
provides the configure step, checking for the name of the compiler and such things.
Finally the last line uses Make, but probably only to call some shell or other commands
that do the actual installation tasks.

Makefiles

To build codes using Make, you first create a Makefile.” In the previous subsection,
Autotools was used to do this, but you will probably want to create your files by hand.

The basic idea of Make is to build targets using recipes, based on the modification
state of their prerequisites(see also dependency). A Make rule contains several sections:

e target - something to be made. For example a file, such as a .o file produced from
a .f90 or .c file, an action, such as the install action above.

e prerequisites - things that need to be made before this target can be. Can be
other targets, or can be files.

e recipe - the command to build the target.

2The name can be Makefile or makefile, or any other name you wish, although you then have to
specify the filename to make.

4.1. BUILD SYSTEMS 71

To tell Make to build a particular target, you type “make [target name]”. Make
checks all of the target’s prerequisites. If any of these need to be rebuilt, it builds them.
When this is done, it runs the recipes for the requested target.

Note the obvious property of this: if you were to make a target its own prerequisite
you have an infinite loop. This pattern, circular dependency, must be avoided.
While Make will warn you so nothing bad happens, you definitely wont get the intended
result.

Make decides whether a target needs rebuilding based on modification times. For
targets and prerequisites which are files, it checks when they last changed on disk, and
if this is newer than the target’s last modification, the target is rebuilt. For non-file
targets there are some subtleties, discussed in Sec 4.1.3.

Rules
Rules are the blocks in the file which look like

1| Target : prerequisites
2 recipe

The first rule is special and is called the default, and is invoked if you type simply make.
Otherwise you can invoke a specific rule using make {target name}

Recipes

Make recipe lines must be indented using a TAB character. Spaces will not
do. If you forget a tab, or use an editor which swaps them to spaces, you will see
something like

Makefile:6: ***x missing separator. Stop.

Note that the “6” is the line number where the error occured.

Intermediate Files and Linking

For more complicated programs that aren’t built in a single line, there are distinct
“compilation” and “linking” steps. First, each source code file is built into an “object”
file and then all the object files, and any libraries you need, are “linked” into the
final executable program. Object files usually end in .o, sometimes .obj (especially on
windows). Fortran module files are similar (although distinct from Fortran object files).
If you use C maths libraries, for example, you may have to use “-lm” in your compile
step to link them.

A First Useful Makefile

For a simple C program, a basic makefile is:

B W N

72 CHAPTER 4. WORKFLOW AND DISTRIBUTION TOOLS

code : test.o
cc —o code test.o

test.o : test.c
cc —c test.c

The first, default rule, has one prerequisite, “test.o” and builds the final program. The
second says how to build “test.o”, in this case from a single file, “test.c”.

Even this simple file unpacks to quite a complicated process. When we type make,
the first rule is invoked by default. This finds that it must first build “test.o”. Make
jumps to the rule for “test.o”. This depends on “test.c”, which is not a target, just a
file. So Make checks whether “test.o” needs rebuilding, and does so if necessary. The
it goes back up to the code rule, and rebuilds this if necessary.

If we run “make” once, and then run it again, we see things like

make: ‘target’ is up to date.
make: Nothing to be done for ‘target’.

This is great. We know our code has recompiled, and for large codes we don’t waste
any time rebuilding unnecessarily.

Variables

The simple compilation rules above are useful, but for more interesting tasks you’ll
want to use variables in your makefile. For example, suppose all your source files are in
a directory “src¢”: you could type this in every rule but you risk spelling mistakes, and
it becomes a lot of work to rename the directory.

Variables in Make are set and used like

variable = value

$(variable) #Use variable.

The dollar indicates this is a variable, while the brackets allow the name to be more
than a single character. If you forget the brackets you wont get a helpful error. Instead
the line will be interpreted as a single-letter variable followed by the rest of the variable
name. Remember the brackets around Makefile variables.

Because of the nature of makefile commands, the file is read multiple times, and
then any rules are executed, so some things can appear to happen out of order. This
allows the system to be very powerful. For the current purposes all we need to worry
about is variable assignments. Makefile variable assignments have one major difference
to those in other programming languages. The normal “=" operator sets two variables
to be the same’, like this

varl = test
var2 = §(varl)

varl = test2
$(info $(var2)) #Print the variable. —> test2

3i.e. var2 becomes a reference to varl

4.1. BUILD SYSTEMS 73

The “=" operator does the assignment using the value right now"

varl = test
var2 := $(varl)

varl = test2
$(info $(var2)) #Print the variable. —> test

U e W N =

Note also that we don’t use quotes on the strings here. Make treats quote marks like
any other characters, so they would just becomes part of the string.

Make also provides a selection of automatic variables for use in rules. These give
you access to things like the target being built and the prerequisites. In particular we
have

$Q # target of the current rule
$< #first prerequisite of currrent rule
$" # space separated list of all prerequisites

For example this snippet shows the use of these by setting the recipe to write to the
shell. The “@” character here tells make not to print the command it is about to run.

other : final
@echo $Q@Q
final
echo $Q@
test: other final
@echo $@ |’ $< |’ §°

When we run this with “make test” we get

echo final

final

other

test | other | other final

Notice a few things here. Make looks at the “test” target and sees it must first build
other and final. It jumps to the “other” rule. This depends on “final”; so it jumps to
that rule. Final has no preregs, so it can start building. It builds final (notice we see
both the echo command and its result here). Now it returns to “other”: this can now
be built. After that, it returns to test. It knows “final” is already built so does not
do that a second time. Now it builds test, and we see the automatic variable contents
separated by pipes (]).

Implicit Rules

Make has one final internal variable that is very useful, which is the rule wildcard. The
“%” stands for any character sequence, but anywhere it appears in the rule it is the
same sequence. This is used in what are called implicit rules, for “implicit” targets, i.e.
those that aren’t specifically mentioned in the makefile. These are also called pattern
rules, because they apply to targets matching a pattern.

4i.e. var2 becomes a copy of varl

74 CHAPTER 4. WORKFLOW AND DISTRIBUTION TOOLS

The simplest sort of pattern rule looks like

%.0 : %.c
cc —c $<

%.0: %.190
gfortran —c $<

W N

These rules match any target that looks like “[namel].0” and build them from the cor-
responding “[name].c” or “[name].f90”.

A full discussion of pattern rules is at https://www.gnu.org/software/make/
manual/html_node/Pattern-Rules.html. Note that Make has a lot of built-in rules
for the normal procedure for a given language, summarised at https://www.gnu.org/
software/make/manual/html_node/Catalogue-of-Rules.html#Catalogue-of-Rules.

Multiple Rules

You may notice that the pattern rules above are perfect for generating a .o from a single
.c or .f90, but don’t allow you to specify more dependencies for your code. For example,
in ¢ %.0 would usually depend on %.c and %.h. Or you may have some helper functions
in a file which all your other files depend on. Make allows you to define multiple rules
for the same target. Only the last recipe is run, but prerequisites from all rules
are considered. This allows us to use the pattern rules like above, and also, elsewhere
in the file, specify our file dependencies. See the example in Sec 4.1.3.”

Other Bits

Make has many other features to aid you in processing filenames, putting things in the
right directories, and controlling your compilation by passing variables to make itself.
We are not going to go into the details here, as there are many good tutorials out there,
and you are best served learning the details when you actually need them. However,
one last feature of Make is very common and quite important, which is using Make for
a target which is not a file.

As we saw above, Make can run any command you wish, and targets need not
correspond to a filename. These targets are always rebuilt, as Make has no way of
tracking their last modification. A common use of this is to have a “clean” target,
which cleans up intermediate and output files. This is fine, unless a file ever exists
which is called “clean”, when make will think this target is up-to-date and do nothing.
To avoid this, and to make things clearer, make has a special target, .PHONY. Any
prereqgs of this special target are assumed to be phony, i.e. not to correspond to any

file.

