Software Development
A Practical Approach!

Hans-Petter Halvorsen

[Planning

| Deployment
(Maintenance]

[Testing] The Software

Development -
Lifecyc|e Requirements
(SDLC) Analysis

[Implementation]

Design

https://www.halvorsen.blog

https://halvorsen.blog

Software Development

A Practical Approach!

Hans-Petter Halvorsen

ape e e L Planning }
.-~ Deployment S :

--* Maintenance

Testing ‘
; The Software .
$ Development v
\ " Requirements
' Lifecycle Avialysis
(SDLC)

Implementation |

N
Y;\

" Design

https://halvorsen.blog/

Software Development

A Practical Approach!

Hans-Petter Halvorsen

ISBN: 978-82-691106-0-9

Publisher Identifier; 978-82-691106

https://halvorsen.blog

https://halvorsen.blog/

Preface

The main goal with this document:

* To give you an overview of what software engineering is
* To take you beyond programming to engineering software

What is Software Development? It is a complex process to develop modern and professional
software today. This document tries to give a brief overview of Software Development.

SYStEM popul;
Maintehance. Deploymem:
http://home.hit.no/ hansha S

Review ¢ Crum TeStlng S0 ..Q

W

L Studio

Requirements Main

Services

d
Database

Cnnr.rr:r .E
Management H
o

&

Implementation ...,

PfO]ECt dlfferent Design Platforms meshods o As.mgnmem
g Winde
evelo tent. o B development R AL gt
sk “I"’“tSe['Ver Cod@: 2 :J’ ASPNET lL_l“L Largy D.E
eetings Lam ‘5 : G
LVIEW Vlsual E 8

g & o
e Th
ST -
g =
am

This document tries to focus on a practical approach regarding Software Development.
So why do we need System Engineering? Here are some key factors:

e Understand Customer Requirements
o What does the customer needs (because they may not know it!)
o Transform Customer requirements into working software
e Planning
o How do we reach our goals?
o Will we finish within deadline?
o Resources
o What can go wrong?
e Implementation
o What kind of platforms and architecture should be used?
o Split your work into manageable pieces

e Quality and Performance
o Make sure the software fulfills the customers’ needs

We will learn how to build good (i.e., high quality) software, which includes:

° Requirements Specification

e Technical Design

e Good User Experience (UX)

e Improved Code Quality and Implementation
e Testing

e System Documentation

e User Documentation

e etc.

You will find additional resources on this web page:

http://www.halvorsen.blog/documents/programming/software engineering/

Information about the author:

Hans-Petter Halvorsen

The author currently works at the University of South-Eastern Norway. The author has been
working with Software Engineering for more than 20 years.

For more information, visit my web site:

https://halvorsen.blog

http://www.halvorsen.blog/documents/programming/software_engineering/
https://halvorsen.blog/

Table of Contents

=] - 1ol TP PPPU P iii

Part 1: Introduction......ccooiiiiiiiiiiiiiieeeeee e 18

1 INTrOAUCTION Leueiiiiiiiiieieie e e e 19
00 A = 7= 1ol €= o 1V o o PP PURRR 24
A o] o o PP PPPTPPRt 25
10 B o To | KSR U PP U PP P PP OPPPUPPTROPPPPPO 27

2 SOftWAre HiSTOIY .uueieeieiiee e 31
2.1 INTrOAUCTION e e e e 31
2.2 SOftWAre TrendS......coiiiiiiiiieeeeee e 33

3 Software Developmentcooevviiviiiiiiiieeiiieieeieeeeeeeeeeeeeeeeee e 35
IR A @ o - 1 =T o T~ Y PPPTTRRP 36
3.2 SOftWArE SYSEEMS. .uuiie i e e e e e e e e e e e e e e 36
3.3 DOCUMENTATION ettt e et 38
3.4 Iterations and RElEASES.......ccouiiiiiiiiiiiie e 39

Part 2 : Software ENGINEEriNgcccevvvveieeeiiiiiieeeeeeeeiee e 41

4 DevelopmeNnt TEAMScieeeeeeeeeeeeeeeicceeee e e e e e e e e eevar e e e e e e eeeeeeeeanne 42
L R I =T 0 PP 43
B.2 ROIES et 43
4.2.1 StAKENOIAEIS ... 44
4.2.2 ProjJeCt MA@l ... ettt ettt e ettt e e e e e et s 44

4.2.3 System Architect. ..o 44

Vi

6

N U) QB 1Y =4 o 1= 44
T A T o o7 ={ =1 0 0] 1 1= SO PP PPPTPPRT 44
4.2.6 SOTEWAIE TSTOI ..eiiiiiiiie ettt et e st e e e st e e s enneee s 44
Software Development Phases........cccccuueuuiiiiiiiiiiiaas 46
5.1 ReQUIFEMENTS ..oiiiiiiiiiiiiee et e e et e e e et s e e e aaae e s eeeanans 47
o0 A B =T 1= o [48
T R <ol oY oY Tor= | B BT 1= o 1 49
5.2.2 UX DBSIZN ittt ettt e e e ettt e e e e e e eetenb e e aaaeaes 49
5.3 IMPlementation ... —————————— 49
o S =1 o | o ¥~ SO 50
ST R 1T Fo 1Y 0 1= o | 50
Software Development ProCeSS.....couuvvveeeeeeiieviiiieeeeeeeieeeeeeeevaaan, 51
6.1 Plan-driven MOdelscooiiiiiiiiiii e 53
6.1.1 Waterfall MOdel......ccueeiiiee e 53
B.1.2 VoMOGEL .o 54
6.2 Agile Software Developmentcceiiiiiiiieciiiiiiiieeee e 55
6.2.1 The Manifesto for Agile Software Developmentcccoooiiiiiiiiieiiiieiieeccccccecceece, 57
6.2.2 BUINAOWN Chartoiiiiiiiiii et 58
6.2.3 Waterfall Vs. AgIle.........eeeieeeeeee e 59
6.2.4 eXtreme Programming (XP) ..oocooooeoooeeeeeeeieeeeeeseeeeseeeeeeese e e s e nan 60
B.2.5 S UM L e 62
6.2.6 KAND@N L.eiii e e e e 64
6.3 Hybrid Process MOAEISuuuuuuiimmiiiiiiiiiiiiii e 65
6.3.1 Unified Process (UP)/ Rational Unified Process (RUP)ccccuveveeeeeeeeeiinirreeeeeeeeeeennns 65

R YU [1.4 1 ¢ - | Y2 OO 66

vii

O T (= of Y= 66

T SCIUM ettt e et s e et e e eea s e eeaaseeeannseanenansenes 68
7.1 ThE SCIrUM PrOCESS ..vvviiiiiieiiiiiciitittete e e e e e e e et e e e e e e e e e s s sarbareeeeaeeeesssannennens 69
7.2 SCrUM EVENTS ottt e e e e et e e e e 69
7.2.1 Daily SCrUM MEETING ..t e e s e e e e e e e s e e nnnan 70
7.3 SCrUM ArtifactS. i 71
7.4 The SCrUM TEAM ..uuviiiiiiiiiieeeeiiittet e e e e e e et e e e e e e e s s r e e e e e e e e e sssnnsnnees 71
7.5 SCrUM MEETINGS ..uniiiiiiiiiie e e e e e e e e et e e e e e e eaaan s 72
7.6 SCIUM TOIMMNS ittt ettt e e e e e e e et e b b e e e e e e e e e e ebnbaa e e e eeeas 73
2 A N1 T3 1 o I 1 Lol 75
7.8 SCIUM TOOIS i ittt e e e e e s s s ae e e e e e e e e e s ssaseneees 75

8 Project ManagemeNnt ... 76
ST I o T 1Yot ol - T o o1 g 77
8.2 Kick-Off/BrainStOrmMing......cccoeeiiiirieiieiee ettt e e e e e e e e e nannees 78
8.3 Software Development Plan (SDP).........uuueeuiieuuiuiiiiiiieeiineneanees 80
<30 701 A C - [1 4 @1 1= o PP PPPPP PP 81
S A Y U= T= T o ¥ =4O 82
8.4.1 Meeting Agenda ... 83
8.4.2 MiINULES OFf MEELING ...ccci e e e e e e e e e e e e e e eeean 83
8.5 Agile Project Planning and Tracking..........ceeeeeeieiiieeieiiiiceeee e 84
8.6 MiICrOSOTE TEAMS ...vviiiiiiiiie et e e e e e e e e e e e e e snaneees 86
S T YU [1 4] 1 0 - | Y2 87

9 Requirements ENINEEIING....ccocuuiiiiiieiiie e 88

9.1 User REQUIrEMENTS c.uuuiiiiiiiiiiei et ee e et e e e et e e e e e e aaaa s 90

viii

9.2 System ReQUITEMENTS ...uuuiiiiiiiei ettt e eeeaae e e e e e eanaas 90
9.3 Functional REQUIFEMENTS.......uuiiieee et e e e e e v e e e 90
9.4 Non-Functional REQUIrEMENTS.......cceevviriiiiiieee e 91
TR T £ YO PPPTTT 91
9.6 Project Estimation. ... 94
0.7 EX@ICISES ettt ettt e e e ettt e e e e e et e e e e e e e 94
10 User eXperience (UX)...ooooeeeeeiieiiiieeeiiieieeeeeiiiceeee e 96
101 UX GUIEINES..cciiiiiiiiiiiieeeeee ettt e eee e 97
O A C1 U 1 I Y/ o Yol (U T o PP 98
10.3 CreatiVity e e e e eae 99
11 UML e e aaas 100
5 00 R 1o | 4 o Yo [0 o o [P P TP 100
11.2 UML SOfEWAIE ccoeieiieeeeeeee ettt ee e e e s 101
11.3 USE CASE ittt ettt e et s e et e e e et e e e e e e e e ean e aees 101
i Y <To [UT=T s Tol =l DI - T={ -1 o 4 PPNt 102
11.5 Class DIagrami. e e i e e iiiiieeeee e et e e e e e e e e e e e e e e s saabraaraeaaeeeas 103
11.6 Creating UML DIagramsSccuui it eee e e et e e e e e e e eaa e 103
11.7 UMLINAGIle/SCrUM?eviiiiie ettt e e 104
11,8 SUMIMIA Y ettt s e et s e et e e e e e e e e e e ea e e eaa e eaaaaes 105
11.9 EXEICISES et e e 105
12 Software Implementation................cccc 107
12.1 Programming Style & Coding Guidelinesccceeeeeerrririiicieiiee e, 108
12.1.1 NAMING CONVENTION 1uuuiiiiiicieiiiiciee et e e e e e e et e e e e e e e e nerbaneeeeas 109

1 006 0 0] 00 1] o) £ TP 109

0200 T B 1= o 10 =4 =4 o V- U 112
12,4 COUE ROVIBWS..cciiiiiieiiiiiiiitteee ettt e e e e et e e e e e e s s s s baaeaeeeeee s 113
2 T U= - Tt o1 1o =P 115
13 TSN e ae 117
131 INErOAUCTION ceeeiieie e e s ee e e e 117
13.1.1 TESELEVEIS . 122
13.1.2 2 TU o I = Vol TV = 123
13.1.3 SOFtWArE VEISIONING it e e e e e e e e e e e e aaaaeaaeens 123
G A =T A O 1 (= = {0] =SSP PPUPRTRPNE 126
13.2.1 BIaCK-b0X TESTING ...uvvveiiieeee i e e e 126
13.2.2 White-boX TEStING...cccoeeeeeee e, 127
13,3 TESELEVEIS v 127
13.3.1 L oY I o =P 129
13.3.2 REEIESSION TESTING wevviiee ittt e e et 132
13.3.3 INTEEIATION TESEING . uuuiiei it e e e e e e e e e e et e e e 132
13.3.4 System Testing/Validation TeSHING.......ccccuiieieiiiiiee et 132
13.3.5 ACCEPTANCE TOSTING ceiiviiiiiieii et e et e e e e e e e e e e e e e e e eeeaeeaaans 132
13.4 Test DOCUMENTAtIONiiiiiiiiiiiiiice e 133
13.4.1 TESE PIaNNING oot e e e e e e e e e e e e aaaaaees 134
13.5 BUg Tracking SYSTEMSceiiiieeeeiiceee e e e e e ee e 135
13.6 TeSt ENVIFONMENT....uuniiiiiii e e 136
13.6.1 ViIrtUAIZATION. ..eeiiieiee e e 139
13.7 Terms used in TEStING ..ccccvvviiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee, 141
13.7.1 2T =P 141

13.7.2 DT oYUT = =41 oY= PPPRRRPRPRPRR 141

13.7.3 €O COVERIAGE ..o e e oo 142
13.7.4 Eat yOUr OWN DOZ fOOM ...vuviiiiiiiiiiiiiiiiiiiiiiitiiietitatiiartaestaessaeerassressaaassaessenssanssnnsannes 142
13.7.5 COAR/FEALUIE FIEOZE ...vvevvveeeeeeeee ettt e e e e e e e eea e e 143
13.7.6 Test-Driven Development (TDD)occececciiiiieeee et e e e e 144
13.7.7 Development-Driven Testing (DDT) ..ccooccuiiiiiieeee e e 144
13.8 The 7 Principles of TeStINGccuvvuiiieeieeeeeeeecceee e 145
13.9 TeSting SUMMAIY ceouueeiieee i e et e e e e e e e eeenaaaaes 145
13,10 EXEICISES wuieeiiiiiiiiiiiee ettt e e ettt e e e e e e e et eb b e e e e e e e e eeeneaaaas 146

14 Deployment and Installationccoeevveiiiiiiiiiiiiiieee e, 148
I 300 R o | 6 o Yo [0t o o P PP PPPPPPPPP 148
14,2 REIEASES ..uuuiiiiiiiiee ettt a e s e aaaaae s 149
10 T B 7= o] Fo 1V 31 1T o} P 151
14.4 Test and Production ENVIrONmMeNTt........cceeeviiiiiiiiiiiiiiiieeeeee e 152
14.4.1 Development ENVIFONMENT..........uuiiiiiiiiiiiiiiiiiiieiiieriaeereeeeeeeraereeerrrarrrerr————————————. 153
14.4.2 Production ENVIFONMENT......c...uiiiiiiiieeieeeeiteeeee et e e e e e 153
14.4.3 TSt ENVIFONMENT...eiiiiiiiiiiiite ittt baneeene 154

15 Project Documentation........ccoevevieiiiiiiiiic e, 155
15.1 Process DOcumentation........ccuuuuuiiiiiiiiiiiiiiiiie et 158
15.2 Product DOcUmMENTAtioN ..ccccviviiiiiiiiiciiiicccceceeeeeeeeee e 159
15.2.1 SYStEM DOCUMENTATION. ..uutiiiee it e e e e e e e e e e aeaber e e e eaeeenees 159
15.2.2 UsSer DOCUMENTATIONuuiiiiiiiiiiiiiiiiiiiet ittt beeebeee 161
15.3 Setup & DistribUtioncooieieiiiiiiiiee e 163

16 Software MaintenanCecceeeeeeeeieeeeeeiieeeee e 164
16.1 INErOAUCTION ceeiiieiii et e e e e e e e e e es 164

i O | (=Y (o] 1= LT UPPPPPRRPPPRt 164

Xi

Part 3 : Platforms & Architecture............ccocc 167

17 Software Platformsoooeeiiiiiiiiiie e, 168
0 R 1o | 4 o Yo [0 o o PP PPPPPPP 168
17.2 Platform Vendors. ...ttt 169
17.3 DeSKEOP i 170
17.3.1 WINAOWS ...ttt e e e e e e e e e e s e s bbbt et e e e e s essannnreeaeeeeeens 170
17.3.2 [T ToL @ 1 TP 172
17.3.3 [T) TP 174
174 WD et e e e aaaaee s 176
17.4.1 WWED SEIVEIS ...eeteeeeeeeeee ettt e e e e e e e e s st e e e e e s e s s annnreeeeeeeeens 178
17.4.2 WED FrameEWOTKS.....cooueiiiiiieieeee et e e e e e e eeeeeens 178
17.4.3 FAN] S N = IO ¢ = PP 179
17.4.4 Web Scripting LANGUAEEScoooeeeieeeeeeeeeee e 180
17.5 MODIlE DEVICES ..ccoviiiiiiiiieiiieeeeeeeeeeeeeeeeeeeeeeeeeee e 181
17.5.1 1O S e aaeaaaaeaans 183
17.5.2 ANAIOI i e e e e e e et e e e e e e st aeeaee s 183
17.5.3 Windows 10 and WIiNdOWS 11ccuuiiiiiiiiiiieiiiiieee ettt e et e e 186
17.6 Cloud COMPULING covvueiiieeeeeeeeeeecee e e e e e e e e e e e r e e e e e e e e eeesnnaaans 187
17.7 OPEN SOUICE ..neiiiiiiiiee ettt ettt e et e e et e e e e s e eeaeseenaeeeenseeannnaes 188

18 Software Frameworks & Languagesccccoevvvveeeeeevevvneeeeennnn. 189
18.1 Object-Oriented Programming (OOP)......ccoovveeeeeeeeiiieieeieeeeeeeeeeeeeeeeeeeee 189
18.2 Popular Programming LANGUAEESccevvvviiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeeeeees 190
18.2.1 L PP UP PP PT R PUPPPPPPRPPR 191
18.2.2 L0 PP PP PP PPPPPPPPRPIR 192

Xii

18.2.4 JAVA ettt e e e e e et e e e e eeeeranaas 193
18.2.5 (0] o T=Yot 4NV 7 A | RO SRRR 193
18.2.6 VAU | 2 1 Lo PUP PP 194
18.2.7 T o PR 194
18.2.8 Y24 Vo o TSR 195
18.2.9 P H P e e e e e e e e e e e e e e et e e eeeba e eaeanas 196
30 O B -1V 7= N ol | o) S PP UPPPP PP 196
R 7070t R O | PP 197
18.2.12 IMATLAB ettt ettt e e s e e e e ettt s e e e e e e e et ab e e e e e eeeeeanaaaas 197
T N T =Y o)V | Y 198
18.3 NaminNg CoNVENTION ..ueiiiiiie e e e e e e 200
18.4 Defensive Programmingcouuuuiieeeeeeeeeeeeiiiicieee e eeeeeevareee e e e e e e e eeeasaaaans 201
18.4.1 o ol o =T aTo |11 V- S P PPPPRP 202
18.5 Software Frameworks.......ccccoeiiiiiiiiiiiiee, 203
18.5.1 NET FrameEWOTK ettt e st e e s e e e 203
18.5.2 ASPLUNET Leeititiiee ettt ettt e e e e ettt e e e e e e e et e e e et e et et e e e e aeeeaaraaaas 204
19 Software Architecture.........cccccoeii 205
19,0 AP et e e et e e e et e eetaa e e eraaneaaae 207
S T O 11T o) YT V- P 209
19.3 WED SEIVICES ooieiieieeeeeeeeeeeeeeeeeeeeeeeeee e 210
19.3.1 SOAP WED SEIVICES .. eiiiiiiiieiiee e e e e ettt e e e e e e s e e e e e e e st r e e e e e e e s s s nnnranaaeaaeens 213
19.3.2 REST WED SEIVICES ..uvviiiiiiiiiiiiiiieeee ettt e e e e e s e e e e e e s s aaeeaes 214
19.3.3 Creating Web Services with Visual Studio........ccuvviiiiiiiiiiiiiiiiiecceceeeee 214
19.4 3-tier ArchiteCture .o, 215

Part 4 : Management and Development TOOIS.......ccceeevvvvevveieeeennnnn. 220

Xiii

20 Integrated Development Environment (IDE)..........covvvvvvnnnnnn... 221
20.1 ViSUQI STUAIO cueeiiiieeieieee e 221
20.2 Visual STUdio fOr Mac.....coeiiuiiiiiiiiiee e 222
20.3 Visual StUdIO COAEuuiiiiieiiiiiee et 222
204 XCOOE ...ttt 223
20.5 ECHIPSE ettt e e e e e aaa s 224
20.6 ANdroid StUAIOcceiiiiiiiiiie e 224

21 UML SOFEWAIE ..ttt e e 226
211 VISIO ceieeiiiiiiiieeeeeeeee e Error! Bookmark not defined.
21,2 STAFUML ettt sttt 226

22 Source Code Control (SCC)u.uceeiiiiiiiiiieeiiiiiiiieeeeeeeeeeeeeeee e 227
221 INTrOUCTION et e e s e e e 227
22,2 AZUIE DEVOPS ..eeeieeeeiitiee ettt ettt e ettt e et e et e e e ea e e e een e eees 229
22,3 SVN ettt e et e e e hr e e e bree e snreeeeas 230
22,4 CVS et e e 230
22,5 G e et e e e e et 230
226 OBNEIS e 230
22.7 Cloud-based SCC HOStING SEIVICESuuuvvurrrrrreriiiriiieeirirereeeeneeeerenennnnnennn. 230

22.7.1 AZUIE DEVOPS SEIVICES..cciiiiiiiiiiiiieeiiieiieetteeeteee ettt ettt et e et et e e e e e e e e e e e e e e e eeeeeeees 231
22.7.2 (G111 = [V o PP TTP PP 231
22.7.3 2114 o T] P EPPPPR 231
23 BUug Tracking SYSTEMS ...ueeiiiiiiiiie et e e 232
24 AZUIE DEVOPS oottt e 233

24.1 Source Code CONLrol (SCC)...uuuuurururrrerrrrrrrrerrrrrrersrsrnrsrsrssrrrrrrsrsrssrsn—————. 234

Xiv

242 Areas and [terationS......ccuueiiiiiiieiee e 235
243 WOTK IEEIMS ettt e e e e e e e e e e e e s s s s aaraeees 236
243.1 QUETIES .ttt e e 237
244 TASKDOArdeeeiiiiiiiii e 238
24.5 Azure DevOpsS SErViCEScvveeeeereeeereerevrrnnnnnn. Error! Bookmark not defined.
246 Client TOOIS ccooviiiiieiiieec e Error! Bookmark not defined.
24.6.1 TeamM EXPIOTEr oot Error! Bookmark not defined.
24.6.2 MS EXcel Add-iN .ooooiiiieiiiiiieeieeeeee e Error! Bookmark not defined.
24.6.3 MS Project Add-inccuveeiieiiieeeieieieeeeeeeeeerreeeeeeenenn. Error! Bookmark not defined.
24.6.4 Windows Explorer Integration...................c.l Error! Bookmark not defined.
24.6.5 Azure DevOps MSSCCI Provider.......cccccveveeevieeeiennnnn.. Error! Bookmark not defined.
24.6.6 Team Explorer EVEryWhere..........uvvvvevvvvevvvvvvevvvennnnnnns Error! Bookmark not defined.
24.7 Agile (Scrum) Development in Azure DevOPS......ccocccvvviriieeeeeeeeeseciiveneen 238
24.7.1 Product Backlog Items in AzZUre DEVOPSuuvvvvrurerurrirrrereerieereeereesneeerennnneennnnnnne. 239
24.7.2 Sprint Backlog Items in Azure DeVOPScooeeeeeeeei e, 240
24.7.3 TaSKDOAId ... e e 242
24.8 Software Testing in Azure DeVOPS........ccevvvuiiieeeeieeeeeeeiicciee e e e eeeveeneaaans 243
24.8.1 Test Planning in Azure DeVOPScceeeevervvivireeeeeeeeennn. Error! Bookmark not defined.
25 Databases.....cooeeciiiiiiiiiieeee e 245
25.1 SQL SOIVEI et e 245
DAY A = 1 D 1T -4 -] o ¢ PPN 246
25.2.1 MS ViISIO cveiiieeeieeeeieeee e Error! Bookmark not defined.
25.2.2 erwin Data Modeler.......cccoviieiiiiiieiiiiecceeeee Error! Bookmark not defined.
25.3 Structured QUErY LANgUAGEuuuuuueurureiiieriieeererrisaeansresnsnnssernsenrannnnnnna.. 248

25.3.1 1 ol o =t o ol < T 248

XV

B S U 1 1l =T o] ¥ - 250
26.1 Unit TeSts FrameWOrKSuviiiiiiiiiiiiiiiiiieeeee et 250
26.2 Unit Testing in Visual StUIOcceviiiiiiiiiiiiiiiiiee e 251
26.3 COUE COVRIABE . uuuieieiieeeieeeriiiieeeeeeeeeeeeerareeeeeeeeeeeeessaaa e eeeeeeeesessranaeeeens 253
26.4 EXEICISES ...oiiiiiiiiiiiiee e e e e 254
27 Deployment in Visual Studio..........ccvvvvvviiiiiiiiiiiiiiiiiieieveieeeeeee, 256
27.1 Setup Creation SOftWAre.........uuieiiiiiiiiiiiiiiieiiiiiireeirrereeseaeereeearaerrrareara—————— 257
27.2 Visual StUdio ...eeveeiiieeieiiiieeeeee e Error! Bookmark not defined.
27.2.1 InstallShield Limited Edition..........cccoecvieeeniiieeeenee. Error! Bookmark not defined.
27.2.2 WX TOOISEL..euvviiiieeeeieciiiiteee e Error! Bookmark not defined.
27.3 ASP.NET Core Deploymentccceeeeeeeeeeeiiiiciee e 258
Part 5 : Cyber SECUNLY . .ucieieiii e e e 259
P T 1 o 1T Y =Tol U1 1 VPP 260
P22 38 R o | d o Yo [UTo1 d o] [OOSR RPPRRRRRPRR 260
28.2 Types of Cyber Security Attacks.........ouvvriieeeeiiieeeeeicieee e 261
28.2.1 RANSOMWAIE ..t e e e e e et e e e e et e e eeeenaeeeennas 262
28.2.2 Y YA TP PP UPPPPPR 262
28.2.3 SOCIAl ENGINEEIING ccciiiiiiiieeeee et e e e e e s s eeeeeees 262
28.2.4 PRISHING e e e e e e e e e 262
28.2.5 Y o1 [1 1 [P UUU PP PO P PUPPPPPPRPIR 263
28.2.6 1) @ 1 I 1o | [Tt o o o RS 263
28.3 HOW tO DE SECUIE? .. 263
28.3.1 T VYo T o [P PPPPPPPRP 264
28.3.2 FIFEWAID .. e e e e et e e e e e e e s aeae s 264

28.3.3 Web Application Firewall (WAF) ...t 264

XVi

28.3.4 Antivirus and Antimalware SOftWarecoooviieeiiiiiieeee e 265
28.3.5 ACCESS CONEION 1ttt e et e e s s e e e saneee s 265
28.3.6 Two-factor AUthentication...........oeiiiiiiii e 265
28.3.7 VPN oottt sttt 266
28.3.8 Web Hosting ProViders ..., 266
28.3.9 WI-Fi NETWOIK it 266
28.3.10 OPerating SYSTIM .uuuiii it e e e 266
28.3.11 EAUCATION c.eeiiiiiie et neees 266

P4 I @ | I [o =T ot d o o [P 267
29.1 SQL Injection EXamMPles.....cocevuiiiiiiiieieeeeeeeeeieee e e e eaan e 267
20,2 RESOUICES. ..ttt ettt e et e e et e e e e tee e e e e teta e e e eeann e eeeennaeeaees 268

30 Userldentity and LOiN......ccceeeriieieieiiiiiiiccieee e 269
30.1 PaSSWOI SECUITY .ceeeeeeieeeiiiiiiieeeeeeeeeeeetceee e e e e e e e e ee v e e e e e e e e eeaabaaaeeeeeas 269
30.1.1 ENcryption and DECIYPEING....uuuuuuvueiiiriiieiieerieeriieriirrraerrerrrrerrrrrreerrrar..—————————————. 270
30.1.2 [=1 a1 Y= SPO PP PPPRRPPRPPPRR 270
30.1.3 RAINDOW Tabl@S ..cciiiiiiiiieee e 271
30.1.4 Y= 1o V- PRSPPI 272

31 SQL Server Authentication.......cccccvviiiieiiiiiiiiiirieeeeeee e 274
S 3 I R o | oY 1¥ ol £ o o [OOSR RRPRRRRRRPRR 274
31.2 AUTRENTICATION et 274
31.3 Create Logins in SQL SEIVEIcciiiiiiiiieeiieee e 275

Part 6 : Additional RESOUICESuviiiiiiiiiieiieiiiiiirreeeee e 278

K €] (011 | Y AT 279

RO O N S ettt ettt e e e et e e e e e e e eaer e s enarereaanaaens 282

XVii

Part 1 : Introduction

In this part, we discuss what software development is with some examples. We also give a brief
overview of the software history.

1Introduction

What is Software Development? It is a complex process to develop modern and professional
software today. This document tries to give a brief overview of Software Development. Normally
we use the terms System Engineering or Software Engineering.

=

System Engineering: The process of analyzing and designing an entire system, including the

Software Engineering: https://youtu.be/fAdpWVzpvUE

hardware and the software.

Software Engineering: The discipline for creating software applications. A systematic approach to
the design, development, testing, and maintenance of software.

A lot of systems today have a mix of hardware and software that is tightly integrated, like modern
smartphones, tablets, etc. Creating such systems involves a lot of different disciplines.

Software is any set of machine-readable instructions that directs a computer's processor to
perform specific operations. The term is used to contrast with computer hardware, the physical
objects (processors and related devices) that carry out the instructions. Computer hardware and
software require each other, and neither can be realistically used without the other, see Figure
1-1.

https://youtu.be/f4dpWVzpvUE

20 1 Introduction

Software

Hardware)

Figure 1-1: Hardware and Software working together

In Figure 1-2 we see a typical network and infrastructure that the software relies on.

Windows Server 2008/2012

A &

Database
Server

’:> Network &
" Infrastructure

N " s

Internet
SQ erver

Figure 1-2: Typical Network and Infrastructure in Software Development

Part 1: Introduction

21 1 Introduction

Figure 1-3 we see the complexity of software development and different components that are
involved.

' | Presentation Layer |

Network/Software Architecture

[}
2 $
Client/Server Architecture 3 Layer Architecture SOA Architecture F] Business Logic Layer I
R o= 2
y g) Data Access Layer
Mac OS X L 13 = & a e l : *
== Windows 8 . Virtualization!
I VMware HyperV Data
[| Source
‘ [= egy&wg Port 8080 :
‘J £J Windows Azure o HTTP A
Clients =S, Wepb | ASPnet @D
W { The Cloud) ; s =
. () erver 1
RDC/TeamViewer @ Network } _ﬁgl /
| Hardware + Software-~ I 4 Acache
Internet, Ethernet, TCP/IP, HTTP, VPN, Port 1433 ,':l“*‘
OPC Tunneller Routers, Switches, Computers, Protocols, g, oq procedures 0L Server :
Software 0Sl, XML, SOAP, etc. e My 5(}}
oPC BRGATeamdewer Database 4 ariaDB
Earvar A Server
B Windows Server 2012 L " il orACLE

—— e

Figure 1-3: The Complexity of modern Software

In Figure 1-4 we see the different phases involved in the Software Development Lifecycle (SDLC).

Part 1: Introduction

22 1 Introduction

gl S [Planning J

.- Deployment ,
,.f:/-~-*’“a’ Maintenance .. i
y T A u |
Testing ‘
| The Software
f v
4 Development
| . Requirements
Lifecycle Atialysia

- (SDLC) ;

Design

Figure 1-4: The Software Development Lifecycle
The main parts or phases in the software development process are:

* Planning

* Requirements Analysis

* Design

* Implementation

* Testing

* Deployment and Maintenance

In Figure 1-5 we see examples of some of the different activities involved in the different phases of
software development.

Part 1: Introduction

23 1 Introduction

Functionality Requirements
Initial User Interface

Planning Technology Platform Selection
. Technical Architecture
_ Support Requirements e Tl
Installation . Application Architecure
: -Detailed Specifications
. /[\ System Interface
Maintenance : _ b
. Design "%
\\ /
Deployment A
S \ﬁ///ﬁnallze User Interface
Acceptance | | Wi Test Plans
Testing _camm | _ﬁ_/
« \\‘ . \\\
"\ Application Code Development
SystemTesting| Testing | \d__ ' Implementation
/ / System Interface Development
\ / \ .'/
. UnitTesting

Integration Testing Represslaniesting ’ | o
Integration with existing Apps

Figure 1-5: Activities involved in the different Software Phases

As you see, software development involves a lot of phases, they are executed by different
disciplines and different people. We will discuss and explain all these things later in this document.

Why Do Reviews?

Cost per defects

SDLC (Software Development Lifecycle) >
; o
o | 0O X
«e 2 | PGl oo e
\! S e\t XN o
e 0es= ' Qe <e° e

Figure 1-6: Have Reviews at all levels in the Development Cycle

Part 1: Introduction

24 1 Introduction

1.1 Background

Software and software systems are getting more and more complex, so it is important to have the
necessary “tools” in your “toolbox” to be able to create and maintain your software.

Software Development is a complex process, and it may involve a lot of money and a lot of people.
Here are some examples:

* Windows 7: A Team with 1000 Developers created Windows 7
* Number of Code Lines: Real systems may have millions of code lines
* Big money: 100+ million Development Projects

* Combination of Hardware and Software: Most of the projects involve both hardware and
software and integration between them.

* iPhone 1: Development period 2004-2007, 1000 Apple employees worked with the device,
Estimated cost: $150 mill.

All this need structure! - Software Engineering is the Answer!

a = ““155%
S 0“5S3

........

/

SSBs nye nettsider ble i dag sjesatt. Det er over tre &r etter planen, og med budsjettsprekk i 100 millioner kroners-kiassen.
Plattformen er basert pa friprog-publiseringsi@sningen Enonic CMS.

Dette kostet 125 millioner

Nye SSB.no lansert. Sjekk resultatet.

Marius Jergenrud

Nye nettsider for Statistisk sentralbyrd (SSB) skulle koste 12 millioner kroner. Naer 100
millioner kroner var svidd av da digi.no avslarte skandalen i fjor sommer.

Prosjektet ble pabegynt allerede varen 2007. Fem &r senere kunne ingen svare pa nar
nettlasningen ville sta ferdig.

Prislappen har n rundet 125 millioner kroner. Fredag ble nye SSB.no omsider lansert.

Part 1: Introduction

25

1 Introduction

1889

1897

ayod 3 }aab

Thank god not everything is software

[http://geek-and-poke.com]

Project Planning and Management is important in Software Development, and we can use

different approaches to deal with Software Development, which we will cover in this document.

Especially so-called Agile approaches, such as Scrum, have become very popular today.

1.2 Topics

Below we list the different topics covered in this document. The Software Development Life Cycle,

shorted SDLC, involves distinct phases, such as:

e Market research

e Gathering requirements for the proposed business solution
e Analyzing the problem

e Create a plan or design for the software-based solution

e Implementation (coding) of the software

e Documentation in different ways

e Testing the software

e Deployment and Installation

e Maintenance and bug fixing

e Marketing

See also Figure 1-7 for topics involved in software development.

Part 1: Introduction

26 1 Introduction

There are different approaches (Software Development Processes) that deal with these phases,
such as:

e Waterfall model

e V-model

o Agile Software Development (such as Scrum, XP, etc.)
e Spiral model

e Rational Unified Process (RUP)

e etc.

We will learn more about these development processes later in this document.

Software Engineering

L Johid L) es
% : i e 1
: ~ - i =

R ——
= BT A LR LRy pr
Development
Processes
Design
(Quality Architecture
Control
- .] i OEr mir y
— - - =
—

Figure 1-7: Different Topics involved in Software Development

Software Development also involves separate roles, which are organized in different teams (Figure
1-8). Typical roles are:

e Project Manager

e System Architect

e UX Designer

e Programmer, System Developer
e Tester

e Customer

It is crucial that the separate roles and teams can work together and collaborate.

The Programmer or System Engineer must deal with the fact that there exists hundreds of
different Programming Languages. Each language has pros and cons, so it is important to find out
which programming language is best suited in each situation.

Part 1: Introduction

27 1 Introduction

2 Collaboration!

\ L L
Software Architect

=

Software Tester

Project Manager

H
«»

UX Designer Programmer

Figure 1-8: Distinct Roles involved in Software Development
In this document, we will learn how to build good (i.e., high quality) software, which includes:

e Requirements Specification

e Technical Design

e User Experience (UX)

e Improved Code Quality and Implementation
e Testing

e System Documentation

e User Documentation

e etc.

1.3 Tools

To create great software, as a software engineer you need a toolbox with proper tools, otherwise
you will not succeed in your job (see Figure 1-9).

Part 1: Introduction

28

1 Introduction

Your Toolbox

e PC
* Programming Language
* IDE (Integrated Development
! Environment)
| + Frameworks
* SCC Tool (Source Code Control)

* ALM Tool (Application Lifecycle
Management)

* Knowledge about Software
Engineering

You cannot do a good job as a software developer without some proper tools!

Figure 1-9: The Toolbox of a Software Engineer

When working with software development it is important to have good tools. The developer needs

of course to use a programming language and proper IDE (Integrated Development Environment).

In addition, a so-called ALM Tool should be used. ALM is short for Application Lifecycle

Management. An ALM tool typically facilitates and integrate things like:

Requirements Management
Architecture

Coding

Source Code Control (SCC)
Testing

Bug Tracking

Release Management

etc.

There exist a lot of such tools, e.g., Azure DevOps, lJira, etc.

We will take a closer look at Azure DevOps (or the online version of Azure DevOps: Azure DevOps

Services) in this document. Azure DevOps from Microsoft is tightly integrated with Visual Studio.

Typically, you need to share the code with other developers or testers in your team or other

teams, so it is crucial that you have tools that can be used to share your code, that makes sure that

Part 1: Introduction

29 1 Introduction

old versions of your code will be stored, and can be restored, etc. Such a system is called a Source
Code Control (SCC) system.

Your software will also contain a lot of bugs that need to be found, tracked, and fixed, etc. To
handle that we need a so-called Bug Tracking system.

In Figure 1-10 we see some of the bug tracking functionality in Azure DevOps.

New Bug 1*: WS is not working
B X @ 0! Copy template URL
Add...

WS is not working

STATUS CLASSIFICATION PLANNING

Assigned To * Area Development Project 1\Deskiop * Stack Rank

State Active « [Iteration Development Project 1\Beta > Priority 2 -
Reason New b Severity 3 - Medium ¥
REPRO STEPS SYSTEM INFO EST CASES HISTORY ALLLINKS ATTACHMENTS

DISCUSSION ONLY ALL CHANGES
[Mo entries with comments]

Figure 1-10: Bug Tracking System

In Figure 1-11 we see a typical software project with different platforms and frameworks involved.

Part 1: Introduction

30 1 Introduction

Clients (2) lmu
: , S—— A
o Visualstudio 8 LabVIEW e ASPnet G rabiet or Smartphone
|) Web Browser — :
. - Visual Studio/C# - ASP.NET |
: - WinForm/WPF - PHP : ;
| - LabVIEW - lavaScript, HTML Cllent#3 mwnsoues |
: Client #1 Client #2 - i0S (Xcode, Objective-C)
| (D - Android (Eclipse, Java)
— - Windows 8 (Visual Studio/C#)
Web Services
oo . - 1/0 Module e ,
USB-6008 4Tank w :) Internet
Examples: — == Server-side Logic Information
3 Services (lIS)
3 Layer - or Apache
Architechture = e
Business Layer (Logic)
 Data Layer(Logic)
& oL saLserver(orMysaL,
Weather $GL Server SQlite, Oracle)
Station == Windows Server 2012
Server

Figure 1-11: Typical Software Project with different Platforms and Frameworks involved

Typically, your software needs to be installed and be running on different devices, such as PCs,
tablets, smartphones, etc. You also need to store the data, typically in a database, such as
Microsoft SQL Server, MySQL, etc.

All these devices and data also need to communicate with each other over a network, either an
internal network (LAN, Local Area Network) or over Internet (WAN, Wide Area Network).

All these things make it very complicated to develop, test, deploy and install such systems. That’s
the reality for a modern software developer.

Part 1: Introduction

2 Software History

2.1 Introduction

Computer and software history goes back to the beginning of the 1900 century. IBM was
established in 1911, Hewlet Packard (HP) was established in 1939, the transistor came in 1947, the
first Microprocessor came in 1972, etc. But “personal computing” started in 1981 with MS-DOS
and the IBM PC. In 1984 came the famous Macintosh from Apple. Windows 1.0 was released in
1985.

They found a bug (a moth) inside a computer in 1947 that made the program not behave as
expected. This was the “first” real bug.

In the 80s and 90s we saw the beginning of the personal computer era that started with Mac
computers from Apple (Macintosh, 1984) and IBM computers from IBM (or IBM compatible
computers from other vendors) with MS-DOS and later Windows installed (Figure 2-1).

The beginning

" & File Edit Uiew Special

system Disk
232K in disk 167K available

Disk Copy

File Uiew Special File Edit Search

g ==l — = Boaacy, arasnash
| ©: \yinDous
. nBC. 7] Microsoft Windows indows. AlSO C

' gg{‘eﬂ MS-D0S Executive Addendum en:
52}1&2 B Uersion 1.81

cea.fl Copyright @ 1985, Microsoft Corp.
CGA.G thi b 1
c6A.L b niguration as
E“gi Disk Space Free: 3882u4K bion of the WIN.|
CLOCH Memory Free: 303K
comm

CONTROL .EXE EGAMONO.GRB HPL
COURA.FON EGAMOND .LGO 1B
COURB .FON EMH.AT J

COURC .FON EMM.PC KER!

Bpooler=no will

TR

RUNNING BATCH | BAT) FILE
11 you run & standard applicati
should create a FIF file for the §$

Figure 2-1: The Beginning of Personal Computing

31

32 2 Software History

World Wide Web (WWW) was established in 1991. The first Web Browser, as we know it today,
came in 1994 (Netscape). Google was established as late as 1998. Facebook was first invented in
2004. The first smartphone was released in 2007 (iPhone).

