LECTURE NOTES ON

SOFTWARE PROJECT MANAGEMENT
(15A05707)

IV B.TECH | SEMESTER
(JNTUA-R15)

TD:20
‘

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

VEMU INSTITUTE OF TECHNOLOGY:: PKOTHAKOTA

Chittoor-Tirupati National Highway, P.Kothakota, Near Pakala, Chittoor (Dt.), AP - 517112
(Approved by AICTE, New Delhi Affiliated to INTUA Ananthapuramu. 1SO 9001:2015 Certified Institute)

SPM UNIT I
Conventional Software Management: The Waterfall Model, Conventional software Management Performance.
Evolution of Software Economics: Software Economics, Pragmatic Software Cost Estimation

INTRODUCTION

« Conventional software Management Practices ear sound in theory, but practice is still tied to archaic
technology and techniques.

« Conventional software economics provides a benchmark of performance for conventional software
management principles.

« The best thing about software is its flexibility: it can be programmed to do almost anything. The
worst thing about software is also its flexibility: the “almost anything” characteristic has made it
difficult to plan, monitors and control software development.

Three important analyses of the state of the software engineering industry are:
. Software development is still highly unpredictable. Only about 10% of software projects are
delivered successfully within initial budget and schedule estimates.
« Management discipline is more of a discriminator in success or failure than are technology
advances.
» The level of software scrap and rework is indicative of an immature process.

All three analyses reached the same general conclusion: The success rate for software projects is very low.
The three analyses provide a good introduction to the magnitude of the software problem and the current
norms for conventional software management performance.

1.1 THE WATERFALL MODEL (IN THEORY)

Most software engineering texts present the waterfall model as the source of the_*“conventional” software
process. In 1970, Winston Royce presented a paper called “Managing the Development of Large Scale
Software Systems” at IEEE WESCON, where he made three primary points:

1. There are two essential steps common to the development of computer programs: analysis and coding.

2. In order to manage and control all of the intellectual freedom associated with software development, one
must introduce several other “overhead” steps, including system requirements definition, software
requirements definition, program design, and testing. These steps supplement the analysis and coding
steps.

3. The basic framework described in the waterfall model is risky and invites failure. The testing phase that
occurs at the end of the development cycle is the first event for which timing, storage, input/output
transfers, etc., are experienced as distinguished form analyzed. The resulting design changes are likely to
be so disruptive that the software requirements upon which the design is based are likely violate. Either
the requirements must be modified or a substantial design change is warranted.

Waterfall Model Part 1 : The two basic steps to buillding a program

Analysis |
¥) Analysis and coding both involve
- creative work that directly

contributes to the usefulness of
the end product.

Waterfall Model Part 2: The large-scale system approach

System
requirements \
\ Software
reguirements \
’\ Analysis \

Program design '\
Q\ Coding \

k Testing \
k Operations

Waterfall Model Part 3 : Five necessary improvements for this approach to work

Complete program design before analysis and coding begin.
Maintain current and complete documentation.

Do the job twice, if possible.

Plan, control, and monitor testing.

Involve the customer.

hhLn=

Five necessary improvements for waterfall model are (the risks may be eliminated by making the
following five improvements):-

(a) Program design comes first: The first step is to insert a preliminary program design phase between the
software requirements phase and the analysis phase. Hence, by this technique, the software failure will not
occur due to the continuous change in storage, timing and data. The designer then urges the storage, timing
and operational limitations. On the analyst in such a way, that he notices the results. Resources insufficiently
and the design limitations are identified in the early stages before final designing coding and testing. The
following steps are required:
= Begin the design process with program designers, not analysts or programmers.
= Design, define, and allocate the data processing modes even at the risk of being wrong. Allocate
processing functions, design the database, allocate execution time, define interfaces and processing
modes with the operating system, describe input and output processing, and define preliminary
operating procedures.
= Write an overview document that is understandable, informative, and current so that every worker on
the project can gain an elemental understanding of the system.

(b) Document the design. The amount of documentation associated with the software programs is very large
because of the following reasons:

@ Each designer must communicate with interfacing designers, managers, and possibly customers.

() During early phases, the documentation is the design.

(© The real monetary value of documentation is to support later modifications by a separate test team, a
separate maintenance team, and operations personnel who are not software literate.

2

(c) Do it twice. The Computer program must be developed twice and the second version, which takes into
account all the critical design operations, must be finally delivered to the customer for operational
development. The first version of the computer program involves a special board competence team,
responsible for notifying the troubles in design, followed by their modeling and finally generating an error-
free program.

(d) Plan, control, and monitor testing. The test phase is the biggest user of the project resources, such as
manpower, computer time and management assessments. It has the greatest risk in terms of cost and schedules
and develops at the most point in the schedule, when backup alternatives are least available. Thus, most of the
problems need to be solved before the test phase, as it has to perform some other important operations.

(a) Hire a team of test specialists, who are not involved in the original design.

(b) Apply visual inspections to discover the obvious errors, such as skipping the wrong addresses, dropping of
minus signs etc.

(c) Conduct a test for every logic path;

(d) Employ the final checkout on the target computer.

(e) Involve the customer. The customer must be involved in a formal way, so that, he has devoted himself at
the initial stages before final delivery. The customers perception, assessment and commitment can strengthen
the development effort. Hence, an initial design step followed by a “preliminary software review", “critical
software design reviews", during design and a "final software acceptance review" after testing is performed.

THE WATERFALL MODEL (IN PRACTICE)

= Some software projects still practice the conventional software management approach.
= |t is useful to summarize the characteristics of the conventional process as it has typically been applied,
which is not necessarily as it was intended. Projects destined for trouble frequently exhibit the following
symptoms:
(a) Protracted integration and late design breakage
(b) Late risk resolution
(c) Requirements — driven functional decomposition
(d) Adversarial (conflict or opposition) stakeholder relationships
(e) Focus on documents and review meetings.

(@) Protracted Integration and Late Design Breakage
The percentage of progress achieved in the development process against time is shown in Figure.
The following sequence was common:
= Early success via paper designs and thorough (often too thorough) briefings
= Commitment to code late in the life cycle
= Integration nightmares (unpleasant experience) due to unforeseen implementation issues and inter
= Heavy budget and schedule pressure to get the system working
= Late shoe-homing of no optimal fixes, with no time for redesign
= A very fragile, unmentionable product delivered late
Hence, when a waterfall model is used in the process, late integration and performance degradation occurs.

Format Ad hoc text Flowcharts Sg;;ce Configuration baselines

Activity Requirements | Program Coding and Protracted integration and testing
analysis design unit testing

Product Documents Documents Coded units Fragile baselines

Sequential activities: requirements — design — coding — integration — testing
100% Integration
begins

%

E .
=4 Late design
E E breakage
88

Ex

% e

3 Original

target date

Project Schedule
Progress profile of a conventional software project

Expenditures by activity for a
conventional software project

ACTIVITY COST
Management 5%
Requirements 5%
Design . 10%
Code and unit testing 30%
Integration and test 40%
Deployment 5%
Environment 5%

Total 100%

In the conventional model, the entire system was designed on paper, then implemented all at once, then
integrated. Only at the end of this process was it possible to perform system testing to verify that the
fundamental architecture was sound.

(b) Late risk resolution
A serious issue associated with the waterfall lifecycle was the lack of early risk resolution.
A risk is defined as the probability of missing a cost, schedule, feature, or quality goal.
The Figure illustrates a typical risk profile for conventional waterfall model projects. It includes four distinct
periods of risk exposure.
= Early in the life cycle, as the requirements- were being specified, the actual risk exposure was highly
unpredictable.
= After a design concept is available to balance the understanding the requirements, the risk exposure is
stabilized.

= When integration began, during this period real design issues were resolved and engineering tradeoffs

were made.
| Requirements = Design — Coding Integration Testing >
High
Focused Risk ' Controlled Risk
Resolution : Management
@ Period : Period
= :
oy
(=]
j=
>
(¥hr}
—
el
(ot
E+]
22
e .
o .
Risk Exploration Risk Elaboration
Period . Period
Low

Project Life Cycle

Risk profile of a conventioral softivare project across its life cycle

(c) Requirements — driven functional decomposition
The software development process is requirements driven i.e., initially gives precise definition for the
requirements and then provides implementation for them.

The requirements are specified completely and clearly before any other activities in the software development
process. It immaturely treats all the requirements, equally. Requirements specification is an important and
difficult job in the development process

The basic assumption of the waterfall process is that, requirements are specified in a functional manner,
according to when the software can be divided into functions followed by the requirements allocation to the
resulting components.

System Software Software Software
Requirements Requirements Components Units
Ra
Rb Fa Fb Fc Fa Fb Fe
—»
Rec
R1 >, Ri b
F F F Fi F Fk
Rz Rj i i k i
. . - —
AN Rk
Mx Fx Fy Fz Fx Fy Fz
Ry
. — —
Rz

Suboptimal software component organization resulting from a requirements-
driven approach

(d) Adversarial (conflict or opposition) stakeholder relationships

The conventional process tended to result in adversarial stakeholder relationships, in large part because of the
difficulties of requirement specification and the exchange of information solely through paper documents that
captured engineering information in ad hoc formats.

The following sequence of events was typical for most contractual software efforts:

(a) The contractor prepared a draft contract-deliverable document that captured an intermediate artifact and
delivered it to the customer for approval.

(b) The customer was expected to provide comments (typically within 15 to 30 days).

(c) The contractor incorporated these comments and submitted (typically within 15 to 30 days) a final version
for approval.

This one-shot review process encouraged high levels of sensitivity on the part of customers and contractors.

(e) Focus on documents and review meetings.
Emphasis on documents generation while describing a software product causes insufficient focus on
producing tangible product increments.

Implementation of the major milestones can be done through documents specification. Contractors, rather than
reducing the risks to improve the product quality, produces large amount of paper for creating the documents
and only the simple things are reviewed.

Hence, most design reviews have low engineering value and high costs in terms of schedule and effort.
Results of conventional software project design reviews

APPARENT RESULTS REAL RESULTS

Big briefing to a diverse audience Only a small percentage of the audience under-
stands the software.

Briefings and documents expose few of the impor-
tant assets and risks of complex software systems.

A design that appears to be compliant There is no tangible evidence of compliance.

Compliance with ambiguous requirements is of
little value.

Coverage of requirements {typically Few (tens) are design drivers.

hundreds)

Dealing with all requirements dilutes the focus on
the critical drivers.

A design considered “innocent until The design is always guilty.

proven guilty” Design flaws are exposed later in the life cycle.

1.2. CONVENTIONAL SOFTWARE MANAGEMENT PERFORMANCE

Barry Boehm™s “Industrial software Metrics top 10 List” is a good, objective characterization of the state of
software development.

1) Finding and fixing a software problem after delivery costs 100 times more than finding and fixing the
problem in early design phases.

2) You can compress software development schedules 25% of nominal (small), but no more.

3) For every $1 you spend on development, you will spend $2 on maintenance.

4) Software development and maintenance costs are primarily a function of the number of source lines of
code.

5 Variations among people account for the biggest difference in software productivity.

6) The overall ratio of software to hardware costs is still growing. In 1955 it was 15:85; in 1985, 85:15.

7) Only about 15% of software development effort is devoted to programming.

8 Software systems and products typically cost 3 times as much per SLOC as individual software programs.
Software-system products cost 9 times as much.

9 Walkthroughs catch 60% of the errors.

10) 80/20 Principle: 80% of the contribution comes from 20% of the contributors.

- 80% of the engineering is consumed by 20% of the requirements.

- 80% of the software cost is consumed by 20% of the components.

- 80% of the errors are caused by 20% of the components.

- 80% of the software scrap and rework is caused by 20% of the errors.

- 80% of the resources are consumed by 20% of the components.

- 80% of the engineering is accomplished by 20% of the tools.

- 80% of the progress is made by 20% of the people.

SOFTWARE ECONOMICS

Most software cost models can be abstracted into a function of five basic parameters: size, process, personal,
environment and required quality.
= The gize of the end product (in human-generated components), which is typically quantified in terms
of the number of source instructions or the number of function points required to develop the required
functionality.
= The process used to produce the end product, in particular the ability of the process to avoid non-
value-adding activities (rework, bureaucratic delays, communications overhead).
= The capabilities of software engineering personnel, and particularly their experience with the
computer science issues and the applications domain issues of the project.
= The gnvironment, which is made up of the tools and techniques available to support efficient software
development and to automate the process
= The required guality of the product, including its features, performance, reliability and adaptability.
The relationships among these parameters and the estimated costs can be written as follows:
Effort = (Personnel) (Environment)(Quality)(SizeP %)
One important aspect of software economics (as represented within today's software cost models) is that the
relationship between effort and size exhibits a diseconomy of scale. The diseconomy of scale of software
development is a result of the process exponent being greater than 1.0. Contrary to most manufacturing
processes, the more software you build, the more expensive it is per unit item.

The three generations or software development are defined as follows:

1) Conventional: 1960s and 1970s, craftsmanship. Organizations used custom tools, custom processes, and
virtually all custom components built in primitive languages. Project performance was highly predictable in
that cost, schedule, and quality objectives were almost always underachieved.

2) Transition: 1980s and 1990s, software engineering. Organizations used more-repeatable processes and off-
the-shelf tools, and mostly (>70%) custom components built in higher level languages. Some of the
components (<30%) were available as commercial products, including the operating system, database
management system, networking, and graphical user interface.

3) Modern practices: 2000 and later, software production. This book's philosophy is rooted in the use of
managed and measured processes, integrated automation environments, and mostly (70%) off-the shelf
components. Perhaps as few as 30% of the components need to be custom built Technologies for environment
automation, size reduction, and process improvement are not independent of one another. In each new era, the

7

key is complementary growth in all technologies. For example, the process advances could not be

successfully without new component technologies and increased tool automation.

Target objective: improved ROI
-~

\
|

_‘—-—*f>

— T TR

S e

p— / B / T @D

Software Size

- 1980s—1990s

- Process impovement
- Encapsulation-based
- Diseconomy of scale

- 19605—-1970s

- Waterfall model

- Functional design

- Diseconomy of scale

- 2000 and on

- Iterative development
- Component-based

- Return on investment

Conventional Transition

Corresponding envlronment size, and process technologles

Modern Practices

Environments/tools: Environment/toolis:

Custom Off-the-shelf, separate

Size:
30% component-based
70% custom

Size:

100% custom

Environment/tools:

Off-the-shelf, integrataed

Size:
70% component-based
20% custom

Process: Process:

Ad hoc Repeatable

Proceoss:

Managed/measured

Typical project performance
Predictably bad ;
Always:
Over budget
Over schedule

Unpredictable
Infrequently:

On budget

On schedule

FIGURE 2-1.

Predictable

Usually:
On budget
On schedule

Three gernnerations of softiware ecornorrrics leadirg to the target objective

used

Organizations are achieving better economies of scale in successive technology eras-with very large projects
(systems of systems), long-lived products, and lines of business comprising multiple similar projects. Figure
2-2 provides an overview of how a return on investment (ROI) profile can be achieved in subsequent efforts

across life cycles of various domains.

Achieving ROl across a line of business

Investment in common architecture, Eiret
rocess, and environment for all aystem
ine-of-business systems

Second
system:

[Nth system

T Software
RO1)

Cosat per unit

Achieving ROI across a project with multiple iterations

Investment in robust architecture, mature First
iterative process. and process automation iteration

Second
iteration

Line-of—Business Life Cycle: Successive Systems

Nth itoration

— =

o T —
Software
ROl

ol e ol e S

Cost per unit

Project Life Cycle: Successive lterations

Achieving ROI across a life cycle of product releases

Investment in product architecture, First
life-cycle release process, and process ralaoase
automation

Second
release

Nth release |

Software
ROl

Cost poer unit

Product Life Cycle: Successive Releases

FIGURE 2-2. Retzerrz ©orz irzvestrrierzt irz differessr dorriairzs

PRAGMATIC SOFTWARE COST ESTIMATION

One critical problem in software cost estimation is a lack of well-documented case studies of projects that
used an iterative development approach. Software industry has inconsistently defined metrics or atomic units
of measure, the data from actual projects are highly suspect in terms of consistency and comparability. It is
hard enough to collect a homogeneous set of project data within one organization; it is extremely difficult to
homogenize data across different organizations with different processes, languages, domains, and so on.
There have been many debates among developers and vendors of software cost estimation models and tools.
Three topics of these debates are of particular interest here:

1. Which cost estimation model to use?

2. Whether to measure software size in source lines of code or function points?

3. What constitutes a good estimate?
There are several popular cost estimation models (such as COCOMO, CHECKPOINT, ESTIMACS,
Knowledge Plan, Price-S, ProQMS, SEER, SLIM, SOFTCOST, and SPQR/20), CO COMO is also one of the
most open and well-documented cost estimation models. The general accuracy of conventional cost models
(such as COCOMO) has been described a_“within 20% of actual, 70% of the time.”

= Most real-world use of cost models is bottom-up (substantiating a target cost) rather than top-down
(estimating the “should” cost). Figure 2-3 illustrates the predominant practice: the software project
manager defines the target cost of the software, and then manipulates the parameters and sizing until
the target cost can be justified. The rationale for the target cost may be to win a proposal, to solicit
customer funding, to attain internal corporate funding, or to achieve some other goal.

= The process described in figure 2-3 is not all bad. In fact, it is absolutely necessary to analyze the cost
risks and understand the sensitivities and trade-offs objectively. It forces the software project manager
to examine the risks associated with achieving the target costs and to discuss this information with
other stakeholders.

Software manager,
software architecture
manager, software
development manager,
software assessment
manager

“This project must cost $X
to win this business.”

K I Cost modelers “Here's how

justify that cost.”
Risks, options, J *
trade-offs,
alternatives RS

FIGURE 2-3. The predominant cost estimation process

e Cost estimate

A good software cost estimate has the following attributes:

= |tisconceived and supported by the project manager, architecture team, development team and test
accountable for performing the work

= |tisaccepted by all stakeholders as ambitious but realizable.

= Itis based on a well-defined software cost model with a credible basis.

= |t is based on a database of relevant project experience that includes similar processes, similar
technologies, similar environments, similar quality requirements and similar people.

= |t is define din enough detail so that its key risk areas are understood and the probability of successis
objectively assessed.

SPM UNIT 11 (Part-1)

Improving Software Economics: Reducing Software Product Size, Improving software Processes, Improving Team
Effectiveness, Improving Automation, Achieving Required Quality, Peer Inspections

INTRODUCTION

Five basic parameters of the software cost model are
1. Reducing the size or complexity of what needs to be developed.
2. Improving the development process
3. Using more-skilled personnel and better teams (not necessarily the same thing)
4. Using better environments (tools to automate the process)
5. Trading off or backing off on quality thresholds
These parameters are given in priority order for most software domains.
The following Table lists some of the technology developments, process improvement efforts, and
management approaches targeted at improving the economics of software development and integration.

Table: Important trends in improving software economics

COST MODEL PARAMETERS

TRENDS

Size
Abstraction and component—based
development technologies

Higher order languages (C++, Ada 95, Java, Visual Basic, etc.)
Object-oriented (analysis, design, programming)

Reuse

Commercial components

Process
Methods and techniques

Iterative development

Process maturity models
Architecture-first development
Acquisition reform

Personnel
People Factors

Training and personnel skill development Teamwork
Win-win cultures

Environment
Automation technologies and tools

Integrated tools (visual modeling, compiler, editor, debugger,
change management, etc.).

Open systems

Hardware Platform performance

Automation of coding, documents, testing, analyses

Quality
Performance, reliability, accuracy

Hardware platform performance
Demonstration-based assessment
Statistical quality control

REDUCING SOFTWARE PRODUCT SIZE

» The most significant way to improve affordability and return on investment (ROI) is usually to produce a

product that achieves the design goals with the minimum amount of human-generated source material.