Full Example Makefile

A basic, but useful, Makefile is along the following lines:

5You can also write a rule with multiple targets to add some prereqs to them all. This can be useful
for things like helper functions which are preregs of all your code.

https://www.gnu.org/software/make/manual/html_node/Pattern-Rules.html
https://www.gnu.org/software/make/manual/html_node/Pattern-Rules.html
https://www.gnu.org/software/make/manual/html_node/Catalogue-of-Rules.html#Catalogue-of-Rules
https://www.gnu.org/software/make/manual/html_node/Catalogue-of-Rules.html#Catalogue-of-Rules

© N O s W N

T S = =
S © ® N O U oA W N = O

4.1. BUILD SYSTEMS 75

Set compiler name

CC = cc

#Set phony targets
.PHONY : clean

#Default rule
code : test.o

$(CC) —ocode test.o
#Pattern for compiling .c files
%.0 : %.c

$(CC) —c $<

#List the dependencies of test.o here
#1t will be built with the rule above

test.o : test.c
#Clean rule
clean:

@m —rf code
Qrm —rf x*.o0

Parallel Building

The simple build scripts tend to use a single line to compile everything and then link
in a single step. With Make, you instead give it dependencies, so it knows the order
in which it needs to build files. This means it can work out which rules can be built
simultaneously, and parallelise your building. Using make -j {n_procs} Make will use
up to n_procs, but only as many as it can. This can speed things up a lot.

Pitfalls

Make is very powerful but it does have some traps that are easy to fall into.

e Forgotten dependencies
Target wont rebuild when it needs to
Can be very hard to diagnose

Your compiler can often generate dependencies (see gec -M)

e Circular dependencies
Make will ignore these

Might create a forgotten dependency

e Permanent rebuilding
Non-file targets always rebuild
Any rule that doesn’t actually build the target file can too

76 CHAPTER 4. WORKFLOW AND DISTRIBUTION TOOLS

e Overcomplication
You can do all sorts of conditional compilation with Make

See Sec 4.1.4 for tools beyond make

4.1.4 Cmake and Other Tools

As well as Make which we focused on, there are many other tools for building code
based on dependencies and rules. Several of these, such as Gnu Autotools and gqmake
generate Makefiles for you; some use Make as a backend but also support other options,
such as cmake, and some have their own system, such as meson. These have their own
strengths and weaknesses. You may encounter them when using libraries, for example
gqmake is made by the developers of the QT GUI libraries, and is almost essential for
building QT projects.

Once your makefiles need to account for things like multiple platforms (OSX, Linux
flavours etc) or installing their own copies of needed libraries, you will want to look into
these tools. We discuss them a little in Section 4.2. However, Make can serve most of
your needs for quite a long time.

4.2 Distribution Systems

Sooner or later, you will want to move your code off the computer where it was devel-
oped. You may just be moving to a new machine, or onto a cluster to run code, or you
may be sharing it with other people. You will want this to be as painless as possible.
When you install programs, you probably download a binary executable specifically
made for your machine and operating system. This is almost never the case for scien-
tific code, apart from some commercial packages where they wish to keep the source
code private.

You may have used a package manager (see also Sec 4.2.2), such as apt, or Homebrew
on Mac. These sometimes obtain pre-built executables, but also can obtain and build
code from source for you. It is again rare for scientific code to be available through OS
packages, although in e.g. Python it is not unusual code to be part of larger repositories.

This means that when you distribute your source code, whether you do this by
offering a tarball or via a version control system (see Sec 4.3), you need to consider
making it work with multiple operating systems, compilers or interpreter flavours® and
available libraries. You can restrict many of these things, for example you may flag
your code for “Only UNIX like” or “Only Windows” systems, or you may require an
installation such as SciPy for it to work.

6“Python” generally refers to CPython, a particular variant of Python. Others exist, such as
IronPython and PyPy, and not all features work exactly the same in all of them.

4.2. DISTRIBUTION SYSTEMS 77

4.2.1 Portable Python

Unlike compiled languages, where the language standard is fixed and the compiler takes
care of (most) implementation details” in Python you may want to actually change your
code for portability.

If you are not already, you should consider using Python modules, rather
than simple scripts. Details are at https://docs.python.org/2/tutorial/modules.
html and https://docs.python.org/3/tutorial/modules.html. Basically you have
to put your script(s) in a named directory and then include a “_init__.py” file. This
then allows you to use import to access your functions etc.

For more complex programs, you can use a proper packaging system. This packs up
your scripts, and allows you to include a listing of libraries you depend on and which
must be installed first. Some also provide web-based distribution systems so somebody
can obtain your code directly. Full details are beyond scope of these notes, but roughly,
the simplest option is to use Python’s “distutils”, where you create a “setup.py” file
which can be used to install your package into the correct place for Python on the user’s
machine. Details are at https://docs.python.org/3.6/distutils/introduction.
html. “setuptools” (“easy_install”) adds facilities to include dependencies, and also
adds the web download options. “pip” uses distutils/setuptools scripts via a web dis-
tribution system.

The best option is rather vexed. The page at https://packaging.python.org/
discussions/pip-vs-easy-install/ lists a comparison of pip and easy_install. Fi-
ther will work, although one thing to bear in mind is that both host packages publicly,
so if you want to keep your code private, neither will suit you.

4.2.2 Compiled Codes
Package Systems

Although you are unlikely to distribute your own code via the official packaging systems
of the various OSs, you may have to support users using them to install dependencies
for your code. Various flavours exist, e.g.

e DEB (Debian based packages, for systems include Ubuntu, Mint) https://wiki.
debian.org/Packaging/Intro

e RPM (Many non-Debian Linux distros) https://fedoraproject.org/wiki/How_
to_create_a_GNU_Hello_RPM_package

e Ports (BSD, OSX) https://www.freebsd.org/doc/en/books/porters-handbook/
why-port.html

e Homebrew (OSX) https://brew.sh/

7Of course, this is not really the case. For example, Windows and Linux use nearly always requires
you write two versions of at least some code. Usually this will be for graphical use though, so if you
stick with numerics at the command line you can avoid most hassle.

https://docs.python.org/2/tutorial/modules.html
https://docs.python.org/2/tutorial/modules.html
https://docs.python.org/3/tutorial/modules.html
https://docs.python.org/3.6/distutils/introduction.html
https://docs.python.org/3.6/distutils/introduction.html
https://packaging.python.org/discussions/pip-vs-easy-install/
https://packaging.python.org/discussions/pip-vs-easy-install/
https://wiki.debian.org/Packaging/Intro
https://wiki.debian.org/Packaging/Intro
https://fedoraproject.org/wiki/How_to_create_a_GNU_Hello_RPM_package
https://fedoraproject.org/wiki/How_to_create_a_GNU_Hello_RPM_package
https://www.freebsd.org/doc/en/books/porters-handbook/why-port.html
https://www.freebsd.org/doc/en/books/porters-handbook/why-port.html
https://brew.sh/

78 CHAPTER 4. WORKFLOW AND DISTRIBUTION TOOLS

Simple Cases

For fairly small projects you can simply distribute your source code, using tarballs
(zips) or a public repository, and provide a list of dependencies (or a simple script to
obtain them) and a simple makefile with a few conditions. For example, you can write
a makefile to accomodate different compilers, which expect different flags, by providing
arguments in your make file like “make COMPILER=intel”. As things get a little more
complex you may turn to cmake, or qmake rather than hand-create a complex makefile.
A user downloads your code, installs the needed libraries, and builds the code.