In Figure 2-2 we see some of the people that have founded and shaped the modern software
industry.

Figure 2-2: Pioneers of modern Software Industry

The companies that they created still dominate the software industry today. Some of the people
are still active within these companies today, either as CEOs or members of the board.

Some of the largest software companies today are:
* Microsoft (established 1975), Bill Gates, Paul Allen
* MS DOS (1981), Office, Windows (1985), ...

* Employees (2012): 94.000, Revenue (2012): $74 bill.

Apple (Software and Hardware) (established 1976), Steve Jobs, Steve Wozniak
* Macintosh (1984), iPhone (1097), iPad (2012), iOS
* Employees (2012): 72.800, Revenue (2012): $158 bill.

* Google (established 1986), Larry Page, Sergey Brin

Facebook (established 2004), Mark Zuckerberg

Part 1: Introduction

33 2 Software History

e More than 1 bill. users

In addition, we can mention companies like IBM, Oracle, Samsung (more hardware than software),
Amazon, SAP, Adobe, Symantec, VMware, etc.

2.2 Software Trends

The software industry has changed a lot since the 80s, and it is still changing very quickly. Figure
2-3 gives an overview of some important trends in the software industry today and tomorrow.

[The
.~ Apps | . Cloud
| | Cloklij‘dCom‘bLJting
Virtualization

Softwear

Wearable Computin
P g Bring Your Own Device

Figure 2-3: Software Trends

Apps and Mobil devices: Everybody has a mobile device today and fewer PCs are sold than ever
before. Licensing: You don’t buy, but lease software these days and all your information is stored
in the Cloud, and some software is running in the Cloud (so-called Cloud Computing). Security
challenges is very important in this case.

The companies that develop software need to face these facts and make the necessary changes to
survive.

“Softwear” and Wearable Computing: Now we have watches like Galaxy Gear, the Apple Watch,
Google Glass, etc.

Part 1: Introduction

34 2 Software History

In Figure 2-4 we see some examples of Software Trends.

1)

Software Trends

101011

0 O

Code

. o Cloud Computing

Database

Cloud Computing @

everything and the kitchen sink N han

Figure 2-4: Software Trends Examples

Part 1: Introduction

3Software Development

In this chapter, we will give a short overview of software development, the challenges and what
kind of different software categories we have, what kind of documents that are needed and
created during the software development process, what kind of skills needed, etc.

=

Terms:

Software Engineering: https://youtu.be/fAdpWVzpvUE

Software Development (also known as application development, software design, designing
software, software application development, enterprise application development, or platform
development) is the development of a software product.

Software Engineering (SE) is the application of a systematic, disciplined, quantifiable approach to
the development, operation, and maintenance of software.

In Figure 3-1 we see how a software application typically interacts with users, the underlying
operating system and hardware.

User \

T L

"/

Application

- Operating System

Hardware

Figure 3-1: Software Interaction with Hardware and Users

35

https://youtu.be/f4dpWVzpvUE

36

3 Software Development

3.1 Challenges

In Figure 3-2 we see some of the challenges in software development.

How the customer
explanead it

How the Project
Leader understood it

How the Analyst
designad it

How the Programmer
wrate it

How the Business
Consukant described £

How the project
was documened

How it was supported

Figure 3-2: Challenges with Software Development

Collaboration and communication within the team and with stakeholders, etc. is crucial when it

comes to creating good software.

Creating software is complicated. It is important to understand the customers’ needs! In some

way, you need to find out what the customer needs.

Market research, etc. is a good start, but in the end, you need to go much deeper to understand

the customer. Most of the time the customer doesn’t even know what they need.

3.2 Software Systems

In software development we have different kinds of systems, such as [1]:

* Stand-alone applications

Part 1: Introduction

37 3 Software Development

— These are application systems that run on a local computer, such as a PC. They
include all necessary functionality and do not need to be connected to a network.

* Interactive transaction-based applications

— Applications that are executed on a remote computer and are accessed by users
from their own PCs or terminals. These include web applications such as e-
commerce applications.

* Embedded control systems

— These are software control systems that control and manage hardware devices.
Numerically, there are probably more embedded systems than any other type of
system.

* Batch processing systems

— These are business systems that are designed to process data in large batches. They
process large numbers of individual inputs to create corresponding outputs.

* Entertainment systems

— These are systems that are primarily for personal use, and which are intended to
entertain the user.

* Systems for modeling and simulation

— These are systems that are developed by scientists and engineers to model physical
processes or situations, which include many, separate, interacting objects.

* Data collection systems

— These are systems that collect data from their environment using a set of sensors
and send that data to other systems for processing.

* Systems of systems
— These are systems that are composed of several other software systems.
We can split the software systems into 2 main categories:
Generic products
* Stand-alone systems that are marketed and sold to any customer who wishes to buy them.

* Examples — PC software such as graphics programs, project management tools; CAD
software; software for specific markets such as appointments systems for dentists.

Examples: Microsoft Office

Part 1: Introduction

38 3 Software Development

Customized products
* Software that is commissioned by a specific customer to meet their own needs.

* Examples — embedded control systems, air traffic control software, traffic monitoring

systems.

3.3 Documentation

Lots of documentation is involved in software development, see Figure 3-3. In this document, we
will go through all the documentation needed in the different phases involved in software

development.
Some important documents are:
e SRS —Software Requirements Specifications
o A document stating what an application must accomplish
e SDD - Software Design Document
o A document describing the design of a software application
e STP - Software Test Plan

o Documentation stating what parts of an application will be tested, and the schedule
of when the testing is to be performed

e STD - Software Test Documentation

o Contents: Introduction, Test Plan, Test Design, Test Cases, Test procedures, Test
Log, ..., Summary

More about Software Documentation later in this document.

Part 1: Introduction

3 Software Development

Start

Project Management (Gantt Chart, etc.)
Time

\

1. Planning

2.Requierements
/Design

(The stakeholders, the
software team; architects,
UX designers, developers)

—

2. Testing
(QA people)

3. End-user
Documentation

(The people that
shall actually use
the software)

Finish

=

e

Software
Development Plan

High-Level
Requirements and
Design Documents

Detailed
Requirements and
Design Documents

Test Plans

Test Documentation

System
Documentation

Installation Guides

User Manuals

(SDP)
WHAT (SRS)
HOW (SDD)

ER Diagram (Database)
UML Diagrams (Code)
CAD Drawings, etc.

How to Test/ (STP)
What to Test

Proof that you have tested
and that the software works

as expected (STD)

Technical Stuff
(Super User/ IT dep.)

How to install it

How to use it
(End User)

Figure 3-3: Typical Documentation involved in Software Development

QA — Quality Assurance. Quality Assurance (QA) refers to the engineering activities implemented
in a quality system so that requirements for a product or service will be fulfilled.

3.4 |terations and Releases

In Software Development, we typically have different iterations and releases, as shown in Figure

3-4.

Part 1: Introduction

40 3 Software Development

Requirements/Design

Plans made and approved

Beta

BUIlding structure ﬁniShEd, Furniture’ Flowers and

Inside work on track small adjustments missing Ready for Sale or Move in

Figure 3-4: Software Iterations and Releases

Part 1: Introduction

Part 2 : Software
Engineering

In this part, we introduce the different features and topics involved in software engineering, such
as software teams, software development processes, software project management, etc.

41

4Development Teams

A typical Software Team consists of the following roles:

e Project Manager

e System Architect

e UX Designer (Software Designer)
e Programmer

e Software Tester

In addition, we have Stakeholders or Customers that play an important role in the development.

In Figure 4-1 we see a typical Software Team.

Software Team

Stakeholders
Project Manager v
o’
Software Tester
“ T—
Software Designer ~
/ System Engineer
:// Programmer
N

Software Architect

Figure 4-1: Software Team

A System Engineer is a general person that could be a Programmer, Architect, Designer, Tester in
different phases in the project, or he could be a tester in one project and a programmer in another
project — all in one person. That is usually the case in small companies, while in larger companies
these roles (designer, tester, programmer) could be a full-time job.

42

43 4 Development Teams

4.1 Teams

To successfully create software, collaboration inside the team is essential.

/

Software Tester ;
Stakeholders

- UX Desngner

Programmer

Figure 4-2: Team Collaboration

It is important that the team collaborate. Communication as well!

4.2 Roles

A typical Software Team consists of the following roles:

e Project Manager

e System Architect

e UX Designer (Software Designer)
e Programmer

e Software Tester

Part 2: Software Engineering

44 4 Development Teams

In addition, we have Stakeholders or Customers that play an important role in the development.

We will discuss these roles in more detail below.

4.2.1 Stakeholders

All the people that have an interest in the outcome of the software are called Stakeholders. In
most cases the Stakeholders are referred to as “Customers” but others may also be referred to as
stakeholders, such as management, shareholders, etc.

4.2.2 Project Manager

The Project Managers have responsibility of the planning, execution and closing of the project.

More about Project management in a later chapter.

4.2.3 System Architect

With “Technical Design” we mean the Platform and Architecture Design, i.e., how to build the
software.

This is typically done by a so-called Software/System Architect.

4.2.4 UX Designer

UX Design is the Design of the User eXperience (UX) and the Graphical User Interface (GUI),
sometimes also called Human Machine Interface (HMI). This is what the end user of the software
sees.

This is typically done by a so-called UX Designer.

4.2.5 Programmer

The Programmer or the Developer is doing the actual implementation of the software, i.e., the
coding.

4.2.6 Software Tester

Before the customer can start using the software it needs to be properly tested. The
Developer/Programmer needs to test his software, but since software consists of several software
modules and components created by different developers, we need dedicated software testers
that can test the software on a higher level.

Part 2: Software Engineering

45 4 Development Teams

The Customers are/should also be involved in the testing as well.

Part 2: Software Engineering

5Software Development
Phases

In software development, we have the following phases:

e Requirements (e.g., from Customer)

e Analysis and Design

e Implementation, Coding

e Documentation

e Testing

e Deployment, Installation and Maintenance

This chapter introduces these phases. Figure 5-1 shows an overview of the different phases
involved in Software Development:

Requirements
-)
4
Deployment)
Design
) .
- Y
i e \\ o S ‘\,__——»
/ \\ // \\
v'/ \'.". /] /‘/ \‘\\
| - | P ﬁ |' - bI
Testing | €8 | Implementation |

Figure 5-1: Phases in Software Development

46

47

5 Software Development Phases

5.1 Require

ments

In the requirements, we describe what the system should do. The requirements include both

functional requiremen

ts and non-functional requirements [1].

Functional Requirements: Statements of services the system should provide, how the system

should react to inputs and how the system should behave in different situations. May state what

the system should not

do.

Non-Functional Requirements: Constraints on the services or functions offered by the system

such as timing constraints, constraints on the development process, standards, etc. Often apply to

the system rather than individual features or services.

BEFORE I START TO

I-\.
%,

i !
TLL NEED TO KNOW
YOUR REQUIREMENTS J
E

DESIGN THE SOFTWAR

LJHAT ARE YOU
TRYIMNG TO
ACCOMPLISH?

_—

MAKE YOU DESIGN
MY SOFTLIARE.

FIRST OF ALL,] | 1M TRYING TO

DL

[-mad; SOOTTADAMS#AQL COM

=

[T MEAN WHAT ARE B
YOuU TRYING TO

ACCOMPLISH WITH
THE SOFTWARE? |

A

I CAM ACCOMPLISH
UNTIL YO TELL ME

SRR

{1 LJONT KNOW LJHAT |

WHAT THE SOFTLJARE |

[TRY TOGET THIS
| COMCEPT THROUGH YOUR
| THICK SKULL: THE
SOFTWARE CAN DO
WHATEVER T DESIGN
IT TO DO i

[https://dilbert.com]

CAN YOU DESIGN |
IT TO TELL You
MY REGUIREMENTS?

The requirements are often collected in a so-called “Software Requirements Specification (SRS)”

document.

The SRS could contain

e Introduction

stuff like [2]:

o Purpose
o Definitions
o System overview

o References
e Overall description
o Product perspective

System Interfaces
User Interfaces
Hardware interfaces
Software interfaces

Part 2: Software Engineering

48

5 Software Development Phases

Communication Interfaces
Memory Constraints
Operations

Site Adaptation Requirements

o Product functions
o User characteristics
o Constraints, assumptions, and dependencies
e Specific requirements
External interface requirements
Functional requirements
Performance requirements
Design constraints

©)

@)
@)
@)

O

Standards Compliance

Logical database requirement
Software System attributes

Reliability
Availability
Security
Maintainability
Portability

e Other requirements

The Requirements is normally given by the Customer if we deal with customized products. The

software requirements document is the official statement of what is required of the system. It

should include both a definition of user requirements and a specification of the system
requirements. It is NOT a design document. As far as possible, it should include a set of WHAT the
system should do rather than HOW it should do it [1].

5.2 Design

In the design phase, we use the specification and transform it into descriptions of how we should

do it.

In principle, requirements should state what the system should do, and the design should describe

how it does this — but in practice this is not so easy! - In practice, requirements and design are

inseparable.

We can divide design into 2 main groups:

e Technical Design — Platform and Architecture Design, i.e., how to build the software.

e UX Design — Design of User eXperience (UX) and the Graphical User Interface (GUI),
sometimes also called Human Machine Interface (HMI). This is what the end user of the

software sees.

Part 2: Software Engineering

49 5 Software Development Phases

5.2.1 Technical Design

Technical Design is Platform and Architecture Design, i.e., how to build the software. This is
typically done by a so-called Software Architect.

5.2.2 UX Design

UX Design is the Design of the User eXperience (UX) and the Graphical User Interface (GUI),
sometimes also called Human Machine Interface (HMI). This is what the end user of the software
sees. This is typically done by a so-called UX Designer.

5.3 Implementation

Implementation = Coding.

Software is usually designed and created (coded/written/programmed) in integrated development
environments (IDE) like Eclipse, Xcode or Microsoft Visual Studio that can simplify the process and
compile the program to an executable unit. Software is usually created on top of existing software
and the application programming interface (API) that the underlying software frameworks
provide, e.g. Microsoft .NET, etc.

Most of the software has a Graphical User Interface (GUI). Normally you separate the GUI design
and code into different layers or files.

CODING IS AN ART

I DON'T
GET YOUR
CODE . .\‘ I,

L.
L.,

[http://geek-and-poke.com]

L

i,

ML

40d g %008

YOu
HAVE TO
OPEN YOUR
MIND

A

Ll

MODERN ART

More about implementation later in this document.

Part 2: Software Engineering

50 5 Software Development Phases

5.4 Testing

Testing can be performed on different levels and by different people. Testing is a very important
part of software development. About 50% of the software development is about testing your
software. Creating User-friendly Software is Crucial! More about Testing later in this document.

5.5 Deployment

What is Deployment?
Software deployment is all the activities that make a software system available for use.
Examples:

e Get the software out to the customers

Creating Installation Packages

e Documentation, e.g., Installation Guide, etc.

Installation

e etc.
Deployment strategies may vary depending of what kind of software we create, etc.
More about Deployment later in this document.

When the software is deployed, or installed, you normally go into a Maintenance phase. The
maintenance of software involves bug fixes of the software after the software is released, etc. At
some time, you also need to start planning new releases of the software.

Part 2: Software Engineering

6Software Development
Process

There are lots of different software development processes or methods in use today [3], e.g.:

e Waterfall model

e V-model

e Spiral model

e Unified Process (UP)/ Rational Unified Process (RUP)
e Scrum

e eXtreme Programming (XP)

e Lean Software Development

e TDD (Test Driven Development)
e Lean Software Development

e Kanban

e etc.

These processes or models may be divided in 2 main categories: Plan-driven models and Agile
methods. The Waterfall model, V-model and the Spiral model are so-called plan-driven models,
while Scrum and eXtreme Programming are so-called Agile methods.

SIMPLY EXPLAINED

i
SOMETHING i
—>O
S =
<« Y=

iy = i
K X
\

GREAT
SOFTWARE

--\’l

DEVELOPMENT PROCESS

[http://geek-and-poke.com]

51

52 6 Software Development Process

Traditionally plan-driven methods were used in software development, while today Agile methods
such as Scrum have become very popular, especially in smaller development teams.

Plan-driven models (e.g. Waterfall) generally produce more documentation than Agile models.

In Figure 6-1 we see an overview of some of the most used methods.

Traditional Plan-driven Agile Methods ‘

Methods ‘
eXtreme ’ —
V-Model Programming
Waterfall (XP)
| Method _——
ggzﬁ:&:,“,.’ Verif:f‘atlon Mo.:':;';.::.
Validation
s : 9 Project Requirements System
Requirements Definitlon \ Nareinia and Vaidanen — -
S Y J
Desigll @ Srzearon Integration Product Backiog
Implemeantation
Implementation —
‘ Feature Driven
Verification , . Development
' Lean Software (FDD)
Maintenance Development

Figure 6-1: Software Development Methods

In Figure 6-2 we see the main difference between Agile development and ordinary plan-driven
development.

Plan-based development

Design and
implementation

Requirements
engineering

Requirements
specification

Requirements change
requests

Agile development

Requirements
engineering

Design and
implementation

Figure 6-2: Plan-driven vs. Agile Development [1]

Part 2: Software Engineering

53

6 Software Development Process

HOW DO YOU KNOW IT’'S AGILE?

ojod g yeol

PART 1: NO CODE OWNERS

[http://geek-and-poke.com]

6.1 Plan-driven models

We have different plan-driven models such as the Waterfall model, V-model, and Spiral model

which we will discuss in more details.

6.1.1 Waterfall model

The Waterfall model [4] consists of the following phases:

Requirements specification (Requirements analysis)
Software design

Implementation and Integration

Testing (or Validation)

Deployment (or Installation)

Maintenance

Traditionally with the Waterfall model, you can only start on the next phase when the previous

phase is finished. Therefore, it is called the Waterfall method, see Figure 6-3.

Part 2: Software Engineering

54 6 Software Development Process

The Waterfall Model

Planning to create a new Software

Finished

Requirement

\ 4 -
N (Finished
Not Finished? Design

A Sequential Process

-Go back and Fixit!
r) ,
e ' ' ; Finished
ot Finishe ey
-Go back and Fixit! | Imp ementation
A
Finished
Not Finished? ‘ -
-Go back and Fixit! Teshng
\ 4
You cannot go to next phase before Deployment
W ; Not Finished? :
finsihed the previous phase o b=t Maintenance

Software Finished
Figure 6-3: Waterfall model [4]

In practice, there is impossible to create perfect requirements and design before you start
implementing the code, so it is common to go back and update these phases iteratively.

6.1.2 V-model

The V-model [5] is derived from the more traditional Waterfall model.
The V-model is an extension of the waterfall model, but it’s using a more flexible approach.

“The V-Model reflects a project management view of software development and fits the needs of
project managers, accountants and lawyers rather than software developers or users.”

Part 2: Software Engineering

55 6 Software Development Process

Operation

Concept of T
Operations Uerli;l:_:lgtlon Main?gr?ance
_ Validation
Project Requirements System
Definition and Verification
Architecture and Validation

Integration,

Detailed Test, and Project
Design Verification Test and
Integration

Implameantation

S
. i
Time

Figure 6-4: V-model [5]

As we see in Figure 6-4, the left side is about requirements and design, while the right-side of the
model is about testing and validating.

6.2 Agile Software Development

Agile software development is a group of software development methods based on iterative and
incremental development.

THAT MEANS NO MORE
PLANNING AND NO MORE
DOCUMENTATION. JUST

START WRITING CODE

AND COMPLAINING.

WERE GOING TO
TRY SOMETHING
CALLED AGILE
PROGRAMMING.

I'M GLAD THAT
IT HAS A WAS YOUR

NAME. TRAINING,

www.dilbert.com scottadams®acl.com
13407 22007 Scott Adams, Inc./Dist. by UFS, Inc

[https://dilbert.com]
So, what is Agile development? — Here is a short summary:

e A group of software development methods
e lterative approach
e Incremental: Software available to Customers every 2-4 weeks

Part 2: Software Engineering

56 6 Software Development Process

e Self-organizing and cross-functional Teams
e Refactoring

In Figure 6-5 we see some important Agile features and principles.

'I Pair
Customer Agl e Programming
lnvolvementJ

‘ Incremental I

; _ Less Documentation.
Test Driven J Work in Iterations Only whats necessary

Development (TDD)

(B
L Communication J

Continously
~ Integrate Changes

Working Software
at All Times
Refactoring

Figure 6-5: Agile Features and Principles
Examples of popular Agile methods:

e Scrum
e eXtreme Programming (XP)

In Figure 6-6 we see the key features with Agile Software Development.

Agile Software Development

Iterative and Incremental Approach for Software Development

Self-organizing and cross-functional Teams

Incremental: Software available to Customers
every 2-4 weeks

Working Software at all times!

Figure 6-6: Agile Software Development

Part 2: Software Engineering

57 6 Software Development Process

Figure 6-7 shows some main differences between Agile development and more traditional
development methods, such as, e.g., the Waterfall method.

VISIBILITY ; ADAPTABILITY

BUSINESS VALUE RISK

— A GE DEVELOPMENT w— - TRADITIONAL OEVELOPMENT

Figure 6-7: Agile vs. Traditional Development [6]

6.2.1 The Manifesto for Agile Software Development

In 2001, some software developers met to discuss development methods. They published the
Manifesto for Agile Software Development to define the approach now known as agile software
development.

The Manifesto for Agile Software Development is as follows [7]:

We are uncovering better ways of developing software by doing it and helping others do it.
Through this work, we have come to value:

e Individuals and interactions over processes and tools

e Working software over comprehensive documentation
e Customer collaboration over contract negotiation

e Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Part 2: Software Engineering

58 6 Software Development Process

TIM, BELIEVE ME!
IT'S NO PROBLEM THAT
YoU DD NOT GET YOUR

STORY DONE LNTE THE

END OF THE SPRINT

fit.. ¥ m

it)

lt..

anod g yaal

AGILE MANIFESTO

[http://geek-and-poke.com]

6.2.2 Burndown Chart

A burn down chart is a graphical representation of work left to do versus time. The outstanding
work (or backlog) is often on the vertical axis, with time along the horizontal. That is, it is a run
chart of outstanding work. It is useful for predicting when all the work will be completed.

It is often used in agile software development methodologies such as Scrum. However, burn down
charts can be applied to any project containing measurable progress over time.

In Figure 6-8 we see a typical Burndown chart.

Part 2: Software Engineering

59 6 Software Development Process

Burndown Chart

Actual
Burndown Tracking the Progress

el of the Project

Burndown

(SANOH) 40N Sululeway

Sprint
Finished

Days

Figure 6-8: Burndown Chart

6.2.3 Waterfall vs. Agile

Agile is more flexible than traditional methods (like the waterfall).

Here are some key factors that separate the traditional waterfall method versus the more flexible
Agile methods, such as Scrum:

e Agile and Scrum is based on Iterations while Waterfall is Sequential

e Agile and Scrum focus on less documentation

e Agileis good for small projects — not so good for larger projects?

e If the Customer don’t know what he wants in detail — Scrum is a good approach

In Figure 6-9 we see some important differences between the traditional waterfall method and
the Agile Development approach. We see that Agile delivers value in each iteration of the
development.

Part 2: Software Engineering

60 6 Software Development Process

Waterfall vs. Agile

| ' Value Delivery

we Risk of Egilure

Waterfall

Income

Time Time

Figure 6-9: Waterfall vs. Agile Development

6.2.4 eXtreme Programming (XP)

eXtreme Programming or shorted XP is a popular Agile method. Typical features in XP are as

follows:

e Pair Programming

e Code Reviews

e Refactoring

e Unit Testing - In XP you start by writing Unit Tests before you start coding
e Standup Meetings

EXTREME PROGRAMMING

I CANT GIVE YOU
ALL OF THESE
FEATURES IM THE
FIRST VERSIOM.

OKAY, HERES A
STORY : YOU GIVE
ME ALL OF MY
FEATURES OR T'LL
RUTHN YOUR LIFE.

AND EACH FEATURE
MEEDS TO HAVE
LIHAT WIE CALL A
“USER STORY .

scottadams @ aal.com

S
ilielz3 83002 United Fasturs Syndicsts, inz

www. dilbert.com

e

Copyr-ight 2 28832 United Feature Syndicate, lnc.

[https://dilbert.com]

In Figure 6-10 we see how XP works in practice.

Part 2: Software Engineering

61 6 Software Development Process

Planning/Feedback Loops

Release Plan
Months
Tteration Plan

Weeks

Acceptance Test
Days
Stand Up Meeting
One Day
Pair Negotiation

Hoursj

Unit Test

Minutes

Pair Programming
Seconds

Code

Figure 6-10: eXtreme Programming

In XP, they practice so-called “Pair Programming” (Figure 6-11), meaning 2 developers working
together.

Figure 6-11: Pair Programming [8]

So, is Pair Programming Good or Bad? There exists various studies of the productivity of Pair
Programming [1]:

e Study 1: Comparable with that of 2 developers who work independently
e Study 2: A significant loss in productivity compared with 2 developers working alone

A reasonable question is: Should the 2 developers have the same skills or not?
Newer less, there are benefits with XP:

e Collective Ownership for the code created and the results of the project.

Part 2: Software Engineering

62 6 Software Development Process

Continuous informal Review process because each code line is looked at by at least 2
people

e It supports Refactoring, which is a continuous process of software improvement

° Less time is spent on repairing bugs.

e Improved Code Quality

e Itreduces the overall risk

SCHIZOPHRENIC CODERS

-

o,

WHAT ARE
YOU DOINGF

N

0

A

gack & poke

@Eﬁns [W
—~. {‘ --lz (

[http://geek-and-poke.com]

6.2.5 Scrum

Scrum [9] is a so-called Agile method, and it has become very popular today. In Figure 6-12 we see
an overview of the Scrum method.

ﬁ Scrum with Examples: https://voutu.be/h3RVZvINGWk

Scrum is simple and easy to understand. The method is more flexible and more informal than plan-
driven methods.

Part 2: Software Engineering

https://youtu.be/h3RVZv3NGWk

63 6 Software Development Process

//_ ’ :
q.. h\Dally Scrum Meetings

é-
tt
N

Product Owner H
) i
' Sprint Backlog
/ 5

Product Backlog /4 '

i) (
Stakeholders Scrum Master -k
Development Team
3-9 persons

Figure 6-12: Scrum Overview
In short, Scrum is a Framework for Software Development.

e Agile Software Development method
e Simple to understand
e Flexible
e Extremely difficult to master!
e Self-organizing Teams (3-9 people)
e Scrum Team:
o Product Owner
o Scrum Master
o Development Team

Some important Scrum Events are:
* The Sprint (duration between 14-30 days)
* Sprint Planning Meeting (8 hours if 30 days’ sprint)

* Daily Scrum Meeting (Max 15 min, every day at the same time) (also called Standup
Meeting)

* Sprint Review (4 hours if 30 days’ sprint)

An example of a Daily Scrum Meeting is shown in Figure 6-13. It is normal to hold this meeting as a
“standup meeting”, where participants standing during the meeting.

Part 2: Software Engineering

64 6 Software Development Process

o

Figure 6-13: Example of a Daily Scrum Meeting (Standup Meeting) [9]

Daily Scrum Meeting:

Important features of the Daily Scrum Meeting are as follows:

* Max 15 min.

* The meeting is held at the same time and place every day

* “Stand Up” Meeting

* Purpose:
— Synchronize activities and create a plan for the next 24 hours.
— Track Progress

* Agenda - Each Team member explains:
— What has been accomplished since the last meeting?
— What will be done before the next meeting?

— What obstacles are there in the way?

6.2.6 Kanban

Part 2: Software Engineering

65 6 Software Development Process

Kanban is based on Lean and Toyota production principles and Just-in-Time principles. Kanban
has fewer “rules” than scrum. Kanban is flow-based, while Scrum is Time box-based (Sprints).
Kanban focuses on limit the WIP (Work in Progress). Kanban has focus on estimation.

In Kanban, they use a Kanban board (Figure 6-14) to track the progress. The Kanban board is very
like the Task board used in Scrum.

kanbanficww.comu bon]
Admindstration B Jonn Semath
To-do e Do today - In progress L Cone g
» 3
~ o -
o ANIOW VN0 ThanGe e ata | PYOSUCE SMNON fepant i Aeae Our Sew CA0DNT
"
() ™ 7 Make gressselense . W4tog adh Ao
e PTOSO00 S50 SOMpaney o | Wiete Siog eclry
JTLIeR 300 ColeaSorgt COnmeE masatens
~ 2 Redew 300ty Qudines A —
U SASS v 5 r - ogtemarda C e aton
e Use 3 % siaidaets — » = _A Crases 5 204 oo Caosie= |
-~ e | COPRNE o0 I8 OO0 MO0 Py
e D3 3053 S40 13 AR WA 0O e TEDAOLS & peeoa0e ANAZI20 -~ T——
e Cxenzy 2aze * HGm PROATY myeterance 3 § M OouSie-CHIING conove Duliin s
0 SHQ % 3DHoAn
o ~ 7 Schecste
e eIt peciemance A He <. Dewico 30 Mdnosd 359 S oo
~osig 120 CERMIIT US4 ViTte SC7ERE & SOQuTMneIacn
Resen m
fa Reledse vetsion 10
";‘ Create » forem " AN COMEANng Ahet —
[2)
-~ 3. Create anihoo ap

3 OCCOMEnt T Senico ASS 2 Ceedth 3 Fasetockndne

-A ActomMate tests

(2]
- 2 e an st Coogie
. Reledie verson 20 == =

a

LOMS SMADITL WA CUSIOMST Gaty

Figure 6-14: Example of a Kanban board

6.3 Hybrid Process Models

6.3.1 Unified Process (UP)/ Rational Unified Process
(RUP)

The Unified Process (UP)/ Rational Unified Process (RUP) is a so-called hybrid process model [1]. It
takes elements from many of the traditional plan drive methods as well iterative/incremental
delivery, which is an important part of Agile methods.

The RUP has been designed to work together with UML (Unified Modelling Language).
In UP we have 4 different phases [10]:

e Inception
e Elaboration

Part 2: Software Engineering

66 6 Software Development Process

e Construction
e Transition

Figure 6-15 shows these 4 phases.

A

Resources

Time

Inception Elaboration Construction Transition

Figure 6-15: Phases in Unified Process (UP) [10]

6.4 Summary

Agile methods have become very popular today. Agile methods are good in some situations, while
more traditional methods are better in other situations.

To create great software, we need to combine the best of all these approaches and adjust them to
fit the needs of your company. There are lots of different kinds of software, and one method is not
fit to solve all these different situations.

Agile methods have less focus on documentation

6.5 Exercises

Make sure to discuss and reflect over the following:

1. What is a Software Development Process? Why is it important to have a good Software
Development Process?

2. Explain Plan-driven software development in general

3. Give some examples of such Plan-driven software development methods

Part 2: Software Engineering

67 6 Software Development Process

4. Explain Agile software development in general

5. Give some examples of Agile software development methods

6. Explain the Waterfall method

7. Explain the differences between Agile and plan-driven development. Give some examples in
each category

8. Explain some features used in eXtreme Programming (XP)?

9. Whatis Scrum?

10. Give examples of Advantages and Disadvantages with Scrum

11. What is a Daily Scrum Meeting?

12. What are the different phases involved in software engineering?

13. Suggest a Software Project where it may be beneficial to use the Waterfall model and another
where Scrum is the best choice

Part 2: Software Engineering

7Scrum

Scrum [9] is a so-called Agile method, and it has become very popular today. In Figure 7-1 we see
an overview of the Scrum method.

Scrum is simple and easy to understand. The method is more flexible and more informal than plan-

driven methods.

ﬁScrum with Examples: https://youtu.be/h3RVZv3INGWk

V & \Daily Scrum Meetings

24h

b S
e print
‘ ﬂ Sprint g 9 Review
Product Owner H

|

Sprint Backlog -

£l 2
Product Backlog { 4 ’
-

Stakeholders Scrum Master -
Development Team

3-9 persons

Figure 7-1: Scrum Overview
In short, Scrum is a Framework for Software Development.

e Agile Software Development method
e Simple to understand
e Flexible
e Extremely difficult to master!
e Self-organizing Teams (3-9 people)
e Scrum Team:
o Product Owner
o Scrum Master
o Development Team

68

https://youtu.be/h3RVZv3NGWk

69 7 Scrum

7.1 The Scrum Process

Figure 7-2 shows the Scrum Process.

24 h

30 days

=

4

. . Working increment
Product Backl
roduct Backlog Sprint Backlog Sprint of the software

Figure 7-2: Scrum Process [9]

7.2 Scrum Events

* The Sprint (duration between 14-30 days)
* Sprint Planning Meeting (8 hours if 30 days’ sprint)

* Daily Scrum Meeting (Max 15 min, every day at the same time) (also called Standup
Meeting)

* Sprint Review (4 hours if 30 days’ sprint)

An example of a Daily Scrum Meeting is shown in Figure 7-3. It is normal to hold this meeting as a
“standup meeting”, where participants standing during the meeting.

Part 2: Software Engineering

70 7 Scrum

Figure 7-3: Daily Scrum Meeting (Standup Meeting) [9]

7.2.1 Daily Scrum Meeting

Important features of the Daily Scrum Meeting are as follows:

* Max 15 min.

* The meeting is held at the same time and place every day

* “Stand Up” Meeting

* Purpose:
— Synchronize activities and create a plan for the next 24 hours.
— Track Progress

* Agenda - Each Team member explains:
— What has been accomplished since the last meeting?
— What will be done before the next meeting?

— What obstacles are there in the way?

Part 2: Software Engineering

71 7 Scrum

YOUR COMPETITORS WELL TOP THAT BY 1T'S

ARE FASTER BECAUSE HAVING MEETINGS

THEY HAVE MEETINGS WHERE EVERYONE WORKING!
WHERE EVERYONE HAS DOES JUMPING TACKS = & s

WHILE I PELT THEM
WIITH OFFICE SUPPLIES.

TO STAND UP,

-L]
(-2

Dilberi.com DilbertCarooniat@@gmail com
300 w201l Scon Adams, Inc./Dist. by UFS, inc.

[https://dilbert.com]

7.3 Scrum Artifacts

* Product Backlog
* Sprint Backlog
* |Increment

Scrum'’s artifacts represent work or value in various ways that are useful in providing transparency and
opportunities for inspection and adaptation. Artifacts defined by Scrum are specifically designed to
maximize transparency of key information needed to ensure Scrum Teams are successful in delivering a
“Done” Increment [11].

7.4 The Scrum Team

The Scrum Team has the following members:
* Product Owner
* Scrum Master
* Development Team

In addition, we have the Stakeholders, but they are not part of the Scrum team itself.

Part 2: Software Engineering

72 7 Scrum
INTERESTING.
BUT WHAT IS A
"SPRINT"?
LEARNING AGILE
[http://geek-and-poke.com]
So, if we summarize, we have 4 different meetings in Scrum:
e Sprint Planning Meeting
e Daily Scrum Meeting
e Sprint Review Meeting
e Retrospective Meeting
Figure 7-4 summarizes the different meetings (purpose, duration, and frequency).
Meeting Purpose Duration Frequency
Sprint Determine what work to do in the coming sprint. Two hours per week in the Once per
Planning sprint, up to four hours sprint
Meeting
Daily Scrum Allow team members to commit, collaborate, and communicate risks, Fifteen minutes Daily
Meeting
Sprint Review Show the customer and other stakeholders the work that the team Two hours per week in the Once per
Meeting accomplished in the sprint, and receive feedback. sprint, up to four hours sprint
Retrospective Identify and implement ideas for precess improvement. Three hours Once per
Meeting sprint

Figure 7-4: Overview of Scrum Meetings

Part 2: Software Engineering

73

7 Scrum

For Scrum meetings, we have the following guidelines:

The meeting agenda should be clear.

If team members start a discussion that does not address the purpose of the meeting, the
members should take the discussion offline, to be completed later. The Scrum Master
should identify and indicate when team members should take a discussion offline.

All meetings should follow the basic structure that is described for that meeting.
Meetings should start on time, even if some team members are late.

Team members should be on time except in rare, unavoidable cases. If your schedule
prevents you from being on time regularly, the conflict should be resolved as soon as
possible. If necessary, the Scrum Master should adjust the meeting time to resolve the
conflict if the change does not unfairly inconvenience another member of the team.

Each team member should come to the meeting prepared.

Meetings should finish on time. In most cases, the length of the meeting is determined by
the length of the sprint. For example, take two hours for a sprint planning meeting if the
sprint is one week, and four hours if the sprint is two weeks long.

Scrum enforces this meeting structure to a level that might make people uncomfortable.
This reaction comes from the pressure to be on time, the peer accountability that is
associated with making and keeping commitments, and the transparency that is required
to actively participate. Daily Scrum meetings are also usually a standup meeting.

7.6 Scrum Terms

Below we summarize the terms used in Scrum.

Scrum:

Scrum is a framework structured to support complex product development. Scrum consists of

Scrum Teams and their associated roles, events, artifacts, and rules. Each component within the

framework serves a specific purpose and is essential to Scrum’s success and usage.

The Scrum Team:

The Scrum Team consists of a Product Owner, the Development Team, and a Scrum Master. Scrum

Teams are self-organizing and cross-functional. Self-organizing teams choose best to accomplish

their work, rather than being directed by others outside the team.

Development Team:

The Development Team are the professionals who do the work of delivering a potentially
releasable Increment of “Done” product at the end of each Sprint. Development Teams are
structured and empowered by the organization to organize and manage their own work.

Product Owner:

Part 2: Software Engineering

74 7 Scrum

The Product Owner is the person responsible for maximizing the value of the product, the work of
the Development Team, and management of the Product Backlog.

Scrum Master:

The Scrum Master is a servant-leader for the Scrum Team responsible for ensuring Scrum is
understood and enacted. Scrum Masters do this by ensuring that the Scrum Team adheres to
Scrum theory, practices, and rules.

Product Backlog:

The Product Backlog is an ordered list of everything that might be needed in the product and is the
single source of requirements for any changes to be made to the product. The Product Owner is
responsible for the Product Backlog, including its content, availability, and ordering.

Sprint Backlog:

The Sprint Backlog is the set of Product Backlog items selected for the Sprint plus a plan for
delivering the product Increment and realizing the Sprint Goal. The Sprint Backlog is a forecast by
the Development Team about what functionality will be in the next Increment and the work
needed to deliver that functionality.

Increment:

The Increment is the sum of all the Product Backlog items completed during a Sprint and all
previous Sprints.

Sprint:

The heart of Scrum is a Sprint, a time-box of one month or less during which a “Done”, useable,
and potentially releasable product Increment is created. Sprints have consistent durations
throughout a development effort. A new Sprint starts immediately after the conclusion of the
previous Sprint.

Sprint Planning Meeting:

The work to be performed in the Sprint is planned at the Sprint Planning Meeting. This plan is
created by the collaborative work of the entire Scrum Team.

Daily Scrum:

The Daily Scrum is a 15-minute time-boxed event for the Development Team to synchronize
activities and create a plan for the next 24 hours. This is done by inspecting the work since the last
Daily Scrum and forecasting the work that could be done before the next one.

Sprint Review:

Part 2: Software Engineering

75 7 Scrum

A Sprint Review is held at the end of the Sprint to inspect the Increment and adapt the Product
Backlog if needed. During the Sprint Review, the Scrum Team and stakeholders collaborate about
what was done in the Sprint. Based on that and any changes to the Product Backlog during the
Sprint, attendees collaborate on the next things that could be done. This is an informal meeting,
and the presentation of the Increment is intended to elicit feedback and foster collaboration.

Sprint Retrospective:

The Sprint Retrospective is an opportunity for the Scrum Team to inspect itself and create a plan
for improvements to be enacted during the next Sprint. The Sprint Retrospective occurs after the
Sprint Review and prior to the next Sprint Planning Meeting. This is a three-hour time-boxed
meeting for one-month Sprints. Proportionately less time is allocated for shorter Sprints.

7.7 Tips and Tricks

Here are some Tips and Tricks when performing Agile/Scrum:
* Bring the Customer to the Daily Scrum Meetings
* Check out Pair Programming
* Use a Task Board (Whiteboard with Sticky Notes)
* Write Tests before you Write Code

* Continuously Integrate Changes and have Code Reviews and do continuous Code
Refactoring

* Prioritize the Product Backlog
* Have Demonstrations for the Customer during the Project

* Be sure to have a common understanding of Goals, Problems and Solutions

7.8 Scrum Tools

There exists lots of tools that’s support the Scrum methodology, Azure DevOps is one of them.
More about Azure DevOps later in this document.

=

Azure DevOps with Scrum: https://youtu.be/-QmfMhtrxp0

Part 2: Software Engineering

https://youtu.be/-QmfMhtrxp0

3Project Management

Project management is the key factor in any software development projects. Project management
is the discipline of planning, organizing, motivating, and controlling resources to achieve specific
goals.

Making Gantt diagram with Microsoft Excel: https://youtu.be/L31m3Jf87PY

i [k

Planner App in Microsoft Teams: https://youtu.be/LrZK3o0UgklL4

In Figure 8-1 we see the well-known project triangle.

Scope

Features, Functionality,
\. Performance

/.. \

Cost /£ \ Time

Resources, Budget Schedule, Deadlines

Figure 8-1: Project Triangle
Here are some Key factors for successful project management:

e Proper Planning

e Kick-off and Brainstorming
e Planning and Estimation

e Project Tracking

76

https://youtu.be/L31m3Jf87PY
https://youtu.be/LrZK3oUgkL4

77 8 Project Management

e Communication and Collaboration
e Meetings
e Using proper Tools, such as e.g., Azure DevOps

Project Work consists of working with Project Management, Development and Documentation in
parallel.