» Component-based development is introduced here as the general term for reducing the "source™ language

size necessary to achieve a software solution.

> Reuse, object oriented technology, automatic code production, and higher order programming languages

are all focused on achieving a given system with fewer lines of human-specified source.

10

» This size reduction is the primary motivation behind improvements in higher order languages (such as
C++, Ada 95, Java, Visual Basic, and fourth-generation languages), automatic code generators (CASE
tools, visual modeling tools, GUI builders), reuse of commercial components (operating systems,
windowing environments, database management systems, middleware, networks), and object-oriented
technologies (Unified Modeling Language, visual modeling tools, architecture frameworks).

» In general, when size-reducing technologies are used, they reduce the number of human-generated source
lines.

LANGUAGES

» Universal function points (UFPs) are useful estimators for language-independent, early life-cycle
estimates.

» The basic units of function points are external user inputs, external outputs, internal logical data groups,
external data interfaces, and external inquiries.

» SLOC metrics are useful estimators for software after a candidate solution is formulated and an
implementation language is known. Substantial data have been documented relating SLOC to function
points.

Language expressiveness of some
of today’s popular languages

LANGUAGE SLOC PER UFP
Assembly 320
C 128
FORTRAN 77 . 105
COBOL 85 91
Ada 83 71
C++ 56
Ada 95 55
Java 55
Visual Basic 35

a) Visual basic is very powerful and expressive in building simple interactive applications but it would not be
used for real time, embedded.

b) Ada 95 might be the best language for a catastrophic, cost of failure system that controls nuclear power
plant but it would not be used for highly parallel, scientific, number crunching program running on a super
computer.

c) Ada 83 is used by Department of Defense (DOD) to increase it would provide it expressiveness.

d) C++ incorporated several advances with in Ada as well as advanced support for object oriented
programming.

e) C compatability made easy for C programmer to transition to C++

f) The evolution of Java has eliminated many problems in C++, while conserving object oriented features and
adding further support for portability and support.

UPFs (Universal Function Points) are useful estimators for language-independent in the early life cycle

phases.
1,000,000 lines of assembly language

400,000 lines of C
220,000 lines of Ada 83
175,000 lines of Ada 925 or C++

The values indicate the relative expressiveness provided by various languages.

11

OBJECT-ORIENTED METHODS AND VISUAL MODELING

» There has been at widespread movement in the 1990s toward object-oriented technology. The advantages
of object-oriented methods include improvement in software productivity and software quality. The
fundamental impact of object-oriented technology is in reducing the overall size of what needs to be
developed.

Booch describes the following three reasons for the success of the projects that are using Object

Oriented concepts:

1. An object-oriented model of the problem and its solution encourages a common vocabulary between
the end users of a system and its developers, thus creating a shared understanding of the problem being
solved.

2. The use of continuous integration creates opportunities to recognize risk early and make incremental
corrections without destabilizing the entire development effort.

3. An object-oriented architecture provides a clear separation of concerns among disparate elements of a
system, creating firewalls that prevent a change in one part of the system from rending the fabric of the
entire architecture.

Booch also summarized five characteristics of a successful object-oriented project:

1. Arruthless focus on the development of a system that provides a well understood collection of essential
minimal characteristics.

2. The existence of a culture that is centered on results, encourages communication, and yet is not afraid

to fail.

The effective use of object-oriented modeling

The existence of a strong architectural vision

5. The application of a well-managed iterative and incremental development life cycle.

> w

REUSE

» Reusing existing components and building reusable components have been natural software engineering
activities since the earliest improvements in programming languages.

» Software design methods have always dealt implicitly with reuse in order to minimize development costs
while achieving all the other required attributes of performance, feature set, and quality.

» Most truly reusable components of value are transitioned to commercial products supported by
organizations with the following characteristics:
1. They have an economic motivation for continued support.
2. They take ownership of improving product quality, adding new features, and transitioning to new

technologies.

3. They have a sufficiently broad customer base to be profitable.

> Reuse is an important discipline that has an impact on the efficiency of all workflows and the quality of
most artifacts. The cost of developing a reusable component is not trivial. The following Figure examines
the economic tradeoffs. The steep initial curve illustrates the economic obstacle to developing reusable
components.

Many-project solution: Operating with high
value per unit investment, typical of
commercial products

S project solution: 1259, more cost and
1502 more time

Development Cost and
Sehedue Resources

2 project solution: 5092 Mmore cost and 100%: more time

1 project solution: SN anmnd M months

Number of Projects Using Reusable Components

GURE 3-1._ Clerst carzed schediele irrvestrrrerits mnecessary tor achicve rewescalbile coreifrorterzts

12

2.1.4. COMMERCIAL COMPONENTS

» A common approach being pursued today in may domains is to maximize integration of commercial
components and off-the-shelf products.

» While the use of commercial components is certainly desirable as a means of reducing custom
development, it has not proven to be straight forward in practice.

» The following Table identifies some of the advantages and disadvantages of using commercial
components.

APPROACH ADVANTAGES DISADVANTAGES
Commercial 1. Predictable license 1. Frequent upgrades
components costs 2. Up-front license fees
2. Broadly used, mature 3. Recurring maintenance fees
technology Available 4. Dependency on vendor
now 5. Run-time efficiency sacrifices
3. Dedicated support 6. Functionality constraints.
organization 7. Integration not always trivial
4. Hardware/ Software 8. No control over upgrades and maintenance
independence 9. Unnecessary features that consume extra
5. Rich in functionality resources
10. Often Inadequate reliability and Stability.
11. Multiple-vendor incompatibilities
Custom 1. Complete change 1. Expensive, unpredictable development
development freedom 2. Unpredictable availability date
2. Smaller, often 3. Undefined maintenance model
simpler 4. Often immature and fragile
implementations 5. Single-platform dependency
3. Often better 6. Drain on expert resources
performance
4. Control of
development and
enhancement

IMPROVING SOFTWARE PROCESSES

» Process is an overloaded term. For software-oriented organizations, there are many processes and sub
processes. Three distinct process perspectives are:

1 Metaprocess: an organization's policies, procedures, and practices for pursuing a software intensive
line of business. The focus of this process is on organizational economics, long-term strategies, and
software ROI.

2 Macroprocess: a project's policies, procedures, and practices for producing a complete software
product within certain cost, schedule, and quality constraints. The focus of the macro process is on
creating an adequate instance of the Meta process for a specific set of constraints.

3. Microprocess: a project team's policies, procedures, and practices for achieving an artifact of the
software process. The focus of the micro process is on achieving an intermediate product baseline with
adequate quality and adequate functionality as economically and rapidly as practical.

13

Table:

three levels of process and their attributes

ATTRIBUTES | METAPROCESS MACROPROCESS | MICROPROCESS
Subject Line of Business Project Iteration
Objectives Line-of-business Project Profitability Resource Management
profitability Risk management Risk resolution Milestone
Competitiveness Project Budget, budge, schedule, quality
Schedule, quality
Audience Acquisition Software project Subproject Managers
authorities, managers Software Engineers
customers, Software engineers
organizational
management
Metrics Project predictability | On budget, on On budget, on schedule
Revenue, market schedule major milestone progress/
share Major milestone iteration scrap and rework
success
Project scrap and
rework
Concerns Bureaucracy Vs. Quality Vs Financial | Content Vs schedule
Standardization Performance
Time Scales 6 to 12 months 1 to many years 1 to 6 months

IMPROVING TEAM EFFECTIVENESS

» Teamwork is much more important than the sum of the individuals. With software teams, a project

manager needs to configure a balance of solid talent with highly skilled people in the leverage positions.

» Some maxims of team management include the following:
1. A well-managed project can succeed with a nominal Engineering team.

2. A mismanaged project will almost never succeed, even with an expert team of Engineers. A well-

1.
2.

architected system can be built by a nominal team of software builders.

3. A poorly architected system will flounder even with an expert team of builders.
» Boehm five staffing principles are:
The principle of top talent: Use better and fewer people
The principle of job matching: Fit the tasks to the skills and motivation of the people available.

3. The principle of career progression: An organization does best in the long run by helping its people to
self-actualize.

4. The principle of team balance: Select people who will complement and harmonize with one another

5. The principle of phase-out: Keeping a misfit on the team doesn't benefit anyone.

» Software project managers need many leadership qualities in order to enhance team effectiveness. The
following are some crucial attributes of successful software project managers that deserve much more
attention:

1. Hiring skills: Few decisions are as important as hiring decisions. Placing the right person in the right
job seems obvious but is surprisingly hard to achieve.

2. Customer-interface skill: Avoiding adversarial relationships among stakeholders is a prerequisite for
success.

14

3. Decision-Making skill: The jillion books written about management have failed to provide a clear
definition of this attribute.

4. Team- building skill: Teamwork requires that a manager establish trust, motivate progress, exploit
eccentric prima donnas, transition average people into top performers, eliminate misfits, and
consolidate diverse opinions into a team direction.

5. Selling skill: Successful project managers must sell all stakeholders (including themselves) on
decisions and priorities, sell candidates on job positions, sell changes to the status quo in the face of
resistance, and sell achievements against objectives.

IMPROVING AUTOMATION THROUGH SOFTWARE ENVIRONMENTS

The tools and environment used in the software process generally have a linear effect on the productivity
of the process.

Planning tools, requirements management tools, visual modeling tools, compilers, editors, debuggers,
quality assurance analysis tools, test tools, and user interfaces provide crucial automation support far
evolving the software engineering artifacts.

At first order, the isolated impact of tools and automation generally allows improvements of 20% to 40%
in effort.

However, tools and environments must be viewed as the primary delivery vehicle for process automation
and improvement, so their impact can be much higher.

Automation of the design process provides payback in quality. The ability to estimate costs andschedules,
and overall productivity using a smaller team. Integrated toolsets play an increasingly important role in
incremental/iterative development by allowing the designers to traverse quickly among development
artifacts and keep them up-to-date.

Round-trip Engineering is a term used to describe the key capability of environments thatsupport
iterative development.

Forward Engineering is the automation of one engineering artifact from another, more abstract
representation. For example, compilers and linkers have provided automated transition of source codeinto
executable code.

Reverse engineering is the generation or modification of a more abstract representation from an existing
artifact.

Economic improvements associated with tools and environments. It is common for tool vendors to make
relatively accurate individual assessments of life-cycle activities to support claims about the potential
economic impact of their tools. For example, it is easy to find statements such as the following from
companies in a particular tool:

1. Requirements analysis and evolution activities consume 40% of life-cycle costs.

2. Software design activities have an impact on more than 50% of the resources.

3. Coding and unit testing activities consume about 50% of software development effort and schedule.
Test activities can consume as much as 50% of a project's resources.

Configuration control and change management are critical activities that can consume as much as 25% of
resources on a large-scale project.

Documentation activities can consume more than 30% of project engineering resources.

Project management, business administration, and progress assessment can consume as much as 30% of
project budgets.

ACHIEVING REQUIRED QUALITY

Software best practices are derived from the development process and technologies. Key practices that
improve overall software quality include the following:

15

4.

5.

Focusing on driving requirements and critical use cases early in the life cycle, focusing on
requirements completeness and traceability late in the life cycle, and focusing throughout the life cycle
on a balance between requirements evolution, design evolution, and plan evolution.

Using metrics and indicators to measure the progress and quality of architecture as it evolves from a
high-level prototype into a fully compliant product.

Providing integrated life-cycle environments that support early and continuous configuration control,
change management, rigorous design methods, document automation, and regression test automation.
Using visual modeling and higher level languages that support architectural control, abstraction,
reliable programming, reuse, and self-documentation

Early and continuous insight into performance issues through demonstration-based evaluations.

Conventional development processes stressed early sizing and timing estimates of computer program resource
utilization. However, the typical chronology of events in performance assessment was as follows:

1.

2.

Project Inception: The proposed design was asserted to be low risk with adequate performance
origin.

Initial design review: Optimistic assessments of adequate design margin were based mostly on paper
analysis or ought simulation of the critical threads. In most cases, the actual application algorithmsand
database sizes were fairly well understood.

Mid-life-cycle design review: The assessments started whittling away at the margin, as early
benchmarks and initial tests began exposing the optimism inherent in earlier estimates.

Integration and Test: Serious performance problems were uncovered, necessitating fundamental
changes in the architecture. The underlying infrastructure was usually the scapegoat, but the real
culprit was immature use of the infrastructure, immature architectural solutions, or poorlyunderstood
early design trade-offs.

PEER INSPECTIONS: A PRAGMATIC VIEW

> Peer inspections are frequently over hyped as the key aspect of a quality system. In my experience, peer
reviews are valuable as secondary mechanisms, but they are rarely significant contributors to quality
compared with the following primary quality mechanisms and indicators, which should be emphasized in
the management process:

1.

2.

3.

4.

5.

Transitioning Engineering information from one artifact set to another, thereby assessing the
consistency, feasibility, understandability, and technology constraints inherent in the engineering
artifacts.

Major milestone demonstrations that force the artifacts to be assessed against tangible criteria in the
context of relevant use cases

Environment tools (compilers, debuggers, analyzers, automated test suites) that ensure representation
rigor, consistency, completeness, and change control

Life-cycle testing for detailed insight into critical trade-offs, acceptance criteria and requirements
compliance.

Change management metrics for objective insight into multiple-perspective change trendsand
convergence or divergence from quality and progress goals.

Inspections are also a good vehicle for holding authors accountable for quality products. All authors of
software and documentation should have their products scrutinized as a natural by product of the process.
Therefore, the coverage of inspections should be across all authors rather than across all components.

16

SPM UNIT 11 (Part-11) and UNIT-111 (Part-1)

The Old way and the NEW way: Principles of Conventional Software Engineering, Principles of Modern Software
Management, Transitioning to an Iterative Process.
Life Cycle Phases: Engineering and Production Stages, Inception. Elaboration, Construction, Transition Phases.

PRINCIPLES OF CONVENTIONAL SOFTWARE ENGINEERING

Based on many years of software development experience, the software industry proposed so many principles (nearly
201 by — Davis*s). Of which Davis®s top 30 principles are:

1
2.

3.

10.

11.
12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

Make quality #1: Quality must be quantified and mechanisms put into place to motivate its achievement.
High-quality software is possible: Techniques that have been demonstrated to increase quality include
involving the customer, prototyping, simplifying design, conducting inspections, and hiring the best people.
Give products to customers early: No matter how hard you try to learn users needs during the requirements
phase, the most effective way to determine real needs is to give users a product and let them play with it.
Determine the problem before writing the requirements: When faced with what they believe is a problem,
most engineers rush to offer a solution. Before you try to solve a problem, be sure to explore all the alternatives
and don't be blinded by the obvious solution.

Evaluate Design Alternatives: After the requirements are agreed upon, you must examine a variety of
architectures and algorithms. You certainly do not want to use “architecture™ simply because it was used in the
requirements specification.

Use an appropriate process model: Each project must select a process that makes the most sense for that
project on the basis of corporate culture, willingness to take risks, application area, volatility of requirements,
and the extent to which requirements are well understood.

Use different languages for different phases: Our industry's eternal thirst for simple solutions to complex
problems has driven many to declare that the best development method is one that uses the same notation
throughout the life cycle.

Minimize Intellectual Distance: To minimize intellectual distance, the software's structure should be as close
as possible to the real —world structure.

Put techniques before tools: An undisciplined software engineer with a tool becomes a dangerous,
undisciplined software Engineer.

Get it right before you make it faster: It is far easier to make a working program run faster than it is to make a
fast program work. Don't worry about optimization during initial coding.

Inspect Code: Inspecting the detailed design and code is a much better way to find errors than testing.

Good Management is more important than good technology: Good management motivates people to do
their best, but there are no universal "right" styles of management.

People are the key to success: Highly skilled people with appropriate experience, talent, and training are key.
Follow with Care: Just because everybody is doing something does not make it right for you. It may be right,
but you must carefully assess its applicability to your environment.

Take responsibility: When a bridge collapses we ask, "What did the engineers do wrong?" Even when
software fails, we rarely ask this. The fact is that in any engineering discipline, the best methods can be used to
produce awful designs, and the most antiquated methods to produce elegant designs

Understand the customer's priorities: It is possible the customer would tolerate 90% of the functionality
delivered late if they could have 10% of it on time.

The more thy see, the more they need: The more functionality (or performance) you provide a user, the more
functionality (or performance) the user wants.

Plan to throw one away: One of the most important critical success factors is whether or not a product is
entirely new. Such brand-new applications, architectures, interfaces, or algorithms rarely work the first time.
Design for Change: The architectures, components and specification techniques you use must accommodate
change.

Design without documentation is not design: I have often heard software engineers say, “I have finished the
design. All that is left is the documentation.”

Use tools, but be realistic: Software tools make their users more efficient.

17

22. Avoid tricks: Many programmers love to crate programs with tricks constructs that perform a function
correctly, but in an obscure way. Show the world how smart you are by avoiding tricky code.

23. Encapsulate: Information-hiding is a simple, proven concept that results in software that is easier to test and
much easier to maintain.

24. Use coupling and cohesion: Coupling and cohesion are the best ways to measure software's inherent
maintainability and adaptability.

25. Use the McCabe complexity measure: Although there are many metrics available to report the inherent
complexity of software, none is as intuitive and easy to use as Total McCabe"s.

26. Don't test your own software: Software developers should never be the primary testers of their own software.

27. Analyze causes for errors: It is far more cost-effective to reduce the effect of an error by preventing it than it is
to find and fix it. One way to do this is to analyze the causes of errors as they are detected.

28. Realize that software's entropy increases: Any software system that undergoes continuous change will grow
in complexity and will become more and more disorganized.

29. People and time are not interchangeable: Measuring a project solely by person-months makes little sense.

30. Expect Excellence: Your employees will do much better if you have high expectations for them.

PRINCIPLES OF MODERN' SOFTWARE MANAGEMENT

Top 10 principles of modern software management are:

1. Base the process on an architecture-first approach: This requires that a demonstrable balance be achieved
among the driving requirements, the architecturally significant design decisions, and the life-cycle plans before
the resources are committed for full-scale development.

2. Establish an iterative life-cycle process that confronts risk early that confronts risk early: With today's
sophisticated software systems, it is not possible to define the entire problem, design the entire solution, build
the software, then test the end product in sequence. Instead, an iterative process that refines the problem
understanding, an effective solution, and an effective plan over several iterations encourages a balanced
treatment of all stakeholder objectives. Major risks must be addressed early to increase predictability and avoid
expensive downstream scrap and rework.

3. Transition design methods to emphasize component-based development: Moving from a line-of-code
mentality to a component-based mentality is necessary to reduce the amount of human-generated source code
and custom development.

Waterfall Process I Iterative Process

Reguirements first Architecture Ffirst

Custom dewveloprmeant Compornent-based development
Change avoidance Change management

Ad hoc tools Rowund-trip engineering

— ° Flanning and

Reguirarmeants anakhyrsis I'x_ analysis —__ Dresign
- —
T Drasign T, /_ 1 \\
e — - -
i \

| Cods and wnit test ™ |

- - - I
Suwubsystem imtegration ™, ‘_I—»j/
! = = — —
Sysbarm tast [I
- Assassrmeant Implemeaentation
rﬂmhitecture—first approach 1—> The central design element

Design and integration first, then production and test

| Iterative life-cycle process ’—b The risk management element
Risk control through ever-increasing function, performance, guality

| Component-based dewveloprment |—> The te_z-chncllogy element
Crbject-oriented methods, rigorous notations, visual modeling

L-C'hang-e management env-‘mnment'—» The control element
Meatrics, trends, process instrumantation

[Rouwund-trip engineering l—-— The automation element
Complementary tools, integrated environments

The tap fuve principles of a modern process

18

4. Establish a change Management Environment: the dynamics of iterative development, including concurrent
workflows by different teams working on shared artifacts, necessitates objectively controlled baselines.