Intermediate Cases

In more complex cases, where you may wish to accomodate a lot of details of com-
pilers, or choose between different libraries or even make them optional (for exam-
ple, many programs that can work with PS files will use GhostScript if available, but
have fallbacks otherwise), handwritten makefiles get too complicated. In this case
you can turn to something like Autotools (http://inti.sourceforge.net/tutorial/
libinti/autotoolsproject.html) to create a Makefile for a particular installation.
This can also create an include file for your code giving it access to information like
Integer sizes. With Autotools you have the (possibly familiar) sequence

./ configure —options=xyz
make
make install

Difficult Cases

For more systems even more complex than this, you will have to look at containerisation
systems. Note that the previous setup is enough even for major endeavours such as
BLAS or SageMath. These distribute an entire operating system and the installed
software, which requires setting up disk access in and out of the container, network
drivers and interconnects in HPC. Options include

e Virtual Machines (many options, Virtual Box etc)

e Docker (https://www.docker.com)

e Singularity (http://singularity.lbl.gov)

e Shifter (https://github.com/NERSC/shifter)
the last two of which are designed with HPC in mind.

4.3 Introduction to Version Control

This section will cover the basics of Version Control Systems (VCSs), including why to
use them, and then gives a quick walkthrough of git, and some information about tools

such as Github.

http://inti.sourceforge.net/tutorial/libinti/autotoolsproject.html
http://inti.sourceforge.net/tutorial/libinti/autotoolsproject.html
https://www.docker.com
http://singularity.lbl.gov
https://github.com/NERSC/shifter

4.3. INTRODUCTION TO VERSION CONTROL 79

4.3.1 What is Version Control?

Version control is also known as source code management (SCM) in context of software,
although note that most systems can deal with assets® too. Version control systems
are designed to record changes you make to code. They track when, and by whom the
changes were made, and usually allow you to add some explanation. They allow you to
go back to an old version of the code, or of just some files. They also include tools to
help you to merge incompatible changes.

4.3.2 Why Use It?

Many reasons:

e “I didn’t mean to do that”

You can go back to before a breaking change

e “What did this code look like when I wrote that?”
You can go back as far as you want to the version you used for a particular
talk or paper
e “How can I work on these different things without them interfering?”
Branchs let you work on two features independently and only merge them at
the end
e “I want a secure copy of my code”

Most VC5s have some concept of a client and a server, so make it easy to
store offsite backups’

Many free services exist online, and you can easily set up your own too

e “How do I work with other people collaboratively?”

Most modern version control systems include specific tools for working with
other people

Also powerful (often paid for) tools to make it even easier

Dor collaborative editing of a single file (e.g. papers), there are better options

e “My funder demands it”
More and more funding bodies expect code to be managed and made available

Online version control is one way to do this

8Such as images and data files

9Proper backups should account for the moderately likely failure of your hard drive (i.e. use an
external drive) and, for important things, the quite unlikely destruction of your office (i.e. use fully
mirrored system like RTPSC desktop home, files.warwick, or a cloud service)

80 CHAPTER 4. WORKFLOW AND DISTRIBUTION TOOLS

While the basic functions are quite similar in all VCSs the more complex features
often differ quite a lot. The terminology often differs too. The most likely system you’ll
be using is “git” ', so that is the one we are going to talk about here. Note that it is
not the only good option. You're also likely to use some sort of online service, likely
“github”!'’. Alternately, the Warwick SCRTP has an online system.'”

Why NOT Use It?

The most important thing about version control is to do it. It doesn’t matter
how, as long as it works. If you're working alone, on one thing at a time, and are
very conscientious, there is nothing actually wrong with simply keeping a dated copy
of your files. In particular, freeze a copy every time you write a paper or run new
simulations, and make sure to keep careful offsite backups (see footnote 9). This does
now require more effort than using a VCS, although it will suffice for small or one-off
projects.

4.3.3 A Brief History

Version control is as old as computers. The US National Archives Records Service kept
copies of code on punched cards back in 1959, which managed a data density of about
100MB per forklift pallet. Important programs would be kept in the archives, and if
changed a complete new card deck would be created. The birth of UNIX in the 70s
gave rise to the first file-system based version control, storing file changes and allowing
permissions to be set for different users (read and/or write etc).

Since then, there have been at least six major version control systems, roughly one
every ten years. Several of these are currently in wide use. Those you are likely to meet
at some point are

e Git: the topic of these notes

e Mercurial: https://www.mercurial-scm.org

Bitkeeper: originally paid-for, now open source http://www.bitkeeper.org/

Subversion: still around, needs a server running, but that can be on the local
machine https://subversion.apache.org/

Visual Studio Team Services: Microsoft only, but quite good

4.3.4 Features of Git

Git was created by (and named after) Linus Torvalds (of the Linux Operating System)
in 2005, because the system they were using, bitkeeper, removed its free community

Onttps://git-scm.com
HUnttps://github.com
2nttps://wiki.csc.warwick.ac.uk/twiki/bin/view/Main/GitServer

https://www.mercurial-scm.org
http://www.bitkeeper.org/
https://subversion.apache.org/
https://git-scm.com
https://github.com
https://wiki.csc.warwick.ac.uk/twiki/bin/view/Main/GitServer

4.4. BASIC VERSION CONTROL WITH GIT 81
edition. Git shares many of the useful features developed by earlier version-control
systems. In particular:

e Moved /renamed/copied/deleted files retain version history

e Commits are atomic (either succeed completely or fail to do anything)

e Sophisticated branching and merging system (see Secs 4.4.3 and 4.4.4 for details)

e Used a distributed storage system, where each developer has as much of the
repository as wanted in a local copy and merges onto central server when ready

Note that Git is not Github, and Github is not Git. Github is one popular
online host of git repositorys but it has its own model for how to work and adds features
like issue-trackers.

4.4 Basic Version Control with Git

4.4.1 Setting up a Repository

Once you have installed git, you first want to set up some basic information. We noted
that git stores the author of every change, and this means you have to provide your
identity. If you try the steps below before doing this, git will insist you do. Usually, it
is enough to set a single identity globally, for all your git use. You do this using"’

1| git config —global user.name ”John Doe”
2| git config —global user.email johndoe@example.com

However, you can use several different email addresses, for example for work and for
personal projects. In this case, after “git init” but before anything else, you should

1| git config wuser.name ”John Doe”
2| git config user.email johndoe@example.com

without the global flag.

Now before you can do anything else, you have to set up a git repository. You can
do this in an empty directory or one already containing files. Be careful if this directory
isn’t at the bottom of your directory tree as any subdirectories will also be included.
Simply type

1| git init I

Now you can add files to the repo. You usually do this in two steps. First you add, or
stage the change, that is get things ready, and then you commit. You can add multiple
files, or parts of files, before carrying on.

1| git add src/
2| git commit

13If you copy and paste these, note that before “global” should be two hyphens

82 CHAPTER 4. WORKFLOW AND DISTRIBUTION TOOLS

The second line results in a text editor opening to allow you to specify the “commit
message” to explain what and why you are adding. The editor can be changed'* and
often defaults to vim or nano.

COMMENT DATE.
CREATED MAIN LOOP & TIMING CONTROL
§ ENABLED CONFIG FILE PARSING
MISC BUGFIXES
CODE ADDITIONS/EDITS
MORE. CODE.
HERE HANE CODE.
APAPAAAA
ADKFT5LKDFISOKLFT
g MY HANDS ARE TYPING LJORDS
HARAAAAARANDS

AS A PROJECT DRAGS ON, MY GIT COMMIT’
MESSAGES GET LESS AND LESS INFORMATIVE.

Figure 4.1: Messages Matter. Don’t do this! Permalink: https://imgs.xkcd.com/
comics/git_commit.png Creative Commons Attribution-NonCommercial 2.5 License.

Git commit messages should follow a particular format, which originates from its
use controlling the code of the Linux Kernel.'” A typical message looks like
First check in of wave.f90

wave.f90 will be a demo of using a ‘‘wave’’ type MPI cyclic transfer 0— >
1—>2 etc. in order.