If you remove one of these, the project will faill Assume you have a table with 3 legs, see Figure
8-2. If you remove one of the legs from the table, the table will fall apart.

——Documentation

: | | Development
Project - ’ P

Management .,

)

Figure 8-2: Project Management, Development and Documentation

8.1 Project Planning

Software development involves lots of activities that need to be planned and synchronized. To do
that we need good tools for these activities. The Gantt chart is probably the most used tool. In
addition, we need to have different meetings to plan and coordinate the different activities.

Agile Development also needs Project Management and Planning, which we will discuss in more
detail later in this chapter.

Part 2: Software Engineering

78 8 Project Management

--- AND THE

LAST 2 MONTHS BEFORE
THE DEADLINE WE'VE

RESERVED FOR TESTING
AND DOCUMENTATION

r1

]

P

FHET.I PROIECT PLANNING

geek & poke

[http://geek-and-poke.com]

In project work in general it is important that you complete the plans of this week so that you
don't fall behind and must do last week's work in addition to this week's work. Then there will be
more and more to do every week. See Figure 8-3.

Workload (hours) l'
Workload (hours) I _

w2 w3 .. Time wi w2 w3 .. [Time

Figure 8-3: How to Work in a Project

8.2 Kick-off/Brainstorming

A Project should always start with a Kick-off meeting where a brainstorming session is important
of that meeting.

Part 2: Software Engineering

79 8 Project Management

During the brainstorming, you should:

Involve all in the group

Discuss what you are going to do in the project
* How are you going to solve the project?
* etc.
In addition to getting good ideas for solving the project, you should learn from previous projects.

Examples: Who are going to solve the different parts, what kind of Frameworks are you going to
use, what kind of development tools you use, etc.

KICK-OFF MEETING

THIS TIME WE’'LL
WRITE TESTS FOR
EACH AND EVERY
LINE OF CODE

YES! AND THIS TIME WE
WILL BEGIN TO DOCUMENT
THE CODE FROM DAY ONE

AND TH[S TIME WE
WON'T ALLOW N

REQUIREMENTS TO
SLIP IN UNLESS WE
GET MORE TIME OR
RESOURCES

YES! AND THIS
TIME WE'LL
INTEGRATE

CONTINOUSLY

YES! AND THIS
TIME WE'LL MAKE
A REALISTIC
PROJECT PLAN

YES! AND TH/S
TIME WE WON'T
SHIP UNTIL WE HAVE
INISHED ALL TESTS

YES! AND THIS
TIME WE WILL
REFACTOR
REGLILARLY

\If.; W
/&ﬁ %1'(

[http://geek-and-poke.com]

Part 2: Software Engineering

80 8 Project Management

8.3 Software Development Plan (SDP)

Communication is the key to success! Below we list some examples how to avoid Communication
Problems [12]:

e Listen to all with concentration
e Don't pre-judge

e Give all team members a turn
e Seethevalue in every idea

e Don’t make assumptions

e Ask questions to clarify

e When in doubt, communicate

A good idea is to create a Software Development Plan. The Software Development Plan gives an
overview of all the communication within the project or within the team, i.e., what kind of
communication, how the communication should be done, etc.

Examples of Communication:

e Meetings: The Team will meet every Monday from ...

e Standards: Which Word processor, Templates, etc.

e E-mail... or other communication platforms, ...

e Collaboration: How will you communicate? Work together on Tuesdays, ...
e Other Tools: Microsoft Project, ...

e etc.

The Software Development Plan typically includes the following sections:

1. Introduction: This briefly describes the objectives of the project and set out the constraints
(e.g., budget, time, etc.) that affects the management of the project

2. Project Organization: This section describes how the development team is organized, the
people involved and their roles in the team.

3. Risk Analysis
4. Hardware and Software Resource Requirements

5. Work Breakdown (WBS, Work Breakdown Structure): Break down the project into
activities and identifies milestones

6. Project Schedule: Shows dependencies between activities, the estimated time required to
reach each milestone, allocation of people to activities. (5) and (6) is typically done in a
Gantt Chart (created in e.g., Microsoft Project)

Part 2: Software Engineering

81 8 Project Management

7. Monitoring and Reporting Mechanisms: Definition of the Management Report that should
be produced, when these should be produced, etc.

Other words for the Software Development Plan may be “Communication Plan” or “Project Plan”.

A Software Development Plan (SDP) is all about the Internal Communication within the
Development Team and how it Communicates with rest of the Organization, the Customers, etc.

8.3.1 Gantt Chart

One of the most used tools for project planning is the Gantt chart. The Gantt chart gives an
overview of tasks, subtasks, milestones, resources, etc. in a project.

In Figure 8-4 we see a Gant Chart example created with Microsoft Project.

& Microsoft Project - gantt chart example.mpp r;]
8}] File Edit Wiew [nsest Foymat Yools Project Collsborate ‘Window Help Adobe POF Type 3 question for help. = /@ X
PG DS AV 6 98 e S ge L L] @5 NG 2R e Bis -
§Df|Tasksl»v,Resoutes v | Track ~ | Report v!
| Determine a budget
Task Name Duration Start Finish Predecessors | |Oct7,'07 | Oct 14,07 [Oct 21,07 [Oct 28,07 Al
SMITWITIF[SISTMITWITIFIS[SMITWITIFIS[S[M[TWITIF]

1| Delermineabudget | tday Tue10)307 Tue 10807 =

2| Research Technologies S days Wed 1040007 Tue 1041607 1

3 Select Technology 1 day Wed 10M7/07 Wed 101707 2
-‘é 4 Research Brands Sdays Thu10M807 Mon 10722007 3
;_2 5 Select Brand and Model 1 day Tue 10/23/07 Tue 1072307 4
g 6 Check On-line Stores 2days Wed 10/24/07 Thu 1002507 5 3

7 Check Local Outlets Sdays Wed 10/24/07 Tue 1063007 5]

8| Select Retaier 1 day Wed 10/31/07 Wed 10/3107 786]

9 Purchase tday Thu11A07 Thul1A07 8

r 5 | 1 f"
Ready : NUM | 5l /

Figure 8-4: Gant Chart Example created with Microsoft Project

It is important that Project Management is an active part of your software project. The Gantt Chart
should be used through the whole project; it is not something you create in the beginning of the
project and put in a drawer.

In Figure 8-5 we see the recommended way of working with the different project activities.

Part 2: Software Engineering

82 8 Project Management

How to work in the project period

Project Working with Documentation
Management Project Tasks (Report, etc.)
—— Start
—
le. _
—2
e ——>
3
e _ >
= =
<
4 v Finish

Important: Work with these activities in parallel!!!

Figure 8-5: Project Work

Always create a Project Plan!

8.4 Meetings

It is necessary to have meetings when planning and creating software, but these meetings should
not be misused.

Below we list some typical meetings needed during the software development project:

e Kickoff and Planning Meetings
e Project Meetings

e Daily Scrum Meetings

e Review Meetings

e Meetings for Planning the next Sprint/Iteration
For meetings in general we have the following guidelines:

e The meeting agenda should be clear.

e All meetings should follow the basic structure that is described for that meeting.
e Meetings should start on time, even if some team members are late.

e Meetings should finish on time.

e Each team member should come to the meeting prepared.

Part 2: Software Engineering

83 8 Project Management

Always be prepared before the meetings (otherwise you don’t need to be there)!

8.4.1 Meeting Agenda

A typical meeting agenda could be as follows:
e Project Plan, Gantt Chart (Project Manager)
e Work Items, Overview and Status (Test Manager)
e Demonstration of Applications/Coding (Individual)
e Short Status for each member (Individual)
o What have you done so far?
o What shall the focus be the next weeks?

o Any Technical Challenges/Problems/Issues? (It is very important to get an overview
of the challenges in the project, or else the whole project will be at risk if you don’t
talk about them!)

o Other matters
e The meeting should last no longer than 60 minutes.

When you are finished with the meeting, write a short Minutes of Meeting as soon as possible.

8.4.2 Minutes of Meeting

Write a “Minutes of Meeting” (send on e-mail to team members and supervisor the same day!).
The purpose of this is twofold:

* Important decisions or agreements are recorded, so they are not forgotten!

* The second purpose is to record unsolved issues that require follow up action, so-called
action items. Each action item is assigned to one (preferred) or more team members with a
specific deadline for completion.

Always create Minutes of Meeting!

The Minutes of Meetings should include a table like this:

Task Responsible Deadline

Part 2: Software Engineering

84 8 Project Management

In this way, we can easily get an overview of the tasks agreed in the meeting, which is responsible
for the tasks, and a specific deadline for each task. This task list should be followed up in the next
meeting.

8.5 Agile Project Planning and Tracking

Successful projects often have the following characteristics:

e The needs of the customers drive the project.
e The team creates a high-level plan for delivering the project.

e The team develops the product over several iterations and refines the high-level plan over
time.

e The team has effective tools for adapting to changes that occur.

Figure 8-6 shows the steps involved in Agile Project Planning and Tracking.

Stakehoider Gives Feedback

Caily Cycles
Feedback Ask for
Incorporated Feadback
* =
[
Telling the | —
story m—
—
== =
== [}
— * ———]
Manage the Plan a Run a Deploy to
backlong Sprint Sprint Srakaholdars

Figure 8-6: Agile Project Planning and Tracking

In Agile Project Planning and Tracking, everything is broken down to so-called iterations, as shown
in Figure 8-7.

Part 2: Software Engineering

85 8 Project Management

— Planning the Project

Tracking the Project . [

L Tracking the Iteration

L Flanning the [teration
Figure 8-7: Using Iterations in Agile Project Planning and Tracking

The Task board is a key tool in Agile Project Planning and Tracking, see Figure 8-8

Product -1 All
k. R Task Board
Sprint Backlog i Se!ected Tt?day we can use tools !ike TFS, but many
W-‘ Requirements still use a whiteboard with sticky notes

"for one Iteration _
Sprint

inished

Sprint
Start

Tasks Not Started | Tasks In Progress Tasks Finished

i et

Create Web Create
Interface Create GUI SCC
J_, Project
Create
Database
Create
UML

-

Figure 8-8: Task board used in Agile Software development

The Task board is used together with the Burndown chart, as shown in Figure 8-9.

Part 2: Software Engineering

86 8 Project Management

Burndown Chart

Actual
Burndown Tracking the Progress

Ineal of the Project

Burndown

(S41NOH) d40oM Sululeway

Sprint 29 Sprint
Finished
Days

Figure 8-9: Burndown Chart

A burn down chart is a graphical representation of work left to do versus time. The outstanding
work (or backlog) is often on the vertical axis, with time along the horizontal. That is, it is a run
chart of outstanding work. It is useful for predicting when all the work will be completed.

It is often used in agile software development methodologies such as Scrum. However, burn down
charts can be applied to any project containing measurable progress over time.

Azure DevOps have all these features (Task board, Burndown chart, etc.) built in.

Azure DevOps is explained in detail in a later chapter.

8.6 Microsoft Teams

Microsoft Teams is a great tool for teamwork, collaboration and project work. Here you can chat,
share documents, have online meetings, etc. Microsoft Teams is also a good tool for Project
Planning and Management by using, e.g., Microsoft Planner.

ﬁ Microsoft Planner App in Microsoft Teams: https://voutu.be/LrZK30UgkL4

Part 2: Software Engineering

https://youtu.be/LrZK3oUgkL4

87 8 Project Management

8.7 Summary

Here are some important keywords for successful project management:
e Software Project Management is important to keep the project on track
e Agile Project Management = less documentation

e Useful tools are in Project Management and Tracking are Gantt Chart, Task board,
Burndown Chart

e You should always create a Communication Plan

e You should always start the project with a Brainstorming session.

Part 2: Software Engineering

9Requirements Engineering

Before you start to implement a software system, you need to understand what the system is
intended to do. This intended functionality is the “Requirements”. The process of creating these
requirements is called Requirement Analysis or Requirement Engineering. It is the process of
understanding what you want and what you need in your software.

Requirements Engineering (RE) refers to the process of formulating, documenting, and
maintaining software requirements.

The results of the Requirement Analysis or Requirement Engineering process is normally one or
more documents, called the Software Requirement Specification (shorted “SRS”).

The requirements are in some cases created by the customer, at least the overall requirements (it
defines “What” the customers want), while more details are normally created by architects and
developers in the software company that is going to develop the actual software. Here we can
have both “What” and “How” the software shall be designed or implemented.

The main challenges in Requirements Engineering are that the customers most often don’t know
what they want or are not qualified to know what they need.

In general, we can summarize the following:

e Stakeholders don’t know what they want.

e Stakeholder’s express requirements in their own terms.

e Different stakeholders may have conflicting requirements.

e Organizational and political factors may influence the system requirements.

e The requirements change during the analysis process. New stakeholders may emerge, and
the business environment may change.

In Figure 9-1 we see different types of requirements.

Requirements Requirements

/ f
4 %

N\
i -
User System ; Functional Non-Functional
Requirements Requirements | Requirements Requirements

Figure 9-1: Software Requirements

88

89 9 Requirements Engineering

In Figure 9-2 and below we explain the different software requirements categories in more detail.

User System Functional Non-Functional
Requirements Requirements Requirements Requirements
Statements in natural language plus Statements of services the system should provide, how
diagrams of the services the system the system should react to particular inputs and how
provides and its operational the system should behave in particular situations. May
constraints. Written for customers. state what the system should not do.
Constraints on the services or functions offered by
A structured document setting out detailed descriptions of the system such as timing constraints, constraints
the system’s functions, services and operational constraints. on the development process, standards, etc. Often
Defines what should be im plemented so may be part of a apply to the system as a whole rather than
contract between client and contractor, individual features or services.

Figure 9-2: Software Requirements Categories Overview

User Requirements

Statements in natural language plus diagrams of the services the system provides and their
operational constraints. Written for customers.

System Requirements

A structured document setting out detailed descriptions of the system’s functions, services and
operational constraints. Defines what should be implemented so may be part of a contract
between client and contractor.

Client managers
System end-users

> Client engineers
Contractor managers
System architects

User
requirements

System end-users
System Client engineers

requirements System architects

Software developers

Figure 9-3: Requirements Users [1]

Functional Requirements

Statements of services the system should provide, how the system should react to inputs and how
the system should behave in particular situations.

Part 2: Software Engineering

90 9 Requirements Engineering

May state what the system should not do.

Non-Functional Requirements

Constraints on the services or functions offered by the system such as timing constraints,
constraints on the development process, standards, etc.

They often apply to the system rather than individual features or services.

Since there are different people involved creating and reading the requirements documents, the
requirements are normally split into “High-Level Requirements” and “Detailed Requirements”
(Figure 9-4).

High-Level ' Detailed
Requirements ‘ Requirements

Figure 9-4: High-Level Requirements vs. Detailed Requirements

High-level requirements are for “business” people, while detailed requirements are for
developers, etc.

9.1 User Requirements

User requirements are statements in natural language plus diagrams of the services the system
provides and its operational constraints. User requirements are written for customers.

9.2 System Requirements

System requirements is setting out detailed descriptions of the system’s functions, services and
operational constraints. They define what should be implemented may be part of a contract
between client and contractor.

9.3 Functional Requirements

Functional Requirements are:
e Describe functionality or system services.

e Depending on the type of software, expected users and the type of system where the
software is used.

Part 2: Software Engineering

91 9 Requirements Engineering

e Functional user requirements may be high-level statements of what the system should do.

e Functional system requirements should describe the system services in detail.

9.4 Non-Functional Requirements

Non-Functional Requirements are:

* These define system properties and constraints e.g. reliability, response time and storage
requirements. Constraints are 1/O device capability, system representations, etc.

* Process requirements may also be specified using an IDE, programming language or
development method.

* Non-functional requirements may be more critical than functional requirements. If these
are not met, the system may be useless.

9.5 SRS

Software Requirements Specifications (SRS) are:

* The software requirements document is the official statement of what is required of the
system developers.

* It should include both a definition of user requirements and a specification of the system
requirements.

* Itis NOT a design document. As far as possible, it should set of WHAT the system should do
rather than HOW it should do it.

In practice, requirements and design are inseparable. Many don’t separate SRS and SDD (Software
Design Document) documents but include everything in a Requirements & Design Document. Such
a document could be called “Software Requirements and Design Document” (SRD).

In Figure 9-5 we see some typical contents of such a SRS/SDD document.

Part 2: Software Engineering

92 9 Requirements Engineering

| , uML
Requirements Analysis Diagrams
Written High-Level Diagrams as Figures S

Requirements + Descriptions of each

Use Case Document?

System R f % p
Sketches, Flow } SRS/SDD l D[::t:;‘;s(i) |
__ Charts, etc. Document(s) -. g

Diagrams as Figures
+ Overall Descriptions and
descriptions for each table

Diagrams as Figures
+ Descriptions of

Design Sketches
-both System Arcitecture
and GUI mockups

CAD Drawings etc.

Useful when your project involves hardware

Figure 9-5: Typical SRS/SDD Contents

In Figure 9-6 we see the different users involved in the SRS document.

Specify the requirements and
System read them to check that they
customers > meet their needs. Customers
specify changes to the
requirements.
Use the requirements
Managers - | document to plan a bid for
the system and to plan the
system development process.
System Use the requirements to
engineers > understand what system is
to be developed.
System test _ | Use the requirements to
engineers *| develop validation tests for
the system.
System Use the requirements to
T | understand the system and
engineers the relationships between its
parts.

Figure 9-6: Users of SRS [1]

Part 2: Software Engineering

93 9 Requirements Engineering

In Table 9-1 we see an example of what chapters that we can include in an SRS document.

Table 9-1: Example of Table of Contents for the SRS document [1]

Chapter Description

Preface This should define the expected readership of the document and
describe its version history, including a rationale for the creation of a
new version and a summary of the changes made in each version.

Introduction This should describe the need for the system. It should briefly describe
the system’s functions and explain how it will work with other systems.
It should also describe how the system fits into the overall business or
strategic objectives of the organization commissioning the software.

Glossary This should define the technical terms used in the document. You
should not make assumptions about the experience or expertise of the
reader.

User Requirements Here, you describe the services provided for the user. The

Definition nonfunctional system requirements should also be described in this

section. This description may use natural language, diagrams, or other
notations that are understandable to customers. Product and process
standards that must be followed should be specified.

System Architecture | This chapter should present a high-level overview of the anticipated
system architecture, showing the distribution of functions across
system modules. Architectural components that are reused should be

highlighted.
System This should describe the functional and nonfunctional requirements in
Requirements more detail. If necessary, further details may also be added to the
Specification nonfunctional requirements. Interfaces to other systems may be
defined.
System Models This might include graphical system models showing the relationships

between the system components and the system and its environment.
Examples of possible models are object models, data-flow models, or
semantic data models.

Part 2: Software Engineering

94 9 Requirements Engineering

System Evolution This should describe the fundamental assumptions on which the
system is based, and any anticipated changes due to hardware
evolution, changing user needs, and so on. This section is useful for
system designers as it may help them avoid design decisions that would
constrain likely future changes to the system.

Appendices These should provide detailed, specific information that is related to
the application being developed, for example, hardware and database
descriptions. Hardware requirements define the minimal and optimal
configurations for the system. Database requirements define the
logical organization of the data used by the system and the
relationships between data.

Index Several indexes to the document may be included. As well as a normal
alphabetic index, there may be an index of diagrams, an index of
functions, and so on.

9.6 Project Estimation

Getting an overview of the total cost in a software project is important. The features and
requirements need to be broken down into manageable tasks by the team. Each Tasks then needs
to be estimated (Hours).

9.7 Exercises

Make sure to discuss and reflect over the following:

1. What are Software Requirements?

2. Requirements vs. Design — What is the main difference?
3. Different types of Requirements

4. What are User Requirements?

5. What are System Requirements?

Part 2: Software Engineering

95

9 Requirements Engineering

10.

What are Functional Requirements?

What are Non-Functional Requirements?

Give some examples of Non-Functional Requirements

What is SRS?

Mention some Requirements Analysis Problems/Challenges?

Part 2: Software Engineering

10 User eXperience (UX)

Designing and creating the graphical user interface is a very important part of software
development. We have different names for it; User eXperience (UX), Graphical User Interface
(GUI) or Human Machine Interface (HMI).

GUI design has been in constant change since the first computers and software were created. In
Figure 10-1 we see the difference between Windows 1 and Windows 8.

User eXperience Human Machine Interface

Graphical User Interface

JEairite

Administrator &

READHE . DOCES

. Ale 1le Edit Search
R L — i |l
- \\’} e Microsaft Yiadows e A N\]
: T; ‘| caLe 3 Necubine ; Mail intefnét Store
T | al |- Version 1.81
P g™ £BA. Copyright @ 1985, Microsoft Corp. L";f::",t,‘;:&ie ! 2 /\/
3 Sy . A G G
ga brslos ey Calenda aps SkyDrive Games Video Finance
CLIP! Disk Space Free: 38024K bt on of the WINLIE
l‘fk?.c‘i Menory Free: 33K Eepoolersno vall o

ey
CONTROL .EXE EGAMOND.GRE HPLA
COURA_FON EGAMONO.LGD 1BM(
COURB.FON ENM.AT Joy
COURC.FON R

| N iy B
- Contacts

Windows 8 (2012)

RUNNING BATCH | BAT] FILE

If you run & standerd aoplicet
should craste a FIF file for e id

Page 1 [- H

Windows 1 (1985)
Figure 10-1: Examples of User eXperience — UX

It is important that Documents, GUI, Code, etc. have the same “Look and Feel” — Use Common
Templates, APls, etc.

In software design, look and feel is a term used in respect of a graphical user interface and
comprises aspects of its design, including elements such as colors, shapes, layout, and typefaces
(the "look"), as well as the behavior of dynamic elements such as buttons, boxes, and menus (the
"feel"). The term can also refer to aspects of an API, mostly to parts of an APl that are not related
to its functional properties.

96

97 10 User eXperience (UX)

Look and feel in operating system user interfaces serve two general purposes. First, it provides
branding, helping to identify a set of products from one company. Second, it increases ease of use,
since users will become familiar with how one product functions (looks, reads, etc.) and can
translate their experience to other products with the same look and feel.

It is the “UX Designer” that design the GUI, while the Programmer make sure to implement it in
the proper programming language (Figure 10-2).

»,

e,
\,,{_/ N ./-/

Software Architect SoftwareTester

». Project Manager

Programmer

Figure 10-2: UX Designer

10.1 UX Guidelines

Different platforms have different UX and UX guidelines, so it is important to follow these general
guidelines for the different platforms. The GUI is totally different on, e.g., Windows and Mac OS X.

The different platform vendors create their own guidelines that the developers should follow.
For Windows 8 UX Guidelines, see [13].

Figure 10-3 is an example from the Mac OS X UX Guidelines [14].

Part 2: Software Engineering

98 10 User eXperience (UX)

Close, minimiza,

and Zoom buttons Proxy icon Window fitle
80 R a Title Title bar
(4=] [Hshvetca pllmeguar. v [L) (2]| BEI=E =5 ez ="]
(@ Find) [« » | (Done) [|Replace —— Scope bar
— Scroller

Figure 10-3: Mac OS X UX Guidelines [14]

10.2 GUI Mockup

Creating so-called GUI mockups is an important part of the process of creating user-friendly GUI.

Mockups and prototypes are not so cleanly distinguished in software and systems engineering,
where mockups are a way of designing user interfaces on paper or in computer images. A software
mockup will thus look like the real thing but will not do useful work beyond what the user sees. A
software prototype, on the other hand, will look and work just like the real thing. In many cases it
is best to design or prototype the user interface before source code is written or hardware is built,
to avoid having to go back and make expensive changes [15].

In Figure 10-4 we see an example of a GUI Mockup.

Part 2: Software Engineering

99 10 User eXperience (UX)

my very own address book
GD X{} (htepr7) @)
O ™rs.
John Doe M M
Jane Doe ;
First Name] John
John Dow I_ I
John Dunn Last Name | Dow I
Birthdate 02/08/1977 E
Job title passionate programmer I
Address & Cle ® ﬁegh:n ¢ | Postcode & | Type ®
2843 Sherman Ave Camden CA 08105-442 home
35746 Haley St MNewark CA 94560-1161 work
Add | [Deete | |Telephone/|Address JEmai /
“

Figure 10-4: GUI Mockup Example

10.3 Creativity

Be creative - Think outside the box!

“Thinking outside the box” is a metaphor that means to think differently, unconventionally, or
from a new perspective.

Part 2: Software Engineering

11 UML

11.1 Introduction

UML is a modeling language used in software engineering. It is very popular among OOA, 00D,
OOP. UML was developed in the 1990s and adapted as an ISO standard in 2000. UML 2.2 has 14

different types of diagrams. See Figure 11-1.

Diagram
| |
Structure Behaviour
Diagram Diagram
PaN Ay
I I I [
Class Component Object Activity Use Case
Diagram Diagram Diagram Diagram Diagram
Profile CSotrrn g?&liftee Deployment Package Interaction Msatc?r'{%e
Diagram Diaugram Diagram Diagram Diagram Diagram

AN

I I I

Sequence || Communication|| INnteraction/| Timing
; Disararm Qverview Di
Diagram g Diagram iagram

Figure 11-1: UML Diagrams
We have 2 main categories of diagrams:

e Structure Diagrams
e Behavior Diagrams
o Interaction Diagrams (subcategory of Behavior Diagrams)

The diagrams available in UML are:

e Class Diagram

e Component Diagram
e Deployment Diagram
e Object Diagram

e Package Diagram

e Activity Diagram

100

101 11 UML

e Sequence Diagram

e Communication Diagram

e Use Case Diagram

e State Machine Diagram

e Composite Structure Diagram
e |nteraction Overview Diagram
e Timing Diagram

Why use UML?

e Design:
o Forward Design: doing UML before coding. Makes it easier to create the code in a
structured manner
o Backward Design: doing UML after coding as documentation

o Some tools can auto-generate Code from UML diagrams

11.2 UML Software

There exist hundreds of different software for creating UML diagrams, here | mention just a few:

e Enterprise Architect

e StarUML

e Diagram tools like Lucidchart, Miro, Draw.io, etc.
e ++ hundreds of other alternatives

Some of these software tools are free to use while others cost money. More about UML software
later in this document.

11.3 Use Case

One of the most used UML diagrams is the Use Case Diagram.

In Figure 11-2 we see a Use Case example.

Part 2: Software Engineering

102 11 UML

Register Export
patient % statistics
f 3 View Manager
Medical receptionist personal info.
report

% View record f
Nurse
Doctor
Edit record

Setup
consultation

Figure 11-2: Use Case Example

11.4 Sequence Diagram

In Figure 11-3 we see an example of a Sequence Diagram.

= ‘ P : Pasientinfo ‘ D: A : Autorisasjor
| | MHCPMS-DB |

: Medisinsk H
saksbehandler [

1: SePasientinfo (PID) 2: Report (Info. PID, UID)

=

3: Autorisasjon(info, UID)

4: Autorisasjon

-

Alt

Autnrisasjon ok _—
5: Pasientinfo

<

— T

Autprisasjon feilet

Feilmelding (Ingen aksess)

-

= | |

1

s |
L

Figure 11-3 Sequence Diagram Example

Part 2: Software Engineering

103 11 UML

11.5 Class Diagram

Figure 11-4 shows a Class Diagram Example.

Person Address
Name S!reet
Phone Number 0.1 livesat 4 | City
Email Address State
Postal Code
Purchase Parking Pass Country
T Validate
Output As Label
Student Professor
Student Number Salary

Average Mark

Is Eligible To Enroll
Get Seminars Taken

Figure 11-4: Class Diagram Example

11.6 Creating UML Diagrams

There are many types of UML diagrams, so you need to focus in some of the diagram types which
are relevant for your project.

| will focus on the UML diagrams mentioned above, namely Use Case Diagrams, Sequence
Diagrams and Class Diagrams.

Requirements Analysis Phase (WHAT):
* Use Case Diagrams

Design Phase (HOW):
* Sequence Diagrams (Typically one Sequence diagram for each Use Case)
* Class Diagrams (just one Class diagram in total)

See Figure 11-5 for the recommended approach when writing UML diagrams.

Part 2: Software Engineering

104 11 UML

Creating UML - A practical Approach

A graphical/visual representation

:!; . of the Requirements
- = N E,f‘ - Interactions_betwe_ena
‘ Written . i U Se CaSE system and its environment
i » WHAT
Requirements i
.~ Create Use Cases from your Dlag_fams
written Requirements WHAT the system shall do
(4)
_ — _ You get the Class Names from DESIGN._, (
‘ Class ' the different Sequence Diagrams‘ Sequence
4 HOW
~ Diagram now _ Diagrams
Create one Class Diagram that gives an overview of all Typically create one Sequence
your classes and the relationship between them Diagram for each Use Case

Figure 11-5: How to create UML diagrams

Finally, include your UML diagrams and descriptions of them in the SRS/SDD document(s), see
Figure 11-6.

UML

i Requirements Analysis
q Y Diagrams

.

Written High-Level

: : etc.
- Diagrams as Figures
Requirements + Descriptions of each
Use Case Document?
System '- SRS/SDD ' Database
Sketches, Flow —————————» Diagram(s)
el { Document(s) . .

Diagrams as Figures
+ Overall Descriptions and
descriptions for each table

Diagrams as Figures
+ Descriptions of e

Design Sketches
-both System Arcitecture
and GUI mockups

CAD Drawings etc.

Useful when your project involves hardware

Figure 11-6: UML documentation

11.7 UML in Agile/Scrum?

Part 2: Software Engineering

105 11 UML

UML is not a part of the Agile/Scrum methodology, because they use another philosophy with
less focus on documentation.

Use Case and Scrum (Agile):
* The Team works closely together with the Product Owner
* Less need for detailed descriptions and requirements

* Agile/Scrum uses User Stories instead (which could be considered as a light version of Use
Case)

* The User Stories are the base for the Product Backlog and the Sprint Backlog

11.8 Summary

You should create Design and Specifications (including UML) before you start Coding. UML
diagrams is a general method/standard to do just that. But UML can also be used to document
your code afterwards (so-called Reverse Engineering).

UML makes it easier to create structured code and an effective way to document your code
properly. UML should also be part of the code refactoring process and UML should be as part of
the continuous code improvements process. Note! If you update the code, make sure to update
the UML and vice versal

Make sure that you code reflects the UML design regarding classes, etc. If you update your code,
you need to update the UML diagrams and vice versa.

It is important that we always have working software (so it can be reviewed, tested, etc.)!

11.9 Exercises

Make sure to discuss and reflect over the following:

1. Whatis UML?

2. Give example of some types of UML diagrams (in total we have 14 different types)?
3. Give examples of software used to create UML diagrams

4. List the 2 different categories of UML diagrams we have

Part 2: Software Engineering

106 11 UML

5. Create a Class Diagram for a typical School including Classes Teacher, Student, Course, Grade,
etc.

Part 2: Software Engineering

12 Software Implementation

The goal of most software engineering projects is to produce a working program.

The act of transforming the detailed design into a valid program in some programming language,
together with all its supporting activities, is referred to as implementation.

Most of the text in this chapter is taken from [16].

The implementation phase involves more than just writing code. Code also needs to be tested and
debugged as well as compiled and built into a complete executable product (Figure 12-1).

We usually need to use a Source Code Control (SCC) tool to keep track of different versions of the
code.

Problem

statement [~~~ > Code

Compile — 3

Y

Problem Problem

Debug

Figure 12-1: Software Implementation [16]

In many cases the detailed design is not done explicitly (in the Design Phase) but is left as part of
the implementation. Doing the detailed design as part of the implementation is usually faster, but
it may result in a less cohesive and less organized design, because the detailed design of each
module will usually be done by a different person.

In small projects, the detailed design is usually left as part of the implementation. In larger
projects, or when the programmers are inexperienced, the detailed design will be done by a
separate person.

Here are some keywords for good implementation:

e Readability: The code can be easily read and understood by other programmers.

e Maintainability: The code can be easily modified and maintained. Note that this is related
to readability, but it is not the same; for example, this involves the use of e.g., Hungarian
notation, in which variable names include abbreviations for the type of variable.

107

108

12 Software Implementation

Performance: All other things being equal, the implementation should produce code that
performs as fast as possible.

Traceability: All code elements should correspond to a design element. Code can be traced
back to design (and design to requirements).

Correctness: The implementation should do what it is intended to do (as defined in the
requirements and detailed design).

Completeness: All the system requirements are met.

In this chapter, we will go through the following topics regarding implementation:

In this chapter, we will discuss the following:

Programming Style and Coding Guidelines
Comments

Debugging

Code Review

Refactorization

12.1 Programming Style & Coding Guidelines

Almost all software development organizations have some sort of coding guidelines. These

guidelines usually specify issues such as naming, indentation, and commenting styles, etc.

It is strongly recommended that you be consistent in your notation to avoid confusion when

others are debugging or maintaining your code later. Especially in large software projects there

are usually some programming conventions. These conventions may seem to be of little value at

first, but they may become extremely helpful during the maintenance of the code.

Here are some recommendations:

Naming: This refers to choosing names for classes, methods, variables, and other
programming entities.

Separating words and capitalization: Many times, a name will be composed of more than
one word. In human languages, we use spaces to separate words, but most programming
languages will not allow us to do so. (“do_something”, “doSomething”, “DoSomething”)
Indentation and spacing: Indentation refers to adding horizontal spaces before some lines
to better reflect the structure of the code. Spacing refers to both spaces and blank lines
inserted in the code.

Function/method size: Many studies have shown that large functions or methods are

statistically more error-prone than smaller ones.

Part 2: Software Engineering

109 12 Software Implementation

* File-naming issues: Having a standard for specifying how to name the files, which files to
generate for each module, and how to locate a given file from a module is very
advantageous.

* Specific programming constructs: Different programming languages support different
features; although they usually have good reasons to include certain features, there are
many that can be misused and need special precautions.

12.1.1 Naming Convention

We have different naming convention/notation such as:

e Camel notation
¢ Pascal notation
* Hungarian notation

Camel Notation

For variables and parameters/arguments
Examples: “myCar”, “backColor”

Pascal Notation

For classes, methods, and properties
Examples: “ShowCarColor”

Hungarian Notation

For controls on your user interface, we either use “Pascal notation” or “Hungarian notation”, but
stick to one of them!

Examples: “txtName”, “IbIName”
Acronyms

Examples: “DBRate”, “ioChannel”, “XmIWriter”, “htmIReader”

12.2 Comments

Comments are very important and can significantly aid or hurt readability and maintainability.
There are two main problems with comments:

e they may distract from the actual code and make the program more difficult to read and

Part 2: Software Engineering

110

12 Software Implementation

they may be wrong.

DO YOU POST
YOUR CODE ON
FACEBOOK?

geek & poke

DIDN'T YOU
SAY TO ME IT
NEEDS MORE
COMMENTS?

CODE COMMENTING MADE EASY

[http://geek-and-poke.com]

We may classify comments into 6 different types:

1.

2.

5.

6.

Repeat of the code
Explanation of the code
Marker in the code

Summary of the Code
Description of the code intent

External references

These are explained below:

Repeat of the code

Part 2: Software Engineering

111 12 Software Implementation

o These kinds of comments tend to be made by novice programmers and should be
avoided.
Bad Example:
// increment i by one
i++;

e Explanation of the code

o Sometimes, when the code is complex, programmers are tempted to explain what
the code does in human language.

o Inalmost every case, if the code is so complex that it requires an explanation, then
it should be rewritten.

1. Marker in the code

— Itis common practice to put markers in the code to indicate incomplete items,
opportunities for improvement, and other similar information.

— We recommend using a consistent notation for these markers and eliminating all of
them before the code is in production.

— Sometimes programmers put markers in the code to keep track of changes and who
made them. We believe that information is better tracked with version
management software and recommend doing so.

3. Summary of the code

— Comments that summarize what the code does, rather than just repeating it, are
very helpful in understanding the code, but they need to be kept up to date.

— Itis important to ensure that these comments are summarizing the code, not just
repeating, or explaining it.

— In many cases, the code that is being summarized can be abstracted into its own
function, which, if named correctly, will eliminate the need for the comment.

4. Description of the code intent

— These are the most useful kinds of comments; they describe what the code is
supposed to do rather than what it does.

— These are the only kinds of comments that override the code. If the code does not
fulfill its intent, then the code is wrong.

5. External references

Part 2: Software Engineering

112 12 Software Implementation

— These are comments that link the code to external entities, usually books or other
programs.

— Many times, these can be viewed as a kind of intent statement, as in, “This function
implements the XYZ algorithm, as explained in . . .,” but we believe such comments
require special attention.

— There may also be external prerequisites for the code, such as the existence of
initializing data in the database tables.

The trade-off that comments imply should be recognized. Comments can help clarify code and
relate it to other sources, but they also represent some level of duplication of the code.

6. Effortisinvested in their creation and, above all, in their maintenance.

7. A comment that does not correspond to the actual code that it accompanies can cause
errors that are very hard to find and correct.

8. Another danger comments present is that they can be used to justify bad coding practices.
Many times, programmers will be tempted to produce code that is too complicated or too
hard to maintain, and add comments to it, rather than rewrite it to good standards.

9. In fact, many experts recommend avoiding comments completely and produce what is
called “self-documented code” - that is, code that is so well written that it does not need
any documentation.

10. Comments have their place, especially in the form of describing the programmer’s intent.

12.3 Debugging

Debugging is about different techniques for finding and fixing bugs (errors that make your code
not work as expected) in your code.

1. Itis difficult to write code without errors (bugs), but e.g., Visual Studio and other tools
have powerful Debugging functionality (breakpoints, etc.)

2. The Compiler will also find syntax errors, etc.

3. For more “advanced” bugs other methods are required (Unit Testing, Integration Testing,
Regression Testing, Acceptance Testing, etc.).

4. The focus here will be on these methods, while Debugging is something you learned in
Programming courses.

In debugging we have 4 phases:

Part 2: Software Engineering

113 12 Software Implementation

» Stabilization/Reproduction

* The purpose of this phase is to be able to reproduce the error on a configuration,
and to find out the conditions that led to the error by constructing a minimal test
case

* Localization

* The process of localization involves finding the sections of the code that led to the
error. This is usually the hardest part, although, if the stabilization phase produces a
very simple test case, it may make the problem obvious.

* Correction

* The process of correction involves changing the code to fix the errors. Hopefully, if
you understand what caused the error, you have a good chance of fixing the
problem.

e Verification

* The process of verification involves making sure the error is fixed, and no other
errors were introduced with the changes in the code. Many times, a change in the
code will not fix the error or may introduce new errors.

12.4 Code Reviews

We are all human beings. You may make some mistakes irrespective of your experience in a
technology or module. If you just review your code with a second eye, those mistakes might have
caught at that time only. This way you can reduce the no. of bugs reported by the testers or end
users (Figure 12-2).

If you are working in a geographically distributed team, your coding conventions may differ and if
you have some strict coding guidelines, this code review process will make it possible to recheck
the standards in the code that you have written.

1. There are some possibilities of repetitive code block which can be caught during a code
review process. Refactoring can be done based on that.

2. Unused code blocks, performance metrics etc. are some additional check points of doing a
review.

3. If you are new to development, this code review process will help you to find out your
mistakes and help you to improve them. This is a perfect knowledge sharing mechanism.

Part 2: Software Engineering

114 12 Software Implementation

4. Find out the defects and correct them at the beginning before it is committed to the source
control system.

Why Do Reviews?

Cost per defects

| SDLC >
®

Figure 12-2: Why you should do reviews

RECENTLY DURING CODE REVIEW

wgod § et

BLAME ME!
I COPIED THE
CODE FROM

SINGLE SOURCE PRINCIPLE

[http://geek-and-poke.com]

Part 2: Software Engineering

115

12 Software Implementation

Better code always starts with review process!

Here are some topics that should be checked during the Code Review process [12]:

Readability: The code can be easily read and understood by other programmers.

Maintainability: The code can be easily modified and maintained. Note that this is related
to readability, but it is not the same; for example, this involves the use of e.g., Hungarian
notation, in which variable names include abbreviations for the type of variable.

Performance: All other things being equal, the implementation should produce code that
performs as fast as possible.

Traceability: All code elements should correspond to a design element. Code can be traced
back to design (and design to requirements).

Correctness: The implementation should do what it is intended to do (as defined in the
requirements and detailed design).

Completeness: All the system requirements are met.

12.5 Refactoring

Even when using best practices and making a conscious effort to produce high-quality software, it

is highly unlikely that you will consistently produce programs that cannot be improved.

Refactoring is defined as

the activity of improving your code style without altering its behavior

a change made to the internal structure of software to make it easier to understand and
cheaper to modify without changing its observable behavior

Do you need to refactor your code? — here are some symptoms:

Coding Style and Name Conventions not followed
Proper Commenting not followed
Duplicated code (clearly a waste)

Long methods (excessively large or long methods perhaps should be subdivided into more
cohesive ones)

Large class (same problem as long method)

Switch statements (in object-oriented code, switch statements can in most cases be
replaced with polymorphism, making the code clearer)

Part 2: Software Engineering

116 12 Software Implementation

* Feature envy, in which a method tends to use more of an object from a class different to

the one it belongs
* Inappropriate intimacy, in which a class refers too much to private parts of other classes

Any of these symptoms (and more) will indicate that your code can be improved. You can use
refactoring to help you deal with these problems.

You should Refactoring your continuously and especially after Code Reviews.