5. Enhance change freedom through tools that support round-trip Engineering: Round trip engineering is the
environment support necessary to automate and synchronize engineering information in different formats (such
as requirements specifications, design models, source code, executable code, test cases).

6. Capture design artifacts in rigorous, model-based notation: A model based approach (such as UML)
supports the evolution of semantically rich graphical and textural design notations.

7. Instrument the process for objective quality control and progress assessment: Life-cycle assessment of the

progress and the quality of all intermediate products must be integrated into the process.

Use a demonstration-based approach: to assess intermediate artifacts.

Plan intermediate releases in groups of usage scenarios with evolving levels or detail: It is essential that the

software management process drive toward early and continuous demonstrations within the operational context

of the system, namely its use cases.

10. Establish a configurable process that is economically scalable: No single process suitable for all software
developments.

© ©

Maodern process approdches for solving conventional problems

EGNVENTIQNAL PROCESS: MODERN PROCESS: INHERENT RISK
TOP 10 RISKS IMPACT RESOLUTION FEATURES
1. Late breakage and Qualiry, Archirecture-first approach

excessive scrap/rework Eg}f:::lu]c Iteranive development

Auromated change management

Risk-confronting process

2. Artrition of key personnel Qualicy, Successful, early iterarions
cost,

5 schedule TI!IS-EWI:‘IEII‘!I}' management and Dlann:ing

3. Inadequate development Cost, Environments as Arst-class artifaces of the process
resources schedule Industrial-strength, integrated environments
Model-based engineering arrtifacrs

Round-trip enginesring

4. Adversarial stakeholders Cost, Demonstration-based review
schedule Use-case-oriented requirements/testung
5. Necessary technology Cost, Architecture-first approach
insertion schedule Component-based development
6. Reguirements creep Cost, Iterative development
schedule

Use case modeling

Demonstration-based review

7. Analysis paralysis Schedule Demonstration-based review

Use-case-oriented requirements/testing

8. Inadequate performance Qualiry Demonstration-based performance assessment

Early architecture performance feedback

9. Oweremphasis on artifacts Schedule Demonstration-based assessment

Objecrive quality control

10. Inadequate funcrion Quality Iterative development

Early prototypes, incremental releases

TRANSITIONING TO AN ITERATIVE PROCESS

» Modern software development processes have moved away form the conventional waterfall model, in which each
stage of the development process is dependent on completion of the previous stage.

» The economic benefits inherent in transitioning from the conventional waterfall model to an iterative development
process are significant but difficult to quantify.

19

» As one benchmark of the expected economic impact of process improvement, consider the process exponent
parameters of the COCOMO Il mode. This exponent can range from 1.01 (virtually no diseconomy of scale) to
1.26 (significant diseconomy of scale).

The following paragraphs map the process exponent parameters of CO COMO Il to my top 10 principles of a modern
process:

1. Application Precedentedness: domain experience is a critical factor in understanding how to plan and execute
a software development project. Early iterations in the life cycle establish precedents from which the product,
the process and the plans can be elaborated in evolving levels of detail.

2. Process flexibility: Development of modern software is characterized by such a broad solution space and so
many interrelated concerns that there is a paramount need for continuous incorporation of changes. A
configurable process that allows a common framework to be adapted across a range of projects is necessary to
achieve a software return on investment.

3. Architecture Risk Resolution: Architecture-first development is a crucial theme underlying a successful
iterative development process. A project team develops and stabilizes architecture before developing all the
components that make up the entire suite of applications components. An Architecture-first and component-
based development approach forces tile infrastructure, common mechanisms, and control mechanisms to be
elaborated early in the life cycle and drives all component make/buy decisions into the architecture process.

4. Team Cohesion: Successful teams are cohesive, and cohesive teams are successful. Successful teams and
cohesive teams share common objectives and priorities. Advances in technology (such as programming
languages, UML, and visual modeling) have enabled more rigorous and understandable notations for
communicating software engineering information, particularly in the requirements and design artifacts that
previously were ad hoc and based completely on paper exchange. These model-based formats have also enabled
the round-trip engineering support needed to establish change freedom sufficient for evolving design
representations.

5. Software Process Maturity: The Software Engineering Institute’s Capability Maturity Model (CMM) is a well-
accepted benchmark for software process assessment. One of key themes is that truly mature processes are
enabled through an integrated environment that provides the appropriate level of automation to instrument the
process for objection quality control.

LIFE CYCLE PHASES
A modern software development process must be defined to support the following:
1. Evolution of the plans, requirements, and architecture, together with well defined synchronization points
2. Risk management and objective measures of progress and quality
3. Evolution of system capabilities through demonstrations of increasing functionality

Engineering and Production Stages
To achieve economies of scale and higher returns on investment, we must move toward a software manufacturing
process driven by technological improvements in process automation and component based development. Two stages of
the life cycle are:

1. The Engineering stage, driven by less predictable but smaller teams doing design and synthesis activities.

2. The Production stage, driven by more predictable but larger teams doing construction, test, and deployment

activities.
The twra stages af the life cycle: engineering arnd production

LIFE-CYCLE EMNGINEERING 5TAGE PRODUCTION STAGE
ASPECT EMPHASIS EMPHASIS
Risk reduction Scheduie, technical feasibilicy Cost
Praoducts Architecture baseline Product release baselines
Activities Analysis, design, planning Implemencation, resung
Assessment DRemaonstration, nspection, analvsis Testing
Economics Resolving diseconomies of scale Exploiting economies of scale
Management Planning Operations

20

» The transition between engineering and production is a crucial event for the various stakeholders. The
production plan has been agreed upon, and there is a good enough understanding of the problem and the
solution that all stakeholders can make a firm commitment to go ahead with production.

» Engineering stage is decomposed into two distinct phases, inception and elaboration, and the production stage
into construction and transition. These four phases of the life-cycle process are loosely mapped to the
conceptual framework of the spiral model as shown in Figure:

Erngineaering Stage Production Stage

Imcapticon | Elaboratiomn

i _ P
! AN |] $.

Construction | Transiticon

G.b' | ! i :I —
T \ i L z
__k\‘_:_‘/,f/; \\‘—i—/ v
| ldea Architecture . Beta Releases » Products I\\
- - B ' I

The phases of the life-cvele process
INCEPTION PHASE

» The goal of this phase is to achieve concurrence among stakeholders on the lifecycle objectives for the project.

U Primary Objectives

» Establishing the project's software scope and boundary condition, including all operational concept, acceptance
criteria, and a clear understanding of what is and is not intended to be in the product.

» Discriminating the critical use cases of the system and the primary scenarios of operation that will drive the
major design trade-offs.

» Demonstrating at least one candidate architecture against some of the primary scenarios.

» Estimating the cost and schedule for the entire project (including detailed estimates for the elaboration phase).

» Estimating potential risks (sources of un predictability)

O Essential Activities

» Formulating the scope of the project. The information repository should be sufficient to define the problem
space and derive the acceptance criteria for the end product.

» Synthesizing the architecture: An information repository is created that is sufficient to demonstrate the
feasibility of at least one candidate architecture and an, initial baseline of make/buy decisions so that the cost,
schedule, and resource estimates can be derived.

» Planning and preparing a business case. Alternatives for risk management, staffing, iteration plans, and
cost/schedule/profitability trade-offs are evaluated.

O Primary Evaluation Criteria

» Do all stakeholders concur on the scope definition and cost and schedule estimates?

» Are requirements understood, as evidenced by the fidelity of the critical use cases?

» Are the cost and schedule estimates, priorities, risks, and development processes credible?

» Do the depth and breadth of an architecture prototype demonstrate the preceding criteria?

» Are actual resource expenditures versus planned expenditures acceptable?

ELABORATION PHASE

» Atthe end of this phase, the “Engineering” is considered complete. The elaboration phase activities must ensure
that the architecture, requirements, and plans are stable enough, and the risks sufficiently mitigated, that the cost
and schedule for the completion of the development call be predicted within an acceptable range. During the
elaboration phase, an executable architecture prototype is built in one or more iterations, depending on the
scope, size and risk.

O Primary Obijectives

» Base lining the architecture as rapidly as practical (establishing a configuration-managed snapshot in which all
changes are rationalized, tracked, and maintained)

» Base lining the vision

« Base lining a high-fidelity plan for the construction phase

« Demonstrating that the baseline architecture will support the vision at a reasonable cost in a reasonabletime

U Essential Activities

21

Elaborating the vision.

Elaborating the process and infrastructure.

Elaborating the architecture and selecting components.

Primary Evaluation Criteria

Is the vision stable?

Is the architecture stable?

Does the executable demonstration show that the major risk elements have been addressed and credibly

resolved?

Is the construction phase plan of sufficient fidelity, and is it backed up with a credible basis of estimate?
Do all stakeholders agree that the current vision can be met if the current plan is executed to develop the
complete system in the context of the current architecture?

Are actual resource expenditures versus planned expenditures acceptable?

CONSTRUCTION PHASE

During the construction phase, all remaining components and application features are integrated into the
application, and all features are thoroughly tested. Newly developed software is integrated where required. The
construction phase represents a production process, in which emphasis is placed on managing resources and
controlling operations to optimize costs, schedules and quality.

Primary Objectives

Minimizing development costs by optimizing resources and avoiding unnecessary scrap and rework

Achieving adequate quality as rapidly as practical

Achieving useful versions (alpha, beta and other test releases) as rapidly as practical

Essential Activities

Resource management, control and process optimization

Complete component development and testing against evaluation criteria.

Assessment of product releases against acceptance criteria of the vision.

Primary Evaluation Criteria

Is this product baseline mature enough to be deployed in the user community?

Is this product baseline stable enough to be deployed in the user community?

Are the stakeholders ready for transition to the user community?

Are actual resource expenditures versus planned expenditures acceptable?

TRANSITION PHASE

NS

The transition phase is entered when a baseline is mature enough to be deployed in the end-user domain. This
typically requires that a usable subset of the system has been achieved with acceptable quality levels and user
documentation so that transition to the user will provide positive results. This phase could include any of the
following activities:

Beta testing to validate the new system against user expectations.

Beta testing and parallel operation relative to a legacy system it is replacing.

Conversion of operational databases.

Training of user and maintainers- transition phase concludes when the deployment baseline has achieved the
complete vision.

Primary Objectives

Achieving user self-supportability

Achieving stakeholder concurrence that deployment baselines are complete and consistent with the evaluation
criteria of the vision

Achieving final produce baselines as rapidly and cost-effectively as practical.

Essential Activities

Synchronization and integration of concurrent construction increments into consistent deployment baselines
Deployment-specific engineering Assessment of deployment baselines against the complete vision and
acceptance criteria in the requirements set.

Primary Evaluation Criteria

Is the user satisfied?

Are actual resource expenditures versus planned expenditures acceptable?

22

SPM UNIT Il (Part-11)
Avrtifacts of the Process: The Artifact Sets. Management Artifacts, Engineering Artifacts, Programmatic Artifacts.
Model Based Software Architectures: A Management Perspective and Technical Perspective.

THE ARTIFACT SETS

» To make the development of a complete software system manageable, distinct collections of information are
organized into artifact sets. Artifact represents cohesive information that typically is developed and reviewed as a
single entity.

» Life-cycle software artifacts are organized into five distinct sets that are roughly partitioned by the underlying
language of the set:

1. Management (ad hoc textual formats),
2. Requirements (organized text and models of the problem space,
3. Design (models of the solution space),
4. Implementation (human-readable programming, language and associated source files), and
5. Deployment (machine-process able languages and associate files).
The artifact sets are shown in the following figure:

Requirements Set Design Set Implementation Set Deployment Set
1. Vision document 1. Design model(s) 1. Source code 1. Integrated product
2. Requirgmeaints 2. Tast modsal baselines exsculable
modelis) 3. Software 2. Associated baselines
architecture compile-timea 2. Associated
description files run=time files
3. Component A User manual

executables

" Management Set
Planning Artifacts Operational Artifacts
. Waork breakdown structure . Release descriptions
. Business case . Status assassments
. Release speacifications Softwara change order database
. Software development plan . Daployment documeants
. Environment

FNATTH
Gm M

Querview of the artifact sets

The Engineering sets consist of the requirements set, the design set, the implementation set, and the deployment set.
The Management Set:

» The management set captures the artifacts associated with process planning and execution.

» These artifacts use ad hoc notations, including text, graphics, or whatever representation is required to capture the
“contracts” among project personnel (project management, architects, developers, testers, marketers,
administrators), among stakeholders (funding authority, user, software project manager, organization manager,
regulatory agency), and between project personnel and stakeholders.

> Specific artifacts included in this set are the work breakdown structure (activity breakdown and financial tracking
mechanism), the business case (cost, schedule, profit expectations), the release specifications (scope, plan,
objectives for release baselines), the software development plan (project process instance), the release descriptions
(results of release baselines), the status assessments (periodic snapshots of project progress), the software change
orders (descriptions of discrete baseline changes), the deployment documents (cutover plan, training course, sales
rollout kit), and the environment (hardware and software tools, process automation & documentation).

» Management set artifacts are evaluated, assessed, and measured through a combination of the following:

e Relevant stakeholder review.

¢ Analysis of changes between the current version of the artifact and previous versions.

¢ Major milestone demonstrations of the balance among all artifacts and, in particular, the accuracy of the
business case and vision artifacts.

23

Requirements Set:

Requirements artifacts are evaluated, assessed, and measured through a combination of the following:

Design Set

Analysis of consistency with the release specifications of the management set.

Analysis of consistency between the vision and the requirements models.

Mapping against the design, implementation, and deployment sets to evaluate the consistency and
completeness and the semantic balance between information in the different sets.

Analysis of changes between the current version of requirements artifacts and previous versions (scrap,
rework, and defect elimination trends).

Subjective review of other dimensions of quality.

UML notation is used to engineer the design models for the solution. The design set contains varying levels of
abstraction that represent the components of the solution space (their identities, attributes, static relationships, dynamic
interactions). The design set is evaluated, assessed and measured through a combination of the following:
e Analysis of the internal consistency and quality of the design model
e Analysis of consistency with the requirements models
¢ Translation into implementation and deployment sets and notations (for example, traceability, source code
generation, compilation, linking) to evaluate the consistency and completeness and the semantic balance
between information in the sets.
» Analysis of changes between the current version of the design model and previous versions (scrap, rework, and
defect elimination trends).
* Subjective review of other dimensions of quality.

Implementation Set

» The implementation set includes source code (programming language notations) that represents the tangible
implementations of components (their form, interface, and dependency relationships).

> Implementation sets are human-readable formats that are evaluated, assessed, and measured through a combination
of the following:

Analysis of consistency with the design models.

Translation into deployment set notations (for example, compilation and linking) to evaluate the consistency
and completeness among artifact sets.

Assessment of component source or executable files against relevant evaluation criteria through inspection,
analysis, demonstration, or testing

Execution of stand-alone component test cases that automatically compare expected results with actual
results.

Analysis of changes between the current version of the implementation set and previous versions (scrap,
rework, and defect elimination trends).

Subjective review of other dimensions of quality.

Deployment Set

» The deployment set includes user deliverables and machine language notations, executable software, and the build
scripts, installation scripts, and executable target specific data necessary to use the product in its target environment.
> Deployment sets are evaluated, assessed, and measured through a combination of the following:

Testing against the usage scenarios and quality attributes defined in the requirements set to evaluate the
consistency and completeness and the semantic balance between information in the two sets.

Testing the partitioning, replication, and allocation strategies in mapping components of the implementation
set to physical resources of the deployment system (platform type, number, network topology).

Testing against the defined usage scenarios in the user manual such as installation, user oriented dynamic
reconfiguration, mainstream usage, and anomaly management

Analysis of changes between the current version of the deployment set and previous versions (defect
elimination trends, performance changes).

Subjective review of other dimensions of quality.

24

Management

Requiremenmts

Cresign

Implementation

Deployment

Life-cycle foctes on artifact sets

Most of today*s software development tools map closely to one of the five artifact sets.

1. Management: scheduling, workflow, defect tracking, change management, documentation, spreadsheet resource

management, and presentation tools.

Requirements: requirements management tools.

Design: visual modeling tools.

4. Implementation: compiler/debugger tools, code analysis tools, test coverage analysis tools, and test management
tools.

5. Deployment: test coverage and test automation tools, network management tools, commercial components (OS,
GUIs, RDBMS, networks, middleware), and installation tools.

wmn

Avrtifact Evolution over the Life Cycle

Each state of development represents a certain amount of precision in the final system description. Early in the lif e
cycle, precision is low and the representation is generally high. Eventually, the precision of representation is high and
everything is specified in full detail. Each phase of development focuses on a particular artifact set. At the end of each
phase, the overall system state will have progressed on all sets, as illustrated in following figure:

Engineering Stage Production Stage
Inception Elaboration Construction Transition
= =]
— —— _ _
C(ETRTER] | [Efgisle] | [ETasEtE) | T |
= = di m | [
B SEAE 0T SERINE L) AE SEINE ALA1 AF R |
4 £ 4 4 | 2|8 | & | s '8 | 3
| o= 1 E '——| = | E |z | E £ |
| m——— | 1 |
Management |__ __Mann:gnmanl Pl Managemeht : I | R

1] B

Life-cycle evolution of the artifact sets
The inception phase focuses mainly on critical requirements usually with a secondary focus on an initial deployment
view. During the elaboration phase, there is much greater depth in requirements, much more breadth in the design set,
and further work on implementation and deployment issues. The main focus of the construction phase is design and
implementation. The main focus of the transition phase is on achieving consistency and completeness of the
deployment set in the context of the other sets.

Test Artifacts

» The test artifacts must be developed concurrently with the product from inception through deployment. Thus, testing
is a full-life-cycle activity, not a late life-cycle activity.
» The test artifacts are communicated, engineered, and developed within the same artifact sets as the developed

product.
» The test artifacts are implemented in programmable and repeatable formats (as software programs).

25

» The test artifacts are documented in the same way that the product is documented.
» Developers of the test artifacts use the same tools, techniques, and training as the software engineers developing the

product.

* Management Set: The release specifications and release descriptions capture the objectives, evaluation

criteria, and results of an intermediate milestone.

* Requirements Set: The system-level use cases capture the operational concept for the system and the
acceptance test case descriptions, including the expected behavior of the system and its quality attributes.

e Design Set: A test model for non deliverable components needed to test the product baselines is captured in

the design set.

e Implementation Set: Self-documenting source code representations for test components and test drivers

provide the equivalent of test procedures and test scripts.

s Deployment Set: Executable versions of test components, test drivers, and data files are provided.

MANAGEMENT ARTIFACTS

The management set includes several artifacts that capture intermediate results and ancillary information necessary to
document the product/process legacy, maintain the product, improve the product and improve the process.

Management Set
Planning Artifacts
1, Work breakdown structure
2. Business case
3. Release specifications
4. Software development plan

Business Case:

Operational Artifacts

5. Rolease descriptions

6. Status assessments

7. Software chango order databaso
8. Deployment documents

9. Environment

» The business case artifact provides all the information necessary to determine whether the project is worth investing
in. It details the expected revenue, expected cost, technical and management plans, and backup data necessary to

demonstrate the risks and realism of the plans.

» The main purpose is to transform the vision into economic terms so that an organization can make an accurate ROI

assessment.

I. Context (domain, market, scopa)
Il. Technical approach
A. [Feature set achievement plan
B. Quality achievement plan
C. Engineering trade-offs and technical risks
. Management approach
A Schedule and schedule risk assessment
B. Objective measures of success
V. Ewvolutionary appendixes
A. Financial forecast
1. Cost estimate
2. Revenue estimate
3. Bases of estimates

Typical business case outline

Work Breakdown Structure:

» Work breakdown structure (WBS) is the vehicle for budgeting and collecting costs.
» To monitor and control a projects financial performance, the software project manager must have insight into
project costs and how they are expended. The structure of cost accountability is a serious project planning

constraint.