The first line is the subject, and should generally be less than 50 characters. The second
line must be blank. Any text here is ignored. The subsequent lines are the message
body, and should generally be less than 72 characters. You can use as many lines as
you like, but be concise.

You now save and exit the editor, and git gives a short summary of what was
committed. If you quit without saving the commit is aborted. The state of the files
we committed has now been saved. Now we can make some changes to the files, and
commit those. If we just try

1| git commit I

we get a message like
On branch master
Changes not staged for commit:

no changes added to commit
which tells us we didn’t stage the new changes with git add. We can do many add
steps before we finally commit. We can also see what changes have been made at any
point using

He.g. https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup
5These details are surprisingly hard to find written down, and you will probably meet many people
who don’t know them. Be considerate and share!

https://imgs.xkcd.com/comics/git_commit.png
https://imgs.xkcd.com/comics/git_commit.png
https://git-scm.com/book/en/v2/Getting-Started-First-Time-Git-Setup

4.4. BASIC VERSION CONTROL WITH GIT 83

1| git status I

which tells us the current state of the working directory: which files have changes that
have been added, which have unstaged changes, and which files are not included in the
repository. If the last list is very long, you may want to use a .gitignore file to tell
git to ignore some file types. See e.g. https://git-scm.com/docs/gitignore

There are two useful shortcuts: for a few files that have been previously added so
are known to git, we can explicitly commit them, without an add step like

1| git commit filel .txt file2.txt I

or we can commit everything which is changed using

1| git commit —a I

In all cases, we get the editor, we write a useful commit message and then we get some
report like 1 file changed, 2 insertions, 3 deletions

Figure 4.2: Typical “git log” output

We can see all of the commits we have made using the log.

1| git log I

gives us output like Fig 4.2 Note the string after the word “commit”. This is the
“commit id” which uniquely identifies the commit. Git also accepts a shorter form of
this, usually the first 8 characters.'’

https://git-scm.com/docs/gitignore

84 CHAPTER 4. WORKFLOW AND DISTRIBUTION TOOLS

- MWONE

Figure 4.3: Typical “git diff” output. A line referring to “tag” has been removed, a
line defining “dummy_int” has been added.
4.4.2 Viewing and Undoing Changes

Git can show you a list of differences between two commits, or a list of differences
between a given commit and the current state using the command “git diff”, as e.g.

git diff abcl23xyz #All changes since abc...

git diff abcl23xyz efgdb6uvw #Changes between abc... and efg...

git diff abcl23xyz filel .py file2.py #Changes since abc... in filel and
file2 only

The output is in a “git-diff” format:
Lines with a “+” in the left-hand gutter have been added
Lines with a “-” have been removed.

Changed lines are shown as a removed line and then an added line.

The other lines are there to give context.

You will also see some sections starting with “@Q@” which give the line-number and
column where the changes begin. The first pair is in the original, the second in the
final, version. Example output is in Fig 4.3.

In vim these are coloured (usually green for adds, red for removes, blue for line numbers
and your default colour (here bright-green) for everything else).

Undoing changes can become quite messy. Git is a distributed system, so if the code
has ever left your control, you can’t simply remove changes by changing the history,
or everybody else’s state will be broken. “reverts” are new commits which remove old
changes, to put things back to how they were. They leave both the original commit
and the new revert commit in the log. If you accidentally commit something
protected, like a password or personal data, a git revert will not remove it.

16Tf you know about hashes, you may know about hash collisions, where different data gives the
same output. Git needs the hashes to be unambiguous. For very large projects, the first 12 characters
may be needed to ensure this, as e.g. https://git-scm.com/book/en/v2/Git-Tools-Revision-
Selection#Short-SHA-1

https://git-scm.com/book/en/v2/Git-Tools-Revision-Selection#Short-SHA-1
https://git-scm.com/book/en/v2/Git-Tools-Revision-Selection#Short-SHA-1

4.4. BASIC VERSION CONTROL WITH GIT 85

Take care, because fixing it will not be fun!'’
To revert one or more commits, use

1| git revert {lower_bound} {upper_bound} I

where the lower bound is exclusive (last commit you want to leave unchanged) and the
upper bound is inclusive (last commit you want to undo). When you do this, you will
get the commit message editor for each reverted commit, saying Revert 7original
commit message?. You rarely want to change these.

4.4.3 Branching

If you are working on several things at once, you may find branches useful. These are
versions of code that git keeps separate for you, so that changes to one branch do not
affect another. Whenever you create a repository, a default “master” branch is created.
Adds and commits are always on the current branch. The command

1| git branch I

will show the name of the branch you are on.
You can create a new branch using

1| git branch {name} I

The branch is based on the last commit (on whatever branch you are on when running
the command)'®
The branch command doesn’t move you to the new branch. You do this using

1| git checkout {name} I

You will get a message, usually Switched to branch ’name’, or an error message. To
create a branch and change to it in a single step, use

1| git checkout —b {new_branch_name} {existing_branch_name} I

where the existing branch name is optional. This is very useful when working with a
branch from a remote server, for example.

Checkout also lets you go back to some previous version of the code, and create a
branch from there using

1| git checkout —b {new_branch_name} {commit ID} I

You can checkout old versions without changing branches too, but this puts your repos-
itory into an odd state, so is best avoided for now.

Note that if you have uncommitted changes when you run git branch, those changes
will come with you, and can be committed. If you try and change branches when

I"E.g. https://stackoverflow.com/questions/31057892/i-accidentally-committed-a-
sensitive-password-into-source-control

8You can branch from branches, and create very complex trees, but for now you will mostly want
to create branches based on master.

https://stackoverflow.com/questions/31057892/i-accidentally-committed-a-sensitive-password-into-source-control
https://stackoverflow.com/questions/31057892/i-accidentally-committed-a-sensitive-password-into-source-control

86 CHAPTER 4. WORKFLOW AND DISTRIBUTION TOOLS

you have uncommitted changes, you may get an error, saying error: Your local
changes to the following files would be overwritten by checkout:. Youcan
either commit those changes, or consider using “git stash” to preserve them to use later.
See e.g. https://git-scm.com/docs/git-stash for the latter.

4.4.4 Merging

When you use branches to develop features, you usually eventually want to bring them
back into the main version, when they’re ready to be shared with users, or are fully
complete. This is a merge, and uses the command

1| git merge {other_branch_name} I

which brings changes from the other branch into the current one.

temperature

drift

© opartlist

ift local
rent

Figure 4.4: A conflicted “git merge”. non-thermal contains a change incompatible with
our current branch (labelled HEAD as we’re currently on it)

If you're lucky, the merge will be automatic and you will see a message about
Fast-forward and are done. Otherwise, you will end up with files containing markers
using the git diff format. Figure 4.4 shows an example. You will have to go through
each file and “resolve the conflicts” (fix what git didn’t know how to merge) before git
lets you commit them. When you are done, finish using

1| git commit #As normal
2| git merge —continue #Alternative in newer git versions

There are tools to help with merges, but they can get quite complicated, and while
git tries to understand the language, it is a difficult problem in general. For example,
if you have changed the indentation of a whole block of code, you may see the entire
thing being removed and added again, and showing as a merge conflict.

https://git-scm.com/docs/git-stash

4.4. BASIC VERSION CONTROL WITH GIT 87

Fig 4.5 shows a typical flow of branching and merging. When feature 1 is complete,
it is merged back to master, and the feature 2 branch pulls in those changes to stay
up-to-date, before continuing work. When feature 2 is finished, it is merged too.

,Feature\1

Master

Figure 4.5: A schematic of typical git workflow with two feature branches and one
master.

4.4.5 Remote Git Servers

Figure 4.6: Typical “git clone” command, for a Github repo.