Part 2: Software Engineering

13 Testing

13.1 Introduction

Different people have come up with various definitions for Software Testing, but generally, the

goal of testing is:

e To ensure that the software meets the agreed requirements and design
e The application works as expected

e The application doesn’t contain serious bugs

e Meets its intended use as per user expectations

Testing can be performed on different levels and by different people. Testing is a very important
part of software development. About 50% of the software development is about testing your

software.

ﬁ Software Testing: https://youtu.be/MVdblvgPH1U

Since modern software has become very complex, testing has become a very important part of
software development (see Figure 13-1).

Client

Different Platforms:
Android, iOS, Windows
8/Windows Phaone, etc|

l Presentation Tier Mobile_ -
App Presentation Tier l

Desktop App
Web App
- — o — »PIEseOtatign Tiers e e e
Firewall
API . Web Server Local

Client
eI

Different
Browsers

Presentation Tier ! b :
ASP.NET Web Forms L s il ; =% ; Netwark
I API a& v
= Erzexeaseress TS %
Business Tier i
Logic Tier - -
Data Access Tier g TeStl ng IS

1 e.g., ADO, ADO.NET CO m p | ex | |

Database -> Systematic
E\ Server Dacabase Approach
needed!

< . Stored Procedures

Microsoft*

L Server 1 Tables Views Data Tier

Figure 13-1: Modern Software Testing has become very complex

117

https://youtu.be/MVdb1vqPH1U

118 13 Testing

Since testing of advanced software systems is quite complex, we need a systematic approach to
testing that involves different levels of testing (see Figure 13-2).

Acceptance Testing

System Testing
Integration Testing
Unit Testing

Figure 13-2: Systematic Testing

Since Software Development today involves different platforms, different devices, networks,
servers, and clients, etc., it has become very complex to test it. Today we have not only ordinary
Desktop Apps, but we also have Web Apps, Mobile Apps, Apps for TVs, etc.

The software we create is a layer between the user of the software and the hardware and the
operating system (Figure 13-3).

Part 2: Software Engineering

119 13 Testing

Who are going to use the

U Ser software?
\ / How are they going to
“_ 7 use |t?
App lication Desktop, Web, Mobile?

‘[‘

Windows, OS X, Linux,

Operating System android, ios, etc.

”'_r‘ T\/ 7

PC, Mac, Smartphone,

H d rdwa re Tablet, SmartTV, etc.

Software Testing

Infrastructure, Network,
Internet, Servers, etc.

Figure 13-3: Components involved in Software Development & Testing

If we find bugs at the earlier stage, the cost to fix this will be less and thus it will reduce the overall
cost of the application (Figure 13-4).

Why Find Bugs early?

Cost per defects

———
I SDLC A >
e(\"s T - > \
e . P o o e
qe™ &“'\%/ . «\Q\e“‘ 4 4 e,Q\O‘\‘°
3] / \G

Figure 13-4: Find Bugs at an early stage

Figure 13-5 illustrates the necessary steps involved in testing.

Part 2: Software Engineering

120 13 Testing

Document Test
Results

Planning Tests " Perform Tests |

Figure 13-5: Software Testing

Testing is intended to show that a program does what it is intended to do and to discover program
defects before it is put into use. When you test software, you execute a program using artificial
data. You check for the presence of errors NOT their absence.

Testing is part of a more general verification and validation process, which also includes static
validation techniques.

What is the purpose of Testing?

The main purpose of testing is as follows:

* To demonstrate to the developer and the customer that the software meets its
requirements.

* For custom software, this means that there should be at least one test for every
requirement in the requirements document.

* For generic software products, it means that there should be tests for all the system
features, plus combinations of these features, that will be incorporated in the
product release.

* To discover situations in which the behavior of the software is incorrect, undesirable or
does not conform to its specification.

* This means undesirable system behavior such as system crashes, unwanted
interactions with other systems, incorrect computations, and data corruption.

The primary purpose of testing is to detect software failures so that defects may be discovered
and corrected.

If we summarize why we do Testing:

* Finding Bugs in the Software before it is released to the Customer

* Finding unwanted system behaviors

* Verify/Validate that the Software works as expected (according to the Specifications)
* Find bugs as soon as possible!

Part 2: Software Engineering

121 13 Testing

It is commonly believed that the earlier a defect is found the cheaper it is to fix it.
There are different steps involved in the software testing process.
The steps are as follows:

e Design Test Cases

e Prepare Test Data

e Run the Software with the necessary Test Data
e Compare the results with the Test Cases

The final output of this process is a Test Report.

Basically, we do the following: Planning the Test, then we execute the Tests, finally we document
the Test results.

Documents used in testing and created in the test process:

e SRS —Software Requirements Specifications: A document stating what at application must
accomplish. The documents are the basis for the test plan, etc.

e SDD - Software Design Document: A document describing the design of a software
application. The documents are the basis for the test plan, etc.

e STP - Software Test Plan: Documentation stating what parts of an application will be
tested, and the schedule of when the testing is to be performed

e STD - Software Test Documentation: Introduction, Test Plan, Test Design, Test Cases, Test
procedures, Test Log, ..., Summary

We have the following stages in testing:

1. Development testing, where the system is tested during development to discover bugs
and defects. Development testing includes all testing activities that are carried out by the
team developing the system.

2. Release testing, where a separate testing team test a complete version of the system
before it is released to users.

3. User testing, where users or potential users of a system test the system in their own
environment.

Development testing: Development testing is the responsibility of the software development
team. A separate team should be responsible for testing a system before it is released to
customers.

Release testing: Release testing is the process of testing a release of a system that is intended for
use outside of the development team.

Part 2: Software Engineering

122 13 Testing

The primary goal of the release testing process is to convince the supplier of the system that it is
good enough for use. Release testing is usually a black box testing process where tests are only
derived from the system specification.

User testing: We have different types of user testing:

e Alpha testing
o Users of the software work with the development team to test the software at the
developer’s site.
° Beta testing
o Arelease of the software is made available to users to allow them to experiment
and to raise problems that they discover with the system developers.
e Acceptance testing
o Customers test a system to decide whether it is ready to be accepted by the system

developers and deployed in the customer environment. Primarily for custom
systems.

13.1.1 Test Levels
In Figure 13-6 we see different test levels.

Levels of Testing

Unit Testing: Test each parts
independently and isolated

/ @

Integration Testing: Make sure
that different pieces work
together. Test the Interfaces
between the different pieces.
Interaction with other systems

(Hardware, OS, etc.)

System Testing: Test the whole system

Regression Testing:
Test that it still works
after a change in the

code

Figure 13-6: Levels of Testing

Short overview of the different Test levels in Figure 13-6 (more details later):

Part 2: Software Engineering

123

13 Testing

Unit Tests are written by the Developers as part of the Programming. Each part is
developed, and Unit tested separately (Every Class and Method in the code)

Regression testing is testing the system to check that changes have not “broken”
previously working code. Both Manually & Automatically (Re-run Unit Tests)

Integration testing means the system is put together and tested to make sure everything
works together.

System or validation testing is Black-box Tests that validate the entire system against its
requirements, i.e., checking that a software system meets the specifications

Acceptance Testing: The Customer needs to test and approve the software before he can
take it into use. We have 2 types: FAT (Factory Acceptance Testing) and SAT (Site
Acceptance Testing).

13.1.2 Bug Tracking

A software bug is an error, flaw, failure, or fault in a computer program or system that produces

an incorrect or unexpected result, or causes it to behave in unintended ways

They found a bug (a moth) inside a computer in 1947 that made the program not behave as

expected. This was the “first” real bug.

13.1.3 Software versioning

Software versioning is used to separate different versions of the same software, both before it has

been released and for subsequent releases. See example in Figure 13-7.

Before the software is released:

Alpha Release(s)

Beta Release(s)

RC - Release Candidate(s)

RTM — Release To Manufacturing

Maintenance (after the software is released):

Patches (small fixes)
SP - Service Packs
(lots of small fixes and patches bundled together)

Start Planning next release

Part 2: Software Engineering

124

13 Testing

Eeta wersion

Figure 13-7: Software versioning

Software testing should be performed during the whole Software Development Life Cycle (SDLC)

as shown in Figure 13-8.

Part 2: Software Engineering

13 Testing

125
Testing

: 5 Code .

Requirements Development & Coding F Final
. reeze
& Design Delivery
o O @ & @—
1]

L] = m
5 % E - & - B 3
Continuous Testing in the whole SDLC! g

In larger companies and Software Systems they typically creates Daily (nightly) Builds, meaning the system is
always ready and available for testing.

Testin Testing Testing Testing
o2t (H) L & o
Increased Increased Increased Increased
Focus Focus Focus Focus

Software without

Requirements & jonali
Functionality Critical Bugs

Test Focus: Requirements ; 2
Functionality

You can never find all Bugs!
Agile/Scrum: Periodically Iterations/Sprint every 14-30 days Released Software do have Bugs!

Figure 13-8: Testing during the Software Development Life Cycle (SDLC)

Sooner or later, you have to say enough is enough and release version 1.0 (see Figure 13-9).

Software Finished

. 3

“100%" =
]— Details, small adjustments, etc.

“90%" The last 10% takes a lot of time!!!

Sooner or later you have to say enough is
enough and release version 1.0.

One must define within the development
company, development team or in dialogue
with the customer what is defined as "good
enough". Software will never be 100%
complete or error-free!

Time

Figure 13-9: When is the Software Finished?

Part 2: Software Engineering

126 13 Testing

One must define within the development company, development team or in dialogue with the
customer what is defined as "good enough".

Software will never be 100% complete or error-free (see Figure 13-10)!

When should you stop Testing?
(depends on Time, Budget, etc.)

In the beginning it it easy to

Number of Bugs
find bugs with few resources

Critical Point Time

Figure 13-10: When are you Finished with Testing?

13.2 Test Categories

We can divide testing into 2 different categories, which is:

e Black-box Testing
e White-box Testing

13.2.1 Black-box Testing

Black-box testing is a method of software testing that examines the functionality of an application
(what the software does) without going inside the internal structure (White-box Testing).

You need no knowledge of how the system is created. Black-box testing can be done by a person
who only knows what the software is supposed to do. You may compare to driving a car — you
don’t need to know how it is built to test it.

Part 2: Software Engineering

127 13 Testing

13.2.2 White-box Testing

In White-box Testing you need to have knowledge of how (Design and Implementation) the
system is built. White-box Testing is also called “Glass-box testing”.

In Figure 13-11 we see how White-box testing works.

Analyze Code & Identify Tests

" ‘ ¢ ‘

Validate Output

Step 1
|nput : ‘ g ‘
Software
= ‘
&=
&=
e — Step 3
Step 2 "

Figure 13-11: White-box Testing

13.3 Test Levels

As mentioned earlier, we have different Levels of Testing (see Figure 13-12).

e Unit Testing

e Regression Testing
e Integration Testing
e System Testing

e Acceptance Testing

These are explained in more detail below.

Part 2: Software Engineering

128

13 Testing

Start

Finish

Requirements & Design

Unit Testing

v
Regression Testing

4 |

I A 4

Integration Testing

|

System Testing

.
!

Acceptance Testing

e

—

Figure 13-12: Software Test Levels

Short explanations of these Test Levels:

works together.

Unit Tests are written by the Developers as part of the Programming. Each part is
developed, and Unit tested separately (Every Class and Method in the code)

Regression testing is testing the system to check that changes have not “broken”
previously working code. Both Manually & Automatically (Re-run Unit Tests)

Integration testing means the system is put together and tested to make sure everything

System testing is typically Black-box Tests that validate the entire system against its
requirements, i.e., Checking that a software system meets the specifications

Acceptance Testing: The Customer needs to test and approve the software before he can
take it into use. FAT/SAT.

Part 2: Software Engineering

129 13 Testing

13.3.1 Unit Testing

Unit Testing (or component testing) refers to tests that verify the functionality of a specific section
of code, usually at the function level. In an object-oriented environment, this is usually at the class
and methods level.

Unit Testing in Visual Studio: https://youtu.be/QIfNViZkgEc

ﬁ ASP.NET Core - Unit Testing: https://youtu.be/EzeDCEQ2qMs

Unit Tests are written by the developers as part of the programming. They are automatically
executed by the system, e.g., Visual Studio and Azure DevOps have built-in functionality for Unit
Testing.

Sometimes the Unit Tests are written before you start programming, so-called Test-Driven
Development (TDD).

Why do you

multiply the
percentage by ' (]
O .167728881727 *®

)

oxod p %0

TDD

[http://geek-and-poke.com]

Part 2: Software Engineering

https://youtu.be/QIfNViZkqEc
https://youtu.be/EzeDCEQ2qMs

130 13 Testing

Since Unit testing are part of the development process, so-called Unit Tests Framework are usually
integrated with the IDE.

Unit Tests Frameworks:

* Visual Studio Unit Test Framework. Unit Tests are built into Visual Studio (no additional
installation needed)

* JUnit (Java)
* JUnit is a unit testing framework for the Java programming language.
* NUnit (.NET)

* NUnit is an open-source unit testing framework for Microsoft .NET. It serves the
same purpose as JUnit does in the Java world

* PHPUnit (PHP)
* LabVIEW Unit Test Framework Toolkit
* etc.

Unit Testing in Visual Studio:

Visual Studio have built-in features for Unit Testing. In the Solution Explorer you just add a “Test
Project” as part of your code (see Figure 13-13).

Add New Praject

T Framework 45 - | Sort by: | Default -] Bt = serch Instalied Templates (Cirf+ £ p-

Visual £ Type: ¥

oK Cancel

Figure 13-13: Unit Test Project in Visual Studio

In Figure 13-14 we see an example of how you create Unit Tests in Visual Studio and C#.

Part 2: Software Engineering

131 13 Testing

For Test classes, you need to use [TestClass] and for Test Methods you need to use [TestMethod].
You also need to add a reference to the code under test (select “Add Reference” in the Solution
Explorer and include “using <namespace>") in your code.

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;

using BankAccountNS; - - Make sure to add reference to

namespace BankTest the code under test

{
[TestClass] # —== Note!
public class BankAccountTests :
{
[TestMethod]
public void TestMethod1()
|
}
}
}

Figure 13-14: Unit Test Principle in Visual Studio and C#

The basic concept in Unit Testing is to compare the results when running the Methods with some
Input Data (“Actual”) with some Known Results (“Expected”).

Example:

Assert.AreEqual (expected, actual, 0.001,”Test failed because...");

Unit Tests — Best Practice:
Here you see some basic best practice rules regarding unit tests:
* A Unit Test must only do one thing
* Unit Test must run independently
* Unit Tests must not be depending on the environment
* Test Functionality rather than implementation
* Test public behavior: private behavior relates to implementation details
* Avoid testing Ul components
* Unit Tests must be easy to read and understand

* Create rules that make sure you need to run Unit Tests (and they need to pass) before you
can Check-in your code in the Source Code Control System

Part 2: Software Engineering

132 13 Testing

13.3.2 Regression Testing

Regression testing focuses on finding defects after a major code change has occurred. Specifically,
it seeks to uncover software regressions, or old bugs that have come back.

1. Regression testing is testing the system to check that changes have not “broken”
previously working code.

2. In a manual testing process, regression testing is expensive but, with automated testing, it
is simple and straightforward. All tests are rerun every time a change is made to the
program.

3. Tests must run “successfully” before the change is committed.

13.3.3 Integration Testing

Integration testing verifies the interfaces between components against a software design.

13.3.4 System Testing/Validation Testing

System Testing follows Integration Testing. It consists of Black-box Tests that validate the entire
system against its requirements. System Testing is about checking that a software system
meets specifications and that it fulfills its intended purpose. System Testing is often executed by
an independent group (QA group). QA — Quality Assurance.

Since system tests make sure the requirements are fulfilled, they must systematically validate each
requirement in the SRS (Software Requirements Specification).

13.3.5 Acceptance Testing

Customers test a system to decide whether it is ready to be accepted from the system developers
and deployed in the customer environment. It is primarily for custom systems.

In Figure 13-15 we see a typical acceptance test process.

» Test »| lest T |- | Test o Testing
criteria plan |- results report
\
Define Plan Derive Run Negotiate Accept or
acceptance acceptance acceptance acceptance test results reject
criteria testing tests tests system

Figure 13-15: Acceptance Testing [1]

The steps are:

Part 2: Software Engineering

133 13 Testing

e Define acceptance criteria
e Plan acceptance testing

e Derive acceptance tests

e Run acceptance tests

o Negotiate test results

e Reject/accept system

We have 2 main types of Acceptance Testing:

e FAT — Factory Acceptance Testing
e SAT —Site Acceptance Testing

FAT — Factory Acceptance Testing is usually performed in the Test Environment at the software
company.

SAT — Site Acceptance Testing is performed at the Customer in the actual Production Environment.
This is the final step to determine if the requirements of a specification or contract are met.

If the test is accepted, the software is officially handed over to the customer.

Note! Other terms and definitions are used as well in different literature.

13.4 Test Documentation

In Figure 13-16 we see the steps involved in the software testing process.

Software Test Plan (STP)

| ' Document
Test Results

T ' Software Test

o T Documentation
(STD)

Software Design Document (SDD)
Software Requirements Specifications (SRS)

Figure 13-16: The Software Testing Process

Part 2: Software Engineering

134 13 Testing

Documents involved:

e SRS —Software Requirements Specifications: A document stating what at application must
accomplish

e SDD - Software Design Document: A document describing the design of a software
application

e STP - Software Test Plan: Documentation stating what parts of an application will be
tested, and the schedule of when the testing is to be performed

e STD - Software Test Documentation: Introduction, Test Plan, Test Design, Test Cases, Test
procedures, Test Log, ..., Summary

In addition to writing different documents in your test phase, you should have a Bug Tracking
System. With a Bug Tracking System, you can easily store all your bugs in a database system, set
priorities, use search to find bugs, use different statistics, etc. More about Bug Tracking Systems
below.

13.4.1 Test Planning

Test planning involves scheduling and estimating the system testing process, establishing process
standards, and describing the tests that should be carried out. As well as helping managers
allocate resources and estimate testing schedules, test plans are intended for software engineers
involved in designing and carrying out system tests. They help technical staff get an overall picture
of the system tests and place their own work in this context.

As well as setting out the testing schedule and procedures, the test plan defines the hardware and
software resources that are required. Test plans are not static documents but evolve during the
development process. Test plans change because of delays at other stages in the development
process. Test planning is particularly important in large software system development. For small
and medium-sized systems, a less formal test plan may be used, but there is still a need for a
formal document to support the planning of the testing process.

A Software Test Plan (STP) document typically answers the following:
Testing should be based on Requirements & Design Documents

e What shall we test?

e How shall we test?

e Hardware/Software Requirements

e Where shall we test?

e Who shall test?

e How often shall we test (Test Schedule)?

Part 2: Software Engineering

135 13 Testing

e How shall tests be documented? It is not enough simply to run tests; the results of the
tests must be systematically recorded. It must be possible to audit the testing process to
check that it has been carried out correctly

e System tests: This section, which may be separate from the test plan, defines the test cases
that should be applied to the system. These tests are derived from the system
requirements specification.

13.5 Bug Tracking Systems

All the results from the testing need to be documented, stored, and tracked.

For this purpose, we use a so-called Bug Tracking System.

ﬁ Bug Reporting and Tracking with Azure DevOps: https://youtu.be/0tIWdgWdFeQ

Here are some popular Bug Tracking Systems in use today:

e Azure DevOps
e lJira

e Bugrzilla

e ClearQuest

More about Bug Tracking Systems in Chapter 23 - Bug Tracking Systems.

We will focus on Azure DevOps in this document. The bug tracking features in Azure DevOps will
be discussed in another chapter.

In Azure DevOps we can add requirements, user stories, tasks, new features, bugs, etc. as so-called
“Work Items” (Figure 13-17).

Part 2: Software Engineering

https://youtu.be/0tlWdqWdFeQ

136 13 Testing

All Bugs [Results] & X
Save Results Save Query 0 #* & @ B3 Openin Microsoft Office ~ #5 Edit Query ¢3 Column Opticns

Query Results: 2 iterns found (1 currently selected).

#o D 4 | Stack Rank 4 | Priority & | Severity . | State & | Title

2 - High Active Mew Web Site not working on Safari Web Browser
8 2 3 - Medium Active TV goes to sleep after 4 hours

OE®
Save Work Item 02 O [©] Previous o Mext
Bug 6 : New Web Site not working on Safari Web Browser
rs
New Web Site not working on Safari Web Browser
STATUS CLASSIFICATION PLANNING
Assigned To Hans-Petter Halvorsen Area Weather System'\Wehb Site Stack Rank <Mone=
State Active Iteration Weather System\lteration 1 Priority 2
Reason Mew Severity 2 - High
REPRO STEPS ~ SYSTEM INFO TEST CASES HISTORY ALLLINKS ATTACHMENTS
Type your comment here.,
DISCUSSION ONLY ALL CHANGES
(no entries with comments)
b

Figure 13-17: Azure DevOps — Work Items

13.6 Test Environment

A testing environment is a setup of software and hardware on which the testing team is going to
perform the testing of the newly built software product.

ﬁVirtuaIBox - Installation of Windows 11 in a Virtual Machine:
https://youtu.be/OA9urLN4DWo

ﬁ Install WinForm Desktop App in Virtual Test Environment using VirtualBox:
https://youtu.be/g7CPEVFT8AA

Part 2: Software Engineering

https://youtu.be/OA9urLN4DWo
https://youtu.be/g7CPEVFT8AA

137 13 Testing

ﬁ Install ASP.NET Core Web App in Virtual Test Environment using VirtualBox:
https://youtu.be/7XrRd7voasl

Here are also some other resources using VMware Workstation:

ﬁASP.NET Core - Deploy to Virtual Test Environment: https://youtu.be/WzJloPAWpmU

ASP.NET Core - Web Server IIS Deployment: https://youtu.be/Mol9SSLVABA

Why do we need a Test Environment? Here are some reasons:
e “It works on my PC” says the Developer
e We need a Clean Environment when testing

e Onthe Developers PCs, we have all kind of Software installed that the Customer don’t
have, e.g., Development Tools like Visual Studio, etc.

e We need to test on different Platforms and Operating Systems
e Customers may use different Web Browsers

e Deployment: Test of Installation packages

e Make the software available for Testers

e etc.

This setup consists of a physical setup which includes hardware, and logical setup that includes
Server Operating system, client operating system, database server, front end running
environment, browser (if web application), IIS (version on server side) or any other software
components required to run this software product.

This testing setup is to be built on both the ends —i.e., the server and client.
To set up such environments, virtualization is the answer.

More about virtualization below.

Part 2: Software Engineering

https://youtu.be/7XrRd7voasI
https://youtu.be/WzJIoP4WpmU
https://youtu.be/MoI9SSLV4B4

138

13 Testing

Developers

Developers & Testers
1

k Development Jr

Typically the Developers Personal
Computer with Database, Web
Server and Programming

Customers

Y

>;k Testing {

A Clean PC/Server (or a network
with PCs and Servers) where you
install and test your Software.

>‘L Production J

The Customers
environment where you
unstall the final software

Today we typically set-up a Virtual

Software i
Y v Test Environment (Servers a"df""ﬂ"ﬁ’
[‘ /' ™\
- Development A) " Production A
‘L Environment | 4 : v ! #
; o (Test Environment \ /\ Environment

Programming environments such as
Visual Studio, etc. should not be
installed in this environment. You
need to create .exe files etc. in
order to make your software run.

Figure 13-18: Development, Test and Production Environment

Part 2: Software Engineering

139 13 Testing

JUST IN CASE YOLI'RE STILL NOT
SURE WHETHER YOLI'RE IN A
SOFTWARE PROJECT

WAIT UNTIL YOU HEAR THIS:

o
X
o
Q
o
X
b
@
(@]

ON MY
MACHINE IT
WORKS

[http://geek-and-poke.com]

13.6.1 Virtualization

To create test environments easily, virtualization is the answer. There exists lots of different
virtualization solutions on the market today.

Here are some examples:

VirtualBox

VMware Workstation
VMware vSphere
Microsoft Hyper-V

VMware Fusion (Mac)

Part 2: Software Engineering

140 13 Testing

e Parallels Desktop (Mac)
etc.

Introduction to Virtualization: https://youtu.be/gn8pSgShnBQ

MR-

VirtualBox - Installation of Windows 11 in a Virtual Machine:
https://youtu.be/OA9urLN4DWo

1

Install WinForm Desktop App in Virtual Test Environment using VirtualBox:
https://youtu.be/g7CPEVFTS8AA

1

Install ASP.NET Core Web App in Virtual Test Environment using VirtualBox:
https://youtu.be/7XrRd7voasl

VirtualBox is a free virtualization tool. VMware Workstation is another virtualization tool.

With such tools you can create so-called Virtual Machines (VM) where you can install and run all

kinds of software.

In this way, you can easily test your software without destroying your own computer and you can
easily test it in different operating systems, etc. See Figure 13-19.

Part 2: Software Engineering

https://youtu.be/gn8pSgShnBQ
https://youtu.be/OA9urLN4DWo
https://youtu.be/g7CPEVFT8AA
https://youtu.be/7XrRd7voasI

141 13 Testing

50 VMware Player (Non-commercial use only) - 0 n
Player v | [» ~ =
Welcome to VMware Player
= W Create a New Virtual Machine
@WMM7 ‘ q;‘.‘ Create a new virtual machine, which will then be

e T Sdded to the top of your forary.
@ Windows Server 2012

Open a Virtual Machine

Open an existing virtual machine, which will then be
added to the top of your kbrary.

Upgrade to VMware Workstation
Get advanced features such as snapshots,

developer tool integration, and more.

Help
View VMware Player's help contents.

This product is not icensed and is authorized for
W non-commercial use only. For commerdal use,
purchase a kcense. Buy now.

Figure 13-19: VMware Workstation

13.7 Terms used in Testing

Here we will discuss some terms used in software testing not covered earlier.

13.7.1 Bugs

A software bug is an error, flaw, failure, defect, or fault in a computer program or system that
produces an incorrect or unexpected result or causes it to behave in unintended ways.

They found a bug (a moth) inside a computer in 1947 that made the program not behave as
expected. This was the “first” real bug.

13.7.2 Debugging

Debugging is about different techniques for finding and fixing bugs (errors that make your code
not work as expected) in your code. It is difficult to write code without errors (bugs), but e.g.,
Visual Studio and other tools have powerful Debugging functionality (breakpoints, etc.). The
Compiler will also find syntax errors, etc.

Part 2: Software Engineering

142 13 Testing

For more “advanced” bugs other methods are required (Unit Testing, Integration Testing,
Regression Testing, Acceptance Testing, etc.). The focus here will be on these methods, while
Debugging is something you learned in Programming courses.

13.7.3 Code Coverage

Code coverage is a measure used in software testing. It describes the degree to which the source
code of a program has been tested.

Example:

int foo (int x, int y)
{
int z = 0;
if ((x>0)
{

&& (y>0))

zZ = X;
}

return z;

}

When we test this function, it depends on the input arguments which parts of the code will be
executed. Unit Tests should be written to cover all parts of the code.

13.7.4 Eat your own Dog food

“Eating your own dog food”, also called “dogfooding”, is a slang term used to reference a scenario
in which a company (usually, a computer software company) uses its own product to demonstrate
the quality and capabilities of the product.

Example: Microsoft uses Windows PCs and Visual Studio to create their software.

Part 2: Software Engineering

143 13 Testing

SIMPLY EXPLAINED SIMPLY EXPLAINED

oxod 3 wool

TODAY’S SPECIAL e

RUMEN $ 4.50
\J
SOMETHING
TO DRINK,
PLEASE!

EAT YOUR OWN DOGFOOD

[http://geek-and-poke.com]

13.7.5 Code/Feature Freeze

The Developer cannot add new features to the software, only fix bugs. When it is very close to
release, they cannot fix bugs either.

CODER’S DICTIONARY
TODAY: THE FEATLRE FREEZE

geek & poke

[http://geek-and-poke.com]

Part 2: Software Engineering

144 13 Testing

13.7.6 Test-Driven Development (TDD)

In TDD coding and testing are done in parallel. The tests are normally written before the code. TDD
was introduced as part of eXtreme Programming (XP).

13.7.7 Development-Driven Testing (DDT)

DDT is all about giving more responsibility to developers specifically, and the development process
in general. It works especially well when using test cases as requirements, and having the
developers write these test cases. But it's not DDT unless those tests are written near the end of
the process, when the code is checked in, and the developers figure they’re done.

The advantages of Development-Driven Testing are many. Instead of tests driving the
development, it’s developers driving the tests, so you get just a few tests, and they almost always
all pass. The project team can deliver on time for a change, with zero bugs found in every
iteration. This makes management happy, and isn’t that really the ultimate barometer of
success? Also, velocity is increased dramatically when using this process.

Development-driven testing makes all sense in the world for those who practice Agile.

TDD vs. DDT
SIMPLY EXPLAINED QL

assertTrue”

YOLUR
ROOM IS

STILL A
TOTAL MESS!!! .
. DIDN'T YOU
AN PROMISE ME
TO CLEAN
IT UP?

S0 § weol

ek & poke

AN

WITH assertTrue THE
TEST WENT RED

I ALWAYS

START WITH A
TEST

RSTINY

TDD

[http://geek-and-poke.com]

Part 2: Software Engineering

145

13 Testing

13.8 The 7 Principles of Testing

The 7 Principles of Testing are as follows:

1.

Testing shows the presence of Bugs: Software Testing reduces the probability of
undiscovered defects remaining in the software but even if no defects are found, itis not a
proof of correctness.

Exhaustive Testing is impossible: Testing everything is impossible! Instead, we need
optimal amount of testing based on the risk assessment of the application.

Early Testing: Testing should start as early as possible in the Software Development Life
Cycle (SDLC)

Defect Clustering: A small number of modules contain most of the defects/bugs detected.
The Pesticide Paradox: If the same tests are repeated, eventually the same test cases will
no longer find new bugs

Testing is Context dependent: This means that the way you test a e-commerce site will be
different from the way you test a commercial off the shelf application

Absence of Error is a Fallacy: Finding and fixing defects does not help if the system build is
unusable and does not fulfill the users’ needs and requirements

For more information about these 7 principles of testing, see the following:

http://www.guru99.com/software-testing-seven-principles.html

and

http://www.testingexcellence.com/seven-principles-of-software-testing

13.9 Testing Summary

Figure 13-20 gives an overview of different Test Categories, Test Levels and Test Methods.

Part 2: Software Engineering

http://www.guru99.com/software-testing-seven-principles.html
http://www.testingexcellence.com/seven-principles-of-software-testing

146 13 Testing

Testing Overview

Test Categories: | Test Levels: : Test Methods: .
I | 3
I - : |
| | Unit Testing : GUI Testing

[Black-box Testing] | |
: . _ : Stress Testing
: Regression Testing i "
: : ~ Load Testing |
| (| . . age
i | Integration Testing | [Security Testing] Usability
T ! Testing

[White-box Testing] : : Performance
| i | i
: System Testing : Testing pE——— l
: : - . Testing
i) | . Non Functional
;| Acceptance Testing \ |

. Testing etc.

Figure 13-20: Test Categories, Test Levels and Test methods

13.10 Exercises

Make sure to discuss and reflect over the following:

1. Why do we need to test the software?

2. List different Test methods

3. We have 2 main categories of testing. Explain.

4. Explain the difference between a “Bug” and a “Feature”
5. What is Code/Feature Freeze?

6. What is “Dogfooding”?

7. Whatis a Code Review?

8. What Explain TDD and DDT?

Part 2: Software Engineering

147 13 Testing

9. What is Unit Testing?

10. What is the difference between Functional and Non-Functional Testing?

Part 2: Software Engineering

14 Deployment and
Installation

14.1 Introduction

Getting software out of the hands of the developers into the hands of the users. More than 50% of
commissioned software is not used, mostly because it fails at the deployment stage. 80% of the
cost of (commissioned) software comes at and after deployment.

ﬁ Deploy a Windows Forms App using Visual Studio: https://youtu.be/gXS9ie3KZFE

Virtualization Deployment:

ﬁ Install WinForm Desktop App in Virtual Test Environment using VirtualBox:
https://youtu.be/g7CPEVFT8AA

ﬁ Install ASP.NET Core Web App in Virtual Test Environment using VirtualBox:
https://youtu.be/7XrRd7voasl

Microsoft Azure Deployment:

ﬁ Microsoft Azure - SQL Databases and App Services: https://youtu.be/cabQ6Ldshls

Software deployment is all the activities that make a software system available for use.
Examples:

e Get the software out to the customers

e Creating Installation Packages

e Documentation

o Installation Guide, etc.
e Installation

148

https://youtu.be/qXS9ie3KZFE
https://youtu.be/g7CPEVFT8AA
https://youtu.be/7XrRd7voasI
https://youtu.be/ca6Q6LdshIs

149 14 Deployment and Installation

e etc.

Deployment strategies may vary depending of what kind of software we create, etc.

14.2 Releases

Now we are finished with all the development and testing and are ready to start the deployment

process.
Typically, we have the following “Internal” releases (see also Figure 14-1):
e Alpha Release(s)
e Beta Release(s)
e RC- Release Candidate(s)
You are finished:
* RTM — Release To Manufacturing

* Your software is good enough and it is ready for Deployment!

Part 2: Software Engineering

150 14 Deployment and Installation

Requirements/Design | Alpha

ONE T SO0
MONTVE G
s 3
-~
Te— ||
- = e Iy

i i B I_i_'l -
1 | e - ==l |
l}l i ‘;,,- H i 1['7
ki s o B

Plans made and approved

~ Beta

Bu||ding structure ﬁniShEd, Furniture’ Flowers and
Inside work on track small adjustments missing Ready for Sale/or Mave

Figure 14-1: Software Releases before Releasing the Software
Below we see an example of the Windows 8 life cycle releases:

» Start planning and development of Windows 8, 2008/2009 (the planning started before
Windows 7 was released)

— Internal Builds xxxx...xxxx

— Internal Alpha versions, Alpha 1, 2, 3

— Internal Builds xxxx...xxxx

— Internal Milestonel Release (build 7850), 2010.09.22

— Internal Milestone2 (build 7955), Milestone3 (build 7989)
* Developer Preview (build 8102), 2011.09.13

— Internal Builds xxxx...xxxx
* Consumer Preview (build 8250), 2012.02.29

— Internal Builds xxxx...xxxx

Part 2: Software Engineering

151

14 Deployment and Installation

Release Preview (build 8400), 2012.05.28
— Internal Builds xxxx...xxxx

RTM Release (build 9200), 2012.08.01

14.3 Deployment

What is Deployment?

Software deployment is all the activities that make a software system available for use.

Examples:

Get the software out to the customers
Creating Installation Packages
Documentation

o Installation Guide, etc.
Installation

etc.

Deployment strategies may vary depending of what kind of software we create, etc.

Key Issues around Deployment:

Business Processes: Most large software systems require the customer to change the way
they work.

Training: No point in deploying software if the customers can't use it.

Support: The need goes on, and on, and on.

Deployment: How do you physically get the software installed.

Equipment: Is the customer's hardware up to the job?

Expertise: Does the customer have the IT expertise to install the software?

Upgrades: Can't avoid them!

Integration: Shall the software interact/integrate with other systems of the customer.

Performance: The Customer may not have the same hardware as in the Development/Test
Environment

Part 2: Software Engineering

152 14 Deployment and Installation

14.4 Test and Production Environment

Typically, “everything” works on the computer that the developer of the code is using, but the
customer’s computer may use another OS, another version of the hardware, another version of a
3. party component or other software that your software relies on, etc. Therefore, it is very
important to test the software on other computers and other environments, different versions of
hardware, different versions of web browsers, etc.

During the software lifecycle, we have 3 different environments for the software we are creating:

e Development Environment
e Test Environment
e Production Environment

Figure 14-2 gives an overview of these different software environments.

Developers Developers & Testers Customers
Development > Testing j %ll Production
Typically the Developers Personal A Clean PC/Server (or a network The Customers

with PCs and Servers) where you
install and test your Software.
Today we typically set-up a Virtual
Test Environment

Computer with Database, Web
Server and Programming
Software

environment where you
unstall the final software
(Servers and Clients)

: Development 4 i) 4 Production ,)

Environment |/ Test Environment (Environment)

Programming environments such as
Visual Studio, etc. should not be
installed in this environment. You
need to create .exe files etc. in
order to make your software run.

Figure 14-2: Development-, Test- and Production Environment

Part 2: Software Engineering

153

14 Deployment and Installation

DATA CENTER PATA CENTER
EAST COAST EMEA

DATA CENTER
WEST COAST

DATA CENTER
ASIA PACIFIC

yYou

DIDN'T FIND

THAT BLIG, DID
Youz

[http://geek-and-poke.com]

geek & poke

"ON MY MACHINE IT WORKS"

Test/Production Environment is an Infrastructure with Servers, Virtual Servers, Database Servers,
Web Servers, etc.

e Local Infrastructure with Servers & Virtualization

* Cloud-based Infrastructure (monthly payment), e.g.:

14.4.1

Windows Azure www.windowsazure.com

Amazon Web Services (AWS) http://aws.amazon.com

Google Cloud Platform https://cloud.google.com

etc.

Development Environment

This is where the developers create the code, typically the developer’s personal computer.

14.4.2

Production Environment

Production environment is a term used mostly by developers to describe the setting where
software and other products are put into operation for their intended uses by end users.

Part 2: Software Engineering

http://www.windowsazure.com/
http://aws.amazon.com/
https://cloud.google.com/

154 14 Deployment and Installation

A production environment can be thought of as a real-time setting where programs are run, and
hardware setups are installed and relied on for organization or commercial daily operations.

14.4.3 Test Environment

A testing environment is a setup of software and hardware on which the testing team is going to
perform the testing of the newly built software product.

This setup consists of a physical setup which includes hardware, and logical setup that includes
Server Operating system, client operating system, database server, front end running
environment, browser (if web application), IIS (version on server side) or any other software
components required to run this software product.

This testing setup is to be built on both the ends —i.e., the server and client.

Part 2: Software Engineering

15 Project Documentation

During the software development, a lot of documentation (Figure 15-1) is created in the different
phases of the development.

" El"ld-USEI’- User Guides Inséa[l:tinn
ocumentatlm:ll [\u: es Planning J
System .7 Deployment Yuyl :
Documentation .- .. ' .)
- .- Maintenance. - . ; Project Planning
: e | Gantt Chart
Testing ‘ . |
STD - \ |
Test Plan | i
Yo 4 Your Software v
Documentation . . 2
'1, with Documentation Requirements
. Analysis
Implementation 4+ SRS
+ Software Requirements
% Jat Specifications
Code »
System Documenation "~ _] P d
v Design I~ SDD software Design Documents

/' with ER Diagram, UML Diagrams, CAD Drawings

Figure 15-1: Example of Documentation during the SDLC

Write Technical Reports in Microsoft Word: https://youtu.be/ao eDJOEUKA

Figures and Equations in Word and PowerPoint: https://youtu.be/b9f2bb2ynlY

M R IR

Citation and referencing with Microsoft Word: https://youtu.be/lgH7gmLa L4

Some documents are for internal use inside the software company or inside the development
team, while other documents are important for the stakeholders and customers that are going to
use the software (Figure 15-2).

155

https://youtu.be/ao_eDJOEUkA
https://youtu.be/b9f2bb2yn1Y
https://youtu.be/IgH7qmLa_L4

15 Project Documentation

Project Management (Gantt Chart, etc.)

Time

Start

2.Requierements
/Design —

(The stakeholders, the
software team; architects,
UX designers, developers)

2. Testing —
(QA people)

3. End-user
Documentation

(The people that
shall actually use
v the software)

Finish

1. Planning Jj

Software

Development Plan

High-Level
Requirements and |

Design Documents |

Detailed
Requirements and |
Design Documents

Test Plans ‘

|
Test Documentation ‘

System
Documentation

Installation Guides

User Manuals

Figure 15-2: Software Documentation

Some important documents in software engineering are:

SDP — Software Development Plan

SRS — Software Requirements Specifications

| as expected

(SDP)
WHAT (SRS)
HOW (SDD)

ER Diagram (Database)
UML Diagrams (Code)

. CAD Drawings, etc.
" How to Test/ (STP)

What to Test

Proof that you have tested
and that the software works

(STD)

Technical Stuff
(Super User/ IT dep.)

How to install it

How to use it
(End User)

o A document stating what the application must accomplish.

SDD — Software Design Document

o A document describing the design of a software application.

STP - Software Test Plan

o Documentation stating what parts of an application will be tested, and the schedule

of when the testing is to be performed.

STD - Software Test Documentation

o Introduction, Test Plan, Test Design, Test Cases, Test procedures, Test Log, ...,

Summary

Part 2: Software Engineering

157 15 Project Documentation

See Figure 15-3 for an overview of documentation categories used in a project.

Project
Documentation

Process Product

Documentation Documentation
System User
Documentation Documentation

Figure 15-3: Software Project Documentation
Documentation produced during a software Project can be divided into 2 main categories:
* Process Documentation

— These documents record the process of development and maintenance, e.g., Plans,
Schedules (e.g., Gantt Charts), etc.

* Product Documentation

— These documents describe the product that is being developed. Can be divided into
2 subcategories:

* System Documentation
* Used by engineers developing and maintaining the system.
* User Documentation

* Used by the people that is using the system.