Software Change Order Database:

Managing change is one of the fundamental primitives of an iterative development process. With greater change
freedom, a project can iterate more productively. This flexibility increases the content, quality and number of iterations
that a project can achieve within a given schedule. Change freedom has been achieved in practice through automation,

26

and today“s iterative development environments carry the burden of change management. Organizational processes that
depend on manual change management techniques have encountered major inefficiencies.

Release Specifications
>

The scope, plan, and objective evaluation criteria for each baseline release are derived from the vision statement as

well as many other sources (make/buy analyses, risk management concerns, architectural considerations, shots in
the dark, implementation constraints, quality thresholds).

and requirements understanding matures.

These artifacts are intended to evolve along with the process, achieving greater fidelity as the life cycle progresses

Iteration content

. Measurable objectives

A. Ewaluation criteria

B. Followthrough approach

Demonstration plan

A. Schedule of activities

B. Team responsibilities

Operational scenarios (use cases demonstrated)
A. Demonstration proceduras

B. Traceability to vision and business case

.

Tyvpical release specification owutline

Software Development Plan:

The software development plan (SDP) elaborates the process framework into a fully detailed plan.
Two indications of a useful SDP are periodic updating (it is not stagnant shelf ware) and understanding and acceptance

by managers and practitioners alike.

Context (scope, objectives)
Software development process

A, Project primitives
1 1. Life-cycle phases
i 2. Artifacts
3. Waorkflows
4, Checkpoints
i B. Major milastone scope and content
| C. Process improvement procedures
. Software engineering environment
A. Process automation (hardware and software resource configuration)
B. Resource allccation proceduras (sharing across organizations, security

access)

1IV. Software change management
A. Configuration control board plan and procedures
| B. Software change order definitions and procedureas
C. Configuration baseline definitions and procedures
V. Software assessment
| A. Metrics collection and reporting procedures.
B. Risk management procedureas (risk identification, tracking, and resolution}
| C. Status assessment plan
| D. Acceplance test plan
| Vi. Standards and procedures
A. Standards and procedures for technical artifacts
Vil. Ewvolutionary appendixes

A, Minor milestone scope and content
B.

Human resources (organization, staffing plan, training plan}

Typical softuare developsrent plan outline

Release descriptions:

> Release description documents describe the results of each release, including performance against each of the
evaluation criteria in the corresponding release specification.

> Release baselines should be accompanied by a release description document that describes the evaluation criteria for
that configuration baseline and provides substantiation (through demonstration, testing, inspection, or analysis) that
each criterion has been addressed in an acceptable manner.

27

I Context
A. Release baseline content
B. Release metrics
. Releasa notes
A, Release-specific constraints or limitations
. Assessment results
A, Substantiation of passed evaluation criteria
B. Folliow-up plans for failed evaluation criteria
C. Recommendations for next release
. Outstanding issues
A, Action items
B. Post-mortem summary of lessons learned

Twprical release description ctuth'ne
Status Assessments:
Status assessments provide periodic snapshots of project health and status, including the software project manager®s risk
assessment, quality indicators, and management indicators. Typical status assessments should include a review of
resources, personnel staffing, financial data (cost and revenue), top 10 risks, technical progress (metrics snapshots),
major milestone plans and results, total project or product scope & action items.

Environment:

An important emphasis of a modern approach is to define the development and maintenance environment as a first-class
artifact of the process. A robust, integrated development environment must support automation of the development
process. This environment should include requirements management, visual modeling, document automation, host and
target programming tools, automated regression testing, and continuous and integrated change management, and feature
and defect tracking.

Deployment:

A deployment document can take many forms. Depending on the project, it could include several document subsets for
transitioning the product into operational status. In big contractual efforts in which the system operations manuals,
software installation manuals, plans and procedures for cutover (from a legacy system), site surveys, and so forth. For
commercial software products, deployment artifacts may include marketing plans, sales rollout kits, and training
Courses.

Management Artifact Sequences

In each phase of the life cycle, new artifacts are produced and previously developed mlifacts are updated to incorporate
lessons learned and to capture further depth and breadth of the solution. The following figure identifies a typical
sequence of artifacts across the life-cycle phases.

A o rrem | s rsasoim

s, Choriroies B e

I IncEprion | Elaboration s B L ST Oy I Trawmsition
Reamen 7| ibarar e 3 | Neeamon & | imred o= A | veraiion & | Tieral == | i 1
Rl ag e el Sel
1. Work b reskockomery Strascture r e
Z. Business case il F. e
3. Felease specilications PN il il il i, il
. Softwsarse developsmant Dilan e .
5. FAslease desScripbons Py £ F e, F . r
5. Status Sssessmaents) A T Ea 2 il W AT P N W il)
T Softeare change cocler oot e il . .
8. Creployrnent docurments s s il
D rres e e e PN N W
Reguirenmsents Set
1. Wision documant il M e,
2. Fleqgusre e ri=s emcaies s s s e
Desige Set
A Desian ookl (s Pl e e
2. Tast modsl e . . ,
3. Architechure descripoicn Pt . ol
B el e e L oo Sl
1. Source code basaelinas il il il e, il
B A soscEat ool coosrrrpsd b lirris Tileres . il . il .
& Component execudakblas il . il il il
e pi oy e nt Set
1. Brbesmrahe pHnoeciusct - os c L badhile . e il i i
Pasashnes
2. AssociEated run-tirmse files il il . il il
= ks rmanual A il

Arrifacr segreerrces aororss o eyprical fife cpale

28

4.3. ENGINEERING ARTIFACTS

Most of the engineering artifacts are captured in rigorous engineering notations such as UML, programming languages,
or executable machine codes. Three engineering artifacts are explicitly intended for more general review, and they
deserve further elaboration.

Vision document

» The vision document provides a complete vision for the software system under development and supports the
contract between the funding authority and eth development organization.

» A project vision is meant to be changeable as understanding evolves of the requirements, architecture, plans and
technology.

» A good visions document should change slowly.

The following figure provides a default outline for a visions document:

L Feature set description
A. Precedence and pricrity
H. Quality attributes and ranges
M. Required constraints
A. External interfaces
IV. Ewvolutionary appendixes
A. Use cases
1. Primary scenarios
2. Acceptance criteria and tolerances
B. Desired freedoms (potential change scenarios)

Tvpical vision document outline

Architecture Description:

The Architecture description provides an organized view of the software architecture under development. It is extracted
largely from the design model and includes views of the design, implementation and deployment sets sufficient to
understand how the operational concept of the requirements et will be achieved. The breadth of the architecture
description will vary from project to project depending on many factors. The following figure provides a default outline
form an architecture description.

Software Use Manual

» The software user manual provides the user with the reference documentation necessary to support delivered
software. Although content is highly variable across application domains, the user manual should include
installation procedures, usage procedures and guidance, operational constraints, and a user interface description at a
minimum.

» For software products with a user interfaced, this manual should be developed early in the life cycle because it is a
necessary mechanism for communication and stabilizing an important subset of requirements.

» The user manual should be written by members of the test team, who are more likely to understand the user*s
perspective than the development team.

[Architecture overview j
A, Objectives
| B. Constraints
C. Freedoms
Il. Architecture views
A. Design view
B. Process view
C. Component view
D. Deployment view
Hl. Architectural interactions
A. Operational concept under primary scenarios
B. Operational concepl under secondary scenarios
C. Operational concept under anomalous conditions
IV. Architecture performance
V. Rationale, trade-offs, and other substantiation

Typical architecture description outline

PRAGMATIC ARTIFACTS

a)

b)

d)
e)

People want to review information but don’t understand the language of the artifact: Many interested
reviewers of a particular artifact will resist having to learn the engineering language in which the artifact is written.
It is not uncommon to find people (such as veteran software managers, veteran quality assurance specialists, or an
auditing authority from a regulatory agency) who react as follows: “I“m not going to learn UML, but | want to
review the design of this software, so give me a separate description such as some flowcharts and text that | can
understand.”

People want to review the information but don’t have access to the tools:It is not very common for the
development organization to be fully tooled; it is extremely rare that the/other stakeholders have any capability to
review the engineering artifacts on-line. Consequently, organization is forced to exchange paper documents.
Standardized formats (such as UML, spreadsheets, Visual Basic, C++ and Ada 95), visualization tools, and the web
are rapidly making it economically feasible for all stakeholders to exchange information electronically.
Human-readable engineering artifacts should use rigorous notations that are complete, consistent, and used
in a self-documenting manner: Properly spelled English words should be used for all identifiers and descriptions.
Acronyms and abbreviations should be used only where they are well accepted jargon in the context of the
component®s usage. Readability should be emphasized and the use of proper English words should be required in all
engineering artifacts. This practice enables understandable representations, browse able formats (paperless review),
more-rigorous notations, and reduced error rates.

Useful documentation is self-defining: It is documentation that gets used.

Paper is tangible; electronic artifacts are too easy to change. On-line and Web-based artifacts can be changed
easily and are viewed with more skepticism because of their inherent volatility.

ARCHITECTURE: A MANAGEMENT PERSPECTIVE

>

>

The most critical technical product of a software project is its architecture: the infrastructure, control and date
interfaces that permit software components to co-operate as a system and software designers to co-operate
efficiently as a tem. When the communications media include multiple languages and inter group literacy varies, the
communications problem can become extremely complex and even unsolvable. If a software development team is to
be successful, the inter project communications, as captured in the software architecture, must be both accurate and
precise.

From a management perspective, there are three difference aspects of architecture.

. An architecture (the intangible design concept) is the design of a software system this includes all
engineering necessary to specify a complete bill of materials.

* An architecture baseline (the tangible artifacts) is a slice of information across the engineering artifact sets
sufficient to satisfy all stakeholders that the vision (function and quality) can be achieved within the
parameters of the business case (cost, profit, time, technology and people).

e An architecture description (a human-readable representation of an architecture, which is one of the
components of an architecture baseline) is an organized subset of information extracted form the design set
model(s). The architecture description communicates how the intangible concept is realized in the tangible
artifacts.

The importance of software architecture and its close linkage with modern software development processes can be
summarized as follows:

e Achieving stable software architecture represents a significant project milestone at which the critical make/buy
decisions should have been resolved.

e Architecture representations provide a basis for balancing the trade-offs between the problem space
(requirements and constraints) and the solution space (the operational product).

® The architecture and process encapsulate many of the important (high-payoff or high-risk) communications
among individuals, teams, organizations and stakeholders.

¢ Poor architectures and immature processes are often given as reasons for project failures.

e A mature process, an understanding of the primary requirements, and a demonstrable architecture are important
prerequisites fro predictable planning.

* Architecture development and process definition are the intellectual steps that map the problem to a solution

30

without violating the constraints; they require human innovation and cannot be automated.

ARCHITECTURE: A TECHNICAL PERSPECTIVE

» An architecture framework is defined in the terms of views that are abstractions of the UML models in the design
set. The design model includes the full breadth and depth of information. An architecture view is an abstraction of
the design model; it contains only the architecturally significant information. Most real-world systems require four
views: design, process, component and deployment. The purposes of these views are as follows:

* Design: Describes architecturally significant structures and functions of the design model.

e Process: Describes concurrency and control thread relationship among the design, component and
deployment views.

e Component: Describes the structure of the implementation set.

e Deployment: Describes the structures of the deploy.

The following Figure Summarizes the artifacts of the design set, including the architecture views and architecture

description:

. -
The equirements Sel may
ielude LIML models
deacribing the probkem
Space.

| Aequirements Diesign Implemerdation | Deploymeant

| The design ast includaes all
| UL design modals

1 degcribing the solution

i | II Space.

The design. process, and
usEs case models provide

for wisualization of the

lz=gical and behavioral

. : aspects of the desigr.
S— Tha covmpormand Sraodie)
| Lii CRsa | providss for visualizabon of

the implemantation sat. [

Muodo?
—
- T — — The depdoprmient oo
i pev— ——DI— _i:_.m.-. __I — pardwickes Tor visualizealssm o
L mmuu .mnlm Debcry rrvewnd: the deployrment S,
— _'_'_F'H-H__‘_._ =——'_-'_FJH__

Drapending on ils complaxity, a sysiem may reguire sesoaral
modets or partibons of a single modoed.

I Architecture Description |
Do urmsen

i Design wview ‘

[:

| An archilecture is describad through sevaral views,

Process view

=

-

-

| ———

wihich are extracts of design modeals That capiure the - t
- Use case wiew

significant struciures, collaborations, and behaviors.

_i

Comporssnt view
1 Deaployrment wiswws
| Ortheer wiews {(opiomal)

Crifuer material:

= Rabonala

= Comsiraints
T __'_F [] | ___\-\"—‘-\._
'.'J:L."“_ _":___,1 RS f
R —

Architecture, an orgarnized and obitracted wvieie fnto the design models

The requirements model addresses the behavior of the system as seen by its end users, analysts, and testers. This view is
modeled statically using use case and class diagrams and dynamically using sequence, collaboration, state chart and
activity diagrams.

The use case view describes how the system™s critical (architecturally significant) use cases are realized by elements of
the design model. It is modeled statically using use case diagrams and dynamically using any of the UML behavioral
diagrams.

The design view describes the architecturally significant elements of the design model. This view, an abstraction of the
design model, addresses the basic structure and functionality of the solution. It is modeled statically using calls and
object diagrams and dynamically using any of the UML behavioral diagrams.

The process view addresses the run-time collaboration issues involved in executing the architecture on a distributed
deployment model, including the logical software network topology (allocation to process and threads of control), inter

31

process communication and state management. This view is modeled statically using deployment diagrams and
dynamically using any of the UML behavioral diagrams.

The component view describes the architecturally significant elements of the implementation set. This view, an
abstraction of the design model, addresses the software source code realization of the system from the perspective of the
project™s integrators and developers, especially with regard to releases and configuration management. It is modeled
statically using component diagrams and dynamically using any of the UML behavioral diagrams.

The deployment view addresses the executable realization of the system, including the allocation of logical processes in
the distribution view (the logical software topology) to physical resources of the deployment network (the physical
system topology). It is modeled statically using deployment diagrams and dynamically using any of the UML behavioral
diagrams.

Generally, an architecture baseline should including the following:

e Requirements: critical use cases system-level quality objectives and priority relationships among features and
qualities

* Design: names, attributes, structures, behaviors, groupings and relationships of significant classes and components

¢ Implementation: source component inventory and bill of materials (number, name, purpose, cost) of all primitive
components

* Development: executable components sufficient to demonstrate the critical us cases and the risk associated with
achieving the system qualities.

32

SPM UNIT 1V (Part-1)
Flows of the Process: Software Process Workflows. Inter Trans Workflows. Checkpoints of the Process: Major Mile
Stones, Minor Milestones, Periodic Status Assessments. Interactive Process Planning: Work Breakdown Structures,
Planning Guidelines, Cost and Schedule Estimating. Interaction Planning Process. Pragmatic Planning.

SOFTWARE PROCESS WORKFLOWS

The term workflow is used to mean a thread of cohesive and mostly sequential activities; Workflows are mapped to
product artifacts. There are seven top-level workflows:

1. Management workflow: controlling the process and ensuring win conditions for all stakeholders.

2. Environment workflow: automating the process and evolving the maintenance environment.

3. Requirements workflow: analyzing the problem space and evolving the requirements artifacts.

4. Design workflow: modeling the solution and evolving the architecture and designartifacts.

5. Implementation workflow: programming components & evolving the implementation and deployment artifacts.
6. Assessment workflow: assessing the trends in process and product quality.

7. Deployment workflow: transitioning the end products to the user.

Inception : Elaboration Construction - Transition

Management T t] 1 I] I i I]

Environment I { | 1

Requirements ‘—‘__‘—l—| ;

Design — 1 T Tt
Implementation , — —r—_ _I_|—|—_l
Assessment 1 I 11 T | —

Deployment : . - f T 1

Activity levels across the life-cycle phases

1. Architecture —first approach: Extensive requirements analysis, design, implementation and assessment activities are
performed before the construction phase when full-scale implementation is the focus.

2. lIterative life-cycle process: Some projects may require only one iteration in a phase, others may require several
iterations. The point is that the activities and artifacts of any given workflow may require more than one pass to achieve
results

3. Round-trip engineering: Raising the environment activities to a first-class workflow is critical. The environment is
the tangible embodiment of the projects process, methods and notations for producing the artifacts.

4. Demonstration-based approach: Implementation and assessment activities are initiated early in the life cycle,
reflecting the emphasis on constructing executable subsets of the evolving architecture.

33

The artifacts and life-cycle empbases associated with cackh workffocae

w_qm;qw ARTIFACTS LIFE-CYCLE PHMASE EMPHASE
Management Busness case Incepaon: Prepare business case and vision
Software develaopneent Elaborsrion: Plan developmens
plan Construction: Moaitor and control development
Starus assessments Transuon: Monitor and control deployment
Vision
Work breakdown
strucrure
Environment Eavironment - Inception: Defne development environment and
Sofrware change ordec <change management infrasrrucrere
darabase Elaboranon: Install development environment
and esrablish change management darabase
Constrwcnon: Maiotam developenent environ-
ment and software change ordes dacabase
Transition: Transifion masinfenance ¢n»ironment
and software change order database
Re—::;ua'-rtn-;aus = i;;ut.r-eﬂ\en“ et lMliwu: Define operatianal concept
Relesse speciBcations Elaboramon: Define architecture obiecrives
Visson Canstrucrion: Define iteraction abjectives
Transition: Refine refecase abjectives
Diesipgn Design sec Inception: Formulate architecrure concept
Archirecture descniption Elzborarson: Achieve architecture baseline
Construction: Design companents
—-‘:lté'l‘ill"}n Refine architecture amd components
Implementason Implementation sec locepison: Mppo:x—nn.h::;’tme ‘xo“-;t_;;cs o
Deployment set Elabaranwon: Produce archizecture baseline
Construcuaon: Produce complete componensry
Translnon Maincain componenrs
Assessment Release specihcations lmwpuon Asscss plans. vision, procotypes
Release desoripions Elaboration: Assess architecture
User manaal Comstruction: Assess interim releases

Dtg&oymcm seT

Trans:tzon: Assess pro<duct relcases

Deployvmmenc Depioyment set

Incepisan: Analyze uscr commumity
Elaboratnion: Define uaser manual
Construction: Prepace transicbon materials
Transition: Transition prodact 1o aser

ITERATION WORKFLOWS

Iteration consists of a loosely sequential set of activities in various proportions, depending on where the iteration is
located in the development cycle. Each iteration is defined in terms of a set of allocated usage scenarios.

Rasults from the
previous eration

= Lip-to-dats risk assessmmant
= Controlled baselines of anifacts
= ey aple resuins

I PAamagermant i

l Raquiramants

— Raquiraments undarstanding
— Design reatures/perlormance
— Plan cradiimy

1 Sesian

—

Implementaticon |

The cworkflow of ar iteratiorn

ASSeSSrmant |

I Creployrmert [

J L

I Results for the next
o

iterati

34

An individual iteration's workflow generally includes the following sequence:

= Management: iteration planning to determine the content of the release and develop the detailed plan for the
iteration; assignment of work packages, or tasks, to the development team.

= Environment: evolving the software change order database to reflect all new baselines and changes to existing
baselines for all product, test, and environment components

= Requirements: analyzing the baseline plan, the baseline architecture, and the baseline requirements set artifacts to
fully elaborate the use cases to be demonstrated at the end of this iteration and their evaluation criteria; updating any
requirements set artifacts to reflect changes necessitated by results of this iteration™s engineering activities.

= Design: Evolving the baseline architecture and the baseline design set artifacts to elaborate fully the design model
and test model components necessary to demonstrate against the evaluation criteria allocated to this iteration;
updating design set artifacts to reflect changes necessitated by the results of this iteration™s engineering activities.