Git is a distributed, networked version control system, which is the core of its real
power. You can link between a local repository and a remote one, on a server, or on
e.g. Github, and git remembers that. You can clone code from a remote repository and
git will remember the origin. To clone code, you need the url of a remote server, then
use the command

1| git clone {url} I

Fig 1.6 shows an example using github - here you can get the url showing the green
“clone or download” button on the repo’s page. This completely sets up the repo, and
stores the “remote tracking” information (mostly the url you used). Note this will be
a subdirectory of where you ran the command.

1| git branch —a I

88 CHAPTER 4. WORKFLOW AND DISTRIBUTION TOOLS

will tell you about all branches, including those on the remote you now have references
to. Your master will now be linked to a remote master branch. The other branches are
not downloaded by default, so if you check them out you will see similar text to Fig 4.6
about counting and receiving.

4.4.6 Pull and Push

When the copy of the code on the remote is updated, you will need to pull in those
changes, with

1| git pull I

This happens on a per-branch basis. Note that there is a related command, fetch, which
just updates branch information and downloads changes, but doesn’t merge them into
yours. If your local copy has also changed, you will have to deal with merging changes
from other developers with your own.

To upload your changes to the remote, you can push them, using

1| git push I

If you are working with somebody else’s repository, check whether they
allow you to push directly. On e.g. Github, a different model is used, see
Sec 4.4.7 Git tries to merge your changes with the remote copy, so make sure to pull
first, or it will fail.

4.4.7 Github Flow

Once again, github is not git. However, it is one of the most popular public re-
mote systems, and is quite easy to use, and also adds nice features like issue track-
ers.”” Once you sign up for a Github account, you can push a local repository to
github’s server. Instructions are at https://help.github.com/articles/adding-
an-existing-project-to-github-using-the-command-1line/ or are given when you
create a new repository via your github profile. A quick walkthrough of basic git for
Github is at https://guides.github.com/activities/hello-world/

The other common task is to work on somebody else’s code, and share your mod-
ifications with them and their users. They may give you push access to their github
repository, but usually do not. Instead, you create a fork (basically a copy, but which
knows where it was copied from) of their repository, push your work to it, and then
make a pull request asking the owner of the main repository to pull (as in “git pull”)
the changes from your version of the repository. Figure 4.7 shows a typical pattern,
and more details are at https://guides.github.com/introduction/flow/.

19To allow your users to tell you about bugs, requests etc.

https://help.github.com/articles/adding-an-existing-project-to-github-using-the-command-line/
https://help.github.com/articles/adding-an-existing-project-to-github-using-the-command-line/
https://guides.github.com/activities/hello-world/
https://guides.github.com/introduction/flow/

4.5. RELEASES AND VERSIONING 39

Featu re\

L Master /

© Pull request

Figure 4.7: A schematic of typical Github workflow. You develop a feature on your
fork, and them submit a pull request to have it included in the main repository.

4.5 Releases and Versioning

4.5.1 Versions of Code

If your code produces output files, you will at some point find yourself wanting or
needing to know which version of your code a particular file was created with. You
could check the dates, and try to work it out, but much better is to give your code
version numbers whenever you make a change, and to write this version number into
your files.

One very common, and very useful, versioning system is to use 3 numbers combined
into a string like “1.1.4”. The exact purpose of the three numbers varies, but in most
cases they reflect levels of change:

e 2.x.y is a major version. This usually introduces significant new features beyond
those of version 1.p.q. Sometimes it means old behaviour has been removed,
changed, or otherwise broken.

e x.2.y is a minor version. This usually adds smaller new features, adds new be-
haviour without breaking the old, etc.

e x.y.2 has many meanings. It may be called patch, build, release or otherwise,
and usually starts with a number. Sometimes this is followed by a dash and an

90 CHAPTER 4. WORKFLOW AND DISTRIBUTION TOOLS

alphanumeric sequence. Usually this version represents small changes, fixes to
bugs, etc.

In other words, you should “bump” the major version when results change substantially,
for example you may change algorithm, or when you add some major new feature.
Major version changes can break forwards compatibility. Avoid breaking backwards
compatibility where practical. That is, older data files should still work with
newer code.”’ Bump the minor version when you have small changes, perhaps adding
a new feature but preserving all the old. Finally you can include a third identifier which
gets incremented for every change.

4.5.2 Tagging your Output Files

The first thing to do, once you’ve decided on a version scheme such as the
3-part one above, is to make sure it is embedded into your output files (see
also Sec 1.7.4). This means you can know which version created the files, and that
is the first step to making them reproducible. The easiest way to do this is to put a
(constant) string in your source code with the number, and to have the code print it
into your files. Make sure to update the string when you make changes though!

4.5.3 Git Tags

Because it is easy to forget to change the version number when you commit changed
code, you can take advantage of git’s way to connect a version number to a particular
code state, which is to use tags. Other V(Ss also have methods to do this. When you
wish to set or to change version number, you use one of the commands

1| git tag {tag_name}
2| git tag —a {tag_name} —m {tag_message}

The latter stores your name as creator and has various other advantages, such as ability
to specify a message, so is generally recommended. Using the 3-part system we may do
something like

git tag —a v0.0.1 —m ”Prototype version” I

We can then find out about the tag and the commit is is attached to using

git show v0.0.1 I

Tags aren’t included in a push by default, so you have to do the special

git push {tag_name} I

to share them.
The major advantage of this is that you can then include some recipe in your makefile
which can extract the version information and pass it on to your code. Because git tags

-

o

[

20Note that often backwards compatibility is achieved by keeping the old code, and having the
system use it when given an old file, but this does often mean code duplication.

Glossary - Workflow and Distribution 91

are separate to your source code, you can go back and do this after you have committed
changes. The code to extract the information is a bit horrible, but for example, if you
are sure your code will only be obtained via git (and not e.g. downloaded, in which
case you'll need something more complex) you add the following to the preamble part
of your makefile

GIT_VERSION := §$(shell git describe —abbrev=4 —dirty —always —tags)
CFLAGS += ~DVERSION=\"$ (GIT_VERSION) \”

as described at https://stackoverflow.com/a/12368262, and then use the variable
VERSION inside your code.
More info on using tags is at https://git-scm.com/book/en/v2/Git-Basics—

Tagging

Glossary - Workflow and Distribution

backwards compatibility A guarantee that anything possible or valid in an older
version remains possible, so that e.g. input or output files from an older version
can still be used. Sometimes this means that you can make the code behave
exactly as it used to, sometimes it means only that you can use the files as a
base for new files. For example Excel can read any Excel file, from any version
correctly. See also forwards compatibility & sideways compatibility, 90, 105

branch Repositories can have more than one branch, an independent set of changes,
often for some purpose such as a specific feature or fix. Branches can be merged
together to combine their changes. 79, 92

commit (A commit) A chunk of changes, usually along with a message and an author
etc. (To commit) To record files or changes in the version-control system, i.e. to
add its existence and state to the history and store files and content however the
system decides (often as incremental diffs). 81, 92, 93

dependency In general terms dependencies are the libraries, tools or other code which
something uses (depends on). In build tools specifically, they are also known as
prerequisites and are the things which must be built or done before a given item
can be built or done. For example I may have a file-io module which I have to
build before I can build my main code. 70

fetch To download changes to a repository. In git, this includes information on new
branches but does not update your local copy of the code. See also pull, 88

fork To split off a copy of code to work on independently. Often this implies some sort
of difference of opinion as to how things should be done. In the Github model,
forks are encouraged in normal development: one forks code, adds features and
then may or may not make a pull request back to the original repository. This

https://stackoverflow.com/a/12368262
https://git-scm.com/book/en/v2/Git-Basics-Tagging
https://git-scm.com/book/en/v2/Git-Basics-Tagging