Part 2: Software Engineering

158 15 Project Documentation

Here are some Software Documentation Requirements:

* Should act as a communication medium between members of the Development Team
(Process Documentation)

* Information repository used by Maintenance Engineers (Product Documentation)

* Information for Management to help them Plan, Budget, and Schedule the Software
Development Process (Process Documentation)

* Some of the documents should tell users how to use and administer the system (Product
Documentation)

* Documents for Quality Control, System Certification, etc. (Process/Product Documentation)

Satisfying these requirements requires different types of documents from informal working
documents through professionally produced User Manuals

15.1 Process Documentation

Purpose:

1. Process Documentation is produced so that the development of the system can be
managed.

2. ltis an essential component of plan-driven approaches (e.g., Waterfall)
3. Agile Approaches: The Goal is to minimize the amount of Process Documentation
We have different categories of Process Documentation:

* Plans, estimates, and schedules. These are documents produced by managers which are
used to predict and to control the software process.

* Reports. These are documents which report how resources were used during the process
of development.

* Standards. These are documents which set out how the process is to be implemented.
These may be developed by organizational, national, or international standards.

* Working papers. These are often the principal technical communication documentsin a
project. They record the ideas and thoughts of the engineers working on the project, are
interim versions of product documentation, describe implementation strategies and set
out problems which have been identified. They often, implicitly, record the rationale for
design decisions.

Part 2: Software Engineering

159 15 Project Documentation

* E-mail messages, wikis, etc. These record the details of everyday communication between
managers and development engineers.

15.2 Product Documentation

Purpose:
* Describing the delivered software product
* Unlike most process documentation, it has a relatively long life. It must
* Evolve in step with the product that it describes. Product documentation includes.
— User documentation, which tells users how to use the software product,

— System Documentation, which is principally intended for maintenance engineers.

15.2.1 System Documentation

The system documentation describes how the system is designed and how it works in detail.

1. System documentation includes all the documents describing the system itself from the
requirements specification to the final acceptance test plan.

2. Documents describing the design, implementation and testing of a system are essential if
the program is to be understood and maintained.

3. Like user documentation, it is important that system documentation is structured, with
overviews leading the reader into more formal and detailed descriptions of each aspect of
the system.

In Figure 15-4 we see an overview of different product documentation and readers of such
documents.

Part 2: Software Engineering

160 15 Project Documentation

Provides an overview of the
Managers and Functional system ol Zystm:n S pun;oze a2
st evaliators description o B escription of the mos-t
important system services
System . Describes how to install the
oy Installation 5 ; Sy
administrators document system on the intende
platforms
Briefly describes how to get
2 Introducto ¥ O 8
Novice users sl o = started with the system
) Reference Provides a detailed description
Experienced users manual *1 of all system facilities

Figure 15-4: Product Documentation Types & Readers [1]

For large systems that are developed to a customer’s specification, the system documentation
should include:

* The requirements document.

* A document describing the system architecture.

* For each program in the system, a description of the architecture of that program.
* For each component in the system, a description of its functionality and interfaces.

* Program source code listings, which should be commented on, where the comments
should explain complex sections of code and provide a rationale for the coding method
used.

* If meaningful names are used and a good, structured programming style is used,
much of the code should be self-documenting without the need for additional
comments.

* This information is now normally maintained electronically rather than on paper
with selected information printed on demand from readers.

* Validation documents describing how each program is validated and how the validation
information relates to the requirements.

* These may be required for the quality assurance processes in the organization.

Part 2: Software Engineering

161 15 Project Documentation

* A System Maintenance Guide, which describes known problems with the system,
describes which parts of the system are hardware and software dependent and which
describes how evolution of the system has been considered in its design.

15.2.2 User Documentation

Users of a system are not all the same. The producer of documentation must structure it to cater
for different user tasks and different levels of expertise and experience.

It is particularly important to distinguish between end-users and system administrators:
* End-users use the software to assist with some tasks.

— This may be flying an aircraft, managing insurance policies, writing a book, etc. They
want to know how the software can help them. They are not interested in
computer or administration details.

* System administrators are responsible for managing the software used by end-users.

— This may involve acting as an operator if the system is a large mainframe system, as
a network manager is the system involves a network of workstations or as a
technical guru who fixes end-users software problems and who liaises between
users and the software supplier.

We have different user documentation, such as:

e User Manual

e Installation Guide
o Wiki

e etc.

Part 2: Software Engineering

162

15 Project Documentation

OK, GREAT!
JULIE, YOU'RE BRESPONSIBLE FOR THE
GENERIC DATA ACCESS LAYER-
JIM, YOU DO THE UT FRAMEWORK
AND JOHN THE BULE ENEINE.
NOW I NEED SOMEBODY FOR THE
USER DOCUMENTA. ..

.

A

geek & poke

[http://geek-and-poke.com]

User Manual:

A user guide or user's guide, also commonly known as a manual, is a technical communication
document intended to give assistance to people using a system. It is usually written by a technical
writer, although user guides are written by programmers, product or project managers, or other

technical staff, particularly in smaller companies.
The sections of a user manual often include:
* A Cover page

* ATitle page and copyright page

* A Preface, containing details of related documents and information on how to navigate the

user guide

* ATable of Contents page

* A guide on how to use at least the main functions of the system (Text + Screen Shots)

Part 2: Software Engineering

163 15 Project Documentation

* Atroubleshooting section detailing possible errors or problems that may occur, along with
how to fix them

* A FAQ (Frequently Asked Questions)
* Where to find further help, and contact details

* Aglossary and, for larger documents, an index

15.3 Setup & Distribution

As mentioned earlier we have two categories of software: generics products and customized
products.

If we have a generic product, it is especially important that the customers can install the software
you create.

For e.g., web products setup and distribution to the end user computers are not necessary, since
the software is installed on a Web Server and can be accessed through an ordinary web browser.

Installation is about:
* Package the software
* Executable files
* Create installation packages
* InstallShield, etc. (lots of tools available)
* Make it available (nowadays over Internet or on DVD)
* Give the customer turn-key installers, which will:

* Check the system for missing dependencies or drivers etc. (e.g., Your software may
need .NET X.x, etc.)

* Install the software on the system

* Set up any necessary license information, license managers, etc.

Part 2: Software Engineering

16 Software Maintenance

16.1 Introduction

Software Maintenance is about:

e Software has bugs (Bug /Support incidents need to be tracked and followed up -> A good
tool is needed).

e New features are required.

e Circumstances change. Therefore, the software has changed. Who changes it?

e Development teams have broken up, maintenance may be done by different company!

e Repeated change leads to architectural degradation. Old systems may have been degraded
from the start!

e Software rots. Even with no code changes, the systems change, and eventually you can't
compile the software.

Software Maintenance is defined as [12]: “The process of modifying a software system or
component after delivery to correct faults, improve performance or other attributes, or adapt to a
changed environment”.

40-90% of the software life cycle cost is about maintenance.
Examples:

* The Y2K problem
* New versions of the OS often require adjustment to your software
* New requirements and customer needs

We may divide into 2 different types of Maintenance:
e Repair
o Fixing defects/bugs
e Enhancement
o New Requirements

o Change in Design or Implementation (No functional change)

16.2 Categories

164

165 16 Software Maintenance

Again, we can divide maintenance into 4 categories:

* Corrective maintenance
* Adaptive maintenance

* Perfective maintenance
* Preventive maintenance

In Figure 16-1 we see an overview of the different software maintenance categories [12].

Software
Maintenance

Corrective

Adaptive Perfective Preventive

Figure 16-1: Software Maintenance Categories
In Table 9-1 we see the differences between these categories.

Table 16-1: Software Maintenance Overview

Maintenance Description

Corrective Repair of defects relative to existing requirements. These defects are typically
discovered by customers as they start using your software.

Adaptive Adapt your software to changes in the operating environment, e.g., when a
new OS is released or a new version of the hardware. As software systems
evolve, it is very likely that changes will happen in the external environment
(OS, hardware, etc.) your software depends on.

Perfective New features based on new user requests. The software must continuously
adapt to new needs, or your software will become useless.

Preventive Changes in your software to make it easier to maintain. Changes from
Corrective, Adaptive and Perfective make your software more complex, more
difficult to maintain, etc. Preventive maintenance in form of Refactoring
should be done on a regular basis

Part 2: Software Engineering

166 16 Software Maintenance

While [1] only divide into 3 different categories, see Figure 16-2.

Software Maintenance

3 Categories (according to I. Sommerville, Software Engineering):

1. Fault Repairs
* Fixing Errors after Sofware is

released
2. Environmental Adaption
* OS,Hardware, etc. changes

3. Functionality Addition
* The System Requirments change

A

Fault repair
(17%)

Envi | Functionality
nvironmenta addition or

adaptation / modification
(18%) (65%)

System 1
System 2
T T | T T | T T T >
0 50 100 150 200 250 300 350 400 450 500 $
D Deue!opment costs D Maintenance costs |. Sommerville, Software Engineering, 9 ed.: Pearson, 2010,

Figure 16-2: Maintenance Categories [1]

Part 2: Software Engineering

Part 3 : Platforms &
Architecture

In this part, we give an overview of tools used (and needed) in modern software engineering, like
collaboration tools, source code control tools, programming platforms, frameworks, languages,
etc.

167

17 Software Platforms

17.1 Introduction

We have lots of different platforms today, here we will discuss the most common platforms used
today. They are:

e Desktop: We have different Desktop platforms such as Windows, Mac OS X, Linux, etc. To
create applications for Windows we can use, e.g., Visual Studio and C#. To create
applications for Mac OS X we can use, e.g., Xcode and Objective-C/Swift. LabVIEW exists for
both Windows, Mac OS X and Linux.

e Mobile: Today we have 3 major Mobile platforms: iOS (iPhone and iPad), Android (running
on different Smartphones and Tablets) and Windows 8 (Tablets)/Windows 8 Phone (Smart
Phones).

e Web: Web applications run inside a web browser, such as e.g., Internet Explorer, Chrome,
Safari, Opera or Firefox. In the simplest form we can use HTML. For more dynamic web
pages we can use ASP.NET, PHP, JavaScript, AJAX, etc.

Here are some examples:
Desktop

e Windows

* MacOS

* Linux
Web

* ASP.NET

* PHP

* IS

* Apache

* HTML

* JavaScript

* AJAX

Mobile Devices

* iOS (iPhone, iPad, iPod)
¢ Android
* Windows Phone

168

169 17 Software Platforms

Server-side

e Databases
* Web Servers

Figure 17-1 shows some advantages and disadvantages with the different Platforms.

Advantages/Disadvantages

\. Desktop | \ Web ~ Mobile Devices

* Good performance, but less

* Good Performance +* Runsinside a Web Browser :
performance than an ordinary

+ Different Platforms, * The Performance is not so good as it

different is for ordinary Desktop Applications cc_imputer]
Brogramming « Multiplatform, Works on all « Different P‘Iarforms, different
St aH platforms, Code only once Programming metods and
S . More complicated to create rich user languages

. S mterfac'es _ _ * Easy toinstall and use Apps
Installation is not « Some differences in the behaviour
always easy depending on the Web Browser.

= End-user dont need to install anything

Figure 17-1: Advantages/Disadvantages with different Platforms

17.2 Platform Vendors

The 3 main vendors of such platforms are Microsoft, Apple, and Google. They all deliver platforms
for Desktop and Mobile systems, but they have different approaches, see Figure 17-2.

Desktop _— Windows 8
Microsoft Tablet —4- Windows RT
Phane Windows Phone
Desktop — 05X
Apple
PP Tablet _*
________.-—-""'-.’ 105
Phone
Desktop —p Chrome OS
Google Tablet —_—
Android
PhDI’IE /

Figure 17-2: Desktop and Mobile Platforms Vendors

Part 3: Platforms & Architecture

170 17 Software Platforms

17.3 Desktop

On the desktop, we have 3 main platforms, namely Windows, Linux and macOS. In addition, we
have Chrome OS from Google as a 4. alternative.

Windows mMacOsS Linux Chrome OS

Figure 17-3: Desktop Platforms: Windows, Linux, macOS, Chrome OS

We have lots of development tools for these platforms, see Figure 17-4. These will be discussed in
more details later.

Desktop Platforms
(‘) Clients

" Windows PC c# WPE

pq Visual Studio
@ Windows PC, Mac, Linux

@ Windows PC, Mac, Linux —

Objective-C

NATIONAL INSTRUMENTS

VIEW o

Figure 17-4: Development Tools available for different Desktop Platform

17.3.1 Windows

Microsoft Windows is a series of graphical interface operating systems developed, marketed, and
sold by Microsoft.

Part 3: Platforms & Architecture

171

17 Software Platforms

‘85°86 '87 '88 '89°90'91'92"

Ly

93'94'95'96'97 '98'99°00°01°02'03°04 ‘0506 °07 '08 09"

10°

| |41

i

1112131415

JI|I||.I|'J
T r Tt T Tt

‘Windows Pocket PC and Windows Mobile
were 05 for PDA, smartphones, and other
hihile devices. Later the name was
changed to Windows Phone to reflect the
market. They were all based on Windows CE.

Ly |
Pt |

Marked in green are the server-only Windows 05,
Before Windows XP. Microsoft made each OS5 with
an edition for servers, rather than bullding separate O5.

Explanation of arows: | Windows CE is based on code from Windows 35. 1. Windows Pocket PC 2000 is based on Windows CE 3.0. 11. Windows Mobile &.x is based on Windows CE 5x,
rather than CE 6.0. IV, Windows Phone 7 is based on code from both Windows CE 6.0 and CE 7.0. W, Windows Vista was built on code from Windows Server 2003, rather than Windaws XP

Figure 17-5: Windows Release History

There are a lot of Windows releases, some of them are:

e Windows 3
e Windows 95
e Windows NT
e Windows XP
e Windows 7

e Windows 8
e Windows 10
e Windows 11

In Figure 17-6 we see the first Windows version (Windows 1.0).

Part 3: Platforms & Architecture

172 17 Software Platforms

ite - README .DD
Edit Search

MS-D0OS Executiv
iew Special

) - Character Paragraph

N | a== === v [—] Doanment

! A Y b -

K 3 ntormation shoull 4
- ! 4 ABC. Microsoft Windows indows. Also co

:] BUIL MS-D0S Executive Addendum encl

" | CALEC

-'-._ _.-'- Eglﬁﬁ ﬂ Uersion 1_81

R CGh. Copyright [§ 1985, HMicrosoft Corp. IS CN gl Sl e

b oprint from an &

CGA. -m [his may be pref
Game Skill CGA. brfiguration as it

CITO - ture change the

CLIP Disk Space Free: 3J8024K Hion of the YWk

Ehﬂﬁ MHemory Free: 303K leposier=na wil

CONTROL .EXE EGAMONO.GRB HPL{ '

COURA.FOH EGAMOND .LGO IBHMG

COURE .FOH EMM._AT Joy RURMNIMNG BATCH [.EAT] FILE

COURC .FOH EHH.PC KER If vou run a standard applicati

should create a PIF file far the |

Fage

e

Figure 17-6: Windows 1.0

With Windows 8 Microsoft changes the user experience dramatically, see Figure 17-7.

Administrator

e i

Internet Store Camera

s =1 4

Calenda SkyDrive Games Video Finance

F= !
Contacts Messaging

Figure 17-7: Windows 8

17.3.2 macOS

macOS (Figure 17-8) is developed by Apple Inc. macOS runs only on Mac Computers from Apple. It
is a UNIX-based OS based on NeXT OS (Apple bought NeXT, and Steve Jobs returned to Apple as
CEO) because Apples classic OS from 1984 (the first Macintosh) and later (Mac OS 9) was lacking
behind — they needed a fresh start.

In macOS software can be deployed to Mac App Store for easy installation.

Part 3: Platforms & Architecture

173 17 Software Platforms

A popular development platform on macOS is the Xcode IDE and the Swift programming language.

& Finder Ffile Edit View Go Window Heip 2) <> M Mon3:31PM Edward Q @ =

Oisplays Storege Suppart Service

macOS Sierra

Version 10.12 Beta (16A201w)

MacBook Pro (Reting, 13-inch, Early 2015)
Processor 2.7 Gatz intel Core IS

Momeey & G8 1857 Moz COR3

Graphics Intel irls Graphics 8100 1536 M8
Serial Numbder CO20SUUPVHS

System Heport, Soltware Update

Figure 17-8: macOS

The different releases of Mac OS X is named after big cats like Puma, Jaguar, Tiger Leopard, Lion,

see Figure 17-9.

Part 3: Platforms & Architecture

https://www.google.no/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiKlZjXt_bQAhXJ3iwKHeoHDU8QjRwIBw&url=http://www.pcmag.com/article/345500/10-things-you-need-to-know-about-macos-sierra&psig=AFQjCNH5Uqk6QTVGorhDysGfjlntMBTBwA&ust=1481899418639634

174 17 Software Platforms

0OS X

Mac OS X 10.1 Cheetha 2001
Mac OS X 10.2 Puma
Mac OS X 10.3 Jaguar
Mac OS X 10.4 Tiger
Mac OS X 10.5 Leopard
i v Mac OS X 10.6 Snow Leopard

ﬁﬁ Mac OS X 10.7 Lion s,

@f Mac OS X 10.8 Mountain Lion
i 2012

Figure 17-9: Mac OS X Release History

The Mac OS X 10.9 was called “OS X Mavericks”, so from this version they have stopped using
names from big cats (all the names were taken?).

The latest version is called “macOS Catalina”, so they have switched from big cats to famous
places in California, USA. They have also stopped using OS X, now it is called macOS.

17.3.3 Linux

Linux is a UNIX-like operation system. It is a Free/Open-Source software platform. Linus Torvalds is
the founder of the Linux kernel. Linux was originally developed as a free operating system for
Intel x86-based personal computers. It has since been ported to more computer hardware
platforms than any other operating system.

From Figure 17-10 we see that both Linux and Mac OS X have their origins from the UNIX platform.

Part 3: Platforms & Architecture

175 17 Software Platforms

1970 1980 1990 2000 Time

-

FreeBSD ?.2-]—

BSD family NetBSD 5.0]

L-{ OpenBSD 45]

| BSD (Berkeley Software Distribution) |

BilJey Lwlsunos 4,13
Darwin

» NextStep 3.3
i MacOs X 5.?|

Apple Computer

Microsoft/SCO

GNU/Hurd K!.‘E

Richard Staliman | GNU/LInux 2.6.30.1 |
:I_mmx ,' Linus Torvalds 3.1.3a
Andrew §. lanenbaum 7777
| Research UNIX 10 |
Beli Labs: Ken Thompson,
Dennis Ritchie, et al. Commerclal UNIX :
ATET | Univel/SCO
- solaris 10 5/09 |

Sun Microsystems

System IIl & V family »{_#e-ux i3]

5GI

Figure 17-10: UNIX History

Different Vendors/different versions/distributions, e.g.:

e Fedora

e Red Hat Linux
e SUSE

e Mandriva

e Ubuntu

e etc.

The penguin symbol (Figure 17-11) is typical for Linux.

Part 3: Platforms & Architecture

176

17 Software Platforms

Figure 17-11: The Linux Mascot

17.4 Web

The Web have become more and more important as a platform for developing software.

Here are some keywords:

HTML

JavaScript

ASP.NET

PHP

Internet Information Services (l1S)
Apache

A Web Browser and HTML are the foundation for web pages. HyperText Markup Language (HTML)
is the main markup language for creating web pages and other information that can be displayed

in a web browser.

In Figure 17-12 we see the typical web architecture, including web browsers, HTML, CSS,

JavaScript, and a web server for hosting the web pages.

Part 3: Platforms & Architecture

177 17 Software Platforms

Internet Explorer Chrome Firefox Opera Safari
I Web Browser
2
o

HTML CSS JavaScript

‘ Web Server

Figure 17-12: Web Architecture

In Figure 17-13 we see the triangle of web programming. You cannot create a modern web page
without knowing the basics of HTML, CSS and JavaScript. They are the basic building blocks when

creating web pages.

HTML

Web Programming

CSS |« JavaScript

Figure 17-13: The triangle of Web Programming

HyperText Markup Language (HTML) is the visual appearance of a Web Site. All Web Browser
understand HTML. The latest version is HTML 5. CSS (Cascading Style Sheets) define how to display

Part 3: Platforms & Architecture

178 17 Software Platforms

HTML elements. CSS is used to control the style and layout of multiple Web pages all at once.
JavaScript is the programming language of the Web. All modern HTML pages are using JavaScript.

Some relevant videos:

ﬁWeb Programming Overview: https://youtu.be/pIRBYKbQSUE

ﬁ Create Web Pages with HTML and CSS: https://youtu.be/DUEHx7|5a3Y

17.4.1 Web Servers

Web Servers are used to host web sites and web pages. The web server can refer to either the
hardware (the computer) or the software (the computer application) that helps to deliver web
content that can be accessed through the Internet.

The following web servers (software) are very popular today:

e [Internet Information Services (11S) (included with Windows)

e Apache
e Nginx (pronounced "engine x")

See Figure 17-14.

Web Browser Client-side

HTML, CSS, JavaScript
Web Page (HTML)

Web Server Server-side
Figure 17-14: Web Server

17.4.2 Web Frameworks

ASP.NET is a web application framework developed by Microsoft to allow programmers to build
dynamic web sites, web applications and web services.

Part 3: Platforms & Architecture

https://youtu.be/plRBYKbQSuE
https://youtu.be/DUEHx7l5a3Y

179 17 Software Platforms

ASP.NET is part of the Visual Studio package.

It was first released in January 2002 with version 1.0 of the .NET Framework and is the successor
to Microsoft's Active Server Pages (ASP) technology. ASP.NET is built on the Common Language
Runtime (CLR), allowing programmers to write ASP.NET code using any supported .NET language,
such as C# and VB.NET.

ASP.NET web pages or webpages, known officially as Web Forms], are the main building block for
application development. Web forms are contained in files with an “.aspx” extension.

See Figure 17-15.

Web Browser

E =
s
5
HTMVIL JavaScript CSS
Web Server

L4]
=
5 ASP.NET
o -
‘{']__J Fal)
« C#/VB.NET

- =

.NET Framework

Figure 17-15: ASP.NET

For more information about ASP.NET, please see the Tutorial “ASP.NET and Web Programming”
[17].

17.4.3 ASP.NET Core

The new .NET Core is a lightweight cross-platform subset of the full .NET Framework. See Figure
17-16.

Part 3: Platforms & Architecture

180 17 Software Platforms

ASP.NET Core 1.0 MVC ‘ ASP.NET Core 1.0 Web API

-~

ASP.NET Core 1.0

= N oy
L ASP.NET Web Forms | \

.NET Framework 4.6.x .NET Core 1.0
> A >

: Cross-platform
Windows only P Nindows, Mac, Linux
CLR CLR Caore
J L

CLR — Common Language Runtime
Figure 17-16: ASP.NET Core

Some relevant videos:

ﬁASP.NET Core - Hello World: https://youtu.be/lcQsWYgQXK4
ﬁASP.NET Core —

17.4.4 Web Scripting Languages

Introduction: https://youtu.be/zkOtiBcwo8s

A scripting language is a lightweight programming language. JavaScript and PHP is programming
code that can be inserted into HTML pages. JavaScript inserted into HTML pages, can be executed
by all modern web browsers.

JavaScript:

JavaScript is THE scripting language of the Web. JavaScript is used in billions of Web pages to add
functionality, validate forms, communicate with the server, and much more.

To insert a JavaScript into an HTML page, use the <script> tag. The <script> and </script> tells
where the JavaScript starts and ends. The lines between the <script> and </script> contain the
JavaScript. Below we see an example.

<!DOCTYPE html>
<html>

<head>isk
<s Cript>£s_'é_|>]
function myFunction () st

{iskr}

Part 3: Platforms & Architecture

https://youtu.be/lcQsWYgQXK4
https://youtu.be/zkOtiBcwo8s

181 17 Software Platforms

document.getElementById ("demo") .innerHTML="My First JavaScript
Function";iss
}iske!
</script>§§
</head>

<body>

<hl>My Web Page</hl>

<p id="demo">A Paragraph</p>

<button type="button" onclick="myFunction ()">Try it</button>
</body>it

</html>

PHP:

PHP is a server scripting language and is a powerful tool for making dynamic and interactive Web
pages. PHP is free to use (open source) and it is widely used today.

The PHP code is merged between the HTML code, and the PHP code is executed on the web server
and translated to pure HTML syntax. Below we see an example.

<!DOCTYPE html>
<html>
<body>

<hl>My first PHP page</hl>
<?php
echo "Hello World!"™;

?>

</body>
</html>

Typically, you have a combination of PHP code, HTML and JavaScript on a web page.

PHP runs on different platforms (Windows, Linux, Unix, Mac OS X, etc.) and it is compatible with
almost all web servers used today (Apache, IIS, etc.). PHP has support for a wide range of
databases as well.

17.5 Mobile Devices

Today we have the following Mobile platforms:

e iPhone (i0S)/iPad OS
e Android

Below we will give a short overview of these platforms.

In general, we have 2 different kinds of apps for mobile devices (Figure 17-17), i.e., we can
distinguish between “native apps” and “web apps”. Web apps are created using HTML 5

Part 3: Platforms & Architecture

182 17 Software Platforms

technology and run inside a standard web browser, while native apps are created specifically for a
specific device or platform, such as an iOS device, Android device, etc. If you want to support more
than one platform, you need to develop and maintain one app for each of these platforms.

Different platforms need different programming methods and languages, but native apps provide
better performance and usability compared to web-based apps. Native apps can use APIs that is
provided by the vendor, they have access to built-in sensors, GPS, etc.

Mobile Apps

- -

// \\\\
” S
/// 3 "
o« S
Native Apps HTML 5 Apps |
Only 1 App
| is needed
App 1 App 2 AHEES Web
PP PP -

= App 3 == Windows Browser
- -
iOS =E Windows |

Phone

EOS == y!\'/xr‘n‘dows

2R Windows

Figure 17-17: Native vs. Web Apps

Web apps are not real applications; they are websites that, in many ways, look and feel like native
applications, but are not implemented as such. They are run by a browser and typically written in
HTML5. Users first access them as they would access any web page: they navigate to a special URL
and then have the option of “installing” them on their home screen by creating a bookmark to that

page.

Web apps became popular when HTML5 came around and people realized that they can obtain
native-like—functionality in the browser. Today, as more and more sites use HTMLS5, the distinction
between web apps and regular web pages has become blurry.

Native Apps vs. Web Apps:
Some important aspects of native apps and web apps:

e Native apps live on the device and are accessed through icons on the device home screen.

e Native apps are installed through an application store (such as Google Play or Apple’s App
Store).

e They are developed specifically for one platform, and can take full advantage of all the
device features — they can use the camera, the GPS, the accelerometer, the compass,
contact list, etc.

Part 3: Platforms & Architecture

183 17 Software Platforms

e Native apps can use the device’s notification system and can work offline.

17.5.1 i0S

iOS (see Figure 17-18) is a mobile operating system developed and distributed by Apple Inc.
Created in 2007 together with the iPhone. It has been extended to support other Apple devices
such as the iPod touch (2007) and iPad (2010). With iOS 7 and later the OS have gone through a
large makeover, compared to previous versions.

_Calendar Photos

Weather, Passbook

Figure 17-18:i0S
iOS is derived from OS X, which is the operation system used on Apple Mac computers.

Apps can be downloaded from the App Store. To create Apps, you use the Xcode IDE and the
Objective-C or Swift programming language. You need the iOS SDK, which is included with Xcode.

Xcode is only available for Mac OS X, this means you need a Mac computer to create apps for the

iOS platform.

17.5.2 Android

Android (see Figure 17-19) is a Linux-based operating system designed for mobile devices such as
smartphones and tablets. Android is developed by Google.

The first Android phone was sold in 2008.

Part 3: Platforms & Architecture

184 17 Software Platforms

Figure 17-19: Android

Android works on hardware from different vendors.

The source code for Android is available under a free and open-source software license, which
means everybody may change it and create their own version of it. Vendors like Samsung, etc. do
this.

You use the Eclipse IDE and Java programming language to create apps for Android. Apps can be
downloaded from Google Play, Amazon AppStore for Android, etc. Google Play is the official App
Store for Android.

Figure 17-20 gives an overview of the different Android versions:

Part 3: Platforms & Architecture

185 17 Software Platforms

‘@ CINDOID

-ct) |
- (<)

-

Wi
Cupcake

Gingerbread

2

Ice Cregm Sandwich Jelly Bean

Eclair

'g'c’o“g.o.

B

Honeycomb

Figure 17-20 Android Versions

Notice that all Android versions are named after a dessert, a cake, or other sorts of candy. They
are also in alphabetical order:

e C(Cupcake)

e D (Donut)

e E (Eclair)

e F(Froyo)

e G (Gingerbread)

e H (Honeycomb)

e | (lce Cream Sandwich)

e J(Jelly Bean)

e K (KitKat) — Android 4.4x
e L (Lollipop)—Android 5.x
e M (Marshmallow) — Android 6
e N (Nougat) — Android 7
e O (Oro) - Android 8

e P (Pie) —Android 9

Now they have run out of cakes and cookies and the latest versions are just called Android 10 11,
12, etc.

Part 3: Platforms & Architecture

186 17 Software Platforms

b

ARNIIIDYDMN
A \} by |

\

') 5 android ?

AIYARAYARE
v6.0 Marshmallow
Lollipop w

More about Android for Developers here:

http://developer.android.com/

Here you can get detailed information about Android and download resources, development
tools, etc., including Android Studio, which is the tool you should use when developing Apps for
the Android platform.

Android Studio is the official IDE for developing Apps for Android, but you may use many other
IDEs as well. Especially, many use the Eclipse software. In that case, you need to download and
install the Android SDK Tools.

Android has become a widely used platform for many kinds of devices, including smartphones,
tablets, TV's (Android TV), watches (Android Wear), and even cars (Android Auto).

17.5.3 Windows 10 and Windows 11

Windows 11 is the newest version of Windows. From version 8 (see Figure 17-21), Windows was
designed to work on both ordinary computers as well as tablets.

Start Administrator &

] e n

ET Internet Store Camera

Calenda SkyDrive Games Video Finance

Messaging Photos

Figure 17-21: Windows 8

Part 3: Platforms & Architecture

http://developer.android.com/

187 17 Software Platforms

Universal Apps may be downloaded from Windows Store which is integrated into Windows 10.

In Figure 17-22 we see an overview of the Windows release history, from Windows 1.0 released in
1985 to Windows 8/Windows RT released in 2012.

85 35 87 85 89 ‘90 ‘91° 92 93 ‘94 '95°96 '97 '98 '99'00 ‘0102 ‘03 '04 '05°06 ‘07 '08 ‘'09'10°11"12°13'14*15
I \ I A I T N O O O A
IR

A T T T T AT T N N T I I A |
T [T I T T T T T | T T T T T T ” T | T I T ‘ T [T I
i i Originat indons operting [RRNor e Pere 2
systems based on MS-DOS. :

entirely rebuilt and shares NT code
with Windows 8.
Windows RT is an OS specifically
designed for tablets with ARM

] for embe d syste 'Pocket pc M pracessors and also shares code
Windows Pocket PC and Windows Mobil 2002 2003 SE \ MoblleSx ! with Windows 8.

indows Pocket ani indows Mobile

were OS for PDA, smartphones, and other POCKEI PC Mobile

| Moabile 5 Phone 7.x
mobile devices, Later the name was 20t il
changed to Windows Phone to reflect the
market. They were all based on Windows CE,

With Windows NT 3.1 Microsoft
introduced its new NT family of
operating systems. The new hybrid

Discontinued since Windows ME

kernel was independent from MS-

DOS and the OS was fully 32 bit.

Windows 8 is the latest successor

from the NT family.

Explanation of arrows: |. Windows CE is based on code from Windows 95. II. Windows Pocket PC 2000 is based on Windows CE 3.0. Ill. Windows Mobile 6.x is based on Windows CE 5.x,
rather than CE 6.0. IV. Windows Phone 7 is based on code from both Windows CE 6.0 and CE 7.0. V. Windows Vista was built on code from Windows Server 2003, rather than Windows XP

Marked in green are the server-only Windows OS.
Before Windows XP, Microsoft made each OS with
an edition for servers, rather than building separate OS.

Figure 17-22: Windows Release History

17.6 Cloud Computing

Cloud computing (Figure 17-23) is the use of computing resources (hardware and software) that
are delivered as a service over a network (typically the Internet)

Examples:
1. Team Foundation Service
2. iCloud
3. Windows Azure
4. Amazon Web Services
5. Google Cloud Platform

6. etc.

Part 3: Platforms & Architecture

188 17 Software Platforms

. . |I — 'I :
Maonitoring (—-— Collaboration E[:'\r

Content Communication
Platform
— [ﬁﬁ':'.-.l.!!_ r | —i_| %
Identity o le e
Object Storage Buntime Database
Infrastructure

Compute %

Block Storage

Phones

Tablets

Cloud Computing

Figure 17-23: Cloud Computing (Wikipedia)

17.7 Open Source

For more information about Open Source, see the following:

http://en.wikipedia.org/wiki/Open-source software

Part 3: Platforms & Architecture

http://en.wikipedia.org/wiki/Open-source_software

18 Software Frameworks &
Languages

There are probably thousands of different programming languages. Each of these programming
languages has good and bad qualities and is preferable in different situations. Some language is
good to use when you need to communicate with a database, while others are good to use when
you want to develop web applications, etc. So, in most situations you probably need to know and
use more than one programming language.

In this chapter, we will discuss some of the most used (probably) programming languages today.

18.1 Object-Oriented Programming (OOP)

Object-oriented programming (OOP) is a programming language model organized around
"objects" rather than "actions" and data rather than logic. Historically, a program has been viewed
as a logical procedure that takes input data, processes it, and produces output data.

The first step in OOP is to identify all the objects you want to manipulate and how they relate to
each other, an exercise often known as data modeling. Once you've identified an object, you
generalize it as a class of objects and define the kind of data it contains and any logic sequences
that can manipulate it. Each distinct logic sequence is known as a method. A real instance of a
class is called an “object” or an “instance of a class”. The object or class instance is what you run in
the computer. Its methods provide computer instructions, and the class object characteristics
provide relevant data. You communicate with objects - and they communicate with each other.

Important features with OOP are:

e C(lasses and Objects
e Inheritance

e Polymorphism

e Encapsulation

Simula was the first object-oriented programming language. Simula was developed in the 1960s
by Kristen Nygaard from Norway.

Java, Python, C++, Visual Basic .NET, and C# are popular OOP languages today.

189

190

18 Software Frameworks & Languages

Since Simula-type objects are reimplemented in C++, Java and C# the influence of Simula is often
understated. The creator of C++ (1979), Bjarne Stroustrup (from Denmark), has acknowledged that

Simula was the greatest influence on him to develop C++.

18.2 Popular Programming Languages

There are probably thousands of different programming languages today. In Figure 18-1 we see

some of them.

Programming Languages | per

Ruby
C/C++ _
C# ‘ Visual |
Basic
Python PHP
Objective-C

MATLAB

Figure 18-1: Programming Languages

Here is a list of some of the most popular programming languages in use today.

C, C++

CH#

Java
Visual Basic
Perl
Python
PHP
JavaScript
sQL
MATLAB
LabVIEW

Each of these programming languages has good and bad qualities and is preferable in different

situations. Some language is good to use when you need to communicate with a database, while

Part 3: Platforms & Architecture

191 18 Software Frameworks & Languages

others are good to use when you want to develop web applications, etc. So, in most situations you
probably need to know and use more than one programming language.

Some programming languages are interpreted (“interpreted language”), while others are compiled
(“compiled language”). Compiled languages need to be compiled and transform to “machine
code” before you can run the program. Interpreted languages translate the code step-by-step at
run-time.

Compiled languages are known in general to be faster than interpreted languages. Compiled
languages can also easily be compiled into executable programs that can run on their own, while
interpreted languages normally need to be run inside the development environment.

Visual Basic, C, C++ and C# are typically compiled languages, while Python, PHP, MATLAB are
typically interpreted languages.

Figure 18-2 shows the Top 20 list from RedMonk (this is just one of many similar lists).

1 JavaScript 11 Perl
2 Java 11 Shell
3 PH P / .\\\\ 13 R
4 Python 14 Scala
5 C# 7 15 Haskell
5 C++ :

N 0 « 16 Matlab
5 Ruby <O 17 Go
8 CSS /- “. 17 Visual Basic
2 il @ 19 Clojure
10 Objective-C 19 Groovy

http://redmonk.com/sogrady/2015/01/14/language-rankings-1-15/

Figure 18-2: Popular Programming Languages — Top 20

Below we will give a very short introduction to some of the most popular programming languages.

18.2.1 C

Cis a general-purpose computer programming language developed between 1969 and 1973 by

C is one of the most popular programming languages of all time and there are very few computer
architectures for which a C compiler does not exist.

Part 3: Platforms & Architecture

192 18 Software Frameworks & Languages

C has greatly influenced many other popular programming languages, most notably C++, which
began as an extension to C. Cis a procedural language, i.e., no object-oriented programming. Cis a
compiled language.

18.2.2 C++

C++ is a compiled, general-purpose object-oriented programming language. It is regarded as an
intermediate-level language, as it comprises a combination of both high-level and low-level
language features.

It was developed by Bjarne Stroustrup in 1979 as an extension to C. C++ is one of the most popular
programming languages and its application domains include systems software (such as Microsoft
Windows), application software, device drivers, embedded software, high-performance server and
client applications, and entertainment software such as video games.

Several groups provide both free and proprietary C++ compiler software.

18.2.3 C#H

C# is pronounced “see sharp”. C# is an object-oriented programming language and part of the
.NET family from Microsoft. C# is intended to be a simple, modern, general-purpose, object-
oriented programming language. Its development team is led by Anders Hejlsberg.

C# is very like C++ and Java. C# is developed by Microsoft and works only on the Windows
platform. C# is based on the .NET Framework (pronounced “dot net”).

.NET is a software framework that runs primarily on Microsoft Windows. The .NET Framework 1.0
and C# 1.0 was released in 2002 as part of Visual Studio .NET 2002.

Visual Studio is the Integrated Development Environment (IDE) you use when programming in C#
and the .NET platform.

“Hello World” C# Example:

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Drawing;

using System.Ling;

using System.Text;

using System.Windows.Forms;

namespace WindowsFormsApplicationl

{

public partial class Forml : Form

{
public Forml ()

{

Part 3: Platforms & Architecture

193 18 Software Frameworks & Languages

InitializeComponent () ;

private void Forml Load(object sender, EventArgs e)

{

textBoxl.Text = "Hello World";

}

For an introduction to basic C#, please see [18].
For more information about C#:

https://www.halvorsen.blog/documents/programming/csharp/

18.2.4 Java

Java is a programming language originally developed by James Gosling at Sun Microsystems (now
owned by Oracle Corporation) and released in 1995 as a core component of Sun Microsystems'
Java platform. The language derives much of its syntax from C and C++ but has a simpler object
model and fewer low-level facilities.

«

<> Java

——

Java is currently one of the most popular programming languages in use and is widely used from
application software to web applications. Java applications are typically compiled, and it runs on
any Java Virtual Machine (JVM) regardless of the computer architecture. Java is a general-purpose
object-oriented. It is intended to let application developers “write once, run anywhere”.

A common IDE for programming with Java is the Eclipse IDE. Java and Eclipse are used to create
Android Apps.

18.2.5 Objective-C/Swift

Part 3: Platforms & Architecture

https://www.halvorsen.blog/documents/programming/csharp/

194 18 Software Frameworks & Languages

Objective-C is a general-purpose, high-level, object-oriented programming language that is based
on the C programming language.

It is the main programming language used by Apple for the OS X and iOS and their respective APls,
Cocoa, and Cocoa Touch.

Originally developed in the early 1980s, it was selected as the main language used by NeXT for its
NeXTSTEP operating system, from which OS X and iOS are derived.

Swift is the new programming language created by Apple (now open source) that is intended to
take over for Objective-C. Swift is now the preferred language when creating Apps for the iOS
platform and macOS.

18.2.6 Visual Basic

Visual Basic (VB) is the third-generation event-driven programming language and integrated
development environment (IDE) from Microsoft. The first version appeared in 1991. Visual Basic is
relatively easy to learn and use and it is a good language for beginners.

Visual Basic was derived from BASIC and enabled the rapid application development (RAD) of
graphical user interface (GUI) applications, access to databases using Data Access Objects, Remote
Data Objects, or ActiveX Data Objects, and creation of ActiveX controls and objects.

Scripting languages such as VBA (Visual Basic for Applications) and VBScript are syntactically like
Visual Basic but perform differently.

The final release was version 6 in 1998 (VB6). The successor is Visual Basic .NET (now known
simply as Visual Basic). The .NET Framework 1.0 and Visual Basic .NET 1.0 (VB.NET or just Visual
Basic) were released in 2002 as part of Visual Studio .NET 2002.

18.2.7 Perl

Perl is a high-level, general-purpose, interpreted, dynamic programming language. Perl was
originally developed by Larry Wall in 1987 as a general-purpose Unix scripting language to make
report processing easier. Since then, it has undergone many changes and revisions and become
widely popular amongst programmers.

Part 3: Platforms & Architecture

195 18 Software Frameworks & Languages

18.2.8 Python

Python is an interpreted high-level programming language and object-oriented programming, and
structured programming are fully supported. The reference implementation of Python (CPython) is
free and open-source software and has a community-based development model. In addition,
Python has alternative implementations.

Python logo:

@, python’

Introduction to Python: https://youtu.be/eC0ZgS|4h3k

I I

Basic Python Programming: https://youtu.be/Wr8Ku5yYeTM

Python interpreters are available for many operating systems, and Python programs can be
packaged into stand-alone executable code for many systems using various tools.skriGuido van
Rossum is the creator of Python (1989).