*= Implementation: developing or acquiring any new components, and enhancing or modifying any existing
components, to demonstrate the evaluation criteria allocated to this iteration; integrating and testing all new and
modified components with existing baselines (previous versions).

= Assessment: evaluating the results of the iteration, including compliance with the allocated evaluation criteria
and the quality of the current baselines; identifying any rework required and detemZlining whether it should be
performed before deployment of this release or allocated to the next release; assessing results to improve the
basis of the subsequent iteration®s plan.

= Deployment: transitioning the release either to an external organization (such as a user, independent
verification and validation contractor, or regulatory agency) or to internal closure by conducting a post-mortem
so that lessons learned can be captured and reflected in the next iteration.

l Marnagermant I
II Raeguirements]
L Deasign J
- lrnp-lerrl-antaric-n- l
fmoception and Elaboration Phases | ASSeSSMEme IJ

i D e prloyrrmeand]

l Planagerment

| Reguirements I

Dasign]

[rmplermentation]

Assessmeaent r

l D eplowrment |

Constr iorn P |

| rManagerment

.I Reguirerments

| Deasigr]

I| IMmple e Ntation |

" | | Assessment
Transition Phase

| Deployrment I

Tteratiorr ermprbasis across the life cvcle

CHECKPOINTS OF THE PROCESS

Three types of joint management reviews are conducted throughout the process:

» Major Milestones: these system wide events are held ant the end of each development phase. They provide visibility
to system wide issues synchronize the management and engineering perspectives and verify that the aims of the
phase have been achieved.

« Minor Milestones: theses iteration-focused events are conducted to review the content of an iteration in detail and to
authorize continued work.

+ Status Assessments: These periodic events provide management with frequent and regular insight into the progress
being made.

35

Each of the four phases-inceptions, elaboration, construction and transition consists of one or more iterations
and concludes with a major milestone when a planned technical capability is produced in demonstrable form.

MAJOR MILESTONES

The four major milestones occur at the transition points between life-cycle phases. They can be used in many different

process models, including eth conventional waterfall model. In an iterative model, the major milestones are used to

achieve concurrence among all stakeholders on the current state of the project.

= Customers: Schedule and budget estimates, feasibility, risk assessment, requirements understanding, progress,
product line compatibility.

= Users: consistency with requirements and usage scenarios, potential for accommodating, growth, quality attributes.

= Architects and systems engineers: product line compatibility, requirements changes, trade-off analyses,
completeness and consistency, balance among risk, quality and usability

= Developers: sufficiency of requirements detail and usage scenario descriptions, frameworks for component selection
or development, resolution of development risk, product line compatibility, sufficiency of the development
environment.

= Maintainers: sufficiency of product and documentation artifacts, understandability, interoperability with existing
systems, sufficiency of maintenance environment.

= Others: possibly many other perspectives by stakeholders such as regulatory agencies, independent verification and
validation contractors, venture capital investors, subcontractors, associate contractors and sale and marketing teams.

Inception Elaboration Construction Transition |
Iteration 1 Naration 2 | Haration 3 Itaralion 4 | aration & | Maration B Itaration 7 |
Initial
Life-Cycle Life-Cycle O peraticnal Product
Objectives Architecture apability Raleace
Milastona hMilestona Pilestomne Milestona
Major
Milestones Strategic focus on global concerns of the entire software project
Fal ~ a ~ K, ~
_ AN A VAN FAN FAN AN AN
Minor
Milestones Tactical focus on local concerns of the current iteration
Stat > < > D 2 < D < <D < <D < < < <D
us.

Assessments Feriodic synchronization of stakeholder expectations
A typical sequence of life-cycle checkpoints
The following Table summarizes the balance of information across them major milestones.

36

The gerneral status of plans, reguirerments, and products across the rrajor

rilestornes
SOLUTION SPACE
UNDERSTAMNDING PROGRESS
OF PROBLEMN SPACE (SOFTWARE
MILESTOMNES PLAMNS (REQUIREMENTS) PRODUCT)

Life-cycle
objecrives
milestone

Definition of
stakeholder
responsibilities
Low-fAdelity life-cycle
rlan

High-fidelity elabora-
tion phase plan

Baseline wision,
including growrth
vectors, quality
arttributes, and
priorities

Use case model

Diemonstration of at
least one feasible
architecrure

Make/buyfreuse
trade-offs

Initial design model

Life-cvele
architecture
milestone

High-fidelity con-
struction phase plan
{kill of marerials,
labor allocation)
Low-fdelity transi-
tion phase plan

Stable vision and use
case model
Evaluation criteria
for construction
releases, initial opera-
tonal capability

Dirafr user manual

Stable design set
Make/buyfreuse
decisions

Critical component
Protory pes

Initial
operational
capability
milestone

High-fidelity transi-
tion phase plan

Acceptance criteria
for producr release

Releasable user
manual

Stable implementation
ser

Crirical fearures and
core capabilities
Objecrive insight into
product gualities

Product
release
milesrone

Nexr-generation
product plan

Final user manual

Stable deploy ment set
Full features
Compliant gquality

Life-Cycle Objectives Milestone

The life-cycle objectives milestone occurs at tile end of the inception phase. The goal is to present to all stakeholders a
recommendation on how to proceed with development, including a plan, estimated cost and schedule and expected
benefits and cost savings. A successfully completed life-cycle objectives milestone will result in authorization from all
stakeholders to proceed with the elaboration phase.

Life-Cycle Architecture Milestone

The life-cycle architecture milestone occurs at the end of the elaboration phase. The primary goal is to demonstrate an
executable architecture to all stakeholders. The baseline architecture consists of both a human-readable representation
and a configuration-controlled set of software components captured in the engineering artifacts.

I Requirements]
A. Use case model
B. Vision document (texl, use cases) I
C. Evaluation criteria for elaboration (text, scenarios)
. Architecture
Design view (object models)
Process view (if necessary, run-time layout, executable code structure)
Component view (subsystem layout, make/buy/reuse component
identification)
Deployment view {target run-time layoult, target executable code structure)
Use case view (test case structure, test resull expectation)
1 Draft user manual
"N, Souwrce and executable libraries
A, Product componeants
B. Test components
[C. Ermvircnment and tool componeants

mo ome

Engineering artifacts available at the life-cycle architecture milestone

37

l Presentation Agenda J
L. Scope and objectives
A, Demonstration overview
[N Requirements assessment
A, Project vision and use casas
B. Primary scenarios and evaluation criteria
. Architecture assessment
| A, Progress
1. Baseline architecture metrics (progress to date and basealine for
| measuring future architectural stability, scrap, and rework)
2. Developmeant metrics baseline astimate (for assessing future
1 progress)
| 3. Test meatrics baseline estimata (for assessing future progress of
the test team)
| B. Cruality
|- 1. Architectural features {demonstration capability summary vs.
evaluation criteria)
2. Perormance (demonstration capability summary vs. evaluation
| . criteria)
3. Exposed architectural risks and resolution plans
4_ Affordability and make/buyfreuse trade-offs
Construction phase plan assessment
A, Iteration content and use case allocation
B. Mext iteration(s) detailed plan and evaluation criteria
<. Elaboration phase cost'schedule performance
D. Construction phase resource plan and basis of estimate
Risk assessmeant

| v,

m

Demonstration Agenda

| K Evaluation criteria

L Architecture subset summary

. Demonstration environment summary

. Scripted demonstration scenarios

W Evaluation criteria results and follow-up items

Drefault agendas for the life-cycle architecture milestone

MINOR MILESTONES

= Minor milestones are sometimes called as inch-pebbs.
= Minor milestones mainly focus on local concerns of current iteration.
= These iterative focused events are used to review iterative content in a detailed manner & authorize continued work.
Minor Milestone in the life cycle of Iteration: The number of iteration specific milestones is dependent on the iteration
length and the content. A one month to six month iterative period requires only two minor milestones
a) Iteration Readiness review: This informal milestone is conducted at the start of each iteration to reviewthe
detailed iteration plan and evaluation criteria that have been allocated to this iteration.
b) Iteration Assessment Review: This informal milestone is conducted at the end of each iteration to assess the
degree to which the iteration achieved its objectives and satisfied its evaluation criteria, to review iteration results.

PERIODIC STATUS ASSESSMENTS

= Periodic status assessments are management reviews conducted at regular intervals (monthly, quarterly) to address
progress and quality indicators, ensure continuous attention to project dynamics, and maintain open communications
among all stakeholders.
= Periodic status assessments are crucial for focusing continuous attention on the evolving health of the project and its
dynamic priorities.
= Periodic status assessments serve as project snapshots. While the period may vary, the recurring event forces the
project history to be captured and documented. Status assessments provide the following:
a) A mechanismfor openly addressing, communicating and resolving management issues technical issues and
project risks.
b) Objective data derived directly from on-going activities and evolving product configurations
¢) A mechanism for disseminating process, progress, quality trends, practices, and experience information to and
from all stakeholders in an open forum.

38

D efanlt conternt of status assessmernt reviens

TOPIC CONTENT

Personnel Staffing plan vs. actuals

Acxtritions, additions

Financial trends Expendirure plan vs. actuals for the previous, current, and next major
milestones

Revenue forecasts

Top 10 risks Issues and criticality resolution plans

Quantification (cost, time, quality} of exposure

Technical progress Configurartion baseline schedules for major milestones
Sofrware management mertrics and indicators

Current change trends

Test and gualiry assessments

Plan, schedule, and risks for the next major milestone

Major milestrone plans
an . - .
and resules Passffail results for all acceprtance criteria

Total product scope Tortal size, growth, and acceptance criteria perturbartions

WORK BREAKDOWN STRUCTURES (WBS)

= A good work breakdown structure and its synchronization with the process framework are critical factors in software
project success. Development of a work breakdown structure dependent on the project management style,
organizational culture, customer preference, financial constraints and several other hard-to-define, project-specific
parameters.

= A'WBS is simply a hierarchy of elements that decomposes the project plan into the discrete work tasks.

= A WBS provides the following information structure:
a) A delineation of all significant work
b) A clear task decomposition for assignment of responsibilities
c¢) A framework for scheduling, budgeting, and expenditure tracking

CONVENTIONAL WBS ISSUES
Conventional work breakdown structures frequently suffer from three fundamental flaws.
= They are prematurely structured around the product design.
= They are prematurely decomposed, planned, and budgeted in either too much or too little detail.
= They are project-specific, and cross-project comparisons are usually difficult or impossible.

39

Management
System requirements and design
Subsystam 1
Componeant 11
FReguiramenis
Design
Code
Test
Documsentation
. - - isimilar struciures. for othar componants)
Componant 1k
Reguiramants
Dasign
Code
Test
Drocurmentation
. .. (=imdlar structures for ciher subsystams)
Subsystem M
Componeant B
Reguiremanis
Desigmn
Code
Test
Documentation
- - . {similar structures for other components)
Component BN
Reguiremants
Design
Code
Tast
Ciocumeantation
Integration and &5t
Test planning
Tast procadura preparaton
Testing
Test reporis
Cther support areas
Canfiguration coniral
Cality assurancea
Sysilem adminisiration

Conventional work breakdown structore, followsmg the preodct

bieraroiy

= Conventional work breakdown structures are prematurely structured around the product design. The above
Figure shows a typical conventional WBS that has been structured primarily around the subsystems of its
product architecture, and then further decomposed into the components of each subsystems. A WBS is the
architecture for the financial plan.

= Conventional work breakdown structures are prematurely decomposed, planned and budgeted in either too
little or too much detail. Large software projects tend to be over planned and small projects tend to be under
planned. The basic problem with planning too much detail at the outset is that the detail does not evolve with
the level of fidelity in the plan.

= Conventional work breakdown structures are project-specific and cross-project comparisons are usually
difficult or impossible. With no standard WBS structure, it is extremely difficult to compare plans, financial
data, schedule data, organizational efficiencies, cost trends, productivity trends, or quality trends across multiple
projects.

EVOLUTIONARY WORK BREAKDOWN STRUCTURES
An evolutionary WBS should organize the planning elements around the process framework rather than the product
framework. The basic recommendation for the WBS is to organize the hierarchy as follows:
a) First-level WBS elements are the workflows (management, environment, requirements, design, implementation,
assessment, and deployment).
b) Second-level elements are defined for each phase of life cycle (inception, elaboration, construction, and transition).
c) Third-level elements are defined for the focus of activities that produce the artifacts of each phase.
A default WBS consistent with the process framework (phases, workflows, and artifacts) is shown in Figure:

40

Managemant

a8,

AB

Al

Inception phase managemant

P Business case develocpment

AAB Elaboraton phase relaase specificatons

AAC Elaboration phasa WBS baselining

An 0 Software developrmeant plan

AnE Inception phase project controd and siatus AssessSMWENis
Elaboration phase managemeant

ASA Construciion phase releass specificalions

ABE Caonstruchon phasa WEBS baselining

ARC Elaboration phase project control and stalus assessmaents
Construction phase managament

AdT A Deployment phase planning

ACB Deploymeant phase WHES basalining

AaCC Construction phase project controd and status assessmeanis
Transition phase managemant

A, Mext ganaraticon planning

ADE Transition phass project controd and status assessments

Ermeiranmsani

BA
BB

BC

=)

Incepton phasse emvironment specification

Elaboration phase enviranrmeent basslining

BSA Dhenvaloprment environment installation and administration

BEB Development environmeant imtegration and custarm
toolsmithing

BEC S0 database formulation

Constructicn phasse amdirnmnmen! masntenancs

BiCA Development environment installation and administraton

BCB SCO database maintenance

Transiticn phase emvdironment maintenance

BaA Devalaprment environmant mamnmienancs ared administration

BDE SO0 database maintenaricos

B Maintenamce envircnment packaging and transition

RAeguiramenis

A Irception phasse reqguirarmeanits develonrment
[y Vo Wision specification
CaB Uise case modeling
B Elaborabicon phase requiremants basalimng
CBA Wision basealining
CHE Use case modal basalining
CC Construction phase requiregmeants maintenance
C Transitton phase requiremants maintenance
Cesigm
ot Inoception phase architeciurese ooy rng
CE Elaboration hasse architecture baselimimog
DA Ao hvitecture design rreodaslinng B
ODEEE Ehas.i_:_.n e rreon S Tratinoen planning arvd cormciuct
D Software archite cturns oe-soriprbic
DS Construction phass design mookedireg

[-]

o A rohitectures S iam receches] FEna rvhe: M aurncse
=L = Commporeenl design modialineg
Transition phassas design mairrkenarsce

Implementaticn

Imncepticon phass comporrant probobyrdarsg

EE Ekaoration phase corrpoanent mplermrsentation
EBla Cribrcal cormpaonent codimg dermonstrationm imtegrateom
EC Cornrstrection phass cornmmoaorresnt i plermem tabiosy
Eds e Imitial releasads) cormponant coding and starnd-alons testireg
EiE Alpha releasese Ccomporssmt Codarsg arsd Sstamcd-alone estimag
ETS Beta release cormponent coding and stand-aklona testing
E (e by et e g P W g g TR g =] g =T g Tt
ElF Transition phass component rmaintenance
s mmssrTE ik
iy Imcepticon phase assessment planning
=B Elaboration phase assassimeeryl
FEA Teast rmeosdeling
FEE Architecture tast scamnarso mplarmrentation
FEC Dermonstratiocon assessmeaent and release descriplisins
S Constnaction phass assasessmeEnt
FiZAa Imitial release assessmeaend armnd relaease description
FCE Slpha release assessmeant and release descripticom
o Eaota raleas=o assesomant and release descriptiorn
FD Transition phasse assessrmeni
o - Y Frodwct relaease assessrmant and relesase descriptions
Drepiowrmeaent
[N Imcepticon phase deaployrmamt mlanmmg
SiE Elaooration phase deployrmmeant plarmmkdrneg
G Constraction phass deployrment
ST A, Llsar rmanueal baselinirng
G Transition phasse deplboyrreenn

Sy, Product tramnsiliomn b wsar

41

PLANNING GUIDELINES
Software projects span a broad range of application domains. It is valuable but risky to make specific planning
recommendations independent of project context. Project-independent planning advice is also risky. There is the risk
that the guidelines may be adopted blindly without being adapted to specific project circumstance. Two simple planning
guidelines should be considered when a project plan is being initiated or assessed.

Iinception - Elaboration

WES Elemant Fidelity WEBS Element Fidelity
Management High - Management High
Environment Moderate : Enwironment High
Requirements High ; Reqgquirements Higf
Design Modearate : Design High
Implementation Low @ Implementation Moderate
Assessment Liow Assessmeant Moderate
Deaployment Low @ Dreployment Low
WEBS Element Fidelity : WBS Element Fidelity
AManagement High Management High
Enwviromnmeant High - Ernwvirornmernt High
Requirements Loww : Requirements Low
Drasign Lo : Design Moderate
Implementation Moderate . fmplementation Higi
Assessment High : Assessment High
Deplayment High : Deployment Moderate

Transition Construction

Evolution of planning fidelity in the WBS over the life cvcle

The below table prescribes a default allocation of costs among the first-level WBS elements.

WRBS budgeting defaults

FIRST-LEVEL
WBS ELEMENT DEFAULT BUDGET
Management 10%
Er:;irﬂnr;nt) N 15% -
Reguirements o 15.::}"& o
Design 15%
Implementation 25%
Assessment 25%)
Deployment 3%

Total 100%

The below table prescribes allocation of effort and schedule across the lifecycle phases.
Default distributions of effort and schedule by phase

DOMAIN [NCEPTION ELABORATION CONSTRUCTION TRANSITION
Effort 5% 20% 65% 10%
Schedule 10% 30% 50% 10%

THE COST AND SCHEDULE ESTIMATING PROCESS

Project plans need to be derived from two perspectives. The first is a forward-looking, top-down approach. It starts with
an understanding of the general requirements and constraints, derives a macro-level budget and schedule, then
decomposes these elements into lower level budgets and intermediate milestones.

42

From this perspective, the following planning sequence would occur:

= The software project manager (and others) develops a characterization of the overall size, process, environment,
people, and quality required for the project.

= A macro-level estimate of the total effort and schedule is developed using a software cost estimation model.

= The software project manager partitions the estimate for the effort into top-level WBS using guidelines.

At this point, subproject managers are given the responsibility for decomposing each of the WBS elements into lower

levels using their top-level allocation, staffing profile, and major milestone dates as constraints.

The second perspective is a backward-looking, bottom-up approach. We start with the end in mind, analyze the micro-
level budgets and schedules, and then sum all these elements into the higher level budgets and intermediate milestones.
This approach tends to define and populate the WBS from the lowest levels upward. From this perspective, the
following planning sequence would occur:

a) The lowest level WBS elements are elaborated into detailed tasks

b) Estimates are combined and integrated into higher level budgets and milestones.

c) Comparisons are made with the top-down budgets and schedule milestones.

During the engineering stage top down approach dominates bottom up approach. During the production stage bottom
approach dominates top down approach.