92 Glossary - Workflow and Distribution

way only core developers can commit to the main repository, but anybody can
easily modify the code. 88, 92

forwards compatibility A guarantee that files etc from a newer code version will
still work with the older version, although some features may be missing. E.g. a
file format designed to be extended: extended behaviour will be missing, but will
simply be ignored by old versions. See also backwards compatibility & sideways
compatibility, 90

library Code to solve a problem, intended to be used by other programmers in their
programs. For example, in C there is the Standard Library which contains things
like mathematical functions, string handling and other core function which is not
part of the language itself. See also module & package, 92

master A common name for the primary branch of a code. Master should always be
working and ready to release, as it is the default branch in git. Some consider it
a bad idea to commit changes directly to master, preferring to work on branches
and then merge or rebase.

merge Combining one set of changes with another, usually by merging two branchs
The combined version usually shares its name with the branch that has been
merged “onto”. See also rebase, 86, 88, 91, 92

module A piece of a program, something like chapters in a book. In python modules
are the things you import (possibly from a larger package). Fortran has modules
explicitly, that are created using MODULE [name] and made available elsewhere
with the USING statement. In C modules are closest to namespaces. See also
package & library, 92

package A piece of software, usually stand-alone. In contrast a library is usually code
only used by other programs, but there is a lot of overlap. This may contain
multiple smaller modules. In context of OSs, packages are software that can be
installed, whether they’re available as compiled binaries or source code. See also
module & library, 92

pull To download changes to a repository. In git this then integrates them with your
local copy. If you have local changes, the remote changes are merged into yours.
88

pull request A request to pull-in code from elsewhere. In the Github model, one forks
code, makes changes, and then raises a pull request for them to be integrated back
to the original repo. 88, 91

push To upload your local state to a remote repository (see repository). You can push
commits, whole branches, git tags etc. 88, 90, 93

Glossary - Workflow and Distribution 93

rebase Replay changes as though they had been applied to a different starting point.
Because systems like git work in terms of changes to code, they can go back
through history and redo changes from a different base. For example, one can
“rebase” a branch onto another. The changes in the first branch are taken one by
one, and applied to the second branch. This differs from merging mainly in how
changes are interleaved in the history. See also merge,

repository (Aka repo) A single project or piece of software under version control. In
general a local repository is a working (in the sense of “to be worked on”) copy of
the code, whereas a remote repository is a copy everybody shares, pushing their
work and combining changes. The remote copy can be sitting on somebody’s
machine - remote is a designation not a requirement. Note that git does not
require a remote repo (or server), but some systems like subversion do. 81, 92

sideways compatibility A guarantee that code remains compatible with other code.
For example you may create files for another program to read, and you want to
make sure that your output remains compatible with their input requirements,
even when these may change. See also forwards compatibility & backwards com-
patibility,

stage Staging means preparing changes to be added (commited) and comes from the
similar concept in transport, https://en.wikipedia.org/wiki/Staging_area.
81, 82

VCS Version Control System; a tool for preserving versions of code and details about
who, why and when they were created. 78, 79, 80, 90

https://en.wikipedia.org/wiki/Staging_area

Chapter 5

Wrap Up

Only a Sith deals in absolutes - Star Wars

These notes have gone rapidly through a wide range of ideas, tools, and principles to
give you a basic toolkit for developing software. Many things were left out and glossed
over, and even the topics we have covered were necessarily fairly cursory, to make sure
you have a grasp of the breadth of the subject. We promised at the start that we would
only ever describe something as a must if it really was always the case. We gave far
more statements. These are broadly true, but not absolutely.

All of these statements are reproduced in Appendix B. Question them. When you
can explain why we say them, and why they can break down, you know you understand.
You may have noticed a few themes running through these statements too, mainly

e Make things that work, and will keep working
e Test and debug so you can be sure things work
e Think things through and understand why you’re doing them

e Use the tools available or you’ll waste time

5.1 Warning: The Expert Beginner

It is terribly tempting to take all your new tools and principles and throw them at every-
thing. Even the restricted set of things we have covered here can make a real difference
to your work. But we have not taught you everything you will need to know. There is
a trap you must now be careful to avoid, sometimes referred to as “the expert begin-
ner”: stopping learning because of a mistaken belief that one is now an expert. This is
the subject of an interesting article at https://www.daedtech.com/how-developers-
stop-learning-rise-of-the-expert-beginner/ Use resources, ask questions, and

don’t be afraid to be wrong:

It’s only those who do nothing that make no mistakes. — Joseph Conrad

94

https://www.daedtech.com/how-developers-stop-learning-rise-of-the-expert-beginner/
https://www.daedtech.com/how-developers-stop-learning-rise-of-the-expert-beginner/

5.2. WHERE TO GO FROM HERE 95

5.2 Where to go From Here

Everywhere! There are plenty of links to get you started in Appendix A and there are
endless resources in the form of books and online guides to help you. The glossaries
throughout this text have mentioned all sorts of concepts you might want to read further
on. A few quotes in closing:

First learn computer science and all the theory. Next develop a pro-
gramming style. Then forget all that and just hack. — George Carrette

Computer science education cannot make anybody an expert program-
mer any more than studying brushes and pigment can make somebody an
expert painter. — Eric S. Raymond

96 Glossary - General Programming

Glossary - General Programming

algorithm A sequence of steps to go from some input to some specified output.

atomicity Most code operations map into several instructions to the computer. Atom-
icity is the property that either the entire action will be performed, or none of it.
This is commonly encountered in databases: for example if you overwrite a record
with a new one you want to be sure not to end up with a mashup of the original
and new record if something goes wrong. In some cases writing to a variable is
not atomic: you could end up with one byte in memory from the old value and 3
bytes from the new, giving garbage. This is mainly a concern with multi-threaded
programming or interrupts. 12

automagically (humorous) Automatically, as if by magic. Used mostly for systems
with nice properties of doing what is actually needed rather than following a
simple recipe, or when the details of how it works are tedious and boring, but the
outcome very useful. 69

compiler flag (Aka directive) Command line arguments passed to the compiler to
control compilation. For example in C you can define a value (for use with #ifdef
etc) using -D[arg.name|[= value|. Optimisation levels (how hard the compiler
works to speed up or reduce memory use of your program) are usually set with a
directive like -Ollevel number]. 69

heap Program memory that can be used dynamically (determined as the program
runs), for example anything used with malloc in C, ALLOCATABLES in Fortran
etc. C.f. stack, 59

interface The functions available, including their signatures. The bare minimum
somebody would need to use a chunk of code. 14

interpreter The interpreter, sometimes called a REPL (read-evaluate-print loop) is
the program which runs your code in interpreted languages. Usually you can get
a prompt at which you can type code directly, or you can invoke the interpreter
with a script, and it will run.

language standard Rules specifying what valid code is in a given language, and what
must be guaranteed by a compiler or interpreter about how this is implemented.
2,4, 25,97, 102

mutability In languages like Python, some data types are fixed when created, and
cannot be changed later. These are called immutable. In practise you will mainly
notice this with tuples. You can create a new tuple from some values, but you
can’t change a single element. Similarly, with strings you cannot change a single
character, you have to create a new string with the change included.