Python example:

>>> x = int (input ("Please enter an integer: "))
Please enter an integer: 42
>>> if x < O:

x =0

Part 3: Platforms & Architecture

https://youtu.be/eC0ZqSl4h3k
https://youtu.be/Wr8Ku5yYeTM

196 18 Software Frameworks & Languages

print ('Negative changed to zero')
. elif x ==

print ('Zero')
. elif x ==

print ('Single')
- @ls@s

print ('More')

More

For more information about Python:

https://www.halvorsen.blog/documents/programming/python/

18.2.9 PHP

PHP is a general-purpose scripting language originally designed for web development to produce
dynamic web pages (server-side scripting). For this purpose, PHP code is embedded into the HTML
source document and interpreted by a web server which generates the web page document.

PHP can be deployed on most web servers and as a standalone interpreter, on almost every
operating system and platform free of charge.

PHP was originally created by Rasmus Lerdorf in 1995. PHP is installed on more than 20 million
websites and 1 million web servers including Facebook. PHP originally stood for “Personal Home
Page”, while it is now said to stand for “PHP: Hypertext Preprocessor”. PHP is free open-source
software.

For more information about PHP:

https://www.halvorsen.blog/documents/programming/web/php.php

18.2.10 JavaScript

JavaScript is an object-oriented scripting language that is dynamic, weakly typed. JavaScript is
primarily used in the form of client-side JavaScript, implemented as part of a web browser to
provide enhanced user interfaces and dynamic websites.

Part 3: Platforms & Architecture

https://www.halvorsen.blog/documents/programming/python/
https://www.halvorsen.blog/documents/programming/web/php.php

197 18 Software Frameworks & Languages

As in most scripting languages, types are associated with values, not with variables. For example, a
variable x could be bound to a number, then later rebound to a string. JavaScript uses syntax
influenced by that of C.

JavaScript copies many names and naming conventions from Java, but the two languages are
otherwise unrelated and have very different semantics. JavaScript was first shipped in 1995.

JavaScript very quickly gained widespread success as a client-side scripting language for web
pages. JavaScript is officially managed by Mozilla Foundation.

18.2.11 SQL

SQL, often referred to as Structured Query Language, is a database computer language designed
for managing data in relational database management systems (RDBMS).

SQL has become the most widely used database language today. All popular Database Systems
support SQL, such as Oracle, SQL Server, etc. SQL was developed at IBM by Donald D. Chamberlin
and Raymond F. Boyce in the early 1970s.

ﬁ SQL Server and Structured Query Language (SQL): https://youtu.be/sl6skicZse0

SQL Support all kind of CRUD (Create, Read, Update, Delete) operations on database systems.

Example of SQL Syntax:

insert into STUDENT (Name , Number, SchoolId)
values ('John Smith', '100005', 1)

select SchoolId, Name from SCHOOL
select * from SCHOOL where SchoolId > 100
update STUDENT set Name='John Wayne' where StudentId=2

delete from STUDENT where SchoolId=3

For more information about SQL, please see [19] and Chapter 25.
You may also see the following resource:

https://www.halvorsen.blog/documents/technology/database/

18.2.12 MATLAB

MATLAB (matrix laboratory) is a numerical computing environment and fourth-generation
programming language. Developed by MathWorks, MATLAB allows matrix manipulation, plotting
of functions and data, and implementation of algorithms.

Part 3: Platforms & Architecture

https://youtu.be/sI6skicZse0
https://www.halvorsen.blog/documents/technology/database/

198 18 Software Frameworks & Languages

MATLAB is intended primarily for numerical computing. MATLAB is widely used in academic and
research institutions, but also in industry.

MATLAB is an interpreted language. MATLAB is written in C and Java. MATLAB is a weakly
dynamically typed programming language.

ﬁ Getting Started with MATLAB: https://youtu.be/u0bK3AICIkO

In Figure 18-3 we see the MATLAB IDE.

4\ MATLAR R20126 = | =

HOME WARISHLE

I - i 1] Lk Mew Variakie = analyze Code oE = (09 Preferences 9
e B T 1 e L 2 e FEN = L2 5, communiy
3 b Open Varabls = fiy Fun and Time: g o SeiPatn

Mew Hew Open |- jcompare | mpet Save
Gorigt. -~ = -

Dote. Workspace 7 Clear¥orkapace = [Clear Commands = Lirary b Porais v
i EXE e - e JEHIMLR 2 RS FEOMENET SRR
<= = 0 E b ooowowork b Energy botime_series_data b -0
Current Faldar %) (=T EQtar- working with Vimme. s ermee_datnem . 24 Varlables - datadCD] = o=
Marne - dataACDT =
C IV STINIY] i

= Ef dataACDT <18000<16 dataset»
“lausmap.m s e A N e e e

i 1 2 3 4 5 6 7 &8 a8
|me AustEIecGrid.pr‘lg L_| | J 'Flmg 2 YNWE VYNT YNE VIVE WIALD VAS wad wag = —
i AustsummerTime.... | | 1 634942 | 6.3264.. 6.2900] B Figue 2 SIS
& createfigure.m 2 634942 6.3224..:6:2027] |iiSHIERNIN ImE R S B S 2
2] datal xlsx 3 634042 63181 62031||D 2 H& [k SR TBDE .- G| 0E) =D
= data2 xlsx 4 634942 63132 6.2895 o e paleting Miteeng DuLE
2 data3.xlsx 5 634942 6.3113.. 62867 i
= s 634942.. 6.3151.. 6.2851 L s e S o
omemand Histon | Workspace = &
— o 7 634942... 6.3140.. 6.2845
500
i ans “20%4 de = | B 634942 63044 67858
€l conn <1x1 dat | ot 1 oo . SR RS SN SN—_—
|=l curs <1x1 stri @
[data <2B501% 100 6.27894| 2 sml-
I datal <27001x, 103 =
HdataACDT | <1R000x b s { i
¥ dataACDT_... <1x3 o E——
R iiaia EJ" f:‘-:- }.} - RN BT C_.'l F e R _| == spline interp |;
T [| 3 4 — pehip interg |
Ready — curva fit §
- i
1095 z2 205 21 218 22 225
Time (s}

Figure 18-3: MATLAB
For more information about MATLAB, please see [20].
MATLAB Training:

https://www.halvorsen.blog/documents/programming/matlab/

18.2.13 LabVIEW

LabVIEW is a graphical programming language. LabVIEW (short for Laboratory Virtual
Instrumentation Engineering Workbench) is a platform and development environment for a visual
programming language from National Instruments.

Part 3: Platforms & Architecture

https://youtu.be/u0bK3AlC9k0
https://www.halvorsen.blog/documents/programming/matlab/

199 18 Software Frameworks & Languages

ﬁ LabVIEW Fundamentals: https://www.youtube.com/watch?v=EOfW|UgolmA&list=PLdb-
TcK6AgjONelLk7K66 mvc-HNKS1-PJ

LabVIEW was originally released for the Apple Macintosh in 1986, and it is commonly used for
data acquisition, instrument control, and industrial automation on a variety of platforms including
Microsoft Windows, various versions of UNIX, Linux, and Mac OS X.

:

i

abVIEW

In LabVIEW, you can create and run executable files. To do so you need to have the LabVIEW Run-
time Engine installed on the target computer. LabVIEW can be extended with additional modules
and Toolkits. LabVIEW MathScript is an add-on which is a miniature version of MATLAB.

In Figure 18-4 we see a typical LabVIEW Program.

1P 3D Parametric Surface.vi Diagram *

5]
File Edit Operate Tools Browse Window Help h?:ﬂ
L@(@ l‘uila’lnﬁ | 13pt Application Font \vﬂgnv‘[‘.'u:vllfbvi |M

f[False b

3D graph

error in {no error)

=

5 % CWwPlots3D Bl 18 2 error out

e oWl ¢

Plot3DParametricSurface

xMatrix
yMatrix
2Matrix
wiatrix

x matrix | 8] =
- I
y matrix [osil ||

zmatrix [[osi]}- 4 o

intensity data |Tost] —

Add Intinisity Data ko wMatrix

il | 5l

Figure 18-4: LabVIEW Program
For more information about LabVIEW, please see [21].

LabVIEW Training:

https://www.halvorsen.blog/documents/programming/labview/

Part 3: Platforms & Architecture

https://www.youtube.com/watch?v=EOfWjUgolmA&list=PLdb-TcK6Aqj0NeLk7K66_mvc-HNKS1-PJ
https://www.youtube.com/watch?v=EOfWjUgolmA&list=PLdb-TcK6Aqj0NeLk7K66_mvc-HNKS1-PJ
https://www.halvorsen.blog/documents/programming/labview/

200 18 Software Frameworks & Languages

18.3 Naming Convention

There are different name conventions for how to specify your variables, classes and Methods, etc.

Camel notation:

For variables and parameters/arguments we normally use “Camel notation”.

Examples:

string myCar;
int number;
string backColor;

- In Camel casing the first letter of an identifier is lowercase, and the first letter of each
subsequent concatenated word is capitalized.

Pascal notation:

For classes, methods and properties, we normally use “Pascal notation”.

Examples:

class Car

{

void ShowCarColor ()

{

}
}

-> In Pascal casing the first letter in the identifier and the first letter of each subsequent
concatenated word are capitalized.

For Namespaces we use Pascal casing and a dot separator.

Examples:

System.Drawing
System.Collections.Generics

Controls:

For controls on your user interface, we either use “Pascal notation” or “Hungarian notation”, but
stick to one of them!

Examples:

“Pascal notation”:

LoginName
LoginPassword

Part 3: Platforms & Architecture

201 18 Software Frameworks & Languages

“Hungarian notation”:

txtName
txtPassword
1lblName
btnCancel

Where “txt” means that it is a Text Control, “Ibl” a Label Control, “btn” a Button Control, etc.

Acronyms:

The casing of acronyms depends on the length of the acronym. All acronyms are at least two
characters long. If an acronym is exactly two characters, it is considered a short acronym. An
acronym of three or more characters is a long acronym.

In general, you should not use abbreviations or acronyms. These make your names less readable.
Similarly, it is difficult to know when it is safe to assume that an acronym is widely recognized.

But if you must, the rules are as follows:

Short acronym Examples (two characters):

DBRate

A property named DBRate is an example of a short acronym (DB) used as the first word of a Pascal-
cased identifier.

ioChannel

A parameter named ioChannel is an example of a short acronym (10) used as the first word of a
camel-cased identifier.

Long acronym Examples (three or more characters):

XmlWriter

A class named XmlWriter is an example of a long acronym used as the first word of a Pascal-cased
identifier.

htmlReader

A parameter named htmlReader is an example of a long acronym used as the first word of a
camel-cased identifier.

18.4 Defensive Programming

In programming error and exception handling is very important. C# has built-in and ready to use
mechanism to handle this. This mechanism is based on the keywords try, catch, throw and finally.

Part 3: Platforms & Architecture

202 18 Software Frameworks & Languages

Exceptions are unforeseen errors that happen in your programs. Most of the time, you can, and
should, detect and handle program errors in your code. For example, validating user input,
checking for null objects, and verifying the values returned from methods are what you expect, are
all examples of good standard error handling that you should be doing all the time.

However, there are times when you don't know if an error will occur. For example, you can't
predict when you'll receive a file I/O error, run out of system memory, or encounter a database
error. These things are generally unlikely, but they could still happen, and you want to be able to
deal with them when they do occur. This is where exception handling comes in.

18.4.1 Error Handling

Error handling is an important part of the coding process, making the applications robust when
some unexpected things happen.

Exception Handling:

When exceptions occur, they are said to be “thrown”. C# uses the keywords try, catch, throw and
finally. It works like this: A method will try to execute a piece of code. If the code detects a
problem, it will throw an error indication, which your code can catch, and no matter what
happens, it finally executes a special code block at the end.

The syntax in C# is as follows:

MyMethod ()
{
try
{
//Do Something that can cause an Exception
}
catch
{
//Handle Exceptions
}
finally
{
//Clean Up
}
}
Example:

public void WriteDagData (double analogDataOut)
{

Task analogOutTask = new Task();

AOChannel myAOChannel;

Part 3: Platforms & Architecture

203 18 Software Frameworks & Languages

try
{

myAOChannel = analogOutTask.AOChannels.CreateVoltageChannel (
aoChannel,
"myAOChannel",
0,
5,
AOVoltageUnits.Volts
) i

AnalogSingleChannelWriter writer = new
AnalogSingleChannelWriter (analogOutTask.Stream) ;

writer.WriteSingleSample (true, analogDataOut) ;

}

catch (Exception e)

{

string errorMessage;
errorMessage = e.Message.ToString() ;

}

finally

{
analogOutTask.Stop () ;

}

18.5 Software Frameworks

Some popular software frameworks are:

* .NET Framework
e ASP.NET

They will be discussed in more detail below.

18.5.1 .NET Framework

The .NET Framework (pronounced “dot net”) is a software framework that runs primarily on
Microsoft Windows. It includes a large library and supports several programming languages which
allow language interoperability (each language can use code written in other languages). The .NET
library is available to all the programming languages that .NET supports. Programs written for the
.NET Framework execute in a software environment, known as the Common Language Runtime
(CLR), an application virtual machine that provides important services such as security, memory
management, and exception handling. The class library and the CLR together constitute the .NET

Framework.

Part 3: Platforms & Architecture

204 18 Software Frameworks & Languages

18.5.2 ASP.NET

ASP.NET is an open-source web framework, created by Microsoft, for building web apps and
services using the .NET Framework or the .NET Core. We have both ASP.NET and ASP.NET Core.
ASP.NET Core is the new approach built on .NET Core.

Some relevant videos:

ﬁASP.NET Core - Hello World: https://voutu.be/lcQsWYgQOXxK4

ASP.NET Core — Introduction: https://youtu.be/zkOtiBcwo8s

For more information about ASP.NET:

https://www.halvorsen.blog/documents/programming/web/aspnet

Part 3: Platforms & Architecture

https://youtu.be/lcQsWYgQXK4
https://youtu.be/zkOtiBcwo8s
https://www.halvorsen.blog/documents/programming/web/aspnet

19 Software Architecture

When creating software, we use different architecture depending on the platform and the
purpose with the software.

In this document, we will focus on client-server, 3-tier architecture and creating and using Web
Services and APls.

Software Architecture

2-Tier
3-Tier: A way to structure your code
into logical parts. Different devices or Client-
software modules can share the same _ Server
— code. = N
[Web .
Services | 3 Tiex
. Architecture
— é% Good Software! n-Tier
-?Q ~ S -
Web Services: A standard 3
way to get data over a
network/Internet using
standard Web protocols
tHTTP; €xcc) APIs API: Application Programming

Interface. Different devices or software
modules can share the same code.
Code once, use it many times

Figure 19-1: Software Architecture

In Figure 19-2 we see how a typical software application is interacting with the surrounding
environments, such as the users of the software and the underlying operating system (which is
also software) and hardware.

205

206 19 Software Architecture

Application

Operating System

Hardware

Figure 19-2. Software Interaction with the Environment

Based on the fundamental interaction between the software and the environment we have
different kinds of software architecture.

Software Architecture Examples:

* Client —Server

* n-tier architecture, 3-tier architecture
* Model-View-Controller (MVC)

* Web Services

* Interfaces

* APIs

* Service-oriented architecture (SOA)

* Microservices

In Figure 19-3 we see some examples of different network and software architecture typically
used in software development.

Part 3: Platforms & Architecture

207 19 Software Architecture

1 Presentation Layer
Network/Software Architecture g - == -
Client/Server Architecture 3 Layer Architecture SOA Architecture § | Business Logic Layer
Fme) 0 {é t
: /i <
| § | DataAccessiaver ||
Mac OS X £ = 3 " y ; % t i
g% Windows8 ¢ Virtualization! _
' S VMware HyperV Data
Source
£ Windows Azure _ HTTP | ul«s
- | Clients =Y Web net @
y | The Cloud ‘ S Fy
RDC/TeamViewer . Network . | Srves m& J /
Hardware + Sof?wargf’ 4 Apache
Internet, Ethernet, TCP/IP, HTTP, VPN, Port 1433 p =
OPC Tunneller Routers, Switches, Computers, Protocols, ¢, .4 procedures) $O1 Server m
Software |5 e ———-
0Sl, XML, SOAP, etc. MySQL
RDC/TeamViewer Database " (G
OPC an > VI 4 .
Eioas A Server
=]

=g Windows Server 2012 ot P, ORACLE

~ —

Figure 19-3: Network/Software Architecture Examples

Make sure to document your system and your architecture in your documentation. You should
typically include several drawings and sketches of your architecture.

ﬁ Make System Sketch in PowerPoint: https://youtu.be/9mmBXFO|V3s

19.1 API

API - Application Programming Interface. An APl is a specification of how some software
components should interact with each other. Typically, it is a library with functions, etc. you can
use in your code.

Examples:

° Windows API
° Java API

But you can also create your own APl that you use internally in the team or expose to others.

Part 3: Platforms & Architecture

https://youtu.be/9mmBXFOjV3s

208

19 Software Architecture

Creating APIs is good practice and makes it easy to reuse your code in other components or

applications. If all the developers in the team create the same code without thinking of reusing

code from others or creating code in such manners it can’t be used by others, the software project

is doomed to fail.

Software Design without APIs [22]:

Here are some pros and cons regarding APlIs:

Agile — can serve as a starting point for APl design.
No need to consider how code interfaces with other software.

Can be appropriate for small “dead end” projects.

Code has a limited (as opposed to general) functionality.

Pros:
e Fast to implement small projects.
o
o
o

Cons
* Inappropriate for large projects.
* Code is not reusable.
* Code is hard to maintain/modify.
* Prone to errors and bugs.

Why a Good APl is hard to Design?

Here

are some examples:

Forces designer to anticipate future usage of code.
Requirements are incomplete (may never be complete).
Requires abstraction.

Requires modularization.

Requires skills in programming languages.

Requires code rewrites — time consuming and labor intensive.

Part 3: Platforms & Architecture

209 19 Software Architecture

HOW TO CREATE A STABLE API

AND WHAT'S THE
PARAMETER
"Map<Object, Object> ffu”
FOR?

\u

geek & poke
P
c=En
wE o
MpR
m
&
=

ke

[http://geek-and-poke.com]

When an APl is used in a project, it

Allows us to focus on the project.

Saves development time.

Reduces errors and debugging.

Facilitates modular design.

Provides a consistent development platform.

APl driven design requires planning and programming skills. APl driven design is costly initially, but
it pays in the long run. So, obviously, creating APIs is good software practice in most cases.

It is impossible to imagine how anyone would design a car today without taking advantage of
existing modules or vehicle subsystems — it is the same with software!

19.2 Client-Server

Client/server describes the relationship between two computer programs in which one program,
the client, makes a service request from another program, the server, which fulfills the request.
Although the client/server idea can be used by programs within a single computer, it is a more

Part 3: Platforms & Architecture

210

19 Software Architecture

important idea in a network. In a network, the client/server model provides a convenient way to
interconnect programs that are distributed efficiently across different locations.

19.3 Web Services

The “problem”: How do we share data between different devices in a network (see Figure 19-4)?

Server(s)
Firewalls

: E5SETIAETD
Secuntv ——————

Local Network/
Internet Clients

(-
"i\ —A] .

Routers/Switches, etc.

Database

Figure 19-4: Data sharing between devices in a network

Direct connection between the database and the clients that need the data is normally not
possible, due to security, compatibility issues, etc. (firewalls, hacker attacks, etc.). Direct
connection in a local network (behind the firewall) is normally OK — but not over the Internet (see

Figure 19-5).

Figure 19-5: Limited access to the database in a network

Database

Part 3: Platforms & Architecture

211 19 Software Architecture

The solution: Web Services. Web Services use standard web protocols like HTTP, etc. HTTP is
supported by all Web Browser, Servers, and many Programming Languages.

Today Web Services have been very popular. A Web service is a method of communication
between two devices over the World Wide Web and makes it easy to share data over a network or
the internet.

A Web Service is:

e A Web API

e A Standard defined by W3C

e Cross-platform and Platform-independent Communication
e Distributed Application Development

Web Services can be implemented and used in most Programming Languages (C#/ASP.NET, PHP,
LabVIEW, Objective-C, Java, etc.)

Web Services uses standard Web technology (Web protocols) such as HTTP, REST, SOAP, XML,
WSDL, JSON, etc.

Internet

Web Service <
(HTTP

Figure 19-6: Web Services
Web Services technology used in Web Services:
e HTTP - Hypertext Transfer Protocol
e XML — Extensible Markup Language
e WSDL - Web Services Description Language
e SOAP - Simple Object Access Protocol
e REST - Representational State Transfer

(We will not go into details)

Part 3: Platforms & Architecture

212

19 Software Architecture

A Web Service is typically deployed on a web server, similar as ordinary web pages, see Figure

19-7.

Client Client

Data

Data Data

Internet

Web Services: &L —

* A Standard way to get data i 3 Data
over a network/Internet

* Using standard Web I

protocols Web Service £ l_§af_a ;
—_—
Web Server Database

Server

Figure 19-7: Web Service Infrastructure
We have 2 different types of Web Services:
* Web Services 1.0: SOAP Web Services
“Complex”
* Web Services 2.0: REST Web Services
* Lightweight and Flexible
* Anew and simpler version of WS
* All major WS on the Internet today use REST

In Figure 19-8 we summarize Web Services 1.0 vs. 2.0.

Client

Network/ " Web Services

Normally you dont have
direct access to a

Database over a
network, and espesially

not over Internet

Part 3: Platforms & Architecture

213 19 Software Architecture

* “SOAP Web Services”
Using the SOAP protocol (Simple Object Access
Protocol)

* XML (Extensible Markup Language)

Web Services 1.0

» “RESTful Web Services”

* Using the REST protocol (Representational
State Transfer)

* Uses standard HTTP methods (GET, PUT, POST,
DELETE) (HTTP: Hypertext Transfer Protocol)

*» Uses JSON (JavaScript Object Notation) or XML

Web Services 2.0

Figure 19-8: Different kind of Web Services

This document only describes the basic principles of Web Services. For practical code examples,
see the Tutorial “Introduction to Web Services” [23] and other relevant resources.

19.3.1 SOAP Web Services

In Figure 19-9 we see the different “layers” a “SOAP Web Service” consists of.

WSDL (API Description)

SOAP (Messaging)

XML (Data)

HTTP (Transport)

Figure 19-9: SOAP Web Services Architecture
XML:
XML stands for eXtensible Markup Language. XML is designed to transport and store data.

Below we see an XML document example.

Part 3: Platforms & Architecture

214 19 Software Architecture

<?xml version="1.0"?>
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>
<body>Don't forget me this weekend!</body>
</note>

19.3.2 REST Web Services

In Figure 19-10 we see the different “layers” a “REST Web Service” consists of.

REST (Messaging)

JSON/XML (Data)

HTTP (Transport)

Figure 19-10: REST Web Services Architecture

19.3.3 Creating Web Services with Visual Studio

Visual Studio has powerful features for creating Web Services and Web APIs (Figure 19-11).

Part 3: Platforms & Architecture

215 19 Software Architecture

' S .
GetData() SaveData

API

(Methods used by your Applications)

[Web Service l

7 SOAP WS REST WS
| ASP.NET |

(ADO.NET |

\» Stored Procedures \
\k sQL
\ SQL Server \

Figure 19-11: Creating Web Services using Visual Studio and ASP.NET

19.4 3-tier Architecture

In general, we have so-called n-tier architecture, but the most common version is a 3-tier
architecture.

3-tier architecture is a client-server architecture in which the functional process logic, data access,
computer data storage and user interface are developed and maintained as independent modules
on separate platforms. Three-tier architecture is a software design pattern and a well-established
software architecture. Its three tiers are the presentation tier, application tier and data tier.

The 3 tiers or layers are as follows:

* Presentation Layer
* Business/Application Layer
* Data Access Layer

These layers may be on the same computer, but normally they are distributed on different
computers.

Part 3: Platforms & Architecture

216 19 Software Architecture

3 Layer Network/Software Architecture

A Presentation Layer \
= ' V/‘,‘_’/ﬂi ' . O S
Windows 8 P, , I 2@ Windows 8
Web Mobile

Desktop

e

vq Visual Studio
B2 LabVEW

App API API App API App
HTTP
Client side Yy ELIP / /
Server side a Clients are not allowed to directly communicate with the Database Server!
o k/ | Data Access Layer |
2 | | ASP.NET/PHP. Dy ==
AEpnet L eSS L0E : e .
. _ lISIApache f J i Styred Pieduresi §Qi.Server
21 2 | o X
— > e W N
3 | Business Logic Layer | > > Database MysaL®
= il Web Server / Server 5
== ’ 2 he - MO L

Figure 19-12: Software Architecture
A short description of the different layers:

Presentation Tier:

This is the topmost level of application. The presentation tier displays information related to such
services as browsing merchandise, purchasing, and shopping cart contents. It communicates with
other tiers by which it puts out the results to the browser/client tier and all other tiers in the

network.

In simple terms, it is a layer which users can directly access such as a web page, or an operating

systems GUI

Application tier:

(Other term used: Business logic, logic tier, data access tier, or middle tier) The application tier is
pulled out from the presentation tier and, as its own layer. It controls an application’s functionality

by performing detailed processing.

Data tier:

This tier consists of database servers. Here information is stored and retrieved. This tier keeps data
neutral and independent from application servers or business logic. Giving data its own tier also

improves scalability and performance.

Figure 19-13 shows a sketch of the typical logical layers or tiers in a 3-tier/layer architecture.

Part 3: Platforms & Architecture

217 19 Software Architecture

Presentation Tier ‘ PL
Business Logic Tier BL
I - Logic Tier
‘ Data Access Tier ‘ DAL
Data Data Tier - DL
Source

Figure 19-13: 3-tier Architecture

Figure 19-14 gives an overview of the 3-tier architecture and gives a short description of the
different layers.

In web development, 3-tier is often common, including the following

e A Web Server
e An Application Server
e A Database

Web Services could be used for communication between the different layers.

Part 3: Platforms & Architecture

218 19 Software Architecture

Presentation tier -ceTsaes |

The top-most level of the application To
is the user interface. The main function
of the interface is to translate tasks

and results to something the user can |

understand. - — [—
A
Logic tier
This layer coordinates the
application, processes commands,
makes logical decisions and , GETLISTOFALL * ° ADD ALL SALES
evaluations, and performs SALES MADE TOGETHER
calculations. It also moves and . ERAT YRR 4 A
processes data between the two
surrounding layers.
SALE 1
QUERY SALE 2
. SALE 3
Data tier SALE 4
Here information is stored and retrieved
from a database or file system. The
information is then passed back to the
logic tier for processing, and then -
eventually back to the user. f
—
—_——
Storage

Database

Figure 19-14: 3-tier Overview

In Figure 19-15 we see an example of 3-layer architecture software.

Part 3: Platforms & Architecture

219 19 Software Architecture

- Android (Eclipse, Java)
- Windows 8 (Visual Studio/C#)

Presentation Laye

_(Clients () ‘
' oq VisualStudio 158 LabVIEW £ == ASPnet
: Web Browser ;
- Visual Studio/C# - ASP.NET 3

- WinForm/WPF - PHP) 5

|- LabVIEw . . -lavaScript, HTML Client#3 g windowe s

Client #2 - i0S (Xcode, Objective-C) :

Web Services

Process
frossescryerasy . 1/0 Module AT ‘ -
: USB-6008 , 3 4 Internet
Examples: F = : g Server-side Logic Information
— Services (IIS)
Siayer - or Apache
Architechture P SIS vt
. Business Layer (Logic) |
. Data Layer{Logi
P
\P SQL Server (or MySQL,
Weather SGL Server sQlite, Oracle)
Station == Windows Server 2012
Server

Figure 19-15: Example of 3-layer Architecture Software

Part 3: Platforms & Architecture

Part 4 : Management
and Development Tools

In this part, we give an overview of tools used (and needed) in modern software engineering, like
collaboration tools, source code control tools, programming platforms, frameworks, languages,
etc.

220

20 Integrated Development
Environment (IDE)

What is an IDE? What is the difference between an IDE and a Programming Language?
Popular IDEs:

e Visual Studio
e Visual Studio Code

e Xcode

e Eclipse

e Android Studio
e Spyder

e etc.

Some of these will be discussed below.

20.1 Visual Studio

Microsoft Visual Studio (see Figure 20-1) is an integrated development environment (IDE) from
Microsoft.

221

222 20 Integrated Development Environment (IDE)

> Test (msve-11.0) - Microsoft Visual Studio Quick Launch (Ctrl+Q) P = O X
FILE EDIT VIEW PROJECT BUILD DEBUG TEAM SQL TOOLS TEST ANALYZE WINDOW HELP
o - IR~ I - - P Local Windows Debugger ~ Win32 - Debug ~ A _ LI B Bt

3 TaskList v B X Testcpp* £ X ~ Solution Explorer >R x

7 .

= - -

=] Comments " (Global Scope) - - @ o-eadi@m ©

oG, i a =//:
| | Descript. Hie Lins // Name 5 TeSe.an + Search Solution Explorer (Ctri+a) P~

// Buthor - & Solution Test (msvc-11.0)' (1 project)
// Version s 4 [% Test (msvc-11.0)
// Copyright : Your copyright notice b & Bxternal Dependencies
// Description :

= Include
™ Resources
4 4l Source

117

=#include <iostream>

#include <thread> 4 *+ Testcpp
| ® main)
using namespace std; @ worker()

Flvoid worker() {
cout << "Hello from worker" << endl;

}

Slint main() {
thread t(worker);

t.join();
return 8;
¥
Output v B X
Show output from: Build ~ E |
A — Build started: Project: Test (msvc-11.8), Configuration: Debug Win32

1> Test.cpp

1> stdafx.cpp

1> Generating Code...

1> Test.vexproj -> E:\Temp\Test\Debug\Test (msvc-11.8).exe

========== Build: 1 succeeded, @ failed, ® up-to-date, ® skipped ==========

Output Error List Find Results 1

Figure 20-1: Visual Studio

It can be used to develop console and graphical user interface applications along with Windows
Forms applications, web sites, web applications, and web services in both native code together
with managed code for all platforms supported by Microsoft Windows, Windows Phone, Windows
CE, .NET Framework, .NET Compact Framework and Microsoft Silverlight.

A simplified version of Visual Studio has also been released on MacOS.
Visual Studio Code is also an alternative.

For more information about Visual Studio and C#, see [18].

20.2 Visual Studio for Mac

A simplified version of Visual Studio has also been released on MacOS. Many of the features from
the Windows edition are not supported, while ASP.NET core is fully supported, which is a new
cross-platform version of the ASP.NET framework.

For more information:

https://www.visualstudio.com/vs/visual-studio-mac/

20.3 Visual Studio Code

Part 3: Platforms & Architecture

https://www.visualstudio.com/vs/visual-studio-mac/

223 20 Integrated Development Environment (IDE)

An open source and cross platform (Windows, MacOS and Linux) and simple and very downscaled
version of Visual Studio. It is very easy to use, it has IntelliSense, etc. Everything is done in code;
you cannot create your user interface graphically like you can do in Visual Studio. In Visual Studio
Code is the code in focus.

For more information:

https://code.visualstudio.com/

20.4 Xcode

Xcode (see Figure 20-2) is the IDE created by Apple for developing software for Mac OS X and the
iOS platform (iPhone, iPad).

The programming languages used within the Xcode environment is Swift.

Swift is a new a general-purpose, high-level, object-oriented programming language that is based
on the C programming language and Objective-C, etc.

It is the main programming language used by Apple for the OS X and iOS and their respective APlIs,
Cocoa and Cocoa Touch. Apple released a new programming language, called Swift. Swift has now
replaced Objective-C as the official language for iOS and Mac programming.

B on B bl et rtd_ D0 weodr WigwCos Lol irsib

» Eealicatinid 0 | 0% Device - | ok Swccreded | 20121000 a1 1401 1
T Wit PP F== "
4 b | [Bytbotiar a1 ‘iewCoaimder b [Erglahi | Wem | 3] 4 b [l [hiVesomesteh - (] Sinisrs ViovCantier (4 300 8 B

[CEAE S
i e i miE

Lasts|

Lol Lakral - A venanl s smoone o shasc et

Press Ma

$ s

= | ana dscrere betinn

o | Tant Flekd - Duacys sdsabie sost and doadc 30 acien suciage1a 3 seger
sbicrwher Levam b wipsed

e Sl - Cisglirs 3 ot Grge o ot and b e ki of &
i

@ s e

e P

Acthuiey il catnr View - Pravica fechact oo i grage of sk or
precm al inkeewn funsan.

shrwrg i beaiean wie of @ ke diows
T vaka,

—-— Provwg ress Ve - Depsos INe Doogeess OF & TS owir e
e P p————
SDPNTS Semneid faegII0n Thitwgh the sges

— | Stmgpe - P e reariacs foe ey o dewrain Ao

Tabie View - Ditatays ciria 17 1 it af plain, asctiss, or graaped owe.

Figure 20-2: Xcode

Part 3: Platforms & Architecture

https://code.visualstudio.com/

224 20 Integrated Development Environment (IDE)

20.5 Eclipse

Eclipse (see Figure 20-3) is a multi-language Integrated Development Environment (IDE). It is
written mostly in Java. It can be used to develop applications in Java, C, C++, JavaScript, Perl, PHP,
Python, Ruby, etc.

: s/ — [—— = culiE)
Eile Edit fun Source Mevigate Search Project Refactor Window Help
i~ O SBHE $-0-Q- SH G- idE AP Fwh S = Ee]
I Package B 5] = 11 Soakegoe 72 L) (LT)
Bl @ = Andread Open rojeat] -
T i o SRS

= Android 20 package com.exsmple_androld.snaker
n H L{Er

a

I 5o .

s #import sndsoid.app.Bstivity;

£ comexsmple android snake
|4] Snakejavs ==
4] Snakebiew jave >
|41 Ti=Vigvaava

b All ¢ Acthar..
% Uncategorized

(]
&

E# gen [Genemtad laua Fez] n

£ nssets LS

B res

= tests -
i1 Androidianifestami 1= Dutline 53

o default. properties

B comewmple zndroid.ar

private SnakeView m3nakeView: ‘= impart declsrations
@ Snoke

Private statie String ICICLE KEY = "smake-view™: n rnSnakeisw: Snalk

o " ICICLE KEY: 5
& . onCreate[Bundle) : |

o Cy ia firat oreated. Turng off che Title bar, B9eta UD & a OnPause() | v
views, and fires up che SnakeView. & . onsavelnstancestal)
1

s !
I { Problems 50 @ Javadoc | |12 Declaration| B Consale| # = =0
tems - —. . = |
Descrption Resaunce Path Location Type
mi Project "Snake’ is missing required source folder 'gen’ Andraid SOK Conkent Loader

Figure 20-3: Eclipse

Eclipse is typically also used for Android programming. Then you will need the Android SDK plug-
in. Eclipse is available on Windows, macOS and Linux.

20.6 Android Studio

Google has released a new IDE for Android development called Android Studio (see Figure 20-4). It
was created to make it easier to develop Android Apps.

Android Studio is available on Windows, macOS and Linux.

Part 3: Platforms & Architecture

225 20 Integrated Development Environment (IDE)

‘@00 Android Studio

o
l|_.$._|l Welcome to Android Studio

Recent Projects Quick Start

—
=hie New Project...

|

= Import Project...
- & P I}
Mo Project Open Yet
s"'?-:- Open Project
Check out from Version Control

& Configure
IF‘? Docs and How-Tas

Android Studio 0.3.2 Build 132.893413. Check for updates now.

Figure 20-4: Android Studio

Part 3: Platforms & Architecture

21 UML Software

There exist hundreds of different software for creating UML diagrams, here we mention just a few:

e Enterprise Architect

e StarUML

e Rational Rose

e Diagram tools like Lucidchart, Miro, Draw.io, etc.
e etc.

21.1 StarUML

StarUML is cross-platform, which makes it possible to use it on Windows, Linux and macOS. You
can evaluate for free without time limit.

Figure 21-1 show the StarUML software.

class Library Domain Model

Book 2l
+ISBN: String[0..1] {id} - Author

+title: String | | tname: String
+summary | *= | +biography: String
| +publisher $
+publication date
+number of pages
+language

«enumeratio
«use»

Active
Frozen
Closed

«entity»
Book Item

+barcode: String[0..1] {id} +history: History[0..*]
+tag: RFID[0..1] {id} +reserved +opened: Date i
+isReferenceOnly 0.3 +state: AccountState | +account

0.12 +number {id}

+accounts

Composite Structure Abstract Factory Desigrfill Library Domain Model Jll StandardProfileL.2 Robustness Stereotypdill StandardProfilel3

Figure 21-1: StarUML

Web Site: http://staruml.io

Download: http://staruml.io/download

226

http://staruml.io/
http://staruml.io/download

22 Source Code Control (SCC)

22.1 Introduction

What is Source Code Control (SCC) or a version control system? A version control system keeps
track of all work and all changes in a set of files. It Allows several developers (potentially widely
separated in space and time) to collaborate.

In this chapter, we will give a short overview of some of the most popular source code control
(SCC) systems on the market today.

ﬁ Azure DevOps with Git and Visual Studio: https://youtu.be/tIFazeYml U

Here is a list with some of the most popular SCC systems on the market today:

* Azure DevOps

e CVS
* SVN (Subversion)
* Git

* Mercurial

* Bazaar

* LibreSource
* Monotone
* BitKeeper

The focus will be on Azure DevOps from Microsoft because this software is tightly connected to
Visual Studio. In addition, it has lots of other features in addition to SCC.

Typical SCC Features:

e Checkout, Check-in/Commit

e Branching, Merging

e File Locking (avoid concurrent access)
e Llabel/Tag

e Change/Change List

e Conflict

e Revision, Iteration

We have two main kinds of SCC systems:

227

https://youtu.be/tlFazeYml_U

228 22 Source Code Control (SCC)

e Centralized/client—server architecture
e Distributed Version Control System (DVCS)

In Figure 22-1 we see an overview of which architecture the different SCC systems are using.

| scc

-M_*_‘,/_"‘"-‘;_‘_“:V
‘_p“"(’ /,—J -’KMH"" - —
-é,/_/ - —
Centralized | S
TES o
Mercurial
CVS
Bazaar . _
i - Monotone
LibreSource BitKeeper

Figure 22-1: SCC Architecture

Centralized/Client—Server architecture:

A server stores the current version(s) of a project and its history, and clients connect to the server
to “check out” a complete copy of the project, work on this copy and then later “check in” their
changes.

Distributed Version Control System (DVCS):

With a distributed version control system, there isn’t one centralized code base to pull the code
from. Different branches hold different parts of the code. Git is a DVCS. Other version control
systems, such as SVN and CVS, use centralized version control, meaning that only one master copy
of the software is used. DVCS systems use a peer-to-peer approach.

In some cases, the SCC system is integrated in a so-called Application Lifecycle Management
system.

Application Lifecycle Management (ALM) systems are systems that take care of all aspects in
software development from planning, requirements, coding, testing, deployment, and
maintenance.

Part 3: Platforms & Architecture

229 22 Source Code Control (SCC)

ALM is short for Application Lifecycle Management. An ALM tool typically facilitate and integrate
things like:

e Requirements Management
e Architecture

e Coding

e Testing

e Bug Tracking

e Release Management

e etc.

22.2 Azure DevOps

Azure DevOps an Application Lifecycle Management (ALM) system, i.e., the system takes care of
all aspects in software development from planning, requirements, coding, testing, deployment
and maintenance.

Azure DevOps is a product designed specifically for software engineering teams with developers,
testers, architects, project managers, etc.

Azure DevOps is a Source Code Control (SCC), Bug Tracking, Project Management, and Team
Collaboration platform. Azure DevOps is tightly integrated with Visual Studio as Microsoft is the
vendor of both Visual Studio and Azure DevOps. For more information, see [24].

Azure was previously called Team Foundation Server (TFS), then it was renamed to Visual Studio
Team Services (VSTS). Now it has again changed name to Azure DevOps.

Here are some main features:

e SDLC Management (SDLC — Software Development Life Cycle)

e Software Team Collaboration

e Source Code Management

e Supports Agile, Scrum, CMMI

e Integrated Test Tools

e Automated Builds

e Built in Team Foundation Version Control (TSVC) + Support for Git repositories
e Built-in support for Azure DevOps in Visual Studio (Team Explorer)
e Plug-in for Eclipse (Team Explorer Everywhere)

e MSSCCI Provider for other IDEs like LabVIEW

e etc.

We will go through Azure DevOps in more detail in a later chapter.

Part 3: Platforms & Architecture

230 22 Source Code Control (SCC)

22.3 SVN

SVN or Subversion uses an Open-Source License. SVN was established in 2000. Subversion is
probably the version control system with the widest adoption today. Many different Subversion
clients are available (Tortoise SVN, Mac: Versions, Xcode (built-in support for SVN)).

SVN uses a Centralized/Client—Server architecture.

22.4 CVS

CVS, or Concurrent Versions System, was established between 1986-1990. It is free of charge. CVS
uses a client—server architecture. It is widely supported in different IDEs (Eclipse, Xcode, etc.).

22.5 Git

Git has become very popular today. Git is a Distributed Version Control System (DVCS). It was
initially designed and developed by Linus Torvalds (Linux Guru) in 2005. Git is free of use.

22.6 Others

Above we have discussed the most popular SCC systems today. Here are some other systems as
well:

* Mercurial

* Bazaar

* LibreSource
* Monotone
* BitKeeper

Look them up if you are interested!

22.7 Cloud-based SCC Hosting Services

For those who don’t want to install their own SCC repository in their own network, can use the
services in the cloud, either for free or for monthly payments.