100754

Bottom-up task-level planning based on
metrics from previous terations

)
e
m
=1
&
s
on
£
=
=
a
Top-down project-level planning based on
macroanalysis from previous projects
| Engingering Stage Ii; FProduction Stage
I Incepticn Elaboration { Consatruction Transition
. 1
Feasibility iterations Architecture iterations Usatie fterations Product releases
Engineearing stage planning emphasis: Production stage planning emphasis:
* Macro-level task estimation for * Micro-level task estimation for
production-stage artifacts production-stage artifacts
= Micro-lfevel task estimation for = Macro-level task estimation for
engineenng artifacts maintenance of engineering artifacts
« Stakeholder concurrance = Stakeholder concurrence
* Coarse-grained variance analysis of * Fine-grained variance analysis of actual
actual vs. planned expenditures vs. planned expenditures

* Tuning the top-down project-independent
planning guidelines into project-specific
planning guidelines

* WBS definition and elaboration
Plarnning balance throughowt the life cycle

43

THE ITERATION PLANNING PROCESS

= Planning is concerned with defining the actual sequence of intermediate results.
= [teration is used to mean a complete synchronization across the project, with a well-orchestrated global assessment
of the entire project baseline.
Inception Iterations: the early prototyping activities integrate the foundation components of candidate architecture
and provide an executable framework for elaborating the critical use cases of eth system.
Elaboration Iteration: These iterations result in architecture, including a complete framework and infrastructure
for execution. Upon completion of the architecture iteration, a few critical use cases should be demonstrable: (1)
initializing the architecture (2) injecting a scenario to drive the worst-case data processing flow through the system
(3) injecting a scenario to drive the worst-case control flow through the system (for example, orchestrating the
fault-tolerance use cases).
Construction Iterations: Most projects require at least two major construction iterations: an alpha release and a
beta release.
Transition Iterations: Most projects use a single iteration to transition a beta release into the final product.
= The general guideline is that most projects will use between four and nine iteration. The typical project would have
the following six-iteration profile:
= Oneiteration in inception: an architecture prototype
= Two iterations in elaboration: architecture prototype and architecture baseline
= Two iterations in construction: alpha and beta releases
= Oneiteration in transition: product release

PRAGMATIC PLANNING

Even though good planning is more dynamic in an iterative process, doing it accurately is far easier. While
executing iteration N of any phase, the software project manager must be monitoring and controlling against a plan that
was initiated in iteration N-1 and must be planning iteration N+1. the art of good project management is to make trade-
offs in the current iteration plan and the next iteration plan based on objective results in the current iteration and
previous iterations. Aside form bad architectures and misunderstood requirement, inadequate planning (and subsequent
bad management) is one of the most common reasons for project failures. Conversely, the success of every successful
project can be attributed in part to good planning.

A project™s plan is a definition of how the project requirements will be transformed into a product within the
business constraints. It must be realistic, it must be current, it must be a team product, it must be understood by the stake
holders, and it must be used. Plans are not just for mangers. The more open and visible the planning process and results,
the more ownership there is among the team members who need to execute it. Bad, closely held plans cause attrition.
Good, open plans can shape cultures and encourage teamwork.

44

SPM UNIT 1V (Part-11)
Project Organizations and Responsibilities: Line-of-Business Organizations, Project Organizations, and Evolution of
Organizations. Process Automation: Automation Building Blocks, the Project Environment.

Software lines of business and project teams have different motivations. Software lines of business are motivated by
return on investment, new business discriminators, market diversification and profitability.

Software professionals in both types of organizations are motivated by career growth, job satisfaction and the
opportunity to make a difference.

LINE -OF-BUSINESS ORGANIZATIONS

The main features of the default organization are as follows:

» Responsibility for process definition and maintenance is specific to a cohesive line of business.

» Responsibility for process automation is an organizational role and is equal in importance to the process definition
role.

» Organization roles may be fulfilled by a single individual or several different teams, depending on the scale of the
organization.

Organization
Manager :

Software Engineering Froject Reviaew
Process Authority Authority
= Procass definition = Project compliance
= Process iIimprovement = Pariodic risk assessment
Software Enginearing
Environment Authority Infrastructure
= Process automation = Project administration

= Engineearing skill centers
= Profassional davaelopgiment

f —] 1 !

Project A Project B Project C Project D . .. Froject N
Manager Manager Manager Manager Manager

Defanlt voles i a softivare line-of-business organization

The line of business organization consists of 4 component teams.

Software Engineering Process Authority (SEPA):

+» Responsible for exchanging the information and project guidance to or from the project practitioners.
+«+ Maintains current assessment of organization process maturity.

+«» Help in initiate and periodically assess project processes.

+» Responsible for process definition and maintainence.

Project Review Authority (PRA):

+» Responsible for reviewing the financial performance, customer commitments, risks & accomplishments,
adherence to organizational policies by customer etc.

% Reviews both project™s conformance, customer commitments as Well as organizational polices, deliverables,
financial performances and other risks.

Software Engineering Environment Authority (SEEA):

SEEA deals with the maintenance or organizations standard environment, training projects and process
automation.

» Maintains organization®s standard environment.

Training projects to use environment.

R/
0.0

DS

X3

%

45

+ Maintain organization wide resources support.
Infrastructure:

* An organization™s infrastructure provides human resources support, project-independent research and
development other capital software engineering assets. The typical components of the organizational
infrastructure are as follows:

U Project Administration: Time accounting system; contracts, pricing, terms and conditions; corporate
information systems integration.

U Engineering Skill Centers: Custom tools repository and maintenance, bid and proposal support,
independent research and development.

U Professional Development: Internal training boot camp, personnel recruiting, personnel skills database
maintenance, literature and assets library, technical publications.

PROJECT ORGANIZATIONS

The default project organization and maps project-level roles and responsibilities. This structure can be tailored to the
size and circumstance of the specific project organization.

The main feature of the default organization is as follows:

The project management team is an active participant, responsible for producing as well as managing. Project
management is not a spectator sport.

The architecture team is responsible for real artifacts and for the integration of components, not just for staff
functions.

The development team owns the component construction and maintenance activities.

Quality is every one job. Each team takes responsibility for a different quality perspective.

oo O O

46

Software Mamnagenment J

Artifacts
= Business casa

= Sofhware developrmsant plamn
= Slalus assessrmeants

Actrvities
= Customear interfaces,. PRA interfacs
= Planming, prograss monitoring
= Risk mansegerment
= Software procnss daliniion
= Frocess improst@rmuant

Systemnms Engineering

Administratiomn

Artifacts
= Wizion statement
= Raquirssmanits sat
Achivities
= [Fecusnedrienls el e o
= FRequbremeants spacifecation
= Use case modsling

Artifacts
= Wiork Dreskdowsn struchens

A cliveities
= Fimamcial forscasting, reposiing
= WBES definitbon, administration

Software
Software Architecture Software Developrment Asoess et
Aurtitacis Arifacts Artifacts

= A rchiteciurs descrption
= Aelaass apaecficatams
= Design ==1

Activities
= Damonstration plamming
= Srakysis, esigpm
= S rehiblsciure protabyping
= A rchitesciure documsntation
= Damorsiration coondanatacon
= Comporesnt dasign
= Maka'buyrausa analysis

= Chesigr sl

= Implamentetssm set
= Asspuirermeants sl
= Dhagpiloyrmant sat

= Dl ovy resn gee

= S0 dataihege

= User manual

= Felease descriphons

= Emvwircrnemant

= Deployrmeent docwemants
Activitias

= Coemporeenl design

= Cosmporsent impdle s mtation
= Coemporarl besrng

= T PO T L ey D s

Aot itiees
= Belease assessrmaent
= Use casalscanans testing
= Test scenario dewsdop mesarl
= Change mManagerment
= Transition o user
= Swsiam adminestraticm
= Enwirornmant configuraton
= [Erminge syl syl s
= Tolsmmithing

Diefanlt project organizaifon and responsibalities

Software Management Team:

Q
Q

This is active participant in an organization and is incharge of producing as well as managing.
As the software attributes, such as Schedules, costs, functionality and quality are interrelated to each other,

negotiation among multiple stakeholders is required and these are carried out by the software management team._

Responsibilities:

«» Effort planning
+«+ Conducting the plan
% Resource management
Stakeholders satisfaction
Risk management

Assignment or personnel

o
o
o
o

Y/
0.0

Quality assurance

Adapting the plan according to the changes in requirements and design

Project controls and scope definition

47

Software Management

Artifacts Systems engineering Responsibilities

* Business case Financial administration + Resource commitments

* Vision Quality assurance » Personnel assignments

* Software development plan * Plans, priorities

* Work breakdown structure * Stakeholder satisfaction

* Status assessments » Scope definition

* Requirements set * Risk management

* Project control
Life-Cycle Focus
Inception Elaboration Construction Transition
Elaboration phase Construction phase planning | Transition phase planning | Customer satisfaction
planning Full staff recruitment Construction plan Contract closure

Team formulation Risk resolution optimization Sales support
Contract baselining Product acceptance critena | Risk management Next-generation planning
Architecture costs Construction costs

Software management team activities

Software Architecture Team:

QO The software architecture team performs the tasks of integrating the components, creating real artifactsetc.

O It promotes team communications and implements the applications with a system-wide quality.

O The success of the development team is depends on the effectiveness of the architecture team along with the software
management team controls the inception and elaboration phases of a life-cycle.

O The architecture team must have:

+«+ Domain experience to generate an acceptable design and use-caseview.
«» Software technology experience to generate an acceptable process view, component and development views.

Responsibilities:
«» System-level quality i.e., performance, reliability and maintainability.
+ Requirements and design trade-offs.
«» Component selection
¢+ Technical risk solution
« Initial integration

Software Architecture

Artifacts Demonstrations Responsibilities
= Architecture description Use case modelers « Requirements trade-offs
= Requirements set Design modelers + Design trade-offs
* Design set Performance analysts « Compeonent selection
* Release specifications = Initial integration

= Technical risk resolution

Life-Cycle Focus

Inception Elaboration Construction Transition
Architecture prototyping Architecture baselining Architecture maintenance Architecture maintenance
Make/buy trade-offs Primary scenario Multiple-component issue Multiple-component issue
Primary scenario definition demonstration resolution resolution
Architecture evaluation Make/buy trade-off Performance tuning Performance tuning

criteria definition baselining Quality improvements Quality improvements

Software architecture team activities

48

Software Development Team:

Q

U

X3

8

X3

8

The Development team is involved in the construction and maintenance activities. It is most applicationspecific
team. It consists of several sub teams assigned to the groups of components requiring a common skill set.

The skill set include the following:

Commercial component: specialists with detailed knowledge of commercial components central to a system's
architecture.

Database: specialists with experience in the organization, storage, and retrieval of data.

Graphical user interfaces: specialists with experience in the display organization; data presentation, and user
interaction.

Operating systems and networking: specialists with experience in various control issues arises due to
synchronization, resource sharing, reconfiguration, inter object communications, name space management etc.
Domain applications: Specialists with experience in the algorithms, application processing, or business rules
specific to the system.

Responsibilities:

O The exposure of the quality issues that affect the customer*s expectations.
U Metric analysis.
O Verifying the requirements.
U Independent testing.
O Configuration control and user development.
O Building project infrastructure.
Software Development
Artifacts L Component teams Responsibiilities
« Design set » Component design
* Implementation set = Component impiementation
= Deployment set « Component stand-alone test
= Component maintenance
= Component documentation
Life-Cycle Focus
Inception Elaboration Construction Transition
Prototyping support Critical component design Component design Component maintenance
Make/buy trade-affs Critical component Component implementation Component documentation
implementation and test Component stand-alone test
Critical component baseline Component maintenance

Software developrment team activities

Software Assessment Team:

O This team is involved in testing and product activities in parallel with the ongoing development.

Q

It is an independent team for utilizing the concurrency of activities.

O The use-case oriented and capability-based testing of a process is done by using two artifacts:

+» Release specification (the plan and evaluation criteria for a release)
+» Release description (the results of a release)
Responsibilities:

X3

A

The exposure of the quality issues that affect the customers expectations.
Metric analysis.

Verifying the requirements.

Independent testing.

Configuration control and user development.

Building project infrastructure.

X3

A

R/
.0

*,

X3

A

X3

A

X3

A

49

Artifacts

* Deployment set

* SCO database

* User manual

* Environment

*» Release specifications
* Release descriptions

* Deployment documents

Software Assessment

Release testing
Change management
Deployment
Environment support

Life-Cycle Focus

Responsibilities

= Project infrastructure
= Independent testing

= Requirements verification

= Metrics analysis

= Configuration control
= Change management
* User deployment

Inception

Elaboration

Construction

Transition

Infrastructure planning
Primary scenario

Infrastructure baseline
Architecture release testing

Infrastructure upgrades
Release testing

Infrastructure maintenance
Release baselining

Change management
User manual baseline
Requirements verification

prototyping Change management

Initial user manual

Change management
Deployment to users
Requirements verification

Software assessment team activities

EVOLUTION OF ORGANIZATIONS

U The project organization represents the architecture of the teamand needs to evolve consistent with the project
plan captured in the work breakdown structure.
A different set of activities is emphasized in each phase, as follows:
Inception team: An organization focused on planning, with enough support from the other teams to ensure that
the plans represent a consensus of all perspectives.
Elaboration team: An architecture-focused organization in which the driving forces of the project reside in the
software architecture team and are supported, by the software development and software assessment teams as
necessary to achieve a stable architecture baseline.
% Construction team: A fairly balanced organization in which most of the activity resides in the software

development and software assessment teams.

« Transition team: A customer-focused organization in which usage feedback drives the deploymentactivities

a
o

Software : Software
Managamant MManagamant
S0% - 1036
| :]

[. [_ 1 : [i I - 1
Soltuwares Softwars Saftwars . Sl re Saltwiara Solwares
Agchitacturg D el opmdard A nsassimiant Architactune D bopimant Anmassmemnt
20% 10%% 50% 209 20%

Iinception Elaboration
Transition : Construction
Saoftware i Sofivware
Managarmont Moanagermenit
10% - 10%
i : I
| { 1 : | | 1
Softwarae Softweare Sottwars . Software Sofbtveane Sottware
Archilecture Devaloprmerd Assessrmont Archilecture Dwewveloprment Asse sl
5% A5G S50% 1O %a 507 B0

Softreare project tearn evolmwtion over the ffe coyvcle

PROCESS AUTOMATION

There are 3 levels of process:

1. Metaprocess: An organization“s policies, procedures, and practices for managing a software intensive line of
business.The automation support for this level is called an infrastructure. An infrastructure is an inventory of preferred
tools, artifact templates, microprocess guidelines, macroprocess guidelines, project performance repository, database of
organizational skill sets, and library of precedent examples of past project plans and results.

2. Macroprocess: A project's policies, procedures, and practices for producing a complete software product within
certain cost, schedule, and quality constraints. The automation support for a project's process is called an environment.
An environment is a specific collection of tools to produce a specific set of artifacts as governed by a specific project
plan.

3. Microprocess: A project team's policies, procedures, and practices for achieving an artifact of the software process.
The automation support for generating an artifact is generally called a tool. Typical tools include requirements
management, visual modeling, compilers, editors, debuggers, change management, metrics automation, document
automation, test automation, cost estimation, and workflow automation.

50

Automation Buliding Blocks

Workflows Environment Tools and Process Autormation

Management | Warkflow automation, metrics automation I
Ernvironment | Change management, document automation '
Requirements | Requirements management
Design [Visual modeling]
Implementation [Editor-compiler-debugger |
Assessment | Test autornation, defect tracking |
Deployment | Defect tracking o |

Process | Organization Policy |

Life Cycle | Inception Elaboration | Construction Transition |

Typical automation and tool components that support the process workflows

Management: Software cost estimation tools and WBS tools are useful for generating the planning artifacts. For
managing against a plan, workflow management tools and a software project control panel that can maintain an on-line
version of the status assessment are advantageous.
Environment: Configuration management and version control are essential in a modern iterative development process.
(change management automation that must be supported by the environment.
Requirements: Conventional approaches decomposed system requirements into subsystem requirements, subsystem
requirements into component requirements, and component requirements into unit requirements.
The ramifications of this approach on the environment™s support for requirements management are twofold:

1. The recommended requirements approach is dependent on both textual and model-based representations

2. Traceability between requirements and other artifacts needs to be automated.
Design: The primary support required for the design workflow is visual modeling, which is used for capturing design
models, presenting them in human-readable format, and translating them into source code. Architecture-first and
demonstration-based process is enabled by existing architecture components and middleware.
Implementation: The implementation workflow relies primarily on a programming environment (editor, compiler,
debugger, and linker, run time) but must also include substantial integration with the change management tools, visual
modeling tools, and test automation tools to support productive iteration.
Assessment and Deployment: To increase change freedom, testing and document production must be mostly
automated. Defect tracking is another important tool that supports assessment: It provides the change management
instrumentation necessary to automate metrics and control release baselines. It is also needed to support the deployment
workflow throughout the life cycle.

THE PROJECT ENVIRONMENT
The project environment artifacts evolve through three discrete states:
1. The proto typing environment includes an architecture tested for prototyping project architectures to evaluate trade-
offs during the inception and elaboration phases of the life cycle. It should be capable of supporting the following
activities:

— technical risk analyses

— feasibility studies for commercial products

— Fault tolerance/dynamic reconfiguration trade-offs

— Analysis of the risks associated implementation

— Development of test scenarios, tools, and instrumentation suitable for analyzing the requirements.
2. The development environment should include a full suite of development tools needed to support the various process
workflows and to support round-trip engineering to the maximum extent possible.
3. The maintenance environment may be a subset of the development environment delivered as one of the project's end
products.

51

Four important environment disciplines that is critical to the management context and the success of a modern iterative
development process:
— Tools must be integrated to maintain consistency and traceability. Roundtrip Engineering is the term used to
describe this key requirement for environments that support iterative development.
— Change management must be automated and enforced to manage multiple, iterations and to enable change
freedom. Change is the fundamental primitive of iterative development.
— Organizational infrastructures A common infrastructure promotes interproject consistency, reuse of training,
reuse of lessons learned, and other strategic improvements to the organization's metaprocess.
— Extending automation support for stakeholder environments enables further support for paperless exchange of
information and more effective review of engineering artifacts.

Round-Trip Engineering
* Round-trip engineering is the environment support necessary to maintain consistency among theengineering
artifacts.
» The primary reason for round-trip engineering is to allow freedom in changing software engineering data
sources.

1_ Forward engineering (source generation from models) 1I>

< Reverse engineering (models generation from source) |

Design Set Implementation Seat ’7

. . =

Fed UML Models Source Code o

=

s I 2

E h J ©

= Requirements Set ,E
Automated production 5 UML Models E
_P E r -8
L) -—
Traceability links g 4 £
e = Deployment Set E;

Executable Code
S ~

<7 Faortability among platfarms and network topologies ‘>

Rowund-trip engineering

Change Management
» Change management is as critical to iterative processes as planning.
» Tracking changes in the technical artifacts is crucial to understanding the true technical progress trends and
quality trends toward delivering an acceptable end product or interim release.
» In a modern process-in which requirements, design, and implementation set artifacts are captured in rigorous
notations early in the life cycle and are evolved through multiple generations-change management has become
fundamental to all phases and almost all activities.

Software Change Orders (SCO)
» The atomic unit of software work that is authorized to create, modify, or obsolesce components within a
configuration baseline is called a software change order (SCO).
» Software change orders are a key mechanism for partitioning, allocating, and scheduling software work against
an established software baseline and for assessing progress and quality.

The basic fields of the SCO are title, description, metrics, resolution, assessment and disposition.

a) Title. The title is suggested by the originator and is finalized upon acceptance by the configuration control board.

b) Description: The problem description includes the name of the originator, date of origination, CCB-assigned SCO
identifier, and relevant version identifiers of related support software.

c) Metrics: The metrics collected for each sea are important for planning, for scheduling, and for assessing quality
improvement. Change categories are type 0 (critical bug), type 1 (bug), type 2 (enhancement), type 3 (new feature), and
type 4 (other)

52

d) Resolution: This field includes the name of the person responsible for implementing the change, the components
changed, the actual metrics, and a description of the change.
e) Assessment: This field describes the assessment technique as either inspection, analysis, demonstration, or test.
Where applicable, it should also reference all existing test cases and new test cases executed, and it should identify all
different test configurations, such as platforms, topologies, and compilers.
f) Dlsposmon The SCO is assigned one of the following states by the CCB:
Proposed: written, pending CCB review

» Accepted: CCB-approved for resolution

* Rejected: closed, with rationale, such as not a problem, duplicate, obsolete change, resolved by another SCO

» Archived: accepted but postponed until a later release

* Inprogress: assigned and actively being resolved by the development organization

* Inassessment: resolved by the development organization; being assessed by a test organization

* Closed: completely resolved, with the concurrence of all CCB members.