Glossary - General Programming 97

pass(ed) by reference Different languages pass parameters into functions differently.
When passed by reference, a reference to the variable is given, so any changes will
affect the named variable in the calling code. For example a function
FUNCTION inc(x)
x = x+1
END FUNCTION
y=1
inc(y)
PRINT y

would give 2. See also pass(ed) by value, 5

pass(ed) by value Different languages pass parameters into functions differently. When
passed by value, the current value (at call time) of the variable is copied to a
dummy variable inside the function. For example a function
FUNCTION inc(x)
x = x+1
END FUNCTION
y=1
inc(y)
PRINT y
would give 1 as y is not changed by the call to inc. See also pass(ed) by reference,

9)

scope Scope of a variable is the region of the program in which it exists and can
be used. Most languages have “function scope” so variables you create inside a
function can’t be used outside it. C-like languages add “block scope” so a variable
defined, for example, inside an if-block is lost when the block ends. 51

source (code) Your program text. This is distinct from the runnable executable, or
the bytecode or tokenised code produced by e.g. Python. iii

stack Program memory used for static variables (where the memory needed is known
at compile time and can’t change) such as numbers, strings etc. C.f. heap,

subroutine (c.f. function) In languages like Fortran, subroutines are sections of
code which can be used like a function but have no return value.

undefined behaviour Things which are not specified by a language standard can do
whatever they want - their behaviour is undefined. Beware that this can mean
doing exactly what you expect. Until it doesn’t. 5, 27, 30, 40, 55, 102

Appendix A

Links and Resources

Warwick RSE lists some useful general programming resources at https://www2.warwick.
ac.uk/research/rtp/sc/rse/training/ You'll probably find courses on almost any
aspect of programming on your favourite online service.

A.0.1 Tools Used

All of the tools and resources we used in these notes are available online, along with
some very good guides.

e Doxygen http://www.stack.nl/~dimitri/doxygen/
e GDB https://www.gnu.org/software/gdb/

e PDBhttps://docs.python.org/2/1ibrary/pdb.html or https://docs.python.
org/3/library/pdb.html

e Valgrind http://valgrind.org/docs/manual/manual . html
e gprof https://sourceware.org/binutils/docs/gprof/

e perf https://perf.wiki.kernel.org/index.php/Main_Page
e Make https://www.gnu.org/software/make/

e git https://git-scm.com/ and https://git-scm.com/book/en/v2

A.0.2 Online Sharing and Editing

You may often want to share a snippet of code with others, for example when asking
for help with a bug or providing it. Sometimes you may want to test a small piece of
code while away from your normal computer, or you want to share a snippet and its
results. Below are the most popular online tools, although many others exist. Note
that most will keep the code you enter, especially if you're not signed up. Some make

98

https://www2.warwick.ac.uk/research/rtp/sc/rse/training/
https://www2.warwick.ac.uk/research/rtp/sc/rse/training/
http://www.stack.nl/~dimitri/doxygen/
https://www.gnu.org/software/gdb/
https://docs.python.org/2/library/pdb.html
https://docs.python.org/3/library/pdb.html
https://docs.python.org/3/library/pdb.html
http://valgrind.org/docs/manual/manual.html
https://sourceware.org/binutils/docs/gprof/
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.gnu.org/software/make/
https://git-scm.com/
https://git-scm.com/book/en/v2

99

it public, showing lists of recent items; several allow you to make your item unlisted
but sharable via link.

Where possible below I have created an example using the IEEE floating point rules C
code and included that Sharing only:

Pastebin https://pastebin.com/ With a free account you can control and delete
your content. Example at https://pastebin.com/Vdqum4rE

Github Gists https://gist.github.com/ Requires Github account. Example at
https://gist.github.com/hratcliffe/2dd02726bb18323c78d78acbd9d2c1f1

Allow running and showing results:

CodePad http://codepad.org/ (Allows private pastes) Example at http://
codepad.org/k0q8k0ef

IDEOne https://ideone.com Example at https://ideone.com/0ryEtS Includes
Fortran support

https://aws.amazon.com/cloud9/ Requires AWS signup, may not be free.

For SQL database code http://sqlfiddle.com/

A.0.3 Code Style

Code style is very subjective, and the crucial thing is to be consistent. Adopt your own

style,

but when working in teams etc be sure to follow any guidelines. The following

are not recommendations, just examples of the wealth of options available online.

Mozilla’s general guidelines for code https://developer.mozilla.org/en-US/
docs/Mozilla/Developer_guide/Coding_Style

NASA’s C style guide. From 1994 but ANSI C is from 1989 so still useful http:
//homepages.inf.ed.ac.uk/dts/pm/Papers/nasa-c-style.pdf

Google’s C++ guide https://google.github.io/styleguide/cppguide.html

Stroustrup and Sutter’s C++ guide. Covers style and much more in Modern C++
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.
md

Fortran Style http://www.fortran90.org/src/best-practices.html

Met Office Fortran style http://research.metoffice.gov.uk/research/nwp/
numerical/fortran90/f90_standards.html

Python PEP-8 style guide https://www.python.org/dev/peps/pep-0008/

Google’s Python Style https://google.github.io/styleguide/pyguide.html

https://pastebin.com/
https://pastebin.com/Vdqmm4rE
https://gist.github.com/
https://gist.github.com/hratcliffe/2dd02726bb18323c78d78acbd9d2c1f1
http://codepad.org/
http://codepad.org/k0q8kOef
http://codepad.org/k0q8kOef
https://ideone.com
https://ideone.com/0ryEtS
https://aws.amazon.com/cloud9/
http://sqlfiddle.com/
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style
https://developer.mozilla.org/en-US/docs/Mozilla/Developer_guide/Coding_Style
http://homepages.inf.ed.ac.uk/dts/pm/Papers/nasa-c-style.pdf
http://homepages.inf.ed.ac.uk/dts/pm/Papers/nasa-c-style.pdf
https://google.github.io/styleguide/cppguide.html
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
http://www.fortran90.org/src/best-practices.html
http://research.metoffice.gov.uk/research/nwp/numerical/fortran90/f90_standards.html
http://research.metoffice.gov.uk/research/nwp/numerical/fortran90/f90_standards.html
https://www.python.org/dev/peps/pep-0008/
https://google.github.io/styleguide/pyguide.html

100 APPENDIX A. LINKS AND RESOURCES

A.0.4 Validation Tools

In interpreted languages in particular, there is no compiler to check for syntax errors
etc. A useful alternative is the “linter”. The origins of the name are lost to history,
but these tools read your code and analyse correctness and style. Note that correctness
and style can begin to merge together. For example, some regard Python’s PEP-8 as
guidelines, some consider them to define correct Python code.

Note: these are often called static validation tools, as they read your code as it is on
the page, rather than work out the full context of a statement.

e PyFlakes https://pypi.python.org/pypi/pyflakes
e PyLint https://www.pylint.org/

e JSHint (For Javascript code, but very useful if you ever deal with JS) http:
//jshint.com/about/

e For shell scripts https://www.shellcheck.net/

e Dozens of online regex checkers if you use those e.g. https://regex101.com/,
https://www.regextester.com/ (make sure to get the right flavour http://
www.regular-expressions.info/tutorial.html)

A.0.5 Code Documentation Tools

Many tools exist that allow you to embed special comments in your source code and then
extract them as some nicely formatted HTML, BETEXand/or Markdown code. These
are great for generating developer documentation and docs for libraries etc. Several
options also exist for hosting the docs online. A few of these are listed below. See also
Sec 1.6.1 Generators:

e Wikipedia link to list of options https://en.wikipedia.org/wiki/Comparison_
of _documentation_generators

e Doxygen (great for C++, good for C/Fortran, Python parsing experimental; out-
put as Latex and HTML) http://www.stack.nl/~dimitri/doxygen/

e Python docstrings and pydoc https://docs.python.org/2/library/pydoc.html

e Sphinx (designed for Python, can handle a range of languages) http://www.
sphinx-doc.org/en/stable/

e Pandoc (doesn’t generate docs, invaluable if you need to convert formats) http:
//pandoc.org/