Below we list some popular SCC hosting services:

e Azure DevOps Services (formerly known as Visual Studio Team Services)

Part 3: Platforms & Architecture

231 22 Source Code Control (SCC)

e GitHub
e Bitbucket

22.7.1 Azure DevOps Services

Azure DevOps Services is an online SCC hosting service based on the Azure DevOps Server.
You can setup a Git repository.

You can use this solution for free for up to 5 users, then you need to pay a monthly fee for
additional users.

Web site: www.visualstudio.com

22.7.2 GitHub

GitHub uses (as the name says) a Git repository.

Web site: www.github.com

GitHub is now part of Microsoft.

22.7.3 Bitbucket

With Bitbucket you can either use a Mercurial or a Git repository. It is free for 5 users.

Web Site: www.bitbucket.org

Part 3: Platforms & Architecture

http://www.visualstudio.com/
http://www.github.com/
http://www.bitbucket.org/

23 Bug Tracking Systems

A software bug is an error, flaw, failure, or fault in a computer program or system that produces
an incorrect or unexpected result, or causes it to behave in unintended ways

They found a bug (a moth) inside a computer in 1947 that made the program not behave as
expected. This was the “first” real bug.

A “bug tracking system” or “defect tracking system” is a software application that is designed to
help keep track of reported software bugs in software development efforts.

ﬁ Bug Reporting and Tracking with Azure DevOps: https://youtu.be/0tIWdgWdFeQ

Having a bug tracking system is extremely valuable in software development, and they are used
extensively by companies developing software products.

i i
A A
e

BUG FEATURE

Here are some popular Bug Tracking Systems in use today:

e Azure DevOps
e lJira

e Bugrzilla

e C(ClearQuest

We will focus on Azure DevOps in this document. The bug tracking features in Azure DevOps will
be discussed in another chapter

232

https://youtu.be/0tlWdqWdFeQ

24 Azure DevOps

Azure DevOps is an Application Lifecycle Management (ALM) system, i.e., the system takes care of
all aspects in software development from planning, requirements, coding, testing, deployment,
and maintenance.

Azure DevOps is a product designed specifically for software engineering teams with developers,
testers, architects, project managers, etc.

It is free for up to 5 users and it is a good choice for small teams. It is also handy for personal use
or students.

Getting started with Azure DevOps:

e Goto https://dev.azure.com

e Create an Account (You need a Windows Live ID) and specify an URL for your account
e (Create a New Team Project
e You are ready to start
o Connect to Azure DevOps from Visual Studio
o Oruse the Web based interface provided (except for SCC)
e Assign Team members
e Add Areas, lterations, etc.
Add your Source Code
Check-in/Check-out your code

Azure DevOps with Scrum: https://youtu.be/-OmfMhtrxp0

Azure DevOps with Git and Visual Studio: https://youtu.be/tIFazeYml U

Bug Reporting and Tracking with Azure DevOps: https://youtu.be/0tlWdgWdFeQ

Azure DevOps (see Figure 24-1) is a Source Code Control (SCC), Bug Tracking, Project
Management, and Team Collaboration platform. Azure DevOps is tightly integrated with Visual
Studio as Microsoft is the vendor of both Visual Studio and Azure DevOps. For more information,
see [24].

233

https://dev.azure.com/
https://youtu.be/-QmfMhtrxp0
https://youtu.be/tlFazeYml_U
https://youtu.be/0tlWdqWdFeQ

234 24 Azure DevOps

l':] Azure DevOps BaftWare-us MySoftware Boang: Backiog Search 2 = th c
| MySoftware ; MVSOfTWﬂ re Tearm - ;,'Sl
ﬂ Qverview + Mew Work ltem @) Viewasboard /* Colemn options - = Backlog items =T
i Hiork Itn =t r Stal Efte alu
Y soards
1 Proguct Backiog em ~ B The eystam shoule store the data in 3 Datsabse Blew Biusinass WiySatiware Spring 1
Wark
D Itams Task Create SOL Server ® Dane WiySaftware! Sprint 1
™ Boards Tesk Create Tables ® In Progress WiySaoftwane! Sprint 1
B gack 2 Product Backlog Rem ~ B A Wab Application shoud be created ey Business
Task nstall Visual Studia Ta Do WySattware|5print 1
in
Q sprims Task Leamn ASP.NET ® [Progress WiySattware| Sprng 1
= Queries t 3 Product Backiog mem —- ~ Bl The Sy o bE procery documented B Business MySattwane) Sprint 1
. Tesk Create Usar Manual Te Do WivSartware Sprnt &
Repos
f Plpelines
A Test Plans
& anitsers

Project settings
Figure 24-1: Azure DevOps
Here are some main features:

e SDLC Management (SDLC — Software Development Life Cycle)
e Software Team Collaboration

e Source Code Management

e Supports Agile and Scrum

e Integrated Test Tools

e Automated Builds

e Support for Git repositories

e Built-in support for Azure DevOps in Visual Studio

e etc.

Azure DevOps has plenty of competitors. The main benefit of Azure DevOps is that all the systems
mentioned above is integrated in one package, normally you would need lots of different software
for this.

24.1 Source Code Control (SCC)

With Azure DevOps you may use Git as source code repositories, see Figure 24-2.

Git is a Distributed Version Control System (DVCS) that uses a local repository to track and version
files. Changes are shared with other developers by pushing and pulling changes through a remote,
shared repository.

Part 3: Platforms & Architecture

235 24 Azure DevOps

I':l Azure DevOps sottware-usn MySotiware A Ep0s Files 87 SNy Softeane Search o = ﬂ e
|
1 mysotiware T $/MySoftware / Code
[‘
Overview & $/MySoltware Contents Histary b Mew T Upload filefz) & Download as Zip &
B Boards BuikiProcessTemplates P Wackehkis Charigasets
« [Code ;
ﬁ Repas Database 2018-01-09 A4 Added foider Da...
| Databasa
Desktop 2019-01-09 92 Renamed Deskt..
[Files Desktop
) : Examples Z018-01-08 93 Added folder Ex..
Changesets Examples;
| a =]

Web Web 2019-01-08 41 Renamed Web A

2, Shelvesets
Documents

q Hpeiines Process Documentation
A T Preduct Documentation
E Artifacts
£ Project settings &

Figure 24-2: Start by creating a proper folder structure within your new Azure DevOps project

24.2 Areas and lterations

Figure 24-3 shows an example of different Areas in Azure DevOps. The different software modules
could be divided into different Areas.

) Azure DevOps saftware-uss heySativeare Sattings gearch A = i i
1 Mysoftware + Project Settings ~ Project configuration
e Genaral Boards @ Thi project is cumrently using tha Serum procoss. Ta custamize your week iem typas, oo e tha srocess custceiztion pags

B overdew

Qvardaw eratioes Areas
E Boards

Tearms Creane and mansoe The arkas for this project, Tese aréas will be used by teams [0 determing What shows up on the team's backiog and what

work iiams the team is responsible for. Loarm more about custarmzing areas and Aerstons =
m Aepos Security
To salect areas for the team, go to the defaull team’s settings.

Ot AT
" Plpeines e

Sernjice hooks = Pzw chikd B B
A Test Plans

Dashboards

A Feamy
l Artifacts « MySoltwara st WySaftwara Taam
~ Boards « Dataliacg
Project configuration ~ Diatabasze Scripts
Team canfiguration Stored Proceduras
; ’ Tables
GitHub conneetions b
« Deskiop

Deskiopappt

L2

Pipelines
» Doguremation
Service connections
Installation Guide

Agert poods

Jger hanual
Retention ard parallel jobs « Wah
Resease retention Webdpa

i Project settings

Figure 24-3: Azure DevOps Areas

Figure 24-4 shows an example of different Iterations in Azure DevOps. We can create Iterations for
the different releases/milestones, such as Alpha, Betal, 2, 3, RC, RTM.

Part 3: Platforms & Architecture

236 24 Azure DevOps

f:J Azure DevOps saltware -ysr heySaliware So1lings Search 2 = il ‘
1 mysoftware = Project Settings ~ Project configuration
Cirie o Genaral Boards @ This project is currantly using tha Scrum process. To custamize pour work iem types, oo o tha orocess Customizstion pags
Qvardaw iterations Area:
% Boards
Teams Create and manaae The Rerat for this peaject, These iterations will be used by Teams for iNeraion pranfing (Spent planningl, Leamn marg
abaut customizing aress and ferations
a Repos Security
To salact ftarations for the tearm, ga to the cefaut team's sattings.
f Ahelines NotTCatons
Sernjice hooks Mew Rew chikd B B
A Test Plans
i
enooar terations Etarl Dite £ Date
! Artitacts « MySofeware
~ Boards i
alpha
Project configuration - Beta
Team canfiguration Batal
: ; Bata?
GitHub sonneetions a
« RC
- Pipelines el
RC2
Service conneclions
RTi4

Agert poods
Retzntion ard paraliel jobs

Retease retention

i Project settings

Figure 24-4: Azure DevOps Iterations

24.3 Work Items

Work Items (Figure 24-5) are an important part of Azure DevOps. You may use Work Items to

register your requirements, user stories, bugs, tasks, etc.

I:] Azure Devips software-usn MySoftwane Boards Wisrk [1arms Search el = i ‘
[0 mysoftware T Wark ltems

ﬂ Oy Recently updated + New Work fem = Openin Queries £ Column Options B Recycle Bin o
q Beards S Filler by ke 1 Types Assigned o W States ~ Area o ams P

| D Werkitems 1} Title Assigned To Sate Arad Path
Board

s = © w4 Lentn ASFLNET “ @ Unassigned o inProgress WySoftware

= Backlogs 0 Create Tables @ Unassigned ® In Progress WySoltwarne

£l Sprints We - Create User Manual @ Unassigned * To Do MySoftware

p sl 0z B A web Application shold be created 3 Unassignea ® Haw WySatrNaTe

Repos 1085 B The System should be properly decumented) unassignad MNew MySoltware

f Pipainas ma Install Visual Studio @ Unassigned To Do MySoltwarne

A TaE Pt] B The system should store the data in a Dataabse @ Unassigned ' New My Softwane

B riscts
£ Project settings 4
Figure 24-5: Work Items in Azure DevOps

In Azure DevOps you can create different Work Items, such as:

° Task

Part 3: Platforms & Architecture

237 24 Azure DevOps

° Bug

e Feature

e Scenario

° Issue

e User Story
e Test Case
e etc.

These Work Items will be used at different level in your development cycle. When the Testers
reports bugs, they will, e.g., use the “Bug” Work Item, etc.

In Figure 24-6 we see how we can enter new Work Items using the Work Item Editor.

¥S ofTware Beards Wark ltems search el = O ‘

) Azure Devops

& NEW BUG *
| MySoftware
System not Working
& overview @ unas 5 Qeomments Aad i [s |
E Boards Syale Mew Wiy Software
eazon New delect reported leratian MySoftware
1 workitems
Details i i
2 Boards
Repro Steps Details Development
= Backlogs
Ciick to add Repro Steps + M Bk
& Sprints z [avelopment hasn't started on this
Sevary itam.
= Queries System Info 3 - Madium Related Work
Effort
Repos Ciick o add System info + fid Bk v
PRI A LT Thera ara na lnks in this group.
f Pipefines Acceptance Criteria
ity
é Test Flans Click to add Accepfance Critend
r' Build
| ArfRcts Discussion
Bulld
c # A tem, [o ink a pull request

@ Project settings

Figure 24-6: Work Item — New Bug

24.3.1 Queries

Queries are used to find existing Work Items. You may create different Queries to make it easy to
find the Work Items you need. Queries may be personal or visible for everybody in the project

You can use the Query Editor (Figure 24-7) to tailoring your own queries.

Part 3: Platforms & Architecture

238

24 Azure DevOps

All Queries > My Queries > B Active bugs

Results Editor | Charts [> Run query lew que Bl Save quer
Type of query I Flat list of work items
Filters for top level work items
And/Or Field Operator Value
+ X O Work ltem Type ' = ~ Bug
+ X [0 And ™ State Vo< “ Closed

+ Add new clause

Figure 24-7: Query Editor

24.4 Taskboard

Save as..

W
]
[15]

Query across projects [

In Agile development and Scrum the Taskboard feature (Figure 24-8) is very useful.

) Azure DevOps software-usn MySoftware Beards Sprints

Il mySoftware t
ﬂ Overview
% Boards

0, MySoftware Team - S

Taskboard Backlog Capacity

= Collapse al To Do

4
B 99 The systern showsd

T workitems stare the data in 5 Dataabse
B Boards @ Ursssigned
State o Naw
= Backlogs
&, Sprints
I “| & 102 A wab Agpiication 103 Instadl Visual Studin
- showkd be crastad
S Querles

@ Unassignad
Stal

TeDa

@...- esigned
ﬂ Renos Sls

o Pipelines
A Testpians .
l Artifacts

& NEwW

El 106 Tne System showin
be properly documsented

@ Unassighed

w New

State

& Project settings «

-+ Mew Work [tem -

in Progress

101 Create Tables

@ Unassigaed

itata ® i Progress

104 Leamn ASPNET

Gtata ® In Progress

Figure 24-8: Taskboard

24.5
DevOps

Azure DevOps has built-in Templates for Agile Development and Scrum.

e

i
=]

Search

o iteratinn dates

=]

& Alpha =
Dane

100 Craate SQL Server

@ Unasalgnizd
e

ATE » Dane

Agile (Scrum) Development in Azure

Part 3: Platforms & Architecture

239

24 Azure DevOps

ﬁAzure DevOps with Scrum: https://youtu.be/-QmfMhtrxp0

We have the Product Backlog, and the Sprint Backlog features (see Figure 24-9).

Few @ E | Cremcqury | Crmnopmes

Tyma Producs Backay hees

Thee

Crer Véork Tem Type tie

1 Product Backie. | § Backicg Trem 1
2 Product Baciio, I Bacticg Them 2

Forecast G Msoming On View

§id

We also have a digital Taskboard available, see Figure 24-10.

) nzure Devops

Il mysoftware

ﬂ Overview
E Boards

Bl Work items
F% Boards
_ = Backlogs
I 0, Sprints
= Queries
n Repos
o Pinetines
& Testpians
l Artifacts

@ Project settings

24.5.1

soTTwane-usn

MySoTrwang Boards Sprints

) MySoftware Team - i+

Taskboard Backlog Capacity

Collapse all To Do
-

B 99 The systemn shows
store the data In 8 Dataabse

@ Lnassigned
Staie o New

B 102 A Wab Application
showsd be craatad

@ Unassignad

Hiat Te D4

El 105 The System showld
be propery documented

@ Urassigned

SlEe o New

-+ NEw Work [tem -

103 Instsd Visual Studio

in Progress

101 Create Tables

@ rassigned

itata ® I Progross

104 Leam ASFNET

@ Unassignad

Stata ® In Progress

tarsbutter Habvorssn | @

Features

Figure 24-9: Product Backlog and Sprint Backlog in Azure DevOps

search 2 =

o iteralan dates

&, Alpha = F
Done

100 Create SOL Server

@ Uinasaigned

e = Done

Figure 24-10: Using a Taskboard in Azure DevOps

Product Backlog Items in Azure DevOps

Part 3: Platforms & Architecture

https://youtu.be/-QmfMhtrxp0

240 24 Azure DevOps

To create the Product Backlog, we can add them in Azure DevOps as so-called Work Items. If you
use the Agile/Scrum templates a predefined Work Item Type “Product Backlog Item” is used for
this purpose.

) Azure DovOps softwito-usn My Saftwirn Boards Backlogs Search yel = ‘
[mysoftware T = mySoftware Team - s
ﬂ Ovarview + Maw Work Item (3 View asboard #* Column aptions --- = Backlog items T
E Boards HEl Dider Wierk item Time Title Siate Effart Malie Ares Iaration Faih
1 Product Backlag mam « @ Tha systam shouwld store the dats in 3 Dataabse New Buginass My Saftware\Alpha
D Workitems Tagk Craate SGL Server ® Done My Baftware\Aloha
] Boards Task Create Tables # In Pragress My Saftwarehdipha
= Backiogs 4 Product Backlag mem « B A wWeb Application should be created New Businass My SattwarehAlpha
Task Install Visual Studic T O By St iwaredAlphe
S:L Sl Task Leasn ASPMNET ® |n Pragress My Saliwaretdlphia
i, Quserins = 2 Product Backlog tem. =+« B Tha System showld be preperly documanted » Mew Busmess Poly Saftwarehdlpha
Task Craate Lssr Wanus! To Do My Software
B Fapos

* Fipelines
B Testpians
B reumsers

& Project settings 4

Figure 24-11: Create the Product Backlog in Azure DevOps

You may also group the items in the Product Backlog into “Features”.

24.5.2 Sprint Backlog Items in Azure DevOps

To create the Sprint Backlog, you just drag them to the proper Iteration.

) Azure DovOps softwern-usn | MySoftware / Boards / Sprints Saareh P = o @
oftarare = hlo iteration
2w T O MySoftware Team ~ Ly
ﬂ Ovarview Taskboard Backiog Capaciy -+ New Work item & Alpha = WY&
E Boards % Coligpse all Te Do InProgress Dane
“| & 29 7he system shouis 109 Create Tahles 00 Create SOL Server
0 workiems atore the data in & Datasbse
W Bows @ vossines @ rsssisnea © s
ate ® In Progress Htake = Done
Slale New
E Backlags
(= ints a
i B 102 A wiok Application 403 insiall Visual Studea 104 Learn ASEMET

= Gueries gme reata (@) vrsssicnes [J—
umassignan 3

State s To Do i @ In Progress
ﬂ tapos Shate o Tz

o rinclines

A Test Plans “| B 108 e System snaua
be progesy documented

ﬂ Ariifacts g,,“. sionad
Stat Vo

& Project settings 4

Figure 24-12: Create the Sprint Backlog in Azure DevOps

Part 3: Platforms & Architecture

241

24 Azure DevOps

To make that happen, you need to configure the different sprints as “Iterations” in Azure DevOps
(Figure 24-13). You also need to right-click and select “Set as Teams Backlog iteration”.

) Azure Devops

1 Mysoftware

B overdew
B poarss
B reros
W Fipenes
& estens
o Artifacts

hesabmeare h 2 = a0 @
Project Settings -~ Project configuration
e Genaral Boards @ Thi project is cumrently using tha Serum procoss. Ta custamize your week iem typas, oo e tha srocess custceiztion pags
Overviaw freas
Tearms Creane and mansoe The arkas for this project, Tese aréas will be used by teams [0 determing What shows up on the team's backiog and what
work itams the team is responsibie for armizing areas and Aersbons =
Sesirity
To salect areas for the team, go to the defaull team’s settings.
Notifeations
Sernjice hooks Pzw chikd B B
Crashbeoards
= MySoftware ++ WySaftwara Taam
+ Baards « Datahasa

Project eonfiguration
Teamn canfiguration

GitHub connactions

~ Pipelines
Senyice conneclions
Agert poods
Retzntion ard paraliel jobs

Resease retention

i Project settings

= Databaze Scripts
Shored Progaduras
Tables
« Deskiop
Deskiopappt
» Doguremation
Installation Guide
uerManual
« \Wah

‘WebAnal

Figure 24-13: Configure Iterations and Sprints in Azure DevOps

Break Sprint Backlog Items down into Tasks:

Finally, you break the Sprint Backlog Items into Tasks. In the Sprint Backlog click the + sign to
add Tasks to the specific Backlog Item (see Figure 24-14).

Sprint 1

Backiog Board Capacty

& = Create Query

'[+] [} Helio World Web site
4 | Add an information form
+ ' Change initial view
of ' Welcome back

Column Options EA

New
1* Welcome Screen

! Copytemplate URL

| Welcome Screen

= ratl FabrikamFiberiRelease TSprint 1

STATUS
med T -
To Do -
1 -
DESCRIFTION

DETAILS
: awork [2]

oy Priont

Fabikamiibes

HISTORY LINES ATTACHMENTS

Figure 24-14: Break Sprint Backlog Items down into Tasks

Part 3: Platforms & Architecture

242

24 Azure DevOps

Then give the Task a name and estimate the work it will take (Remaining Work).

The results may look something like this (Figure 24-15):

HOME CODE WORK BUILD TEST
Backlog item Work items
I
£
Features .
Sprint 1
Product Backlog
4 Current Backlog Board Capacity
Sprint 1
& = Create Query Column Options
Future
Sprint 2 Title
Sprint 3 * o 4] Hello World Web Site
print 4 Welcome Screen
Sprint 5 Change background color
print & About Screen

+ 4 I Slow response on welcome page
Rework opening animation

+ 4 I Change initial view

g . I Add an information form

i

Auto-complete user’s name in form if logged in

Auto-save
+ 4 I'ﬂelcnme back

Figure 24-15: The Sprint Backlog divided into a hierarchical structure with Features, Backlog

24.5.3

Items and Tasks

Taskboard

Based on the Sprint Backlog Items and the Tasks created for each Sprint Backlog Items we can
start using the Taskboard features inside Azure DevOps.

The Taskboard is the heart of Daily Scrum Meetings. We can easily move tasks (drag and drop with
the mouse) on the task board to reflect their current state.

Part 3: Platforms & Architecture

243 24 Azure DevOps

| April 29 - May 17§
SF}FIFII' 1 11 work days remaining
Backlog Board Capacity Group by Backlog items Person...
ToO DO 10 h IM PROGRESS 5 h
4 Add an information Auto-save Auto-complete
form + users name in form
7h if logged in
4 3 Jamal Hartn...
4 Welcome Back + Add interactive text
2 h to Welcome Back
page ==
2 Raisa Pokrovs...
4 Hello World Web Site Welcome Screen Change Background About Screen
Color
6 h +
2 Johnnie McL.... 2 Christie Chu... 2 Micole Zam...

Figure 24-16: Updating the Sprint Taskboard in Azure DevOps

We can also easily Assign/reassign people to the different tasks in addition to updating the
“Remaining Work” field before the Daily Scrum Meeting, see Figure 24-17.

a

April 29- May 17 A& . April 29 - May 17 |
Sorint 1 1 wirk tay remaiting Sprint 1 11 work days remaining
Backlog Board Capacity Group by Badklog items Ferson.. Backlog Board Capacity Group by Backlog items Person...
IO G0 10 b |N PROGHESS 5 h TODO 10 h IN PROGRESS 5 h
4 Add an information Auko- save Aubo-compiets 4 Add an information Auto-save Auto-complete
farm o u==r's name in form form + user's name in form
Th il logged m 7h if logged in
Unassignad 3 Jarnal Harir... :I istie Church... 3 Jamal Hartnett |..
Unassigned 3
= Sohnmie Mcleod |Fabrikam) 2
« Wglcome Back + Chrictie Church [Fatrikam) 4 Welcome Back + 1 wactive text
Zh Wicole Tamara Fabrikam] 2h 05 MmeBack
Raiza Pokrovskaye {Febrikam} 0.25 Kaya (Fabrik...
Francis Totten (Fabricam) 0
[Famal Hartrett (Fabeikarm)
4 Hello World Web Site ‘Weliome Soeen Change Backgraund ABout Sereen 4 Hello World Web Site Welcome Sereen Change Background About Screen
Color Color
6h + 6h +
2 lobmnie M. | 2 Christe Ch.., 2 Nicole Zamo,., 2 Johnnie Mcle... | 2 Christie Chur... 2 HNicole Zamo...

Figure 24-17: Using the Taskboard to update the Sprint Tasks before/under the Daily Scrum
Meeting

24.6 Software Testing in Azure DevOps

Azure DevOps is a great tool for testing, for planning tests and it has advanced features for bug
reporting and bug tracking (see Figure 24-18).

Part 3: Platforms & Architecture

244 24 Azure DevOps

Software Test Plan (STP)

s S
“Test Case” Work ltems .-ManualTesting by
' Developersand

P

_ . (' |Tester [Document
‘[PI‘anmng Tests }—>| Perform Tests , Test Results
I T Execution of Unit Tests Software Test
..... R Documentation
F— |“Product/Sprint Backlog” Work Items (STD)

“

Software Design Document (SDD) : - Functional & Non-Functional Requirements
: - User & System Requirements
I

Figure 24-18: Software Testing in Azure DevOps/Visual Studio Team Services

Part 3: Platforms & Architecture

25 Databases

Almost any kind of software program uses a database for back-end storage, e.g., Facebook, etc.
Popular Database Systems:

e Microsoft SQL Server

e Oracle

e MySQL

e SQLite

e MS Access
e MariaDB

e E[Etc.

The focus in this chapter will be Microsoft SQL Server. For more information about database
systems, please see [25].

25.1 SQL Server

SQL Server consists of a Database Engine and a Management Studio. The Database Engine has no
graphical interface - it is just a service running in the background of your computer (preferable on
the server). The Management Studio is graphical tool for configuring and viewing the information
in the database. It can be installed on the server or on the client (or both).

Introduction to SQL Server: https://youtu.be/SIRAKOhAG1U

SQL Server Express Installation: https://youtu.be/hhhggAlUYo8

SQL Server and Structured Query Language (SQL): https://youtu.be/sl6skicZse0

SQL Server with C# Windows Forms App: https://youtu.be/rXugzELsQl0

MERMKRKIMR

ASP.NET Core - Get Data from Database: https://voutu.be/pChkbx9BFVA

245

https://youtu.be/SlR4KOhAG1U
https://youtu.be/hhhggAlUYo8
https://youtu.be/sI6skicZse0
https://youtu.be/rXugzELsQl0
https://youtu.be/pChkbx9BFVA

246 25 Databases

Management Studio

d\

Pl Edé Vs Toch Window Commurky Halp
P T e e R S R Y

A Object Eupiorer Detalls | =X
G W8 T 0D O & T (F) | Soeh =
1= 8 POSIZEICIVILOPMITET (508 Sarver 10,00 5 Jtcmnujmum! SGL Server LLOISN - sa]|fat sbases)FEXT
F [0 Syshen Dobabsems aema Pabey Huakh Sata
|§ scana [inatabues Cingram
- i3 2 Tabiss
W DEEAR N Cuagranes =
= Ca Tables (L Spnirees
. 7 *® ._.jl?.\:w-ﬂ'dﬂw Py oy amonateity
A Service running on the i 3 e s =t
- e
computer in the background = F i
= L Programmabdy P .
B 0 Service Brober
& Ll Secunty | LA TEST
<€
Raady

A Graphical User Interface to the database used for
configuration and management of the database

Figure 25-1: SQL Server

In Figure 25-2 we see the SQL Server Management Studio.

s |65

Peme b o v 3] P BEIDIZ2 B

s SQLQuerylsql - P_SCHOOL (sa (520)° — - x |[Propeties =0 x|
fEleee N Trom SCHOOLI @ __‘ Current connection parameters -

8 | E

B Aggrogate Status

=
B (3 Systern Databases

Connection
15 _’ LIERARYSYSTEM { . spsed time 004
0 Your Database Write your Query here g s 0000

||'r

Dhagrams Harme

Rows re
2 [System Tables Shark-tima
W 2 dbo.CLASS State &
8 2 dba.COURSE El Connection
YOUF 3 dbo.GRADE =5 Caonnection n PCSEAFDEVELDE
7 71 dboSCHOOL | ! B Connection Detads
E [j 0 -
Tables destuoent e | ‘-' 2. -
® T dbaSTUDENT COURS ||| 51 Resuts | [1k i o
O dbo.TEACHER Schoolld SchoolName Desonpton Addness Phone FosiCode PostAddness
@ Gl dbsTEACHER-COURY (| y. - T T The best schodl Teemak NULL NULL HULL
W Views 2 2 MIT DK Schond UsA NULL NULL NULL y
f 3 Synamyms 3 a3 NTHU The second bedl sehoal Trendhaim NULL MUEL HULL Display name PCSEZS\DEVELOR
= : ::“n::";:;:'r"“ Tl & Universty of 0o Thedhrdbest school — Dsio NULL MULL NULL Login name . za
L L Sterage Servername PCBEZIS\DEVELOE
E
Servet vermor 10501500
= 0 Security @ The result from your Query b
@ [§ TEST Session Tracit
& |J WEATHERDATA J £l ez
L'i L-' ::Eu"téb.m .
o =i Tiie riarive of th chemectisn:
e] w j ¥ &3 Query mxecuted surcessfully. | PCB&BS\DE\"E'LCDMBITMS)_.| nlﬂ}l SCHOOL | (0:00:00 | 4 rows
Reaidy Lnl Col2l chit NS

Figure 25-2: SQL Server Management Studio

25.2 ER Diagram

247

25 Databases

ER Diagram (Entity-Relationship Diagram) is used for design and modeling of databases. It specifies
tables and relationship between them (Primary Keys and Foreign Keys), see Figure 25-3.

Column
Names

Table Name
o
Table Name === BOOK CHAPTER
PK | Bookid PK | Chapterld
e le—1" Lhapterid K
BookTitle /FK1 Bookld "
Summary ChapterNum%/
/ ChapterTitle
; Primary Key
Primary Key

/

Foreign Key

Figure 25-3: ER diagram with Primary Keys and Foreign Keys relationships

In Figure 25-4 we see a typical ER diagram.

Table Name :
Primary Key (PK)
SCHOOL CLASS COURSE GRADE
[X
PK | Schoolid PK Classl PK |Courseld PK Gradeld
o
SchoolName FK1 | Schoolid CourseName FK1 | Studentid
Description ClassMName FK1 | Schoolld & FK2 [Courseld
Address Description Description y/ Grade
Phone A Comment
PostCode
PostAddress [
A Foreign Key (FK)
h 4
STUDENT_COURSE STUDENT
PKFK1 |Studentld »leK | swdentid
PK,FK2 | Courseld
FK1 | Classid
StudentName
StudentNumber
TotalGrade
Address
Phone
EMail
TEACHER TEACHER_COURSE
PK | Teacherld PK,FK1 | Teacherld
PK,FK2 | Courseld
FK1 | Schoolid
TeacherMame
Description

25.3

Figure 25-4: ER Diagram Example

ERD Tools

248 25 Databases

We can use a lot of different tools to create such ER diagrams. Some examples are DB Designer,
Lucidchart and erwin Data Modeler.

=
5
5

Database Design and Modelling using DB Designer: https://youtu.be/jcBIzOfIxPs

Database Design and Modelling using Lucidchart: https://youtu.be/pztyVxBn8HM

erwin Data Modeler: https://youtu.be/jLKoluil) k

25.4 Structured Query Language

Here we will only give a short introduction to Structured Query Language. For more information
about SQL, please see [19].

=

SQL is a database computer language designed for managing data in Relational Database

SQL Server and Structured Query Language (SQL): https://youtu.be/sl6skicZse0

Management Systems (RDBMS). In SQL, we have 4 different types of queries:

e INSERT
e SELECT
e UPDATE
e DELETE

Below we see some examples of typical SQL queries:

insert into STUDENT (Name, Number, SchoolId)
values ('John Smith', '100005', 1)

select SchoolId, Name from SCHOOL
select * from SCHOOL where SchoolId > 100
update STUDENT set Name='John Wayne' where StudentId=2

delete from STUDENT where SchoolId=3

These are referred to as CRUD — Create (Insert), Read (Select), Update and Delete.

25.4.1 Best Practice

Here are some “Best practice” recommendations for creating tables in a database system:

https://youtu.be/jcBIzOfIxPs
https://youtu.be/pztyVxBn8HM
https://youtu.be/jLKoluiJJ_k
https://youtu.be/sI6skicZse0

249

25 Databases

Tables: Use upper case and singular form in table names — not plural, e.g., “STUDENT” (not
students)
Columns: Use Pascal notation, e.g., “Studentld”
Primary Keys:
— If the table name is “COURSE”, name the Primary Key column “Courseld”, etc.
“Always” use Integer and Identity(1,1) for Primary Keys
Specify Required Columns (NOT NULL) —i.e., which columns that need to have data or not
Data Types: Standardize on these Data Types: int, float, varchar(x), datetime, bit
Use English for table and column names
Avoid abbreviations! (Use RoomNumber — not RoomNo, RoomNr, ...)

26 Unit Testing

Unit Testing (or component testing) refers to tests that verify the functionality of a specific section
of code, usually at the function level. In an object-oriented environment, this is usually at the class
and methods level. Unit Tests are written by the developers as part of the programming. Unit tests
are automatically executed (e.g., Visual Studio and Azure DevOps have built-in functionality for
Unit Testing).

ﬁ Unit Testing in Visual Studio: https://youtu.be/QIfNViZkgEc

ASP.NET Core - Unit Testing: https://youtu.be/EzeDCEQ2gMs

Here are some “best practice” rules regarding Unit Testing:

e A Unit Test must only do one thing

e Unit Test must run independently

e Unit Tests must not be dependent on the environment

e Test Functionality rather than implementation

e Test public behavior: private behavior relates to implementation details

e Avoid testing Ul components

e Unit Tests must be easy to read and understand

e (Create rules that make sure you need to run Unit Tests (and they need to pass) before you
can Check-in your Code in the Source Code Control System

26.1 Unit Tests Frameworks

Unit Tests are built into Visual Studio. Some other Unit Tests Frameworks are:
1. JUnitis a unit testing framework for the Java programming language.

2. Nunit: NUnit is an open-source unit testing framework for Microsoft .NET. It serves the
same purpose as JUnit does in the Java world

3. LabVIEW Unit Test Framework Toolkit

4. etc.

250

https://youtu.be/QIfNViZkqEc
https://youtu.be/EzeDCEQ2qMs

251 26 Unit Testing

26.2 Unit Testing in Visual Studio

Visual Studio has integrated possibilities for Unit Testing. In Figure 26-1 we see the Unit Test
Project that is built into Visual Studio.

ﬁ Unit Testing in Visual Studio: https://youtu.be/QIfNViZkgEc

ASP.NET Core - Unit Testing: https://youtu.be/EzeDCEQ2qMs

Note! Some of the more advanced test features in Visual Studio are only available in the
Enterprise edition.

Add New Prgject ?

b Recent |.NET Framewaork 4.5 '| Sort by: ‘Default ~| 57 1= Search Installed Templates (Ctrl+E) 2~
4 |nstalled

Ecj Unit Test Project Visual C# Type: Visual C#
4 Visual C# A project that contains unit tests.
Windows Store
Windows
r Web
Cloud
Reporting
Silverlight
Test
WCF
Workflow
TypeScript
© Other Languages
b Other Project Types

b Online
Click here to go online and find templates.
Mame: UnitTestProject]
Location: | C:\Work\Development\TFS\DevelopmentUnit Tests\Bank -] | Browse... |

| QK | | Cancel

Figure 26-1: Unit Test Project used in Visual Studio

A typical Test Class in Visual Studio looks like this:

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;
using BankAccount; //The Code that is going to be tested

namespace BankTest

{
[TestClass]
public class BankAccountTests

{
[TestMethod]

Part 4. Management and Development Tools

https://youtu.be/QIfNViZkqEc
https://youtu.be/EzeDCEQ2qMs

252

26 Unit Testing

public void TestMethodl ()
{

}

A test method must meet the following requirements:
* The method must be decorated with the [TestMethod] attribute.
* The method must return void.
* The method cannot have parameters.

Example of a Unit Test written in C#:

[TestMethod]
public void Debit WithValidAmount UpdatesBalance ()
{
// arrange
double beginningBalance = 11.99;
double debitAmount = 4.55;
double expected = 7.44;
BankAccount account = new BankAccount ("Bryan Walton",
// act
account .Debit (debitAmount) ;
// assert
double actual = account.Balance;

beginningBalance) ;

Assert.AreEqual (expected, actual, 0.001, "Account incorrectly") ;

}

We get an overview of all the Tests in the Test Explorer (Figure 26-2):

Part 4. Management and Development Tools

253 26 Unit Testing

Test Explorer * 0 X

S Iis- Search el

Run All | Fun.. =

4 Failed Tests (1)

I:EI Accountinfo_GetAccountInfo_InvalidData

4 Skipped Tests (1)

1 Accountinfo_sAddCheckingAccount_InvalidData
4 Passed Tests (2)

&) Accountinfo_AddCheckingAccount_ValidData < 1ms
®) Accountinfo_AddSavingsAccount_ValidData < 1ms

4 Mot Run Tests (1)

{) Accountinfo_CreateAccount_InvalidData

AccountInfo_GetAccountInfo_InvalidData
Source: UnitTestl.cs line 11

ﬁ Test Failed - Accountinfo_GetAccountinfo_InvalidData

Message: Assert.IsTrue failed. *1234° is not an authorized
account

Elapsed time: 216 ms

4 StackTrace:

AccountlnfoTests. Accauntlnfo_GetAccountinfo_In...

Figure 26-2: Test Explorer inside Visual Studio

When you build the test project, the tests appear in the Test Explorer. If the Test Explorer is not
visible, choose Test on the Visual Studio menu, choose Windows, and then choose Test Explorer.

As you run, write, and rerun your tests, Test Explorer displays the results in default groups of
Failed Tests, Passed Tests, Skipped Tests and Not Run Tests.

You can choose to run the tests manually or automatically, e.g., every time you build the code, etc.
If you use Azure DevOps together with Unit Testing in Visual Studio you can also choose to force
Unit Testing before you can check-in the code.

26.3 Code Coverage

Code coverage is a measure used in software testing. It describes the degree to which the source
code of a program has been tested.

Example:

Part 4: Management and Development Tools

254 26 Unit Testing

int foo (int x, int y)

{
int z = 0;
if ((x>0) && (y>0))
{
zZ = X;
}
return z;
}

When we test this function, it depends on the input arguments which parts of the code will be
executed. Unit Tests should be written to cover all parts of the code.

In Visual Studio (Ultimate or Premium) these features are built-in (see Figure 26-3).

TEST ARCHITECTURE AMALYZE WIN...

Run
Debug LS
Test Settings L
Analyze Code Coverage * B Selected Tests
. F
AU Y@ Al Tests
Test Explorer » %
ﬂ = Search 2~
public double 5SquareRdot{double x)
Rum All | Run.. = [
4 Passed Tests (3) 11' (¢ < 0.9) Y
&) QuickNonZero 15 ms Not coverad throw new ArgumentOutOfRangeException():
RootTestMNeg 13 ms —
ClanstureTess Lot double estimate = ¥
- double previousEstimate = -x;
Covered while (System.Math.Abs{estimate - previousEstimate) >...

{

| Turn on colering

100 %

ctsoasm_MAINS0531 2012-06-07 02... E" G 1: ;:I'- x

Hierarchy Mot Cov... | Not Covered (%... Cow...
4 ZF ictsoasm_MAINS0531 201.. |44 80.00% 11
4 B2 fabrikam.math.dll ¥ S0.00% 7
4 {} Fabrikam.Math i 50.00% 7

Figure 26-3: Code Coverage in Visual Studio
26.4 Exercises
Make sure to discuss and reflect over the following:

1. Explain the difference between unit testing and integration testing (or interface testing in
Sommerville)

Part 4: Management and Development Tools

255 26 Unit Testing

2. Suggest “test cases” for the use case “Take out Money” from an ATM, i.e., give examples of
Unit Tests and Integration Tests

Part 4. Management and Development Tools

27 Deployment in Visual
Studio

Getting software out of the hands of the developers into the hands of the users. More than 50% of
commissioned software is not used, mostly because it fails at the deployment stage. 80% of the
cost of (commissioned) software comes at and after deployment. Visual Studio has many built-in
features for deployment.

ﬁ Deploy a Windows Forms App using Visual Studio: https://youtu.be/gXxS9ie3KZFE

Virtualization Deployment:

ﬁ Install WinForm Desktop App in Virtual Test Environment using VirtualBox:
https://youtu.be/g7CPEVFTS8AA

ﬁ Install ASP.NET Core Web App in Virtual Test Environment using VirtualBox:
https://youtu.be/7XrRd7voasl

Microsoft Azure Deployment:

ﬁ Microsoft Azure - SQL Databases and App Services: https://youtu.be/ca6Q6Ldshls

Is it a Generic Software Product or a Tailor-made Software Solution? Different
Deployment/Installation preparations required!

We have

e Generic Software:
o Many Customers
o The Customers install the Software itself
e Tailor-made:
o Typically, only one Customer
o The Developer Company typically installs the software (at least server-side
components)
o If many Desktop Clients: A Setup is required

256

https://youtu.be/qXS9ie3KZFE
https://youtu.be/g7CPEVFT8AA
https://youtu.be/7XrRd7voasI
https://youtu.be/ca6Q6LdshIs

257 27 Deployment in Visual Studio

Different Deployment/Installation preparations required depending on what type of Apps you are

Developing.
Desktop Apps
— You need to create an .exe file and a Setup Package
— Setup packages can then be distributed on CDs/DVDs or downloaded from a Web
Page
— You use Setup to install the software on all the clients
— Time consuming, cumbersome, depends on local components that might not be
installed, version conflicts, etc. This makes it difficult (and a lot of work and testing)
to create robust setup packages
— Mac: You can deploy to Mac App Store, Windows 8: You can deploy to Windows
Store
Web Apps

* Noclient installation is needed!
* Installed on a Web Server (IS, Apache)
* Accessed on the Clients using only a Web Browser

* Easy, simple to deploy new versions, bugfixes, etc. (Customers don’t need to do
anything)

* But make sure your App supports all major Web Browsers (Internet Explorer,
Chrome, Firefox, Opera, Safari)

Mobile Apps

* Deployed to "App Stores" like Apple App Store, Google Play, Windows Store
(Windows 8)

Server-side (Database, Web Services, etc.)