Title:

Project:

WC:?H@QUT'-’: (01 @rnDr, 2 andum os eyl 3 ey feaalueng, 4 OlFemr)

mitial Estimate Bucbiaml s Emw

Breakage: Arnalysdn S _ -t

(=8 =g N Implamana: (-t W g T g
Resolulticomn Burnabhest:

Soltwrmrne o rmpe=mreErk:

A ssessrmeearmt . - -
hlethod: fimnspactomn, analysis. dermonsbratsom, tessel

Tesbesr: Flatfornms: et

P — S —
ol o e e Chabes
Chosurs: _ Dabe:

Tikre predmartice comprarrerats of o softrare chrarges order

Configuration Baseline
A configuration baseline is a named collection of software components and supporting documentation that is subject to
change management and is upgraded, maintained, tested, statused and obsolesced as a unit.
There are generally two classes of baselines:
1. external product releases and
2. internal testing releases.
A configuration baseline is a named collection of components that is treated as a unit. It is controlled formally because it
is a packaged exchange between groups. A project may release a configuration baseline to the user community for beta
testing. Once software is placed in a controlled baseline, all changes are tracked. A distinction must be made for the
cause of a change. Change categories are as follows:
— Type 0: Critical failures, which are defects that are nearly always fixed before any external release.
— Type 1: A bug or defect that either does not impair the usefulness of the system or can be worked around.
— Type 2: A change that is an enhancement rather than a response to a defect.
— Type 3: A change that is necessitated by an update to the requirements.
— Type 4: changes that are not accommodated by the other categories.

53

Typical project release sequence for a large-scale, one-of-a-kind project

Construction

T

1.0 201 202

Inception Elaboration
F Y h

Prolctype 0.1 ——
Architacture 0.2
Architecture 0.3

Beta roleoase 3.1
Product release 4.0

Internal test reloase 1.0
Alpha test relk 2.0
MC: beta rall 3.0

Typical project release sequence for a small commercial product

incaprion Elahcuraiion Constructicn | Transition
Prototype 0.1 —
Archilecture 0.2 3.t 3.1.2 Q.07 4.1.2
Architeciure 0.3 Beata reiease 3.1
Intarnali test relaase 1.0 Product release 4.0
Alpna lest relaase 2 'D
10C: bata ral Upgradeae releass 4.1

Upgrade ralease 4.2

Exarple release histories for a typical project arnnd a tvpical product

Configuration Control Board (CCB)

» ACCB is ateam of people that functions as the decision authority on the content of configuration baselines.

» A CCB usually includes the software manager, software architecture manager, software development manager,
software assessment manager and other stakeholders (customer, software project manager, systems engineer,
user) who are integral to the maintenance of a controlled software delivery system.

» The [bracketed] words constitute the state of an SCO transitioning through the process.

» [Proposed]: A proposed change is drafted and submitted to the CCB. The proposed change must includea
technical description of the problem and an estimate of the resolution effort.

» [Accepted, archived or rejected]: The CCB assigns a unique identifier and accepts, archives, or rejects each
proposed change. Acceptance includes the change for resolution in the next release; archiving accepts the
change but postpones it for resolution in a future release; and rejection judges the change to be without merit,
redundant with other proposed changes, or out of scope.

» [In progress]: the responsible person analyzes, implements and tests a solution to satisfy the SCQ. This task
includes updating documentation, release notes and SCO metrics actuals and submitting new SCOs.

* [In assessment]: The independent test assesses whether the SCO is completely resolved. When the independent
test team deems the change to be satisfactorily resolved, the SCO is submitted to the CCB for final disposition
and closure.

* [Closed]: when the development organization, independent test organization and CCB concur that the SCO is
resolved, it is transitioned to a closed status. ,,

Infrastructures

Organization®s infrastructure provides the organization capital assets, including two key artifacts:
a) a policy that captures the standards for project software development processes, and
b) an environment that captures an inventory of tools.

Organization Policy
» The organization policy is usually packaged as a handbook that defines the life cycle and the process primitives
(major milestones, intermediate artifacts, engineering repositories, metrics, roles and responsibilities). The handbook
provides a general framework for answering the following questions:
— What gets done? (activities and artifacts)
— When does it get done? (mapping to the life-cycle phases and milestones)
— Who does it? (team roles and responsibilities)
» How do we know that it is adequate? (Checkpoints, metrics and standards of performance).

54

|9 Process-primitive definitions
A. Life-cycle phases (inception, elaboration, construction, transition)
B. Checkpoints (major milestones, minor milestones, status assessments)
C. Artifacts (requirements, design, implementation, deployment, management

sets)
D. Roles and responsibilities (PRA, SEPA, SEEA, project teams)
n. Organizational software policies i

|
Work breakdown structure 1
Software development plan
Baseline change management i
Software metrics
Development environment !
Evaluation criteria and acceptance criteria ‘
Risk management l
. Testing and assessment
118 Waiver policy
iv. Appendixes
A Current process assessment t
B. Software process improvement plan \
|

IpMMOO0>

Organization policy outline

Organization Environment
Some of the typical components of an organization®s automation building blocks are as follows:
+ Standardized tool selections, which promote common workflows and a higher ROI on training.
+ Standard notations for artifacts, such as UML for all design models, or Ada 95 for all custom-developed,
reliability-critical implementation artifacts.
» Tool adjuncts such as existing artifact templates (architecture description, evaluation criteria, release
descriptions, status assessment) or customizations.
» Activity templates (iteration planning, major milestone activities, configuration control boards).

Stakeholder Environments
» Anon-line environment accessible by the external stakeholders allows them to participate in the process as
follows:
— Accept and use executable increments for hands-on evaluation.
— Use the same on-line tools, data and reports that the software development organization uses to manageand
monitor the project.
— Avoid excessive travel, paper interchange delays, format translations, paper and shipping costs and other
overhead costs.
» There are several important reasons for extending development environment resources into certain stakeholder
domains.
— Technical artifacts are not just paper.
— Reviews and inspections, breakage/rework assessments, metrics analyses and even beta testing canbe
performed independently of the development team.
— Even paper documents should be delivered electronically to reduce production costs and turn around time.

55

Stakeholder Environment Development Environment

] -—J Elsctronic ML““ =]

na nt Exchange [Mnaggment i
Artifact Releases Artifact Baselines

| Workfiow automation, metrics automation

L

] hange management, document automation

C] | Requirements management

¢] {Visuai modeling]
Yool Subset | Editor-compiler-debugger]
| Test automation, defect tracking |

Stakeholder Activities | Detect tracking

. Conﬁguratpn control board participation Environment Tools and Process
» Test scenario development Automation
* Risk management analysis

= Metrics trend analysis
= Artifact reviews, analyses, audits
* independent aipha and beta testing

Extending environments into stakebholder domains

56

SPM UNIT V(Part-1)
Project Control and Process Instrumention: Seven Core Metrics, Management Indicators, Quality Indicators, Life
Cycle Expectations Pragmatic Software Metrics, Metrics Automation. Tailoring the process: Process Discriminates.

The primary themes of a modern software development process tackle the central management issues of complex
software:
» Getting the design right by focusing on the architecture first
» Managing risk through iterative development
» Reducing the complexity with component based techniques
» Making software progress and quality tangible through instrumented change management
» Automating the overhead and bookkeeping activities through the use of round-trip engineering and integrated
environments
The goals of software metrics are to provide the development team and the management team with the following:
» An accurate assessment of progress to date
* Insight into the quality of the evolving software product
» A basis for estimating the cost and schedule for completing the product with increasing accuracy over time.

THE SEVEN CORE METRICS

Seven core metrics are used in all software projects. Three are management indicators and four are quality indicators.
a) Management Indicators

= Work and progress (work performed over time)

= Budgeted cost and expenditures (cost incurred over time)

= Staffing and team dynamics (personnel changes over time)
b) Quality Indicators

= Change traffic and stability (change traffic over time)

= Breakage and modularity (average breakage per change over time)

= Rework and adaptability (average rework per change overtime)

= Mean time between failures (MTBF) and maturity (defect rate over time)

Overview of the seven core metrics

METRIC

PURPOSE

PERSPECTIVES

Work and progress

Iteration planning, plan vs.
actuals, management
indicator

SLOC, function points, object
> P]
points, scenarios, test cases, SCOs

Budgeted cost and
expenditures

Finanaal insight, plan vs.
actuals, management
indicatror

Cost per month, full-time staff per
month, percentage of budget
expended

Staffing and team
dynamics

Resource plan vs. actuals,
hiring rate, attrition rate

People per month added, people per
month leaving

Change traffic and
stability

Iteration planning, manage-
ment indicator of schedule
convergence

SCOs opened vs. SCOs closed, by type
(0,1,2,3,4), by release/component/
subsystem

Breakage and
modularity

Convergence, software scrap,
quality indicator

Reworked SLOC per change, by
type (0,1,2,3,4}, by release/compo-
nent/subsystem

Rework and
adaptability

Convergence, software
rework, quality indicator

Average hours per change, by type
(0,1,2,3,4), by release/component/
subsystem

MTBF and marturity

Test coverage/adequacy,
robustness for use, quality
indicator

Failure counts, test hours until
failure, by release/component/
subsystem

57

The seven core metrics are based on common sense and field experience with both successful and unsuccessful metrics
programs. Their attributes include the following:
= They are simple, objective, easy to collect, easy to interpret and hard to misinterpret.
= Collection can be automated and non intrusive.
= They provide for consistent assessment throughout the life cycle and are derived from the evolving product
baselines rather than from a subjective assessment.
= They are useful to both management and engineering personnel for communicating progress and quality in a
consistent format.
= They improve fidelity across the life cycle.

MANAGEMENT INDICATORS

There are three fundamental sets of management metrics; technical progress, financial status staffing progress. By
examining these perspectives, management can generally assess whether a project is on budget and on schedule. The
management indicators recommended here include standard financial status based on an earned value system, objective
technical progress metrics tailored to the primary measurement criteria for each major team of the organization and staff
metrics that provide insight into team dynamics.

Work & Progress
The various activities of an iterative development project can be measured by defining a planned estimate of the work in
an objective measure, then tracking progress (work completed over time) against that plan), the default perspectives of
this metric would be as follows:

= Software architecture team: use cases demonstrated

= Software development team: SLOC under baseline change management, SCOs closed.

= Software assessment team: SCOs opened, test hours executed, evaluation criteria met

= Software management team: milestones completed

Release 3

100%

Release 2

Work

Project Schedule
Expected progress for a typical project with three major releases

Budgeted Cost and Expenditures
To maintain management control, measuring cost expenditures over the project life cycle is always necessary. One
common approach to financial performance measurement is use of an earned value system, which provides highly
detailed cost and schedule insight.
Modern software processes are amenable to financial performance measurement through an earned value approach. The
basic parameters of an earned value system, usually expressed in units of dollars, are as follows:
= Expenditure Plan: the planned spending profile- for a project over its planned schedule. For most software
projects (and other labor-intensive projects), this profile generally tracks the staffing profile.
= Actual Progress: the technical accomplishment relative to the planned progress underlying the spending
profile. In a healthy project, the actual progress tracks planned progress closely.
= Actual Cost: the actual spending profile for a project over its actual schedule. In a healthy project, this profile
tracks the planned profile closely.
= Earned Value: the value that represents the planned cost of the actual progress.
= Cost variance: the difference between the actual cost and the earned value.
= Positive values correspond to over - budget situations; negative values correspond to under budget situations.
= Schedule Variance: the difference between the planned cost and the earned value. Positive values correspond
to behind-schedule situations; negative values correspond to ahead-of-schedule situations.

58

100%

Planned progress
(currently 35%) Expenditure

Actual progress: Plan

earned value
(currently 25%

! Currenttime |

—

Actual cost
expenditures
(currently 15%)

Progress

I Schedule variance (currently 10% behind)

l Cost variance (currently 10% under)

\ A
Time 100%

The basic parameters of an earned value system

Staffing and Team Dynamics

An iterative development should start with a small team until the risks in the requirements and architecture have been
suitably resolved. Depending on the overlap of iterations and other project specific circumstance, staffing can vary. For
discrete, one of-a-kind development efforts (such as building a corporate information system), the staffing profile would
be typical.
It is reasonable to expect the maintenance team to be smaller than the development team for these sorts of
developments. For a commercial product development, the sizes of the maintenance and development teams may be the

Ssame.

Incaption Elaboration Construction Transition
Effort: 5% Effort: 20% Effort: 65% Effort: 109
Schedule: 10% Schedula: 30% Schedula: 50% Schedule: 10%:

Staffing

||

Project Schedule
Tyvpical staffing profile
QUALITY INDICATORS

The four quality indicators are based primarily on the measurement of software change across evolving baselines of
engineering data (such as design models and source code).

Change Traffic and Stability

Overall change traffic is one specific indicator of progress and quality.
Change traffic is defined as the number of software change orders opened and closed over the life cycle This metric can

be collected by change type, by release, across all releases, by team, by components, by subsystem, and so forth.
Stability is defined as the relationship between opened versus closed SCOs.

59

Released Baselines

Change Traffic

Project Schedule
Stabilityv expectation over a bealthy project’s life cycle

Breakage and Modularity
Breakage is defined as the average extent of change, which is the amount of software baseline that needs rework (in

SLOC, function points, components, subsystems, files, etc).
Modularity is the average breakage trend over time. For a healthy project, the trend expectation is decreasing or stable

Released Baselines

Breakage

Project Schedule

Modularity expectation over a bealthy project’s life cycle

Rework and Adaptability
Rework is defined as the average cost of change, which is the effort to analyze, resolve and retest all changes to

software baselines.
Adaptability is defined as the rework trend over time. For a health project, the trend expectation is decreasing or stable.

Released Baselines

Design

Rework

Implementation
Changes

Project Schedule
Adaprtability exprectatior over a bealthy project’s life cycle

MTBF and Maturity
MTBF is the average usage time between software faults. In rough terms, MTBF is computed by dividing the test hours

by the number of type 0 and type 1 SCOs. MTBF stands for Mean- Time- Between —Failures.
Maturity is defined as the MTBF trend over time

MTBF

Released Baselines

Projaect Schedule

MMatrerity expoctation owver a bealthy project’s life cyvcole

60

LIFE CYCLE EXPECTATIONS
There is no mathematical or formal derivation for using the seven core metrics. However, there were specific reasons for
selecting them:

The quality indicators are derived form the evolving product rather than from the artifacts.

They provide insight into the waster generated by the process. Scrap and rework metrics are a standard
measurement perspective of most manufacturing processes.

They recognize the inherently dynamic nature of an iterative development process. Rather than focus on the
value, they explicitly concentrate on the trends or changes with respect to time.

The combination of insight from the current value and the current trend provides tangible indicators for
management action.

The default pattern of life-cycle metrics evolution

METRIC NCEPTION ELABORATIOMN CONSTRUCTION TRANMNSITION
Progress 5% 25% 0% 100%:
Architecture 30% 90 % 1009 100%%
Apphcations <5 % 20% 85 % 100%
Expendirures Low Moderate High High
Effort 5% 25% 0% 100%
Schedule 109% 40 %% 0% 100%
Staffing Small team Ra.rn-l:; -1._1p -_—Sl:ead}-' T -___{-i'arying)
Srability Volarile Moderate Moderarte Stable
Archirtecrure Vaolatile Moderate Stable Srable
Applications Volartile Valarile Moderare Stable
Modularity 50%—=100% 25%—50% <2 5% $9%—-10%
Architecture =>50% >50% <15% <5%
Applicarions =80% =80% <2 5% <10%
&dapt;-:l."l:-:-ilil}' -?;tyiug T Varyin;_ - _._Bcnign-__ o) B-t‘:nig,n- -
Architecture Warying Moderate Benign Benign
Applications Varying Varying Moderate Benign
Marturity Prototype Fragile Usable Robust
Architecture Prototype Usable Robust Robust
Applications Prototype Fragile Usable Robust

PRAGMATIC SOFTWARE METRICS

Measuring is useful, but it doesn“t do any thinking for the decision makers. It only provides data to help them ask the

right

questions, understand the context, and make objective decisions.

The basic characteristics of a good metric are as follows:

1. Itis considered meaningful by the customer, manager and performer. Customers come to software engineering
providers because the providers are more expert than they are at developing and managing software. Customerswill
accept metrics that are demonstrated to be meaningful to the developer.

2. It demonstrates quantifiable correlation between process perturbations and business performance. Theonly real
organizational goals and objectives are financial: cost reduction, revenue increase and margin increase.

It is objective and unambiguously defined: Objectivity should translate into some form of numeric representation
such as numbers, percentages, ratios) as opposed to textual representations (such as excellent, good, fair, poor).

Ambiguity is minimized through well understood units of measurement (such as staff-month, SLOC, change,
function point, class, scenario, requirement), which are surprisingly hard to define precisely in the software
engineering world.

It displays trends: This is an important characteristic. Understanding the change in a metric®s value with respect to
ime, subsequent projects, subsequent releases, and so forth is an extremely important perspective, especially for

todays iterative development models. It is very rare that a given metric drives the appropriate actiondirectly.

3.
(
4.
t
5.

It is a natural by-product of the process: The metric does not introduce new artifacts or overhead activities; it is

derived directly from the mainstream engineering and management workflows.

61

6. Itis supported by automation: Experience has demonstrated that the most successful metrics are those that are
collected and reported by automated tools, in part because software tools require rigorous definitions of the data
they process.

METRICS AUTOMATION

There are many opportunities to automate the project control activities of a software project. For managing against a
plan, a software project control panel (SPCP) that maintains an on-line version of the status of evolving artifacts
provides a key advantage.

To implement a complete SPCP, it is necessary to define and develop the following:

= Metrics primitives: indicators, trends, comparisons, and progressions.

= A graphical user interface: GUI support for a software project manager role and flexibility to support other roles

= Metric collection agents: data extraction from the environment tools that maintain theengineering notations .for the

various artifact sets.

= Metrics data management server: data management support for populating the metric displays of the GUI and
storing the data extracted by the agents.

= Metrics definitions: actual metrics presentations for requirements progress (extracted from requirements set
artifacts), design progress (extracted from design set artifacts), implementation progress (extracted from
implementation set artifacts), assessment progress (extracted from deployment set artifacts), and other progress
dimensions (extracted from manual sources, financial management systems, management artifacts, etc.)

= Actors: typically, the monitor and the administrator

Specific monitors (called roles) include software project managers, software development team leads, software

architects, and customers.

= Monitor: defines panel layouts from existing mechanisms, graphical objects, and linkages to project data; queries
data to be displayed at different levels of abstraction

= Administrator: installs thesystem; defines new mechanisms, graphical objects, and linkages; archiving functions;
defines composition and decomposition structures for displaying multiple levels of abstraction.

62

Trernd: Comparesscom of a walue over lirma against Lt S
known thresholds. Exampda: clasigmn med el a ey
charsga Iraffic
= Uppsar Theaeshokd
=
o SR P
E Lowwar T hreshold
T e
Comparison: Sosmpanison of M valusa weith e Metric YWalus 1
SarTEE UFHES: O Bimnee. Exarmghie: -
open actiom e vs. closed
BCtior |benmss
s
=
= o Petric WValee 2
E - o
Tiirmee
EE ey Progress: Plan ws acluabs owver trmie Expachsd “Valua
/”/f Actual Valua

% Complede

43 Exarmples of thhe frrmndamiencal mrerrics classes

In this case, the software project manager role has defined a top-level display with four graphical objects.

1. Project activity Status: the graphical object in the upper left provides an overview of the status of the top-level
WABS elements. The seven elements could be coded red, yellow and green to reflect the current earned valuestatus.
(In Figure they are coded with white and shades of gray). For example, green would represent ahead of plan,
yellow would indicate within 10% of plan, and red would identify elements that have a greater than 10% cost or
schedule variance. This graphical object provides several examples of indicators: tertiary colors, the actual
percentage, and the current first derivative (up arrow means getting better, down arrow means getting worse).