Hosting;:

e Github.io https://pages.github.com/ which allows you to create a webpage in
Github repo form

e Read The Docs https://readthedocs.org/

https://pypi.python.org/pypi/pyflakes
https://www.pylint.org/
http://jshint.com/about/
http://jshint.com/about/
https://www.shellcheck.net/
https://regex101.com/
https://www.regextester.com/
http://www.regular-expressions.info/tutorial.html
http://www.regular-expressions.info/tutorial.html
https://en.wikipedia.org/wiki/Comparison_of_documentation_generators
https://en.wikipedia.org/wiki/Comparison_of_documentation_generators
http://www.stack.nl/~dimitri/doxygen/
https://docs.python.org/2/library/pydoc.html
http://www.sphinx-doc.org/en/stable/
http://www.sphinx-doc.org/en/stable/
http://pandoc.org/
http://pandoc.org/
https://pages.github.com/
https://readthedocs.org/

101

A.0.6 Resources and Help

Everybody will need assistance with something at least once, and there are many re-
sources for doing so. Often finding a good tutorial or guide is enough. If you do need
to ask for direct help, our guidelines for making a good bug or issue report are at
https://warwick.ac.uk/research/rtp/sc/rse/fag#bugreport and apply to most
asking-for-help scenarios as well as actual bugs.

e Tutorials etc on the Python wiki https://wiki.python.org/moin/BeginnersGuide/

Programmers

e Tutorials etc on the Fortran wiki http://fortranwiki.org/fortran/show/Tutorials

e https://stackoverflow.com/ Sometimes described as “beginner unfriendly” but
as long as you check if your question was already tackled and then write a good
post, usually helpful

e Places like reddit often have useful fora such as https://www.reddit.com/r/
learnprogramming/ or https://www.reddit.com/r/programming/

e Stackexchange is similar to stackoverflow, e.g. https://softwareengineering.
stackexchange.com/

https://warwick.ac.uk/research/rtp/sc/rse/faq#bugreport
https://wiki.python.org/moin/BeginnersGuide/Programmers
https://wiki.python.org/moin/BeginnersGuide/Programmers
http://fortranwiki.org/fortran/show/Tutorials
https://stackoverflow.com/
https://www.reddit.com/r/learnprogramming/
https://www.reddit.com/r/learnprogramming/
https://www.reddit.com/r/programming/
https://softwareengineering.stackexchange.com/
https://softwareengineering.stackexchange.com/

Appendix B
Must and Shoulds

B.1 Must

e As researchers, your priority is research. You code needs to work, and you need
to know it works. Anything that does not enhance that goal is decoration.

e If your code involves any sensitive data, you really must read up on relevant
regulations and protocol

e Create a working code

e Follow your chosen language standard

e Use some sort of versioning

e Validate your code enough

e Before you start coding in earnest, you will want to have some sort of plan
e do not write code that violates standards or has undefined behaviour

e if protocol matters you must find and follow the proper guidelines

e Do not optimise the algorithm at this early stage, but do not be afraid to throw
it away if it will clearly not serve your purpose.

e Do not assume every supposed anti-pattern is bad code

e But don’t jump to assuming your problem is special

e Never relax on standards - undefined behaviour is always bad

e Self-documenting style does not mean you do not have to document your code

e Always validate your inputs.

102

B.1.

MUST 103

If your work is funded by a research council you must read and obey any rules
they have as to sharing your code and its results

you did make a plan, right?
Always nullify pointers after freeing the memory they point to

when you have eliminated the impossible and still not found the answer, perhaps
it wasn’t as impossible as all that.

compilers will warn you about bugs like accidental assignment instead of compar-
ison if you let them

The fanciest debugger in the world will not help you if you are not thinking
Stop and think

you must document that a limitation exists

Some form of testing is essential in your software.

running tests tells you that the tests pass, not that the code is correct. You must
work hard to make this the case, not suppose it.

Unless your requirement is bit-wise exact reproducibility, (page 46) do not com-
pare floats for exact equality in your tests.

Once your code works, and not before, you may want to consider profiling

Testing is a tool, not a goal in itself. Your goal is writing correct software to do
research.

Remember that any two points can be joined by a straight line so you need at
least 3 points for convergence

The most vital debugging and testing tool is your own brain.

Always start at the first error! Often the rest are the same error popping up later
on.

When your code works, and not before, you can consider optimising. Before doing
this, you need to know which parts are slow.

This pattern, circular dependency, must be avoided.
Make recipe lines must be indented using a TAB character. Spaces will not do.
Only the last recipe is run, but prerequisites from all rules are considered

The most important thing about version control is to do it. It doesn’t matter
how, as long as it works.

104 APPENDIX B. MUST AND SHOULDS

e Git is not Github, and Github is not Git

e If you accidentally commit something protected, like a password or personal data,
a git revert will not remove it. Take care, because fixing it will not be fun!

e If you are working with somebody else’s repository, check whether they allow you
to push directly. On e.g. Github, a different model is used, see Sec 4.4.7

B.2 Should

e Divide into reasonably sized functions

e Binary bisection has uses in all sorts of areas, so make sure you understand how
it works.

e The moral here is NOT that you should not use libraries, but to be selective:

e [t is always a good idea to write a simple program with a new tool, before trying
to integrate it into your actual code.

e Avoid ambiguous letters: 0 and O are easily confused, as are I, 1 and 1

e you should help your users to preserve the information to reproduce their work
in future

e do not trust anything supplied by a user, even if that is you. This is not because
users cannot be trusted, but mistakes and ambiguities can happen.

e Compromises should be covered in code documentation. Make sure to consider
this in your own code, as you may not remember your reasons in a few months
time.

e But if you find yourself wondering “but why” very often, consider whether you
have got the right tool for the job.

e your aim is usually to find where what you thought would happen diverges from
what actually happens

e you should consider adding code to check for violation of your limitations

e The tests you really need to run are probably the ones you haven’t thought of,
because you never realised that could be a problem!

e Be careful when setting error intervals: absolute values are useful for things like
floating point errors, but in most we probably want to use an error percentage

e Avoid bit-wise exactness testing where ever possible. In most cases it is excessive.
This means no exact comparisons of floats.

B.2.

SHOULD 105

the compiler will not reorder dependent pieces of code; it can omit unreachable
code and no-ops and can remove certain other things.

Fix earlier errors first. Often later errors are a direct result of earlier ones, so it
pays to consider them in order.

make sure to distinguish good design from premature optimisation: don’t choose
approaches that wont ever be fast enough to be useful.

Remember the brackets around Makefile variables.

If you are not already, you should consider using Python modules, rather than
simple scripts.

Avoid breaking backwards compatibility where practical. That is, older data files
should still work with newer code

The first thing to do, once you’ve decided on a version scheme such as the 3-part
one above, is to make sure it is embedded into your output files (see also Sec
1.7.4).

	Preface
	About these Notes
	Disclaimer
	Example Programs
	Code Snippets
	Glossaries and Links

	Introduction to Software Development
	Basic Software Design
	Aside - Programming Paradigms
	How to Create a Program From a Blank Editor
	Patterns and Red Flags
	Practical Design
	Documentation Strategies
	Getting Data in and out of your Code
	Sharing Code
	Glossary - Software Development

	Principles of Testing and Debugging
	What is a bug?
	Bug Catalogue
	Non Bugs or ``Why doesn't it just...''
	Aside - History of the Bug and Debugging
	Your Compiler (or Interpreter) Wants to Help You
	Basic Debugging
	Assertions and Preconditions
	Testing Principles
	Testing for Research
	Responsibilities
	Glossary - Testing and Debugging

	Tools for Testing and Debugging
	ProtoTools
	Symbolic Debuggers
	Memory Checking - Valgrind
	Profiling and Profiling Tools
	Testing Frameworks
	Fully Automatic Testing
	Glossary - Testing and Debugging 2

	Workflow and Distribution Tools
	Build Systems
	Distribution Systems
	Introduction to Version Control
	Basic Version Control with Git
	Releases and Versioning
	Glossary - Workflow and Distribution

	Wrap Up
	Warning: The Expert Beginner
	Where to go From Here
	Glossary - General Programming

	Links and Resources
	Must and Shoulds
	Must
	Should