* Typically, a setup package that installs this, or manually if it is a tailor-made solution

27.1 Setup Creation Software

Here are some examples:

* InstallShield Professional/Premium

Part 4. Management and Development Tools

258 27 Deployment in Visual Studio

— InstallShield is professional software for creating installers, Price €2000+

WiX Toolset (Windows Installer XML)
— Used to create Windows Installer packages ("MSI files)
— The WiX toolset builds Windows installation packages from XML source code.
— Free and Open Source

— Used by e.g., Microsoft to create Setup packages for Office, SQL Server, Visual
Studio, etc. Apple also uses it.

Inno Setup

— Free of charge Installer for Windows programs

NSIS (Nullsoft Scriptable Install System)

— Professional open-source system to create Windows installers.

* etc

27.2 ASP.NET Core Deployment

ASP.NET Core is a framework for creating professional web applications and it is fully integrated
with Visual Studio.

ﬁ Microsoft Azure - SQL Databases and App Services: https://youtu.be/ca6Q6Ldshls

Part 4. Management and Development Tools

https://youtu.be/ca6Q6LdshIs

Part 5 : Cyber Security

In this part, Cyber Security will be discussed in the context of Software Engineering and Software
Development.

259

28 Cyber Security

28.1 Introduction

Cybersecurity is the practice of protecting systems, networks, and programs from digital attacks.

These cyberattacks are usually aimed at accessing, changing, or destroying sensitive information,
extorting money from users, or interrupting normal business processes.

With the good comes the bad. Since the Internet connected all devices together a new era of our

life was a fact.
The Internet is great for many things, but it is also a great place for criminals.

Figure 28-1 we see the evolution of computers and internet from the early begging and until

today.

Smartphone, 2007

b1

1984: Macintosh
The 1976:Applel L

Microprocessor, * Internet of
1971 Things
ﬁ E World Wide (|°T)I
smmmmmees. Web, 1989-93 Machine
The first Computer ‘m PC, 1981 Learning

>

The Turing k \5 (1BM) and
machine, 1936 ‘ Internet, Industry
4.0

PrTN

Figure 28-1: The Evolution of Computers and Internet

You probably use hundreds of different Internet services. Is your personal data safe within these
companies?

e Isthe data well protected (from hackers)?

e |sthe data sold to other companies (advertising purposes)?
e Canyou get an overview of the information stored on you?
e Isit possible to delete it?

Some terms:

260

261 28 Cyber Security

Data Security: Protect digital data (e.g., data in a database) from destructive forces and from the
unwanted actions of unauthorized users (e.g., hackers, etc.).

Data Privacy: Issues regarding your personal data stored.
Cyber Security is the practice of protecting systems, networks, and programs from digital attacks.

Cybersecurity, or computer security, is a catchall term for any strategy for protecting one’s system
from malicious attacks aimed at stealing money, personal information, system resources
(cryptojacking, botnets), and a whole host of other bad things. The attack might occur on your
hardware or software, or through social engineering.

GDPR: General Data Protection Regulation. EU directive. Purpose: Protect privacy and the data
stored, i.e., protection of your digital life.

Figure 28-2 shows an overview of Cyber Security Issues.

"@‘. Hackers @

Cyber Crime and Cyber Attacks Software Engineering

Devices

adl

Artificial Intelligence (Al)

“a

Wireless Signals

Internet

@ Cloud Services E

Industrial Internet of [
Things and Industry 4.0 Internet of Things

Figure 28-2: An overview of Cyber Security Issues

28.2 Types of Cyber Security Attacks

Different types of Cyber Security threats:

e Ransomware
e Malware
e Social engineering

e Phishing
e SQL Injection
e E[Etc.

Part 5: Cyber Security

262 28 Cyber Security

These will be discussed in more detail below.

28.2.1 Ransomware

Ransomware is a type of malicious software. It is designed to extort money by blocking access to
files or the computer system until the ransom is paid.

These include, e.g., email phishing and malvertising (malicious advertising). After it is distributed,
the ransomware encrypts selected files and notifies the victim of the required payment.

Paying the ransom does not guarantee that the files will be recovered, or the system will be
restored.

The most "famous" Ransomware is the WannaCry Ransomware.

28.2.2 Malware

Malware is a type of software designed to gain unauthorized access or to cause damage to a
computer. Malware is short for “malicious software”.

Examples of common malware include viruses, worms, Trojan viruses, spyware, adware, and
ransomware.

28.2.3 Social Engineering

Social engineering is a tactic that adversaries use to trick you into revealing sensitive information.
They can solicit monetary payment or gain access to your confidential data. Social engineering can
be combined with any of the threats listed above to make you more likely to click on links,
download malware, or trust a malicious source.

28.2.4 Phishing

Phishing is the practice of sending fraudulent emails that resemble emails from reputable sources.

The aim is to steal sensitive data like credit card numbers and login information, or to install
malware on the victim’s machine.

Phishing is the most common type of cyber-attack.

You can help protect yourself through education (teach them not to click on links, etc. from
untrusted sources) or a technology solution that filters malicious emails.

Types of phishing attacks:

Part 5: Cyber Security

263 28 Cyber Security

e Deceptive phishing - Deceptive phishing is the most common type of phishing. In this case,
an attacker attempts to obtain confidential information from the victims. Attackers use the
information to steal money or to launch other attacks. A fake email from a bank asking you
to click a link and verify your account details is an example of deceptive phishing.

e Spear phishing - Spear phishing targets specific individuals instead of a wide group of
people. Attackers often research their victims on social media and other sites. That way,
they can customize their communications and appear more authentic. Spear phishing is
often the first step used to penetrate a company’s defenses and carry out a targeted
attack.

e Whaling - When attackers go after a “big fish” like a CEO, it’s called whaling.

e Pharming - pharming sends users to a fraudulent website that appears to be legitimate.
However, in this case, victims do not even have to click a malicious link to be taken to the
bogus site.

28.2.5 Spam

Spam is unsolicited and unwanted junk email sent out in bulk to an indiscriminate recipient list.
Typically, spam is sent for commercial purposes. It can be sent in massive volume by botnets and
networks of infected computers.

Often, spam email is sent for commercial purposes. While some people view it as unethical, many
businesses still use spam. The cost per email is incredibly low, and businesses can send out mass
guantities consistently. Spam email can also be a malicious attempt to gain access to your
computer.

Spam email can be difficult to stop, as it can be sent from botnets. Botnets are a network of
previously infected computers. As a result, the original spammer can be difficult to trace and stop.

Spam email can be dangerous. It can include malicious links that can infect your computer with
malware (see What is malware?). Do not click links in spam. Dangerous spam emails often sound
urgent, so you feel the need to act.

28.2.6 SQL Injection

A Structured Query Language (SQL) injection occurs when an attacker inserts malicious code into a
server that uses SQL and forces the server to reveal information it normally would not.

An attacker could carry out a SQL injection simply by submitting malicious code into a vulnerable
website search box.

28.3 How to be Secure?

How can you avoid cyber-attacks in general?

Part 5: Cyber Security

264 28 Cyber Security

What can you do as a company or a private person?
Here are some examples:

e Passwords

e Firewall

e Antivirus and antimalware software
e Access control

e VPN

e Wi-Fi Network

e Education

These will be discussed in more detail below.

28.3.1 Passwords

Make sure to use secure passwords, don’t use the same password for all your services and
software systems.

28.3.2 Firewall

A firewall is a network security device that monitors incoming and outgoing network traffic and
decides whether to allow or block specific traffic based on a defined set of security rules.

Firewalls are the first line of defense in network security.

A firewall can be hardware, software, or both.

28.3.3 Web Application Firewall (WAF)

A web application firewall (WAF) is an application firewall for HTTP applications. It applies a set of
rules to HTTP conversation. Generally, these rules cover common attacks such as cross-site
scripting (XSS) and SQL injections.

The WAF software (or hardware) is installed on the server that runs the web applications or web
sites.

A WAF is used for protection of a specific web application or set of web applications.

A WAF creates a shield between the web application and the Internet, which can avoid many
common attacks.

A WAF helps protect web applications by filtering and monitoring HTTP traffic between a web
application and the Internet. It typically protects web applications from attacks such as cross-site
forgery, cross-site-scripting (XSS), file inclusion, and SQL injection, among others.

Part 5: Cyber Security

265 28 Cyber Security

Most professional hosting platforms offer WAP solutions, like Amazon Web Services.
In addition, there are many types of WAF software you can buy and use, e.g., Imunify360.
References:

https://www.cloudflare.com/learning/ddos/glossary/web-application-firewall-waf/

https://www.owasp.org/index.php/Web Application Firewall

https://en.wikipedia.org/wiki/Web application firewall

28.3.4 Antivirus and Antimalware Software

“Malware”, which is short for “malicious software”, includes viruses, worms, Trojans, ransomware,
and spyware. Sometimes malware will infect a network but lie dormant for days or even weeks.
The best antimalware programs not only scan for malware upon entry, but also continuously track
files afterward to find anomalies, remove malware, and fix damage.

The Windows 10 operating system has built in antivirus software called "Windows Defender".

The name “Antivirus” software is a little old, because viruses are just one kind of malware in
today’s world of cyber threats. Though viruses still exist, there are other forms of malware that are
more common these days, as mentioned in an earlier chapter.

28.3.5 Access Control

Not every user should have access to your network. To keep out potential attackers, you need to
recognize each user and each device.

28.3.6 Two-factor Authentication

Two-factor authentication (also known as 2FA) is a type, or subset, of multi-factor authentication.

It is a method of confirming users' claimed identities by using a combination of two different
factors: 1) something they know, 2) something they have, or 3) something they are.

A good example of two-factor authentication is the withdrawing of money from an ATM; only the
correct combination of a bank card (something the user possesses) and a PIN (something the user
knows) allows the transaction to be carried out.

All the large providers of internet services, like Facebook, Google, Apple, etc. offers Two-factor
authentication, you just need to turn it on.

References:

Part 5: Cyber Security

https://www.cloudflare.com/learning/ddos/glossary/web-application-firewall-waf/
https://www.owasp.org/index.php/Web_Application_Firewall
https://en.wikipedia.org/wiki/Web_application_firewall

266 28 Cyber Security

https://en.wikipedia.org/wiki/Multi-factor authentication

28.3.7 VPN

A virtual private network encrypts the connection from an endpoint to a network, often over the
Internet.

28.3.8 Web Hosting Providers

Make sure to use professional Web hosting companies for your web sites.

You have large Cloud platform providers like Amazon Web Services (AWS), Microsoft Azure, Oracle
Cloud and Google Cloud Platform.

These large providers have a high level of security, they continuously update the systems with new
security patches, etc.

28.3.9 Wi-Fi Network

Use only secure Wi-Fi networks, not open Wi-Fi network that do not need password, etc.

28.3.10 Operating System

Make sure your PC and the operating system is up to date.

28.3.11 Education

Learning more about cyber security threats and how you can protect yourself as a private person
or a company is crucial.

Part 5: Cyber Security

https://en.wikipedia.org/wiki/Multi-factor_authentication

29 SQL Injection

A Structured Query Language (SQL) injection occurs when an attacker inserts malicious code into a
server that uses SQL and forces the server to reveal information it normally would not.

An attacker could carry out a SQL injection simply by submitting malicious code into a vulnerable
website search box.

ﬁ SQL Injection - with Practical Examples using ASP.NET Core and C#:
https://youtu.be/AWHXQGalXe

29.1 SQL Injection Examples

Below you find some basic SQL Injection examples.

Web Site:

<form action="/cgi-bin/login" method=post>
Username: <input type=text name=username>
Password: <input type=password name=password>
<input type=submit value=Login>

SQL query executed by the web site for getting the user information:

select * from Users where (username = 'submittedUser' and password =
'submittedPassword') ;

SQL Injection Example #1:

For example, if an application accepts and processes user-supplied data without any validation, an
attacker could submit a maliciously crafted username and password. Consider the following string
sent by an attacker:

username=admin%27%29+--+&password=+

The SQL query executed by the web site for getting the user information will be:

select * from Users where (username = 'admin') -- and password = ' ');

In this example, an attacker could successfully log in to the application using the admin account
without knowledge of the password to that account.

Note that the string of two dash characters (--) indicates to the database server that the remaining
characters in the SQL statement are a comment and should be ignored.

267

https://youtu.be/AWHXQGaJXe

268 29 SQL Injection

SQL Injection Example #2:

A hacker might get access to user names and passwords in a database by simply inserting " OR

into the user name or password text box:

User Name:

w or II'IF=II

Password:

" or lI'II=Il

The SQL query executed by the web site for getting the user information will be:

select * from Users where Name ="" or ""="" AND Pass ="" or ""=""

The SQL above is valid and will return all rows from the "Users" table, since OR ""="" is always
TRUE.

References:

https://www.w3schools.com/sql/sql injection.asp

29.2 Resources

Here are some other resources regarding SQL injections:

https://www.owasp.org/index.php/SQL Injection

https://en.wikipedia.org/wiki/SQL injection

https://www.w3schools.com/sql/sqgl injection.asp

Part 5: Cyber Security

https://www.w3schools.com/sql/sql_injection.asp
https://www.owasp.org/index.php/SQL_Injection
https://en.wikipedia.org/wiki/SQL_injection
https://www.w3schools.com/sql/sql_injection.asp

30 User Identity and Login

Here we will give an overview of user identity and login features in modern applications.

The concepts will be exemplified using web technology and the ASP.NET Core web framework
from Microsoft.

ASP.NET is an open-source web framework, created by Microsoft, for building web apps and
services using the .NET Framework or the .NET Core. We have both ASP.NET and ASP.NET Core.
ASP.NET Core is the new approach built on .NET Core.

In this chapter we will see how we can create and use login functionality in your ASP.NET Core
Web Applications.

Typically, you need to create functionality for User Registration, Login, etc. Here you will see how
this can be done from scratch. If you do it from scratch, you will have full control of your code.

If you use something called “ASP.NET Core Identity” (which will be explained and demonstrated in
the next chapter) lots of “magic” happens behind the curtains. If something is not working, it may
be more complicated to figure out why.

Below you will find some useful ASP.NET resources.

https://www.halvorsen.blog/documents/programming/web/aspnet

30.1 Password Security

Keeping your passwords safe is important and all software systems should take this seriously.
Password security mechanism:

* Encryption and Decrypting

* Hashing

* Salting

* 2 Factor Authentication

* Etc.

These password security mechanisms will be described in more detail below.

269

https://www.halvorsen.blog/documents/programming/web/aspnet

270 30 User Identity and Login

30.1.1 Encryption and Decrypting

Encryption is the practice of scrambling information in a way that only someone with a
corresponding key can unscramble and read it.

Encryption is a two-way function. When you encrypt something, you are doing so with the
intention of decrypting it later.

To encrypt data, you use an algorithm. Many different encryption algorithms do exist

Figure 30-1 gives an overview of the concepts of Encryption and Decryption.

— A

Do

Decryption

A —

O

Encryption

Plain Text Encrypted Text Plain Text

Figure 30-1: Encryption and Decryption

When should encryption be used? Here are some examples:

* Encryption is a two-way function.

* You encrypt information with the intention of decrypting it later.
* Examples when to use encryption:

* Protecting Files and Information on your Computer

* Protecting your Cloud data

* Transmitting Data between 2 Computers

* Etc.

The key is that Encryption is reversible. Hashing is not.

30.1.2 Hashing

Hashing is the practice of using an algorithm to map data of any size to a fixed length. Encryption is
a two-way function. Hashing is a one-way function.

While it is technically possible to reverse-hash something, the computing power required makes it
unfeasible. Hashing is one-way. See Figure 30-2.

Part 5: Cyber Security

271

30 User Identity and Login

Encryption is meant to protect data in transit, hashing is meant to verify that a file or piece of data
has not been altered—that it is authentic. In other words, it serves as a checksum. Every hash

value is unique.

A

Plain Text
(e.g. a Password)

h

(e.g. a Password)

Plain Text

30.1.3

— L
Hashing Hashed Text
== Equal?
A
—————————————
Hashed Text

Hashing

Figure 30-2: Hashing

Rainbow Tables

Is it possible to for a hacking to get access to Hashed Passwords?

By using something called “Rainbow Table” the hacker can get access to your hashed password,

see Figure 30-3.

Password Table for System X

Rainbow table

UserName | HashedPassword / If a Hackir gisiccesds ;o this;]Datai;ase, he
can see that Mike and Peter have the same
Mike 4420d1918bbcf7 password.
Bob 73fb51a0c9be7d But he does not know the actual password
Peter 4420d1918bbcf7
If the Hacker has access to so-called
“Rainbow table” (which is essentially
Password HashedPassword a pre-computed database of hashes),
tesk 4420d1918bbef7 /—”" he may also be able to find the
Password (as seen here)
friendship 73fb51a0cSbe?d
bicycle 7420e1618abcf6 If you have a complicated password, it is less likely

that your password is in such a Rainbow table

Figure 30-3: Using Rainbow Table for Hacking your Hashed Password

Part 5: Cyber Security

272 30 User Identity and Login

If a hacker gets access to this Database, he can see that Mike and Peter have the same password,
but he does not know the actual password. If the Hacker has access to a so-called “Rainbow table”
(which is essentially a pre-computed database of hashes), he may also be able to find the
Password, as seen in Figure 30-3. If you have a complicated password, it is less likely that your
password is in such a Rainbow table.

30.1.4 Salting

Salting is a technique typically used for Password Hashing. It is a unique value that can be added to
the end of the password to create a different hash value. The additional value is referred to as a
“salt”. This is done to make it even more secure. Typically, the Hashing Algorithm uses a Random
salt. This prevents an attacker from seeing whether users have the same password. See Figure
30-4.

password = "Passwordl23"
salt = "Tesla"

passwordHashed = HashPassword (password, salt);

Typically, Salting is built into the Hashing Algorithm and it is changed every time

password = "PasswordlZ23"
phl = HashPassword (password) ; phl = ph2
phZ = HashPassword (password) ;

This means if 2 different Users use the same Password, the Hashed Password will be different!
Figure 30-4: Salting
Is it possible to hack “Hashing with Salt”?

Assume Mike and Peter use the same Password, see Table 30-1. If a hacker gets access to this
database, he cannot see that Mike and Peter have the same password. This is because a random
Salt has made these 2 Hashed Passwords different!

Table 30-1: Examples of Hashed Passwords with Salt

User Name | Hashed Password with Salt

Mike 4420d1918bbcf7

Part 5: Cyber Security

273

30 User Identity and Login

Bob 73fb51a0c9be7d

Peter 4520d1818cbcf7

Figure 30-5 shows a typical Flow when Creating User and Login.

Create User and Login

Create User

Mame:

Login

Name and P:

E-Mai

assword In ceder to get access to the system

Information given by User

passwordHashed = HashPassword(userName, password);

{

Store Hashed Password in the Database

|

Compare Hashed Password stored in the
Database with Password given by User in
Login Page

valid = VerifyHashedPassword(userName, passwordDB, password);

Figure 30-5: Typical Flow when Creating User and Login

Part 5: Cyber Security

31 SQL Server Authentication

31.1 Introduction

SQL Server is a Database System from Microsoft. SQL Server comes in different editions, for basic,

personal use
SQL Server Express is recommended because it is simple to use, and it is free.
Web:

https://www.halvorsen.blog/documents/technology/database/sqgl server.php

Videos:

ﬁ Introduction to SQL Server: https://youtu.be/SIRAKOhAG1U

ﬁ SQL Server Express Installation: https://youtu.be/hhhggAlUYo8

ﬁSQL Server and Structured Query Language (SQL): https://youtu.be/sl6skicZse0

31.2 Authentication

SQL Server has 2 different types of authentications:

e Windows Authentication
e SQL Server Authentication

Using “Windows Authentication” the Connection String looks like this:

DATA SOURCE=<SQL Server Name>;DATABASE=<Database Name>; Integrated Security = True;

Using “SQL Server Authentication” the Connection String looks like this:

DATA SOURCE=<SQL Server Name>;DATABASE=<Database Name>;UID=sa; PWD=<Your Password>;

Replace <SQL Server Name> with the name of your SQL Server, typically
"<YourComputerName>\SQLEXPRESS" if you are using SQL Server Express.

274

https://www.halvorsen.blog/documents/technology/database/sql_server.php
https://youtu.be/SlR4KOhAG1U
https://youtu.be/hhhggAlUYo8
https://youtu.be/sI6skicZse0

275 31 SQL Server Authentication

UID is a SQL Server user, here you can create your own SQL Server user inside SQL Server
Management Studio or use the built-in sa user (sa=System Administrator). During the setup of SQL
Server, you need to select "Mixed Mode" and enter the password for your sa user.

It may look something like this:

DATA SOURCE=HPPCWORK\\SQLEXPRESS; DATABASE=MEASUREMENTS; UID=sa; PWD=Passwordl23;

You can also turn on “SQL Server Authentication” in SQL Server Management Studio (SSMS) after
installation of SQL Server. See Figure 31-1.

L;,; Microsoft SOL Server Management Studie
File Edit View Debug Tools Window Help

o[- By PRRRS | - - @]
Object Explorer
Connect~ ¥ >Y { 0 A [}
B Server Properties - DESKTOP-HNJOJKINSOLEXPRESS - Od X
Selectapage IT Script v @ Help
F General
& Memory
30 Erocekaon Server authentication
{
Connections (O Windows Authentication mode
i M Database Settings
o # Advanced ® SQL Server and Windows Authentication mode

| S Pemissions

Login auditing

(O None
Figure 31-1: SQL Server Authentication
To change security authentication mode, do the following steps:

e In SQL Server Management Studio Object Explorer, right-click the server, and then click Properties.

e On the Security page, under Server authentication, select the new server authentication mode, and
then click OK.

e Inthe SQL Server Management Studio dialog box, click OK to acknowledge the requirement to
restart SQL Server.

e In Object Explorer, right-click your server, and then click Restart. If SQL Server Agent is running, it
must also be restarted. Or just restart your computer.

31.3 Create Logins in SQL Server

“sa” (short for System Administrator) is a built-in Login in SQL Server. You can also create your
own SQL Server Logins. Normally you should do that rather than using the “sa” login. “sa” have
access to “everything” and in context of Data Security that is unfortunate. In general, you should
make your own Logins that have access to only what is strictly necessary. See Figure 31-2.

Part 5: Cyber Security

276

31 SQL Server Authentication

Create Logins in SQL Server

s Microsoft SQL Server Managf"

- &

8 -

right-click on «Logins» and select «New Login...»

Fle Edit View Project TIL In order to create a new Login, goto «Security» and

= o X
j ! v 3 x
Object Explorer T
Connect= ¥ 7% Y& &
Logn nams Search.
8 .. 1\SQLEXPRESS (SQL Server 150.2070 - 5 W oon mithertcaton
i Databases) SQL Servar authntcaton
Security
L
o ?
& Start FowerShell
-
w0
& (i feports) O Mappi 1 cormce
-l Refresh) Meppad 10 ssymmetsic iay
i e Connection = -
w NT SERVICE\SQLTELEMETRY = [[]Map tn Credensel Add
= NT SERVICE\SQLWriter NUCHPHSCLEXPRESS Meppod Credentels Crudurtal Prowdur
& NT SERVICE\Winmgmt Commctcn
% =
™ 53 W Vo comemction propertes
& Server Roles
4 Credentials
Aemove
feedy Dwlnut datnbane masimt
Detout language et
oK Cancul
Figure 31-2: Create Logins in SQL Server
We can select login type, see Figure 31-3.
B login- New - =] e
Select a page [LT Secripi « &) Help
* -
& Server Rales -
& |lzer M=pping Login neme AppLogin | CEl=
Havimbisg () Windows authenticetion
& Status ==
@ SOL Server authentication
Possword. bbbt |
Confirm password: BEEERE R |
[-7] Enforce possword policy
[] Enforee password expiration
O Mapped to cerbficata
o) Mapped to asymmetnc key
A 1 Map to Credential = Add
Searver
HUCHPHISOLEXFRESS Mappad Cradanbals Cradentizl Frovider
Connection:
58
i View connection properties
Progress Remowve
Ready Default databass: master =
Default languags: =dafault: 2
[Caa

Figure 31-3: New Login

Select access levels, see Figure 31-4.

Part 5: Cyber Security

277 31 SQL Server Authentication

B Login - New — O X

Selecla page IT Script » @ Help
F General
K Server Roles

¥ UserMapping Users mapped to this login-

K Securables Map Database User Default Schema
Status BOOKS AppLogin
[] CHART
[] UBRARY
[[] master
[0 model
0 msdb
[] tempdb
Connection
Server:
NUCHPH\SQLEXPRESS

Database role membership for: BOOKS

Connection:
sa

db accessadmin
db backupoperator
db datareader
db ddladmin
db denvdatareader
db denydatawriter
db owner
db securitvadmin
public

y? View connection properties

[IEICT

Progress =

K]

Ready

Figure 31-4: Login - Select Access Level

Part 5: Cyber Security

Part 6 : Additional
Resources

In this part, additional resources, references, and appendices are available.

278

32 Glossary

Below we will give a short overview of some important topics in software development.

Term

Description

Agile
Development

Agile software development is a group of software development methods
based on iterative and incremental development.

Agile Manifesto

The philosophy behind Agile methods is reflected in the Agile Manifesto.

ALM Application Lifecycle Management. An ALM system takes care of all
aspects in software development from planning, requirements, coding,
testing, deployment, and maintenance. Azure DevOps is an example of an
ALM system.

API Application Programming Interface. API specifies how some software
components should interact with each other.

In practice in most of the cases an APl is a library of different classes,
methods/functions, etc. that a developer can use.

Burn Down A burn down chart is a graphical representation of work left to do versus

Chart time. The outstanding work (or backlog) is often on the vertical axis, with
time along the horizontal. That is, it is a run chart of outstanding work. It
is useful for predicting when all the work will be completed.

It is often used in agile software development methodologies such as
Scrum. However, burn down charts can be applied to any project
containing measurable progress over time.

Code No changes in the code can be made, except bugs.

Freeze/Feature

Freeze

Code Review

Code inspections to check if code is properly written, and useful to avoid
bugs in your code.

Daily Scrum In Scrum Development they have daily 15 minutes meetings within the
Software Team. The Meeting is usually a Stand-up meeting.
DDT Development-Driven Testing

279

280 32 Glossary
Dog-fooding Computer software company uses its own product to demonstrate the
guality and capabilities of the product.
GUI Graphical User Interface. The part of the software the user sees and
interact with.
HA High Availability. Some software needs to run 24-7.
HMI Human Machine Interface. Another term for Graphical User Interface.
IDE Integrated Development Environment. A software application that helps

developers to create, edit, compile, and run their code.

Internal Server

Typical errors from web pages. The Web server (running the Web Site)

Error encountered an unexpected condition that prevented it from fulfilling the
request by the client.
Pair 2 developers working together.

Programming

QA

Quality Assurance. QA refers to the engineering activities implemented in
a quality system so that requirements for a product or service will be
fulfilled.

Refactoring

Code refactoring is used in software development to improve existing
code without changing its functionality. The goal is to make the code
more robust and easier to maintain.

SCC

Source Code Control or Version Control. A version control system keeps
track of all work and all changes in a set of files. Allows several
developers (potentially widely separated in space and time) to collaborate

and share code.

SDD

Software Design Document. A document describing the design of a

software application.

SDK

Software Development Kit. A SDK is typically a set of software
development tools that allows for the creation of applications for a
certain software package, software framework, hardware platform,
computer system, operating system, or similar development platform.

SDLC

Software Development Life Cycle. The process of creating software.

Software
Development
Process

Waterfall, Agile, etc.

Part 6: Additional Resources

281

32 Glossary

Software The discipline for creating software applications. A systematic approach to

Engineering the design, development, testing, and maintenance of software.

SRS Software Requirements Specifications. A document stating what at
application must accomplish.

STD Software Test Documentation. Contents: Introduction, Test Plan, Test
Design, Test Cases, Test procedures, Test Log, ..., Summary.

STP Software Test Plan. Documentation stating what parts of an application
will be tested, and the schedule of when the testing is to be performed.

TDD Test-driven development (TDD) is a software development process that

relies on the repetition of a very short development cycle: first the
developer writes an (initially failing) test case that defines a desired
improvement or new function, then produces the minimum amount of
code to pass that test, and finally refactors the new code to acceptable
standards.

Azure DevOps

Azure DevOps is a Source Code Control (SCC), Bug Tracking, Project
Management, and Team Collaboration platform from Microsoft

UML

Unified Modeling Language. A Language used in Software modeling.

XP

eXtreme Programming. XP is an Agile Software Development method. It’s
based on Unit Testing, Code Reviews and Pair Programming.

Part 6: Additional Resources

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

(10]
(11]
(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

I. Sommerville, Software Engineering, 10 ed.: Pearson, 2016.

Wikipedia. (2017). Software Requirements Specification. Available:
http://en.wikipedia.org/wiki/Software Requirements Specification

Wikipedia. (2017). Software Development Process. Available:
http://en.wikipedia.org/wiki/Software process

Wikipedia. (2017). Waterfall Model. Available: http://en.wikipedia.org/wiki/Waterfall model

Wikipedia. (2017). V-Model (Software Development). Available: http://en.wikipedia.org/wiki/V-
Model (software development)

Wikipedia. (2017). Agile Software Development. Available:
http://en.wikipedia.org/wiki/Agile software development

Agile. (2017). Agile Manifesto. Available: http://agilemanifesto.org

Wikipedia. (2017). Pair Programming. Available:
http://en.wikipedia.org/wiki/Pair programming

Wikipedia. (2017). Scrum Development. Available:
http://en.wikipedia.org/wiki/Scrum (development)

Wikipedia, "Unified Process," 2017.
K. Schwaber and J. Sutherland. 2011, The Scrum Guide. Available: scrum.org
E. J. Braude and M. E.Bernstein, Software Engineering: Modern Approaches, 2 ed.: Wiley, 2011.

Microsoft. (2017). Windows 8 UX Guidelines. Available: http://msdn.microsoft.com/en-
US/library/windows/apps/hh465424

Apple. (2073). Mac OS X UX Guidelines. Available: https://developer.apple.com/library/mac/ -
documentation/userexperience/conceptual/applehiguidelines/UEGuidelines/UEGuidelines.
html

Wikipedia. (2017). GUI Mockups. Available: http://en.wikipedia.org/wiki/Mockup

F. Tsui, O. Karam, and B. Bernal, Essentials of Software Engineering, 3 ed.: Jones & Barlett Learning,
2014.

H.-P. Halvorsen. (2017). ASP.NET and Web Programming. Available: https://www.halvorsen.blog

H.-P. Halvorsen. (2017). Introduction to Visual Studio and C#. Available:
https://www.halvorsen.blog

H.-P. Halvorsen. (2017). Structured Query Language. Available: https://www.halvorsen.blog

H.-P. Halvorsen. (2017). So You Think You Can MATLAB? Available: https://www.halvorsen.blog

282

http://en.wikipedia.org/wiki/Software_Requirements_Specification
http://en.wikipedia.org/wiki/Software_process
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/V-Model_(software_development
http://en.wikipedia.org/wiki/V-Model_(software_development
http://en.wikipedia.org/wiki/Agile_software_development
http://agilemanifesto.org/
http://en.wikipedia.org/wiki/Pair_programming
http://en.wikipedia.org/wiki/Scrum_(development
http://msdn.microsoft.com/en-US/library/windows/apps/hh465424
http://msdn.microsoft.com/en-US/library/windows/apps/hh465424
https://developer.apple.com/library/mac/#documentation/userexperience/conceptual/applehiguidelines/UEGuidelines/UEGuidelines.html
https://developer.apple.com/library/mac/#documentation/userexperience/conceptual/applehiguidelines/UEGuidelines/UEGuidelines.html
https://developer.apple.com/library/mac/#documentation/userexperience/conceptual/applehiguidelines/UEGuidelines/UEGuidelines.html
http://en.wikipedia.org/wiki/Mockup
https://www.halvorsen.blog/
https://www.halvorsen.blog/
https://www.halvorsen.blog/

283 References

[21] H.-P. Halvorsen. (2017). LabVIEW Resources. Available: https://www.halvorsen.blog

[22] L. Malka. (2013). API. Available: http://www.lior.ca/publications/api design.pdf

[23] H.-P. Halvorsen. (2017). Introduction to Web Services. Available: https://www.halvorsen.blog

[24] E. Blankenship, M. Woodward, G. Holliday, and B. Keller, Professional Team Foundation Server
2012: Wiley, 2013.

[25] H.-P. Halvorsen. (2017). Introduction to Database Systems. Available: https://www.halvorsen.blog

Part 6: Additional Resources

https://www.halvorsen.blog/
http://www.lior.ca/publications/api_design.pdf
https://www.halvorsen.blog/
https://www.halvorsen.blog/

Hans-Petter Halvorsen

E-mail: hans.p.halvorsen@usn.no

Web: https://halvorsen.blog/

Of410

“ |

[=]

https://halvorsen.blog/

https://halvorsen.blog/
https://halvorsen.blog/

Software Development

A Practical Approach!

Hans-Petter Halvorsen

Copyright ©
ISBN: 978-82-691106-0-9

Publisher Identifier: 978-82-691106

https://halvorsen.blog

https://halvorsen.blog/

Software Development

	Preface
	Part 1 : Introduction
	1 Introduction
	1.1 Background
	1.2 Topics
	1.3 Tools

	2 Software History
	2.1 Introduction
	2.2 Software Trends

	3 Software Development
	3.1 Challenges
	3.2 Software Systems
	3.3 Documentation
	3.4 Iterations and Releases

	Part 2 : Software Engineering
	4 Development Teams
	4.1 Teams
	4.2 Roles
	4.2.1 Stakeholders
	4.2.2 Project Manager
	4.2.3 System Architect
	4.2.4 UX Designer
	4.2.5 Programmer
	4.2.6 Software Tester

	5 Software Development Phases
	5.1 Requirements
	5.2 Design
	5.2.1 Technical Design
	5.2.2 UX Design

	5.3 Implementation
	5.4 Testing
	5.5 Deployment

	6 Software Development Process
	6.1 Plan-driven models
	6.1.1 Waterfall model
	6.1.2 V-model

	6.2 Agile Software Development
	6.2.1 The Manifesto for Agile Software Development
	6.2.2 Burndown Chart
	6.2.3 Waterfall vs. Agile
	6.2.4 eXtreme Programming (XP)
	6.2.5 Scrum
	6.2.6 Kanban

	6.3 Hybrid Process Models
	6.3.1 Unified Process (UP)/ Rational Unified Process (RUP)

	6.4 Summary
	6.5 Exercises

	7 Scrum
	7.1 The Scrum Process
	7.2 Scrum Events
	7.2.1 Daily Scrum Meeting

	7.3 Scrum Artifacts
	7.4 The Scrum Team
	7.5 Scrum Meetings
	7.6 Scrum Terms
	7.7 Tips and Tricks
	7.8 Scrum Tools

	8 Project Management
	8.1 Project Planning
	8.2 Kick-off/Brainstorming
	8.3 Software Development Plan (SDP)
	8.3.1 Gantt Chart

	8.4 Meetings
	8.4.1 Meeting Agenda
	8.4.2 Minutes of Meeting

	8.5 Agile Project Planning and Tracking
	8.6 Microsoft Teams
	8.7 Summary

	9 Requirements Engineering
	9.1 User Requirements
	9.2 System Requirements
	9.3 Functional Requirements
	9.4 Non-Functional Requirements
	9.5 SRS
	9.6 Project Estimation
	9.7 Exercises

	10 User eXperience (UX)
	10.1 UX Guidelines
	10.2 GUI Mockup
	10.3 Creativity

	11 UML
	11.1 Introduction
	11.2 UML Software
	11.3 Use Case
	11.4 Sequence Diagram
	11.5 Class Diagram
	11.6 Creating UML Diagrams
	11.7 UML in Agile/Scrum?
	11.8 Summary
	11.9 Exercises

	12 Software Implementation
	12.1 Programming Style & Coding Guidelines
	12.1.1 Naming Convention

	12.2 Comments
	12.3 Debugging
	12.4 Code Reviews
	12.5 Refactoring

	13 Testing
	13.1 Introduction
	13.1.1 Test Levels
	13.1.2 Bug Tracking
	13.1.3 Software versioning

	13.2 Test Categories
	13.2.1 Black-box Testing
	13.2.2 White-box Testing

	13.3 Test Levels
	13.3.1 Unit Testing
	13.3.2 Regression Testing
	13.3.3 Integration Testing
	13.3.4 System Testing/Validation Testing
	13.3.5 Acceptance Testing

	13.4 Test Documentation
	13.4.1 Test Planning

	13.5 Bug Tracking Systems
	13.6 Test Environment
	13.6.1 Virtualization

	13.7 Terms used in Testing
	13.7.1 Bugs
	13.7.2 Debugging
	13.7.3 Code Coverage
	13.7.4 Eat your own Dog food
	13.7.5 Code/Feature Freeze
	13.7.6 Test-Driven Development (TDD)
	13.7.7 Development-Driven Testing (DDT)

	13.8 The 7 Principles of Testing
	13.9 Testing Summary
	13.10 Exercises

	14 Deployment and Installation
	14.1 Introduction
	14.2 Releases
	14.3 Deployment
	14.4 Test and Production Environment
	14.4.1 Development Environment
	14.4.2 Production Environment
	14.4.3 Test Environment

	15 Project Documentation
	15.1 Process Documentation
	15.2 Product Documentation
	15.2.1 System Documentation
	15.2.2 User Documentation

	15.3 Setup & Distribution

	16 Software Maintenance
	16.1 Introduction
	16.2 Categories

	Part 3 : Platforms & Architecture
	17 Software Platforms
	17.1 Introduction
	17.2 Platform Vendors
	17.3 Desktop
	17.3.1 Windows
	17.3.2 macOS
	17.3.3 Linux

	17.4 Web
	17.4.1 Web Servers
	17.4.2 Web Frameworks
	17.4.3 ASP.NET Core
	17.4.4 Web Scripting Languages

	17.5 Mobile Devices
	17.5.1 iOS
	17.5.2 Android
	17.5.3 Windows 10 and Windows 11

	17.6 Cloud Computing
	17.7 Open Source

	18 Software Frameworks & Languages
	18.1 Object-Oriented Programming (OOP)
	18.2 Popular Programming Languages
	18.2.1 C
	18.2.2 C++
	18.2.3 C#
	18.2.4 Java
	18.2.5 Objective-C/Swift
	18.2.6 Visual Basic
	18.2.7 Perl
	18.2.8 Python
	18.2.9 PHP
	18.2.10 JavaScript
	18.2.11 SQL
	18.2.12 MATLAB
	18.2.13 LabVIEW

	18.3 Naming Convention
	18.4 Defensive Programming
	18.4.1 Error Handling

	18.5 Software Frameworks
	18.5.1 .NET Framework
	18.5.2 ASP.NET

	19 Software Architecture
	19.1 API
	19.2 Client-Server
	19.3 Web Services
	19.3.1 SOAP Web Services
	19.3.2 REST Web Services
	19.3.3 Creating Web Services with Visual Studio

	19.4 3-tier Architecture

	Part 4 : Management and Development Tools
	20 Integrated Development Environment (IDE)
	20.1 Visual Studio
	20.2 Visual Studio for Mac
	20.3 Visual Studio Code
	20.4 Xcode
	20.5 Eclipse
	20.6 Android Studio

	21 UML Software
	21.1 StarUML

	22 Source Code Control (SCC)
	22.1 Introduction
	22.2 Azure DevOps
	22.3 SVN
	22.4 CVS
	22.5 Git
	22.6 Others
	22.7 Cloud-based SCC Hosting Services
	22.7.1 Azure DevOps Services
	22.7.2 GitHub
	22.7.3 Bitbucket

	23 Bug Tracking Systems
	24 Azure DevOps
	24.1 Source Code Control (SCC)
	24.2 Areas and Iterations
	24.3 Work Items
	24.3.1 Queries

	24.4 Taskboard
	24.5 Agile (Scrum) Development in Azure DevOps
	24.5.1 Product Backlog Items in Azure DevOps
	24.5.2 Sprint Backlog Items in Azure DevOps
	24.5.3 Taskboard

	24.6 Software Testing in Azure DevOps

	25 Databases
	25.1 SQL Server
	25.2 ER Diagram
	25.3 ERD Tools
	25.4 Structured Query Language
	25.4.1 Best Practice

	26 Unit Testing
	26.1 Unit Tests Frameworks
	26.2 Unit Testing in Visual Studio
	26.3 Code Coverage
	26.4 Exercises

	27 Deployment in Visual Studio
	27.1 Setup Creation Software
	27.2 ASP.NET Core Deployment

	Part 5 : Cyber Security
	28 Cyber Security
	28.1 Introduction
	28.2 Types of Cyber Security Attacks
	28.2.1 Ransomware
	28.2.2 Malware
	28.2.3 Social Engineering
	28.2.4 Phishing
	28.2.5 Spam
	28.2.6 SQL Injection

	28.3 How to be Secure?
	28.3.1 Passwords
	28.3.2 Firewall
	28.3.3 Web Application Firewall (WAF)
	28.3.4 Antivirus and Antimalware Software
	28.3.5 Access Control
	28.3.6 Two-factor Authentication
	28.3.7 VPN
	28.3.8 Web Hosting Providers
	28.3.9 Wi-Fi Network
	28.3.10 Operating System
	28.3.11 Education

	29 SQL Injection
	29.1 SQL Injection Examples
	29.2 Resources

	30 User Identity and Login
	30.1 Password Security
	30.1.1 Encryption and Decrypting
	30.1.2 Hashing
	30.1.3 Rainbow Tables
	30.1.4 Salting

	31 SQL Server Authentication
	31.1 Introduction
	31.2 Authentication
	31.3 Create Logins in SQL Server

	Part 6 : Additional Resources
	32 Glossary
	References