2. Technical artifact status: the graphical object in the upper right provides an overview of the status of the evolving
technical artifacts. The Req light would display an assessment of the current state of the use case models and
requirements specifications. The Des light would do the same for the design models, the Imp light for the source
code baseline and the Dep light for the test program.

3. Milestone progress: the graphical object in the lower left provides a progress assessment of the achievement of
milestones against plan and provides indicators of the current values.

4. Action item progress: the graphical object in the lower right provides a different perspective of progress, showing
the current number of open and close issues.

63

Top-Level WBS Activities Technical Artifacts

Management - 4%+ e \/ ~ \/ ~J
Environment + 195 Jr
Requirements + 69 & >‘<>—< >——<
Design — 5%y
Implementation —25%* >—<>_< >‘<

Assessment - 2%t N N N N
Deployment - 2%4 Req Des imp Dep
Milestone Praogress Action Item Progress
Actuals (32) B
Open (12) . —
Y LT
Plan (27)

Example SPCP display for a top-level project situation

The following top-level use case, which describes the basic operational concept of an SPCP, corresponds to a monitor
interacting with the control panel:

Start the SPCP. The SPCP starts and shows the most current information that was saved when the user last used
the SPCP.

Select a panel preference. The user selects from a list of previously defined default panel preference. The SPCP
displays the preference selected.

Select a value or graph metric. The user selects whether the metric should be displayed for a given point in time or
in a graph, as a trend. The default for trends is monthly.

Select to superimpose controls. The user points to a graphical object and requests that the control values for that
metric and point in time be displayed.

Drill down to trend. The user points to a graphical object displaying a point in time and drills down to view the
trend for the metric.

Drill down to point in time. The user points to a graphical object displaying a trend and drills down to view the
values for the metric.

Drill down to lower levels of information. The user points to a graphical object displaying a point in time and
drills down to view the next level of information.

Drill down to lower level of indicators. The user points to a graphical object displaying an indicator and drills
down to view the breakdown of the next level of indicators.

PROCESS DISCRIMINATES
In tailoring the management process to a specific domain or project, there are tow dimensions of discriminating factors:
technical complexity and management complexity.
The Figure illustrates discriminating these tow dimensions of process variability and shows some example project
applications. The formality of reviews, the quality control of artifacts, the priorities f concerns and numerous other
process instantiation parameters are governed by the point a project occupies in these two dimensions.

64

Higher Technical Complexity

- Embedded, real-time, distributed, fault-tolerant
= High-performance, portable
= Unprecedented, architecture re-engineering

Avarage software project: I (: _)
5 to 10 peocpla - oD
10 1o 12 months (’) o (N weapon ()
3 to 5 extomal intorfaces ~ C) - system ~
Some unknowns, risks Embedded - Telecom switch National Air
i Sdandaas 2 s i = — I automotive Cornmercial Trattic Control
\ application compilar Systom
Lower o —] Higher
s ————i v
Management - G2 » Management
Complexity () (_. = Largo-scale Complexity
—r simuiation
- Smaliler scale Small scientific = *—) c —> p— = Large scale
simuiation ntorpriac nterprise
- Informal Eoaciheine. Biepaw:) - Contractual
= Few stakeholders [| (such ae systems DOO = Many stakeholders
*TEROAUCTRY Bue;;cd Lo gt ir::::mmgo:i::;:m * “Projects”
spreadsheet system

Lower Technical Complexity

= Straightforward automation, single thread
= Interactive parformance, single platform
* Many precedent systems, application re-engineering

The trvo primary dimerntsiorns of process variability

Figure summarizes the different priorities along the two dimensions.

Higher Technical Complexity

= More domain experience required

= Longer inception and elaboration phases
* More iterations for risk management

= Less-predictable costs and schedules

Lower Higher
Management -+ —& Management
Complexity Complexity

= Less emphasis on risk management = More emphasis on risk management

= | ess process formality = More process formality

= More emphasis on individual skills = More emphasis on teamwork

= Longer production and transition phases ¢ = Longer inception and elaboration phases

Scale

Lower Technical Complexity

= More emphasis on existing asselts

= Shorter inception and elaboration phases
= Fewer iterations

= More-predictable costs and schedules

Priorities for tailorirnng the process frarmework

There are many ways to measure scale, including number of source lines of code, number of function points,
number of use cases, and number of dollars. From a process tailoring perspective, the primary measure of scale
is the size of the team. As the headcount increases, the importance of consistent interpersonal communications
becomes paramount. Otherwise, the diseconomies of scale can have a serious impact on achievement of the
project objectives.

A team of 1 (trivial), a team of 5 (small), a team of 25 (moderate), a team of 125 (large), a team of 625 (huge),
and so on. As team size grows, a new level of personnel management ins introduced at roughly each factor of 5.
This model can be sued to describe some of the process differences among projects of different sizes.
Trivial-sized projects require almost no management overhead (planning, communication, coordination,
progress assessment, review, administration).

Small projects (5 people) require very little management overhead, but team leadership toward a common
objective is crucial. There is some need to communicate the intermediate artifacts among team member.
Moderate-sized projects (25 people) require moderate management overhead, including a dedicated software
project manager to synchronize team workflows and balance resources.

Large projects (125 people) require substantial management overhead including a dedicated software project
manager and several subproject managers to synchronize project-level and subproject-level workflows and to
balance resources.Project performance is dependent on average people, for two reasons:

65

a) There are numerous mundane jobs in any large project, especially in the overhead workflows.
b) The probability of recruiting, maintaining and retaining a large umber of exceptional people is small.
= Huge projects (625 people) require substantial management overhead, including multiple software project
managers an many subproject managers to synchronize project-level and subproject-level workflows and to
balance resources.
Process discrimminators that reswlt from differernces in project size
FTRCICI-LSS PRIMITIVE SMALLER TEAM LARGER TEAM

Life-cycle phases Weak boundaries berween wWell-defined phase transitions to
phases synchronize progress among

CONCUrrent acrivitles

Acrrifacrts Focus on technical artifacts Change management of technical
artifaces, which may result in

Few discrete baselines -
numerous baselines

Very few management

artifaces required Management arrifacts important

Workflow effort More need for generalists, Higher percentage of specialists
allocations people who perform roles in

. More people and reams focused on
multiple workflows peOP

a specific workflow

Checkpoints Many informal events for A few formal evencs
maintaining rechnical

. Synchronization among teams,
COonsistency

which can take days
No schedule disruprion

Management Informal planning, project Formal planning, project control,
discipline control, and organization and organizartion

Automation More ad hoc environments, Infrastrructure o ensure a coNsis-
discipline managed by individuals tent, up-to-date environment

available across all teams
Addintonal tool integrarion to
support project control and change
control

Stakeholder Cohesion or Contention
The degree of cooperation and coordination among stakeholders (buyers, developers, users, subcontractors and
maintainers, among others) can significantly drive the specifies of how a process is defined. This process parameter can
range from cohesive to adversarial. Cohesive teams have common goals, complementary skills and close
communications. Adversarial teams have conflicting goals, completing or incomplete skills and less-than-open
communications.

Process discrirminators that reswult from differences in stakebolder cobesion

PROCESS

FEW STAKEHOILDERS, MULTIPLE STAKEHOLDERS,
PRIMITIVE COHESIVE TEAMS ADVERSARIAL RELATIONSHIPS
Life-cycle Weak boundaries Well-defined phase transitions to synchronize
phases between phases Progress among concurrent activicies
Avcrrifaces Fewer and less detailed Management artifacts paramount, especially
management artifacts the business case, vision, and starus assessment
required
Workflow effort Less overhead in High assessment overhead to ensure
allocanons ASSESSITICNT stakeholder concurrence
Checkpoints Many informal evenrs 3 or 4 formal events
Many informal rechnical walkthroughs
necessary to synchronize technical decisions
Synchronization among stakeholder reams,
which can impede progress for weeks
Management Informal planning, Formal planning, project conerol, and
discipline project control, and OFfganization
organization
Auromation (insignificant) On-line stakeholder environments necessary

Process Flexibility or Rigor
The degree of rigor, formality and change freedom inherent in a specific project™s “contract” (vision document, business
case and development plan) will have a substantial impact on the implementation of the project™s process. For very
loose contracts such as building a commercial product within a business unit of a software company (such as a
Microsoft application or a rational software corporation development tool), management complexity is minimal. Inthese

66

sorts of development processes, feature set, time to market, budget and quality can all be freely traded off and changed

with very little overhead.

Process discriminators that result from differences in process flexibility

PROCESS

PRIMITIVE FLEXIBLE PROCESS

INFLEXTBLE PROCESS

Life-cycle phases Tolerant of cavalier phase

More credible basis required for

COMmmitments inception phase commitments
Artifacts Changeable business case and Carefully controlled changes to
vision business case and vision
Workflow effort (insignificant) Increased levels of management and
allocarions assessment workflows
Checkpoints Many informal events for main- 3 or 4 formal events
taining technical consistency Synchronization among stakeholder
teams, which can impede progress for
days or weeks
Management (insignificant) More fidelity required for planning
discipline and project control

Automarion [insignificant) linsignificant)

discipline

Process Maturity

The process maturity level of the development organization, as defined by thesoftware engineering Institute™s capability
maturity model is another key driver of management complexity. Managing a mature process (level 3 or higher) is far
simpler than managing an immature process (level 1 and 2). Organizations with a mature process typically have a high
level of precedent experience in developing software and a high level of existing process collateral that enables
predictable planning and execution of the process. Tailoring a mature organization™s process for a specific project is
generally a straight forward task.

Process discrirminators that result from differences in process maturity

MATURE, LEVEL 3 OR 4
ORGANIZATION

PROCESS

PRIMITTVE LEVEL 1 ORGANIZATION

Well-established crireria for
phase transitions

Life-cycle phases (insignificanr)

Artifacts Well-established format, con- Free-farm
rent, and producrion merhods
Workflow effore Well-established basis No basis

allocations

W::-Uztﬁr;rd comhinati-cm of -

Ch m;:-a'.ll_‘rint;s {insignificant)
formal and informal events
Management Predictable planning Informal planning and project control

discipline Objective status assessments

Little automation or disconnected
islands of auromation

Requires high levels of automa-
tion for round-trip engineering,
change management, and pro-
cess INsirumentation

Auromation
discipline

Architectural Risk
The degree of technical feasibility demonstrated before commitment to full-scale production is an important dimension

of defining a specific project”s process. There are many sources of architectural risk. Some of the most important and
recurring sources are system performance (resource utilization, response time, throughput, accuracy), robustness to
change (addition of new features, incorporation of new technology, adaptation to dynamic operational conditions) and

67

system reliability (predictable behavior, fault tolerance). The degree to which these risks can bed eliminated before
construction begins can have dramatic ramifications in the process tailoring.

PROCESS
PRIMITIVE

COMPLETE ARCHITECTURE
FEASIBILITY
DEMONSTRATION

Life-cycle phases

More inception and elabora-
tion phase iterations

Process discriminators that result from differences in architectural risk

NO ARCHITECTURE FEASIBILITY
DEMONSTRATION

Fewer early iterations
More construction ITerations

allocanons

Lower levels of implementa-
tion and assessment

Artifacts Earlier breadth and depth (insignificant)
! across technical artifacts /
Workflow effort Higher level of design effort Higher levels of implementation and

assessment to deal with increased scrap
and rework

Checkpoints More emphasis on executable More emphasis on briefings, docu-
demonstrations menis, and simulations

Management {insignificant) {insignificant)

discipline

Auromanon More environment resources Less environment demand early in the

discipline required earlier in the life cycle life cycle

Domain Experience

The development organization™s domain experience governs its ability to converge on an acceptable architecture in a
minimum number of iterations. An organization that has built five generations of radar control switches may be able to
converge on adequate baseline architecture for a new radar application in two or three prototype release iterations. A
skilled software organization building its first radar application may require four or five prototype releases before
converging on an adequate baseline.

Process discriminators that result from differences m domam experience

PROCESS

PRIMITIVE EXPERIENCED TEAM INEXPERIENCED TEAM

Life-cycle phases Shorter engineering stage Longer engineering stage

Artifacts Less scrap and rework in More scrap and rework in require-
requirements and design sets ments and design sets
Workflow effort Lower levels of requirements Higher levels of requirements and
allocanons and design design
Checkpoints (insignificant) (insignificant)
Management Less emphasis on risk More-frequent status assessments
discipline management required
Less-frequent sratus assess-
ments needed
Automation (insignificant) (insignificant)
discipline

EXAMPLE: SMALL-SCALE PROJECT VERSUS LARGE-SCALE PROJECT
= An analysis of the differences between the phases, workflows and artifacts of two projects on opposite ends of
the management complexity spectrum shows how different two software project processes can be Table 14-7
illustrates the differences in schedule distribution for large and small project across the life-cycle phases. A
small commercial project (for example, a 50,000 source-line visual basic windows application, built by a team

68

of five) may require only 1 month of inception, 2 months of elaboration, 5 months of construction and 2 months
of transition. A large, complex project (for example, a 300,000 source-line embedded avionics program, built by
a team of 40) could require 8 months of inception, 14 months of elaboration, 20 months of construction, and 8
months of transition. Comparing the ratios of the life cycle spend in each phase highlights the obvious
differences.

One key aspect of the differences between the two projects is the leverage of the various process components in
the success or failure of the project. This reflects the importance of staffing or the level of associated risk
management.

Differences in workflow priorities between small and large projects

RANK SMALL COMMERCIAL PROJECT LARGE, COMPLEX PROJECT
1 Design Management

2—_ T Imp];;nrrl EETI:O_H_ o o T bc&ié; T

3 Deployment Reguirements

4 Reguirements Assessment i

.5_‘__ - Assessrﬁént I o ._‘—Envir‘; nm |:|.1|: |

& Management Implemen ratigl

7 Environment Deployment [

The following list elaborates some of the key differences in discriminators of success.

Design is key in both domains. Good design of a commercial product is a key differentiator in the marketplace
and is the foundation for efficient new product releases. Good design of a large, complex project is the
foundation for predictable, cost-efficient construction.

Management is paramount in large projects, where the consequences of planning errors, resource allocation
errors, inconsistent stakeholder expectations and other out-of-balance factors can have catastrophic
consequences for the overall team dynamics. Management is far less important in a small team, where
opportunities for miscommunications are fewer and their consequences less significant.

Deployment plays a far greater role for a small commercial product because there is a broad user base of diverse
individuals and environments.

Differertces i artifacts bPetwreern: smrall and large projeces

ARTIFACT

SMALL COMMERCLAL
PROJECT

LARGE, COMPLEX PROJECT

Work breakdown
sStructure

1-page spreadsheer with 2
lewvels of WBS elermencs

Financial management system with
5 or 6 levels of WBS elements

Business case

Spreadsheer and short memo

S-volume proposal including
rechnical volume, cost volume,
and relared experience

Wision staterment

Development plan

10-page concepr paper

10-page plan

200-page subsystem specification

200-page development plan

Release specifications

and number of
releases

Architecture
descriprion

3 imternm release
specifications

8B ro 10 mternim relecase
specifications

S8 critical use cases, SO UL
diagrams, 20 pages of rext,
other graphics

25 critical use cases, 200 UL dia-
grams, 100 pages of rexe, other
graphics

Software

S0,000 lines of Visual Basic
code

Z00,000 lines of Ca+s code

Release description

Dcploy;nent

User manual

1D-page release notes

User rraining Course

Sales rollour kit

1O -page su mrn_.j. Cy

Transition plan

Installation plan

Omn-line help and 100-page

user rmanual

200-page user manual

Sratus assessment

Cuarterly projecr reviews

MMonchly project management
FEWVIewWwS

69

	SPM UNIT I
	SPM UNIT II (Part-I)
	INTRODUCTION
	SPM UNIT II (Part-II) and UNIT-III (Part-I)
	PRINCIPLES OF CONVENTIONAL SOFTWARE ENGINEERING
	PRINCIPLES OF MODERN' SOFTWARE MANAGEMENT

	TRANSITIONING TO AN ITERATIVE PROCESS
	LIFE CYCLE PHASES
	Engineering and Production Stages
	INCEPTION PHASE
	 Primary Objectives
	 Essential Activities
	 Primary Evaluation Criteria
	ELABORATION PHASE
	 Primary Objectives (1)
	 Essential Activities (1)
	 Primary Evaluation Criteria (1)
	CONSTRUCTION PHASE
	 Primary Objectives (2)
	 Essential Activities (2)
	 Primary Evaluation Criteria (2)
	TRANSITION PHASE
	 Primary Objectives (3)
	 Essential Activities (3)
	 Primary Evaluation Criteria (3)
	SPM UNIT III (Part-II)
	THE ARTIFACT SETS
	The Management Set:
	Requirements Set:
	Design Set
	Implementation Set
	Deployment Set
	Artifact Evolution over the Life Cycle
	Test Artifacts
	MANAGEMENT ARTIFACTS
	Business Case:
	Work Breakdown Structure:
	Software Change Order Database:
	Release Specifications:
	Software Development Plan:
	Release descriptions:
	Status Assessments:
	Environment:
	Deployment:
	Management Artifact Sequences
	4.3. ENGINEERING ARTIFACTS
	Vision document
	Architecture Description:
	Software Use Manual
	PRAGMATIC ARTIFACTS
	ARCHITECTURE: A MANAGEMENT PERSPECTIVE
	ARCHITECTURE: A TECHNICAL PERSPECTIVE
	SPM UNIT IV (Part-I)
	SOFTWARE PROCESS WORKFLOWS
	ITERATION WORKFLOWS
	CHECKPOINTS OF THE PROCESS
	MAJOR MILESTONES
	Life-Cycle Objectives Milestone
	Life-Cycle Architecture Milestone
	MINOR MILESTONES
	PERIODIC STATUS ASSESSMENTS
	WORK BREAKDOWN STRUCTURES (WBS)
	CONVENTIONAL WBS ISSUES
	EVOLUTIONARY WORK BREAKDOWN STRUCTURES
	PLANNING GUIDELINES
	THE COST AND SCHEDULE ESTIMATING PROCESS
	THE ITERATION PLANNING PROCESS
	PRAGMATIC PLANNING
	SPM UNIT IV (Part-II)
	LINE -OF-BUSINESS ORGANIZATIONS
	Software Engineering Process Authority (SEPA):
	Project Review Authority (PRA):
	Software Engineering Environment Authority (SEEA):
	Infrastructure:
	PROJECT ORGANIZATIONS
	Software Management Team:
	Software Architecture Team:
	Software Development Team:
	Software Assessment Team:
	EVOLUTION OF ORGANIZATIONS
	PROCESS AUTOMATION
	Automation Buliding Blocks
	THE PROJECT ENVIRONMENT
	Round-Trip Engineering
	Change Management
	Software Change Orders (SCO)
	Configuration Baseline
	Configuration Control Board (CCB)
	Infrastructures
	Organization Policy
	Organization Environment
	Stakeholder Environments
	SPM UNIT V(Part-I)
	THE SEVEN CORE METRICS
	a) Management Indicators
	b) Quality Indicators
	MANAGEMENT INDICATORS
	Work & Progress
	Budgeted Cost and Expenditures
	Staffing and Team Dynamics
	QUALITY INDICATORS
	Change Traffic and Stability
	Breakage and Modularity
	Rework and Adaptability
	MTBF and Maturity
	LIFE CYCLE EXPECTATIONS
	PRAGMATIC SOFTWARE METRICS
	METRICS AUTOMATION
	PROCESS DISCRIMINATES
	Scale
	Stakeholder Cohesion or Contention
	Process Flexibility or Rigor
	Process Maturity
	Architectural Risk
	Domain Experience
	EXAMPLE: SMALL-SCALE PROJECT VERSUS LARGE-SCALE PROJECT

